Powered by Deep Web Technologies
Note: This page contains sample records for the topic "integrated water vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Integration of Global Positioning System and Scanning Water Vapor Radiometers for Precipitable Water Vapor and Cloud Liquid Path Estimates  

NLE Websites -- All DOE Office Websites (Extended Search)

Integration of Global Positioning System and Scanning Integration of Global Positioning System and Scanning Water Vapor Radiometers for Precipitable Water Vapor and Cloud Liquid Path Estimates V. Mattioli and P. Basili Department of Electronic and Information Engineering University of Perugia Perugia, Italy E. R. Westwater Cooperative Institute for Research in Environmental Sciences University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado Introduction In recent years the Global Positioning System (GPS) has proved to be a reliable instrument for measuring precipitable water vapor (PWV) (Bevis et al. 1992), offering an independent source of information on water vapor when compared with microwave radiometers (MWRs), and/or radiosonde

2

Improved Retrieval of Integrated Water Vapor from Water Vapor Radiometer Measurements Using Numerical Weather Prediction Models  

Science Conference Proceedings (OSTI)

Water vapor radiometer (WVR) retrieval algorithms require a priori information on atmospheric conditions along the line of sight of the radiometer in order to derive opacities from observed brightness temperatures. This paper's focus is the mean ...

Steven R. Chiswell; Steven Businger; Michael Bevis; Fredrick Solheim; Christian Rocken; Randolph Ware

1994-10-01T23:59:59.000Z

3

Seasonal Variations in the Vertically Integrated Water Vapor Transport Fields over the Southern Hemisphere  

Science Conference Proceedings (OSTI)

Seasonal mean fields of precipitable water and the zonal and meridional components of the vertically integrated atmospheric water vapor transport fields are calculated from five years of Southern Hemisphere data (1 September 1973 through 31 ...

David A. Howarth

1983-06-01T23:59:59.000Z

4

An Integrated Assessment of Measured and Modeled Integrated Water Vapor in Switzerland for the Period 2001–03  

Science Conference Proceedings (OSTI)

In this paper an integrated assessment of the vertically integrated water vapor (IWV) measured by radiosonde, microwave radiometer (MWR), and GPS and modeled by the limited-area mesoscale model of MeteoSwiss is presented. The different IWV ...

G. Guerova; E. Brockmann; F. Schubiger; J. Morland; C. Mätzler

2005-07-01T23:59:59.000Z

5

A Lightning Prediction Index that Utilizes GPS Integrated Precipitable Water Vapor  

Science Conference Proceedings (OSTI)

The primary weather forecast challenge at the Cape Canaveral Air Station and Kennedy Space Center is lightning. This paper describes a statistical approach that combines integrated precipitable water vapor (IPWV) data from a global positioning ...

Robert A. Mazany; Steven Businger; Seth I. Gutman; William Roeder

2002-10-01T23:59:59.000Z

6

The Use of Digital Warping of Microwave Integrated Water Vapor Imagery to Improve Forecasts of Marine Extratropical Cyclones  

Science Conference Proceedings (OSTI)

A technique is described in which forecasts of the locations of features associated with marine cyclones may be improved through the use of microwave integrated water vapor (IWV) imagery and image warping of forecast mesoscale model fields. Here, ...

G. David Alexander; James A. Weinman; J. L. Schols

1998-06-01T23:59:59.000Z

7

Comparison of Near–Real Time Estimates of Integrated Water Vapor Derived with GPS, Radiosondes, and Microwave Radiometer  

Science Conference Proceedings (OSTI)

In this study, the authors compare the integrated water vapor (IWV) retrieved with a global positioning system (GPS) receiver, radiosondes (RS), and a microwave radiometer (MWR) using data collected simultaneously during a 3-month campaign in the ...

Joël Van Baelen; Jean-Pierre Aubagnac; Alain Dabas

2005-02-01T23:59:59.000Z

8

Integrated Water Vapor Field and Multiscale Variations over China from GPS Measurements  

Science Conference Proceedings (OSTI)

Water vapor plays a key role in the global hydrologic cycle and in climatic change. However, the distribution and variability of water vapor in the troposphere are not understood well—in particular, in China with the complex Tibetan Plateau and ...

Shuanggen Jin; Z. Li; J. Cho

2008-11-01T23:59:59.000Z

9

Results of Year-Round Remotely Sensed Integrated Water Vapor by Ground-Based Microwave Radiometry  

Science Conference Proceedings (OSTI)

Based on two years of measurements with a time resolution of 1 min, some climatological findings on precipitable water vapor (PWV) and cloud liquid water (CLW) in central Europe are given. A weak diurnal cycle is apparent. The mean overall ...

J. Güldner; D. Spänkuch

1999-07-01T23:59:59.000Z

10

Improved Daytime Column-Integrated Precipitable Water Vapor from Vaisala Radiosonde Humidity Sensors  

Science Conference Proceedings (OSTI)

Accurate water vapor profiles from radiosondes are essential for long-term climate prediction, weather prediction, validation of remote sensing retrievals, and other applications. The Vaisala RS80, RS90, and RS92 radiosondes are among the more ...

K. E. Cady-Pereira; M. W. Shephard; D. D. Turner; E. J. Mlawer; S. A. Clough; T. J. Wagner

2008-06-01T23:59:59.000Z

11

Atmospheric Water Vapor Characteristics at 70°N  

Science Conference Proceedings (OSTI)

Using an extensive rawinsonde archive, characteristics of Arctic water vapor and its transports at 70°N are examined for the period 1974–1991. Monthly-mean profiles and vertically integrated values of specific humidity and meridional vapor fluxes ...

Mark C. Serreze; Roger G. Barry; John E. Walsh

1995-04-01T23:59:59.000Z

12

Intercomparison of Integrated Water Vapor Estimates from Multisensors in the Amazonian Region  

Science Conference Proceedings (OSTI)

Water vapor is an atmospheric component of major interest in atmospheric science because it affects the energy budget and plays a key role in several atmospheric processes. The Amazonian region is one of the most humid on the planet, and land use ...

Luiz F. Sapucci; Luiz A. T. Machado; João F. G. Monico; Artemio Plana-Fattori

2007-11-01T23:59:59.000Z

13

The Validation of AIRS Retrievals of Integrated Precipitable Water Vapor Using Measurements from a Network of Ground-Based GPS Receivers over the Contiguous United States  

Science Conference Proceedings (OSTI)

A robust and easily implemented verification procedure based on the column-integrated precipitable water (IPW) vapor estimates derived from a network of ground-based global positioning system (GPS) receivers has been used to assess the quality of ...

M. K. Rama Varma Raja; Seth I. Gutman; James G. Yoe; Larry M. McMillin; Jiang Zhao

2008-03-01T23:59:59.000Z

14

Atmospheric Water Vapor over China  

Science Conference Proceedings (OSTI)

Chinese radiosonde data from 1970 to 1990 are relatively homogeneous in time and are used to examine the climatology, trends, and variability of China’s atmospheric water vapor content. The climatological distribution of precipitable water (PW) ...

Panmao Zhai; Robert E. Eskridge

1997-10-01T23:59:59.000Z

15

Remote sensing of total integrated water vapor, wind speed, and cloud liquid water over the ocean using the Special Sensor Microwave/Imager (SSM/I)  

E-Print Network (OSTI)

A modified D-matrix retrieval method is the basis of the refined total integrated water vapor (TIWV), total integrated cloud liquid water (CLW), and surface wind speed (WS) retrieval methods that are developed. The 85 GHZ polarization difference is used to restrict the application of the geophysical retrieval algorithms which are developed to handle specific atmospheric absorptive situations. An improved semi-empirical sea surface emissivity model is integrated into this refined D-matrix procedure that is being developed for the Advanced Microwave Sounding Radiometer (AMSR). The purpose of this work is to test the refined geophysical parameter retrieval methods using data from the Special Sensor Microwave / Imager (SSM/I). When comparing the statistical performance of the TIWV, WS, and CLW retrieval methods presented to the statistical performance of published retrieval methods for each geophysical parameter, the retrieval methods developed for this study perform only slightly better. However, it is demonstrated that the new retrieval methods are more physically valid than the comparison retrieval methods. The utilization of the polarization difference of the 85 GHZ channels to restrict the application of specifically-derived retrieval algorithms proves to be a valuable and reliable geophysical parameter retrieval tool.

Manning, Norman Willis William

1997-01-01T23:59:59.000Z

16

Distribution of Tropical Tropospheric Water Vapor  

Science Conference Proceedings (OSTI)

Utilizing a conceptual model for tropical convection and observational data for water vapor, the maintenance of the vertical distribution of the tropical tropospheric water vapor is discussed. While deep convection induces large-scale subsidence ...

De-Zheng Sun; Richard S. Lindzen

1993-06-01T23:59:59.000Z

17

Vapor Pressure Measurement of Supercooled Water  

Science Conference Proceedings (OSTI)

A new dewpoint hygrometer was developed for subfreezing temperature application. Vapor pressure of supercooled water was determined by measuring temperatures at the dew-forming surface and the vapor source ice under the flux density balance, and ...

N. Fukuta; C. M. Gramada

2003-08-01T23:59:59.000Z

18

ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals  

DOE Data Explorer (OSTI)

Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

Maria Cadeddu

19

Water Vapor Fields Deduced from METEOSAT-1 Water Vapor Channel Data  

Science Conference Proceedings (OSTI)

A quasi-operational process for the determination of water vapor fields from METEPSAT-1 water vapor channel data is described. Each count of the WV picture is replaced by the corresponding mean relative humidity value using both the calibration ...

M. M. Poc; M. Roulleau

1983-09-01T23:59:59.000Z

20

A New Global Water Vapor Dataset  

Science Conference Proceedings (OSTI)

A comprehensive and accurate global water vapor dataset is critical to the adequate understanding of water vapor's role in the earth's climate system. To begin to satisfy this need, the authors have produced a blended dataset made up of global, 5-...

David L. Randel; Thomas J. Greenwald; Thomas H. Vonder Haar; Graeme L. Stephens; Mark A. Ringerud; Cynthia L. Combs

1996-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated water vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

ARM - Field Campaign - Water Vapor IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsWater Vapor IOP govCampaignsWater Vapor IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Water Vapor IOP 2000.09.18 - 2000.10.08 Lead Scientist : Henry Revercomb Data Availability Yes For data sets, see below. Description Scientific hypothesis: 1. Microwave radiometer (MWR) observations of the 22 GHz water vapor line can accurately constrain the total column amount of water vapor (assuming a calibration accuracy of 0.5 degC or better, which translates into 0.35 mm PWV). 2. Continuous profiling by Raman lidar provides a stable reference for handling sampling problems and observes a fixed column directly above the site only requiring a single height- independent calibration factor. 3. Agreement between the salt-bath calibrated in-situ probes, chilled

22

Water vapor retrieval over many surface types  

SciTech Connect

In this paper we present a study of of the water vapor retrieval for many natural surface types which would be valuable for multi-spectral instruments using the existing Continuum Interpolated Band Ratio (CIBR) for the 940 nm water vapor absorption feature. An atmospheric code (6S) and 562 spectra were used to compute the top of the atmosphere radiance near the 940 nm water vapor absorption feature in steps of 2.5 nm as a function of precipitable water (PW). We derive a novel technique called ``Atmospheric Pre-corrected Differential Absorption`` (APDA) and show that APDA performs better than the CIBR over many surface types.

Borel, C.C.; Clodius, W.C.; Johnson, J.

1996-04-01T23:59:59.000Z

23

Tropospheric Water Vapor and Climate Sensitivity  

Science Conference Proceedings (OSTI)

Estimates are made of the effect of changes in tropospheric water vapor on the climate sensitivity to doubled carbon dioxide (CO2), using a coarse resolution atmospheric general circulation model coupled to a slab mixed layer ocean. The ...

Edwin K. Schneider; Ben P. Kirtman; Richard S. Lindzen

1999-06-01T23:59:59.000Z

24

Profiling Atmospheric Water Vapor by Microwave Radiometry  

Science Conference Proceedings (OSTI)

High-altitude microwave radiometric observations at frequencies near 92 and 183.3 GHz were used to study the potential of retrieving atmospheric water vapor profiles over both land and water. An algorithm based on an extended Kaiman-Bucy filter ...

J. R. Wang; J. L. King; T. T. Wilheit; G. Szejwach; L. H. Gesell; R. A. Nieman; D. S. Niver; B. M. Krupp; J. A. Gagliano

1983-05-01T23:59:59.000Z

25

atmospheric water vapor | OpenEI  

Open Energy Info (EERE)

atmospheric water vapor atmospheric water vapor Dataset Summary Description (Abstract): Monthly Average Solar Resource for 2-axis tracking concentrating collectors for Mexico, Central America, and the Caribbean Islands. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a concentrating collector, such as a dish collector, which tracks the sun continuously. Source NREL Date Released July 31st, 2006 (8 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords atmospheric water vapor Carribean Islands Central America DNI GIS Mexico NREL GEF solar SWERA UNEP Data application/zip icon Download Shapefile (zip, 247.8 KiB) text/csv icon Download Data (csv, 370.6 KiB) Quality Metrics Level of Review Some Review

26

atmoshperic water vapor | OpenEI  

Open Energy Info (EERE)

atmoshperic water vapor atmoshperic water vapor Dataset Summary Description (Abstract): Monthly Average Solar Resource for flat-plate collectors tilted at latitude for China. Source NREL Date Released April 12th, 2005 (9 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords atmoshperic water vapor China GEF GIS NREL solar SWERA TILT UNEP Data application/zip icon Download Shapefile (zip, 625.6 KiB) text/csv icon Download Data (csv, 704.1 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 01/01/1985 - 12/31/1991 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access

27

ARM - Field Campaign - Water Vapor IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsWater Vapor IOP govCampaignsWater Vapor IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Water Vapor IOP 1996.09.10 - 1996.09.30 Lead Scientist : Henry Revercomb For data sets, see below. Summary SCHEDULE This IOP will be conducted from September 10 - 30, 1996 (coincident with the Fall ARM-UAV IOP). Instruments that do not require supervision will be operated continuously during this period. Instruments that do require supervision are presently planned to be operated for 8-hour periods each day. Because it is necessary to cover as broad a range of environmental conditions as possible, the daily 8-hour period will be shifted across the diurnal cycle as deemed appropriate during the IOP (but will be maintained as a contiguous 8-hour block).

28

Adsorption of water vapor on reservoir rocks  

DOE Green Energy (OSTI)

Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

Not Available

1993-07-01T23:59:59.000Z

29

A Steerable Dual-Channel Microwave Radiometer for Measurement of Water Vapor and Liquid in the Troposphere  

Science Conference Proceedings (OSTI)

An instrument that remotely senses the integrated amounts of water vapor and liquid on a path through the atmosphere is discussed. The vapor and liquid are measured simultaneously but independently by microwave radiometers. Comparison of the ...

D. C. Hogg; F. O. Guiraud; J. B. Snider; M. T. Decker; E. R. Westwater

1983-05-01T23:59:59.000Z

30

A Water Vapor Index from Satellite Measurements  

Science Conference Proceedings (OSTI)

A method for deriving a water vapor index is presented. An important feature of the index is the fact that it does not rely on radiosondes. Thus, it is not influenced by problems associated with radiosondes and the extent to which the horizontal ...

Larry M. McMillin; David S. Crosby; Mitchell D. Goldberg

1995-07-01T23:59:59.000Z

31

Atmospheric Solar Heating Rate in the Water Vapor Bands  

Science Conference Proceedings (OSTI)

The total absorption of solar radiation by water vapor in clear atmosphere is parameterized as a simple function of the scaled water vapor amount. For applications to cloudy and hazy atmospheres, the flux-weighted k-distribution functions are ...

Ming-Dah Chou

1986-11-01T23:59:59.000Z

32

Estimating the Atmospheric Water Vapor Content from Sun Photometer Measurements  

Science Conference Proceedings (OSTI)

The differential absorption technique for estimating columnar water vapor values from the analysis of sunphotometric measurements with wide- and narrowband interferential filters centered near 0.94 ?m is discussed and adapted. Water vapor line ...

Artemio Plana-Fattori; Michel Legrand; Didier Tanré; Claude Devaux; Anne Vermeulen; Philippe Dubuisson

1998-08-01T23:59:59.000Z

33

G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) Value-Added Product  

SciTech Connect

The G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) value-added product (VAP) computes precipitable water vapor using neural network techniques from data measured by the GVR. The GVR reports time-series measurements of brightness temperatures for four channels located at 183.3 ± 1, 3, 7, and 14 GHz.

Koontz, A; Cadeddu, M

2012-12-05T23:59:59.000Z

34

Effect of higher water vapor content on TBC performance  

Science Conference Proceedings (OSTI)

Coal gasification, or IGCC (integrated gasification combined cycle), is one pathway toward cleaner use of coal for power generation with lower emissions. However, when coal-derived synthesis gas (i.e., syngas) is burned in turbines designed for natural gas, turbine manufacturers recommend 'derating,' or lowering the maximum temperature, which lowers the efficiency of the turbine, making electricity from IGCC more expensive. One possible reason for the derating is the higher water vapor contents in the exhaust gas. Water vapor has a detrimental effect on many oxidation-resistant high-temperature materials. In a turbine hot section, Ni-base superalloys are coated with a thermal barrier coating (TBC) allowing the gas temperature to be higher than the superalloy solidus temperature. TBCs have a low thermal conductivity ceramic top coating (typically Y{sub 2}O{sub 3}-stabilized ZrO{sub 2}, or YSZ) and an oxidation-resistant metallic bond coating. For land-based gas turbines, the industry standard is air plasma sprayed (APS) YSZ and high velocity oxygen fuel (HVOF) sprayed NiCoCrAlY bond coatings. To investigate the role of higher water vapor content on TBC performance and possible mitigation strategies, furnace cycling experiments were conducted in dry O{sub 2} and air with 10% (typical with natural gas or jet fuel) or 50 vol% water vapor. Cycle frequency and temperature were accelerated to one hour at 1100 C (with 10 minute cooling to {approx}30 C between each thermal cycle) to induce early failures in coatings that are expected to operate for several years with a metal temperature of {approx}900 C. Coupons (16 mm diameter x 2 mm thick) of commercial second-generation single crystal superalloy CMSX4 were HVOF coated on both sides with {approx}125 {micro}m of Ni-22wt%Co-17Cr-12Al either with 0.7Y or 0.7Y-0.3Hf-0.4Si. One side was then coated with 190-240 {micro}m of APS YSZ. Coatings were cycled until the YSZ top coating spalled. Figure 2 shows the results of the initial phase of experiments. Compared to dry O{sub 2}, the addition of 10% water vapor decreased the lifetime of MCrAlY by {approx}30% for the conventional CMSX4 substrates. Higher average lifetimes were observed with Hf in the bond coating, but a similar decrease in lifetime was observed when water vapor was added. The addition of Y and La to the superalloy substrate did not change the YSZ lifetime with 10% water vapor. However, increasing water vapor content from 10 to 50% did not further decrease the lifetime of either bond coating with the doped superalloy substrate. Thus, these results suggest that higher water vapor contents cannot explain the derating of syngas-fired turbines, and other factors such as sulfur and ash from imperfect syngas cleanup (or upset conditions) need to be explored. Researchers continue to study effects of water vapor on thermally grown alumina scale adhesion and growth rate, and are looking for bond coating compositions more resistant to oxidation in the presence of water vapor.

Pint, Bruce A [ORNL; Haynes, James A [ORNL

2012-01-01T23:59:59.000Z

35

Comparison of Measurements of Atmospheric Wet Delay by Radiosonde, Water Vapor Radiometer, GPS, and VLBI  

Science Conference Proceedings (OSTI)

The accuracy of the Global Positioning System (GPS) as an instrument for measuring the integrated water vapor content of the atmosphere has been evaluated by comparison with concurrent observations made over a 14-day period by radiosonde, ...

A. E. Niell; A. J. Coster; F. S. Solheim; V. B. Mendes; P. C. Toor; R. B. Langley; C. A. Upham

2001-06-01T23:59:59.000Z

36

Influence of GPS Precipitable Water Vapor Retrievals on Quantitative Precipitation Forecasting in Southern California  

Science Conference Proceedings (OSTI)

The effects of precipitable water vapor (PWV) retrievals from the Southern California Integrated GPS Network (SCIGN) on quantitative precipitation forecast (QPF) skill are examined over two flood-prone regions of Southern California: Santa ...

Steven Marcus; Jinwon Kim; Toshio Chin; David Danielson; Jayme Laber

2007-11-01T23:59:59.000Z

37

Precipitation and Water Vapor Transport in the Southern Hemisphere with Emphasis on the South American Region  

Science Conference Proceedings (OSTI)

December–March climatologies of precipitation and vertically integrated water vapor transport were analyzed and compared to find the main paths by which moisture is fed to high-rainfall regions in the Southern Hemisphere in this season. The ...

Josefina Moraes Arraut; Prakki Satyamurty

2009-09-01T23:59:59.000Z

38

Real-Time Water Vapor Maps from a GPS Surface Network: Construction, Validation, and Applications  

Science Conference Proceedings (OSTI)

In this paper the construction of real-time integrated water vapor (IWV) maps from a surface network of global positioning system (GPS) receivers is presented. The IWV maps are constructed using a two-dimensional variational technique with a ...

Siebren de Haan; Iwan Holleman; Albert A. M. Holtslag

2009-07-01T23:59:59.000Z

39

Statistical Retrieval of Humidity Profiles from Precipitable Water Vapor and Surface Measurements of Humidity and Temperature  

Science Conference Proceedings (OSTI)

A new method is presented of statistical retrieval of humidity profiles based on measurements of surface temperature ?1, surface dewpoint ?2, and integrated water vapor ?3. In this method the retrieved values of humidity depend nonlinearly on ...

Viatcheslav V. Tatarskii; Maia S. Tatarskaia; Ed R. Westwater

1996-02-01T23:59:59.000Z

40

Calibration of Sun Radiometer–Based Atmospheric Water Vapor Retrievals Using GPS Meteorology  

Science Conference Proceedings (OSTI)

A study of the validation and calibration process for integrated water vapor (IWV) measurements derived from sun radiometry at the 940-nm solar absorption channel employed in the Aerosol Robotic Network (AERONET) Aerosol Canada (AEROCAN) is ...

Amadou Idrissa Bokoye; Alain Royer; Patrick Cliche; Norm O’Neill

2007-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated water vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Water Waves and Integrability  

E-Print Network (OSTI)

The Euler's equations describe the motion of inviscid fluid. In the case of shallow water, when a perturbative asymtotic expansion of the Euler's equations is taken (to a certain order of smallness of the scale parameters), relations to certain integrable equations emerge. Some recent results concerning the use of integrable equation in modeling the motion of shallow water waves are reviewed in this contribution.

Rossen I. Ivanov

2007-07-12T23:59:59.000Z

42

ARM - Field Campaign - Fall 1997 Water Vapor IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Vapor IOP Water Vapor IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Fall 1997 Water Vapor IOP 1997.09.15 - 1997.10.05 Lead Scientist : Henry Revercomb For data sets, see below. Summary The Water Vapor IOP was conducted as a follow-up to a predecessor IOP on water vapor held in September 1996. This IOP relied heavily on both ground-based guest and CART instrumentation and in-situ aircraft and tethered sonde/kite measurements. Primary operational hours were from 6 p.m. Central until at least midnight, with aircraft support normally from about 9 p.m. until midnight when available. However, many daytime measurements were made to support this IOP. The first Water Vapor IOP primarily concentrated on the atmosphere's lowest

43

ARM - Field Campaign - ARM-FIRE Water Vapor Experiment  

NLE Websites -- All DOE Office Websites (Extended Search)

Order Data Browell, Edward LASE Order Data Gutman, Seth GPS Order Data Richardson, Scott Chilled Mirror Order Data Sachse, G. Water Vapor Order Data Schmidlin, Francis CM Sondes...

44

Raman Lidar Measurements of Aerosols and Water Vapor During the...  

NLE Websites -- All DOE Office Websites (Extended Search)

Raman Lidar Measurements of Aerosols and Water Vapor During the May 2003 Aerosol IOP R. A. Ferrare National Aeronautics and Space Administration Langley Research Center Hampton,...

45

Water Vapor Flux Measurements from Ground-Based Vertically Pointed Water Vapor Differential Absorption and Doppler Lidars  

Science Conference Proceedings (OSTI)

For the first time, two lidar systems were used to measure the vertical water vapor flux in a convective boundary layer by means of eddy correlation. This was achieved by combining a water vapor differential absorption lidar and a heterodyne wind ...

Andreas Giez; Gerhard Ehret; Ronald L. Schwiesow; Kenneth J. Davis; Donald H. Lenschow

1999-02-01T23:59:59.000Z

46

The Effects of Water Vapor on the Oxidation of Nickel-Base ...  

Science Conference Proceedings (OSTI)

water vapor are compared at temperatures from 700°C to 1100°C. It is shown that water vapor affects the oxidation of such alloys in different ways. Water vapor ...

47

Does EIA report water vapor emissions data? - FAQ - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Does EIA report water vapor emissions data? No. Water vapor is the most abundant greenhouse gas, but most scientists believe that human activity has a very small ...

48

Verification of NWP Model Analyses and Radiosonde Humidity Data with GPS Precipitable Water Vapor Estimates during AMMA  

Science Conference Proceedings (OSTI)

This paper assesses the performance of the European Centre for Medium-Range Weather Forecasts-Integrated Forecast System (ECMWF-IFS) operational analysis and NCEP–NCAR reanalyses I and II over West Africa, using precipitable water vapor (PWV) ...

O. Bock; M. Nuret

2009-08-01T23:59:59.000Z

49

Comparisons of Line-of-Sight Water Vapor Observations Using the Global Positioning System and a Pointing Microwave Radiometer  

Science Conference Proceedings (OSTI)

Line-of-sight measurements of integrated water vapor from a global positioning system (GPS) receiver and a microwave radiometer are compared. These two instruments were collocated at the central facility of the Department of Energy’s Atmospheric ...

John Braun; Christian Rocken; James Liljegren

2003-05-01T23:59:59.000Z

50

Broadband Water Vapor Transmission Functions for Atmospheric IR Flux Computations  

Science Conference Proceedings (OSTI)

Transmission functions associated with water vapor molecular line and e-type absorption in the IR spectral regions are presented in the form of simple analytical functions and small tables, from which atmospheric IR fluxes and cooling rates can ...

Ming-Dah Chou

1984-05-01T23:59:59.000Z

51

Characterization of Advanced Avalanche Photodiodes for Water Vapor Lidar Receivers  

Science Conference Proceedings (OSTI)

Development of advanced differential absorption lidar (DIAL) receivers is very important to increase the accuracy of atmospheric water vapor measurements. A major component of such receivers is the optical detector. In the near-infrared wavelength range ...

Refaat Tamer F.; Halama Gary E.; DeYoung Russell J.

2000-07-01T23:59:59.000Z

52

ARM - Field Campaign - Arctic Winter Water Vapor IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsArctic Winter Water Vapor IOP govCampaignsArctic Winter Water Vapor IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Arctic Winter Water Vapor IOP 2004.03.09 - 2004.04.09 Lead Scientist : Ed Westwater Data Availability http://www.etl.noaa.gov/programs/2004/wviop/data will contain quicklooks of all of the data. For data sets, see below. Summary During the IOP, the Ground-based Scanning Radiometer of NOAA/ETL, and the ARM MicroWave Radiometer and Microwave Profiler, yielded excellent data over a range of conditions. In all, angular-scanned and calibrated radiometric data from 22.345 to 380 GHz were taken. The Precipitable Water Vapor varied about an order of magnitude from 1 to 10 mm, and surface temperatures varied from about -10 to -40 deg. Celcius. Vaisala RS90

53

Overview of the ARM/FIRE Water Vapor Experiment (AFWEX)  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview of the ARM/FIRE Water Vapor Overview of the ARM/FIRE Water Vapor Experiment (AFWEX) D. C. Tobin, H. E. Revercomb, and D. D. Turner University of Wisconsin-Madison Madison, Wisconsin Introduction An overview of the ARM/FIRE Water Vapor Experiment (AFWEX) is given. This field experiment was conducted during November-December 2000 near the central ground-based Atmospheric Radiation Measurement (ARM) site in north central Oklahoma, and was sponsored jointly by the ARM, the National Aeronautics and Space Administration (NASA) First ISCCP Regional Experiment (FIRE), and the National Polar-orbiting Operational Environmental Satellite System (NPOESS) programs. Its primary goal was to collect accurate measurements of upper-level (~8 to 12 km) water vapor near the ground-based ARM site. These data are being used to determine the accuracy of measurements that are

54

Intercomparison of Four Commercial Analyzers for Water Vapor Isotope Measurement  

Science Conference Proceedings (OSTI)

The ?18O and ?D of atmospheric water vapor are important tracers in hydrological and ecological studies. Isotope ratio infrared spectroscopy (IRIS) provides an in situ technology for measuring ?18O and ?D in ambient conditions. An intercomparison ...

Xue-Fa Wen; Xuhui Lee; Xiao-Min Sun; Jian-Lin Wang; Ya-Kun Tang; Sheng-Gong Li; Gui-Rui Yu

2012-02-01T23:59:59.000Z

55

Moisture Vertical Structure, Column Water Vapor, and Tropical Deep Convection  

Science Conference Proceedings (OSTI)

The vertical structure of the relationship between water vapor and precipitation is analyzed in 5 yr of radiosonde and precipitation gauge data from the Nauru Atmospheric Radiation Measurement (ARM) site. The first vertical principal component of ...

Christopher E. Holloway; J. David Neelin

2009-06-01T23:59:59.000Z

56

Upper-Tropospheric Water Vapor from UARS MLS  

Science Conference Proceedings (OSTI)

Initial results of upper-tropospheric water vapor obtained from the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) are presented. MLS is less affected by clouds than infrared or visible techniques, and the UARS ...

W. G. Read; J. W. Waters; D. A. Flower; L. Froidevaux; R. F. Jarnot; D. L. Hartmann; R. S. Harwood; R. B. Rood

1995-12-01T23:59:59.000Z

57

Solar Radiation Absorption due to Water Vapor: Advanced Broadband Parameterizations  

Science Conference Proceedings (OSTI)

Accurate parameterizations for calculating solar radiation absorption in the atmospheric column due to water vapor lines and continuum are proposed for use in broadband shortwave radiative transfer codes. The error in the absorption values is ...

Tatiana A. Tarasova; Boris A. Fomin

2000-11-01T23:59:59.000Z

58

Water vapor and the dynamics of climate changes  

E-Print Network (OSTI)

Water vapor is not only Earth's dominant greenhouse gas. Through the release of latent heat when it condenses, it also plays an active role in dynamic processes that shape the global circulation of the atmosphere and thus ...

Schneider, Tapio

59

The Arm Program's Water Vapor Intensive Observation Periods  

Science Conference Proceedings (OSTI)

A series of water vapor intensive observation periods (WVIOPs) were conducted at the Atmospheric Radiation Measurement (ARM) site in Oklahoma between 1996 and 2000. The goals of these WVIOPs are to characterize the accuracy of the operational ...

H. E. Revercomb; D. D. Turner; D. C. Tobin; R. O. Knuteson; W. F. Feltz; J. Barnard; J. Bösenberg; S. Clough; D. Cook; R. Ferrare; J. Goldsmith; S. Gutman; R. Halthore; B. Lesht; J. Liljegren; H. Linné; J. Michalsky; V. Morris; W. Porch; S. Richardson; B. Schmid; M. Splitt; T. Van Hove; E. Westwater; D. Whiteman

2003-02-01T23:59:59.000Z

60

Column Water Vapor Content in Clear and Cloudy Skies  

Science Conference Proceedings (OSTI)

With radiosonde data from 15 Northern Hemisphere stations, surface-to-400-mb column water vapor is computed from daytime soundings for 1988–1990. On the basis of simultaneous surface visual cloud observations, the data are categorized according ...

Dian J. Gaffen; William P. Elliott

1993-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated water vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Raman Lidar Profiling of Tropospheric Water Vapor over Kangerlussuaq, Greenland  

Science Conference Proceedings (OSTI)

A new measurement capability has been implemented in the Arctic Lidar Technology (ARCLITE) system at the Sondrestrom upper-atmosphere research facility near Kangerlussuaq, Greenland (67.0°N, 50.9°W), enabling estimates of atmospheric water vapor ...

Ryan Reynolds Neely III; Jeffrey P. Thayer

2011-09-01T23:59:59.000Z

62

Lidar Monitoring of the Water Vapor Cycle in the Troposphere  

Science Conference Proceedings (OSTI)

The water vapor mixing ratio distribution in the lower and middle troposphere has been continuously monitored, using an active lidar system. The methodology of the differential absorption laser method used for these measurements is summarized and ...

C. Cahen; G. Megie; P. Flamant

1982-10-01T23:59:59.000Z

63

Numerical simulation of water injection into vapor-dominated reservoirs  

DOE Green Energy (OSTI)

Water injection into vapor-dominated reservoirs is a means of condensate disposal, as well as a reservoir management tool for enhancing energy recovery and reservoir life. We review different approaches to modeling the complex fluid and heat flow processes during injection into vapor-dominated systems. Vapor pressure lowering, grid orientation effects, and physical dispersion of injection plumes from reservoir heterogeneity are important considerations for a realistic modeling of injection effects. An example of detailed three-dimensional modeling of injection experiments at The Geysers is given.

Pruess, K.

1995-01-01T23:59:59.000Z

64

Validation of TES Temperature and Water Vapor Retrievals with ARM  

NLE Websites -- All DOE Office Websites (Extended Search)

Validation of TES Temperature and Water Vapor Retrievals with ARM Validation of TES Temperature and Water Vapor Retrievals with ARM Observations Cady-Pereira, Karen Atmospheric and Environmental Research, Inc. Shephard, Mark Atmospheric and Environmental Research, Inc. Clough, Shepard Atmospheric and Environmental Research Mlawer, Eli Atmospheric & Environmental Research, Inc. Turner, David University of Wisconsin-Madison Category: Atmospheric State and Surface The primary objective of the TES (Tropospheric Emission Spectrometer) instrument on the Aura spacecraft is the retrieval of trace gases, especially water vapor and ozone. The TES retrievals extremely useful for global monitoring of the atmospheric state, but they must be validated. The ARM sites are well instrumented and provide continuous measurements, which

65

Atmospheric Precorrected Differential Absorption technique to retrieve columnar water vapor  

Science Conference Proceedings (OSTI)

Differential absorption techniques are suitable to retrieve the total column water vapor contents from imaging spectroscopy data. A technique called Atmospheric Precorrected Differential Absorption (APDA) is derived directly from simplified radiative transfer equations. It combines a partial atmospheric correction with a differential absorption technique. The atmospheric path radiance term is iteratively corrected during the retrieval of water vapor. This improves the results especially over low background albedos. The error of the method for various ground reflectance spectra is below 7% for most of the spectra. The channel combinations for two test cases are then defined, using a quantitative procedure, which is based on MODTRAN simulations and the image itself. An error analysis indicates that the influence of aerosols and channel calibration is minimal. The APDA technique is then applied to two AVIRIS images acquired in 1991 and 1995. The accuracy of the measured water vapor columns is within a range of {+-}5% compared to ground truth radiosonde data.

Schlaepfer, D.; Itten, K.I. [Univ. of Zuerich (Switzerland). Dept. of Geography] [Univ. of Zuerich (Switzerland). Dept. of Geography; Borel, C.C. [Los Alamos National Lab., NM (United States)] [Los Alamos National Lab., NM (United States); Keller, J. [Paul Scherrer Inst., Villigen (Switzerland)] [Paul Scherrer Inst., Villigen (Switzerland)

1998-09-01T23:59:59.000Z

66

Measurements of the Vapor Pressure of Supercooled Water Using Infrared Spectroscopy  

Science Conference Proceedings (OSTI)

Measurements are presented of the vapor pressure of supercooled water utilizing infrared spectroscopy, which enables unambiguous verification that the authors’ data correspond to the vapor pressure of liquid water, not a mixture of liquid water ...

Will Cantrell; Eli Ochshorn; Alexander Kostinski; Keith Bozin

2008-09-01T23:59:59.000Z

67

Computation of Infrared Cooling Rates in the Water Vapor Bands  

Science Conference Proceedings (OSTI)

A fast but accurate method for calculating the infrared radiative terms due to water vapor has been developed. It makes use of the behavior in the far wings of absorption lines to scale transmission along an inhomogencous path to an equivalent ...

Ming Dah Chou; Albert Arking

1980-04-01T23:59:59.000Z

68

Probing Hurricanes with Stable Isotopes of Rain and Water Vapor  

Science Conference Proceedings (OSTI)

Rain and water vapor were collected during flights in Hurricanes Olivia (1994), Opal (1995), Marilyn (1995), and Hortense (1995) and analyzed for their stable isotopic concentrations, or ratios, H218O:H2O and HDO:H2O. The spatial patterns and ...

Stanley Gedzelman; James Lawrence; John Gamache; Michael Black; Edward Hindman; Robert Black; Jason Dunion; Hugh Willoughby; Xiaoping Zhang

2003-06-01T23:59:59.000Z

69

A SEARCH FOR WATER VAPORIZATION ON CERES  

SciTech Connect

There are hints that the dwarf planet (1) Ceres may contain a large amount of water ice. Some models and previous observations suggest that ice could be close enough to the surface to create a flux of water outward through the regolith. This work aims to confirm a previous detection of OH emission off the northern limb of Ceres with the International Ultraviolet Explorer (IUE). Such emission would be evidence of water molecules escaping from the dwarf planet. We used the Ultraviolet and Visual Echelle Spectrograph of the Very Large Telescope to obtain spectra off the northern and southern limbs of Ceres at several epochs. These spectra cover the 307-312 nm wavelength range corresponding to the OH (0,0) emission band, which is the brightest band of this radical, well known in the cometary spectra. These new observations, five times more sensitive than those from IUE, did not permit detection of OH around Ceres. We derive an upper limit for the water production of about {approx}7 x 10{sup 25} molecules s{sup -1} and estimate the minimum thickness of the dust surface layer above the water ice layer (if present) to be about 20 m.

Rousselot, P.; Mousis, O.; Zucconi, J.-M. [Observatoire de Besancon, Institut UTINAM-UMR CNRS 6213, University of Franche-Comte, BP 1615, 25010 Besancon Cedex (France); Jehin, E.; Manfroid, J. [Institut d'Astrophysique et de Geophysique, Universite de Liege, Allee du 6 aout 17, B-4000 Liege (Belgium); Dumas, C. [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago 19 (Chile); Carry, B. [European Space Astronomy Centre, ESA, P.O. Box 78, 28691 Villanueva de la Canada, Madrid (Spain); Marboeuf, U., E-mail: rousselot@obs-besancon.fr [Institut de Planetologie et d'Astrophysique de Grenoble, Universite Joseph Fourier, CNRS INSU (France)

2011-10-15T23:59:59.000Z

70

Observation of Water Vapor Greenhouse Absorption over the Gulf of Mexico Using Aircraft and Satellite Data  

Science Conference Proceedings (OSTI)

Through its interaction with radiation, water vapor provides an important link between the ocean and atmosphere. One way this occurs is through the greenhouse effect; observations of water vapor greenhouse absorption in the Gulf of Mexico during ...

David Marsden; Francisco P. J. Valero

2004-03-01T23:59:59.000Z

71

Investigation of Turbulent Processes in the Lower Troposphere with Water Vapor DIAL and Radar–RASS  

Science Conference Proceedings (OSTI)

High-resolution water vapor and wind measurements in the lower troposphere within the scope of the Baltic Sea Experiment (BALTEX) are presented. The measurements were performed during a field campaign with a new water vapor differential ...

V. Wulfmeyer

1999-04-01T23:59:59.000Z

72

Modes and Mechanisms of Global Water Vapor Variability over the Twentieth Century  

Science Conference Proceedings (OSTI)

The modes and mechanisms of the annual water vapor variations over the twentieth century are investigated based on a newly developed twentieth-century atmospheric reanalysis product. It is found that the leading modes of global water vapor ...

Liping Zhang; Lixin Wu; Bolan Gan

2013-08-01T23:59:59.000Z

73

Water Vapor Transport and the Production of Precipitation in the Eastern Fertile Crescent  

Science Conference Proceedings (OSTI)

The study presented here attempts to quantify the significance of southerly water vapor fluxes on precipitation occurring in the eastern Fertile Crescent region. The water vapor fluxes were investigated at high temporal and spatial resolution by ...

J. P. Evans; R. B. Smith

2006-12-01T23:59:59.000Z

74

Automated Retrievals of Water Vapor and Aerosol Profiles from an Operational Raman Lidar  

Science Conference Proceedings (OSTI)

Automated routines have been developed to derive water vapor mixing ratio, relative humidity, aerosol extinction and backscatter coefficient, and linear depolarization profiles, as well as total precipitable water vapor and aerosol optical ...

D. D. Turner; R. A. Ferrare; L. A. Heilman Brasseur; W. F. Feltz; T. P. Tooman

2002-01-01T23:59:59.000Z

75

Tropical Water Vapor and Cloud Feedbacks in Climate Models: A Further Assessment Using Coupled Simulations  

Science Conference Proceedings (OSTI)

By comparing the response of clouds and water vapor to ENSO forcing in nature with that in Atmospheric Model Intercomparison Project (AMIP) simulations by some leading climate models, an earlier evaluation of tropical cloud and water vapor ...

De-Zheng Sun; Yongqiang Yu; Tao Zhang

2009-03-01T23:59:59.000Z

76

A Comparison of Water Vapor Measurements Made by Raman Lidar and Radiosondes  

Science Conference Proceedings (OSTI)

This paper examines the calibration characteristics of the NASA/GSFC Raman water vapor lidar during three field experiments that occurred between 1991 and 1993. The lidar water vapor profiles are calibrated using relative humidity profiles ...

