Powered by Deep Web Technologies
Note: This page contains sample records for the topic "integrated ventilation controller" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Development of a Residential Integrated Ventilation Controller  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of a Residential Integrated Ventilation Controller Development of a Residential Integrated Ventilation Controller Title Development of a Residential Integrated Ventilation Controller Publication Type Report LBNL Report Number LBNL-5554E Year of Publication 2012 Authors Walker, Iain S., Max H. Sherman, and Darryl J. Dickerhoff Keywords ashrae standard 62,2, california title 24, residential ventilation, ventilation controller Abstract The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20%, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

2

Development of a Residential Integrated Ventilation Controller  

SciTech Connect

The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

2011-12-01T23:59:59.000Z

3

RESIDENTIAL INTEGRATED VENTILATION ENERGY CONTROLLER - Energy ...  

A residential controller is described which is used to manage the mechanical ventilation systems of a home, installed to meet whole-house ventilation requirements, at ...

4

Development of a Residential Integrated Ventilation Controller  

E-Print Network (OSTI)

Passive Ventilation by Constant Area Vents to Maintain Indoor Air Quality in Houses. ”Passive Ventilation by Constant Area Vents to Maintain Indoor Air Quality in Houses."

Walker, Iain

2013-01-01T23:59:59.000Z

5

Development of a Residential Integrated Ventilation Controller  

E-Print Network (OSTI)

Refrigerating, and Air-Conditioning Engineers, Atlanta, GA.Refrigerating, and Air-Conditioning Engineers, Atlanta, GA.of Ventilation and Air Conditioning: Is CERN up to Date With

Walker, Iain

2013-01-01T23:59:59.000Z

6

Meeting Residential Ventilation Standards Through Dynamic Control...  

NLE Websites -- All DOE Office Websites (Extended Search)

Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems Title Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation...

7

Ventilation Controller for Improved Indoor Air Quality  

Iain Walker and colleagues at Berkeley Lab have developed a dynamic control system for whole-house ventilation fans that provides maximal air quality while reducing by 18-44% the energy spent on ventilation. The system, the Residential Integrated ...

8

Demand Controlled Ventilation and Classroom Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Authors Fisk, William J., Mark J. Mendell, Molly Davies, Ekaterina Eliseeva, David Faulkner, Tienzen Hong, and Douglas P. Sullivan Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords absence, building s, carbon dioxide, demand - controlled ventilation, energy, indoor air quality, schools, ventilation Abstract This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included:  The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).  Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.

9

Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems  

SciTech Connect

Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outdoor pollutant levels are high, the importance of minimizing energy use particularly during times of peak electricity demand, and how the energy used to condition air as part of ventilation system operation changes with outdoor conditions. Dynamic control of ventilation systems can provide ventilation equivalent to or better than what is required by standards while minimizing energy costs and can also add value by shifting load during peak times and reducing intake of outdoor air contaminants. This article describes the logic that enables dynamic control of whole-house ventilation systems to meet the intent of ventilation standards and demonstrates the dynamic ventilation system control concept through simulations and field tests of the Residential Integrated Ventilation-Energy Controller (RIVEC).

Sherman, Max H.; Walker, Iain S.

2011-04-01T23:59:59.000Z

10

Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems  

E-Print Network (OSTI)

Rudd. 2007. Review of residential ventilation technologies.2009. EISG Final Report: Residential Integrated VentilationDesign and Operation of Residential Cooling Systems. Proc.

Sherman, Max H.

2011-01-01T23:59:59.000Z

11

Advanced Controls and Sustainable Systems for Residential Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Controls and Sustainable Systems for Residential Ventilation Advanced Controls and Sustainable Systems for Residential Ventilation Title Advanced Controls and Sustainable Systems for Residential Ventilation Publication Type Report LBNL Report Number LBNL-5968E Year of Publication 2012 Authors Turner, William J. N., and Iain S. Walker Date Published 12/2012 Keywords ashrae standard 62,2, california title 24, passive ventilation, residential ventilation, ventilation controller Abstract Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health, and compliance with standards, such as ASHRAE 62.2. At the same time we wish to reduce the energy use in homes and therefore minimize the energy used to provide ventilation. This study examined several approaches to reducing the energy requirements of providing acceptable IAQ in residential buildings. Two approaches were taken. The first used RIVEC - the Residential Integrated VEntilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. The second used passive and hybrid ventilation systems, rather than mechanical systems, to provide whole-house ventilation.

12

Demonstration of Demand Control Ventilation Technology  

Science Conference Proceedings (OSTI)

Demand Control Ventilation (DCV) is one of the control strategies that can be used modulate the amount of ventilation air for space conditioning in commercial buildings. DCV modulates the amount of ventilation air introduced into the heating, ventilation and air conditioning (HVAC) system based on carbon dioxide levels sensed in the areas served. The carbon dioxide level is a proxy for the number of people within the space, from which the required quantity of ventilation air is determined. By using this ...

2011-12-30T23:59:59.000Z

13

Available Technologies: Ventilation Controller for Improved Indoor ...  