R. A. Ferrare; S. H. Melfi; D. N. Whiteman; K. D. Evans; F. J. Schmidlin; D. O'C. Starr

1995-12-01T23:59:59.000Z

77

Observed annual and interannual variations in tropospheric water vapor  

SciTech Connect

Radiosonde observations from a global network of 56 radiosonde stations for 1973-1990 are used to describe and quantify annual and interannual variations of tropospheric water vapor. Taking care to identify data inhomogeneities related to changes in instruments or observing practices, monthly mean and anomaly data sets are constructed for dew point, specific humidity, relative humidity, temperature and precipitable water from the surface to 500 mb. Local annual cycles of tropospheric humidity can be classified according to the amplitude and phase of humidity variations which define five humidity regimes. For two regimes, both in middle and high latitudes, relative humidity is fairly constant while the annual cycle of precipitable water is in phase with that of temperature. At some midlatitude stations with a monsoon-like climate, seasonal relative humidity variations are large. In the tropics, seasonal relative humidity variations, especially above the boundary layer, dominate the annual cycle of precipitable water, and precipitable water variations are not related to temperature variations. Correlations of temperature and specific humidity anomalies are generally positive outside the tropics, suggesting that atmospheric warming is associated with increases in water vapor content. However, correlations of temperature and relative humidity anomalies are sometimes not significant and are often negative (e.g., in mid- and high latitude continental regions). Thus relative humidity is not always insensitive to temperature changes. In the tropics, tropospheric water vapor and temperature variations are not well correlated. An empirical orthogonal function analysis of tropical specific humidity variations identified two important modes of variability. The first is a step-like increase in specific humidity that occurred in about 1976-1977, and the second is associated with the El Nino phenomenon.

Gaffen, D.J.

1992-01-01T23:59:59.000Z

78

Light Water Reactor Sustainability Program: Integrated Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Water Reactor Sustainability Program: Integrated Program Plan Light Water Reactor Sustainability Program: Integrated Program Plan Nuclear power has safely, reliably, and...

79

Imaging Spectrometry of Tropospheric Ozone and Water Vapor  

E-Print Network (OSTI)

Imaging spectrometry has the potential of remotely detecting atmospheric trace gases on the basis of their absorption of radiation. Ozone absorbs particulary in the ultraviolet and visible range of the spectrum, whereas water vapor has strong absorption features in the near infrared. Hence, spectrometry is expected to be a promising tool to extract these trace gas contents in a given air column by using the correlation between cumulative trace gas amount and absorption strength in the sensor channels located in the absorption bands. New mathematical methods of channel selection and method evaluation for measuring atmospheric trace gases are presented. Three already known and four new differential absorption techniques are evaluated by using MODTRAN2 simulations of the radiance spectrum at the sensor level and an analytical error propagation analysis. Finally, the best methods and channel combinations are selected and applied to AVIRIS data of Central Switzerland. The spatial ozone distribution could be estimated over water in a qualitative manner, whereas the total column water vapor content could be quantified over land with an accuracy of about 6%.

Daniel Schläpfer; Klaus I. Itten; Johannes Keller

1995-01-01T23:59:59.000Z

80

The Water Vapor Abundance in Orion KL Outflows  

E-Print Network (OSTI)

We present the detection and modeling of more than 70 far-IR pure rotational lines of water vapor, including the 18O and 17O isotopologues, towards Orion KL. Observations were performed with the Long Wavelength Spectrometer Fabry-Perot (LWS/FP; R~6800-9700) on board the Infrared Space Observatory (ISO) between ~43 and ~197 um. The water line profiles evolve from P-Cygni type profiles (even for the H2O18 lines) to pure emission at wavelengths above ~100 um. We find that most of the water emission/absorption arises from an extended flow of gas expanding at 25+-5 kms^-1. Non-local radiative transfer models show that much of the water excitation and line profile formation is driven by the dust continuum emission. The derived beam averaged water abundance is 2-3x10^-5. The inferred gas temperature Tk=80-100 K suggests that: (i) water could have been formed in the "plateau" by gas phase neutral-neutral reactions with activation barriers if the gas was previously heated (e.g. by shocks) to >500 K and/or (ii) H2O formation in the outflow is dominated by in-situ evaporation of grain water-ice mantles and/or (iii) H2O was formed in the innermost and warmer regions (e.g. the hot core) and was swept up in ~1000 yr, the dynamical timescale of the outflow.

J. Cernicharo; J. R. Goicoechea; F. Daniel; M. R. Lerate; M. J. Barlow; B. M. Swinyard; E. van Dishoeck; T. L. Lim; S. Viti; J. Yates

2006-08-16T23:59:59.000Z

Note: This page contains sample records for the topic "integrated water vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

MEASUREMENTS AND RETRIEVALS FROM A NEW 183-GHz WATER VAPOR RADIOMETER IN  

NLE Websites -- All DOE Office Websites (Extended Search)

MEASUREMENTS AND RETRIEVALS FROM A NEW 183-GHz WATER VAPOR RADIOMETER IN MEASUREMENTS AND RETRIEVALS FROM A NEW 183-GHz WATER VAPOR RADIOMETER IN THE ARCTIC Cadeddu, Maria Argonne National Laboratory Category: Instruments A new G-band (183 GHz) vapor radiometer (GVR), developed and built by Prosensing Inc. (http://www.prosensing.com), was deployed in Barrow, Alaska, in April 2005. The radiometer was deployed as part of the ongoing Atmospheric Radiation Measurement (ARM) program's effort to improve water vapor retrievals in the cold, dry Arctic environment. The instrument measures brightness temperatures from four double sideband channels centered at 1, 3, 7, and 14 GHz from the 183.31-GHz water vapor line. Atmospheric emission in this spectral region is primarily due to water vapor, with some influence from liquid water. The GVR will remain in Barrow

82

Numerical modeling of water injection into vapor-dominatedgeothermal reservoirs  

SciTech Connect

Water injection has been recognized as a powerful techniquefor enhancing energy recovery from vapor-dominated geothermal systemssuch as The Geysers. In addition to increasing reservoir pressures,production well flow rates, and long-term sustainability of steamproduction, injection has also been shown to reduce concentrations ofnon-condensible gases (NCGs) in produced steam. The latter effectimproves energy conversion efficiency and reduces corrosion problems inwellbores and surface lines.This report reviews thermodynamic andhydrogeologic conditions and mechanisms that play an important role inreservoir response to water injection. An existing general-purposereservoir simulator has been enhanced to allow modeling of injectioneffects in heterogeneous fractured reservoirs in three dimensions,including effects of non-condensible gases of different solubility.Illustrative applications demonstrate fluid flow and heat transfermechanisms that are considered crucial for developing approaches to insitu abatement of NCGs.

Pruess, Karsten

2006-11-06T23:59:59.000Z

83

Remote Sensing of Atmospheric Water Vapor from Backscattered Sunlight in Cloudy Atmospheres  

Science Conference Proceedings (OSTI)

The “differential absorption technique” is used to derive columnar water vapor contents above clouds. Radiative transfer simulations were carried out for two different spectral channels, one channel within the ???–water water absorption band and ...

P. Albert; R. Bennartz; J. Fischer

2001-06-01T23:59:59.000Z

84

ARM - PI Product - MWR Retrievals of Cloud Liquid Water and Water Vapor  

NLE Websites -- All DOE Office Websites (Extended Search)

govDataPI Data ProductsMWR Retrievals of Cloud Liquid Water and Water govDataPI Data ProductsMWR Retrievals of Cloud Liquid Water and Water Vapor Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : MWR Retrievals of Cloud Liquid Water and Water Vapor 2005.02.01 - 2011.04.25 Site(s) FKB GRW HFE NIM PYE SBS General Description A new algorithm is being developed for the ARM Program to derive liquid water path (LWP) and precipitable water vapor (PWV) from the 2-channel (23.8 and 31.4 GHz) microwave radiometers (MWRs) deployed at ARM climate research facilities. This algorithm utilizes the "monoRTM" radiative transfer model (http://rtweb.aer.com), a combination of both an advanced statistical and physical-iterative retrieval, and brightness temperature offsets applied before the retrieval is performed. This allows perhaps the

85

Twenty-Four-Hour Raman Lidar Water Vapor Measurements during the Atmospheric Radiation Measurement Program’s 1996 and 1997 Water Vapor Intensive Observation Periods  

Science Conference Proceedings (OSTI)

Prior to the Atmospheric Radiation Measurement program’s first water vapor intensive observation period (WVIOP) at the Cloud and Radiation Testbed site near Lamont, Oklahoma, an automated 24-h Raman lidar was delivered to the site. This ...

D. D. Turner; J. E. M. Goldsmith

1999-08-01T23:59:59.000Z

86

The finite element analysis of water vapor diffusion in a brick with vertical holes  

Science Conference Proceedings (OSTI)

This paper presents a finite element analysis of water vapor diffusion in a brick with vertical holes. The isotherms, isodensity, isopressure and isohumidity surfaces considering the longitudinal and transverse direction diffusion of water vapor in a ... Keywords: brick wall, diffusion, finite element method (FEM), numerical simulation

Madalina Calbureanu; Mihai Talu; Carlos Manuel Travieso-González; Stefan Talu; Mihai Lungu; Raluca Malciu

2010-11-01T23:59:59.000Z

87

On the Relationship between Water Vapor over the Oceans and Sea Surface Temperature  

Science Conference Proceedings (OSTI)

Monthly mean precipitable water data obtained from passive microwave radiometry (SMMR) are correlated with NMC-blended sea surface temperature data. It is shown that the monthly mean water vapor content of the atmosphere above the oceans can ...

Graeme L. Stephens

1990-06-01T23:59:59.000Z

88

Desalination-of water by vapor-phase transport through hydrophobic nanopores  

E-Print Network (OSTI)

We propose a new approach to desalination of water whereby a pressure difference across a vapor-trapping nanopore induces selective transport of water by isothermal evaporation and condensation across the pore. Transport ...

Lee, Jongho

89

A Microdrop Generator for the Calibration of a Water Vapor Isotope Ratio Spectrometer  

Science Conference Proceedings (OSTI)

A microdrop generator is described that produces water vapor with a known isotopic composition and volume mixing ratio for the calibration of a near-infrared diode laser water isotope ratio spectrometer. The spectrometer is designed to measure in ...

Rosario Q. Iannone; Daniele Romanini; Samir Kassi; Harro A. J. Meijer; Erik R. Th Kerstel

2009-07-01T23:59:59.000Z

90

Inexpensive Near-IR Sun Photometer for Measuring Total Column Water Vapor  

Science Conference Proceedings (OSTI)

An inexpensive two-channel near-IR sun photometer for measuring total atmospheric column water vapor (precipitable water) has been developed for use by the Global Learning and Observations to Benefit the Environment (GLOBE) environmental science ...

David R. Brooks; Forrest M. Mims III; Richard Roettger

2007-07-01T23:59:59.000Z

91

Adsorption of Water Vapor by Bare Soil in an Olive Grove in Southern Spain  

Science Conference Proceedings (OSTI)

Data for water vapor adsorption and evaporation are presented for a bare soil (sandy loam, clay content 15%) in a southern Spanish olive grove. Water losses and gains were measured using eight high-precision minilysimeters, placed around an olive ...

A. Verhoef; A. Diaz-Espejo; J. R. Knight; L. Villagarcía; J. E. Fernández

2006-10-01T23:59:59.000Z

92

Retrieval of Cloud Water and Water Vapor Contents from Doppler Radar Data in a Tropical Squall Line  

Science Conference Proceedings (OSTI)

This paper describes the retrieval of cloud water and water vapor contents from Doppler radar data. The convective part of a tropical squall line (22 June 1981) observed during the COPT 81 (Convection Profonde Tropicale 1981) West African ...

Danièle Hauser; Paul Amayenc

1986-04-01T23:59:59.000Z

93

Simulations of the Effects of Water Vapor, Cloud Liquid Water, and Ice on AMSU Moisture Channel Brightness Temperatures  

Science Conference Proceedings (OSTI)

Radiative transfer simulations are performed to determine how water vapor and nonprecipitating cloud liquid water and ice particles within typical midlatitude atmospheres affect brightness temperatures TB's of moisture sounding channels used in ...

Bradley M. Muller; Henry E. Fuelberg; Xuwu Xiang

1994-10-01T23:59:59.000Z

94

Three-Dimensional Evolution of Water Vapor Distributions in the Northern Hemisphere Stratosphere as Observed by the MLS  

Science Conference Proceedings (OSTI)

The three-dimensional evolution of stratospheric water vapor distributions observed by the Microwave Limb Sounder (MLS) during the period October 1991–July 1992 is documented. The transport features inferred from the MLS water vapor distributions ...

W. A. Lahoz; A. O'Neill; E. S. Carr; R. S. Harwood; L. Froidevaux; W. G. Read; J. W. Waters; J. B. Kumer; J. L. Mergenthaler; A. E. Roche; G. E. Peckham; R. Swinbank

1994-10-01T23:59:59.000Z

95

A Comparison of Columnar Water Vapor Retrievals Obtained with Near-IR Solar Radiometer and Microwave Radiometer Measurements  

Science Conference Proceedings (OSTI)

A simple two-channel solar radiometer and analysis technique have been developed for setting atmospheric water vapor via differential solar transmission measurements in and adjacent to the 940-nm water vapor absorption band. A prototype solar ...

J. Reagan; K. Thome; B. Herman; R. Stone; J. DeLuisi; J. Snider

1995-06-01T23:59:59.000Z

96

The Apparent Water Vapor Sinks and Heat Sources Associated with the Intraseasonal Oscillation of the Indian Summer Monsoon  

Science Conference Proceedings (OSTI)

The possibility of using remote sensing retrievals to estimate apparent water vapor sinks and heat sources is explored. The apparent water vapor sinks and heat sources are estimated from a combination of remote sensing, specific humidity, and ...

Sun Wong; Eric J. Fetzer; Baijun Tian; Bjorn Lambrigtsen; Hengchun Ye

2011-08-01T23:59:59.000Z

97

Developing an Operational, Surface-Based, GPS, Water Vapor Observing System for NOAA: Network Design and Results  

Science Conference Proceedings (OSTI)

The need for a reliable, low-cost observing system to measure water vapor in the atmosphere is incontrovertible. Experiments have shown the potential for using Global Positioning System (GPS) receivers to measure total precipitable water vapor ...

Daniel E. Wolfe; Seth I. Gutman

2000-04-01T23:59:59.000Z

98

The Earth’s Clear-Sky Radiation Budget and Water Vapor Absorption in the Far Infrared  

Science Conference Proceedings (OSTI)

Detailed observational data are used to simulate the sensitivity of clear-sky outgoing longwave radiation (OLR) to water vapor perturbations in order to investigate the effect of uncertainties in water vapor measurements and spectroscopic ...

Ashok Sinha; John E. Harries

1997-07-01T23:59:59.000Z

99

Pairing Measurements of the Water Vapor Isotope Ratio with Humidity to Deduce Atmospheric Moistening and Dehydration in the Tropical Midtroposphere  

Science Conference Proceedings (OSTI)

Measurements of the isotope ratio of water vapor (expressed as the ? value) allow processes that control the humidity in the tropics to be identified. Isotopic information is useful because the change in ? relative to the water vapor mixing ratio (...

David Noone

2012-07-01T23:59:59.000Z

100

Separation of heavy water by vapor-phase thermal diffusion coupled with distillation and condensation  

Science Conference Proceedings (OSTI)

A study on the enrichment of heavy water in a vapor-phase thermal-diffusion column has been conducted. With the combination of the effects of distillation, vapor-phase thermal diffusion, and partial condensation, considerable improvement in the degree of enrichment has been achieved in a vapor-phase column rather than in a liquid-phase column. It was also found that even the part of enrichment contributed only by vapor-phase thermal-diffusion effect is much higher than that obtained by liquid-phase thermal diffusion.

Yeh, H.M. [Tamkang Univ., Taiwan (China); Chang, S.M. [Cheng Kung Univ., Taiwan (China)

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated water vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Observed Increase of TTL Temperature and Water Vapor in Polluted Couds over Asia  

Science Conference Proceedings (OSTI)

Aerosols can affect cloud particle size and lifetime, which impacts precipitation, radiation and climate. Previous studies1-4 suggested that reduced ice cloud particle size and fall speed due to the influence of aerosols may increase evaporation of ice crystals and/or cloud radiative heating in the tropical tropopause layer (TTL), leading to higher water vapor abundance in air entering the stratosphere. Observational substantiation of such processes is still lacking. Here, we analyze new observations from multiple NASA satellites to show the imprint of pollution influence on stratospheric water vapor. We focus our analysis on the highly-polluted South and East Asia region during boreal summer. We find that "polluted" ice clouds have smaller ice effective radius than "clean" clouds. In the TTL, the polluted clouds are associated with warmer temperature and higher specific humidity than the clean clouds. The water vapor difference between the polluted and clean clouds cannot be explained by other meteorological factors, such as updraft and detrainment strength. Therefore, the observed higher water vapor entry value into the stratosphere in the polluted clouds than in the clean clouds is likely a manifestation of aerosol pollution influence on stratospheric water vapor. Given the radiative and chemical importance of stratospheric water vapor, the increasing emission of aerosols over Asia may have profound impacts on stratospheric chemistry and global energy balance and water cycle.

Su, Hui; Jiang, Jonathan; Liu, Xiaohong; Penner, J.; Read, William G.; Massie, Steven T.; Schoeberl, Mark R.; Colarco, Peter; Livesey, Nathaniel J.; Santee, Michelle L.

2011-06-01T23:59:59.000Z

102

Distribution of Tropospheric Water Vapor in Clear and Cloudy Conditions from Microwave Radiometric Profiling  

Science Conference Proceedings (OSTI)

A dataset gathered over 369 days in various midlatitude sites with a 12-frequency microwave radiometric profiler is used to analyze the statistical distribution of tropospheric water vapor content (WVC) in clear and cloudy conditions. The WVC ...

Alia Iassamen; Henri Sauvageot; Nicolas Jeannin; Soltane Ameur

2009-03-01T23:59:59.000Z

103

Water Vapor Transfer over the Southwest Pacific: Mean Patterns and Variations during Wet and Dry Periods  

Science Conference Proceedings (OSTI)

The mean water vapor transfer of the Southwest Pacific, as determined from radiosonde records near the 170°E meridional transect, is computed for the 1960–73 period. Emphasis is placed on defining average patterns, then examining variations that ...

M. M. Khatep; B. B. Fitzharris; W. E. Bardsley

1984-10-01T23:59:59.000Z

104

Temperature and Water Vapor Variance Scaling in Global Models: Comparisons to Satellite and Aircraft Data  

Science Conference Proceedings (OSTI)

Observations of the scale dependence of height-resolved temperature T and water vapor q variability are valuable for improved subgrid-scale climate model parameterizations and model evaluation. Variance spectral benchmarks for T and q obtained ...

B. H. Kahn; J. Teixeira; E. J. Fetzer; A. Gettelman; S. M. Hristova-Veleva; X. Huang; A. K. Kochanski; M. Köhler; S. K. Krueger; R. Wood; M. Zhao

2011-09-01T23:59:59.000Z

105

Analysis of Intense Poleward Water Vapor Transports into High Latitudes of Western North America  

Science Conference Proceedings (OSTI)

Significant cool season precipitation along the western coast of North America is often associated with intense water vapor transport (IWVT) from the Pacific Ocean during favorable synoptic-scale flow regimes. These relatively narrow and intense ...

Alain Roberge; John R. Gyakum; Eyad H. Atallah

2009-12-01T23:59:59.000Z

106

A Modified Tracer Selection and Tracking Procedure to Derive Winds Using Water Vapor Imagers  

Science Conference Proceedings (OSTI)

The remotely sensed upper-tropospheric water vapor wind information has been of increasing interest for operational meteorology. A new tracer selection based on a local image anomaly and tracking procedure, itself based on Nash–Sutcliffe model ...

S. K. Deb; C. M. Kishtawal; P. K. Pal; P. C. Joshi

2008-12-01T23:59:59.000Z

107

GPS Water Vapor Projects Within the ARM Southern Great Plains Region  

NLE Websites -- All DOE Office Websites (Extended Search)

GPS Water Vapor Projects Within the ARM GPS Water Vapor Projects Within the ARM Southern Great Plains Region J. Braun, T. Van Hove, S. Y. Ha, and C. Rocken GPS Science and Technology Program University Corporation for Atmospheric Research Boulder, Colorado Abstract The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program has a need for an improved capability to measure and characterize the four-dimensional distribution of water vapor within the atmosphere. Applications for this type of data include their use in radiation transfer studies, cloud-resolving and single-column models, and for the establishment of an extended time series of water vapor observations. The University Corporation for Atmospheric Research's (UCAR) GPS Science and Technology (GST) Program is working with ARM to leverage the substantial investment in

108

A Water Vapor-Energy Balance Model Designed for Sensitivity Testing of Climatic Feedback Processes  

Science Conference Proceedings (OSTI)

A zonal mean water vapor-energy balance (WEB) model is formulated to assess feedback interactions of the hydrologic cycle and lapse rate with the radiative fluxes, snow-dependent albedo and transport mechanisms. The WEB model is designed for ...

Robert G. Gallimore

1983-01-01T23:59:59.000Z

109

Applicability of AIRS Monthly Mean Atmospheric Water Vapor Profiles over the Tibetan Plateau Region  

Science Conference Proceedings (OSTI)

The research explores the applicability of the gridded (level 3) monthly tropospheric water vapor (version 5) retrievals from the Atmospheric Infrared Sounder (AIRS) instrument and the Advanced Microwave Sounding Unit (AMSU) on board the NASA Aqua ...

Yuwei Zhang; Donghai Wang; Panmao Zhai; Guojun Gu

2012-11-01T23:59:59.000Z

110

Characterization of Upper-Troposphere Water Vapor Measurements during AFWEX Using LASE  

Science Conference Proceedings (OSTI)

Water vapor mass mixing ratio profiles from NASA's Lidar Atmospheric Sensing Experiment (LASE) system acquired during the Atmospheric Radiation Measurement (ARM)–First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (...

R. A. Ferrare; E. V. Browell; S. Ismail; S. A. Kooi; L. H. Brasseur; V. G. Brackett; M. B. Clayton; J. D. W. Barrick; G. S. Diskin; J. E. M. Goldsmith; B. M. Lesht; J. R. Podolske; G. W. Sachse; F. J. Schmidlin; D. D. Turner; D. N. Whiteman; D. Tobin; L. M. Miloshevich; H. E. Revercomb; B. B. Demoz; P. Di Girolamo

2004-12-01T23:59:59.000Z

111

Retrieval of Clear Sky Moisture Profiles using the 183 GHz Water Vapor Line  

Science Conference Proceedings (OSTI)

A technique for retrieving vertical moisture profiles from downlooking radiometric measurements of atmospheric radiation near the 183 GHz water vapor line is described. A simulation experiment utilizing this retrieval technique and temperature ...

Ramesh K. Kakar

1983-07-01T23:59:59.000Z

112

Enhancement of ARM Surface Meteorological Observations during the Fall 1996 Water Vapor Intensive Observation Period  

Science Conference Proceedings (OSTI)

This work describes in situ moisture sensor comparisons that were performed in conjunction with the first Water Vapor Intensive Observation Period (IOP) conducted at the Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SGP) ...

Scott J. Richardson; Michael E. Splitt; Barry M. Lesht

2000-03-01T23:59:59.000Z

113

A New Method for the Comparison of Trend Data with an Application to Water Vapor  

Science Conference Proceedings (OSTI)

Global total column water vapor trends have been derived from both the Global Ozone Monitoring Experiment (GOME) and the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite data and from globally distributed ...

Sebastian Mieruch; Stefan Noël; Maximilian Reuter; Heinrich Bovensmann; John P. Burrows; Marc Schröder; Jörg Schulz

2011-06-01T23:59:59.000Z

114

Observed Increase of TTL Temperature and Water Vapor in Polluted Clouds over Asia  

Science Conference Proceedings (OSTI)

Satellite observations are analyzed to examine the correlations between aerosols and the tropical tropopause layer (TTL) temperature and water vapor. This study focuses on two regions, both of which are important pathways for the mass transport ...

Hui Su; Jonathan H. Jiang; Xiaohong Liu; Joyce E. Penner; William G. Read; Steven Massie; Mark R. Schoeberl; Peter Colarco; Nathaniel J. Livesey; Michelle L. Santee

2011-06-01T23:59:59.000Z

115

Tropospheric Water Vapor Profiles Retrieved from Pressure-Broadened Emission Spectra at 22 GHz  

Science Conference Proceedings (OSTI)

The authors present the analysis and the evaluation of the retrieval of tropospheric water vapor profiles from pressure-broadened emission spectra at 22 GHz measured with a ground-based microwave spectroradiometer. The spectra have a bandwidth of ...

Alexander Haefele; Niklaus Kämpfer

2010-01-01T23:59:59.000Z

116

Estimates of the Water Vapor Climate Feedback during El Niño–Southern Oscillation  

Science Conference Proceedings (OSTI)

The strength of the water vapor feedback has been estimated by analyzing the changes in tropospheric specific humidity during El Niño–Southern Oscillation (ENSO) cycles. This analysis is done in climate models driven by observed sea surface ...

A. E. Dessler; S. Wong

2009-12-01T23:59:59.000Z

117

Simultaneous Measurements of Atmospheric Water Vapor with MIR, Raman Lidar, and Rawinsondes  

Science Conference Proceedings (OSTI)

Simultaneous measurements of atmospheric water vapor were made by the Millimeter-wave Imaging Radiometer (MIR), Raman lidar, and rawinsondes. Two types of rawinsonde sensor packages (AIR and Vaisala) were carried by the same balloon. The measured ...

J. R. Wang; S. H. Melfi; P. Racette; D. N. Whitemen; L. A. Chang; R. A. Ferrare; K. D. Evans; F. J. Schmidlin

1995-07-01T23:59:59.000Z

118

GNSS Precipitable Water Vapor from an Amazonian Rain Forest Flux Tower  

Science Conference Proceedings (OSTI)

Understanding the complex interactions between water vapor fields and deep convection on the mesoscale requires observational networks with high spatial (kilometers) and temporal (minutes) resolution. In the equatorial tropics, where deep ...

David K. Adams; Rui M. S. Fernandes; Jair M. F. Maia

2011-10-01T23:59:59.000Z

119

Continuous Water Vapor Profiles from Operational Ground—Based Active and Passive Remote Sensors  

Science Conference Proceedings (OSTI)

The Atmospheric Radiation Measurement program's Southern Great Plains Cloud and Radiation Testbed site central facility near Lamont, Oklahoma, offers unique operational water vapor profiling capabilities, including active and passive remote ...

D. D. Turner; W. F. Feltz; R. A. Ferrare

2000-06-01T23:59:59.000Z

120

The Response of the Tropospheric Circulation to Water Vapor–Like Forcings in the Stratosphere  

Science Conference Proceedings (OSTI)

An idealized, dry general circulation model is used to examine the response of the tropospheric circulation to thermal forcings that mimic changes in stratospheric water vapor (SWV). It is found that SWV-like cooling in the stratosphere produces a ...

Neil F. Tandon; Lorenzo M. Polvani; Sean M. Davis

2011-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated water vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Recent Lidar Technology Developments and Their Influence on Measurements of Tropospheric Water Vapor  

Science Conference Proceedings (OSTI)

In this paper the influences of recent technology developments in the areas of lasers, detectors, and optical filters of a differential absorption lidar (DIAL) system on the measurement of tropospheric water vapor (H20) profiles are discussed. ...

Syed Ismail; Edward V. Browell

1994-02-01T23:59:59.000Z

122

Impact of Kalpana-1-Derived Water Vapor Winds on Indian Ocean Tropical Cyclone Forecasts  

Science Conference Proceedings (OSTI)

The water vapor winds from the operational geostationary Indian National Satellite (INSAT) Kalpana-1 have recently become operational at the Space Applications Centre (SAC). A series of experimental forecasts are attempted here to evaluate the ...

S. K. Deb; C. M. Kishtawal; P. K. Pal

2010-03-01T23:59:59.000Z

123

Derived Over-Ocean Water Vapor Transports from Satellite-Retrieved E ? P Datasets  

Science Conference Proceedings (OSTI)

A methodology is developed for deriving atmospheric water vapor transports over the World Oceans from satellite-retrieved precipitation (P) and evaporation (E) datasets. The motivation for developing the method is to understand climatically ...

Byung-Ju Sohn; Eric A. Smith; Franklin R. Robertson; Seong-Chan Park

2004-03-01T23:59:59.000Z

124

Tropical Cyclone Convection and Intensity Analysis Using Differenced Infrared and Water Vapor Imagery  

Science Conference Proceedings (OSTI)

A technique to identify and quantify intense convection in tropical cyclones (TCs) using bispectral, geostationary satellite imagery is explored. This technique involves differencing the water vapor (WV) and infrared window (IRW) channel ...

Timothy L. Olander; Christopher S. Velden

2009-12-01T23:59:59.000Z

125

Water Vapor Measurements by Howard University Raman Lidar during the WAVES 2006 Campaign  

Science Conference Proceedings (OSTI)

Water vapor mixing ratio retrieval using the Howard University Raman lidar is presented with emphasis on three aspects: (i) comparison of the lidar with collocated radiosondes and Raman lidar, (ii) investigation of the relationship between ...

M. Adam; B. B. Demoz; D. D. Venable; E. Joseph; R. Connell; D. N. Whiteman; A. Gambacorta; J. Wei; M. W. Shephard; L. M. Miloshevich; C. D. Barnet; R. L. Herman; J. Fitzgibbon

2010-01-01T23:59:59.000Z

126

Global Observations of Upper-Tropospheric Water Vapor Derived from TOVS Radiance Data  

Science Conference Proceedings (OSTI)

This paper describes a physically based method for the retrieval of upper-tropospheric humidity (UTH) and upper-tropospheric column water vapor (UTCWV) based an the use of radiance data collected by the TIROS Operational Vertical Sounder (TOVS), ...

Graeme L. Stephens; Darren L. Jackson; Ian Wittmeyer

1996-02-01T23:59:59.000Z

127

Comparison of Water Vapor Measurements with Data Retrieved from ECMWF Analyses during the POLINAT Experiment  

Science Conference Proceedings (OSTI)

During the POLINAT (Pollution from Aircraft Emissions in the North Atlantic Flight Corridor) experiment, water vapor content was measured with a frost-point hygrometer on board the DLR (Deutsche Forschungsanstalt für Luft-und-Raumfahrt) Falcon ...

Joëlle Ovarlez; Peter van Velthoven

1997-10-01T23:59:59.000Z

128

LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances  

Science Conference Proceedings (OSTI)

The Lidar Atmospheric Sensing Experiment (LASE) on board the NASA DC-8 measured high-resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern North Atlantic during the NASA African Monsoon ...

Syed Ismail; Richard A. Ferrare; Edward V. Browell; Gao Chen; Bruce Anderson; Susan A. Kooi; Anthony Notari; Carolyn F. Butler; Sharon Burton; Marta Fenn; Jason P. Dunion; Gerry Heymsfield; T. N. Krishnamurti; Mrinal K. Biswas

2010-04-01T23:59:59.000Z

129

Surface Water Vapor Pressure and Temperature Trends in North America during 1948–2010  

Science Conference Proceedings (OSTI)

Over one-quarter billion hourly values of temperature and relative humidity observed at 309 stations located across North America during 1948–2010 were studied. The water vapor pressure was determined and seasonal averages were computed. Data were ...

V. Isaac; W. A. van Wijngaarden

2012-05-01T23:59:59.000Z

130

A Satellite-Based Assessment of Upper-Tropospheric Water Vapor Measurements during AFWEX  

Science Conference Proceedings (OSTI)

Consistency of upper-tropospheric water vapor measurements from a variety of state-of-the-art instruments was assessed using collocated Geostationary Operational Environmental Satellite-8 (GOES-8) 6.7-?m brightness temperatures as a common ...

Eui-Seok Chung; Brian J. Soden

2009-11-01T23:59:59.000Z

131

Raman Lidar Profiling of Atmospheric Water Vapor: Simultaneous Measurements with Two Collocated Systems  

Science Conference Proceedings (OSTI)

Raman lidar is a loading candidate for providing the detailed space-and time-resolved measurements of water vapor needed by a variety of atmospheric studies. Simultaneous measurements of atmospheric watervapor are described using two collocated ...

J. E. M. Goldsmith; Scott E. Bisson; Richard A. Ferrare; Keith D. Evans; David N. Whiteman; S. H. Melfi

1994-06-01T23:59:59.000Z

132

Dynamic Response of the Fine Wire Psychrometer for Direct Measurement of Water Vapor Flux  

Science Conference Proceedings (OSTI)

For the measurement of humidity fluctuation in the atmospheric boundary layer, a wet- and dry-bulb ther-mocouple psychrometer has been used traditionally. However, in the direct measurement of water vapor flux with the eddy correlation method, ...

Osamu Tsukamoto

1986-09-01T23:59:59.000Z

133

Liquid-phase and vapor-phase dehydration of organic/water solutions  

DOE Patents (OSTI)

Processes for dehydrating an organic/water solution by pervaporation or vapor separation using fluorinated membranes. The processes are particularly useful for treating mixtures containing light organic components, such as ethanol, isopropanol or acetic acid.

Huang, Yu (Palo Alto, CA); Ly, Jennifer (San Jose, CA); Aldajani, Tiem (San Jose, CA); Baker, Richard W. (Palo Alto, CA)

2011-08-23T23:59:59.000Z

134

Maintenance of the Free-Tropospheric Tropical Water Vapor Distribution. Part I: Clear Regime Budget  

Science Conference Proceedings (OSTI)

The water vapor budget of the free troposphere of the maritime Tropics is investigated using radiosonde observations, analyzed fields, and satellite observations, with particular attention paid to regions free of organized convection. In these ...

Steven C. Sherwood

1996-11-01T23:59:59.000Z

135

Water Vapor Transport Paths and Accumulation during Widespread Snowfall Events in Northeastern China  

Science Conference Proceedings (OSTI)

This study aims to identify the distinct characteristics of water vapor transport (WVT) and its role in supplying moisture for widespread snowfall (WS) events in northeastern China (NEC). Fifty WS events in NEC were selected based on cumulative ...

Bo Sun; Huijun Wang

2013-07-01T23:59:59.000Z

136

Low-Level Water Vapor Fields from the VISSR Atmospheric Sounder (VAS) “Split Window” Channels  

Science Conference Proceedings (OSTI)

A simple physical algorithm is developed which calculates the water vapor content of the lower troposphere from the 11 and 12 ?m (split window) channels on the VISSR Atmospheric Sounder (VAS) on the Geostationary Operational Environmental ...

Dennis Chesters; Louis W. Uccellini; Wayne D. Robinson

1983-05-01T23:59:59.000Z

137

The Development of a Scanning Raman Water Vapor Lidar for Boundary Layer and Tropospheric Observations  

Science Conference Proceedings (OSTI)

A scanning, ultraviolet, Raman water vapor lidar designed primarily for boundary layer measurements has been built and operated by the Los Alamos National Laboratory Ground-Based Earth Observing Network team. The system provides high temporal and ...

W. E. Eichinger; D. I. Cooper; P. R. Forman; J. Griegos; M. A. Osborn; D. Richter; L. L. Tellier; R. Thornton

1999-11-01T23:59:59.000Z

138

Intercalibrating Microwave Satellite Observations for Monitoring Long-Term Variations in Upper- and Midtropospheric Water Vapor  

Science Conference Proceedings (OSTI)

This paper analyzes the growing archive of 183-GHz water vapor absorption band measurements from the Advanced Microwave Sounding Unit B (AMSU-B) and Microwave Humidity Sounder (MHS) on board polar-orbiting satellites and document adjustments ...

Eui-Seok Chung; Brian J. Soden; Viju O. John

2013-10-01T23:59:59.000Z

139

Observed and Modeled Growing-Season Diurnal Precipitable Water Vapor in South-Central Canada  

Science Conference Proceedings (OSTI)

High-temporal-resolution total-column precipitable water vapor (PWV) was measured using a Radiometrics Corporation WVR-1100 Atmospheric Microwave Radiometer (AMR). The AMR was deployed at the University of Manitoba in Winnipeg, Canada, during the ...

John Hanesiak; Mark Melsness; Richard Raddatz

2010-11-01T23:59:59.000Z

140

Latent Heat Flux Profiles from Collocated Airborne Water Vapor and Wind Lidars during IHOP_2002  

Science Conference Proceedings (OSTI)

Latent heat flux profiles in the convective boundary layer (CBL) are obtained for the first time with the combination of the Deutsches Zentrum für Luft- und Raumfahrt (DLR) water vapor differential absorption lidar (DIAL) and the NOAA high ...

C. Kiemle; G. Ehret; A. Fix; M. Wirth; G. Poberaj; W. A. Brewer; R. M. Hardesty; C. Senff; M. A. LeMone

2007-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated water vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Water Vapor Profiling Using a Widely Tunable, Amplified Diode-Laser-Based Differential Absorption Lidar (DIAL)  

Science Conference Proceedings (OSTI)

A differential absorption lidar (DIAL) instrument for automated profiling of water vapor in the lower troposphere has been designed, tested, and is in routine operation at Montana State University. The laser transmitter for the DIAL instrument ...

Amin R. Nehrir; Kevin S. Repasky; John L. Carlsten; Michael D. Obland; Joseph A. Shaw

2009-04-01T23:59:59.000Z

142

Comparison of Raman Lidar Observations of Water Vapor with COSMO-DE Forecasts during COPS 2007  

Science Conference Proceedings (OSTI)

Water vapor measurements with the multiwavelength Raman lidar Backscatter Extinction Lidar-Ratio Temperature Humidity Profiling Apparatus (BERTHA) were performed during the Convective and Orographically-induced Precipitation Study (COPS) in the ...

Christian Herold; Dietrich Althausen; Detlef Müller; Matthias Tesche; Patric Seifert; Ronny Engelmann; Cyrille Flamant; Rohini Bhawar; Paolo Di Girolamo

2011-12-01T23:59:59.000Z

143

Volatilized tritiated water vapor in the vicinity of exposed tritium contaminated groundwater  

SciTech Connect

Water vapor tritium concentrations in air above a known source of tritiated water can be estimated. Estimates should account for the mechanisms of evaporation and condensation at the water surface and water species exchange, and are typically applicable under a broad range of wind, temperature and humidity conditions. An estimate of volatilized tritium water vapor was made for a known outcropping of tritium contaminated groundwater at the Savannah River Site (SRS) old F-Area effluent stream. In order to validate this estimate and the associated dose calculation, sampling equipment was fabricated, tested, and installed at the effluent stream. The estimate and the dose calculation were confirmed using data from samples collected.

Dunn, D.L.; Carlton, B.; Hunter, C.; McAdams, T.

1994-06-01T23:59:59.000Z

144

Forced Dispersion of Liquefied Natural Gas Vapor Clouds with Water Spray Curtain Application  

E-Print Network (OSTI)

There has been, and will continue to be, tremendous growth in the use and distribution of liquefied natural gas (LNG). As LNG poses the hazard of flammable vapor cloud formation from a release, which may result in a massive fire, increased public concerns have been expressed regarding the safety of this fuel. In addition, regulatory authorities in the U.S. as well as all over the world expect the implementation of consequence mitigation measures for LNG spills. For the effective and safer use any safety measure to prevent and mitigate an accidental release of LNG, it is critical to understand thoroughly the action mechanisms. Water spray curtains are generally used by petro-chemical industries to prevent and mitigate heavier-than-air toxic or flammable vapors. It is also used to cool and protect equipment from heat radiation of fuel fires. Currently, water spray curtains are recognized as one of the economic and promising techniques to enhance the dispersion of the LNG vapor cloud formed from a spill. Usually, water curtains are considered to absorb, dilute, disperse and warm a heavier-than-air vapor cloud. Dispersion of cryogenic LNG vapor behaves differently from other dense gases because of low molecular weight and extremely low temperature. So the interaction between water curtain and LNG vapor is different than other heavier vapor clouds. Only two major experimental investigations with water curtains in dispersing LNG vapor clouds were undertaken during the 1970s and 1980s. Studies showed that water spray curtains enhanced LNG vapor dispersion from small spills. However, the dominant phenomena to apply the water curtain most effectively in controlling LNG vapor were not clearly demonstrated. The main objective of this research is to investigate the effectiveness of water spray curtains in controlling the LNG vapor clouds from outdoor experiments. A research methodology has been developed to study the dispersion phenomena of LNG vapor by the action of different water curtains experimentally. This dissertation details the research and experiment development. Small scale outdoor LNG spill experiments have been performed at the Brayton Fire Training Field at Texas A&M University. Field test results regarding important phenomena are presented and discussed. Results have determined that the water curtains are able to reduce the concentration of the LNG vapor cloud, push the vapor cloud upward and transfer heat to the cloud. These are being identified due to the water curtain mechanisms of entrainment of air, dilution of vapor with entrained air, transfer of momentum and heat to the gas cloud. Some of the dominant actions required to control and disperse LNG vapor cloud are also identified from the experimental tests. The gaps are presented as the future work and recommendation on how to improve the experiments in the future. This will benefit LNG industries to enhance its safety system and to make LNG facilities safer.

Rana, Morshed A.

2009-12-01T23:59:59.000Z

145

Water Vapor and Mechanical Work: A Comparison of Carnot and Steam Cycles  

Science Conference Proceedings (OSTI)

The impact of water vapor on the production of kinetic energy in the atmosphere is discussed here by comparing two idealized heat engines: the Carnot cycle and the steam cycle. A steam cycle transports water from a warm moist source to a colder ...

Olivier Pauluis

2011-01-01T23:59:59.000Z

146

The Impact of the Sierra Nevada on Low-Level Winds and Water Vapor Transport  

Science Conference Proceedings (OSTI)

To understand the influence of the Sierra Nevada on the water cycle in California the authors have analyzed low-level winds and water vapor fluxes upstream of the mountain range in regional climate model simulations. In a low Froude number (Fr) ...

Jinwon Kim; Hyun-Suk Kang

2007-08-01T23:59:59.000Z

147

Measuring Total Column Water Vapor by Pointing an Infrared Thermometer at the Sky  

Science Conference Proceedings (OSTI)

A 2-yr study affirms that the temperature indicated by an inexpensive ($20–$60) IR thermometer pointed at the cloud-free zenith sky (Tz) is a proxy for total column water vapor [precipitable water (PW)]. From 8 September 2008 to 18 October 2010 Tz was ...