Iain Walker and colleagues at Berkeley Lab have developed a dynamic control system for whole-house ventilation fans that provides maximal air quality while reducing ...

14

Passive ventilation for residential air quality control  

SciTech Connect

Infiltration has long served the residential ventilation needs in North America. In Northern Europe it has been augmented by purpose-provided natural ventilation systems--so-called passive ventilation systems--to better control moisture problems in dwellings smaller than their North American counterparts and in a generally wetter climate. The growing concern for energy consumption, and the environmental impacts associated with it, has however led to tighter residential construction standards on both continents and as a result problems associated with insufficient background ventilation have surfaced. Can European passive ventilation systems be adapted for use in North American dwellings to provide general background ventilation for air quality control? This paper attempts to answer this question. The configuration, specifications and performance of the preferred European passive ventilation system--the passive stack ventilation (PSV) system--will be reviewed; innovative components and system design strategies recently developed to improve the traditional PSV system performance will be outlined; and alternative system configurations will be presented that may better serve the climatic extremes and more urban contexts of North America. While these innovative and alternative passive ventilation systems hold great promise for the future, a rational method to size the components of these systems to achieve the control and precision needed to meet the conflicting constraints of new ventilation and air tightness standards has not been forthcoming. Such a method will be introduced in this paper and an application of this method will be presented.

Axley, J.

1999-07-01T23:59:59.000Z

15

Optimization of Occupancy Based Demand Controlled Ventilation in Residences  

SciTech Connect

Although it has been used for many years in commercial buildings, the application of demand controlled ventilation in residences is limited. In this study we used occupant exposure to pollutants integrated over time (referred to as 'dose') as the metric to evaluate the effectiveness and air quality implications of demand controlled ventilation in residences. We looked at air quality for two situations. The first is that typically used in ventilation standards: the exposure over a long term. The second is to look at peak exposures that are associated with time variations in ventilation rates and pollutant generation. The pollutant generation had two components: a background rate associated with the building materials and furnishings and a second component related to occupants. The demand controlled ventilation system operated at a low airflow rate when the residence was unoccupied and at a high airflow rate when occupied. We used analytical solutions to the continuity equation to determine the ventilation effectiveness and the long-term chronic dose and peak acute exposure for a representative range of occupancy periods, pollutant generation rates and airflow rates. The results of the study showed that we can optimize the demand controlled airflow rates to reduce the quantity of air used for ventilation without introducing problematic acute conditions.

Mortensen, Dorthe K.; Walker, Iain S.; Sherman, Max H.

2011-05-01T23:59:59.000Z

16

CO2 Monitoring for Demand Controlled Ventilation in Commercial...  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Monitoring for Demand Controlled Ventilation in Commercial Buildings Title CO2 Monitoring for Demand Controlled Ventilation in Commercial Buildings Publication Type Report Year...

17

Sensor-based demand controlled ventilation  

SciTech Connect

In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation rates are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.

De Almeida, A.T. [Universidade de Coimbra (Portugal). Dep. Eng. Electrotecnica; Fisk, W.J. [Lawrence Berkeley National Lab., CA (United States)

1997-07-01T23:59:59.000Z

18

Honda Smart Home to Include Berkeley Lab Ventilation Controller  

NLE Websites -- All DOE Office Websites (Extended Search)

Honda Smart Home to Include Berkeley Lab Ventilation Controller Honda Smart Home to Include Berkeley Lab Ventilation Controller Honda smart home October 2013 October-November Special Focus: Energy Efficiency, Buildings, and the Electric Grid Honda Motor Company Inc is proceeding with plans to build a Smart Home in Davis, California, to demonstrate the latest in renewable energy technologies and energy efficiency. The home is expected to produce more energy than is consumed, demonstrating how the goal of "zero net energy" can be met in the near term future. A ventilation controller developed by researchers at Berkeley Lab's Environmental Energy Technologies Division (EETD) will be included in the smart home. EETD is currently working with the developers of the home control system to integrate its control algorithms.

19

Carbon-dioxide-controlled ventilation study  

Science Conference Proceedings (OSTI)

The In-House Energy Management (IHEM) Program has been established by the U.S. Department of Energy to provide funds to federal laboratories to conduct research on energy-efficient technology. The Energy Sciences Department of Pacific Northwest Laboratory (PNL) was tasked by IHEM to research the energy savings potential associated with reducing outdoor-air ventilation of buildings. By monitoring carbon dioxide (CO{sub 2}) levels in a building, outdoor air provided by the heating, ventilating, and air-conditioning (HVAC) system can be reduced to the percentage required to maintain satisfactory CO{sub 2} levels rather than ventilating with a higher outdoor-air percentage based on an arbitrary minimum outdoor-air setting. During summer months, warm outdoor air brought into a building for ventilation must be cooled to meet the appropriate cooling supply-air temperature, and during winter months, cold outdoor air must be heated. By minimizing the amount of hot or cold outdoor air brought into the HVAC system, the supply air requires less cooling or heating, saving energy and money. Additionally, the CO{sub 2} levels in a building can be monitored to ensure that adequate outdoor air is supplied to a building to maintain air quality levels. The two main considerations prior to implementing CO{sub 2}-based ventilation control are its impact on energy consumption and the adequacy of indoor air quality (IAQ) and occupant comfort. To address these considerations, six portable CO{sub 2} monitors were placed in several Hanford Site buildings to estimate the adequacy of office/workspace ventilation. The monitors assessed the potential for reducing the flow of outdoor-air to the buildings. A candidate building was also identified to monitor various ventilation control strategies for use in developing a plan for implementing and assessing energy savings.