Forrest M. Mims III; Lin Hartung Chambers; David R. Brooks

2011-10-01T23:59:59.000Z

148

Water Vapor and Mechanical Work: A Comparison of Carnot and Steam Cycles OLIVIER PAULUIS  

E-Print Network (OSTI)

Water Vapor and Mechanical Work: A Comparison of Carnot and Steam Cycles OLIVIER PAULUIS Center in the atmosphere is discussed here by comparing two idealized heat engines: the Carnot cycle and the steam cycle. A steam cycle transports water from a warm moist source to a colder dryer sink. It acts as a heat engine

Pauluis, Olivier M.

149

Using Absolute Humidity and Radiochemical Analyses of Water Vapor Samples to Correct Underestimated Atmospheric Tritium Concentrations  

SciTech Connect

Los Alamos National Laboratory (LANL) emits a wide variety of radioactive air contaminants. An extensive ambient air monitoring network, known as AIRNET, is operated on-site and in surrounding communities to estimate radioactive doses to the public. As part of this monitoring network, water vapor is sampled continuously at more than 50 sites. These water vapor samples are collected every two weeks by absorbing the water vapor in the sampled air with silica gel and then radiochemically analyzing the water for tritium. The data have consistently indicated that LANL emissions cause a small, but measurable impact on local concentrations of tritium. In early 1998, while trying to independently verify the presumed 100% water vapor collection efficiency, the author found that this efficiency was normally lower and reached a minimum of 10 to 20% in the middle of summer. This inefficient collection was discovered by comparing absolute humidity (g/m{sup 3}) calculated from relative humidity and temperature to the amount of water vapor collected by the silica gel per cubic meter of air sampled. Subsequent experiments confirmed that the elevated temperature inside the louvered housing was high enough to reduce the capacity of the silica gel by more than half. In addition, their experiments also demonstrated that, even under optimal conditions, there is not enough silica gel present in the sampling canister to absorb all of the moisture during the higher humidity periods. However, there is a solution to this problem. Ambient tritium concentrations have been recalculated by using the absolute humidity values and the tritium analyses. These recalculated tritium concentrations were two to three times higher than previously reported. Future tritium concentrations will also be determined in the same manner. Finally, the water vapor collection process will be changed by relocating the sampling canister outside the housing to increase collection efficiency and, therefore, comparability to the true ambient concentrations of tritium.

Eberhart, C.F.

1999-06-01T23:59:59.000Z

150

Water vapor from sunradiometry in comparison wit microwave and balloon-sonde measurements at the Southern Great Plains ARM site  

SciTech Connect

Water vapor plays an important role in weather in climate; it is the most important greenhouse gas and the most variable in space and time. The DOE Atmospheric Radiation Measurement (ARM) program is studying the column abundance and distribution of water vapor with altitude. Although the Multi-Filter Rotating Shadowband Radiometer (MFRSR) is mainly for measurements of spectral short-wave radiation and spectral extinction by aerosol, it can also measure total column water vapor. This paper reports a preliminary investigation of MFRSR`s capabilities for total column water vapor under cloudless conditions.

Michalsky, J.J.; Harrison, L.C. [State Univ. of New York, Albany, NY (United States); Liljegren, J.C. [Pacific Northwest Lab., Richland, WA (United States)

1994-12-31T23:59:59.000Z

151

The Effect of the Water Vapor and Carbon Dioxide on the Radiation Absorption and Temperature Profile in Troposphere.  

E-Print Network (OSTI)

??The work on this paper focus on the effect of the water vapor and carbon dioxide on the absorption of atmospheric radiation and the temperature… (more)

Li, Chieh

2013-01-01T23:59:59.000Z

152

Posters Toward an Operational Water Vapor Remote Sensing System Using the Global Positioning System  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Posters Toward an Operational Water Vapor Remote Sensing System Using the Global Positioning System S. I. Gutman, (a) R. B. Chadwick, (b) and D. W. Wolf (c) National Oceanic and Atmospheric Administration Boulder, Colorado A. Simon Cooperative Institute for Research in Environmental Science Boulder, Colorado T. Van Hove and C. Rocken University Navstar Consortium Boulder, Colorado Background Water vapor is one of the most important constituents of the free atmosphere since it is the principal mechanism by which moisture and latent heat are transported and cause "weather." The measurement of atmospheric water vapor is essential for weather and climate research as well as for operational weather forecasting. An important goal in modern weather prediction is to improve the accuracy of short-term

153

Measurements of the Infrared SpectraLines of Water Vapor at Atmospheric Temperatures  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurements of the Infrared Spectral Lines Measurements of the Infrared Spectral Lines of Water Vapor at Atmospheric Temperatures P. Varanasi and Q. Zou Institute for Terrestrial and Planetary Atmospheres State University of New York at Stony Brook Stony Brook, New York Introduction Water vapor is undoubtedly the most dominant greenhouse gas in the terrestrial atmosphere. In the two facets of Atmospheric Radiation Measurement (ARM) Program research, atmospheric remote sensing (air-borne as well as Cloud and Radiation Testbed [CART] site-based) and modeling of atmospheric radiation, the spectrum of water vapor, ranging from the microwave to the visible wavelengths, plays a significant role. Its spectrum has been the subject of many studies throughout the last century. Therefore, it is natural to presume it should be fairly well established by now. However, the need for a

154

Sensitivity of Spectroradiometric Calibrations in the Near Infrared to Variations in Atmospheric Water Vapor: Preprint  

DOE Green Energy (OSTI)

Spectra of natural sunlight and artificial sources are important in photovoltaic research. Calibration of the spectroradiometers used for these measurements is derived from the response to spectral irradiance standards from the National Institute of Standards and Technology (NIST). Some photovoltaic devices respond in the near infrared, or NIR, so spectral measurements and calibrations are needed in this region. Over the course of several calibrations, we identified variations> 5% in spectroradiometer NIR calibration data for a certain spectroradiometer. A detailed uncertainty analysis did not reflect the observed variation. Reviewing calibration procedures and historical data, we noted that the variations were seen in water vapor absorption bands. We used spectral transmission models to compute changes in atmospheric transmission (as a function of water vapor content) over path lengths occurring during calibration. The results indicate that the observed variations result from varying water vapor content. A correction algorithm for adjusting measured data was developed based on our analysis.

Myers, D. R.; Andreas, A. A.

2004-03-01T23:59:59.000Z

155

Direct radiometric observations of the water vapor greenhouse effect over the equatorial Pacific ocean  

SciTech Connect

Airborne radiometric measurements were used to determine tropospheric profiles of the clear sky greenhouse effect. At sea surface temperatures (SSTs) larger than 300 kelvin, the clear sky water vapor greenhouse effect was found to increase with SST at a rate of 13 to 15 watts per square meter per kelvin. Satellite measurements of infrared radiances and SSTs indicate that almost 52 percent of the tropical oceans between 20{degrees}N and 20{degrees}S are affected during all seasons. Current general circulation models suggest that the increase in the clear sky water vapor greenhouse effect with SST may have climatic effects on a planetary scale. 23 refs., 5 figs., 1 tab.

Valero, F.P.J.; Collins, W.D.; Bucholtz, A. [Univ. of California, La Jolla, CA (United States)] [and others

1997-03-21T23:59:59.000Z

156

Vertical Variability of Aerosols and Water Vapor Over the Southern Great Plains  

NLE Websites -- All DOE Office Websites (Extended Search)

Vertical Variability of Aerosols and Water Vapor Vertical Variability of Aerosols and Water Vapor Over the Southern Great Plains R. A. Ferrare National Aeronautics and Space Administration Langley Research Center Hampton, Virginia D. D. Turner Pacific Northwest National Laboratory Richland, Washington M. Clayton and V. Brackett Science Applications International Corporation National Aeronautics and Space Administration Langley Research Center Hampton, Virginia T. P. Tooman and J. E. M. Goldsmith Sandia National Laboratories Livermore, California J. A. Ogren National Oceanic and Atmospheric Administration Climate Monitoring and Diagnostics Laboratory Boulder, Colorado E. Andrews Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder, Colorado

157

Adsorption of water vapor on reservoir rocks. First quarterly report, January--March 1993  

DOE Green Energy (OSTI)

Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

Not Available

1993-07-01T23:59:59.000Z

158

Springtime Precipitation and Water Vapor Flux over Southeastern South America  

Science Conference Proceedings (OSTI)

The physical mechanisms associated with precipitation in southeastern South America during spring are investigated using short-term integrations with the regional mesoscale Eta Model. An evaluation of the model’s performance using in situ ...

Ernesto H. Berbery; Estela A. Collini

2000-05-01T23:59:59.000Z

159

A NORMETEX MODEL 15 M3/HR WATER VAPOR PUMPING TEST  

SciTech Connect

Tests were performed using a Model 15 m{sup 3}/hr Normetex vacuum pump to determine if pump performance degraded after pumping a humid gas stream. An air feed stream containing 30% water vapor was introduced into the pump for 365 hours with the outlet pressure of the pump near the condensation conditions of the water. Performance of the pump was tested before and after the water vapor pumping test and indicated no loss in performance of the pump. The pump also appeared to tolerate small amounts of condensed water of short duration without increased noise, vibration, or other adverse indications. The Normetex pump was backed by a dual-head diaphragm pump which was affected by the condensation of water and produced some drift in operating conditions during the test.

Klein, J.; Fowley, M.; Steeper, T.

2010-12-20T23:59:59.000Z

160

FIRST DETECTION OF WATER VAPOR IN A PRE-STELLAR CORE  

Science Conference Proceedings (OSTI)

Water is a crucial molecule in molecular astrophysics as it controls much of the gas/grain chemistry, including the formation and evolution of more complex organic molecules in ices. Pre-stellar cores provide the original reservoir of material from which future planetary systems are built, but few observational constraints exist on the formation of water and its partitioning between gas and ice in the densest cores. Thanks to the high sensitivity of the Herschel Space Observatory, we report on the first detection of water vapor at high spectral resolution toward a dense cloud on the verge of star formation, the pre-stellar core L1544. The line shows an inverse P-Cygni profile, characteristic of gravitational contraction. To reproduce the observations, water vapor has to be present in the cold and dense central few thousand AU of L1544, where species heavier than helium are expected to freeze out onto dust grains, and the ortho:para H{sub 2} ratio has to be around 1:1 or larger. The observed amount of water vapor within the core (about 1.5 Multiplication-Sign 10{sup -6} M{sub Sun }) can be maintained by far-UV photons locally produced by the impact of galactic cosmic rays with H{sub 2} molecules. Such FUV photons irradiate the icy mantles, liberating water vapor in the core center. Our Herschel data, combined with radiative transfer and chemical/dynamical models, shed light on the interplay between gas and solids in dense interstellar clouds and provide the first measurement of the water vapor abundance profile across the parent cloud of a future solar-type star and its potential planetary system.

Caselli, Paola; Douglas, Thomas [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Keto, Eric [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bergin, Edwin A. [Department of Astronomy, The University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Tafalla, Mario [Observatorio Astronomico Nacional (IGN), Calle Alfonso XII, 3, E-28014 Madrid (Spain); Aikawa, Yuri [Department of Earth and Planetary Sciences, Kobe University, Nada, 657-8501 Kobe (Japan); Pagani, Laurent [LERMA and UMR 8112 du CNRS, Observatoire de Paris, 61 Av. de l'Observatoire, F-75014 Paris (France); Yildiz, Umut A.; Kristensen, Lars E.; Van Dishoeck, Ewine F. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Van der Tak, Floris F. S. [SRON Netherlands Institute for Space Research, P.O. Box 800, 9700 AV, Groningen (Netherlands); Walmsley, C. Malcolm; Codella, Claudio [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Nisini, Brunella, E-mail: p.caselli@leeds.ac.uk [INAF-Osservatorio Astronomico di Roma, I-00040 Monte Porzio Catone (Italy)

2012-11-10T23:59:59.000Z

Note: This page contains sample records for the topic "integrated water vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Water vapor on supergiants. The 12 micron TEXES spectra of mu Cephei  

E-Print Network (OSTI)

Several recent papers have argued for warm, semi-detached, molecular layers surrounding red giant and supergiant stars, a concept known as a MOLsphere. Spectroscopic and interferometric analyses have often corroborated this general picture. Here, we present high-resolution spectroscopic data of pure rotational lines of water vapor at 12 microns for the supergiant mu Cephei. This star has often been used to test the concept of molecular layers around supergiants. Given the prediction of an isothermal, optically thick water-vapor layer in Local Thermodynamic Equilibrium around the star (MOLsphere), we expected the 12 micron lines to be in emission or at least in absorption but filled in by emission from the molecular layer around the star. Our data, however, show the contrary; we find definite absorption. Thus, our data do not easily fit into the suggested isothermal MOLsphere scenario. The 12 micron lines, therefore, put new, strong constraints on the MOLsphere concept and on the nature of water seen in signatures across the spectra of early M supergiants. We also find that the absorption is even stronger than that calculated from a standard, spherically symmetric model photosphere without any surrounding layers. A cool model photosphere, representing cool outer layers is, however, able to reproduce the lines, but this model does not account for water vapor emission at 6 microns. Thus, a unified model for water vapor on mu Cephei appears to be lacking. It does seem necessary to model the underlying photospheres of these supergiants in their whole complexity. The strong water vapor lines clearly reveal inadequacies of classical model atmospheres.

N. Ryde; M. J. Richter; G. M. Harper; K. Eriksson; D. L. Lambert

2006-03-15T23:59:59.000Z

162

How closely do changes in surface and column water vapor follow Clausius-Clapeyron scaling in climate change simulations?  

E-Print Network (OSTI)

The factors governing the rate of change in the amount of atmospheric water vapor are analyzed in simulations of climate change. The global-mean amount of water vapor is estimated to increase at a differential rate of 7.3% ...

O'Gorman, Paul Ambrose

163

A Feasibility Study for Simultaneous Estimates of Water Vapor and Precipitation Parameters Using a Three-Frequency Radar  

Science Conference Proceedings (OSTI)

The radar return powers from a three-frequency radar, with center frequency at 22.235 GHz and upper and lower frequencies chosen with equal water vapor absorption coefficients, can be used to estimate water vapor density and parameters of the ...

R. Meneghini; L. Liao; L. Tian

2005-10-01T23:59:59.000Z

164

Ten Years of Measurements of Tropical Upper-Tropospheric Water Vapor by MOZAIC. Part II: Assessing the ECMWF Humidity Analysis  

Science Conference Proceedings (OSTI)

In a recent publication (Part I), the authors introduced a data source—Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC)—for monitoring and studying upper-tropospheric water vapor (UTWV) and analyzed 10 yr (1994–2004) of ...

Zhengzhao Luo; Dieter Kley; Richard H. Johnson; Herman Smit

2008-04-01T23:59:59.000Z

165

Electro-Osmosis and Water Uptake in Polymer Electrolytes in Equilibrium with Water Vapor at Low Temperatures  

DOE Green Energy (OSTI)

Water uptake and electro-osmosis are investigated to improve the understanding and aid the modeling of water transport in proton-exchange membrane fuel cells (PEMFCs) below 0 C. Measurements of water sorption isotherms show a significant reduction in the water capacity of polymer electrolytes below 0 C. This reduced water content is attributed to the lower vapor pressure of ice compared to supercooled liquid water. At -25 C, 1100 equivalent weight Nafion in equilibrium with vapor over ice has 8 moles of water per sulfonic acid group. Measurements of the electro-osmotic drag coefficient for Nafion and both random and multiblock copolymer sulfonated poly(arylene ether sulfone) (BPSH) chemistries are reported for vapor equilibrated samples below 0 C. The electro-osmotic drag coefficient of BPSH chemistries is found to be {approx}0.4, and that of Nafion is {approx}1. No significant temperature effect on the drag coefficient is found. The implication of an electro-osmotic drag coefficient less than unity is discussed in terms of proton conduction mechanisms. Simulations of the ohmically limited current below 0 C show that a reduced water uptake below 0 C results in a significant decrease in PEMFC performance.

Gallagher, K. G.; Pivovar, B. S.; Fuller, T. F.

2009-01-01T23:59:59.000Z

166

A Note on Water-Vapor Wind Tracking Using VAS Data on McIDAs  

Science Conference Proceedings (OSTI)

Eleven data sets where water-vapor winds were obtained from the GOES-5 6.7-micrometer measurement over the United States are compared with rawinsondes. Over 2OOO point comparisons are made for: a) an arbitrary height assignment of 400 mb; and b) ...

Tod R. Stewart; William L. Smith; Christopher M. Hayden

1985-09-01T23:59:59.000Z

167

Stratospheric Water Vapor Variability for Washington, DC/Boulder, CO: 1964–82  

Science Conference Proceedings (OSTI)

Measurements for Washington, DC and Boulder, CO are combined to provide a time series of midlatitude stratospheric water vapor data for the period 1964–82. The mean concentration for the data period is shown to be nearly constant with altitude ...

H. J. Mastenbrook; S. J. Oltmans

1983-09-01T23:59:59.000Z

168

Measurement of Low Amounts of Precipitable Water Vapor Using Ground-Based Millimeterwave Radiometry  

Science Conference Proceedings (OSTI)

Extremely dry conditions characterized by amounts of precipitable water vapor (PWV) as low as 1–2 mm commonly occur in high-latitude regions during the winter months. While such dry atmospheres carry only a few percent of the latent heat energy ...

Paul E. Racette; Ed R. Westwater; Yong Han; Albin J. Gasiewski; Marian Klein; Domenico Cimini; David C. Jones; Will Manning; Edward J. Kim; James R. Wang; Vladimir Leuski; Peter Kiedron

2005-04-01T23:59:59.000Z

169

Gas Scavenging of Soluble and Insoluble Organic Vapors by Levitated Water Drops  

Science Conference Proceedings (OSTI)

Three-millimeter-diameter drops of water were levitated with a standing acoustic wave centered in the jet of a small wind tunnel and the volume changes as the drop evaporates in the presence of 1-propanol vapor were measured. The results are ...

Mark Seaver; Amy Barrett

1994-07-01T23:59:59.000Z

170

An Efficient Method for Computing the Absorption of Solar Radiation by Water Vapor  

Science Conference Proceedings (OSTI)

An efficient method has been developed to compute the absorption of solar radiation by water vapor. The method is based on the molecular line parameters compiled by McClatchey et al. (1973) and makes use of the far-wing scaling approximation and ...

Ming-Dah Chou; Albert Arking

1981-04-01T23:59:59.000Z

171

Relationships between Water Vapor Path and Precipitation over the Tropical Oceans  

Science Conference Proceedings (OSTI)

The relationship between water vapor path W and surface precipitation rate P over tropical oceanic regions is analyzed using 4 yr of gridded daily SSM/I satellite microwave radiometer data. A tight monthly mean relationship P (mm day?1) = exp[...

Christopher S. Bretherton; Matthew E. Peters; Larissa E. Back

2004-04-01T23:59:59.000Z

172

A Climatology of Tropospheric Zonal-Mean Water Vapor Fields and Fluxes in Isentropic Coordinates  

Science Conference Proceedings (OSTI)

Based on reanalysis data for the years 1980–2001 from the European Centre for Medium-Range Weather Forecasts (ERA-40 data), a climatology of tropospheric zonal-mean water vapor fields and fluxes in isentropic coordinates is presented. In the ...

Tapio Schneider; Karen L. Smith; Paul A. O’Gorman; Christopher C. Walker

2006-11-01T23:59:59.000Z

173

Atmospheric Opacity. in the Schumann-Runge Bands and the Aeronomic Dissociation of Water Vapor  

Science Conference Proceedings (OSTI)

Knowledge of the agronomic production of odd hydrogen in the dissociation of water vapor is limited by uncertainties in the penetration of solar irradiance in the Schumann-Rung bands of O2 and by incomplete information concerning the products of ...

J. E. Frederick; R. D. Hudson

1980-05-01T23:59:59.000Z

174

GPS/STORM—GPS Sensing of Atmospheric Water Vapor for Meteorology  

Science Conference Proceedings (OSTI)

Atmospheric water vapor was measured with six Global Positioning System (GPS) receivers for 1 month at sites in Colorado, Kansas, and Oklahoma. During the time of the experiment from 7 May to 2 June 1993, the area experienced severe weather. The ...

Christian Rocken; Teresa Van Hove; James Johnson; Fred Solheim; Randolph Ware; Mike Bevis; Steve Chiswell; Steve Businger

1995-06-01T23:59:59.000Z

175

Luminescence Enhancement in InGaN and ZnO by Water Vapor ...  

Science Conference Proceedings (OSTI)

Dependence of Ag/In Ratio of AgInS2 Crystals Grown by Hot-Press Method ... Analysis of Temperature Characteristics of InGaP/InGaAs/Ge Triple-Junction Solar Cell ... Luminescence Enhancement in InGaN and ZnO by Water Vapor Remote ...

176

A Simulation and Diagnostic Study of Water Vapor Image Dry Bands  

Science Conference Proceedings (OSTI)

A Limited Area Mesoscale Prediction System (LAMPS) model simulation and special 3-hour radiosonde dataset are used to investigate warm (dry) bands in 6,7 ?m water vapor satellite imagery on 6–7 March 1982. The purpose is to reveal processes ...

Bradley M. Muller; Henry E. Fuelberg

1990-03-01T23:59:59.000Z

177

Water Vapor Cross-Sensitivity of Open Path H2O/CO2 Sensors  

Science Conference Proceedings (OSTI)

When measuring the flux of CO2 with an open-path infrared absorption sensor, cross-sensitivity by water vapor is a source of concern. This is particularly true if the flux is small, such as over the sea. In this paper some possible mechanisms for ...

W. Kohsiek

2000-03-01T23:59:59.000Z

178

An Airborne Millimeter-Wave Imaging Radiometer for Cloud, Precipitation, and Atmospheric Water Vapor Studies  

Science Conference Proceedings (OSTI)

A six-channel airborne total-power Millimeter-wave Imaging Radiometer (MIR) was recently built to provide measurements of atmospheric water vapor, clouds, and precipitation. The instrument is a cross-track scanner that has a 3-dB beamwidth of 3.5°...

P. Racette; R. F. Adler; J. R. Wang; A. J. Gasiewski; D. M. Jakson; D. S. Zacharias

1996-06-01T23:59:59.000Z

179

Numerical modeling of water injection into vapor-dominated geothermal reservoirs  

E-Print Network (OSTI)

fluid flow and heat transfer processes during productionis a slow process, so that rates of heat transfer to theprocesses induced by water injection into depleted or depleting vapor zones are characterized by a complex interplay between fluid flow and heat transfer,

Pruess, Karsten

2008-01-01T23:59:59.000Z

180

Parameterizations for Water Vapor IR Radiative Transfer in Both the Middle and Lower Atmospheres  

Science Conference Proceedings (OSTI)

Water vapor contributes a maximum of 1°C/day to the middle atmospheric thermal infrared (IR) cooling. This magnitude is small but not negligible. Because of the small amount of mass involved and the extremely narrow molecular absorption lines at ...

Ming-Dah Chou; William L. Ridgway; Michael M-H. Yan

1995-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated water vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Measured and Estimated Water Vapor Advection in the Atmospheric Surface Layer  

Science Conference Proceedings (OSTI)

The flux of water vapor due to advection is measured using high resolution Raman lidar that was orientated horizontally across a land-lake transition. At the same time, a full surface energy balance is performed to assess the impact of scalar ...

Chad W. Higgins; Eric Pardyjak; Martin Froidevaux; Valentin Simeonov; Marc B. Parlange

182

Implications of the Stratospheric Water Vapor Distribution as Determined from the Nimbus 7 LIMS Experiment  

Science Conference Proceedings (OSTI)

The LIMS experiment on Nimbus 7 has provided new results on the stratospheric water vapor distribution. The data show 1) a latitudinal gradient with mixing ratios that increase by a factor of 2 from equator to ±60 degrees at 50 mb, 2) most of the ...

Ellis Remsberg; James M. Russell III; Larry L. Gordley; John C. Gille; Paul L. Bailey

1984-10-01T23:59:59.000Z

183

Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds  

Science Conference Proceedings (OSTI)

The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

Turner, David, D.; Ferrare, Richard, A.

2011-07-06T23:59:59.000Z

184

Water Vapor Tracers as Diagnostics of the Regional Hydrologic Cycle  

Science Conference Proceedings (OSTI)

Numerous studies suggest that local feedback of surface evaporation on precipitation, known recycling, is a significant source of water for precipitation. Quantitative results on the exact amount of recycling have been difficult to obtain in view ...

Michael G. Bosilovich; Siegfried D. Schubert

2002-04-01T23:59:59.000Z

185

A Combined Passive Water Vapor Exchanger and Exhaust Gas Diffusion Barrier for Fuel Cell Applications  

Science Conference Proceedings (OSTI)

Fuel cells operating on hydrocarbon fuels require water vapor injection into the fuel stream for fuel reforming and the prevention of carbon fouling. Compared to active water recovery systems, a passive approach would eliminate the need for a separate water source, pumps, and actuators, and thus reduce parasitic thermal losses. The passive approach developed in this paper employs a capillary pump that recovers the water vapor from the exhaust, while providing a diffusion barrier that prevents exhaust gases from entering the fuel stream. Benchtop proof tests have proven the feasibility of the passive fuel humidifier concept, and have provided a calibration factor for a computational design tool that can be used for industrial applications

Williford, Rick E. (BATTELLE (PACIFIC NW LAB)); Hatchell, Brian K. (BATTELLE (PACIFIC NW LAB)); Singh, Prabhakar (BATTELLE (PACIFIC NW LAB))

2002-11-14T23:59:59.000Z

186

Relative influence of lapse rate and water vapor on the greenhouse effect  

SciTech Connect

Observational data are employed in a radiative transfer model to simulate the mean variation in normalized greenhouse effect (NGE) between January and July. This is performed at a variety of locations, and the mean local rate of change in NGE with surface temperature is determined. The result is 1.5 times larger than the variation of NGE with surface temperature obtained by spatially correlating the aggregated data. This disagreement is ascribed to systematic differences between the two approaches and is interpreted as indicating the significant role that large-scale circulations as well as surface temperatures have on determining local thermal and humidity structures. The separate effects of water vapor and lapse rate variations are estimated, by simulating the January-July changes in NGE with each process in turn held constant: beyond the tropics the lapse rate feedback is found to dominate over the water vapor feedback, particularly over land; in the inter-tropics, lapse rate variations account for about a third of the change in greenhouse trapping, contributing substantially to the `super-greenhouse effect.` Utilizing a radiative-convective model, the possible effects on climate change of both lapse rate changes and water vapor feedback are compared: a global mean model cliamte is perturbed by a doubling of atmospheric carbon dioxide and equilibrium surface temperatures obtained for a variety of lapse rates. If, under conditions of climate change, the global mean lapse rate varies with surface temperature in the same manner as in the present-day mean seasonal cycle (increasing the lapse rate magnitude by 6%), then the lapse rate feedback amplifies the modeled water vapor feedback by 40%; conversely, a 12% reduction in the magnitude of the lapse rate completely nullifies the water vapor feedback.

Sinha, A. [Imperial College of Science Technology and Medicine, London (United Kingdom)

1995-03-01T23:59:59.000Z

187

Apparent Temperature Dependence on Localized Atmospheric Water Vapor  

E-Print Network (OSTI)

in the water cloud spectrum, due to the higher altitude of ice clouds. 4. COMPARISON WITH MODTRAN To verify with the MODTRAN4 radiative transfer model (version 1.1, Berk et al., 2000). We chose a triangular slit function chosen for the MODTRAN calculations with a FWHM of 10 cm-1 . This resolution is comparable

Salvaggio, Carl

188

In situ separation of root hydraulic redistribution of soil water from liquid and vapor transport  

SciTech Connect

Nocturnal increases in water potential ( ) and water content (WC) in the upper soil profile are often attributed to root water efflux into the soil, a process termed hydraulic lift or hydraulic redistribution (HR). We have previously reported HR values up to ~0.29 mm day-1 in the upper soil for a seasonally dry old-growth ponderosa pine site. However, unsaturated liquid or vapor flux of water between soil layers independent of roots also contributes to the diurnal patterns in WC, confounding efforts to determine the actual magnitude of HR. In this study, we estimated liquid (Jl) and vapor (Jv) soil water fluxes and their impacts on quantifying HR in situ by applying existing data sets of , WC, temperature (T) and soil physical properties to soil water transport equations. Under moist conditions, Jl between layers was estimated to be larger than necessary to account for measured nocturnal increases in WC of upper soil layers. However, as soil drying progressed unsaturated hydraulic conductivity declined rapidly such that Jl was irrelevant (< 2E-06 cm hr-1 at 0-60 cm depths) to total water flux by early August. In surface soil at depths above 15 cm, large T fluctuations can impact Jv leading to uncertainty concerning the role, if any, of HR in nocturnal WC dynamics. Vapor flux was estimated to be the highest at the shallowest depths measured (20 - 30 cm) where it could contribute up to 40% of hourly increases in nocturnal soil moisture depending on thermal conditions. While both HR and net soil water flux between adjacent layers contribute to WC in the 15-65 cm soil layer, HR was the dominant process and accounted for at least 80% of the diurnal increases in WC. While the absolute magnitude of HR is not easily quantified, total diurnal fluctuations in upper soil water content can be quantified and modeled, and remain highly applicable for establishing the magnitude and temporal dynamics of total ecosystem water flux.

Warren, Jeffrey [ORNL; Brooks, J Renee [U.S. Environmental Protection Agency, Corvallis, OR; Dragila, Maria [Oregon State University, Corvallis; Meinzer, Rick [USDA Forest Service

2011-01-01T23:59:59.000Z

189

Addressing water vaporization in the vicinity of an exploding wire  

SciTech Connect

The phase state of thin ({approx}1 {mu}m) layer of water adjacent to the surface of rapidly heated thin wire 100{+-}50 {mu}m in radius is analyzed by computer hydrodynamic calculation. It is shown that when heating of a wire to a temperature of 420 deg. C is achieved in less than {approx}500 ns, the trajectory of the phase state is contained in the liquid part of the phase diagram. This suggests additional proof of and an explanation for the absence of shunting plasma discharge in fast underwater electrical wire explosions.

Grinenko, A.; Gurovich, V. Tz.; Krasik, Ya. E.; Dolinsky, Yu. [Physics Department, Technion, 32000 Haifa (Israel); Department of Mechanical Engineering, Ben Gurion University, 84105 Beer-Sheva (Israel)

2006-12-01T23:59:59.000Z

190

NREL: Water Power Research - Grid Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Grid Integration Grid Integration High-voltage transmission lines and towers silouetted against a blue sky with the first glow of the rising sun on the horizon behind them. The national need for transmission improvements will have a direct impact on the effective use of renewable energy sources. For marine and hydrokinetic technologies to play a larger role in supplying the nation's energy needs, integration into the U.S. power grid is an important challenge to address. Efficient integration of variable power resources like water power is a critical part of the deployment planning and commercialization process. Variable and weather-dependent resources can create operational concerns for grid operators. These concerns include conventional generation ramping, load/generation balancing, and planning

191

Electro-Osmosis and Water Uptake in Polymer Electrolytes in Equilibrium with Water Vapor at Low Temperatures  

DOE Green Energy (OSTI)

Measurements of the electro-osmotic drag coefficient for Nafion{reg_sign} and both random and multi-block co-polymer sulfonated poly(arylene ether sulfone) (BPSH) chemistries are reported for vapor equilibrated samples below 0 C. No significant change in the drag coefficient behavior for Nafion from that reported above 0 C is found. However BPSH is found to have a drag coefficient of 0.4. The implication of a drag coefficient less than unity in the interpretation of conduction mechanisms is discussed. Measurements of water sorption isotherms below 0 C are also presented. A significant reduction in the capacity of polymer electrolytes to store water below 0 C is found. This reduced water content is a result of the lower vapor pressure of ice compared to supercooled liquid.

Gallagher, K. G.; Pivovar, B. S.; Fuller, T. F.

2008-01-01T23:59:59.000Z

192

Posters Scanning Raman Lidar Measurements of Atmospheric Water Vapor and Aerosols  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Posters Scanning Raman Lidar Measurements of Atmospheric Water Vapor and Aerosols R. A. Ferrare and K. D. Evans (a) Hughes STX Corporation Lanham, Maryland S. H. Melfi and D. N. Whiteman NASA/Goddard Space Flight Center Greenbelt, Maryland The principal objective of the Department of Energy's (DOE) Atmospheric Radiation Measurement Program (ARM) is to develop a better understanding of the atmospheric radiative balance in order to improve the parameterization of radiative processes in general circulation models (GCMs) which are used to study climate change. Meeting this objective requires detailed measurements of both water vapor and aerosols since these atmospheric constituents affect the radiation balance directly, through scattering and absorption of solar and

193

Atmospheric pre-corrected differential absorption techniques to retrieve columnar water vapor: Theory and simulations  

SciTech Connect

Two different approaches exist to retrieve columnar water vapor from imaging spectrometer data: (1) Differential absorption techniques based on: (a) Narrow-Wide (N/W) ratio between overlapping spectrally wide and narrow channels (b) Continuum Interpolated Band Ratio (CIBR) between a measurement channel and the weighted sum of two reference channels; and (2) Non-linear fitting techniques which are based on spectral radiative transfer calculations. The advantage of the first approach is computational speed and of the second, improved retrieval accuracy. Our goal was to improve the accuracy of the first technique using physics based on radiative transfer. Using a modified version of the Duntley equation, we derived an {open_quote}Atmospheric Pre-corrected Differential Absorption{close_quote} (APDA) technique and described an iterative scheme to retrieve water vapor on a pixel-by-pixel basis. Next we compared both, the CIBR and the APDA using the Duntley equation for MODTRAN3 computed irradiances, transmissions and path radiance (using the DISORT option). This simulation showed that the CIBR is very sensitive to reflectance effects and that the APDA performs much better. An extensive data set was created with the radiative transfer code 6S over 379 different ground reflectance spectra. The calculated relative water vapor error was reduced significantly for the APDA. The APDA technique had about 8% (vs. over 35% for the CIBR) of the 379 spectra with a relative water vapor error of greater than {+-}5%. The APDA has been applied to 1991 and 1995 AVIRIS scenes which visually demonstrate the improvement over the CIBR technique.

Borel, C.C.; Schlaepfer, D.

1996-03-01T23:59:59.000Z

194

Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)  

SciTech Connect

This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

2012-10-01T23:59:59.000Z

195

Final report on the project entitled "The Effects of Disturbance & Climate on Carbon Storage & the Exchanges of CO2 Water Vapor & Energy Exchange of Evergreen Coniferous Forests in the Pacific Northwest: Integration of Eddy Flux, Plant and Soil Measurements at a Cluster of Supersites"  

SciTech Connect

This is the final technical report containing a summary of all findings with regard to the following objectives of the project: (1) To quantify and understand the effects of wildfire on carbon storage and the exchanges of energy, CO2, and water vapor in a chronosequence of ponderosa pine (disturbance gradient); (2) To investigate the effects of seasonal and interannual variation in climate on carbon storage and the exchanges of energy, CO2, and water vapor in mature conifer forests in two climate zones: mesic 40-yr old Douglas-fir and semi-arid 60-yr old ponderosa pine (climate gradient); (3) To reduce uncertainty in estimates of CO2 feedbacks to the atmosphere by providing an improved model formulation for existing biosphere-atmosphere models; and (4) To provide high quality data for AmeriFlux and the NACP on micrometeorology, meteorology, and biology of these systems. Objective (1): A study integrating satellite remote sensing, AmeriFlux data, and field surveys in a simulation modeling framework estimated that the pyrogenic carbon emissions, tree mortality, and net carbon exchange associated with four large wildfires that burned ~50,000 hectares in 2002-2003 were equivalent to 2.4% of Oregon statewide anthropogenic carbon emissions over the same two-year period. Most emissions were from the combustion of the forest floor and understory vegetation, and only about 1% of live tree mass was combusted on average. Objective (2): A study of multi-year flux records across a chronosequence of ponderosa pine forests yielded that the net carbon uptake is over three times greater at a mature pine forest compared with young pine. The larger leaf area and wetter and cooler soils of the mature forest mainly caused this effect. A study analyzing seven years of carbon and water dynamics showed that interannual and seasonal variability of net carbon exchange was primarily related to variability in growing season length, which was a linear function of plant-available soil moisture in spring and early summer. A multi-year drought (2001-2003) led to a significant reduction of net ecosystem exchange due to carry-over effects in soil moisture and carbohydrate reserves in plant-tissue. In the same forest, the interannual variability in the rate carbon is lost from the soil and forest floor is considerable and related to the variability in tree growth as much as it is to variability in soil climatic conditions. Objective (3): Flux data from the mature ponderosa pine site support a physical basis for filtering nighttime data with friction velocity above the canopy. An analysis of wind fields and heat transport in the subcanopy at the mesic 40-year old Douglas site yielded that the non-linear structure and behavior of spatial temperature gradients and the flow field require enhanced sensor networks to estimate advective fluxes in the subcanopy of forest to close the surface energy balance in forests. Reliable estimates for flux uncertainties are needed to improve model validation and data assimilation in process-based carbon models, inverse modeling studies and model-data synthesis, where the uncertainties may be as important as the fluxes themselves. An analysis of the time scale dependence of the random and flux sampling error yielded that the additional flux obtained by increasing the perturbation timescale beyond about 10 minutes is dominated by random sampling error, and therefore little confidence can be placed in its value. Artificial correlation between gross ecosystem productivity (GEP) and ecosystem respiration (Re) is a consequence of flux partitioning of eddy covariance flux data when GEP is computed as the difference between NEE and computed daytime Re (e.g. using nighttime Re extrapolated into daytime using soil or air temperatures). Tower-data must be adequately spatially averaged before comparison to gridded model output as the time variability of both is inherently different. The eddy-covariance data collected at the mature ponderosa pine site and the mesic Douglas fir site were used to develop and evaluate a new method to extra

Beverly E. Law (PI), Christoph K. Thomas (CoI)

2011-09-20T23:59:59.000Z

196

Submillimeter Wave Astronomy Satellite mapping observations of water vapor around Sagittarius B2  

E-Print Network (OSTI)

Observations of the 1(10)-1(01) 556.936 GHz transition of ortho-water with the Submillimeter Wave Astronomy Satellite (SWAS) have revealed the presence of widespread emission and absorption by water vapor around the strong submillimeter continuum source Sagittarius B2. An incompletely-sampled spectral line map of a region of size 26 x 19 arcmin around Sgr B2 reveals three noteworthy features. First, absorption by foreground water vapor is detectable at local standard-of-rest (LSR) velocities in the range -100 to 0 km/s at almost every observed position. Second, spatially-extended emission by water is detectable at LSR velocities in the range 80 to 120 km/s at almost every observed position. This emission is attributable to the 180-pc molecular ring identified from previous observations of CO. The typical peak antenna temperature of 0.075 K for this component implies a typical water abundance of 1.2E-6 to 8E-6 relative to H2. Third, strong absorption by water is observed within 5 arcmin of Sgr B2 at LSR veloci...

Neufeld, D A; Melnick, G J; Goldsmith, P F; Neufeld, David A.; Bergin, Edwin A.; Melnick, Gary J.; Goldsmith, Paul F.

2003-01-01T23:59:59.000Z

197

Parameterization of Joint Frequency Distributions of Potential Temperature and Water Vapor Mixing Ratio in the Daytime Convective Boundary Layer  

Science Conference Proceedings (OSTI)

Joint frequency distributions (JFDs) of potential temperature (?) versus water vapor mixing ratio (r) within the convective boundary layer were measured during a new field experiment named Boundary Layer Experiment 1996 (BLX96). These JFDs were ...

Larry K. Berg; Roland B. Stull

2004-04-01T23:59:59.000Z

198

An Open Path, Fast Response IR Spectrometer for Simultaneous Detection of C02 and Water Vapor Fluctuations  

Science Conference Proceedings (OSTI)

A fast response C02 and water vapor (H2O) analyzer was developed in this study for the measurement of atmospheric turbulence fluctuations and, in conjunction with a fast response anemometer, transport of these entities. High speed and high ...

M. J. Heikinheimo; G. W. Thurtell; G. E. Kidd

1989-08-01T23:59:59.000Z

199

Response of Water Vapor and CO2 Fluxes in Semiarid Lands to Seasonal and Intermittent Precipitation Pulses  

Science Conference Proceedings (OSTI)

Precipitation pulses are important in controlling ecological processes in semiarid ecosystems. The effects of seasonal and intermittent precipitation events on net water vapor and CO2 fluxes were determined for crested wheatgrass (Agropyron ...

Sasha Ivans; Lawrence Hipps; A. Joshua Leffler; Carolyn Y. Ivans

2006-10-01T23:59:59.000Z

200

Water Vapor, Surface Temperature, and the Greenhouse Effect—A Statistical Analysis of Tropical-Mean Data  

Science Conference Proceedings (OSTI)

Water vapor feedback is one of the important factors that determine the response of the atmosphere to surface warming. To take into account the compensating drying effects in downdraft regions, averaging over the whole Tropics is necessary. ...

Hu Yang; Ka Kit Tung

1998-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated water vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Hurricane Debby—An Illustration of the Complementary Nature of VAS Soundings and Cloud and Water Vapor Motion Winds  

Science Conference Proceedings (OSTI)

The utility of VISSR Atmospheric Sounder (VAS) temperature and moisture soundings and cloud and water vapor motion winds in defining a storm and its surroundings at subsynoptic scales has been examined using a numerical analysis and prognosis ...

John F. Le Marshall; William L. Smith; Geary M. Callan

1985-03-01T23:59:59.000Z

202

Water Vapor Structure Displacements from Cloud-Free Meteosat Scenes and Their Interpretation for the Wind Field  

Science Conference Proceedings (OSTI)

The evaluation of water vapor (WV) images taken by satellite-borne radiometers has become an essential source of data in modern meteorology. The analysis of structure displacements within sections of WV images is an effective way to get ...

G. Büche; H. Karbstein; A. Kummer; H. Fischer

2006-04-01T23:59:59.000Z

203

Satellite-Model Coupled Analysis of Convective Potential in Florida with VAS Water Vapor and Surface Temperature Data  

Science Conference Proceedings (OSTI)

A system for time-continuous mesoscale weather analysis is applied to a study of convective cloud development in central Florida. The analysis system incorporates water vapor concentrations and surface temperatures retrieved from infrared VISSR (...

Alan E. Lipton; George D. Modica; Scot T. Heckman; Arthur J. Jackson

1995-11-01T23:59:59.000Z

204

A Satellite Study of the Relationship between Sea Surface Temperature and Column Water Vapor over Tropical and Subtropical Oceans  

Science Conference Proceedings (OSTI)

The known characteristics of the relationship between sea surface temperature (SST) and column water vapor (CWV) are reevaluated with recent satellite observations over tropical and subtropical oceans. Satellite data acquired by the Aqua Advanced ...

Kaya Kanemaru; Hirohiko Masunaga

2013-06-01T23:59:59.000Z

205

Measurement of Water Vapor Flux Profiles in the Convective Boundary Layer with Lidar and Radar-RASS  

Science Conference Proceedings (OSTI)

A remote-sensing method to retrieve vertical profiles of water vapor flux in the convective boundary layer by using a differential absorption lidar and a radar-radio acoustic sounding system is described. The system's height range presently ...

Christoph Senff; Jens Bösenberg; Gerhard Peters

1994-02-01T23:59:59.000Z

206

The Representation of Water Vapor and Its Dependence on Vertical Resolution in the Hadley Centre Climate Model  

Science Conference Proceedings (OSTI)

Simulations of the Hadley Centre Atmospheric Climate Model version 3, HadAM3, are used to investigate the impact of increasing vertical resolution on simulated climates. In particular, improvements in the representation of water vapor and ...

V. D. Pope; J. A. Pamment; D. R. Jackson; A. Slingo

2001-07-01T23:59:59.000Z

207

Boundary-Layer Water Vapor Probing with a Solar-Blind Raman Lidar: Validations, Meteorological Observations and Prospects  

Science Conference Proceedings (OSTI)

The ability of a solar-blind Raman lidar (SBRL) to measure the vertical profile of water vapor in the boundary layer is proved from a theoretical as well as an experimental point of view.

D. Renaut; R. Capitini

1988-10-01T23:59:59.000Z

208

Evolution of Water Vapor Concentrations and Stratospheric Age of Air in Coupled Chemistry-Climate Model Simulations  

Science Conference Proceedings (OSTI)

Stratospheric water vapor concentrations and age of air are investigated in an ensemble of coupled chemistry-climate model simulations covering the period from 1960 to 2005. Observed greenhouse gas concentrations, halogen concentrations, aerosol ...

John Austin; John Wilson; Feng Li; Holger Vömel

2007-03-01T23:59:59.000Z

209

Column Water Vapor Statistics and Their Relationship to Deep Convection, Vertical and Horizontal Circulation, and Moisture Structure at Nauru  

Science Conference Proceedings (OSTI)

Relationships among relatively high-frequency probability distribution functions (pdfs) of anomalous column water vapor (cwv), precipitating deep convection, and the vertical and horizontal structures of circulation and tropospheric moisture are ...

Benjamin R. Lintner; Christopher E. Holloway; J. David Neelin

2011-10-01T23:59:59.000Z

210

A Near-Infrared Diode Laser Spectrometer for the In Situ Measurement of Methane and Water Vapor from Stratospheric Balloons  

Science Conference Proceedings (OSTI)

The Spectromètre à Diodes Laser Accordables (SDLA), a balloonborne near-infrared diode laser spectrometer, was developed to provide simultaneous in situ measurements of methane and water vapor in the troposphere and the lower stratosphere. The ...

Georges Durry; Ivan Pouchet

2001-09-01T23:59:59.000Z

211

Intercalibration of GOES-11 and GOES-12 Water Vapor Channels with MetOp IASI Hyperspectral Measurements  

Science Conference Proceedings (OSTI)

The calibrated radiances from geostationary water vapor channels play an important role for weather forecasting, data assimilation, and climate studies. Therefore, better understanding the data quality for radiance measurements and independently ...

Likun Wang; Changyong Cao; Mitch Goldberg

2009-09-01T23:59:59.000Z

212

Reduction of Noise Interference from METEOSAT Water Vapor Image Data by Means of Fourier Transform and Frequency Domain Filtering  

Science Conference Proceedings (OSTI)

Images provided by the water vapor channel data of meteorological satellites are suitable for the determination of wind vectors in the midtroposphere. Preprocessing the image data affects the quality and quantity of the derived wind vectors. ...

Gerhard Gesell; Herbert Fischer; Thomas König

1984-06-01T23:59:59.000Z

213

Intercomparisons of Stratospheric Water Vapor Sensors: FLASH-B and NOAA/CMDL Frost-Point Hygrometer  

Science Conference Proceedings (OSTI)

Studies of global climate rely critically on accurate water vapor measurements. In this paper, a comparison of the NOAA/Climate Monitoring and Diagnostics Laboratory (CMDL) frost-point hygrometer and the Fluorescent Advanced Stratospheric ...

H. Vömel; V. Yushkov; S. Khaykin; L. Korshunov; E. Kyrö; R. Kivi

2007-06-01T23:59:59.000Z

214

Validation of Precipitable Water Vapor within the NCEP/DOE Reanalysis Using Global GPS Observations from One Decade  

Science Conference Proceedings (OSTI)

In contrast to previous studies validating numerical weather prediction (NWP) models using observations from the global positioning system (GPS), this paper focuses on the validation of seasonal and interannual variations in the water vapor. The ...

Sibylle Vey; Reinhard Dietrich; Axel Rülke; Mathias Fritsche; Peter Steigenberger; Markus Rothacher

2010-04-01T23:59:59.000Z

215

Eye-Safe Diode-Laser-Based Micropulse Differential Absorption Lidar (DIAL) for Water Vapor Profiling in the Lower Troposphere  

Science Conference Proceedings (OSTI)

A second-generation diode-laser-based master oscillator power amplifier (MOPA) configured micropulse differential absorption lidar (DIAL) instrument for profiling of lower-tropospheric water vapor is presented. The DIAL transmitter is based on a ...

Amin R. Nehrir; Kevin S. Repasky; John L. Carlsten

2011-02-01T23:59:59.000Z

216

Ground-Based Microwave Radiometric Observations of Precipitable Water Vapor: A Comparison with Ground Truth from Two Radiosonde Observing Systems  

Science Conference Proceedings (OSTI)

Dual-channel microwave radiometric measurements of precipitable water vapor are compared with values determined from two types of radiosondes. The first type is used in conventional soundings taken by the National Weather Service. The second is ...

Ed R. Westwater; Michael J. Falls; Ingrid A. Popa Fotino

1989-08-01T23:59:59.000Z

217

Water vapor from sunradiometry in comparison with microwave and balloon-sonde measurements at the Southern Great Plains ARM Site  

SciTech Connect

Water vapor plays a fundamental role in weather and climate. It is the most important greenhouse gas and the most variable in space and time. The DOE Atmospheric Radiation Measurement program is devoting a large fraction of its resources for the accurate characterization of the column abundance and the distribution of water vapor with altitude. Balloon sondes, microwave radiometers, and Raman lidars are the major instruments either currently in use or under consideration for these tasks. Although the Multi-Filter Rotating Shadowband Radiometer (MFRSR) is primarily intended for use in accurate measurements of spectral short-wave radiation and in the measurement of spectral extinction by aerosol, it has the potential to measure total column water vapor as well. In this paper the authors report on a preliminary investigation of the MFRSR`s capabilities with regard to accurate measurements of total column water vapor at times when there is a clear path to the sun, i.e., cloudless conditions.

Michalsky, J.J.; Harrison, L.C. [State Univ. of New York, Albany, NY (United States). Atmospheric Sciences Research Center; Liljegren, J.C. [Pacific Northwest Lab., Richland, WA (United States)

1994-01-01T23:59:59.000Z

218

Analysis of Upper-Tropospheric Water Vapor Brightness Temperatures from SSM/T2, HIRS, and GMS-5 VISSR  

Science Conference Proceedings (OSTI)

Satellite microwave and infrared instruments sensitive to upper-tropospheric water vapor (UTWV) are compared using both simulated and observed cloud-cleared brightness temperatures (Tb’s). To filter out cloudy scenes, a cloud detection algorithm ...

Wesley Berg; John J. Bates; Darren L. Jackson

1999-05-01T23:59:59.000Z

219

Intercomparison of Water Vapor Data Measured with Lidar during IHOP_2002. Part II: Airborne-to-Airborne Systems  

Science Conference Proceedings (OSTI)

The dataset of the International H2O Project (IHOP_2002) gives the first opportunity for direct intercomparisons of airborne water vapor lidar systems and allows very important conclusions to be drawn for future field campaigns. Three airborne ...

Andreas Behrendt; Volker Wulfmeyer; Thorsten Schaberl; Hans-Stefan Bauer; Christoph Kiemle; Gerhard Ehret; Cyrille Flamant; Susan Kooi; Syed Ismail; Richard Ferrare; Edward V. Browell; David N. Whiteman

2007-01-01T23:59:59.000Z

220

Demonstration Measurements of Water Vapor, Cirrus Clouds, and Carbon Dioxide Using a High-Performance Raman Lidar  

Science Conference Proceedings (OSTI)

Profile measurements of atmospheric water vapor, cirrus clouds, and carbon dioxide using the Raman Airborne Spectroscopic lidar (RASL) during ground-based, upward-looking tests are presented here. These measurements improve upon any previously ...

David N. Whiteman; Kurt Rush; Igor Veselovskii; Martin Cadirola; Joseph Comer; John R. Potter; Rebecca Tola

2007-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated water vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Intercalibrating microwave satellite observations for monitoring long-term variations in upper and mid-tropospheric water vapor  

Science Conference Proceedings (OSTI)

We analyze the growing archive of 183 GHz water vapor absorption band measurements from Advanced Microwave Sounding Unit-B (AMSU-B) and Microwave Humidity Sounder (MHS) onboard polar orbiting satellites and document adjustments necessary to use ...

Eui-Seok Chung; Brian J. Soden; Viju O. John

222

Effects of adsorbed water vapor on the Wheeler kinetic rate constant and kinetic adsorption capacity for activated carbon adsorbents  

SciTech Connect

Activated carbon plays a key role reducing organic vapor emissions to the environment from synthetic chemical manufacturing, pesticide manufacturing, in odor control, for removal of contaminant vapors during remediation of hazardous waste sites, and as an adsorption matrix for collection of organic vapors from ambient air in occupational and environmental settings to assess exposure. The Wheeler dynamic adsorption model has been evaluated under laboratory conditions and has shown potential for predicting activated carbon bed penetration. Water vapor is a normal constituent of ambient air that is present at concentrations 1-2 orders of magnitude greater than the concentrations of potentially toxic air contaminants. Many investigations have shown that adsorbed water vapor can reduce the breakthrough-time of activated charcoal beds. The effect of adsorbed water vapor on the predictive power of the Wheeler model has not been evaluated. The research evaluated the effect of water vapor adsorbed on activated charcoal on the subsequent adsorption of four air contaminants, carbon tetrachloride, 1,1,1-trichloroethane, 1,1,2-trichloroethylene, and 1-propanol. The adsorbent used in this research had a large surface area, 1200 m[sup 2]/g and that 95% of the surface area was associated with micropores (pores with diameters less than 2 micrometers). Kinetic adsorption capacities for all four adsorbates were not affected by the presence of water vapor except for some observed enhancement. The kinetic trial data suggest that the primary effect of adsorbed water vapor was to reduce the effective pore radius of the smaller mesopores thus restricting pore diffusion. This results in an increase in the critical bed capacity with shorter breakthrough times for adsorbent beds.

Hall, T.A.

1992-01-01T23:59:59.000Z

223

Atmospheric pre-corrected differential absorption techniques to retrieve columnar water vapor: Application to AVIRIS 91/95 data  

Science Conference Proceedings (OSTI)

Water vapor is one of the main forces for weather development as well as for mesoscale air transport processes. The monitoring of water vapor is therefore an important aim in remote sensing of the atmosphere. Current operational systems for water vapor detection use primarily the emission in the thermal infrared (AVHRR, GOES, ATSR, Meteosat) or in the microwave radiation bands (DMSP). The disadvantage of current satellite systems is either a coarse spatial (horizontal) resolution ranging from one to tens of kilometers or a limited insight into the lower atmosphere. Imaging spectrometry on the other hand measures total column water vapor contents at a high spatial horizontal resolution and has therefore the potential of filling these gaps. The sensors of the AVIRIS instrument are capable of acquiring hyperspectral data in 224 bands located in the visible and near infrared at 10 run resolution. This data includes information on constituents of the earth`s surface as well as of the atmosphere. The optical measurement of water vapor can be performed using sensor channels located in bands or lines of the absorption spectrum. The AVIRIS sensor has been used to retrieve water vapor and with less accuracy carbon dioxide, oxygen and ozone. To retrieve the water vapor amount, the so called differential absorption technique has been applied. The goal of this technique is to eliminate background factors by taking a ratio between channels within the absorption band and others besides the band. Various rationing methods on the basis of different channels and calculation techniques were developed. The influence of a trace gas of interest on the radiance at the sensor level is usually simulated by using radiative transfer codes. In this study, spectral transmittance and radiance are calculated by MODTRAN3 simulations with the new DISORT option. This work testS the best performing differential absorption techniques for imaging spectrometry of tropospheric water vapor.

Schlaepfer, D. [Univ. of Zuerich (Switzerland). Dept. of Geography; Borel, C.C. [Los Alamos National Lab., NM (United States); Keller, J. [Paul Scherrer Institut, Villigen (Switzerland)] [and others

1996-03-01T23:59:59.000Z

224

Treatment of Produced Waters Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System  

DOE Green Energy (OSTI)

This report summarizes work of this project from October 2003 through March 2004. The major focus of the research was to further investigate BTEX removal from produced water, to quantify metal ion removal from produced water, and to evaluate a lab-scale vapor phase bioreactor (VPB) for BTEX destruction in off-gases produced during SMZ regeneration. Batch equilibrium sorption studies were conducted to evaluate the effect of semi-volatile organic compounds commonly found in produced water on the sorption of benzene, toluene, ethylbenzene, and xylene (BTEX) onto surfactant-modified zeolite (SMZ) and to examine selected metal ion sorption onto SMZ. The sorption of polar semi-volatile organic compounds and metals commonly found in produced water onto SMZ was also investigated. Batch experiments were performed in a synthetic saline solution that mimicked water from a produced water collection facility in Wyoming. Results indicated that increasing concentrations of semi-volatile organic compounds increased BTEX sorption. The sorption of phenol compounds could be described by linear isotherms, but the linear partitioning coefficients decreased with increasing pH, especially above the pKa's of the compounds. Linear correlations relating partitioning coefficients of phenol compounds with their respective solubilities and octanol-water partitioning coefficients were developed for data collected at pH 7.2. The sorption of chromate, selenate, and barium in synthetic produced water were also described by Langmuir isotherms. Experiments conducted with a lab-scale vapor phase bioreactor (VPB) packed with foam indicated that this system could achieve high BTEX removal efficiencies once the nutrient delivery system was optimized. The xylene isomers and benzene were found to require the greatest biofilter bed depth for removal. This result suggested that these VOCs would ultimately control the size of the biofilter required for the produced water application. The biofilter recovered rapidly from shutdowns showing that the system was resilient to discontinuous feed conditions therefore provided flexibility on the SMZ regeneration process.

Lynn E. Katz; Kerry A. Kinney; R. S. Bowman; E. J. Sullivan

2004-03-11T23:59:59.000Z

225

Bringing Water into an Integrated Assessment Framework  

Science Conference Proceedings (OSTI)

We developed a modeling capability to understand how water is allocated within a river basin and examined present and future water allocations among agriculture, energy production, other human requirements, and ecological needs. Water is an essential natural resource needed for food and fiber production, household and industrial uses, energy production, transportation, tourism and recreation, and the functioning of natural ecosystems. Anthropogenic climate change and population growth are anticipated to impose unprecedented pressure on water resources during this century. Pacific Northwest National Laboratory (PNNL) researchers have pioneered the development of integrated assessment (IA) models for the analysis of energy and economic systems under conditions of climate change. This Laboratory Directed Research and Development (LDRD) effort led to the development of a modeling capability to evaluate current and future water allocations between human requirements and ecosystem services. The Water Prototype Model (WPM) was built in STELLA®, a computer modeling package with a powerful interface that enables users to construct dynamic models to simulate and integrate many processes (biological, hydrological, economics, sociological). A 150,404-km2 basin in the United States (U.S.) Pacific Northwest region served as the platform for the development of the WPM. About 60% of the study basin is in the state of Washington with the rest in Oregon. The Columbia River runs through the basin for 874 km, starting at the international border with Canada and ending (for the purpose of the simulation) at The Dalles dam. Water enters the basin through precipitation and from streamflows originating from the Columbia River at the international border with Canada, the Spokane River, and the Snake River. Water leaves the basin through evapotranspiration, consumptive uses (irrigation, livestock, domestic, commercial, mining, industrial, and off-stream power generation), and streamflow through The Dalles dam. Water also enters the Columbia River via runoff from land. The model runs on a monthly timescale to account for the impact of seasonal variations of climate, streamflows, and water uses. Data for the model prototype were obtained from national databases and ecosystem model results. The WPM can be run from three sources: 1) directly from STELLA, 2) with the isee Player®, or 3) the web version of WPM constructed with NetSim® software. When running any of these three versions, the user is presented a screen with a series of buttons, graphs, and a table. Two of the buttons provide the user with background and instructions on how to run the model. Currently, there are five types of scenarios that can be manipulated alone or in combination using the Sliding Input Devices: 1) interannual variability (e.g., El Niño), 2) climate change, 3) salmon policy, 4) future population, and 5) biodiesel production. Overall, the WPM captured the effects of streamflow conditions on hydropower production. Under La Niña conditions, more hydropower is available during all months of the year, with a substantially higher availability during spring and summer. Under El Niño conditions, hydropower would be reduced, with a total decline of 15% from normal weather conditions over the year. A policy of flow augmentation to facilitate the spring migration of smolts to the ocean would also reduce hydropower supply. Modeled hydropower generation was 23% greater than the 81 TWh reported in the 1995 U.S. Geological Survey (USGS) database. The modeling capability presented here contains the essential features to conduct basin-scale analyses of water allocation under current and future climates. Due to its underlying data structure iv and conceptual foundation, the WPM should be appropriate to conduct IA modeling at national and global scales.

Izaurralde, Roberto C.; Thomson, Allison M.; Sands, Ronald; Pitcher, Hugh M.

2010-11-30T23:59:59.000Z

226

Oxidation of zirconium alloys in 2.5 kPa water vapor for tritium readiness.  

DOE Green Energy (OSTI)

A more reactive liner material is needed for use as liner and cruciform material in tritium producing burnable absorber rods (TPBAR) in commercial light water nuclear reactors (CLWR). The function of these components is to convert any water that is released from the Li-6 enriched lithium aluminate breeder material to oxide and hydrogen that can be gettered, thus minimizing the permeation of tritium into the reactor coolant. Fourteen zirconium alloys were exposed to 2.5 kPa water vapor in a helium stream at 300 C over a period of up to 35 days. Experimental alloys with aluminum, yttrium, vanadium, titanium, and scandium, some of which also included ternaries with nickel, were included along with a high nitrogen impurity alloy and the commercial alloy Zircaloy-2. They displayed a reactivity range of almost 500, with Zircaloy-2 being the least reactive.

Mills, Bernice E.

2007-11-01T23:59:59.000Z

227

Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds  

Science Conference Proceedings (OSTI)

Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

Richard A. Ferrare; David D. Turner

2011-09-01T23:59:59.000Z

228

The adsorption of water vapor on carbon fiber composite molecular sieve  

SciTech Connect

Carbon Fiber Composite Molecular Sieve (CFCMS) is a porous adsorbent carbon material manufactured from isotropic pitch derived carbon fibers and a phenolic resin binder via a slurry molding process. The material is produced in the form of a monolith and can be activated in steam, CO{sub 2} or O{sub 2}, during which it develops high BET surface areas and micropore volumes. The material has a continuous carbon skeletal structure and is, therefore, electrically conductive. The passage of an electric current at low voltage allows for direct resistive heating of the carbon and thus provides an efficient method of desorbing adsorbed gases. This method of separating gases has been named electrical swing adsorption (ESA) and is analogous to thermal or pressure swing adsorption. Recently, the authors have examined the potential of CFCMS/ESA for the adsorption and separation of water vapor. Frequently, water vapor must be removed from a gas stream before separation and processing can occur. To assess the potential of CFCMS for water adsorption a series of CFCMS samples were manufactured and activated to relatively high burn-off. Half of each sample was treated at 200 C in flowing oxygen to increase the number of chemisorbed surface functional groups. The amount of water adsorbed has previously been shown to be controlled by the availability of surface functional groups (such as carboxylic acid) which act as active sites for the adsorption of water. Here the authors report the preliminary study of the moisture adsorption behavior of treated and untreated CFCMS samples.

Burchell, T.D.; Judkins, R.R.; Rogers, M.R.

1998-11-01T23:59:59.000Z

229

Time-dependent response of a charcoal bed to radon and water vapor in flowing air  

SciTech Connect

Extremely high airborne concentrations of radon gas may be encountered during the remediation of uranium mill tailings storage facilities. Radon is also a constituent of the off-gas of mill-tailing vitrification. An effective way to remove radon from either gas is to pass the gas through a packed bed containing activated charcoal. Measurements of radon concentrations in the environment using charcoal canisters were first described by George. Canisters similar to those used by George in his first experiments have become the U.S. Environmental Protection Agency`s (EPA`s) standard for measuring environmental radon and were described in the EPA protocol for environmental radon measurement. The dynamic behavior of EPA charcoal canisters has been previously described with a mathematical model for the kinetics of radon gas adsorption in air in the presence of water vapor. This model for charcoal canisters has been extended to large charcoal beds with flowing air containing radon and water vapor. The mathematical model for large charcoal beds can be used to evaluate proposed bed designs or to model existing beds. Parameters that affect the radon distribution within a charcoal bed that can be studied using the mathematical model include carrier gas relative humidity and flow velocity, and input radon concentration. In addition, the relative performances of several different charcoals can be studied, provided sufficient information about their adsorption, desorption, and diffusion constants is known.

Henkel, J.A.; Fentiman, A.W.; Blue, T.E. [Ohio State Univ., Columbus, OH (United States)

1995-12-31T23:59:59.000Z

230

TREATMENT OF PRODUCED WATERS USING A SURFACTANT MODIFIED ZEOLITE/VAPOR PHASE BIOREACTOR SYSTEM  

DOE Green Energy (OSTI)

Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. It is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some of them must be treated to remove organic constituents before the water is discharged. Current treatment options are successful in reducing the organic content; however, they cannot always meet the levels of current or proposed regulations for discharged water. Therefore, an efficient, cost-effective treatment technology is needed. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. Our previous DOE research work (DE-AC26-99BC15221) demonstrated that SMZ could successfully remove BTEX compounds from the produced water. In addition, SMZ could be regenerated through a simple air sparging process. The primary goal of this project is to develop a robust SMZ/VPB treatment system to efficiently remove the organic constituents from produced water in a cost-effective manner. This report summarizes work of this project from October 2002 to March 2003. In this starting stage of this study, we have continued our investigation of SMZ regeneration from our previous DOE project. Two saturation/stripping cycles have been completed for SMZ columns saturated with BTEX compounds. Preliminary results suggest that BTEX sorption actually increases with the number of saturation/regeneration cycles. Furthermore, the experimental vapor phase bioreactors for this project have been designed and are currently being assembled to treat the off-gas from the SMZ regeneration process.

Lynn E. Katz; Kerry A. Kinney; R.S. Bowman; E.J. Sullivan

2003-04-01T23:59:59.000Z

231

Integrated modelling of water availability and water use in the semi-arid Northeast of Brazil  

E-Print Network (OSTI)

Integrated modelling of water availability and water use in the semi-arid Northeast of Brazil A: Bronstert 1 Integrated modelling of water availability and water use in the semi-arid Northeast of Brazil A con- straint for development in the semi-arid Northeast of Brazil. Quanti cation of natural water

Bronstert, Axel

232

K West integrated water treatment system subproject safety analysis document  

Science Conference Proceedings (OSTI)

This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System.

SEMMENS, L.S.

1999-02-24T23:59:59.000Z

233

Final Scientific/Technical Report. A closed path methane and water vapor gas analyzer  

Science Conference Proceedings (OSTI)

Robust, economical, low-power and reliable closed-path methane (CH4), carbon dioxide (CO2), and water vapor (H2O) analyzers suitable for long-term measurements are not readily available commercially. Such analyzers are essential for quantifying the amount of CH4 and CO2 released from various ecosystems (wetlands, rice paddies, forests, etc.) and other surface contexts (e.g. landfills, animal husbandry lots, etc.), and for understanding the dynamics of the atmospheric CH4 and CO2 budget and their impact on climate change and global warming. The purpose of this project is to develop a closed-path methane, carbon dioxide gas and water vapor analyzer capable of long-term measurements in remote areas for global climate change and environmental research. The analyzer will be capable of being deployed over a wide range of ecosystems to understand methane and carbon dioxide exchange between the atmosphere and the surface. Measurements of methane and carbon dioxide exchange need to be made all year-round with limited maintenance requirements. During this Phase II effort, we successfully completed the design of the electronics, optical bench, trace gas detection method and mechanical infrastructure. We are using the technologies of two vertical cavity surface emitting lasers, a multiple-pass Herriott optical cell, wavelength modulation spectroscopy and direct absorption to measure methane, carbon dioxide, and water vapor. We also have designed the instrument application software, Field Programmable Gate Array (FPGA), along with partial completion of the embedded software. The optical bench has been tested in a lab setting with very good results. Major sources of optical noise have been identified and through design, the optical noise floor is approaching -60dB. Both laser modules can be temperature controlled to help maximize the stability of the analyzer. Additionally, a piezo electric transducer has been utilized to randomize the noise introduced from potential etalons. It is expected that all original specifications contained within the initial proposal will be met. We are currently in the beginning stages of assembling the first generation prototypes and finalizing the remaining design elements. The first prototypes will initially be tested in our environmental calibration chamber in which specific gas concentrations, temperature and humidity levels can be controlled. Once operation in this controlled setting is verified, the prototypes will be deployed at LI-COR�¢����s Experimental Research Station (LERS). Deployment at the LERS site will test the instrument�¢����s robustness in a real-world situation.

Liukang, Xu; Dayle, McDermitt; Tyler, Anderson; Brad, Riensche; Anatoly, Komissarov; Julie, Howe

2012-05-01T23:59:59.000Z

234

Posters Atmospheric Emitted Radiance Interferometer: Status and Water Vapor Continuum Results  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 Posters Atmospheric Emitted Radiance Interferometer: Status and Water Vapor Continuum Results H. E. Revercomb, R. O. Knuteson, W. L. Smith, F. A. Best, and R. G. Dedecker University of Wisconsin Madison, Wisconsin H. B. Howell National Oceanic and Atmospheric Administration Systems Design and Applications Branch Madison, Wisconsin Introduction Accurate and spectrally detailed observations of the thermal emission from radiatively important atmospheric gases, aerosols, and clouds are now being provided to the Atmospheric Radiation Measurement (ARM) data base by the Atmospheric Emitted Radiance Interferometer (AERI) prototype at the Southern Great Plains Cloud and Radiation Testbed (CART) site. Spectra over the range from 520 to 3000 cm -1 (3 to 19 microns) with a resolution of 0.5 cm

235

DOE/SC-ARM/TR-128 Tower Water-Vapor Mixing Ratio Value-Added  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Tower Water-Vapor Mixing Ratio Value-Added Product April 2013 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and

236

Grid orientation effects in the simulation of cold water injection into depleted vapor zones  

DOE Green Energy (OSTI)

A considerable body of field experience with injection has been accumulated at Larderello, Italy and The Geysers, California; the results have been mixed. There are well documented cases where injection has increased flow rates of nearby wells. Return of injected fluid as steam from production wells has been observed directly through chemical and isotopic changes of produced fluids (Giovannoni et al., 1981; Nuti et al., 1981). In other cases injection has caused thermal interference and has degraded the temperature and pressure of production wells. Water injection into depleted vapor zones gives rise to complex two-phase fluid flow and heat transfer processes with phase change. These are further complicated by the fractured-porous nature of the reservoir rocks. An optimization of injection design and operating practice is desirable; this requires realistic and robust mathematical modeling capabilities.

Pruess, K.

1991-01-01T23:59:59.000Z

237

Water vapor transmittance models for narrow bands in the 13 to 19. mu. m spectral region  

Science Conference Proceedings (OSTI)

The purpose of this report is to document the development of water vapor transmittance models for narrow bands (satellite sensor channels) in the 13 to 19 ..mu..m spectral region. The models are the result of research efforts of the author in 1971-1972 while on active duty with the US Air Force at the Air Force Global Weather Central (AFGWC). The models were developed for application in studies involving a temperature profiling sensor system carried aboard the satellites of the Defense Meteorological Satellite Program (DMSP), formerly DAPP. Recently, (Lovill et al., 1978; Luther et al., 1981) the models were implemented for studies concerned with methodologies to retrieve total atmospheric column ozone from measurements of newer DMSP Block 5D series satellite sensors with similar channels (see Nichols, 1975).

Weichel, R.L.

1983-10-01T23:59:59.000Z

238

Water Vapor, Condensed Water, and Crystal Concentration in Orographically Influenced Cirrus Clouds  

Science Conference Proceedings (OSTI)

Results are presented from measurements made with a counterflow virtual impactor (CVI) in cirriform clouds containing crystals with dimensions typically less than 30 ?m. Independent measurements of crystal number concentration and cloud water ...

Johan Ström; Jost Heintzenberg

1994-08-01T23:59:59.000Z

239

Treatment of Produced Water Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System  

DOE Green Energy (OSTI)

Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. Produced waters typically contain a high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component as well as chemicals added during the oil-production process. It has been estimated that a total of 14 billion barrels of produced water were generated in 2002 from onshore operations (Veil, 2004). Although much of this produced water is disposed via reinjection, environmental and cost considerations can make surface discharge of this water a more practical means of disposal. In addition, reinjection is not always a feasible option because of geographic, economic, or regulatory considerations. In these situations, it may be desirable, and often necessary from a regulatory viewpoint, to treat produced water before discharge. It may also be feasible to treat waters that slightly exceed regulatory limits for re-use in arid or drought-prone areas, rather than losing them to reinjection. A previous project conducted under DOE Contract DE-AC26-99BC15221 demonstrated that surfactant modified zeolite (SMZ) represents a potential treatment technology for produced water containing BTEX. Laboratory and field experiments suggest that: (1) sorption of benzene, toluene, ethylbenzene and xylenes (BTEX) to SMZ follows linear isotherms in which sorption increases with increasing solute hydrophobicity; (2) the presence of high salt concentrations substantially increases the capacity of the SMZ for BTEX; (3) competitive sorption among the BTEX compounds is negligible; and, (4) complete recovery of the SMZ sorption capacity for BTEX can be achieved by air sparging the SMZ. This report summarizes research for a follow on project to optimize the regeneration process for multiple sorption/regeneration cycles, and to develop and incorporate a vapor phase bioreactor (VPB) system for treatment of the off-gas generated during air sparging. To this end, we conducted batch and column laboratory SMZ and VPB experiments with synthetic and actual produced waters. Based on the results of the laboratory testing, a pilot scale study was designed and conducted to evaluate the combined SMZ/VPB process. An economic and regulatory feasibility analysis was also completed as part of the current study to assess the viability of the process for various water re-use options.

Lynn E. Katz; Kerry A. Kinney; Robert S. Bowman; Enid J. Sullivan; Soondong Kwon; Elaine B. Darby; Li-Jung Chen; Craig R. Altare

2006-01-31T23:59:59.000Z

240

Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters  

SciTech Connect

This report discusses how a significant opportunity for energy savings is domestic hot water heating, where an emerging technology has recently arrived in the U.S. market: the residential integrated heat pump water heater. A laboratory evaluation is presented of the five integrated HPWHs available in the U.S. today.

Sparn, B.; Hudon, K.; Christensen, D.

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated water vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Numerical studies of cold water injection into vapor-dominated geothermal systems  

DOE Green Energy (OSTI)

Recent reservoir pressure and steam flow rate declines at The Geysers geothermal field in California have attracted interest in studies of increased cold water injection into this system. In this paper, numerical studies of such injection into a fractured vapor-dominated reservoir are conducted using a two-dimensional radial, double-porosity model. The results obtained indicate that cold water injection into superheated (low-pressure) zones will greatly enhance the productivities of steam wells. Injection into two-phase zones with significant liquid reserves in the matrix blocks does not appear to aid in steam recovery until most of the original liquid reserves are depleted. Sensitivity studies are conducted over the range of fracture and matrix permeabilities applicable to the Geysers. The sensitivity of the grid size is also conducted, and shows very large grid effects. A fine vertical space discretization near the bottom of the reservoir is necessary to accurately predict the boiling of the injected water. 28 refs., 15 figs., 3 tabs.

Lai, C.H; Bodvarsson, G.S.

1991-01-01T23:59:59.000Z

242

Ten Years of Measurements of Tropical Upper-Tropospheric Water Vapor by MOZAIC. Part I: Climatology, Variability, Transport, and Relation to Deep Convection  

Science Conference Proceedings (OSTI)

Ten years (1994–2004) of measurements of tropical upper-tropospheric water vapor (UTWV) by the Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) are investigated over three regions—the tropical Atlantic, tropical Africa, ...

Zhengzhao Luo; Dieter Kley; Richard H. Johnson; Herman Smit

2007-02-01T23:59:59.000Z

243

Diurnal Cycle of Water Vapor as Documented by a Dense GPS Network in a Coastal Area during ESCOMPTE IOP2  

Science Conference Proceedings (OSTI)

Global positioning system (GPS) data from a dense network have been used for the analysis of the diurnal cycle of water vapor over Marseille, France, during the second intensive observation period (IOP2; 21–26 June 2001) of the Expérience sur ...

Sophie Bastin; Cédric Champollion; Olivier Bock; Philippe Drobinski; Frédéric Masson

2007-02-01T23:59:59.000Z

244

First-Order Structure Function Analysis of Statistical Scale Invariance in the AIRS-Observed Water Vapor Field  

Science Conference Proceedings (OSTI)

The power-law scale dependence, or scaling, of first-order structure functions of the tropospheric water vapor field between 58°S and 58°N is investigated using observations from the Atmospheric Infrared Sounder (AIRS). Power-law scale dependence ...

Kyle G. Pressel; William D. Collins

2012-08-01T23:59:59.000Z

245

Comparison of Aura MLS Water Vapor Measurements with GFS and NAM Analyses in the Upper Troposphere–Lower Stratosphere  

Science Conference Proceedings (OSTI)

Water vapor mixing ratios in the upper troposphere and lower stratosphere measured by the Aura Microwave Limb Sounder (MLS) version 2.2 instrument have been compared with Global Forecast System (GFS) analyses at five levels within the 300–100-hPa ...

Le Van Thien; William A. Gallus Jr.; Mark A. Olsen; Nathaniel Livesey

2010-02-01T23:59:59.000Z

246

The Water Vapor Transport Associated with the 30–50 Day Oscillation over the Asian Monsoon Regions during 1979 Summer  

Science Conference Proceedings (OSTI)

In this study, we examine the water vapor transport over the entire Asian monsoon region using the FGGE III-b data of the European Centre for Medium Range Weather Forecasts (ECMWF) and the Geophysical Fluid Dynamics Laboratory (GFDL). Effort is ...

Tsing-Chang Chen; Ming-Cheng Yen; Masato Murakami

1988-10-01T23:59:59.000Z

247

Comparison of Water Vapor Measurements by Airborne Sun Photometer and Diode Laser Hygrometer on the NASA DC-8  

Science Conference Proceedings (OSTI)

In January–February 2003, the 14-channel NASA Ames airborne tracking sun photometer (AATS) and the NASA Langley/Ames diode laser hygrometer (DLH) were flown on the NASA DC-8 aircraft. The AATS measured column water vapor on the aircraft-to-sun ...

J. M. Livingston; B. Schmid; P. B. Russell; J. R. Podolske; J. Redemann; G. S. Diskin

2008-10-01T23:59:59.000Z

248

One-Parameter Scaling and Exponential-Sum Fitting for Water Vapor and CO2 Infrared Transmission Functions  

Science Conference Proceedings (OSTI)

A medium-sized band model for water vapor and CO2 absorption is developed using the one-parameter scaling approximation. The infrared spectrum is divided into 10 bands. The Planck-weighted diffuse transmittance is reduced to a function dependent ...

Ming-Dah Chou; William L. Ridgway; Michael M-H. Yan

1993-07-01T23:59:59.000Z

249

A Portable Eddy Covariance System for the Measurement of Ecosystem–Atmosphere Exchange of CO2, Water Vapor, and Energy  

Science Conference Proceedings (OSTI)

To facilitate the study of flux heterogeneity within a region, the authors have designed and field-tested a portable eddy covariance system to measure exchange of CO2, water vapor, and energy between the land surface and the atmosphere. The ...

D. P. Billesbach; M. L. Fischer; M. S. Torn; J. A. Berry

2004-04-01T23:59:59.000Z

250

In Situ Measurement of the Water Vapor 18O/16O Isotope Ratio for Atmospheric and Ecological Applications  

Science Conference Proceedings (OSTI)

In this paper a system for in situ measurement of H216O/H218O in air based on tunable diode laser (TDL) absorption spectroscopy is described. Laboratory tests showed that its 60-min precision (one standard deviation) was 0.21‰ at a water vapor ...

Xuhui Lee; Steve Sargent; Ronald Smith; Bert Tanner

2005-05-01T23:59:59.000Z

251

Four-Dimensional Variational Data Analysis of Water Vapor Raman Lidar Data and Their Impact on Mesoscale Forecasts  

Science Conference Proceedings (OSTI)

The impact of water vapor observations on mesoscale initial fields provided by a triangle of Raman lidar systems covering an area of about 200 km × 200 km is investigated. A test case during the Lindenberg Campaign for Assessment of Humidity and ...

Matthias Grzeschik; Hans-Stefan Bauer; Volker Wulfmeyer; Dirk Engelbart; Ulla Wandinger; Ina Mattis; Dietrich Althausen; Ronny Engelmann; Matthias Tesche; Andrea Riede

2008-08-01T23:59:59.000Z

252

First-Year Operation of a New Water Vapor Raman Lidar at the JPL Table Mountain Facility, California  

Science Conference Proceedings (OSTI)

A new water vapor Raman lidar was recently built at the Table Mountain Facility (TMF) of the Jet Propulsion Laboratory (JPL) in California and more than a year of routine 2-h-long nighttime measurements 4–5 times per week have been completed. The ...

Thierry Leblanc; I. Stuart McDermid; Robin A. Aspey

2008-08-01T23:59:59.000Z

253

TREATMENT OF PRODUCED WATERS USING A SURFACTANT MODIFIED ZEOLITE/VAPOR PHASE BIOREATOR SYSTEM  

DOE Green Energy (OSTI)

Co-produced water from the oil and gas industry is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some of them must be treated to remove organic constituents before the water is discharged. An efficient, cost-effective treatment technology is needed to remove these constituents. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. Our previous DOE research work (DE-AC26-99BC15221) demonstrated that SMZ could successfully remove BTEX compounds from the produced water. In addition, SMZ could be regenerated through a simple air sparging process. The primary goal of this project is to develop a robust SMZ/VPB treatment system to efficiently remove the organic constituents from produced water in a cost-effective manner. This report summarizes work of this project from March 2003 through September 2003. We have continued our investigation of SMZ regeneration from our previous DOE project. Ten saturation/stripping cycles have been completed for SMZ columns saturated with BTEX compounds. The results suggest that BTEX sorption capacity is not lost after ten saturation/regeneration cycles. The composition of produced water from a site operated by Crystal Solutions Ltd. in Wyoming has been characterized and was used to identify key semi-volatile components. Isotherms with selected semi-volatile components have been initiated and preliminary results have been obtained. The experimental vapor phase bioreactors for this project have been designed and assembled to treat the off-gas from the SMZ regeneration process. These columns will be used both in the laboratory and in the proposed field testing to be conducted next year. Innocula for the columns that degrade all of the BTEX columns have been developed.

LYNN E. KATZ; KERRY A. KINNEY; R.S. BOWMAN; E.J. SULLIVAN

2003-10-01T23:59:59.000Z

254

Modeling studies of cold water injection into fluid-depleted, vapor-dominated geothermal reservoirs  

DOE Green Energy (OSTI)

The physical processes involved in cold water injection into a ''superheated'' fractured reservoir are not yet fully understood, and this insufficient knowledge of the fundamental mechanisms limits the possibility of forecasting future resevoir behavior and optimizing the heat extraction process. Numerical simulation can be a very effective tool in the study of the complex phenomena involved, allowing a rapid examination of different situations and conditions, a systematic investigation of the effects of various parameters on reservoir performance, and some insight into long term behavior. We have performed simulation experiments on simple one-dimensional, porous and fractured reservoir models in order to study the migration of injected water, thermodynamic conditions in the boiling zone, heat extraction, and vapor generation. A two-dimensional radial porous medium model, with some characteristics typical of the high productivity zones of Larderello, has also been applied for studying the evolution of the shape and the thermodynamic conditions of the injection plume in the presence of gravity, reservoir heterogeneities and anisotropy.

Calore, C.; Pruess, K.; Celati, R.

1986-01-01T23:59:59.000Z

255

Integrated Policy and Planning for Water and  

E-Print Network (OSTI)

and sustainable supplies of water. In the U.S., thermoelectric power generation is one of the largest users Standard (RPS) and aims to diversify the power generation resource mix and lessen stresses on water. In the U.S., thermoelectric power generation is one of the biggest non- consumptive users of water

Delaware, University of

256

A Strategy (Vision) for Integrated Water Cycle  

E-Print Network (OSTI)

resource applications. What are the observation and accuracy needs for global water and energy cycle, to provide enhanced information? #12;---- Initially Close Energy/WaterInitially Close Energy/Water Budgets at ContinentalBudgets at Continental--ScaleScale ---- Couple (land/hydroCouple (land/hydro -- atmosatmos) at the

Houser, Paul R.