McMordie, K.L.; Carroll, D.M.

1994-05-01T23:59:59.000Z

20

Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems  

E-Print Network (OSTI)

increased cost per unit of energy at times of peak demandminimizing energy costs and operation during peak timesenergy and cost impacts of ventilation vary with weather and time

Sherman, Max H.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated ventilation controller" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Operational test report integrated system test (ventilation upgrade)  

Science Conference Proceedings (OSTI)

Operational Final Test Report for Integrated Systems, Project W-030 (Phase 2 test, RECIRC and HIGH-HEAT Modes). Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks, including upgraded vapor space cooling and filtered venting of tanks AY101, Ay102, AZ101, AZ102.

HARTY, W.M.

1999-10-05T23:59:59.000Z

22

New and Underutilized Technology: Carbon Dioxide Demand Ventilation Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide Demand Ventilation Carbon Dioxide Demand Ventilation Control New and Underutilized Technology: Carbon Dioxide Demand Ventilation Control October 4, 2013 - 4:23pm Addthis The following information outlines key deployment considerations for carbon dioxide (CO2) demand ventilation control within the Federal sector. Benefits Demand ventilation control systems modulate ventilation levels based on current building occupancy, saving energy while still maintaining proper indoor air quality (IAQ). CO2 sensors are commonly used, but a multiple-parameter approach using total volatile organic compounds (TVOC), particulate matter (PM), formaldehyde, and relative humidity (RH) levels can also be used. CO2 sensors control the outside air damper to reduce the amount of outside air that needs to be conditioned and supplied to the building when

23

Analysis of Demand Controlled Ventilation Technology and ...  

Science Conference Proceedings (OSTI)

... The actual health, comfort, and productivity impacts of mechanical ventilation ... p strat i csp o ... in California and elsewhere is the impact of ambient air ...

2011-01-11T23:59:59.000Z

24

Intelligent Control of Heating, Ventilating and Air Conditioning Systems  

Science Conference Proceedings (OSTI)

This paper proposed a simulation-optimization energy saving strategy for heating, ventilating and air conditioning (HVAC) systems' condenser water loop through intelligent control of single speed cooling towers' components. An analysis of system components ...

Patrick Low Kie; Lau Bee Theng

2009-07-01T23:59:59.000Z

25

Development of a Residential Integrated Ventilation Controller  

E-Print Network (OSTI)

Although geographically in Climate Zone 3, the weather inMoraga is more like Climate Zone 12 – so the CZ 12 weatherin three California climate zones. Climate The study focuses

Walker, Iain

2013-01-01T23:59:59.000Z

26

Development of a Residential Integrated Ventilation Controller  

E-Print Network (OSTI)

weightavg_rates.html California Energy Commission. 2005. “of Regulations: California's Energy Efficiency Standards forBuildings. ” California Energy Commission, Sacramento, CA.

Walker, Iain

2013-01-01T23:59:59.000Z

27

Development of a Residential Integrated Ventilation Controller  

E-Print Network (OSTI)

together with measured solar radiation in the weather data.simulations were as follows: Direct solar radiation (W/ m )Total horizontal solar radiation (W/m 2 ) Outdoor air dry-

Walker, Iain

2013-01-01T23:59:59.000Z

28

Development of a Residential Integrated Ventilation Controller  

E-Print Network (OSTI)

Assessments on Noise. ” Energy and Buildings. Vol. 27. pp.Distribution Systems. ” Energy and Buildings. Vol. 20. pp.W.J. Fisk. 1994. Energy and Buildings vol. 21 (1). pp.15-22.

Walker, Iain

2013-01-01T23:59:59.000Z

29

Development of a Residential Integrated Ventilation Controller  

E-Print Network (OSTI)

air heat transmission due to thermal conductance and the difference in indoor and outdoor temperatures) was taken from ACM

Walker, Iain

2013-01-01T23:59:59.000Z

30

Residential- Integrated- Ventilation- Controller-(RIVEC)-  

individual-home,-taking-into-account-size,-number-of-rooms-and- climate.-Field- tests- have- demonstrated- that- RIVEC- can-

31

Automated CO2 and VOC-Based Control of Ventilation Systems Under Real-Time Pricing  

Science Conference Proceedings (OSTI)

The potential for shedding or shifting building electric loads in response to real-time prices (RTP) can be significant. Such a strategy provides cost reduction opportunities for commercial building customers as well as load reduction opportunities for electric utilities. This report describes the successful demonstration of an integrated RTP sensor/control system designed to increase the energy efficiency of building ventilation systems, while maintaining indoor air quality via CO2 and volatile organic ...

1998-11-02T23:59:59.000Z

32

Demand-Controlled Ventilation Using CO2 Sensors - Federal Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

fresh air in a building can be a problem. Over ventilation results in higher energy usage and costs than are necessary with appropriate ventilation while potentially increasing...

33

Development of an Integrated Residential Heating, Ventilation, Cooling, and Dehumidification System for Residences  

SciTech Connect

The Need and the Opportunity Codes such as ASHRAE 90.2 and IECC, and programs such as Energy Star and Builders Challenge, are causing new homes to be built to higher performance standards. As a result sensible cooling loads in new homes are going down, but indoor air quality prerogatives are causing ventilation rates and moisture loads to increase in humid climates. Conventional air conditioners are unable to provide the low sensible heat ratios that are needed to efficiently cool and dehumidify homes since dehumidification potential is strongly correlated with cooling system operating hours. The project team saw an opportunity to develop a system that is at least as effective as a conventional air conditioner plus dehumidifier, removes moisture without increasing the sensible load, reduces equipment cost by integrating components, and simplifies installation. Project Overview Prime contractor Davis Energy Group led a team in developing an Integrated Heating, Ventilation, Cooling, and Dehumidification (I-HVCD) system under the DOE SBIR program. Phase I and II SBIR project activities ran from July 2003 through December 2007. Tasks included: (1) Mechanical Design and Prototyping; (2) Controls Development; (3) Laboratory and Field Testing; and (4) Commercialization Activities Technology Description. Key components of the prototype I-HVCD system include an evaporator coil assembly, return and outdoor air damper, and controls. These are used in conjunction with conventional components that include a variable speed air handler or furnace, and a two-stage condensing unit. I-HVCD controls enable the system to operate in three distinct cooling modes to respond to indoor temperature and relative humidity (RH) levels. When sensible cooling loads are high, the system operates similar to a conventional system but varies supply airflow in response to indoor RH. In the second mode airflow is further reduced, and the reheat coil adds heat to the supply air. In the third mode, the reheat coil adds additional heat to maintain the supply air temperature close to the return air temperature (100% latent cooling). Project Outcomes Key Phase II objectives were to develop a pre-production version of the system and to demonstrate its performance in an actual house. The system was first tested in the laboratory and subsequently underwent field-testing at a new house in Gainesville, Florida. Field testing began in 2006 with monitoring of a 'conventional best practices' system that included a two stage air conditioner and Energy Star dehumidifier. In September 2007, the I-HVCD components were installed for testing. Both systems maintained uniform indoor temperatures, but indoor RH control was considerably better with the I-HVCD system. The daily variation from average indoor humidity conditions was less than 2% for the I-HVCD vs. 5-7% for the base case system. Data showed that the energy use of the two systems was comparable. Preliminary installed cost estimates suggest that production costs for the current I-HVCD integrated design would likely be lower than for competing systems that include a high efficiency air conditioner, dehumidifier, and fresh air ventilation system. Project Benefits This project verified that the I-HVCD refrigeration compacts are compact (for easy installation and retrofit) and can be installed with air conditioning equipment from a variety of manufacturers. Project results confirmed that the system can provide precise indoor temperature and RH control under a variety of climate conditions. The I-HVCD integrated approach offers numerous benefits including integrated control, easier installation, and reduced equipment maintenance needs. Work completed under this project represents a significant step towards product commercialization. Improved indoor RH control and fresh air ventilation are system attributes that will become increasingly important in the years ahead as building envelopes improve and sensible cooling loads continue to fall. Technologies like I-HVCD will be instrumental in meeting goals set by Building America

Hoeschele, M.A.; D.A. Springer

2008-06-18T23:59:59.000Z

34

Development of an Integrated Residential Heating, Ventilation, Cooling, and Dehumidification System for Residences  

Science Conference Proceedings (OSTI)