257

Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions  

SciTech Connect

Airborne mineral dust particles serve as cloud condensation nuclei (CCN), thereby influencing the formation and properties of warm clouds. It is therefore of particular interest how dust aerosols with different mineralogy behave when exposed to high relative humidity (RH) or supersaturation with respect to liquid water similar to atmospheric conditions. In this study the sub-saturated hygroscopic growth and the supersaturated cloud condensation nucleus activity of pure clays and real desert dust aerosols was determined using a hygroscopicity tandem differential mobility analyzer (HTDMA) and a cloud condensation nuclei counter (CCNC), respectively. Five different illite, montmorillonite and kaolinite clay samples as well as three desert dust samples (Saharan dust (SD), Chinese dust (CD) and Arizona test dust (ATD)) were used. Aerosols were generated both with a wet and a dry disperser and the water uptake was parameterized via the hygroscopicity parameter, ?. The hygroscopicity of dry generated dust aerosols was found to be negligible when compared to processed atmospheric aerosols, with CCNC derived ? values between 0.00 and 0.02. The latter value can be idealized as a particle consisting of 96.7% (by volume) insoluble material and ~3.3% ammonium sulfate. Pure clay aerosols were found to be generally less hygroscopic than real desert dust particles. All illite and montmorillonite samples had ?~0.003, kaolinites were least hygroscopic and had ?=0.001. SD (?=0.023) was found to be the most hygroscopic dry-generated desert dust followed by CD (?=0.007) and ATD (?=0.003). Wet-generated dust showed an increased water uptake when compared to dry-generated samples. This is considered to be an artifact introduced by redistribution of soluble material between the particles while immersed in an aqueous medium during atomization, thus indicating that specification of the generation method is critically important when presenting such data. Any atmospheric processing of fresh mineral dust which leads to the addition of more than ~3% soluble material is expected to significantly enhance hygroscopicity and CCN activity.

Herich, Hanna; Tritscher, Torsten; Wiacek, Aldona; Gysel, Martin; Weingartner, E.; Lohmann, U.; Baltensperger, Urs; Cziczo, Daniel J.

2009-11-01T23:59:59.000Z

258

Numerical modeling of water injection into vapor-dominated geothermal reservoirs  

E-Print Network (OSTI)

Renewable Energy, Office of Geothermal Technologies, of theTransport in Fractured Geothermal Reservoirs, Geothermics,Depletion of Vapor-Dominated Geothermal Reservoirs, Lawrence

Pruess, Karsten

2008-01-01T23:59:59.000Z

259

Tropical Anvil Characteristics and Water Vapor of the Tropical Tropopause Layer (TTL): Impact of Homogeneous Freezing Parameterizations  

NLE Websites -- All DOE Office Websites (Extended Search)

Heterogeneous and Homogeneous Freezing Heterogeneous and Homogeneous Freezing Parameterizations on Tropical Anvil Characteristics and Water Vapor Content of the TTL Jiwen Fan Climate Physics, Pacific Northwest National Laboratory Contributed by: Jennifer Comstock, Mikhail Ovtchinnikov, Sally McFarlane, and Greg McFarquhar OBJECTIVES Look into the effects of the commonly used heterogeneous and homogeneous freezing parameterizations on anvil properties and water vapor content in the TTL for the deep convective clouds developed in the contrasting environments. Examine the impact of the immersion-freezing on homogeneous freezing process. Homogeneous freezing parameterizations (HFPs) 1) Koop et al. (2000): J r depends on the water activity of the solution and is independent of the nature of solute.

260

Two Stage Vapor Compression Heat Pump with Solution Circuits: Catering to Simultaneous Chilling and Water Heating Needs  

E-Print Network (OSTI)

The benefits of using a two stage vapor compression heat pump with ammonia water solution circuits (VCHSC) to simultaneously provide chilled water for air conditioning and hot water for various uses are reviewed. The performance results for a two stage VCHSC are summarized. Experimental results indicate that the two stage VCHSC can achieve cooling coefficient of performances as high as 1.04 while pumping heat through a lift of 194°F (108°C). Comparison is made with a system consisting of a vapor compressor chiller and a gas fired furnace. The basis for comparison being primary energy usage, energy cost and initial cost of the systems. Energy saving at various operating conditions is estimated. In some cases, energy saving could be as high as 31%. Based on the national average energy prices in 1991 and the projected prices for 1995, suitable applications for the two stage VCHSC have been identified.

Rane, M. V.; Radermacher, R.

1992-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated water vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The Use of Water Vapor as a Refrigerant: Impact of Cycle Modifications on Commercial Viability  

SciTech Connect

This project investigated the economic viability of using water as the refrigerant in a 1000-ton chiller application. The most attractive water cycle configuration was found to be a flash-intercooled, two-stage cycle using centrifugal compressors and direct contact heat exchangers. Component level models were developed that could be used to predict the size and performance of the compressors and heat exchangers in this cycle as well as in a baseline, R-134a refrigeration cycle consistent with chillers in use today. A survey of several chiller manufacturers provided information that was used to validate and refine these component models. The component models were integrated into cycle models that were subsequently used to investigate the life-cycle costs of both an R-134a and water refrigeration cycle. It was found that the first cost associated with the water as a refrigerant cycle greatly exceeded the savings in operating costs associated with its somewhat higher COP. Therefore, the water refrigeration cycle is not an economically attractive option to today's R-134a refrigeration system. There are a number of other issues, most notably the requirements associated with purging non-condensable gases that accumulate in a direct contact heat exchanger, which will further reduce the economic viability of the water cycle.

Brandon F. Lachner, Jr.; Gregory F. Nellis; Douglas T. Reindl

2004-08-30T23:59:59.000Z

262

Overview of the Environmental and Water Resources Institute's "Guidelines For Integrated Water Resources Management" Project  

SciTech Connect

Integrated Water Resources Management is a systematic approach to optimizing our understanding, control and management of water resources within a basin to meet multiple objectives. Recognition of the need for integrating water resources within basins is not unique to the Environmental and Water Resources Institute’s Integrated Water Resources Management Task Committee. Many individuals, governments and other organizations have attempted to develop holistic water resources management programs. In some cases, the results have been very effective and in other cases, valiant attempts have fallen far short of their initial goals. The intent of this Task Committee is to provide a set of guidelines that discusses the concepts, methods and tools necessary for integrating and optimizing the management of the physical resources and to optimize and integrate programs, organizations, infrastructure, and socioeconomic institutions into comprehensive water resources management programs.

Gerald Sehlke

2005-03-01T23:59:59.000Z

263

Assessment of Vertically Integrated Liquid (VIL) Water Content Radar Measurement  

Science Conference Proceedings (OSTI)

Vertically integrated liquid (VIL) water content is a parameter obtained from a radar performing voluminal scanning. This parameter has proven useful in the detection of severe storms and may be a worthwhile indicator for very short-term rainfall ...

Brice Boudevillain; Hervé Andrieu

2003-06-01T23:59:59.000Z

264

Method and apparatus for simulating atomospheric absorption of solar energy due to water vapor and CO.sub.2  

SciTech Connect

A method and apparatus for improving the accuracy of the simulation of sunlight reaching the earth's surface includes a relatively small heated chamber having an optical inlet and an optical outlet, the chamber having a cavity that can be filled with a heated stream of CO.sub.2 and water vapor. A simulated beam comprising infrared and near infrared light can be directed through the chamber cavity containing the CO.sub.2 and water vapor, whereby the spectral characteristics of the beam are altered so that the output beam from the chamber contains wavelength bands that accurately replicate atmospheric absorption of solar energy due to atmospheric CO.sub.2 and moisture.

Sopori, Bhushan L. (Denver, CO)

1995-01-01T23:59:59.000Z

265

Method and apparatus for simulating atmospheric absorption of solar energy due to water vapor and CO{sub 2}  

DOE Patents (OSTI)

A method and apparatus for improving the accuracy of the simulation of sunlight reaching the earth`s surface includes a relatively small heated chamber having an optical inlet and an optical outlet, the chamber having a cavity that can be filled with a heated stream of CO{sub 2} and water vapor. A simulated beam comprising infrared and near infrared light can be directed through the chamber cavity containing the CO{sub 2} and water vapor, whereby the spectral characteristics of the beam are altered so that the output beam from the chamber contains wavelength bands that accurately replicate atmospheric absorption of solar energy due to atmospheric CO{sub 2} and moisture. 8 figs.

Sopori, B.L.

1995-06-20T23:59:59.000Z

266

Effects of Water Vapor on Oxidation Behavior of Ferritic Stainless Steels Under Solid Oxide Fuel Cell Interconnect Exposure Conditions  

Science Conference Proceedings (OSTI)

The oxidation of ferritic stainless steels has been studied under solid oxide fuel cell (SOFC) interconnect ''dual'' exposure conditions, i.e. simultaneous exposure to air on one side of the sample, and fuel (hydrogen) on the other. It was found that, under the dual exposures, the oxidation behavior of the stainless steels at the airside differed significantly from that observed during exposure to air at both sides. Increased water vapor partial pressure in the air at the airside further accelerated the anomalous oxidation, resulting in nucleation and growth of hematite in the scale that led to a localized attack. The accelerated oxidation and growth of the hematite nodules was a result of combined effects of hydrogen transport from the fuel side to the airside and the presence of increased water vapor.

Yang, Z Gary; Xia, Gordon; Singh, Prabhakar; Stevenson, Jeffry W.

2005-08-01T23:59:59.000Z

267

WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION PROCESS  

DOE Green Energy (OSTI)

Optimization of the water-gas shift (WGS) reaction system for hydrogen production for fuel cells is of particular interest to the energy industry. To this end, it is desirable to couple the WGS reaction to hydrogen separation using a semi-permeable membrane, with both processes carried out at high temperatures to improve reaction kinetics and permeation. Reduced equilibrium conversion of the WGS reaction at high temperatures is overcome by product H{sub 2} removal via the membrane. This project involves fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2}-separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams will be examined in the project. The first-year screening studies of WGS catalysts identified Cu-ceria as the most promising high-temperature shift catalyst for integration with H{sub 2}-selective membranes. Formulations containing iron oxide were found to deactivate in the presence of CO{sub 2}, and were thus eliminated from further consideration. Cu-containing ceria catalysts, on the other hand, showed high stability in CO{sub 2}-rich gases. This type gas will be present over much of the catalyst, as the membrane removes the hydrogen produced from the shift reaction. Several catalyst formulations were prepared, characterized and tested in the first year of study. Details from the catalyst development and testing work were given in our first annual technical report. Hydrogen permeation through Pd and Pd-alloy foils was investigated in a small membrane reactor constructed during the first year of the project. The effect of temperature on the hydrogen flux through pure Pd, Pd{sub 60}Cu{sub 40} and Pd{sub 75}Ag{sub 25} alloy membranes, each 25 {micro}m thick, was evaluated in the temperature range from 250 C to 500 C at upstream pressure of 4.4 atm and permeate hydrogen pressure of 1 atm. Flux decay was observed for the Pd-Cu membrane above 500 C. From 350-450 C, an average hydrogen flux value of 0.2 mol H{sub 2}/m{sup 2}/s was measured over this Pd-alloy membrane. These results are in good agreement with literature data. In this year's report, we discuss reaction rate measurements, optimization of catalyst kinetics by proper choice of dopant oxide (lanthana) in ceria, long-term stability studies, and H{sub 2} permeation data collected with unsupported flat, 10 {micro}m-thick Pd-Cu membranes over a wide temperature window and in various gas mixtures. The high-temperature shift catalyst composition was further improved, by proper selection of dopant type and amount. The formulation 10 at%Cu-Ce(30 at%La)Ox was the best; this was selected for further kinetic studies. WGS reaction rates were measured in a simulated coal-gas mixture. The stability of catalyst performance was examined in 40-hr long tests. A series of hydrogen permeation tests were conducted in a small flat-membrane reactor using the 10 m{micro}-thick Pd-Cu membranes. Small inhibitory effects of CO and CO{sub 2} were found at temperatures above 350 C, while H{sub 2}O vapor had no effect on hydrogen permeation. No carbon deposition took place during many hours of membrane operation. The reaction extent on the blank (catalyst-free) membrane was also negligible. A larger flat-membrane reactor will be used next year with the catalyst wash coated on screens close coupled with the Pd-Cu membrane.

Maria Flytzani-Stephanopoulos, PI; Jerry Meldon, Co-PI; Xiaomei Qi

2002-12-01T23:59:59.000Z

268

Light Water Reactor Sustainability Program - Integrated Program Plan |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Water Reactor Sustainability Program - Integrated Program Light Water Reactor Sustainability Program - Integrated Program Plan Light Water Reactor Sustainability Program - Integrated Program Plan The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U. S. Department of Energy (DOE), performed in close collaboration and cooperation with related industry R&D programs. The LWRS Program provides technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants, utilizing the unique capabilities of the national laboratory system. Sustainability is defined as the ability to maintain safe and economic operation of the existing fleet of nuclear power plants for a longer than-initially-licensed lifetime. It has two facets

269

Maintenance of the free-tropospheric tropical water vapor distribution. Part I: Clear regime budget  

SciTech Connect

The water vapor budget, of the free troposphere of the maritime Tropics is investigated using radiosonde observations, analyzed fields, and satellite observations, with particular attention paid to regions free of organized convection. In these arid regions, time-average drying by subsidence must be balanced by moistening horizontal advection from convective areas and via vertical turbulent transport from below. It is found that for at least 25% of the maritime Tropics, 80% - 10% of this source above 700 mb is by horizontal advection. The remainder comes from vertical convective transport (scales < 250 km), with a pronounced local maximum at 500 mb. The regions for which this is true are characterized by pentad outgoing longwave radiation > 270 W m{sup -2} and may be said to exist out of equilibrium with the surface as regards moisture. Transport from below makes a significant contribution between 700 and 800 mb, despite the usual presence of an inversion below these levels, but is difficult to quantify accurately. The convective transport convergence is estimated as a residual from large-scale budgets and directly from sounding time series by an independent method, which shows a narrow maximum at 500 mb. Half of the paper addresses the question of data accuracy, including sounding and analyzed data, as it pertains to the question at hand. It is concluded that the moisture budgets from the European Centre for Medium-Range Weather Forecasts (ECMWF) analyses are of useful accuracy despite some significant mean discrepancies between the analyses and sounding observations in convective areas. The budget is found to be similar to that of a general circulation model based on the ECMWF forecasting model. Humidity measurements from operational soundings appear responsive below 300 mb, but then abruptly become unresponsive. 39 refs., 15 figs., 1 tab.

Sherwood, S.C. [Univ. of California, La Jolla, CA (United States)

1996-11-01T23:59:59.000Z

270

Comparison of Column Water Vapor Measurements Using Downward-looking Near-Infrared and Infrared Imaging Systems and Upward-looking Microwave Radiometers  

Science Conference Proceedings (OSTI)

Remote soundings of precipitable water vapor from three systems are compared with each other and with ground truth from radiosondes. Ancillary data from a mesoscale network of surface observing stations and from wind-profiling radars are also ...

Bo-Cai Gao; Alexander F. H. Goetz; Ed R. Westwater; B. Boba Stankov; D. Birkenheuer

1992-10-01T23:59:59.000Z

271

Evaluating Water Vapor in the NCAR CAM3 Climate Model with RRTMG/McICA using Modeled and Observed AIRS Spectral Radiances  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Vapor in the NCAR CAM3 Climate Model with Water Vapor in the NCAR CAM3 Climate Model with RRTMG/McICA using Modeled and Observed AIRS Spectral Radiances Michael J. Iacono, Atmospheric and Environmental Research, Inc., 131 Hartwell Avenue, Lexington, MA 02421 USA 1. Overview Objectives: * Evaluate water vapor and temperature simulation in two versions of CAM3 by comparing modeled and observed cloud-cleared AIRS spectral radiances. * Use spectral differences to verify comparisons between modeled water vapor and temperature and observed fields retrieved from AIRS radiances. Models: OSS: Optimal Spectral Sampling model developed at AER was used to simulate clear sky AIRS radiance spectra in CAM3. RRTMG/McICA: ARM-supported LW and SW radiative transfer model developed at AER for application to GCMs. RRTMG has been fully

272

Monitoring of Precipitable Water Vapor and Cloud Liquid Path from Scanning Microwave Radiometers During the 2003 Cloudiness Inter-Comparison Experiment  

NLE Websites -- All DOE Office Websites (Extended Search)

Monitoring of Precipitable Water Vapor and Cloud Liquid Monitoring of Precipitable Water Vapor and Cloud Liquid Path from Scanning Microwave Radiometers During the 2003 Cloudiness Inter-Comparison Experiment V. Mattioli Department of Electronic and Information Engineering University of Perugia Perugia, Italy E. R. Westwater Cooperative Institute for Research in Environmental Sciences University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado V. Morris Pacific Northwest National Laboratory Richland, Washington Introduction Ground-based microwave radiometers (MWR) are widely used to measure atmospheric precipitable water vapor (PWV) and cloud liquid path (CLP). Comparisons of PWV derived from MWRs with water vapor retrievals from instruments like radiosondes, Global Positioning System (GPS) and Raman

273

Stratospheric Aerosol and Gas Experiment II CD-ROM Atlas of Global Monthly Aerosols, Ozone, NO2, Water, Vapor, and Relative Humitidy (1985–1993)  

Science Conference Proceedings (OSTI)

Individual profile measurements from the Stratospheric Aerosol and Gas Experiment II (SAGE II) instrument aboard the Earth Radiation Budget Satellite have been used to create latitude-longitude maps of monthly mean aerosols, ozone, water vapor, ...

D. Rind; X. Liao

1997-01-01T23:59:59.000Z

274

A Prognostic Parameterization for the Subgrid-Scale Variability of Water Vapor and Clouds in Large-Scale Models and Its Use to Diagnose Cloud Cover  

Science Conference Proceedings (OSTI)

A parameterization for the horizontal subgrid-scale variability of water vapor and cloud condensate is introduced, which is used to diagnose cloud fraction in the spirit of statistically based cloud cover parameterizations. High-resolution cloud-...

Adrian M. Tompkins

2002-06-01T23:59:59.000Z

275

FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem–Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities  

Science Conference Proceedings (OSTI)

FLUXNET is a global network of micrometeorological flux measurement sites that measure the exchanges of carbon dioxide, water vapor, and energy between the biosphere and atmosphere. At present over 140 sites are operating on a long–term and ...

Dennis Baldocchi; Eva Falge; Lianhong Gu; Richard Olson; David Hollinger; Steve Running; Peter Anthoni; Ch Bernhofer; Kenneth Davis; Robert Evans; Jose Fuentes; Allen Goldstein; Gabriel Katul; Beverly Law; Xuhui Lee; Yadvinder Malhi; Tilden Meyers; William Munger; Walt Oechel; K. T. Paw; Kim Pilegaard; H. P. Schmid; Riccardo Valentini; Shashi Verma; Timo Vesala; Kell Wilson; Steve Wofsy

2001-11-01T23:59:59.000Z

276

Experimental Determination of Water Vapor Profiles from Ground-Based Radiometer Measurements at 21.0 and 31.4 GHz.  

Science Conference Proceedings (OSTI)

Water vapor profiles have been obtained from radiometer measurements at 21.0 and 31.4 GHz and ground values of humidity, temperature and pressure. The inversion technique was based on minimum variance estimation, including constraints derived ...

B. G. Skoog; J. I. H. Askne; G. Elgered

1982-03-01T23:59:59.000Z

277

On-Site Calibration for High Precision Measurements of Water Vapor Isotope Ratios Using Off-Axis Cavity-Enhanced Absorption Spectroscopy  

Science Conference Proceedings (OSTI)

Stable isotope ratio measurements of atmospheric water vapor (?18Ov and ?2Hv) are scarce relative to those in precipitation. This limitation is rapidly changing due to advances in absorption spectroscopy technology and the development of ...

Joshua Rambo; Chun-Ta Lai; James Farlin; Matt Schroeder; Ken Bible

2011-11-01T23:59:59.000Z

278

INTERCOMPARISON OF WATER VAPOR CALIBRATION CONSTANTS DERIVED FROM IN-SITU AND DISTANT SOUNDINGS FOR A RAMAN-LIDAR OPERATING IN THE AMAZON  

E-Print Network (OSTI)

INTERCOMPARISON OF WATER VAPOR CALIBRATION CONSTANTS DERIVED FROM IN-SITU AND DISTANT SOUNDINGS such measurements on tropical regions. Indeed, there were important field campaigns in the Amazon that explored some

Barbosa, Henrique

279

On the Potential Change in Surface Water Vapor Deposition over the Continental United States due to Increases in Atmospheric Greenhouse Gases  

Science Conference Proceedings (OSTI)

Characteristics of surface water vapor deposition (WVD) over the continental United States under the present climate and a future climate scenario reflecting the mid-twenty-first-century increased greenhouse gas concentrations were evaluated by ...

Zaitao Pan; Moti Segal; Charles Graves

2006-04-01T23:59:59.000Z

280

Improved performance of a ballast resistance helical transversely excited CO/sub 2/ laser with water vapor and low ionization potential additives instead of helium  

SciTech Connect

Increased laser energy, peak power, and number of lasing rotational lines are reported in a ballast resistance TE CO/sub 2/ laser, with small amounts of water vapor and low ionization potential additives in place of helium.

Nath, A.K.; Biswas, D.J.

1982-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated water vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Comparisons of Raman Lidar Measurements of Tropospheric Water Vapor Profiles with Radiosondes, Hygrometers on the Meteorological Observation Tower, and GPS at Tsukuba, Japan  

Science Conference Proceedings (OSTI)

The vertical distribution profiles of the water vapor mixing ratio (w) were measured by Raman lidar at the Meteorological Research Institute, Japan, during the period from 2000 to 2004. The measured values were compared with those obtained with ...

Tetsu Sakai; Tomohiro Nagai; Masahisa Nakazato; Takatsugu Matsumura; Narihiro Orikasa; Yoshinori Shoji

2007-08-01T23:59:59.000Z

282

Plasma Kinetics in Electrical Discharge in Mixture of Air, Water and Ethanol Vapors for Hydrogen Enriched Syngas Production  

E-Print Network (OSTI)

The complex theoretical and experimental investigation of plasma kinetics of the electric discharge in the mixture of air and ethanol-water vapors is carried out. The discharge was burning in the cavity, formed by air jets pumping between electrodes, placed in aqueous ethanol solution. It is found out that the hydrogen yield from the discharge is maximal in the case when ethanol and water in the solution are in equal amounts. It is shown that the hydrogen production increases with the discharge power and reaches the saturation at high value. The concentrations of the main stable gas-phase components, measured experimentally and calculated numerically, agree well in the most cases.

Shchedrin, A I; Ryabtsev, A V; Chernyak, V Ya; Yukhymenko, V V; Olszewski, S V; Naumov, V V; Prysiazhnevych, I V; Solomenko, E V; Demchina, V P; Kudryavtsev, V S

2008-01-01T23:59:59.000Z

283

Treatment of Produced Waters Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System  

DOE Green Energy (OSTI)

This report summarizes work performed on this project from October 2004 through March 2005. In previous work, a surfactant modified zeolite (SMZ) was shown to be an effective system for removing BTEX contaminants from produced water. Additional work on this project demonstrated that a compost-based biofilter could biodegrade the BTEX contaminants found in the SMZ regeneration waste gas stream. However, it was also determined that the BTEX concentrations in the waste gas stream varied significantly during the regeneration period and the initial BTEX concentrations were too high for the biofilter to handle effectively. A series of experiments were conducted to determine the feasibility of using a passive adsorption column placed upstream of the biofilter to attenuate the peak gas-phase VOC concentrations delivered to the biofilter during the SMZ regeneration process. In preparation for the field test of the SMZ/VPB treatment system in New Mexico, a pilot-scale SMZ system was also designed and constructed during this reporting period. Finally, a cost and feasibility analysis was also completed. To investigate the merits of the passive buffering system during SMZ regeneration, two adsorbents, SMZ and granular activated carbon (GAC) were investigated in flow-through laboratory-scale columns to determine their capacity to handle steady and unsteady VOC feed conditions. When subjected to a toluene-contaminated air stream, the column containing SMZ reduced the peak inlet 1000 ppmv toluene concentration to 630 ppmv at a 10 second contact time. This level of buffering was insufficient to ensure complete removal in the downstream biofilter and the contact time was longer than desired. For this reason, using SMZ as a passive buffering system for the gas phase contaminants was not pursued further. In contrast to the SMZ results, GAC was found to be an effective adsorbent to handle the peak contaminant concentrations that occur early during the SMZ regeneration process. At a one second residence time, the GAC bed reduced peak contaminant concentrations by 97%. After the initial peak, the inlet VOC concentration in the SMZ regeneration gas stream drops exponentially with time. During this period, the contaminants on the GAC subsequently desorbed at a nearly steady rate over the next 45 hours resulting in a relatively steady effluent concentration of approximately 25 ppm{sub v}. This lower concentration is readily degradable by a downstream vapor phase biofilter (VPB) and the steady nature of the feed stream will prevent the biomass in the VPB from enduring starvation conditions between SMZ regeneration cycles. Repetitive sorption and desorption cycles that would be expected in the field were also investigated. It was determined that although the GAC initially lost some VOC sorption capacity, the adsorption and desorption profiles stabilized after approximately 6 cycles indicating that a GAC bed should be suitable for continuous operation. In preparation for the pilot field testing of the SMZ/VPB system, design, ''in-house'' construction and testing of the field system were completed during this project period. The design of the SMZ system for the pilot test was based on previous investigations by the PI's in Wyoming, 2002 and on analyses of the produced water at the field site in New Mexico. The field tests are scheduled for summer, 2005. A cost survey, feasibility of application and cost analyses were completed to investigate the long term effectiveness of the SMZ/VPB system as a method of treating produced water for re-use. Several factors were investigated, including: current costs to treat and dispose of produced water, end-use water quality requirements, and state and federal permitting requirements.

Soondong Kwon; Elaine B. Darby; Li-Jung Chen; Lynn E. Katz; Kerry A. Kinney; R. S. Bowman; E. J. Sullivan

2005-03-11T23:59:59.000Z

284

Water injection as a means for reducing non-condensible andcorrosive gases in steam produced from vapor-dominated reservoirs  

Science Conference Proceedings (OSTI)

Large-scale water injection at The Geysers, California, hasgenerated substantial benefits in terms of sustaining reservoir pressuresand production rates, as well as improving steam composition by reducingthe content of non-condensible gases (NCGs). Two effects have beenrecognized and discussed in the literature as contributing to improvedsteam composition, (1) boiling of injectate provides a source of "clean"steam to production wells, and (2) pressurization effects induced byboiling of injected water reduce upflow of native steam with large NCGconcentrations from depth. In this paper we focus on a possibleadditional effect that could reduce NCGs in produced steam by dissolutionin a condensed aqueous phase.Boiling of injectate causes pressurizationeffects that will fairly rapidly migrate outward, away from the injectionpoint. Pressure increases will cause an increase in the saturation ofcondensed phase due to vapor adsorption on mineral surfaces, andcapillary condensation in small pores. NCGs will dissolve in theadditional condensed phase which, depending upon their solubility, mayreduce NCG concentrations in residual steam.We have analyzed thepartitioning of HCl between vapor and aqueous phases, and have performednumerical simulations of injection into superheated vapor zones. Oursimulations provide evidence that dissolution in the condensed phase canindeed reduce NCG concentrations in produced steam.

Pruess, Karsten; Spycher, Nicolas; Kneafsey, Timothy J.

2007-01-08T23:59:59.000Z

285

Vapor spill monitoring method  

DOE Patents (OSTI)

Method for continuous sampling of liquified natural gas effluent from a spill pipe, vaporizing the cold liquified natural gas, and feeding the vaporized gas into an infrared detector to measure the gas composition. The apparatus utilizes a probe having an inner channel for receiving samples of liquified natural gas and a surrounding water jacket through which warm water is flowed to flash vaporize the liquified natural gas.

Bianchini, Gregory M. (Livermore, CA); McRae, Thomas G. (Livermore, CA)

1985-01-01T23:59:59.000Z

286

Decision support for integrated water-energy planning.  

SciTech Connect

Currently, electrical power generation uses about 140 billion gallons of water per day accounting for over 39% of all freshwater withdrawals thus competing with irrigated agriculture as the leading user of water. Coupled to this water use is the required pumping, conveyance, treatment, storage and distribution of the water which requires on average 3% of all electric power generated. While water and energy use are tightly coupled, planning and management of these fundamental resources are rarely treated in an integrated fashion. Toward this need, a decision support framework has been developed that targets the shared needs of energy and water producers, resource managers, regulators, and decision makers at the federal, state and local levels. The framework integrates analysis and optimization capabilities to identify trade-offs, and 'best' alternatives among a broad list of energy/water options and objectives. The decision support framework is formulated in a modular architecture, facilitating tailored analyses over different geographical regions and scales (e.g., national, state, county, watershed, NERC region). An interactive interface allows direct control of the model and access to real-time results displayed as charts, graphs and maps. Ultimately, this open and interactive modeling framework provides a tool for evaluating competing policy and technical options relevant to the energy-water nexus.

Tidwell, Vincent Carroll; Malczynski, Leonard A.; Kobos, Peter Holmes; Castillo, Cesar; Hart, William Eugene; Klise, Geoffrey T.

2009-10-01T23:59:59.000Z

287

MWRRET Value-Added Product: The Retrieval of Liquid Water Path and Precipitable Water Vapor from Microwave Radiometer (MWR) Data Sets (Revision 2)  

SciTech Connect

This report provides a short description of the Atmospheric Radiation Measurement (ARM) Climate Research Facility microwave radiometer (MWR) Retrieval (MWRRET) value-added product (VAP) algorithm. This algorithm utilizes a complementary physical retrieval method and applies brightness temperature offsets to reduce spurious liquid water path (LWP) bias in clear skies resulting in significantly improved precipitable water vapor (PWV) and LWP retrievals. We present a general overview of the technique, input parameters, output products, and describe data quality checks. A more complete discussion of the theory and results is given in Turner et al. (2007b).

Gaustad, KL; Turner, DD; McFarlane, SA

2011-07-25T23:59:59.000Z

288

Multiphase Reactive Transport modeling of Stable Isotope Fractionation of Infiltrating Unsaturated Zone Pore Water and Vapor Using TOUGHREACT  

Science Conference Proceedings (OSTI)

Numerical simulations of transport and isotope fractionation provide a method to quantitatively interpret vadose zone pore water stable isotope depth profiles based on soil properties, climatic conditions, and infiltration. We incorporate the temperature-dependent equilibration of stable isotopic species between water and water vapor, and their differing diffusive transport properties into the thermodynamic database of the reactive transport code TOUGHREACT. These simulations are used to illustrate the evolution of stable isotope profiles in semiarid regions where recharge during wet seasons disturbs the drying profile traditionally associated with vadose zone pore waters. Alternating wet and dry seasons lead to annual fluctuations in moisture content, capillary pressure, and stable isotope compositions in the vadose zone. Periodic infiltration models capture the effects of seasonal increases in precipitation and predict stable isotope profiles that are distinct from those observed under drying (zero infiltration) conditions. After infiltration, evaporation causes a shift to higher 18O and D values, which are preserved in the deeper pore waters. The magnitude of the isotopic composition shift preserved in deep vadose zone pore waters varies inversely with the rate of infiltration.

Singleton, Michael J.; Sonnenthal, Eric L.; Conrad, Mark E.; DePaolo, Donald J.

2003-08-28T23:59:59.000Z

289

Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Performance Evaluation of Residential Integrated Heat Pump Water Heaters B. Sparn, K. Hudon, and D. Christensen Technical Report NREL/TP-5500-52635 September 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters B. Sparn, K. Hudon, and D. Christensen Prepared under Task Nos. WTN9.1000, ARRB.2204 Technical Report NREL/TP-5500-52635 September 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

290

Light Water Reactor Sustainability Program: Integrated Program Plan |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Program Plan Integrated Program Plan Light Water Reactor Sustainability Program: Integrated Program Plan Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas- emitting electric power generation in the United States. Domestic demand for electrical energy is expected to grow by more than 30% from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license, for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power

291

An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale  

SciTech Connect

This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

Matthew Bruff; Ned Godshall; Karen Evans

2011-04-30T23:59:59.000Z

292

Integrated system dynamics toolbox for water resources planning.  

Science Conference Proceedings (OSTI)

Public mediated resource planning is quickly becoming the norm rather than the exception. Unfortunately, supporting tools are lacking that interactively engage the public in the decision-making process and integrate over the myriad values that influence water policy. In the pages of this report we document the first steps toward developing a specialized decision framework to meet this need; specifically, a modular and generic resource-planning ''toolbox''. The technical challenge lies in the integration of the disparate systems of hydrology, ecology, climate, demographics, economics, policy and law, each of which influence the supply and demand for water. Specifically, these systems, their associated processes, and most importantly the constitutive relations that link them must be identified, abstracted, and quantified. For this reason, the toolbox forms a collection of process modules and constitutive relations that the analyst can ''swap'' in and out to model the physical and social systems unique to their problem. This toolbox with all of its modules is developed within the common computational platform of system dynamics linked to a Geographical Information System (GIS). Development of this resource-planning toolbox represents an important foundational element of the proposed interagency center for Computer Aided Dispute Resolution (CADRe). The Center's mission is to manage water conflict through the application of computer-aided collaborative decision-making methods. The Center will promote the use of decision-support technologies within collaborative stakeholder processes to help stakeholders find common ground and create mutually beneficial water management solutions. The Center will also serve to develop new methods and technologies to help federal, state and local water managers find innovative and balanced solutions to the nation's most vexing water problems. The toolbox is an important step toward achieving the technology development goals of this center.

Reno, Marissa Devan; Passell, Howard David; Malczynski, Leonard A.; Peplinski, William J.; Tidwell, Vincent Carroll; Coursey, Don (University of Chicago, Chicago, IL); Hanson, Jason (University of New Mexico, Albuquerque, NM); Grimsrud, Kristine (University of New Mexico, Albuquerque, NM); Thacher, Jennifer (University of New Mexico, Albuquerque, NM); Broadbent, Craig (University of New Mexico, Albuquerque, NM); Brookshire, David (University of New Mexico, Albuquerque, NM); Chemak, Janie (University of New Mexico, Albuquerque, NM); Cockerill, Kristan (Cockeril Consulting, Boone, NC); Aragon, Carlos (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Hallett, Heather (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Vivoni, Enrique (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Roach, Jesse

2006-12-01T23:59:59.000Z

293

Three-dimensional modeling and simulation of vapor explosions in Light Water Reactors.  

E-Print Network (OSTI)

??Steam explosions can occur during a severe accident in light water nuclear reactors with the core melting as the consequence of interaction of molten core… (more)

Schröder, Maxim

2012-01-01T23:59:59.000Z

294

THE WATER VAPOR SPECTRUM OF APM 08279+5255: X-RAY HEATING AND INFRARED PUMPING OVER HUNDREDS OF PARSECS  

SciTech Connect

We present the rest-frame 200-320 {mu}m spectrum of the z = 3.91 quasar APM 08279+5255, obtained with Z-Spec at the Caltech Submillimeter Observatory. In addition to the J = 8 {yields} 7 to J = 13 {yields} 12 CO rotational transitions which dominate the CO cooling, we find six transitions of water originating at energy levels ranging up to 643 K. Most are first detections at high redshift, and we have confirmed one transition with CARMA. The CO cooling is well described by our X-ray dominated region (XDR) model, assuming L{sub 1-100keV} {approx} 1 Multiplication-Sign 10{sup 46} erg s{sup -1}, and that the gas is distributed over a 550-pc size scale, as per the now-favored {mu} = 4 lensing model. The total observed cooling in water corresponds to 6.5 Multiplication-Sign 10{sup 9} L{sub Sun }, comparable to that of CO. We compare the water spectrum with that of Mrk 231, finding that the intensity ratios among the high-lying lines are similar, but with a total luminosity scaled up by a factor of {approx}50. Using this scaling, we estimate an average water abundance relative to H{sub 2} of 1.4 Multiplication-Sign 10{sup -7}, a good match to the prediction of the chemical network in the XDR model. As with Mrk 231, the high-lying water transitions are excited radiatively via absorption in the rest-frame far-infrared, and we show that the powerful dust continuum in APM 08279+5255 is more than sufficient to pump this massive reservoir of warm water vapor.

Bradford, C. M.; Bock, J. J.; Naylor, B. J.; Nguyen, H. T.; Zmuidzinas, J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Bolatto, A. D. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Maloney, P. R.; Aguirre, J. E.; Glenn, J.; Kamenetzky, J. [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80303 (United States); Lupu, R.; Scott, K. [Department of Physics, University of Pennsylvania, Philadelphia, PA 19104 (United States); Matsuhara, H. [Institute for Space and Astronautical Science, Japan Aerospace and Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara 252-5210 (Japan); Murphy, E. J. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

2011-11-10T23:59:59.000Z

295

Relative Humidity Effect on the High-Frequency Attenuation of Water Vapor Flux Measured by a Closed-Path Eddy Covariance System  

Science Conference Proceedings (OSTI)

In this study the high-frequency loss of carbon dioxide (CO2) and water vapor (H2O) fluxes, measured by a closed-path eddy covariance system, were studied, and the related correction factors through the cospectral transfer function method were ...

Ivan Mammarella; Samuli Launiainen; Tiia Gronholm; Petri Keronen; Jukka Pumpanen; Üllar Rannik; Timo Vesala

2009-09-01T23:59:59.000Z

296

Intercomparison of Water Vapor Data Measured with Lidar during IHOP_2002. Part I: Airborne to Ground-Based Lidar Systems and Comparisons with Chilled-Mirror Hygrometer Radiosondes  

Science Conference Proceedings (OSTI)

The water vapor data measured with airborne and ground-based lidar systems during the International H2O Project (IHOP_2002), which took place in the Southern Great Plains during 13 May–25 June 2002 were investigated. So far, the data collected ...

Andreas Behrendt; Volker Wulfmeyer; Hans-Stefan Bauer; Thorsten Schaberl; Paolo Di Girolamo; Donato Summa; Christoph Kiemle; Gerhard Ehret; David N. Whiteman; Belay B. Demoz; Edward V. Browell; Syed Ismail; Richard Ferrare; Susan Kooi; Junhong Wang

2007-01-01T23:59:59.000Z

297

Upper-Tropospheric Winds Derived from Geostationary Satellite Water Vapor Observations  

Science Conference Proceedings (OSTI)

The coverage and quality of remotely sensed upper-tropospheric moisture parameters have improved considerably with the deployment of a new generation of operational geostationary meteorological satellites: GOES-8/9 and GMS-5. The GOES-8/9 water ...

Christopher S. Velden; Christopher M. Hayden; Steven J. Nieman; W. Paul Menzel; Steven Wanzong; James S. Goerss

1997-02-01T23:59:59.000Z

298

How Total Precipitable Water Vapor Anomalies Relate to Cloud Vertical Structure  

Science Conference Proceedings (OSTI)

The NOAA operational total precipitable water (TPW) anomaly product is available to forecasters to display percentage of normal TPW in real time for applications like heavy precipitation forecasts. In this work, the TPW anomaly is compared to ...

John M. Forsythe; Jason B. Dodson; Philip T. Partain; Stanley Q. Kidder; Thomas H. Vonder Haar

2012-04-01T23:59:59.000Z

299

Empirical Modeling of Layered Integrated Water Vapor Using Surface Mixing Ratio in Nigeria  

Science Conference Proceedings (OSTI)

Using the available upper-air data for three stations in Nigeria (Lagos, a coastal station; Minna, an inland station; and Kano, a sub-Sahelian station), an intensive examination has been carried out on the linkage between surface mixing ratio rs ...

B. Adeyemi

2009-02-01T23:59:59.000Z

300

Satellite-Derived Integrated Water Vapor and Rain Intensity Patterns: Indicators for Rapid Cyclogenesis  

Science Conference Proceedings (OSTI)

Rapidly deepening cyclones in midlatitudes are characterized by large cloud shields and abundant condensation qualitatively evident in infrared and visible satellite images. With the availability of passive microwave measurements from polar-...

Lynn A. McMurdie; Kristina B. Katsaros

1996-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated water vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Warm water vapor envelope in Mira variables and its effects on the apparent size from the near-infrared to the mid-infrared  

E-Print Network (OSTI)

We present a possible interpretation for the increase of the angular diameter of the Mira variables o Cet, R Leo, and chi Cyg from the K band to the 11 micron region revealed by the recent interferometric observations using narrow bandpasses where no salient spectral feature is present (Weiner et al. 2003a, 2003b). A simple two-layer model consisting of hot and cool H2O layers for the warm water vapor envelope can reproduce the angular diameters observed with Infrared Spatial Interferometer as well as the high-resolution TEXES spectra obtained in the 11 micron region. The strong absorption of H2O expected from the dense water vapor envelope is filled in by emission from the extended part of the envelope, and this results in the high-resolution 11 micron spectra which exhibit only weak, fine spectral features, masking the spectroscopic evidences of the dense, warm water vapor envelope. On the other hand, the presence of the warm water vapor envelope manifests itself as the larger angular diameters in the 11 micron region as compared to those measured in the near-infrared. Furthermore, comparison of the visibilities predicted in the near-infrared with observational results available in the literature demonstrates that our two-layer model for the warm water vapor envelope can also reproduce the observed near-infrared visibilities and angular diameters. The radii of the hot H2O layers in the three Mira variables are derived to be 1.5--1.7 Rstar with temperatures of 1800--2000 K and H2O column densities of (1--5) x 10^{21} cm^{-2}, while the radii of the cool H2O layers are derived to be 2.2--2.5 Rstar with temperatures of 1200--1400 K and H2O column densities of (1--7) x 10^{21} cm^{-2}.

Keiichi Ohnaka

2004-06-30T23:59:59.000Z

302

Extremely Luminous Water Vapor Emission from a Type 2 Quasar at Redshift z = 0.66  

E-Print Network (OSTI)

A search for water masers in 47 Sloan Digital Sky Survey Type 2 quasars using the Green Bank Telescope has yielded a detection at a redshift of z = 0.660. This maser is more than an order of magnitude higher in redshift than any previously known and, with a total isotropic luminosity of 23,000 L_sun, also the most powerful. The presence and detectability of water masers in quasars at z ~ 0.3-0.8 may provide a better understanding of quasar molecular tori and disks, as well as fundamental quasar and galaxy properties such as black hole masses. Water masers at cosmologically interesting distances may also eventually provide, via direct distance determinations, a new cosmological observable for testing the reality and properties of dark energy, currently inferred primarily through Type 1a supernova measurements.