The Need and the Opportunity Codes such as ASHRAE 90.2 and IECC, and programs such as Energy Star and Builders Challenge, are causing new homes to be built to higher performance standards. As a result sensible cooling loads in new homes are going down, but indoor air quality prerogatives are causing ventilation rates and moisture loads to increase in humid climates. Conventional air conditioners are unable to provide the low sensible heat ratios that are needed to efficiently cool and dehumidify homes since dehumidification potential is strongly correlated with cooling system operating hours. The project team saw an opportunity to develop a system that is at least as effective as a conventional air conditioner plus dehumidifier, removes moisture without increasing the sensible load, reduces equipment cost by integrating components, and simplifies installation. Project Overview Prime contractor Davis Energy Group led a team in developing an Integrated Heating, Ventilation, Cooling, and Dehumidification (I-HVCD) system under the DOE SBIR program. Phase I and II SBIR project activities ran from July 2003 through December 2007. Tasks included: (1) Mechanical Design and Prototyping; (2) Controls Development; (3) Laboratory and Field Testing; and (4) Commercialization Activities Technology Description. Key components of the prototype I-HVCD system include an evaporator coil assembly, return and outdoor air damper, and controls. These are used in conjunction with conventional components that include a variable speed air handler or furnace, and a two-stage condensing unit. I-HVCD controls enable the system to operate in three distinct cooling modes to respond to indoor temperature and relative humidity (RH) levels. When sensible cooling loads are high, the system operates similar to a conventional system but varies supply airflow in response to indoor RH. In the second mode airflow is further reduced, and the reheat coil adds heat to the supply air. In the third mode, the reheat coil adds additional heat to maintain the supply air temperature close to the return air temperature (100% latent cooling). Project Outcomes Key Phase II objectives were to develop a pre-production version of the system and to demonstrate its performance in an actual house. The system was first tested in the laboratory and subsequently underwent field-testing at a new house in Gainesville, Florida. Field testing began in 2006 with monitoring of a 'conventional best practices' system that included a two stage air conditioner and Energy Star dehumidifier. In September 2007, the I-HVCD components were installed for testing. Both systems maintained uniform indoor temperatures, but indoor RH control was considerably better with the I-HVCD system. The daily variation from average indoor humidity conditions was less than 2% for the I-HVCD vs. 5-7% for the base case system. Data showed that the energy use of the two systems was comparable. Preliminary installed cost estimates suggest that production costs for the current I-HVCD integrated design would likely be lower than for competing systems that include a high efficiency air conditioner, dehumidifier, and fresh air ventilation system. Project Benefits This project verified that the I-HVCD refrigeration compacts are compact (for easy installation and retrofit) and can be installed with air conditioning equipment from a variety of manufacturers. Project results confirmed that the system can provide precise indoor temperature and RH control under a variety of climate conditions. The I-HVCD integrated approach offers numerous benefits including integrated control, easier installation, and reduced equipment maintenance needs. Work completed under this project represents a significant step towards product commercialization. Improved indoor RH control and fresh air ventilation are system attributes that will become increasingly important in the years ahead as building envelopes improve and sensible cooling loads continue to fall. Technologies like I-HVCD will be instrumental in meeting goals set by Building America

Hoeschele, M.A.; D.A. Springer

2008-06-18T23:59:59.000Z

35

Lighting Group: Controls: Systems Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Integration Building Control Systems Integration Objective This research project investigates how diverse building control systems can be integrated to provide seamless...

36

Design and performance of a rule-based controller in a naturally ventilated room  

Science Conference Proceedings (OSTI)

The objective of this work is to design and implement a fuzzy controller for naturally ventilated buildings. The controller is implemented in a test room using MATLABTM. Initially the controller was validated using simulated data. Simulations ... Keywords: fuzzy logic control, naturally ventilated buildings, thermal comfort

M. Eftekhari; L. Marjanovic; P. Angelov

2003-08-01T23:59:59.000Z

37

Spot Ventilation: Source Control to Improve Indoor Air Quality  

SciTech Connect

Fact sheet for homeowners and contractors on how to employ spot ventilation in the home for comfort and safety.

2002-12-01T23:59:59.000Z

38

Whole-House Ventilation Systems: Improved Control of Air Quality  

SciTech Connect

Fact sheet for homeowners and contractors on how to employ spot ventilation in the home for comfort and safety.

2002-12-01T23:59:59.000Z

39

Formadehyde in New Homes: Ventilation vs. Source Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

at at Building America Residential Energy Efficiency Stakeholder Meeting March 1, 2012 Austin, Texas Formaldehyde in New Homes --- Ventilation vs. Source Control Brett C. Singer and Henry Willem Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Acknowledgments * Funding - U.S. Department of Energy - Building America Program - U.S. EPA - Indoor Environments Division - U.S. HUD - Office of Healthy Homes and Lead Hazard Control - Cal. Energy Commission Public Interest Environmental Research * Technical Contributions - Fraunhofer - Ibacos - IEE-SF * LBNL Team - Sherman, Hotchi, Russell, Stratton, and Others Background 1  Formaldehyde is an irritant and a carcinogen  Odor threshold: about 800 ppb  Widely varying health standards  US HUD (8-h): 400 ppb

40

Advanced control strategies for heating, ventilation, air-conditioning, and refrigeration systems—An overview: Part I: Hard control  

SciTech Connect

A chronological overview of the advanced control strategies for heating, ventilation, air-conditioning, and refrigeration (HVAC&R) is presented in this article. The overview focuses on hard-computing or control techniques, such as proportional-integral-derivative, optimal, nonlinear, adaptive, and robust; soft-computing or control techniques, such as neural networks, fuzzy logic, genetic algorithms; and on the fusion or hybrid of hard- and soft-control techniques. Thus, it is to be noted that the terminology “hard” and “soft” computing/control has nothing to do with the “hardware” and “software” that is being generally used. Part I of a two-part series focuses on hard-control strategies, and Part II focuses on softand fusion-control in addition to some future directions in HVAC&R research. This overview is not intended to be an exhaustive survey on this topic, and any omission of other works is purely unintentional.

D. Subbaram Naidu; Craig G. Rieger

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated ventilation controller" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Project title: Natural ventilation, solar heating and integrated low-energy building design  

E-Print Network (OSTI)

of integrated low-energy building design. In Cambridge, research was conducted at the BP Institute - which was set up in 1999 with an endowment from BP to research some of the fundamental scientific challenges that the oil industry encounters. In the CMI... in building design. Summary of Intended Outcomes: The objectives of the project will be to develop designs and technologies to: reduce energy costs of maintaining a comfortable environment with buildings through use of solar power, natural ventilation...

2009-07-10T23:59:59.000Z

42

Indoor Humidity Analysis of an Integrated Radiant Cooling and Desiccant Ventilation System  

E-Print Network (OSTI)

Radiant cooling is credited with improving energy efficiency and enhancing the comfort level as an alternative method of space cooling in mild and dry climates, according to recent research. Since radiant cooling panels lack the capability to remove latent heat, they normally are used in conjunction with an independent ventilation system, which is capable of decoupling the space sensible and latent loads. Condensation concerns limit the application of radiant cooling. This paper studies the dehumidification processes of solid desiccant systems and investigates the factors that affect the humidity levels of a radiantly cooled space. Hourly indoor humidity is simulated at eight different operating conditions in a radiantly cooled test-bed office. The simulation results show that infiltration and ventilation flow rates are the main factors affecting indoor humidity level and energy consumption in a radiantly cooled space with relatively constant occupancy. It is found that condensation is hard to control in a leaky office operated with the required ventilation rate. Slightly pressurizing the space is recommended for radiant cooling. The energy consumption simulation shows that a passive desiccant wheel can recover about 50% of the ventilation load.

Gong, X.; Claridge, D. E.

2006-01-01T23:59:59.000Z

43

Integrating preconcentrator heat controller  

DOE Patents (OSTI)

A method and apparatus for controlling the electric resistance heating of a metallic chemical preconcentrator screen, for example, used in portable trace explosives detectors. The length of the heating time-period is automatically adjusted to compensate for any changes in the voltage driving the heating current across the screen, for example, due to gradual discharge or aging of a battery. The total deposited energy in the screen is proportional to the integral over time of the square of the voltage drop across the screen. Since the net temperature rise, .DELTA.T.sub.s, of the screen, from beginning to end of the heating pulse, is proportional to the total amount of heat energy deposited in the screen during the heating pulse, then this integral can be calculated in real-time and used to terminate the heating current when a pre-set target value has been reached; thereby providing a consistent and reliable screen temperature rise, .DELTA.T.sub.s, from pulse-to-pulse.

Bouchier, Francis A. (Albuquerque, NM); Arakaki, Lester H. (Edgewood, NM); Varley, Eric S. (Albuquerque, NM)

2007-10-16T23:59:59.000Z

44

Advanced, Integrated Control for Building Operations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced, Integrated Control for Building Advanced, Integrated Control for Building Operations Advanced, Integrated Control for Building Operations The U.S. Department of Energy (DOE) is currently conducting research into advanced integrated controls for building operations and seeking to validate energy savings strategies by simulations. Project Description This project will develop an advanced, integrated control for the following building systems: Cooling and heating Lighting Ventilation Window and blind operation. A variety of operation and energy saving control strategies will be evaluated on a building equipped with alternative cooling and heating methods, including fan coil units, radiant mullions, and motorized window and blinds. Project Partners Research is being undertaken by DOE, Siemens Corporate Research, Siemens

45

SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN  

Science Conference Proceedings (OSTI)

The purpose of this document is to develop preliminary high-level functional and physical control system architectures for the proposed subsurface repository at Yucca Mountain. This document outlines overall control system concepts that encompass and integrate the many diverse systems being considered for use within the subsurface repository. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The subsurface repository design will be composed of a series of diverse systems that will be integrated to accomplish a set of overall functions and objectives. The subsurface repository contains several Instrumentation and Control (I&C) related systems including: waste emplacement systems, ventilation systems, communication systems, radiation monitoring systems, rail transportation systems, ground control monitoring systems, utility monitoring systems (electrical, lighting, water, compressed air, etc.), fire detection and protection systems, retrieval systems, and performance confirmation systems. Each of these systems involve some level of I&C and will typically be integrated over a data communication network. The subsurface I&C systems will also integrate with multiple surface-based site-wide systems such as emergency response, health physics, security and safeguards, communications, utilities and others. The scope and primary objectives of this analysis are to: (1) Identify preliminary system level functions and interface needs (Presented in the functional diagrams in Section 7.2). (2) Examine the overall system complexity and determine how and on what levels these control systems will be controlled and integrated (Presented in Section 7.2). (3) Develop a preliminary subsurface facility-wide design for an overall control system architecture, and depict this design by a series of control system functional block diagrams (Presented in Section 7.2). (4) Develop a series of physical architectures that present preliminary concepts for integrating the diverse set of control systems to be used within the subsurface repository facility (Presented in Section 7.3). (5) Develop initial concepts for an overall subsurface data communication system that can be used to integrate critical and data-intensive control systems (Presented in Section 7.4). (6) Discuss technology trends and control system design issues (Presented in Section 7.5).