Richard Barvainis; Robert Antonucci

2005-06-10T23:59:59.000Z

303

Atmospheric Water Content over the Tropical Pacific Derived from the Nimbus-6 Scanning Microwave Spectrometer  

Science Conference Proceedings (OSTI)

The scanning microwave spectrometer (SCAMS) aboard Nimbus-6 contains a 22.23 GHz water vapor channel and 31.65 GHz window channel for deriving integrated water vapor (precipitable water) and cloud liquid water through a column over the oceans. ...

N. C. Grody; A. Gruber; W. C. Shen

1980-08-01T23:59:59.000Z

304

Water vapor and greenhouse trapping: The role of far infrared absorption  

SciTech Connect

Few observations have been made of atmospheric absorption across the far infra-red. Yet water vapour absorption in this spectral region may significantly effect climate. The impact of far infra-red absorption is assessed by calculating the spectral variation of the total and water vapour greenhouse effects, for the sub-arctic winter (SAW) and tropical (TRP) standard atmospheres. Although the calculated efficiency of greenhouse trapping peaks outside of the far infra-red, the low strength there of the Planck function causes relatively small absolute forcings, except in the carbon dioxide and ozone bands. The sensitivity of the normalised greenhouse effect to water vapour concentration is largest in the far infra-red for the SAW atmosphere, and in the window region for the TRP. The sensitivity differs most between the two atmospheres in the far infra-red, over the middle/upper troposphere; in the SAw case the contribution from the water vapour continuum is virtually eliminated. Improved spectral observations and simulations at far infra-red wavelengths thus appear necessary to better understand the contemporary greenhouse effect, and to validate models of climate change. 16 refs., 3 figs., 1 tab.

Sinha, A.; Harries, J.E. [Imperial College of Science, Technology and Medicine, Prince Consort Road (United Kingdom)

1995-08-15T23:59:59.000Z

305

Explaining Sources of Discrepancy in SSM/I Water Vapor Algorithms  

Science Conference Proceedings (OSTI)

This study examines a mix of seven statistical and physical Special Sensor Microwave Imager (SSM/I) passive microwave algorithms that were designed for retrieval of over-ocean precipitable water (PW). The aim is to understand and explain why the ...

Byung-Ju Sohn; Eric A. Smith

2003-10-01T23:59:59.000Z

306

Treatment of Produced Waters Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System  

DOE Green Energy (OSTI)

This report summarizes work performed on this project from April 2005 through September 2005. In previous work, a series of laboratory scale experiments were conducted to determine the feasibility of using a SMZ system coupled with a VPB to remove and ultimately destroy the organic pollutants found in produced water. Based on the laboratory scale data, a field test of the process was conducted at the McGrath Salt Water Disposal facility in July and August of 2005. The system performed well over repeated feed and regeneration cycles demonstrating the viability of the process for long term operation. Of the BTEX components present in the produced water, benzene had the lowest adsorption affinity for the SMZ and thus controlled the sorption cycle length. Regeneration of the SMZ using air sparging was found to be sufficient in the field to maintain the SMZ adsorption capacity and to allow continuous operation of the system. As expected, the BTEX concentrations in the regeneration off gas stream were initially very high in a given regeneration cycle. However, a granular activated carbon buffering column placed upstream of the VPB reduced the peak BTEX concentrations to acceptable levels for the VPB. In this way, the VPB was able to maintain stable performance over the entire SMZ regeneration period despite the intermittent nature of the feed.

Soondong Kwon; Elaine B. Darby; Li-Jung Chen; Lynn E. Katz; Kerry A. Kinney; R. S. Bowman; E. J. Sullivan

2005-09-11T23:59:59.000Z

307

Indirect global warming effects of ozone and stratospheric water vapor induced by surface methane emission  

SciTech Connect

Methane has indirect effects on climate due to chemical interactions as well as direct radiative forcing effects as a greenhouse gas. We have calculated the indirect, time-varying tropospheric radiative forcing and GWP of O{sub 3} and stratospheric H{sub 2}O due to an impulse of CH{sub 4}. This impulse, applied to the lowest layer of the atmosphere, is the increase of the atmospheric mass of CH{sub 4} resulting from a 25 percent steady state increase in the current emissions as a function of latitude. The direct CH{sub 4} radiative forcing and GWP are also calculated. The LLNL 2-D radiative-chemistry-transport model is used to evaluate the resulting changes in the O{sub 3}, H{sub 2}O and CH{sub 4} atmospheric profiles as a function of time. A correlated k-distribution radiative transfer model is used to calculate the radiative forcing at the tropopause of the globally-averaged atmosphere profiles. The O{sub 3} indirect GWPs vary from {approximately}27 after a 20 yr integration to {approximately}4 after 500 years, agreeing with the previous estimates to within about 10 percent. The H{sub 2}O indirect GWPs vary from {approximately}2 after a 20 yr integration to {approximately}0.3 after 500 years, and are in close agreement with other estimates. The CH{sub 4} GWPs vary from {approximately}53 at 20 yrs to {approximately}7 at 500 yrs. The 20 year CH{sub 4} GWP is {approximately}20% larger than previous estimates of the direct CH{sub 4} GWP due to a CH{sub 4} response time ({approximately}17 yrs) that is much longer than the overall lifetime (10 yrs). The increased CH{sub 4} response time results from changes in the OH abundances caused by the CH{sub 4} impulse. The CH{sub 4} radiative forcing results are consistent with IPCC values. Estimates are made of latitude effects in the radiative forcing calculations, and UV effects on the O{sub 3} radiative forcing calculations (10%).

Wuebbles, D.J.; Grossman, A.S.; Tamaresis, J.S.; Patten, K.O. Jr.; Jain, A.; Grant, K.A.

1994-07-01T23:59:59.000Z

308

The cloud condensation nuclei and ice nuclei effects on tropical anvil characteristics and water vapor of the tropical tropopause layer  

SciTech Connect

Cloud anvils from deep convective clouds are of great importance to the radiative energy budget and the aerosol impact on them is the least understood. Few studies examined the effects of both cloud condensation nuclei (CCN) and ice nuclei (IN) on anvil properties and water vapor content (WVC) in the Tropical Tropopause Layer (TTL). Using a 3-dimensional cloud-resolving model with size-resolved cloud microphysics, we focus on the CCN and IN effects on cloud anvil properties and WVC in the TTL. We find that cloud microphysical changes induced by CCN/IN play a very important role in determining cloud anvil area and WVC in the TTL, whether convection is enhanced or suppressed. Also, CCN effects on anvil microphysical properties, anvil size and lifetime are much more evident relative to IN. IN has little effect on convection, but can increase ice number and mass concentrations significantly under humid conditions. CCN in the PBL is found to have greater effects on convective strength and mid-tropospheric CCN has negligible effects on convection and cloud properties. Convective transport may only moisten the main convective outflow region but the cloud anvil size determines the WVC in the TTL domain. This study shows an important role of CCN in the lower-troposphere in modifying convection, the upper-level cloud properties. It also shows the effects of IN and the PBL CCN on the upper-level clouds depends on the humidity, resolving some contradictory results in past studies. 2

Fan, Jiwen; Comstock, Jennifer M.; Ovchinnikov, Mikhail

2010-11-10T23:59:59.000Z

309

Comments on ''Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements''  

Science Conference Proceedings (OSTI)

In a recent publication, Leblanc and McDermid [Appl. Opt., 47, 5592 (2008)]APOPAI0003-693510.1364/AO.47.005592 proposed a hybrid calibration technique for Raman water vapor lidar involving a tungsten lamp and radiosondes. Measurements made with the lidar telescope viewing the calibration lamp were used to stabilize the lidar calibration determined by comparison with radiosonde. The technique provided a significantly more stable calibration constant than radiosondes used alone. The technique involves the use of a calibration lamp in a fixed position in front of the lidar receiver aperture. We examine this configuration and find that such a configuration likely does not properly sample the full lidar system optical efficiency. While the technique is a useful addition to the use of radiosondes alone for lidar calibration, it is important to understand the scenarios under which it will not provide an accurate quantification of system optical efficiency changes. We offer examples of these scenarios. Scanning of the full telescope aperture with the calibration lamp can circumvent most of these limitations. Based on the work done to date, it seems likely that the use of multiple calibration lamps in different fixed positions in front of the telescope may provide sufficient redundancy for long-term calibration needs. Further full-aperture scanning experiments, performed over an extended period of time, are needed to determine a ''best practice'' for the use of multiple calibration lamps in the hybrid technique.

Whiteman, David N.; Venable, Demetrius; Landulfo, Eduardo

2011-05-20T23:59:59.000Z

310

Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols at the US Southern Great Plains Climate Study Site  

SciTech Connect

There are clearly identified scientific requirements for continuous profiling of atmospheric water vapor at the Department of Energy, Atmospheric Radiation Measurement program, Southern Great Plains CART (Cloud and Radiation Testbed) site in northern Oklahoma. Research conducted at several laboratories has demonstrated the suitability of Raman lidar for providing measurements that are an excellent match to those requirements. We have developed and installed a ruggedized Raman lidar system that resides permanently at the CART site, and that is computer automated to eliminate the requirements for operator interaction. In addition to the design goal of profiling water vapor through most of the troposphere during nighttime and through the boundary layer during daytime, the lidar provides quantitative characterizations of aerosols and clouds, including depolarization measurements for particle phase studies.

Goldsmith, J.E.M.; Blair, F.H.; Bisson, S.E.

1997-12-31T23:59:59.000Z

311

Designing Turbine Endwalls for Deposition Resistance with 1,400 °C Combustor Exit Temperatures and Syngas Water Vapor Levels„The Ohio State University  

NLE Websites -- All DOE Office Websites (Extended Search)

Designing Turbine Endwalls for Designing Turbine Endwalls for Deposition Resistance with 1,400 °C Combustor Exit Temperatures and Syngas Water Vapor Levels-The Ohio State University Background This University Turbine Systems Research (UTSR) project will explore a critical need for innovative turbine endwall designs that could increase turbine durability and mitigate the adverse effects of residue deposition from coal-derived synthesis gas (syngas). The Ohio State University (OSU), in cooperation with Brigham Young University (BYU),

312

Abstract: Apparatus for Measuring Vapor-Liquid Equilibrium ...  

Science Conference Proceedings (OSTI)

... Measurements of the vapor pressures and saturated liquid densities of ethanol and the vapor pressure of an ethanol water mixture (ethanol=0.6743 ...

313

WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION  

Science Conference Proceedings (OSTI)

Optimization of the water-gas shift (WGS) reaction system for hydrogen production for fuel cells is of particular interest to the energy industry. To this end, it is desirable to couple the WGS reaction to hydrogen separation using a semi-permeable membrane, with both processes carried out at high temperature to improve reaction kinetics. Reduced equilibrium conversion of the WGS reaction at high temperatures is overcome by product H{sub 2} removal via the membrane. This project involves fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2}-separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams will be examined in the project. In the first year of the project, we prepared a series of nanostructured Cu- and Fe-containing ceria catalysts by a special gelation/precipitation technique followed by air calcination at 650 C. Each sample was characterized by ICP for elemental composition analysis, BET-N2 desorption for surface area measurement, and by temperature-programmed reduction in H{sub 2} to evaluate catalyst reducibility. Screening WGS tests with catalyst powders were conducted in a flow microreactor at temperatures in the range of 200-550 C. On the basis of both activity and stability of catalysts in simulated coal gas, and in CO{sub 2}-rich gases, a Cu-CeO{sub 2} catalyst formulation was selected for further study in this project. Details from the catalyst development and testing work are given in this report. Also in this report, we present H{sub 2} permeation data collected with unsupported flat membranes of pure Pd and Pd-alloys over a wide temperature window.

Maria Flytzani-Stephanopoulos; Jerry Meldon; Xiaomei Qi

2001-12-01T23:59:59.000Z

314

Validation of aerosol extinction and water vapor profiles from routine Atmospheric Radiation Measurement Climate Research Facility measurements  

Science Conference Proceedings (OSTI)

The accuracy with which vertical profiles of aerosol extinction ?ep(?) can be retrieved from ARM Climate Research Facility (ACRF) routine measurements was assessed using data from two airborne field campaigns, the ARM Aerosol Intensive Operation Period (AIOP, May 2003), and the Aerosol Lidar Validation Experiment (ALIVE, September 2005). This assessment pertains to the aerosol at its ambient concentration and thermodynamic state (i.e. ?ep(?) either free of or corrected for sampling artifacts) and includes the following ACRF routine methods: Raman Lidar, Micro Pulse Lidar (MPL) and in-situ aerosol profiles (IAP) with a small aircraft. Profiles of aerosol optical depth ?p(???, from which the profiles of ?ep(???are derived through vertical differentiation, were measured by the NASA Ames Airborne Tracking 14-channel Sunphotometer (AATS-14); these data were used as truth in this evaluation. The ACRF IAP ?ep(550 nm) were lower by 16% (during AIOP) and higher by 10% (during ALIVE) when compared to AATS-14. The ACRF MPL ?ep(523 nm) were higher by 24% (AIOP) and 19%-21% (ALIVE) compared to AATS-14 but the correlation improved significantly during ALIVE. In the AIOP a second MPL operated by NASA showed a smaller positive bias (13%) with respect to AATS-14. The ACRF Raman Lidar ?ep(355 nm) were higher by 54% (AIOP) and higher by 6% (ALIVE) compared to AATS-14. The large bias in AIOP stemmed from a gradual loss of the sensitivity of the Raman Lidar starting about the end of 2001 going unnoticed until after AIOP. A major refurbishment and upgrade of the instrument and improvements to a data-processing algorithm led to the significant improvement and very small bias in ALIVE. Finally we find that during ALIVE the Raman Lidar water vapor densities ?w are higher by 8% when compared to AATS-14, whereas comparisons between AATS-14 and in-situ measured ?w aboard two different aircraft showed small negative biases (0 to -3%).

Schmid, Beat; Flynn, Connor J.; Newsom, Rob K.; Turner, David D.; Ferrare, Richard; Clayton, Marian F.; Andrews, Elisabeth; Ogren, John A.; Johnson, Roy R.; Russell, P. B.; Gore, W.; Dominguez, Roseanne

2009-11-26T23:59:59.000Z

315

Vapor Degreasing  

Science Conference Proceedings (OSTI)

Table 6   Applications of vapor degreasing by vapor-spray-vapor systems...hardware Brass 2270 5000 Buffing compound; rouge Lacquer spray Racked work on continuous monorail Acoustic ceiling tile Steel 2720 6000 Light oil (stamping lubricant) Painting Monorail conveyor Gas meters Terneplate 4540 10,000 Light oil Painting Monorail conveyor Continuous strip, 0.25â??4.1 mm...

316

WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION PROCESS  

DOE Green Energy (OSTI)

This project involved fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2} -separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams were examined in the project. Cu-cerium oxide was identified as the most promising high-temperature water-gas shift catalyst for integration with H{sub 2}-selective membranes. Formulations containing iron oxide were found to deactivate in the presence of CO{sub 2}. Cu-containing ceria catalysts, on the other hand, showed high stability in CO{sub 2}-rich gases. This type gas will be present over much of the catalyst, as the membrane removes the hydrogen produced from the shift reaction. The high-temperature shift catalyst composition was optimized by proper selection of dopant type and amount in ceria. The formulation 10at%Cu-Ce(30at%La)O{sub x} showed the best performance, and was selected for further kinetic studies. WGS reaction rates were measured in a simulated coal-gas mixture. The apparent activation energy, measured over aged catalysts, was equal to 70.2 kJ/mol. Reaction orders in CO, H{sub 2}O, CO{sub 2} and H{sub 2} were found to be 0.8, 0.2, -0.3, and -0.3, respectively. This shows that H{sub 2}O has very little effect on the reaction rate, and that both CO{sub 2} and H{sub 2} weakly inhibit the reaction. Good stability of catalyst performance was found in 40-hr long tests. A flat (38 cm{sup 2}) Pd-Cu alloy membrane reactor was used with the catalyst washcoated on oxidized aluminum screens close coupled with the membrane. To achieve higher loadings, catalyst granules were layered on the membrane itself to test the combined HTS activity/ H{sub 2} -separation efficiency of the composite. Simulated coal gas mixtures were used and the effect of membrane on the conversion of CO over the catalyst was evidenced at high space velocities. Equilibrium CO conversion at 400 C was measured at a space velocity of 30,000 h{sup -1} with the 10{micro}m- thick Pd{sub 60}Cu{sub 40} membrane operating under a pressure differential of 100 psi. No carbon deposition took place during operation. The performance of the coupled Cu-ceria catalyst/membrane system at 400 C was stable in {approx} 30 h of continuous operation. The overall conclusion from this project is that Cu-doped ceria catalysts are suitable for use in high-temperature water-gas shift membrane reactors. CO{sub 2}-rich operation does not affect the catalyst activity or stability; neither does it affect hydrogen permeation through the Pd-Cu membrane. Operation in the temperature range of 400-430 C is recommended.

Maria Flytzani-Stephanopoulos; Xiaomei Qi; Scott Kronewitter

2004-02-01T23:59:59.000Z

317

Vapor Characterization  

Science Conference Proceedings (OSTI)

... thermodynamics (that is, vapor liquid equilibrium) as ... of solids and low volatility liquids is extraordinarily ... such situations is the gas saturation method ...

2013-12-10T23:59:59.000Z

318

GPS Meteorology: Direct Estimation of the Absolute Value of Precipitable Water  

Science Conference Proceedings (OSTI)

A simple approach to estimating vertically integrated atmospheric water vapor, or precipitable water, from Global Positioning System (GPS) radio signals collected by a regional network of ground-based geodetic GPS receiver is illustrated and ...

Jingping Duan; Michael Bevis; Peng Fang; Yehuda Bock; Steven Chiswell; Steven Businger; Christian Rocken; Frederick Solheim; Terasa van Hove; Randolph Ware; Simon McClusky; Thomas A. Herring; Robert W. King

1996-06-01T23:59:59.000Z

319

Decision Support for IntegratedDecision Support for Integrated WaterWater--Energy PlanningEnergy Planning  

E-Print Network (OSTI)

Analysis · Simulated at the power plant level with 4841 individual plants modeled · Plants distinguishedProject Impetus · Energy-Water Roadmap findings: ­ Reduce fresh water consumption in electric power generation Surface Water Ground Water Population Growth Industry Fuels Wind Hydro Solar Thermoelectric #12;System

Keller, Arturo A.

320

Integrated modelling of risk and uncertainty underlying the cost and effectiveness of water quality measures  

Science Conference Proceedings (OSTI)

In this paper we present an overview of the most important sources of uncertainty when analysing the least cost way to improve water quality. The estimation of the cost-effectiveness of water quality measures is surrounded by environmental, economic ... Keywords: Cost-effectiveness, Integrated modelling, Risk, Uncertainty, Water quality

Roy Brouwer; Chris De Blois

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated water vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Analyzing water supply in future energy systems using the TIMES Integrated Assessment Model (TIAM-FR)  

E-Print Network (OSTI)

Analyzing water supply in future energy systems using the TIMES Integrated Assessment Model (TIAM is required to maintain water supplies while water is essential to produce energy. However, the models and energy generally dealt with them separately, the two resources are highly interconnected. Energy

322

Observed dependence of the water vapor and clear-sky greenhouse effect on sea surface temperature: Comparison with climate warming experiments  

SciTech Connect

This study presents a comparison of the water vapor and clear-sky greenhouse effect dependence on sea surface temperature for climate variations of different types. Firstly, coincident satellite observations and meteorological analyses are used to examine seasonal and interannual variations and to evaluate the performance of a general circulation model. Then, this model is used to compare the results inferred from the analysis of observed climate variability with those derived from global climate warming experiments. One part of the coupling between the surface temperature, the water vapor and the clear-sky greenhouse effect is explained by the dependence of the saturation water vapor pressure on the atmospheric temperature. However, the analysis of observed and simulated fields shows that the coupling is very different according to the type of region under consideration and the type of climate forcing that is applied to the Earth-atmosphere system. This difference, due to the variability of the vertical structure of the atmosphere, is analyzed in detail by considering the temperature lapse rate and the vertical profile of relative humidity. Our results suggest that extrapolating the feedbacks inferred from seasonal and short-term interannual climate variability to longer-term climate changes requires great caution. It is argued that our confidence in climate models` predictions would be increased significantly if the basic physical processes that govern the variability of the vertical structure of the atmosphere, and its relation to the large-scale circulation, were better understood and simulated. For this purpose, combined observational and numerical studies focusing on physical processes are needed. 44 refs., 9 figs., 5 tabs.

Bony, S.; Le Treut, H. [Ecole Normale Superieure, Paris (France); Duvel, J.P. [Ecole Polytechnique, Palaiseau (France)

1995-07-01T23:59:59.000Z

323

Integration of a "Passive Water Recovery" MEA into a Portable...  

NLE Websites -- All DOE Office Websites (Extended Search)

complexity and scaling difficulties of water recovery components such as the condenser heat exchanger. To overcome this barrier, the research objective of the University of...

324

A Comparison of Several Radiometric Methods of Deducing Path-Integrated Cloud Liquid Water  

Science Conference Proceedings (OSTI)

Using radiometer data collected during the Canadian Atlantic Storms Program, we have investigated five different methods of estimating the path-integrated, or columnar, cloud liquid water. The methods consist of one- and two-channel physical ...

Chong Wei; H. G. Leighton; R. R. Rogers

1989-12-01T23:59:59.000Z

325

A Technique for Deriving Column-integrated Water Content Using VAS Split-Window Data  

Science Conference Proceedings (OSTI)

An algorithm is examined that uses Visible?Infrared Spin Scan Radiometer (VISSR) Atmospheric Sounder (VAS) 11- and 12-µm (split-window) data to derive column-integrated water content (IWC) at mesoscale resolution. The algorithm is physically ...

Anthony R. Guillory; Gary J. Jedlovec; Henry E. Fuelberg

1993-07-01T23:59:59.000Z

326

Vapor concentration monitor  

DOE Patents (OSTI)

An apparatus for monitoring the concentration of a vapor, such as heavy water, having at least one narrow bandwidth in its absorption spectrum, in a sample gas such as air. The air is drawn into a chamber in which the vapor content is measured by means of its radiation absorption spectrum. High sensitivity is obtained by modulating the wavelength at a relatively high frequency without changing its optical path, while high stability against zero drift is obtained by the low frequency interchange of the sample gas to be monitored and of a reference sample. The variable HDO background due to natural humidity is automatically corrected.

Bayly, John G. (Deep River, CA); Booth, Ronald J. (Deep River, CA)

1977-01-01T23:59:59.000Z

327

Sustainable water resources development in Kuwait : an integrated approach with comparative analysis of the case of Singapore  

E-Print Network (OSTI)

This thesis assesses the water resource status of Kuwait and Singapore, both countries considered as water scarce. The institutional aspect of Integrated Water Resource Management (IWRM) efforts in both countries is closely ...

Nazerali, Nasruddin A

2007-01-01T23:59:59.000Z

328

VAPOR SHIELD FOR INDUCTION FURNACE  

DOE Patents (OSTI)

This patent relates to a water-cooled vapor shield for an inductlon furnace that will condense metallic vapors arising from the crucible and thus prevent their condensation on or near the induction coils, thereby eliminating possible corrosion or shorting out of the coils. This is accomplished by placing, about the top, of the crucible a disk, apron, and cooling jacket that separates the area of the coils from the interior of the cruclbIe and provides a cooled surface upon whlch the vapors may condense.

Reese, S.L.; Samoriga, S.A.

1958-03-11T23:59:59.000Z

329

Light Water Reactor Sustainability Program Integrated Program Plan  

SciTech Connect

Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

Kathryn McCarthy; Jeremy Busby; Bruce Hallbert; Shannon Bragg-Sitton; Curtis Smith; Cathy Barnard

2013-04-01T23:59:59.000Z

330

Light Water Reactor Sustainability Program Integrated Program Plan  

Science Conference Proceedings (OSTI)

Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline - even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy's Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans.

George Griffith; Robert Youngblood; Jeremy Busby; Bruce Hallbert; Cathy Barnard; Kathryn McCarthy

2012-01-01T23:59:59.000Z

331

Atmospheric Water Vapor Transport in NCEP–NCAR Reanalyses: Comparison with River Discharge in the Central United States  

Science Conference Proceedings (OSTI)

The authors extract the water transport produced by the National Centers for Environmental Prediction reanalysis for a 10-yr period, 1984–93, and compare its convergence into two river basins with an independent dataset, river discharge (...

William J. Gutowski Jr.; Yibin Chen; Zekai Ötles

1997-09-01T23:59:59.000Z

332

K West Basin Integrated Water Treatment System (IWTS) E-F Annular Filter Vessel Accident Calculations  

DOE Green Energy (OSTI)

Three bounding accidents postdated for the K West Basin integrated water treatment system are evaluated against applicable risk evaluation guidelines. The accidents are a spray leak during fuel retrieval, spray leak during backflushing, and a hydrogen explosion. Event trees and accident probabilities are estimated. In all cases, the unmitigated dose consequences are below the risk evaluation guidelines.

RITTMANN, P.D.

1999-10-07T23:59:59.000Z

333

Solar energy applied to dehumidification and water heating in an integrated system  

DOE Green Energy (OSTI)

This project involved the demonstration of a desiccant dryer assist for use with residential air conditioning systems and designed for retrofitting to in-place equipment. The dryer is part of an integrated package including solar regeneration of the desiccant, water heating, and winter time humidification. Some of the key features and results of the project are summarized in this report.

Fago, E.T. Jr.

1982-03-17T23:59:59.000Z

334

K West Basin Integrated Water Treatment System (IWTS) E-F Annular Filter Vessel Accident Calculations  

DOE Green Energy (OSTI)

Four bounding accidents postulated for the K West Basin integrated water treatment system are evaluated against applicable risk evaluation guidelines. The accidents are a spray leak during fuel retrieval, spray leak during backflushing a hydrogen explosion, and a fire breaching filter vessel and enclosure. Event trees and accident probabilities are estimated. In all cases, the unmitigated dose consequences are below the risk evaluation guidelines.

PIEPHO, M.G.

2000-01-10T23:59:59.000Z

335

Improved Detection of Optically Thin Cirrus Clouds in Nighttime Multispectral Meteorological Satellite Imagery Using Total Integrated Water Vapor Information  

Science Conference Proceedings (OSTI)

The accurate identification of optically thin cirrus clouds in global meteorological satellite imagery by automated cloud analysis algorithms is critical to environmental remote sensing studies, such as those related to climate change. While ...

Keith D. Hutchison; Kenneth R. Hardy; Bo-Cai Gao

1995-05-01T23:59:59.000Z

336

Airborne Sunphotometry and Integrated Analyses of Dust, Other Aerosols, and Water Vapor in the Puerto Rico Dust Experiment (PRIDE)  

E-Print Network (OSTI)

in the Puerto Rico Dust Experiment (PRIDE) PI: Philip B. Russell MS 245-5, NASA Ames Research Center Moffett new analyses of aerosol radiative forcing sensitivity, single scattering albedo, and the solar spectral radiative energy budget. (h) Derive aerosol size distributions from optical depth and extinction

337

Pharmaceutical Waters  

Science Conference Proceedings (OSTI)

Table 3   Water treatment process for water for injection (WFI)...deionization WFI production Evaporation still or vapor compression...

338

Quantitative organic vapor-particle sampler  

DOE Patents (OSTI)

A quantitative organic vapor-particle sampler for sampling semi-volatile organic gases and particulate components. A semi-volatile organic reversible gas sorbent macroreticular resin agglomerates of randomly packed microspheres with the continuous porous structure of particles ranging in size between 0.05-10 .mu.m for use in an integrated diffusion vapor-particle sampler.

Gundel, Lara (Berkeley, CA); Daisey, Joan M. (Walnut Creek, CA); Stevens, Robert K. (Cary, NC)

1998-01-01T23:59:59.000Z

339

Assessing Consumer Values and the Supply-Chain Market for the Integrated Water Heater/Dehumidifier  

SciTech Connect

This paper presents a case study of the potential market for the dual-service residential integrated water heater/dehumidifier (WHD). Its principal purpose is to evaluate the extent to which this integrated appliance might penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to assess market readiness as well as factor preferred product attributes into the design to drive consumer demand for this product. This study also supports analysis for prototype design. A full market analysis for potential commercialization should be conducted after prototype development. The integrated WHD is essentially a heat-pump water heater (HPWH) with components and controls that allow dedicated dehumidification. Adequate residential humidity control is a growing issue for newly constructed residential homes, which are insulated so well that mechanical ventilation may be necessary to meet fresh air requirements. Leveraging its successful experience with the energy-efficient design improvement for the residential HPWH, the Oak Ridge National Laboratory's (ORNL's) Engineering Science and Technology Division's (ESTD's) Building Equipment Group designed a water-heating appliance that combines HPWH efficiency with dedicated dehumidification. This integrated appliance could be a low-cost solution for dehumidification and efficient electric water heating. ORNL is partnering with Western Carolina University, Asheville-Buncombe Technical Community College, American Carolina Stamping Company, and Clemson University to develop this appliance and assess its market potential. For practical purposes, consumers are indifferent to how water is heated but are very interested in product attributes such as initial first cost, operating cost, performance, serviceability, product size, and installation costs. The principal drivers for penetrating markets are demonstrating reliability, leveraging the dehumidification attributes of the integrated WHD, and creating programs that embrace first-cost and life-cycle cost principles.

Ashdown, BG

2005-01-11T23:59:59.000Z

340

Long Term Field Development of a Surfactant Modified Zeolite/Vapor Phase Bioreactor System for Treatment of Produced Waters for Power Generation  

Science Conference Proceedings (OSTI)

The main goal of this research was to investigate the feasibility of using a combined physicochemical/biological treatment system to remove the organic constituents present in saline produced water. In order to meet this objective, a physical/chemical adsorption process was developed and two separate biological treatment techniques were investigated. Two previous research projects focused on the development of the surfactant modified zeolite adsorption process (DE-AC26-99BC15221) and development of a vapor phase biofilter (VPB) to treat the regeneration off-gas from the surfactant modified zeolite (SMZ) adsorption system (DE-FC26-02NT15461). In this research, the SMZ/VPB was modified to more effectively attenuate peak loads and to maintain stable biodegradation of the BTEX constituents from the produced water. Specifically, a load equalization system was incorporated into the regeneration flow stream. In addition, a membrane bioreactor (MBR) system was tested for its ability to simultaneously remove the aromatic hydrocarbon and carboxylate components from produced water. The specific objectives related to these efforts included the following: (1) Optimize the performance VPBs treating the transient loading expected during SMZ regeneration: (a) Evaluate the impact of biofilter operating parameters on process performance under stable operating conditions. (b) Investigate how transient loads affect biofilter performance, and identify an appropriate technology to improve biological treatment performance during the transient regeneration period of an SMZ adsorption system. (c) Examine the merits of a load equalization technology to attenuate peak VOC loads prior to a VPB system. (d) Evaluate the capability of an SMZ/VPB to remove BTEX from produced water in a field trial. (2) Investigate the feasibility of MBR treatment of produced water: (a) Evaluate the biodegradation of carboxylates and BTEX constituents from synthetic produced water in a laboratory-scale MBR. (b) Evaluate the capability of an SMZ/MBR system to remove carboxylates and BTEX from produced water in a field trial. Laboratory experiments were conducted to provide a better understanding of each component of the SMZ/VPB and SMZ/MBR process. Laboratory VPB studies were designed to address the issue of influent variability and periodic operation (see DE-FC26-02NT15461). These experiments examined multiple influent loading cycles and variable concentration loadings that simulate air sparging as the regeneration option for the SMZ system. Two pilot studies were conducted at a produced water processing facility near Farmington, New Mexico. The first field test evaluated SMZ adsorption, SMZ regeneration, VPB buffering, and VPB performance, and the second test focused on MBR and SMZ/MBR operation. The design of the field studies were based on the results from the previous field tests and laboratory studies. Both of the biological treatment systems were capable of removing the BTEX constituents in the laboratory and in the field over a range of operating conditions. For the VPB, separation of the BTEX constituents from the saline aqueous phase yielded high removal efficiencies. However, carboxylates remained in the aqueous phase and were not removed in the combined VPB/SMZ system. In contrast, the MBR was capable of directly treating the saline produced water and simultaneously removing the BTEX and carboxylate constituents. The major limitation of the MBR system is the potential for membrane fouling, particularly when the system is treating produced water under field conditions. The combined process was able to effectively pretreat water for reverse osmosis treatment and subsequent downstream reuse options including utilization in power generation facilities. The specific conclusions that can be drawn from this study are summarized.

Lynn Katz; Kerry Kinney; Robert Bowman; Enid Sullivan; Soondong Kwon; Elaine Darby; Li-Jung Chen; Craig Altare

2007-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "integrated water vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

New York City Energy-Water Integrated Planning: A Pilot Study  

Science Conference Proceedings (OSTI)

The New York City Energy-Water Integrated Planning Pilot Study is one of several projects funded by Sandia National Laboratories under the U.S. Department of Energy Energy-Water Nexus Program. These projects are intended to clarify some key issues and research needs identified during the Energy-Water Nexus Roadmapping activities. The objectives of the New York City Pilot Project are twofold: to identify energy-water nexus issues in an established urban area in conjunction with a group of key stakeholders and to define and apply an integrated energy and water decision support tool, as proof-of-concept, to one or more of these issues. During the course of this study, the Brookhaven National Laboratory project team worked very closely with members of a Pilot Project Steering Committee. The Steering Committee members brought a breadth of experience across the energy, water and climate disciplines, and all are well versed in the particular issues faced by an urban environment, and by New York City in particular. The first task was to identify energy-water issues of importance to New York City. This exercise was followed by discussion of the qualities and capabilities that an ideal decision support tool should display to address these issues. The decision was made to start with an existing energy model, the New York City version of the MARKAL model, developed originally at BNL and now used globally by many groups for energy analysis. MARKAL has the virtue of being well-vetted, transparent, and capable of calculating 'material' flows, such as water use by the energy system and energy requirements of water technology. The Steering Committee members defined five scenarios of interest, representing a broad spectrum of New York City energy-water issues. Brookhaven National Laboratory researchers developed a model framework (Water-MARKAL) at the desired level of detail to address the scenarios, and then attempted to gather the New York City-specific information required to analyze the scenarios using Water-MARKAL. This report describes the successes and challenges of defining and demonstrating the decision tool, Water-MARKAL. The issues that the stakeholders perceive for New York City are listed and the difficulties in gathering required information for Water-MARKAL to analyze these issues at the desired level of detail are described.

Bhatt,V.; Crosson, K. M.; Horak, W.; Reisman, A.

2008-12-16T23:59:59.000Z

342

Comparison of Short-Term Oxidation Behavior of Model and Commercial Chromia-Forming Ferritic Stainless Steels in Air with Water Vapor  

Science Conference Proceedings (OSTI)

A high-purity Fe-20Cr and commercial type 430 ferritic stainless steel were exposed at 700 and 800 C in dry air and air with 10% water vapor (wet air) and characterized by SEM, XRD, STEM, SIMS, and EPMA. The Fe-20Cr alloy formed a fast growing Fe-rich oxide scale at 700 C in wet air after 24 h exposure, but formed a thin chromia scale at 700 C in dry air and at 800 C in both dry air and wet air. In contrast, thin spinel + chromia base scales with a discontinuous silica subscale were formed on 430 stainless steel under all conditions studied. Extensive void formation was observed at the alloy-oxide interface for the Fe-20Cr in both dry and wet conditions, but not for the 430 stainless steel. The Fe-20Cr alloy was found to exhibit a greater relative extent of subsurface Cr depletion than the 430 stainless steel, despite the former's higher Cr content. Depletion of Cr in the Fe-20Cr after 24 h exposure was also greater at 700 C than 800 C. The relative differences in oxidation behavior are discussed in terms of the coarse alloy grain size of the high-purity Fe-20Cr material, and the effects of Mn, Si, and C on the oxide scale formed on the 430 stainless steel.

Brady, Michael P [ORNL; Keiser, James R [ORNL; More, Karren Leslie [ORNL; Fayek, Mostafa [University of Manitoba, Canada; Walker, Larry R [ORNL; Meisner, Roberta Ann [ORNL; Anovitz, Lawrence {Larry} M [ORNL; Wesolowski, David J [ORNL; Cole, David R [ORNL

2012-01-01T23:59:59.000Z

343

Vapor spill pipe monitor  

DOE Patents (OSTI)

The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

Bianchini, G.M.; McRae, T.G.

1983-06-23T23:59:59.000Z

344

An integrated assessment of global and regional water demands for electricity generation to 2095  

SciTech Connect

Electric power plants currently account for approximately one-half of the global industrial water withdrawal. While continued expansion of the electric sector seems likely into the future, the consequent water demands are quite uncertain, and will depend on highly variable water intensities by electricity technologies, at present and in the future. Using GCAM, an integrated assessment model of energy, agriculture, and climate change, we first establish lower-bound, median, and upper-bound estimates for present-day electric sector water withdrawals and consumption by individual electric generation technologies in each of 14 geopolitical regions, and compare them with available estimates of regional industrial or electric sector water use. We then explore the evolution of global and regional electric sector water use over the next century, focusing on uncertainties related to withdrawal and consumption intensities for a variety of electric generation technologies, rates of change of power plant cooling system types, and rates of adoption of a suite of water-saving technologies. Results reveal that the water withdrawal intensity of electricity generation is likely to decrease in the near term with capital stock turnover, as wet towers replace once-through flow cooling systems and advanced electricity generation technologies replace conventional ones. An increase in consumptive use accompanies the decrease in water withdrawal rates; however, a suite of water conservation technologies currently under development could compensate for this increase in consumption. Finally, at a regional scale, water use characteristics vary significantly based on characteristics of the existing capital stock and the selection of electricity generation technologies into the future.

Davies, Evan; Kyle, G. Page; Edmonds, James A.

2013-02-01T23:59:59.000Z

345

An integrated modelling framework for simulating regional-scale actor responses to global change in the water domain  

Science Conference Proceedings (OSTI)

Within coupled hydrological simulation systems, taking socio-economic processes into account is still a challenging task. In particular, systems that aim at evaluating impacts of climatic change on large spatial and temporal scales cannot be based on ... Keywords: Actors, Climate change, Coupled simulation, Domestic water use, Framework technology, Integrated water resources management, Regional scale model, Social simulation, Water supply

R. Barthel; S. Janisch; N. Schwarz; A. Trifkovic; D. Nickel; C. Schulz; W. Mauser

2008-09-01T23:59:59.000Z

346

New High Performance Water Vapor Membranes to Improve Fuel Cell Balance of Plant Efficiency and Lower Costs (SBIR Phase I) - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Earl H. Wagener (Primary Contact), Brad P. Morgan, Jeffrey R. DiMaio Tetramer Technologies L.L.C. 657 S. Mechanic St. Pendleton, SC 29670 Phone: (864) 646-6282 Email: earl.wagener@tetramertechnologies.com DOE Manager HQ: Nancy Garland Phone: (202) 586-5673 Email: Nancy.Garland@ee.doe.gov Contract Number: DE-SC0006172 Project Start Date: June 17, 2011 Project End Date: March 16, 2012 Fiscal Year (FY) 2012 Objectives Demonstrate water vapor transport membrane with * >18,000 gas permeation units (GPU) Water vapor membrane with less than 20% loss in * performance after stress tests Crossover leak rate: <150 GPU * Temperature Durability of 90°C with excursions to * 100°C Cost of <$10/m

347

Assessing Consumer Values and the Supply-Chain Market for the Integrated Water Heater/Dehumidifier  

SciTech Connect

This paper presents a case study of the potential market for the dual-service residential integrated water heater/dehumidifier (WHD). Its principal purpose is to evaluate the extent to which this integrated appliance might penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to assess market readiness as well as factor preferred product attributes into the design to drive consumer demand for this product. This study also supports analysis for prototype design. A full market analysis for potential commercialization should be conducted after prototype development. The integrated WHD is essentially a heat-pump water heater (HPWH) with components and controls that allow dedicated dehumidification. Adequate residential humidity control is a growing issue for newly constructed residential homes, which are insulated so well that mechanical ventilation may be necessary to meet fresh air requirements. Leveraging its successful experience with the energy-efficient design improvement for the residential HPWH, the Oak Ridge National Laboratory's (ORNL's) Engineering Science and Technology Division's (ESTD's) Building Equipment Group designed a water-heating appliance that combines HPWH efficiency with dedicated dehumidification. This integrated appliance could be a low-cost solution for dehumidification and efficient electric water heating. ORNL is partnering with Western Carolina University, Asheville-Buncombe Technical Community College, American Carolina Stamping Company, and Clemson University to develop this appliance and assess its market potential. For practical purposes, consumers are indifferent to how water is heated but are very interested in product attributes such as initial first cost, operating cost, performance, serviceability, product size, and installation costs. The principal drivers for penetrating markets are demonstrating reliability, leveraging the dehumidification attributes of the integrated WHD, and creating programs that embrace first-cost and life-cycle cost principles.

Ashdown, BG

2005-01-11T23:59:59.000Z

348

Calibrated vapor generator source  

DOE Patents (OSTI)

A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.

Davies, John P. (Idaho Falls, ID); Larson, Ronald A. (Idaho Falls, ID); Goodrich, Lorenzo D. (Shelley, ID); Hall, Harold J. (Idaho Falls, ID); Stoddard, Billy D. (Idaho Falls, ID); Davis, Sean G. (Idaho Falls, ID); Kaser, Timothy G. (Idaho Falls, ID); Conrad, Frank J. (Albuquerque, NM)

1995-01-01T23:59:59.000Z

349

Calibrated vapor generator source  

DOE Patents (OSTI)

A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

1995-09-26T23:59:59.000Z

350

The integration of water loop heat pump and building structural thermal storage systems  

SciTech Connect

Commercial buildings often have extensive periods where one space needs cooling and another heating. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If a building's heating and cooling system could be integrated with the building's structural mass such that the mass can be used to collect, store, and deliver energy, significant energy might be saved. Computer models were developed to simulate this interaction for an existing office building in Seattle, Washington that has a decentralized water-source heat pump system. Metered data available for the building was used to calibrate a base'' building model (i.e., nonintegrated) prior to simulation of the integrated system. In the simulated integration strategy a secondary water loop was manifolded to the main HVAC hydronic loop. tubing in this loop was embedded in the building's concrete floor slabs. Water was routed to this loop by a controller to charge or discharge thermal energy to and from the slabs. The slabs were also in thermal communication with the conditioned spaces. Parametric studies of the building model, using weather data for five other cities in addition to Seattle, predicted that energy can be saved on cooling dominated days. On hot, dry days and during the night the cooling tower can beneficially be used as a free cooling'' source for thermally charging'' the floor slabs using cooled water. Through the development of an adaptive/predictive control strategy, annual HVAC energy savings as large as 30% appear to be possible in certain climates. 8 refs., 13 figs.