C.J. Fernado

1998-09-17T23:59:59.000Z

46

Controllability and invariance of monotone systems for robust ventilation automation in buildings  

E-Print Network (OSTI)

[2] and control [3] of Heating, Ventilating and Air Conditioning (HVAC) systems leads to an improved on these matters [4]. Various paths have already been explored for the control of HVAC systems in intelligent and energy saving [7], a model-predictive strategy [8], or a fuzzy logic controller [9]. The notion of Robust

47

Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Ventilation Ventilation Controlled ventilation keeps energy-efficient homes healthy and comfortable. Learn more about ventilation. Controlled ventilation keeps energy-efficient homes healthy and comfortable. Learn more about ventilation. When creating an energy-efficient, airtight home through air sealing, it's very important to consider ventilation. Unless properly ventilated, an airtight home can seal in indoor air pollutants. Ventilation also helps control moisture-another important consideration for a healthy, energy-efficient home. Featured Whole-House Ventilation A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. Tight, energy-efficient homes require mechanical -- usually whole-house --

48

Residential Attic Ventilation In A Hot And Humid Climate: Effects Of Increased Ventilation On Thermal Performance And Moisture Control.  

E-Print Network (OSTI)

?? The reality of the effect of natural ventilation in a residential attic cavity has been the topic of many debates and scholarly reports since… (more)

Atherton, Stanley Arthur

2011-01-01T23:59:59.000Z

49

Building America Top Innovations Hall of Fame Profile … Outside Air Ventilation Controller  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

partner Davis Energy partner Davis Energy Group worked with Monley Cronin Construction to build 100 energy-efficient homes in Woodland, CA, with night- cooling ventilation systems. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.3 Assured Health, Safety, and Durability Outside Air Ventilation Controller Building America researchers developed technologies to harness the natural day-night temperature swings in the U.S. Southwest to cut cooling energy peak demand with no compromise in comfort. Building America research has shown that, in dry climates, the use of ventilation cooling can significantly reduce, delay, or completely eliminate air conditioner operation resulting in both energy savings and reduction of peak demand

50

A New Ventilation System Integrates Total Energy Recovery, Conventional Cooling and a Novel 'Passive' Dehumidification Wheel to Mitigate the Energy, Humidity Control and First Cost Concerns Often Raised when Designing for ASHRAE Standard 62-1999 Compliance  

E-Print Network (OSTI)

This paper introduces a novel, ''passive" desiccant based outdoor air preconditioning system (PDH) that is shown to be significantly more energy-efficient than all known alternatives, and has the unique ability to dehumidify outdoor air streams to very low dewpoints unattainable with conventional cooling approaches. The system allows for precise control of the indoor space humidity while delivering high quantities of outdoor air, at both peak and part load conditions, and during both occupied and unoccupied modes. Low operating cost, reasonable first cost and a significant reduction in cooling plant capacity requirements provide a life cycle cost that is substantially less than that of more conventional system approaches.

Fischer, J. C.

2000-01-01T23:59:59.000Z

51

The Integrated Environmental Control Model (IECM)  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovations for Existing Plants The Integrated Environmental Control Model (IECM) The Integrated Environmental Control Model (IECM) was developed for the National Energy Technology...

52

A genetic rule weighting and selection process for fuzzy control of heating, ventilating and air conditioning systems  

Science Conference Proceedings (OSTI)

In this paper, we propose the use of weighted linguistic fuzzy rules in combination with a rule selection process to develop accurate fuzzy logic controllers dedicated to the intelligent control of heating, ventilating and air conditioning systems concerning ... Keywords: BEMS, building energy management system, FLC, fuzzy logic controller, Fuzzy logic controllers, GA, genetic algorithm, Genetic algorithms, HVAC systems, HVAC, heating, ventilating, and air conditioning, KB, knowledge base, PMV, predicted mean vote index for thermal comfort, Rule selection, Weighted fuzzy rules

Rafael Alcalá; Jorge Casillas; Oscar Cordón; Antonio González; Francisco Herrera

2005-04-01T23:59:59.000Z

53

A field demonstration of automatic restroom ventilation control to reduce energy consumption  

SciTech Connect

This report documents the motion sensor evaluation task for the Hanford Energy Management Committee (HEMC) performed by Pacific Northwest Laboratory (PNL) to support the energy reduction mission. The study included installing automatic exhaust ventilation controls in the restrooms of the 1103 Building, 100N area. The goal of this task was to measure the benefit of automatically controlling exhaust ventilation in restrooms of an office building on the Hanford Site. The HEMC belief is that the value of controlling the fans is not limited to the power consumed by the fans, but also includes the value invested to condition (heat or cool) the makeup air. The air exhausted to the exterior of the building must ultimately be replaced by unconditioned air from the outside. This outside air must then by conditioned to maintain the comfort of building occupants. 6 figs., 1 tab.

Doggett, W.H.; Merrick, S.B.; Richman, E.E.