Marseille, T.J.; Schliesing, J.S.

1990-09-01T23:59:59.000Z

351

Nationwide Comparisons of Hail Size with WSR-88D Vertically Integrated Liquid Water and Derived Thermodynamic Sounding Data  

Science Conference Proceedings (OSTI)

This study tests hypothetical correspondences between size of severe hail, WSR-88D derived vertically integrated liquid water (VIL), and an array of thermodynamic variables derived from computationally modified sounding analyses. In addition, ...

Roger Edwards; Richard L. Thompson

1998-06-01T23:59:59.000Z

352

Knowledge-Based Decision Support for Integrated Water Resources Management with an application for Wadi Shueib, Jordan.  

E-Print Network (OSTI)

??This book takes a two-staged approach to contribute to the contemporary Integrated Water Resources Management (IWRM) research. First it investigates sub-basin-scale IWRM modelling and scenario… (more)

Riepl, David

2013-01-01T23:59:59.000Z

353

Initial findings: The integration of water loop heat pump and building structural thermal storage systems  

SciTech Connect

This report is one in a series of reports describing research activities in support of the US Department of Energy (DOE) Commercial Building System Integration Research Program. The goal of the program is to develop the scientific and technical basis for improving integrated decision-making during design and construction. Improved decision-making could significantly reduce buildings' energy use by the year 2010. The objectives of the Commercial Building System Integration Research Program are: to identify and quantify the most significant energy-related interactions among building subsystems; to develop the scientific and technical basis for improving energy related interactions in building subsystems; and to provide guidance to designers, owners, and builders for improving the integration of building subsystems for energy efficiency. The lead laboratory for this program is the Pacific Northwest Laboratory. A wide variety of expertise and resources from industry, academia, other government entities, and other DOE laboratories are used in planning, reviewing and conducting research activities. Cooperative and complementary research, development, and technology transfer activities with other interested organizations are actively pursued. In this report, the interactions of a water loop heat pump system and building structural mass and their effect on whole-building energy performance is analyzed. 10 refs., 54 figs., 1 tab.

Marseille, T.J.; Johnson, B.K.; Wallin, R.P.; Chiu, S.A.; Crawley, D.B.

1989-01-01T23:59:59.000Z

354

The integration of water loop heat pump and building structural thermal storage systems  

DOE Green Energy (OSTI)

Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

Marseille, T.J.; Schliesing, J.S.

1991-10-01T23:59:59.000Z

355

The integration of water loop heat pump and building structural thermal storage systems  

SciTech Connect

Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

Marseille, T.J.; Schliesing, J.S.

1991-10-01T23:59:59.000Z

356

Linking science with environmental decision making: Experiences from an integrated modeling approach to supporting sustainable water resources management  

Science Conference Proceedings (OSTI)

The call for more effective integration of science and decision making is ubiquitous in environmental management. While scientists often complain that their input is ignored by decision makers, the latter have also expressed dissatisfaction that critical ... Keywords: Decision support, Integrated modeling, Scenario analysis, Sustainability, Water resources management

Yuqiong Liu; Hoshin Gupta; Everett Springer; Thorsten Wagener

2008-07-01T23:59:59.000Z

357

Influence of a Tropical Island Mountain on Solar Radiation, Air Temperature and Vapor Pressure  

Science Conference Proceedings (OSTI)

Measured solar radiation, air temperature, and water vapor pressure at 17 stations on the northwest flank of Haleakala, Maui, Hawaii are compared with modeled clear day solar radiation and free atmosphere air temperature and water vapor pressure. ...

Dennis Nullet

1989-03-01T23:59:59.000Z

358

Site-Wide Integrated Water Monitoring -- Defining and Implementing Sampling Objectives to Support Site Closure  

SciTech Connect

The Underground Test Area (UGTA) activity is responsible for assessing and evaluating the effects of the underground nuclear weapons tests on groundwater at the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), and implementing a corrective action closure strategy. The UGTA strategy is based on a combination of characterization, modeling studies, monitoring, and institutional controls (i.e., monitored natural attenuation). The closure strategy verifies through appropriate monitoring activities that contaminants of concern do not exceed the SDWA at the regulatory boundary and that adequate institutional controls are established and administered to ensure protection of the public. Other programs conducted at the NNSS supporting the environmental mission include the Routine Radiological Environmental Monitoring Program (RREMP), Waste Management, and the Infrastructure Program. Given the current programmatic and operational demands for various water-monitoring activities at the same locations, and the ever-increasing resource challenges, cooperative and collaborative approaches to conducting the work are necessary. For this reason, an integrated sampling plan is being developed by the UGTA activity to define sampling and analysis objectives, reduce duplication, eliminate unnecessary activities, and minimize costs. The sampling plan will ensure the right data sets are developed to support closure and efficient transition to long-term monitoring. The plan will include an integrated reporting mechanism for communicating results and integrating process improvements within the UGTA activity as well as between other U.S. Department of Energy (DOE) Programs.

Bill Wilborn, NNSA /NFO; Kathryn Knapp, NNSA /NFO; Irene Farnham, N-I; Sam Marutzky, N-I

2013-02-24T23:59:59.000Z

359

Mercury Vapor Pressure Correlation  

Science Conference Proceedings (OSTI)

An apparent difference between the historical mercury vapor concentration equations used by the mercury atmospheric measurement community ...

2012-10-09T23:59:59.000Z

360

The energy water nexus : increasing water supply by desalination integrated with renewable power and reducing water demand by corporate water footprinting.  

E-Print Network (OSTI)

??Growing populations and periodic drought conditions have exacerbated water stress in many areas worldwide. Consequently, it would be valuable to manage both supply and demand… (more)

Clayton, Mary Elizabeth

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated water vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

LNG fire and vapor control system technologies  

SciTech Connect

This report provides a review of fire and vapor control practices used in the liquefied natural gas (LNG) industry. Specific objectives of this effort were to summarize the state-of-the-art of LNG fire and vapor control; define representative LNG facilities and their associated fire and vapor control systems; and develop an approach for a quantitative effectiveness evaluation of LNG fire and vapor control systems. In this report a brief summary of LNG physical properties is given. This is followed by a discussion of basic fire and vapor control design philosophy and detailed reviews of fire and vapor control practices. The operating characteristics and typical applications and application limitations of leak detectors, fire detectors, dikes, coatings, closed circuit television, communication systems, dry chemicals, water, high expansion foam, carbon dioxide and halogenated hydrocarbons are described. Summary descriptions of a representative LNG peakshaving facility and import terminal are included in this report together with typical fire and vapor control systems and their locations in these types of facilities. This state-of-the-art review identifies large differences in the application of fire and vapor control systems throughout the LNG industry.

Konzek, G.J.; Yasutake, K.M.; Franklin, A.L.

1982-06-01T23:59:59.000Z

362

Vapor phase heat transport systems  

DOE Green Energy (OSTI)

Vapor phase heat-transport systems are being tested in two of the passive test cells at Los Alamos. The systems consist of an active fin-and-tube solar collector and a condenser inside a water storage tank. The refrigerant, R-11, can be returned to the collector by a pump or by a self-pumping scheme. In one of the test cells the liquid was self-pumped to the roof-mounted collector 17 ft above the condenser. A mechanical valve was designed and tested that showed that the system could operate in a completely passive mode. Performance comparisons have been made with a passive water wall test cell.

Hedstrom, J.C.

1984-01-01T23:59:59.000Z

363

Integration of Water Resource Models with Fayetteville Shale Decision Support and Information System  

SciTech Connect

Significant issues can arise with the timing, location, and volume of surface water withdrawals associated with hydraulic fracturing of gas shale reservoirs as impacted watersheds may be sensitive, especially in drought years, during low flow periods, or during periods of the year when activities such as irrigation place additional demands on the surface supply of water. Significant energy production and associated water withdrawals may have a cumulative impact to watersheds over the short-term. Hence, hydraulic fracturing based on water withdrawal could potentially create shifts in the timing and magnitude of low or high flow events or change the magnitude of river flow at daily, monthly, seasonal, or yearly time scales. These changes in flow regimes can result in dramatically altered river systems. Currently little is known about the impact of fracturing on stream flow behavior. Within this context the objective of this study is to assess the impact of the hydraulic fracturing on the water balance of the Fayetteville Shale play area and examine the potential impacts of hydraulic fracturing on river flow regime at subbasin scale. This project addressed that need with four unique but integrated research and development efforts: 1) Evaluate the predictive reliability of the Soil and Water Assessment Tool (SWAT) model based at a variety of scales (Task/Section 3.5). The Soil and Water Assessment Tool (SWAT) model was used to simulate the across-scale water balance and the respective impact of hydraulic fracturing. A second hypothetical scenario was designed to assess the current and future impacts of water withdrawals for hydraulic fracturing on the flow regime and on the environmental flow components (EFCs) of the river. The shifting of these components, which present critical elements to water supply and water quality, could influence the ecological dynamics of river systems. For this purpose, we combined the use of SWAT model and Richter et al.’s (1996) methodology to assess the shifting and alteration of the flow regime within the river and streams of the study area. 2) Evaluate the effect of measurable land use changes related to gas development (well-pad placement, access road completion, etc.) on surface water flow in the region (Task/Section 3.7). Results showed that since the upsurge in shale-gas related activities in the Fayetteville Shale Play (between 2006 and 2010), shale-gas related infrastructure in the region have increase by 78%. This change in land-cover in comparison with other land-cover classes such as forest, urban, pasture, agricultural and water indicates the highest rate of change in any land-cover category for the study period. A Soil and Water Assessment Tool (SWAT) flow model of the Little Red River watershed simulated from 2000 to 2009 showed a 10% increase in storm water runoff. A forecast scenario based on the assumption that 2010 land-cover does not see any significant change over the forecast period (2010 to 2020) also showed a 10% increase in storm water runoff. Further analyses showed that this change in the stream-flow regime for the forecast period is attributable to the increase in land-cover as introduced by the shale-gas infrastructure. 3) Upgrade the Fayetteville Shale Information System to include information on watershed status. (Tasks/Sections 2.1 and 2.2). This development occurred early in the project period, and technological improvements in web-map API’s have made it possible to further improve the map. The current sites (http://lingo.cast.uark.edu) is available but is currently being upgraded to a more modern interface and robust mapping engine using funds outside this project. 4) Incorporate the methodologies developed in Tasks/Sections 3.5 and 3.7 into a Spatial Decision Support System for use by regulatory agencies and producers in the play. The resulting system is available at http://fayshale.cast.uark.edu and is under review the Arkansas Natural Resources Commission.

Cothren, Jackson; Thoma, Greg; DiLuzio, Mauro; Limp, Fred

2013-06-30T23:59:59.000Z

364

The Integration of a Structural Water Gas Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device  

DOE Green Energy (OSTI)

This project is in response to a requirement for a system that combines water gas shift technology with separation technology for coal derived synthesis gas. The justification of such a system would be improved efficiency for the overall hydrogen production. By removing hydrogen from the synthesis gas stream, the water gas shift equilibrium would force more carbon monoxide to carbon dioxide and maximize the total hydrogen produced. Additional benefit would derive from the reduction in capital cost of plant by the removal of one step in the process by integrating water gas shift with the membrane separation device. The answer turns out to be that the integration of hydrogen separation and water gas shift catalysis is possible and desirable. There are no significant roadblocks to that combination of technologies. The problem becomes one of design and selection of materials to optimize, or at least maximize performance of the two integrated steps. A goal of the project was to investigate the effects of alloying elements on the performance of vanadium membranes with respect to hydrogen flux and fabricability. Vanadium was chosen as a compromise between performance and cost. It is clear that the vanadium alloys for this application can be produced, but the approach is not simple and the results inconsistent. For any future contracts, large single batches of alloy would be obtained and rolled with larger facilities to produce the most consistent thin foils possible. Brazing was identified as a very likely choice for sealing the membranes to structural components. As alloying was beneficial to hydrogen transport, it became important to identify where those alloying elements might be detrimental to brazing. Cataloging positive and negative alloying effects was a significant portion of the initial project work on vanadium alloying. A water gas shift catalyst with ceramic like structural characteristics was the second large goal of the project. Alumina was added as a component of conventional high temperature water gas shift iron oxide based catalysts. The catalysts contained Fe-Al-Cr-Cu-O and were synthesized by co-precipitation. A series of catalysts were prepared with 5 to 50 wt% Al{sub 2}O{sub 3}, with 8 wt% Cr{sub 2}O{sub 3}, 4 wt% CuO, and the balance Fe{sub 2}O{sub 3}. All of the catalysts were compared to a reference WGS catalyst (88 wt% FeO{sub x}, 8 wt% Cr{sub 2}O{sub 3}, and 4 wt% CuO) with no alumina. Alumina addition to conventional high temperature water gas shift catalysts at concentrations of approximately 15 wt% increased CO conversion rates and increase thermal stability. A series of high temperature water gas shift catalysts containing iron, chromia, and copper oxides were prepared with small amounts of added ceria in the system Fe-Cr-Cu-Ce-O. The catalysts were also tested kinetically under WGS conditions. 2-4 wt% ceria addition (at the expense of the iron oxide content) resulted in increased reaction rates (from 22-32% higher) compared to the reference catalyst. The project goal of a 10,000 liter per day WGS-membrane reactor was achieved by a device operating on coal derived syngas containing significant amounts of carbon monoxide and hydrogen sulfide. The membrane flux was equivalent to 52 scfh/ft{sup 2} based on a 600 psi syngas inlet pressure and corresponded to membranes costing $191 per square foot. Over 40 hours of exposure time to syngas has been achieved for a double membrane reactor. Two modules of the Chart reactor were tested under coal syngas for over 75 hours with a single module tested for 50 hours. The permeance values for the Chart membranes were similar to the REB reactor though total flux was reduced due to significantly thicker membranes. Overall testing of membrane reactors on coal derived syngas was over 115 hours for all reactors tested. Testing of the REB double membrane device exceeded 40 hours. Performance of the double membrane reactor has been similar to the results for the single reactor with good maintenance of flux even after these long exposures to hydrogen sulfide. Of special in

Thomas Barton; Tiberiu Popa

2009-06-30T23:59:59.000Z

365

Distributions of Liquid, Vapor, and Ice in an Orographic Cloud from Field Observations  

Science Conference Proceedings (OSTI)

The phase distribution of the water mass of a cold orographic cloud into vapor, liquid, and ice is calculated from measurements made from an instrumented aircraft. The vapor values are calculated from thermodynamic measurements, and the liquid is ...

Taneil Uttal; Robert M. Rauber; Lewis O. Grant

1988-04-01T23:59:59.000Z

366

Method for controlling corrosion in thermal vapor injection gases  

DOE Patents (OSTI)

An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

Sperry, John S. (Houston, TX); Krajicek, Richard W. (Houston, TX)

1981-01-01T23:59:59.000Z

367

CO2-Water-Rock Interactions and the Integrity of Hydrodynamic...  

NLE Websites -- All DOE Office Websites (Extended Search)

InteraCtIOns and the IntegrIty Of hydrOdynamIC seals Background Developing confidence in methods of sequestering carbon dioxide (CO 2 ) in geological formations requires an...

368

Vapor-pressure lowering in geothermal systems  

SciTech Connect

The water vapor-pressure lowering phenomenon in porous media was investigated for a range of temperatures by measuring vapor pressure vs. mass of water adsorbed in consolidated sandstone cores and unconsolidated silica sands. Experimental results showed that the mass of water adsorbed on the rock surface is much more than the amount of pore steam. Results also revealed that the water adsorption is caused mainly by micropores in the porous medium. Measurement of the mass of methane and ethane adsorbed on dry rocks showed that the amount of adsorption is not great in comparison with the pore gas. It was found that adsorption data for water/sandstone core studies could be normalized with respect to temperature. Although this appears not to have been reported previously, it does agree in principle with findings for solid powders with micropores. Another interesting result was that reanalysis of previous studies of capillarity in sandstones indicates that experimental data probably were influenced mostly by adsorption.

Hsieh, C.H.; Ramey, H.J. Jr.

1983-02-01T23:59:59.000Z

369

Recycle of LWR (Light Water Reactor) actinides to an IFR (Integral Fast Reactor)  

SciTech Connect

A large quantity of actinide elements is present in irradiated Light Water Reactor (LWR) fuel that is stored throughout the world. Because of the high fission-to-capture ratio for the transuranium (TRU) elements with the high-energy neutrons in the metal-fueled Integral Fast Reactor (IFR), that reactor can consume these elements effectively. The stored fuel represents a valuable resource for an expanding application of fast power reactors. In addition, removal of the TRU elements from the spent LWR fuel has the potential for increasing the capacity of a high-level waste facility by reducing the heat loads and increasing the margin of safety in meeting licensing requirements. Argonne National Laboratory (ANL) is developing a pyrochemical process, which is compatible with the IFR fuel cycle, for the recovery of TRU elements from LWR fuel. The proposed product is a metallic actinide ingot, which can be introduced into the electrorefining step of the IFR process. The major objective of the LWR fuel recovery process is high TRU element recovery, with decontamination a secondary issue, because fission product removal is accomplished in the IFR process. The extensive pyrochemical processing studies of the 1960s and 1970s provide a basis for the design of possible processes. Two processes were selected for laboratory-scale investigation. One is based on the Salt Transport Process studied at ANL for mixed-oxide fast reactor fuel, and the other is based on the blanket processing studies done for ANL's second Experimental Breeder Reactor (EBR-2). This paper discusses the two processes and is a status report on the experimental studies. 5 refs., 2 figs., 2 tabs.

Pierce, R.D.; Ackerman, J.P.; Johnson, G.K.; Mulcahey, T.P.; Poa, D.S.

1991-01-01T23:59:59.000Z

370

Integrated solar heating, cooling and hot water system for the San Diego City Schools, University City High School (Engineering Materials)  

DOE Green Energy (OSTI)

The solar system consists of a heating circuit, two 200-ton absorption chiller hot water circuits and a hot water tube bundle circuit combined with solar collection and storage loops into a single integrated thermal system. Gas fired boilers provide backup and load peaking. Solar collection is provided by three types of panels located on a south facing hill from top to bottom are as follows: parabolic tracking concentrating reflectors, 7680 ft/sup 2/; parabolic fixed concentrating reflectors, 7364 ft/sup 2/; and fresnel lens concentrating, tracking, 2488 ft/sup 2/. The storage capacity is 88,800 gallons in 3 steel tanks. Reference DOE/CS/31499-T2.

Not Available

371

The Integration of a Structural Water-Gas-Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 The InTegraTIon of a STrucTural WaTer- gaS-ShIfT caTalyST WITh a VanadIum alloy hydrogen TranSporT deVIce Description The purpose of this project is to produce a scalable device that simultaneously performs both water-gas-shift (WGS) and hydrogen separation from a coal-derived synthesis gas stream. The justification of such a system is the improved efficiency for the overall production of hydrogen. Removing hydrogen from the synthesis gas (syngas) stream allows the WGS reaction to convert more carbon monoxide (CO) to carbon dioxide (CO 2 ) and maximizes the total hydrogen produced. An additional benefit is the reduction in capital cost of plant construction due to the removal of one step in the process by integrating WGS with the membrane separation device.

372

Modeling the Global Water Resource System in an Integrated Assessment Modeling Framework: IGSM-WRS  

E-Print Network (OSTI)

The availability of water resources affects energy, agricultural and environmental systems, which are linked together as well as to climate via the water cycle. As such, watersheds and river basins are directly impacted ...

Strzepek, Kenneth M.

373

Thermally integrated staged methanol reformer and method  

DOE Green Energy (OSTI)

A thermally integrated two-stage methanol reformer including a heat exchanger and first and second reactors colocated in a common housing in which a gaseous heat transfer medium circulates to carry heat from the heat exchanger into the reactors. The heat transfer medium comprises principally hydrogen, carbon dioxide, methanol vapor and water vapor formed in a first stage reforming reaction. A small portion of the circulating heat transfer medium is drawn off and reacted in a second stage reforming reaction which substantially completes the reaction of the methanol and water remaining in the drawn-off portion. Preferably, a PrOx reactor will be included in the housing upstream of the heat exchanger to supplement the heat provided by the heat exchanger.

Skala, Glenn William (Churchville, NY); Hart-Predmore, David James (Rochester, NY); Pettit, William Henry (Rochester, NY); Borup, Rodney Lynn (East Rochester, NY)

2001-01-01T23:59:59.000Z

374

The Psychrometric Constant Is Not Constant: A Novel Approach to Enhance the Accuracy and Precision of Latent Energy Fluxes through Automated Water Vapor Calibrations  

Science Conference Proceedings (OSTI)

Numerous agencies, programs, and national networks are focused on improving understanding of water and energy fluxes across temporal and spatial scales and on enhancing confidence to synthesize data across multiple sites. Enhancing the accuracy ...

H. W. Loescher; C. V. Hanson; T. W. Ocheltree

2009-10-01T23:59:59.000Z

375

Copper vapor laser modular packaging assembly  

DOE Patents (OSTI)

A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment.

Alger, Terry W. (Tracy, CA); Ault, Earl R. (Dublin, CA); Moses, Edward I. (Castro Valley, CA)

1992-01-01T23:59:59.000Z

376

Copper vapor laser modular packaging assembly  

DOE Patents (OSTI)

A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment. 2 figs.

Alger, T.W.; Ault, E.R.; Moses, E.I.

1992-12-01T23:59:59.000Z

377

Improved Magnus Form Approximation of Saturation Vapor Pressure  

Science Conference Proceedings (OSTI)

Algorithms, based on Magnus's form equations, are described that minimize the difference between several relationships between temperature and water vapor pressure at saturation that are commonly used in archiving data. The work was initiated in ...

Oleg A. Alduchov; Robert E. Eskridge

1996-04-01T23:59:59.000Z

378

Ice Growth from the Vapor at ?5°C  

Science Conference Proceedings (OSTI)

Results are summarized and illustrated from a long series of experiments on ice growth from the vapor, nearly all in a very small range of conditions: ?5°C, slightly below liquid water saturation, with minimal environmental gradients and no ...

Charles A. Knight

2012-06-01T23:59:59.000Z

379

Effects of capillarity and vapor adsorption in the depletion of vapor-dominated geothermal reservoirs  

DOE Green Energy (OSTI)

Vapor-dominated geothermal reservoirs in natural (undisturbed) conditions contain water as both vapor and liquid phases. The most compelling evidence for the presence of distributed liquid water is the observation that vapor pressures in these systems are close to saturated vapor pressure for measured reservoir temperatures (White et al., 1971; Truesdell and White, 1973). Analysis of natural heat flow conditions provides additional, indirect evidence for the ubiquitous presence of liquid. From an analysis of the heat pipe process (vapor-liquid counterflow) Preuss (1985) inferred that effective vertical permeability to liquid phase in vapor-dominated reservoirs is approximately 10{sup 17} m{sup 2}, for a heat flux of 1 W/m{sup 2}. This value appears to be at the high end of matrix permeabilities of unfractured rocks at The Geysers, suggesting that at least the smaller fractures contribute to liquid permeability. For liquid to be mobile in fractures, the rock matrix must be essentially completely liquid-saturated, because otherwise liquid phase would be sucked from the fractures into the matrix by capillary force. Large water saturation in the matrix, well above the irreducible saturation of perhaps 30%, has been shown to be compatible with production of superheated steam (Pruess and Narasimhan, 1982). In response to fluid production the liquid phase will boil, with heat of vaporization supplied by the reservoir rocks. As reservoir temperatures decline reservoir pressures will decline also. For depletion of ''bulk'' liquid, the pressure would decline along the saturated vapor pressure curve, while for liquid held by capillary and adsorptive forces inside porous media, an additional decline will arise from ''vapor pressure lowering''. Capillary pressure and vapor adsorption effects, and associated vapor pressure lowering phenomena, have received considerable attention in the geothermal literature, and also in studies related to geologic disposal of heat generating nuclear wastes, and in the drying of porous materials. Geothermally oriented studies were presented by Chicoine et al. (1977), Hsieh and Ramey (1978, 1981), Herkelrath et al. (1983), and Nghiem and Ramey (1991). Nuclear waste-related work includes papers by Herkelrath and O'Neal (1985), Pollock (1986), Eaton and Bixler (1987), Pruess et al. (1990), Nitao (1990), and Doughty and E'ruess (1991). Applications to industrial drying of porous materials have been discussed by Hamiathy (1969) arid Whitaker (1977). This paper is primarily concerned with evaluating the impact of vapor pressure lowering (VPL) effects on the depletion behavior of vapor-dominated reservoirs. We have examined experimental data on vapor adsorption and capillary pressures in an effort to identify constitutive relationships that would be applicable to the tight matrix rocks of vapor-dominated systems. Numerical simulations have been performed to evaluate the impact of these effects on the depletion of vapor-dominated reservoirs.

Pruess, Karsten; O'Sullivan, Michael

1992-01-01T23:59:59.000Z

380

Thermal desalination : structural optimization and integration in clean power and water.  

E-Print Network (OSTI)

??A large number of resources are dedicated to seawater desalination and will only grow as world-wide water scarcity increases. In arid areas with high temperature… (more)

Zak, Gina Marie

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated water vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Forward osmosis desalination of brackish groundwater: Meeting water quality requirements for fertigation by integrating nanofiltration  

E-Print Network (OSTI)

of Chemical and Environmental Engineering, PO Box 208286, Yale University, New Haven, CT 06520-8286, USA a r The increase in fresh water demand due to rapid population growth and the expanding economies are driving water estimated to reach 9 billion by 2050 [57], the food demand will also inevitably rise further driving

Elimelech, Menachem

382

Electrolyte vapor condenser  

DOE Patents (OSTI)

A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

1983-02-08T23:59:59.000Z

383

Electrolyte vapor condenser  

DOE Patents (OSTI)

A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.

Sederquist, Richard A. (Newington, CT); Szydlowski, Donald F. (East Hartford, CT); Sawyer, Richard D. (Canton, CT)

1983-01-01T23:59:59.000Z

384

Definition: Mercury Vapor | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor Jump to: navigation, search Dictionary.png Mercury Vapor Mercury is discharged as a highly volatile vapor during hydrothermal activity and high concentrations in...

385

Heat and mass transfer in a falling film absorber of ammonia-water absorption systems  

SciTech Connect

For ammonia-water generator-absorber heat exchanger (GAX) systems to work at high coefficient of performance, the heat and mass transfer components have to operate at optimum performance within a narrow range of conditions for the recovery of internal energy. In the present work, an analysis is performed to study the absorption process of an ammonia-water vapor mixture by an aqueous solution of ammonia in a falling film absorber. The combined heat and mass transfer processes involved are analyzed through an integral formulation of the continuity, momentum, energy, and diffusion equations. The effects of vapor flow direction relative to the solution, cooling ability, ammonia concentration of solution and vapor, and interfacial momentum and heat transfer rate on absorption processes are investigated. The characteristics of the absorption process are found to be governed by the relative significance of the mass transfer resistance and the driving forces between the solution film and the vapor mixture.

Kim, B. [Hongik Univ., Seoul (Korea, Republic of). Dept. of Mechanical Engineering

1998-07-01T23:59:59.000Z

386

Membrane augmented distillation to separate solvents from water  

DOE Patents (OSTI)

Processes for removing water from organic solvents, such as ethanol. The processes include distillation to form a rectified overhead vapor, compression of the rectified vapor, and treatment of the compressed vapor by two sequential membrane separation steps.

Huang, Yu; Baker, Richard W.; Daniels, Rami; Aldajani, Tiem; Ly, Jennifer H.; Alvarez, Franklin R.; Vane, Leland M.

2012-09-11T23:59:59.000Z

387

An Integrated Approach toward Retrieving Physically Consistent Profiles of Temperature, Humidity, and Cloud Liquid Water  

Science Conference Proceedings (OSTI)

A method is presented for deriving physically consistent profiles of temperature, humidity, and cloud liquid water content. This approach combines a ground-based multichannel microwave radiometer, a cloud radar, a lidar-ceilometer, the nearest ...

Ulrich Löhnert; Susanne Crewell; Clemens Simmer

2004-09-01T23:59:59.000Z

388

H?Otel : a new model for integrating water systems and coastal architecture  

E-Print Network (OSTI)

During the Industrial Era, "dams, water towers, sewage systems, and the like were celebrated as glorious icons, carefully designed, ornamented, and prominently located in the city, testifying to the modern promise of ...

Brown, Danielle C. (Danielle Collinsworth)

2011-01-01T23:59:59.000Z

389

Thermal desalination : structural optimization and integration in clean power and water  

E-Print Network (OSTI)

A large number of resources are dedicated to seawater desalination and will only grow as world-wide water scarcity increases. In arid areas with high temperature and salinity seawater, thermal desalination and power plants ...

Zak, Gina Marie

2012-01-01T23:59:59.000Z

390

Atomic vapor laser isotope separation  

SciTech Connect

Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements.

Stern, R.C.; Paisner, J.A.

1985-11-08T23:59:59.000Z

391

Organic vapor jet printing system  

DOE Patents (OSTI)

An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

Forrest, Stephen R

2012-10-23T23:59:59.000Z

392

NREL Tests Integrated Heat Pump Water Heater Performance in Different Climates (Fact Sheet)  

SciTech Connect

This technical highlight describes NREL tests to capture information about heat pump performance across a wide range of ambient conditions for five heat pump water heaters (HPWH). These water heaters have the potential to significantly reduce water heater energy use relative to traditional electric resistance water heaters. These tests have provided detailed performance data for these appliances, which have been used to evaluate the cost of saved energy as a function of climate. The performance of HPWHs is dependent on ambient air temperature and humidity and the logic controlling the heat pump and the backup resistance heaters. The laboratory tests were designed to measure each unit's performance across a range of air conditions and determine the specific logic controlling the two heat sources, which has a large effect on the comfort of the users and the energy efficiency of the system. Unlike other types of water heaters, HPWHs are both influenced by and have an effect on their surroundings. Since these effects are complex and different for virtually every house and climate region, creating an accurate HPWH model from the data gathered during the laboratory tests was a main goal of the project. Using the results from NREL's laboratory tests, such as the Coefficient of Performance (COP) curves for different air conditions as shown in Figure 1, an existing HPWH model is being modified to produce more accurate whole-house simulations. This will allow the interactions between the HPWH and the home's heating and cooling system to be evaluated in detail, for any climate region. Once these modeling capabilities are in place, a realistic cost-benefit analysis can be performed for a HPWH installation anywhere in the country. An accurate HPWH model will help to quantify the savings associated with installing a HPWH in the place of a standard electric water heater. In most locations, HPWHs are not yet a cost-effective alternative to natural gas water heaters. The detailed system performance maps that were developed by this testing program will be used to: (1) Target regions of the country that would benefit most from this technology; (2) Identify improvements in current systems to maximize homeowner cost savings; and (3) Explore opportunities for development of advanced hot water heating systems.

Not Available

2012-01-01T23:59:59.000Z

393

Heat Integration of the Water-Gas Shift Reaction System for Carbon Sequestration Ready IGCC Process with Chemical Looping  

SciTech Connect

Integrated gasification combined cycle (IGCC) technology has been considered as an important alternative for efficient power systems that can reduce fuel consumption and CO2 emissions. One of the technological schemes combines water-gas shift reaction and chemical-looping combustion as post gasification techniques in order to produce sequestration-ready CO2 and potentially reduce the size of the gas turbine. However, these schemes have not been energetically integrated and process synthesis techniques can be applied to obtain an optimal flowsheet. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). This approach allows a rigorous evaluation of the alternative designs and their combinations avoiding all the AEA simplifications (linearized models of heat exchangers). A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case. Highly influential parameters for the pos gasification technologies (i.e. CO/steam ratio, gasifier temperature and pressure) were calculated to obtain the minimum cost of energy while chemical looping parameters (oxidation and reduction temperature) were ensured to be satisfied.

Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

2010-01-01T23:59:59.000Z

394

An integrated approach for the verification of fresh mixed oxide fuel (MOX) assemblies at light water reactor MOX recycle reactors  

Science Conference Proceedings (OSTI)

This paper presents an integrated approach for the verification of mixed oxide (MOX) fuel assemblies prior to their being loaded into the reactor. There is a coupling of the verification approach that starts at the fuel fabrication plant and stops with the transfer of the assemblies into the thermal reactor. The key measurement points are at the output of the fuel fabrication plant, the receipt at the reactor site, and the storage in the water pool as fresh fuel. The IAEA currently has the capability to measure the MOX fuel assemblies at the output of the fuel fabrication plants using a passive neutron coincidence counting systems of the passive neutron collar (PNCL) type. Also. at the MOX reactor pool, the underwater coincidence counter (UWCC) has been developed to measure the MOX assemblies in the water. The UWCC measurement requires that the fuel assembly be lifted about two meters up in the storage rack to avoid interference from the fuel that is stored in the rack. This paper presents a new method to verify the MOX fuel assemblies that are in the storage rack without the necessity of moving the fuel. The detector system is called the Underwater MOX Verification System (UMVS). The integration and relationship of the three measurements systems is described.

Menlove, Howard O [Los Alamos National Laboratory; Lee, Sang - Yoon [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

395

* Corresponding author -kfingerman@berkeley.edu 1 Integrating Water Sustainability into the Low Carbon Fuel Standard  

E-Print Network (OSTI)

(Gleick, 1994) to over 39 gallons for fuel from tar sands or oil shale (Davis and Velikanov, 1979). Nearly requires from 3.4 gallons of water (Gleick, 1994) to over 60 gallons for processing of tar sands or oil shale (Davis and Velikanov, 1979). These figures, however, reflect almost the entirety of the life

Kammen, Daniel M.

396

Mercury Vapor | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor Mercury Vapor Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Mercury Vapor Details Activities (23) Areas (23) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Anomalously high concentrations can indicate high permeability or conduit for fluid flow Hydrological: Field wide soil sampling can generate a geometrical approximation of fluid circulation Thermal: High concentration in soils can be indicative of active hydrothermal activity Dictionary.png Mercury Vapor: Mercury is discharged as a highly volatile vapor during hydrothermal

397

OPERATIONAL TESTS OF EBWR VAPOR RECOVERY SYSTEM  

SciTech Connect

A description of the Experimental Boiling Water Reactor vapor-recovery system is given. The seal air operating pressures, temperatures, and moisture content were measured. Air flow through the seals was measured and seal wear was assessed. Assuming direct-cycle D/sub 2/ operation, the seals were evaluated relative to the amount of D/sub 2/ leakage that would be controlled (C.J.G.)

Gariboldi, R.J.; Jacobson, D.R.

1960-08-01T23:59:59.000Z

398

Transport properties of fission product vapors  

DOE Green Energy (OSTI)

Kinetic theory of gases is used to calculate the transport properties of fission product vapors in a steam and hydrogen environment. Provided in tabular form is diffusivity of steam and hydrogen, viscosity and thermal conductivity of the gaseous mixture, and diffusivity of cesium iodide, cesium hydroxide, diatomic tellurium and tellurium dioxide. These transport properties are required in determining the thermal-hydraulics of and fission product transport in light water reactors.

Im, K.H.; Ahluwalia, R.K.

1983-07-01T23:59:59.000Z

399

Passive vapor transport solar heating systems  

DOE Green Energy (OSTI)

In the systems under consideration, refrigerant is evaporated in a solar collector and condensed in thermal storage for space or water heating located within the building at a level below that of the collector. Condensed liquid is lifted to an accumulator above the collector by the vapor pressure generated in the collector. Tests of two systems are described, and it is concluded that one of these systems offers distinct advantages.

Hedstrom, J.C.; Neeper, D.A.

1985-01-01T23:59:59.000Z

400

Stratified vapor generator  

DOE Patents (OSTI)

A stratified vapor generator (110) comprises a first heating section (H.sub.1) and a second heating section (H.sub.2). The first and second heating sections (H.sub.1, H.sub.2) are arranged so that the inlet of the second heating section (H.sub.2) is operatively associated with the outlet of the first heating section (H.sub.1). A moisture separator (126) having a vapor outlet (164) and a liquid outlet (144) is operatively associated with the outlet (124) of the second heating section (H.sub.2). A cooling section (C.sub.1) is operatively associated with the liquid outlet (144) of the moisture separator (126) and includes an outlet that is operatively associated with the inlet of the second heating section (H.sub.2).

Bharathan, Desikan (Lakewood, CO); Hassani, Vahab (Golden, CO)

2008-05-20T23:59:59.000Z

Note: This page contains sample records for the topic "integrated water vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Fuel vapor canister  

SciTech Connect

This paper discusses an improved fuel vapor storage canister for use in a vehicle emission system of the type utilizing an enclosure with an interior communicated with a source of fuel vapor. The improved canister comprises: the enclosure having a mixture including particles of activated charcoal and many pieces of foam rubber, the pieces of foam rubber in the mixture being randomly and substantially evenly dispersed whereby substantially all the charcoal particles are spaced relatively closely to at least one foam rubber piece; the mixture being packed into the enclosure under pressure so that the pieces of foam rubber are compressed enough to tightly secure the charcoal particles one against another to prevent a griding action therebetween.

Moskaitis, R.J.; Ciuffetelli, L.A.

1991-03-26T23:59:59.000Z

402

K East basin sludge volume estimates for integrated water treatment system  

Science Conference Proceedings (OSTI)

This document provides estimates of the volume of sludge expected from Integrated Process Strategy (IPS) processing of the fuel elements and in the fuel storage canisters in K East Basin. The original estimates were based on visual observations of fuel element condition in the basin and laboratory measurements of canister sludge density. Revision 1 revised the volume estimates of sludge from processing of the fuel elements based on additional data from evaluations of material from the KE Basin fuel subsurface examinations. A nominal Working Estimate and an upper level Working Bound is developed for the canister sludge and the fuel wash sludge components in the KE Basin.

Pearce, K.L.

1998-08-19T23:59:59.000Z

403

Integration of supply and demand for water in central Illinois urban areas. Research report  

Science Conference Proceedings (OSTI)

Water demand functions were estimated using two sets of data for Central Illinois -- community-wide data and household data. The community-wide data consist of total residential consumption for each of four pre-selected medium-sized cities in Central Illinois. The household data consist of residents from five cities who responded to a mail survey. The study investigates comparability of parameter estimates from the two approaches. If the parameter estimates are comparable, it would suggest water demand estimates need not require costly and time-consuming household surveys. Estimates of price elasticity are negative and less than unitary based on the two data sets used. The estimated price elasticity based on community-wide data is -.037, while using household data estimated price elasticities are in the range from -.14 to -.16. The reasons for these differences are not immediately apparent and warrant further investigation.

Miranda, C.S.; Braden, J.B.; Martin, W.E.

1993-02-01T23:59:59.000Z

404

Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Laws Envirosearch Institutional Controls NEPA Activities RCRA RQ*Calculator Water HSS Logo Water Laws Overview of water-related legislation affecting DOE sites Clean...

405

VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS  

DOE Green Energy (OSTI)

This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

Eric M. Suuberg; Vahur Oja

1997-07-01T23:59:59.000Z

406

Vapor-Liquid Partitioning of Sulfuric Acid and Ammonium Sulfate  

Science Conference Proceedings (OSTI)

The quality of water and steam is central to ensuring power plant component availability and reliability. A key part of developing operating cycle chemistry guidelines is an understanding of the impurity distribution between water and steam. This study focused on the partitioning of sulfuric acid and ammonium bisulfate between the liquid and vapor phases.

1999-03-31T23:59:59.000Z

407

A Political Ecology of the Citarum River Basin: Exploring "Integrated Water Resources Management" in West Java, Indonesia  

E-Print Network (OSTI)

ultimately produced higher water prices because rates wereon Environment and Water ( which produced Dublin Principles

Cavelle, Jenna

2013-01-01T23:59:59.000Z

408

A flammability and combustion model for integrated accident analysis. [Advanced light water reactors  

DOE Green Energy (OSTI)

A model for flammability characteristics and combustion of hydrogen and carbon monoxide mixtures is presented for application to severe accident analysis of Advanced Light Water Reactors (ALWR's). Flammability of general mixtures for thermodynamic conditions anticipated during a severe accident is quantified with a new correlation technique applied to data for several fuel and inertant mixtures and using accepted methods for combining these data. Combustion behavior is quantified by a mechanistic model consisting of a continuity and momentum balance for the burned gases, and considering an uncertainty parameter to match the idealized process to experiment. Benchmarks against experiment demonstrate the validity of this approach for a single recommended value of the flame flux multiplier parameter. The models presented here are equally applicable to analysis of current LWR's. 21 refs., 16 figs., 6 tabs.

Plys, M.G.; Astleford, R.D.; Epstein, M. (Fauske and Associates, Inc., Burr Ridge, IL (USA))

1988-01-01T23:59:59.000Z

409

Hydrocarbon pool and vapor fire data analysis  

SciTech Connect

The flame geometry and thermal radiation data from a series of large scale experiments involving liquefied petroleum gas (LPG) and gasoline spills on water were analyzed. The experiments were conducted at the Naval Weapons Center, China Lake, California. Two types of fires have been studied; namely, pool fires and vapor fires. The spill quantity varied from 4 m/sup 3/ to approximately 6 m/sup 3/. The LPG pool fire flame height to diameter ratio were between 3.5 and 4.5. The gasoline flame height was about 2. The flame emissive powers for LPG pool fires ranged from 78 kW/m/sup 2/ to 115 kW/m/sup 2/. The average surface emissive power for gasoline pool fire was 40 kW/m/sup 2/. The LPG vapor fire emissive power ranged from 159 to 269 kW/m/sup 2/. 63 figures, 13 tables.

Mudan, K.S.

1984-10-01T23:59:59.000Z

410

Assessment of Dissolved Oxygen Mitigation at Hydropower Dams Using an Integrated Hydrodynamic/Water Quality/Fish Growth Model  

DOE Green Energy (OSTI)

Dissolved oxygen (DO) in rivers is a common environmental problem associated with hydropower projects. Approximately 40% of all FERC-licensed projects have requirements to monitor and/or mitigate downstream DO conditions. Most forms of mitigation for increasing DO in dam tailwaters are fairly expensive. One area of research of the Department of Energy's Hydropower Program is the development of advanced turbines that improve downstream water quality and have other environmental benefits. There is great interest in being able to predict the benefits of these modifications prior to committing to the cost of new equipment. In the case of turbine replacement or modification, there is a need for methods that allow us to accurately extrapolate the benefits derived from one or two turbines with better design to the replacement or modification of all turbines at a site. The main objective of our study was to demonstrate a modeling approach that integrates the effects of flow and water quality dynamics with fish bioenergetics to predict DO mitigation effectiveness over long river segments downstream of hydropower dams. We were particularly interested in demonstrating the incremental value of including a fish growth model as a measure of biological response. The models applied are a suite of tools (RMS4 modeling system) originally developed by the Tennessee Valley Authority for simulating hydrodynamics (ADYN model), water quality (RQUAL model), and fish growth (FISH model) as influenced by DO, temperature, and available food base. We parameterized a model for a 26-mile reach of the Caney Fork River (Tennessee) below Center Hill Dam to assess how improvements in DO at the dam discharge would affect water quality and fish growth throughout the river. We simulated different types of mitigation (i.e., at the turbine and in the reservoir forebay) and different levels of improvement. The model application successfully demonstrates how a modeling approach like this one can be used to assess whether a prescribed mitigation is likely to meet intended objectives from both a water quality and a biological resource perspective. These techniques can be used to assess the tradeoffs between hydropower operations, power generation, and environmental quality.

Bevelhimer, Mark S [ORNL; Coutant, Charles C [ORNL

2006-07-01T23:59:59.000Z

411

PROTECTING AGAINST VAPOR EXPLOSIONS WITH WATER ...  

Science Conference Proceedings (OSTI)

... developed commercially for fire suppression applications. (7) Johnson and Shale, 1995 IS1 This paper provides a summary ...

2011-10-27T23:59:59.000Z

412

High Efficiency Integrated Space Conditioning, Water Heating and Air Distribution System for HUD-Code Manufactured Housing  

SciTech Connect

Recognizing the need for new space conditioning and water heating systems for manufactured housing, DeLima Associates assembled a team to develop a space conditioning system that would enhance comfort conditions while also reducing energy usage at the systems level. The product, Comboflair® was defined as a result of a needs analysis of project sponsors and industry stakeholders. An integrated system would be developed that would combine a packaged airconditioning system with a small-duct, high-velocity air distribution system. In its basic configuration, the source for space heating would be a gas water heater. The complete system would be installed at the manufactured home factory and would require no site installation work at the homesite as is now required with conventional split-system air conditioners. Several prototypes were fabricated and tested before a field test unit was completed in October 2005. The Comboflair® system, complete with ductwork, was installed in a 1,984 square feet, double-wide manufactured home built by Palm Harbor Homes in Austin, TX. After the home was transported and installed at a Palm Harbor dealer lot in Austin, TX, a data acquisition system was installed for remote data collection. Over 60 parameters were continuously monitored and measurements were transmitted to a remote site every 15 minutes for performance analysis. The Comboflair® system was field tested from February 2006 until April 2007. The cooling system performed in accordance with the design specifications. The heating system initially could not provide the needed capacity at peak heating conditions until the water heater was replaced with a higher capacity standard water heater. All system comfort goals were then met. As a result of field testing, we have identified improvements to be made to specific components for incorporation into production models. The Comboflair® system will be manufactured by Unico, Inc. at their new production facility in St. Louis, MO. The product will be initially launched in the hot-humid climates of the southern U.S.

Henry DeLima; Joe Akin; Joseph Pietsch

2008-09-14T23:59:59.000Z

413

DuPont Chemical Vapor Technical Report  

Science Conference Proceedings (OSTI)

DuPont Safety Resources was tasked with reviewing the current chemical vapor control practices and providing preventive recommendations on best commercial techniques to control worker exposures. The increased focus of the tank closure project to meet the 2024 Tri-Party Agreement (TPA) milestones has surfaced concerns among some CH2MHill employees and other interested parties. CH2MHill is committed to providing a safe working environment for employees and desires to safely manage the tank farm operations using appropriate control measures. To address worker concerns, CH2MHill has chartered a ''Chemical Vapors Project'' to integrate the activities of multiple CH2MHill project teams, and solicit the expertise of external resources, including an independent Industrial Hygiene expert panel, a communications consultant, and DuPont Safety Resources. Over a three-month time period, DuPont worked with CH2MHill ESH&Q, Industrial Hygiene, Engineering, and the independent expert panel to perform the assessment. The process included overview presentations, formal interviews, informal discussions, documentation review, and literature review. DuPont Safety Resources concluded that it is highly unlikely that workers in the tank farms are exposed to chemicals above established standards. Additionally, the conventional and radiological chemistry is understood, the inherent chemical hazards are known, and the risk associated with chemical vapor exposure is properly managed. The assessment highlighted management's commitment to addressing chemical vapor hazards and controlling the associated risks. Additionally, we found the Industrial Hygiene staff to be technically competent and well motivated. The tank characterization data resides in a comprehensive database containing the tank chemical compositions and relevant airborne concentrations.

MOORE, T.L.

2003-10-03T23:59:59.000Z

414

Development and application of an integrated ecological modelling framework to analyze the impact of wastewater discharges on the ecological water quality of rivers  

Science Conference Proceedings (OSTI)

Modelling is an effective tool to investigate the ecological state of water resources. In developing countries, the impact of sanitation infrastructures (e.g. wastewater treatment plants) is typically assessed considering the achievement of legal physicochemical ... Keywords: Habitat suitability models, Information-theoretic approach, Integrated ecological modelling, MIKE 11, Multi-model inference

Javier E. Holguin-Gonzalez, Gert Everaert, Pieter Boets, Alberto Galvis, Peter L. M. Goethals

2013-10-01T23:59:59.000Z

415

Interfacial instability induced by lateral vapor pressure fluctuation in bounded thin liquid-vapor layers  

E-Print Network (OSTI)

We study an instability of thin liquid-vapor layers bounded by rigid parallel walls from both below and above. In this system, the interfacial instability is induced by lateral vapor pressure fluctuation, which is in turn attributed to the effect of phase change: evaporation occurs at the hotter portion of the interface and condensation at the colder one. The high vapor pressure drives the liquid away and the low one pulls it up. A set of equations describing the temporal evolution of the interface of the liquid-vapor layers is derived. This model neglects the effect of mass loss or gain at the interface and guarantees the mass conservation of the liquid layer. The result of linear stability analysis of the model shows that the presence of the pressure dependence of the local saturation temperature suppresses the growth of long-wave disturbances. We find the stability criterion, which suggests that only slight temperature gradients are sufficient to overcome the stabilizing gravitational effect for a water an...

Kanatani, Kentaro

2008-01-01T23:59:59.000Z

416

A Systems-Integration Approach to the Optimal Design and Operation of Macroscopic Water Desalination and Supply Networks.  

E-Print Network (OSTI)

??With the escalating levels of water demand, there is a need for expansion in the capacity of water desalination infrastructure and for better management and… (more)

Atilhan, Selma

2012-01-01T23:59:59.000Z

417

Desalination Using Vapor-Compression Distillation  

E-Print Network (OSTI)

The ability to produce potable water economically is the primary purpose of seawater desalination research. Reverse osmosis (RO) and multi-stage flash (MSF) cost more than potable water produced from fresh water resources. As an alternative to RO and MSF, this research investigates a high-efficiency mechanical vapor-compression distillation system that employs an improved water flow arrangement. The incoming salt concentration was 0.15% salt for brackish water and 3.5% salt for seawater, whereas the outgoing salt concentration was 1.5% and 7%, respectively. Distillation was performed at 439 K (331oF) and 722 kPa (105 psia) for both brackish water feed and seawater feed. Water costs of the various conditions were calculated for brackish water and seawater feeds using optimum conditions considered as 25 and 20 stages, respectively. For brackish water at a temperature difference of 0.96 K (1.73oF), the energy requirement is 2.0 kWh/m3 (7.53 kWh/kgal). At this condition, the estimated water cost is $0.39/m3 ($1.48/kgal) achieved with 10,000,000 gal/day distillate, 30-year bond, 5% interest rate, and $0.05/kWh electricity. For seawater at a temperature difference of 0.44 K (0.80oF), the energy requirement is 3.97 kWh/m3 (15.0 kWh/kgal) and the estimated water cost is $0.61/m3 ($2.31/kgal). Greater efficiency of the vapor compression system is achieved by connecting multiple evaporators in series, rather than the traditional parallel arrangement. The efficiency results from the gradual increase of salinity in each stage of the series arrangement in comparison to parallel. Calculations using various temperature differences between boiling brine and condensing steam show the series arrangement has the greatest improvement at lower temperature differences. The following table shows the improvement of a series flow arrangement compared to parallel: ?T (K) Improvement (%)*1.111 2.222 3.333 15.21 10.80 8.37 * Incoming salt concentration: 3.5% Outgoing salt concentration: 7% Temperature: 450 K (350oF) Pressure: 928 kPa (120 psig) Stages: 4

Lubis, Mirna R.

2009-05-01T23:59:59.000Z

418

Vapor adsorption process  

SciTech Connect

The removal of undesirable acid components from sour natural gas is often accomplished by a vapor adsorption process wherein a bed of solid adsorbent material is contacted with an inlet gas stream so that desired components contained in the gas stream are adsorbed on the bed, then regenerated by contact with a heated regeneration gas stream. Adsorbed components are desorbed from the bed and the bed is cooled preparatory to again being contacted with the inlet gas stream. By this process, the bed is contacted, during the regeneration cycle, with a selected adsorbable material. This material has the property of being displaced from the bed by the desired components and has a heat of desorption equal to or greater than the heat of adsorption of the desired components. When the bed is contacted with the inlet gas stream, the selected adsorbable material is displaced by the desired components resulting in the temperature of the bed remaining relatively constant, thereby allowing the utilization of the maximum bed adsorption capacity. (4 claims)

Snyder, C.F.; Casad, B.M.

1973-04-24T23:59:59.000Z

419

Drying of pulverized material with heated condensible vapor  

DOE Patents (OSTI)

Apparatus for drying pulverized material utilizes a high enthalpy condensable vapor such as steam for removing moisture from the individual particles of the pulverized material. The initially wet particulate material is tangentially delivered by a carrier vapor flow to an upper portion of a generally vertical cylindrical separation drum. The lateral wall of the separation drum is provided with a plurality of flow guides for directing the vapor tangentially therein in the direction of particulate material flow. Positioned concentrically within the separation drum and along the longitudinal axis thereof is a water-cooled condensation cylinder which is provided with a plurality of collection plates, or fines, on the outer lateral surface thereof. The cooled collection fines are aligned counter to the flow of the pulverized material and high enthalpy vapor mixture to maximize water vapor condensation thereon. The condensed liquid which includes moisture removed from the pulverized materials then flows downward along the outer surface of the coolant cylinder and is collected and removed. The particles travel in a shallow helix due to respective centrifugal and vertical acceleration forces applied thereto. The individual particles of the pulverized material are directed outwardly by the vortex flow where they contact the inner cylindrical surface of the separation drum and are then deposited at the bottom thereof for easy collection and removal. The pulverized material drying apparatus is particularly adapted for drying coal fines and facilitates the recovery of the pulverized coal. 2 figs.

Carlson, L.W.

1984-08-16T23:59:59.000Z

420

Vapor deposition of hardened niobium  

DOE Patents (OSTI)

A method of coating ceramic nuclear fuel particles containing a major amount of an actinide ceramic in which the particles are placed in a fluidized bed maintained at ca. 800.degree. to ca. 900.degree. C., and niobium pentachloride vapor and carbon tetrachloride vapor are led into the bed, whereby niobium metal is deposited on the particles and carbon is deposited interstitially within the niobium. Coating apparatus used in the method is also disclosed.

Blocher, Jr., John M. (Columbus, OH); Veigel, Neil D. (Columbus, OH); Landrigan, Richard B. (Columbus, OH)

1983-04-19T23:59:59.000Z

Note: This page contains sample records for the topic "integrated water vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Chemical vapor deposition sciences  

SciTech Connect

Chemical vapor deposition (CVD) is a widely used method for depositing thin films of a variety of materials. Applications of CVD range from the fabrication of microelectronic devices to the deposition of protective coatings. New CVD processes are increasingly complex, with stringent requirements that make it more difficult to commercialize them in a timely fashion. However, a clear understanding of the fundamental science underlying a CVD process, as expressed through computer models, can substantially shorten the time required for reactor and process development. Research scientists at Sandia use a wide range of experimental and theoretical techniques for investigating the science of CVD. Experimental tools include optical probes for gas-phase and surface processes, a range of surface analytic techniques, molecular beam methods for gas/surface kinetics, flow visualization techniques and state-of-the-art crystal growth reactors. The theoretical strategy uses a structured approach to describe the coupled gas-phase and gas-surface chemistry, fluid dynamics, heat and mass transfer of a CVD process. The software used to describe chemical reaction mechanisms is easily adapted to codes that model a variety of reactor geometries. Carefully chosen experiments provide critical information on the chemical species, gas temperatures and flows that are necessary for model development and validation. This brochure provides basic information on Sandia`s capabilities in the physical and chemical sciences of CVD and related materials processing technologies. It contains a brief description of the major scientific and technical capabilities of the CVD staff and facilities, and a brief discussion of the approach that the staff uses to advance the scientific understanding of CVD processes.

1992-12-31T23:59:59.000Z

422

Optimization of multi-pressure himidification-dehumidification desalination using thermal vapor compression and hybridization  

E-Print Network (OSTI)

Humidification-dehumidification (HD or HDH) desalination, and specifically HD driven by a thermal vapor compressor (TVC), is a thermal desalination method that has the potential to produce potable water efficiently in order ...

Mistry, Karan Hemant

423

Two Electron Holes in Hematite Facilitate Water Splitting  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Electron Holes in Hematite Facilitate Water Splitting Print Hydrogen is an attractive form of fuel because its only by-product is nonpolluting water vapor. The problem,...

424

Tank Vapor Characterization Project -- Headspace vapor characterization of Hanford waste Tank 241-C-107: Results from samples collected on 01/17/96  

DOE Green Energy (OSTI)

This report describes the analytical results of vapor samples taken from the headspace of waste storage tank 241-C-107 (Tank C-107) at the Hanford Site in Washington State. The results described in this report were obtained to compare vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling (ISVS) system with and without high efficiency particulate air (HEPA) prefiltration. The results include air concentrations of water (H{sub 2}O) and ammonia (NH{sub 3}), permanent gases, total non-methane hydrocarbons (TO-12), and individual organic analytes collected in SUMMA{trademark} canisters and on triple sorbent traps (TSTs). Samples were collected by Westinghouse Hanford Company (WHC) and analyzed by Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volume measurements provided by WHC.

Thomas, B.L.; Evans, J.C.; Pool, K.H.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

1996-07-01T23:59:59.000Z

425

Vaporizing Flow in Hot Fractures: Observations from Laboratory Experiments  

DOE Green Energy (OSTI)

Understanding water seepage in hot fractured rock is important in a number of fields including geothermal energy recovery and nuclear waste disposal. Heat-generating high-level nuclear waste packages which will be emplaced in the partially saturated fractured tuffs at the potential high-level nuclear waste repository at Yucca Mountain, Nevada, if it becomes a high-level nuclear waste repository, will cause significant impacts on moisture distribution and migration. Liquid water, which occupies anywhere from 30 to 100% of the porespace, will be vaporized as the temperature reaches the boiling temperature. Flowing primarily in fractures, the vapor will condense where it encounters cooler rock, generating mobile water. This water will flow under gravitational and capillary forces and may flow back to the vicinity of the emplaced waste where it may partially escape vaporization. Water flowing down (sub-) vertical fractures may migrate considerable distances through fractured rock that is at above-boiling temperatures; thus, flowing condensate may contact waste packages, and provide a pathway for the transport of water-soluble radionuclides downward to the saturated zone. Thermally-driven flow processes induced by repository heat may be as important or even more important for repository performance than natural infiltration. For a nominal thermal loading of 57 kW/acre, vaporization may generate an average equivalent percolation flux from condensate of 23.1 mm/yr over 1,000 years, and 5.2 mm/yr over 10,000 years. These numbers are comparable to or larger than current estimates of net infiltration at Yucca Mountain. This condensate, which is generated in the immediate vicinity (meters) of the waste packages, will likely have a larger impact on waste package and repository performance than a similar amount of water introduced at the land surface.

Kneafsey, T.; Pruess, K.

1998-12-01T23:59:59.000Z

426

Integrated fuel processor development.  

DOE Green Energy (OSTI)

The Department of Energy's Office of Advanced Automotive Technologies has been supporting the development of fuel-flexible fuel processors at Argonne National Laboratory. These fuel processors will enable fuel cell vehicles to operate on fuels available through the existing infrastructure. The constraints of on-board space and weight require that these fuel processors be designed to be compact and lightweight, while meeting the performance targets for efficiency and gas quality needed for the fuel cell. This paper discusses the performance of a prototype fuel processor that has been designed and fabricated to operate with liquid fuels, such as gasoline, ethanol, methanol, etc. Rated for a capacity of 10 kWe (one-fifth of that needed for a car), the prototype fuel processor integrates the unit operations (vaporization, heat exchange, etc.) and processes (reforming, water-gas shift, preferential oxidation reactions, etc.) necessary to produce the hydrogen-rich gas (reformate) that will fuel the polymer electrolyte fuel cell stacks. The fuel processor work is being complemented by analytical and fundamental research. With the ultimate objective of meeting on-board fuel processor goals, these studies include: modeling fuel cell systems to identify design and operating features; evaluating alternative fuel processing options; and developing appropriate catalysts and materials. Issues and outstanding challenges that need to be overcome in order to develop practical, on-board devices are discussed.

Ahmed, S.; Pereira, C.; Lee, S. H. D.; Krumpelt, M.

2001-12-04T23:59:59.000Z

427

Image Storage in Hot Vapors  

E-Print Network (OSTI)

We theoretically investigate image propagation and storage in hot atomic vapor. A $4f$ system is adopted for imaging and an atomic vapor cell is placed over the transform plane. The Fraunhofer diffraction pattern of an object in the object plane can thus be transformed into atomic Raman coherence according to the idea of ``light storage''. We investigate how the stored diffraction pattern evolves under diffusion. Our result indicates, under appropriate conditions, that an image can be reconstructed with high fidelity. The main reason for this procedure to work is the fact that diffusion of opposite-phase components of the diffraction pattern interfere destructively.

Zhao, L; Xiao, Y; Yelin, S F

2007-01-01T23:59:59.000Z

428

Image Storage in Hot Vapors  

E-Print Network (OSTI)

We theoretically investigate image propagation and storage in hot atomic vapor. A $4f$ system is adopted for imaging and an atomic vapor cell is placed over the transform plane. The Fraunhofer diffraction pattern of an object in the object plane can thus be transformed into atomic Raman coherence according to the idea of ``light storage''. We investigate how the stored diffraction pattern evolves under diffusion. Our result indicates, under appropriate conditions, that an image can be reconstructed with high fidelity. The main reason for this procedure to work is the fact that diffusion of opposite-phase components of the diffraction pattern interfere destructively.

L. Zhao; T. Wang; Y. Xiao; S. F. Yelin

2007-10-22T23:59:59.000Z

429

ANOMALOUS EFFECTS OF WATER IN FIREFIGHTING ...  

Science Conference Proceedings (OSTI)

... As shown in Figures 1 - 3 for benzene, xylene, and water, the boiling point of any liquid or mixture of liquids is that temperature at which the vapor ...

2011-10-27T23:59:59.000Z

430

Reactions of atmospheric vapors with lunar soil  

SciTech Connect

Detailed experimental data have been acquired for the hydration of the surfaces of lunar fines. Inert vapor adsorption has been employed to measure the surface properties (surface energy, surface area, porosity, etc.) and changes wrought in the hydration-dehydration processes. Plausible mechanisms have been considered and the predominant process involves hydration of the metamict metallosilicate surfaces to form a hydrated laminar structure akin to terrestrial clays. Additional credence for this interpretation is obtained by comparison to existing geochemical literature concerning terrestrial weathering of primary metallosilicates. The surface properties of the hydrated lunar fines are compared favorably to those of terrestrial clay minerals. In addition, experimental results are given to show that fresh disordered surfaces of volcanic sand react with water vapor in a manner virtually identical to the majority of the lunar fines. The results show that ion track etching and/or grain boundary attack are minor contributions in the weathering of lunar fines in the realm of our microgravimetric experimental conditions. 14 references. (auth)

Fuller, E.L. Jr.; Agron, P.A.

1976-03-01T23:59:59.000Z

431

An Integrated System for the Study of Wind-Wave Source Terms in Finite-Depth Water  

Science Conference Proceedings (OSTI)

A field experiment to study the spectral balance of the source terms for wind-generated waves in finite water depth was carried out in Lake George, Australia. The measurements were made from a shore-connected platform at varying water depths from ...

Ian R. Young; Michael L. Banner; Mark A. Donelan; Cyril McCormick; Alexander V. Babanin; W. Kendall Melville; Fabrice Veron

2005-07-01T23:59:59.000Z

432

Atomic vapor laser isotope separation process  

DOE Patents (OSTI)

A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.

Wyeth, R.W.; Paisner, J.A.; Story, T.

1990-08-21T23:59:59.000Z

433

Vapor phase modifiers for oxidative coupling  

DOE Patents (OSTI)

Volatilized metal compounds retard vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

Warren, Barbara K. (Charleston, WV)

1991-01-01T23:59:59.000Z

434

LOW PRESSURE CHEMICAL VAPOR DEPOSITION OF POLYSILICON  

E-Print Network (OSTI)

THEORY The mass transport processes in low pressure chemical vapor deposition (LPCVD) are similar to those occuring in catalytic reactors

Gieske, R.J.

2011-01-01T23:59:59.000Z

435

Residential Ground Source Heat Pumps with Integrated Domestic Hot Water Generation: Performance Results from Long-Term Monitoring  

SciTech Connect

Ground source heat pumps (GSHPs) show promise for reducing house energy consumption, and a desuperheater can potentially further reduce energy consumption where the heat pump from the space conditioning system creates hot water. Two unoccupied houses were instrumented to document the installed operational space conditioning and water heating efficiency of their GSHP systems. This paper discusses instrumentation methods and field operation characteristics of the GSHPs, compares manufacturers' values of the coefficients of performance calculated from field measured data for the two GSHPs, and compares the measured efficiency of the desuperheater system to other domestic hot water systems.

Stecher, D.; Allison, K.

2012-11-01T23:59:59.000Z

436

Vapor Pressures and Heats of Vaporization of Primary Coal Tars  

Office of Scientific and Technical Information (OSTI)

/ PC92544-18 / PC92544-18 VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS FINAL REPORT Grant Dates: August, 1992 - November, 1996 Principal Authors: Eric M. Suuberg (PI) and Vahur Oja Report Submitted: April, 1997 Revised: July, 1997 Grant Number: DE-FG22-92PC92544 Report Submitted by: ERIC M. SUUBERG DIVISION OF ENGINEERING BROWN UNIVERSITY PROVIDENCE, RI 02912 TEL. (401) 863-1420 Prepared For: U. S. DEPT. OF ENERGY FEDERAL ENERGY TECHNOLOGY CENTER P.O. BOX 10940 PITTSBURGH, PA 15236 DR. KAMALENDU DAS, FETC, MORGANTOWN , WV TECHNICAL PROJECT OFFICER "US/DOE Patent Clearance is not required prior to the publication of this document" ii United States Government Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any

437

Means and method for vapor generation  

DOE Patents (OSTI)

A liquid, in heat transfer contact with a surface heated to a temperature well above the vaporization temperature of the liquid, will undergo a multiphase (liquid-vapor) transformation from 0% vapor to 100% vapor. During this transition, the temperature driving force or heat flux and the coefficients of heat transfer across the fluid-solid interface, and the vapor percentage influence the type of heating of the fluid--starting as "feedwater" heating where no vapors are present, progressing to "nucleate" heating where vaporization begins and some vapors are present, and concluding with "film" heating where only vapors are present. Unstable heating between nucleate and film heating can occur, accompanied by possibly large and rapid temperature shifts in the structures. This invention provides for injecting into the region of potential unstable heating and proximate the heated surface superheated vapors in sufficient quantities operable to rapidly increase the vapor percentage of the multiphase mixture by perhaps 10-30% and thereby effectively shift the multiphase mixture beyond the unstable heating region and up to the stable film heating region.

Carlson, Larry W. (Oswego, IL)

1984-01-01T23:59:59.000Z

438

Method of and apparatus for measuring vapor density  

DOE Patents (OSTI)

Apparatus and method are disclosed which determine the concentration of an individual component, such as water vapor, of a multi-component mixture, such as a gaseous mixture for cooling a nuclear reactor. A hygrometer apparatus includes an infrared source for producing a broadband infrared energy beam that includes a strong water vapor absorption band and a weak water vapor absorption region. The beam is chopped to select infrared pulses. A temporally first pulse has a wavelength in the weakly absorbing region, a temporally second pulse has a wavelength in the strong band and a temporally third pulse has a wavelength in the weakly absorbing region. A fourth reference pulse representing background radiation is interposed in such chopped pulses. An indium arsenide infrared sensor is responsive to the pulses for generating an output signal in proportion to an equation given in the patent where N1 is proportional to the transmission through the sample of the first signal, N4 is related to the background radiation, and [K2 (N2-N4) + K3 (N3-N4)] is the time-weighted average of the transmission through the sample of the second and third pulses applicable at the time of the second pulse, with the reference pulse N4 being subtracted in each case to render the ratio independent of variations in the background radiation. 11 figs.

Nelson, L.D.; Cerni, T.A.

1989-10-17T23:59:59.000Z

439

Method of and apparatus for measuring vapor density  

DOE Patents (OSTI)

Apparatus and method determine the concentration of an individual component, such as water vapor, of a multi-component mixture, such as a gaseous mixture for cooling a nuclear reactor. A hygrometer apparatus includes an infrared source for producing a broadband infrared energy beam that includes a strong water vapor absorption band and a weak water vapor absorption region. The beam is chopped to select infrared pulses. A temporally first pulse has a wavelength in the weakly absorbing region, a temporally second pulse has a wavelength in the strong band and a temporally third pulse has a wavlength in the weakly absorbing region. A fourth reference pulse representing background radiation is interposed in such chopped pulses. An indium arsenide infrared sensor is responsive to the pulses for generating an output signal in proportion to: ##EQU1## where N1 is proportional to the transmission through the sample of the first signal, N4 is related to the background radiation, and [K2 (N2-N4)+K3 (N3-N4)] is the time-weighted average of the transmission through the sample of the second and third pulses applicable at the time of the second pulse, with the reference pulse N4 being subtracted in each case to render the ratio independent of variations in the background radiation.

Nelson, Loren D. (Morrison, CO); Cerni, Todd A. (Littleton, CO)

1989-01-01T23:59:59.000Z

440

Recovery of Water from Boiler Flue Gas  

SciTech Connect

This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

2008-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "integrated water vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

THE APPLICATION OF ELECTROCHEMICAL NOISE BASED CORROSION MONITORING TO NUCLEAR WASTE TANK VAPOR SPACE ENVIRONMENTS AT THE HANFORD SITE  

Science Conference Proceedings (OSTI)

Vapor space corrosion data collected by electrochemical noise (EN) based corrosion probes installed in double shell tanks (DSTs) at the Department of Energy's Hanford Site in Richland, Washington have historically been characterized by surprisingly high levels in current. In late 2003, a program was established to assess the significance of archived Hanford DST vapor space EN data. This program showed that the high vapor space current levels are likely the result of crevice corrosion on the vapor space electrodes. The design of DST vapor space electrodes provides tight metal-to-metal and gaskeito-metal interfaces necessary for this type of localized corrosion to occur. In-tank activities (splashing, etc.), or more likely condensation of water vapor in the vapor space, provide the necessary moisture. Because crevice corrosion appears to be active on the vapor space EN electronics, data collected from these electrodes are not likely to be applicable to the large flat metal surfaces that make up the bulk of the DST domes and upper walls. The data do, however, indicate that conditions in the DST vapor spaces are conducive to accelerated crevice corrosion at creviced areas in the tank vapor space (overlapping joints, riser interfaces, equipment penetrations, etc.) under high humidity conditions.

EDGEMON, G.L.

2005-04-04T23:59:59.000Z

442

The origin of high-temperature zones in vapor-dominated geothermal systems  

DOE Green Energy (OSTI)

Vapor-dominated geothermal systems are proposed to originate by downward extension (by the ''heat pipe'' mechanism) into hot dry fractured rock above a large cooling igneous intrusion. High temperature zones found by drilling are shallow parts of the original hot dry rock where the penetration of the vapor reservoir was limited, and hot dry rock may extend under much of these reservoirs. An earlier hot water geothermal system may have formed during an early phase of the heating episode.

Truesdell, Alfred H.

1991-01-01T23:59:59.000Z

443

Microfluidic system with integrated electroosmotic pumps, concentration gradient generator and fish cell line (RTgill-W1)--towards water toxicity  

E-Print Network (OSTI)

, and the results were quantified using a Live/DeadTM cell assay. This work is a preliminary study cell line (RTgill-W1)--towards water toxicity testing Tomasz Glawdel,a Caglar Elbuken,a Lucy E. J. Leeb that incorporates electroosmotic pumps, a concentration gradient generator and a fish cell line (rainbow trout gill

Le Roy, Robert J.

444

Production of [15O]Water at Low-Energy Proton Cyclotrons  

E-Print Network (OSTI)

and deliver radiologically produced water from a nitrogen/also separate water vapor from the produced ammonia, as wellwater is separated from the target gas and radiolytically produced

Powell, James; O'Neil, James P.

2005-01-01T23:59:59.000Z

445

High Integrity Can Design Interfaces  

Science Conference Proceedings (OSTI)

The National Spent Nuclear Fuel Program is chartered with facilitating the disposition of DOE-owned spent nuclear fuel to allow disposal at a geologic repository. This is done through coordination with the repository program and by assisting DOE Site owners of SNF with needed information, standardized requirements, packaging approaches, etc. The High Integrity Can (HIC) will be manufactured to provide a substitute or barrier enhancement for normal fuel geometry and cladding. The can would be nested inside the DOE standardized canister which is designed to interface with the repository waste package. The HIC approach may provide the following benefits over typical canning approaches for DOE SNF. (a) It allows ready calculation and management of criticality issues for miscellaneous. (b) It segments and further isolates damaged or otherwise problem materials from normal SNF in the repository package. (c) It provides a very long term corrosion barrier. (d) It provides an extra internal pressure barrier for particulates, gaseous fission products, hydrogen, and water vapor. (e) It delays any potential release of fission products to the repository environment. (f) It maintains an additional level of fuel geometry control during design basis accidents, rock-fall, and seismic events. (g) When seal welded, it could provide the additional containment required for shipments involving plutonium content in excess of 20 Ci. (10 CFR 71.63.b) if integrated with an appropriate cask design. Long term corrosion protection is central to the HIC concept. The material selected for the HIC (Hastelloy C-22) has undergone extensive testing for repository service. The most severe theoretical interactions between iron, repository water containing chlorides and other repository construction materials have been tested. These expected chemical species have not been shown capable of corroding the selected HIC material. Therefore, the HIC should provide a significant barrier to DOE SNF dispersal long after most commercial SNF has degraded and begun moving into the repository environment.

Shaber, E.L.

1998-08-01T23:59:59.000Z

446

Study of the interactions of molten sodium nitrate-potassium nitrate 50 mol % mixture with water vapor and carbon dioxide in air. Final report, June 2, 1980-June 30, 1981  

DOE Green Energy (OSTI)

The interactions of aerial components such as water, carbon dioxide, and oxygen with the binary 50 mol % mixture of sodium nitrate and potassium nitrate have been studied in the temperature range 300 to 600/sup 0/C using electrochemical methods. In addition, the behavior of nitrite ions in this melt was investigated electrochemically. By judicious choice of techniques, in situ electroanalysis was possible and the necessary relevant data to accomplish this is presented, as well as insight into the corresponding electrochemical mechanisms associated with the electroactive species. The influence of each atmospheric component was examined separately. At temperatures above 300/sup 0/C, nitrite ions are found to accumulate due to thermal decomposition of the nitrate. Water is highly soluble in the salt mixture, but no hydrolytic reactions were observed. Two methods of in situ analysis for water are described. Pure carbon dioxide is found to attack the melt at all temperatures above 250/sup 0/C producing carbonate. (LEW)

White, S.H.; Twardoch, U.M.

1981-09-01T23:59:59.000Z

447

Determination of Precipitable Water from Solar Transmission  

Science Conference Proceedings (OSTI)

A method of determining precipitable water to within 10% from solar radiometer data has been developed. The method uses a modified Langley technique to obtain the water vapor optical depth, and a model developed at the University of Arizona is ...

K. J. Thome; B. M. Herman; J. A. Reagan

1992-02-01T23:59:59.000Z

448

Global Changes of the Water Cycle Intensity  

Science Conference Proceedings (OSTI)

In this study, numerical simulations of the twentieth-century climate are evaluated, focusing on the changes in the intensity of the global water cycle. A new model diagnostic of atmospheric water vapor cycling rate is developed and employed that ...

Michael G. Bosilovich; Siegfried D. Schubert; Gregory K. Walker

2005-05-01T23:59:59.000Z

449

Evaluation and Analysis of an Integrated PEM Fuel Cell with Absorption Cooling and Water Heating System for Sustainable Building Operation  

E-Print Network (OSTI)

In this paper, a parametric study of a PEM fuel cell integrated with a double effect absorption system is carried out in order to study the effect of different operating conditions on the efficiency of the PEM fuel cell, utilization factor of the over all system, COPs of the double effect cooling and heating system, and power and heat output of the PEM fuel cell. It is found that the efficiency of the cell decreases, ranging from 46.2% to 24.4% with increase in membrane thickness and current density, and at the same time the COP increases ranging from 0.65 to 1.52. The heat and power output of the fuel cell decreases from 10.54 kW to 5.12 kW, and 9.12 kW to 6.99 kW, respectively for the increase in membrane thickness. However, when the temperature of the cell is increased the heat and power output increases from 5.12 kW to 10.54 kW, and 6.9 kW to 7.02 kW, respectively. The COP is found to be decreasing ranging from 1.53 to 0.33 with the increase in temperature of the cell and heat input to the HTG. As for the utilization factor, it increases ranging from 17% to 87% with increase in the temperature of the cell and heat input to the HTG. This study reveals that an integrated PEM fuel cell with a double effect absorption cooling systems has a very high potential to be an economical and environmental solution as compared with conventional systems of high electricity and natural gas prices which emit lots of harmful gasses and are not that efficient.

Gadalla, M.; Ratlamwala, T.; Dincer, I.

2010-01-01T23:59:59.000Z

450

Coupling apparatus for a metal vapor laser  

DOE Patents (OSTI)

Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

Ball, D.G.; Miller, J.L.

1993-02-23T23:59:59.000Z

451

Field and Laboratory Study of a Ground-Coupled Water Source Heat Pump with an Integral Enthalpy Exchange System for Classrooms  

E-Print Network (OSTI)

School classroom space-conditioning equipment in hot and humid climates is often excessively burdened by the requirement to dehumidify incoming air to maintain proper thermal comfort and air quality. To that end, application of new or modified technologies is needed to increase the dehumidification abilities of equipment without compromising energy efficiency or the need for fresh ventilation air. To study the effectiveness of integrated heat pump and enthalpy exchange equipment, a nominal 4-ton water-source heat pump, coupled with a geothermal water loop and incorporating a forced fresh-air enthalpy exchange system was installed in a typical middle school classroom in Oak Ridge, Tennessee. This project is a joint effort among Oak Ridge School District, Tennessee Valley Authority, Energy Office of the State of Tennessee, and Oak Ridge National Laboratory. The retrofit classroom, along with a similar baseline classroom (employing a water source heat pump supplied by a boiler/cooling tower loop), were instrumented with an Internet-based system to control and monitor performance, efficiency, and a variety of air states. Those include classroom air, outdoor air, semi-conditioned fresh air, and supply air. Particular attention was dedicated to the humidity content and the carbon dioxide content of conditioned space (classroom) air and to the intake rate of forced fresh air. This field study builds on a previous laboratory study of a water-source heat pump coupled to an enthalpy recovery system. The laboratory work showed good potential for reducing the moisture load from forced ventilation air. At simulated outdoor conditions of 90°F (32.2°C) and 90% RH, the enthalpy recovery wheel in the nominal 2-ton system was able to capture and exhaust 9.9 lb of moisture that would otherwise have to be handled solely by the cooling coil.

Domitrovic, R.; Hayzen, G. J.; Johnson, W. S.; Chen, F. C.

2002-01-01T23:59:59.000Z

452

Mercury Vapor (Kooten, 1987) | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor (Kooten, 1987) Mercury Vapor (Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor (Kooten, 1987) Exploration Activity Details Location Unspecified Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes Surface soil-mercury surveys are an inexpensive and useful exploration tool for geothermal resources. ---- Surface geochemical surveys for mercury were conducted in 16 areas in 1979-1981 by ARCO Oil and Gas Company as part of its geothermal evaluation program. Three techniques used together have proved satisfactory in evaluating surface mercury data. These are contouring, histograms and cumulative frequency plots of the data. Contouring geochemical data and constructing histograms are standard

453

Vapor phase modifiers for oxidative coupling  

DOE Patents (OSTI)

Volatilized metal compounds are described which are capable of retarding vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

Warren, B.K.

1991-12-17T23:59:59.000Z

454

Thermoplastic Composite with Vapor Grown Carbon Fiber.  

E-Print Network (OSTI)

??Vapor grown carbon fiber (VGCF) is a new class of highly graphitic carbon nanofiber and offers advantages of economy and simpler processing over continuous-fiber composites.… (more)

Lee, Jaewoo

2005-01-01T23:59:59.000Z

455

Moisture Durability of Vapor Permeable Insulating Sheathing ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Existing Homes, Building Technologies Office (BTO) In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor...

456

Hydrocarbon pool and vapor fire data analysis. Final report  

SciTech Connect

The flame geometry and thermal radiation data from a series of large scale experiments involving liquefied petroleum gas (LPG) and gasoline spills on water were analyzed. The experiments were conducted at the Naval Weapons Center, China Lake, California. Two types of fires have been studied; namely, pool fires and vapor fires. The spill quantity varied from 4 m/sup 3/ to approximately 6 m/sup 3/. The LPG pool fire flame height to diameter ratio were between 3.5 and 4.5. The gasoline flame height was about 2. The flame emissive powers for LPG pool fires ranged from 78 kW/m/sup 2/ to 115 kW/m/sup 2/. The average surface emissive power for gasoline pool fire was 40 kW/m/sup 2/. The LPG vapor fire emissive power ranged from 159 to 269 kW/m/sup 2/. 63 figures, 13 tables.

Mudan, K.S.

1984-10-01T23:59:59.000Z

457

Fabrication of solid oxide fuel cell by electrochemical vapor deposition  

DOE Patents (OSTI)

In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

Brian, Riley (Willimantic, CT); Szreders, Bernard E. (Oakdale, CT)

1989-01-01T23:59:59.000Z

458

Fabrication of solid oxide fuel cell by electrochemical vapor deposition  

DOE Patents (OSTI)

In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

Riley, B.; Szreders, B.E.

1988-04-26T23:59:59.000Z

459

Near real time vapor detection and enhancement using aerosol adsorption  

DOE Patents (OSTI)

A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

Novick, Vincent J.; Johnson, Stanley A.

1997-12-01T23:59:59.000Z

460

Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BUILDING TECHNOLOGIES OFFICE BUILDING TECHNOLOGIES OFFICE Building America Case Study Technology Solutions for New and Existing Homes Moisture Durability of Vapor Permeable Insulating Sheathing PROJECT INFORMATION Construction: Existing homes with vapor open wall assemblies Type: Residential Climate Zones: All PERFORMANCE DATA Insulation Ratio The R-value ratio of exterior to interior insulation (e.g., R-15 exterior insulation on R-11 cavity insulation has a ratio of 0.58). This variable controls sheathing temperature. Vapor Permeable Insulation An insulation with vapor permeance greater than five U.S. perms (e.g., rigid mineral fiber insulations). This variable controls water vapor flow and sheathing temperatures. Water Resisting Barrier A membrane that resists liquid water transfer. Permeable WRBs allow water

Note: This page contains sample records for the topic "integrated water vapor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Interfacial Water-Transport Effects in Proton-Exchange Membranes  

E-Print Network (OSTI)

1993, "The Contact Angle  between Water and the Surface of Desorption, and Transport of Water in  Polymer Electrolyte Vaporization?Exchange Model  for Water Sorption and Flux in 

Kienitz, Brian

2010-01-01T23:59:59.000Z

462

Microwave-assisted fast vapor-phase transport synthesis of MnAPO-5 molecular sieves  

Science Conference Proceedings (OSTI)

MnAPO-5 was prepared by a microwave-assisted vapor-phase transport method at 180 deg. C in short times. The products were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectra, UV-vis spectroscopic measurement, NH{sub 3}-temperature-programmed desorption and esterification reaction. It was found that dry gels prepared with aluminum isopropoxide, phosphoric acid and manganese acetate could be transferred to MnAPO-5 in the vapors of triethylamine and water by the microwave-assisted vapor-phase transport method at 180 deg. C for less than 30 min. The crystallization time was greatly reduced by the microwave heating compared with the conventional heating. The resulting MnAPO-5 exhibited much smaller particle sizes, higher surface areas and slightly higher catalytic activity in the esterification of acetic acid and butyl alcohol than those prepared by the conventional vapor-phase transport method and hydrothermal synthesis.

Shao Hui [State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China); Department of Chemical Engineering, Jiangsu Polytechnic University, Changzhou 213016 (China); Yao Jianfeng; Ke Xuebin [State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China); Zhang Lixiong [State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China)], E-mail: lixiongzhang@yahoo.com; Xu Nanping [State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China)

2009-04-02T23:59:59.000Z