1989-09-01T23:59:59.000Z

54

VENTILATION NEEDS DURING CONSTRUCTION  

Science Conference Proceedings (OSTI)

The purpose of this analysis is to determine ventilation needs during construction and development of the subsurface repository and develop systems to satisfy those needs. For this analysis, construction is defined as pre-emplacement excavation and development is excavation that takes place simultaneously with emplacement. The three options presented in the ''Overall Development and Emplacement Ventilation Systems'' analysis (Reference 5.5) for development ventilation will be applied to construction ventilation in this analysis as well as adding new and updated ventilation factors to each option for both construction and development. The objective of this analysis is to develop a preferred ventilation system to support License Application Design. The scope of this analysis includes: (1) Description of ventilation conditions; (2) Ventilation factors (fire hazards, dust control, construction logistics, and monitoring and control systems); (3) Local ventilation alternatives; (4) Global ventilation options; and (5) Evaluation of options.

C.R. Gorrell

1998-07-23T23:59:59.000Z

55

Integrated control system and method  

DOE Patents (OSTI)

An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.

Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin

2013-10-29T23:59:59.000Z

56

Study of natural ventilation design by integrating the multi-zone model with CFD simulation  

E-Print Network (OSTI)

Natural ventilation is widely applied in sustainable building design because of its energy saving, indoor air qualify and indoor thermal environment improvement. It is important for architects and engineers to accurately ...

Tan, Gang, 1974-

2005-01-01T23:59:59.000Z

57

Recommended Changes to Specifications for Demand Controlled Ventilation in California's Title 24 Building Energy Efficiency Standards  

SciTech Connect

In demand-controlled ventilation (DCV), rates of outdoor air ventilation are automatically modulated as occupant density varies. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. DCV is most often used in spaces with highly variable and sometime dense occupancy. In almost all cases, carbon dioxide (CO{sub 2}) sensors installed in buildings provide the signal to the ventilation rate control system. People produce and exhale CO{sub 2} as a consequence of their normal metabolic processes; thus, the concentrations of CO{sub 2} inside occupied buildings are higher than the concentrations of CO{sub 2} in the outdoor air. The magnitude of the indoor-outdoor CO{sub 2} concentration difference decreases as the building's ventilation rate per person increases. The difference between the indoor and outdoor CO{sub 2} concentration is also a proxy for the indoor concentrations of other occupant-generated bioeffluents, such as body odors. Reviews of the research literature on DCV indicate a significant potential for energy savings, particularly in buildings or spaces with a high and variable occupancy. Based on modeling, cooling energy savings from applications of DCV are as high as 20%. With support from the California Energy Commission and the U.S. Department of Energy, the Lawrence Berkeley National Laboratory has performed research on the performance of CO{sub 2} sensing technologies and optical people counters for DCV. In addition, modeling was performed to evaluate the potential energy savings and cost effectiveness of using DCV in general office spaces within the range of California climates. The above-described research has implications for the specifications pertaining to DCV in section 121 of the California Title 24 Standard. Consequently, this document suggests possible changes in these specifications based on the research findings. The suggested changes in specifications were developed in consultation with staff from the Iowa Energy Center who evaluated the accuracy of new CO{sub 2} sensors in laboratory-based research. In addition, staff of the California Energy Commission, and their consultants in the area of DCV, provided input for the suggested changes in specifications.

Fisk, William J.; Sullivan, Douglas P.; Faulkner, David

2010-04-08T23:59:59.000Z

58

The Ventilated Ocean  

Science Conference Proceedings (OSTI)

Adiabatic theories of ocean circulation and density structure have a long tradition, from the concept of the ventilated thermocline to the notion that deep ocean ventilation is controlled by westerly winds over the Southern Ocean. This study ...

Patrick Haertel; Alexey Fedorov

2012-01-01T23:59:59.000Z

59

EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS -TBACT- DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEMS SUPPORTING WASTE TRANSFER OPERATIONS  

Science Conference Proceedings (OSTI)

This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste through the DST storage system to the Waste Treatment and Immobilizaiton Plant (WTP).

HAAS CC; KOVACH JL; KELLY SE; TURNER DA

2010-06-24T23:59:59.000Z

60

EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS (TBACT) DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEM SUPPORTING WASTE TRANSFER OPERATIONS  

Science Conference Proceedings (OSTI)

This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste throught the DST storage system to the Waste Treatment and Immobilization Plant (WTP).

KELLY SE; HAASS CC; KOVACH JL; TURNER DA

2010-06-03T23:59:59.000Z

Note: This page contains sample records for the topic "integrated ventilation controller" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Façade apertures optimization: integrating cross-ventilation performance analysis in fluid dynamics simulation  

Science Conference Proceedings (OSTI)

Performance-oriented design has as a primary aim to introduce spaces that achieve acceptable levels of human comfort. Wind-induced airflow plays a significant role in the improving occupants' comfort in a building. This paper explores the extent to which ... Keywords: building performance simulation, generative design, multiple criteria optimization, parametric design, wind-induced ventilation

Chrysanthi (Sandy) Karagkouni; Ava Fatah gen Schieck; Martha Tsigkari; Angelos Chronis

2013-04-01T23:59:59.000Z

62

Integrated Emissions Control -- Process Review Update  

Science Conference Proceedings (OSTI)

This report provides an update of multi-pollutant control processes previously evaluated in EPRI report 1006876, "Integrated Emissions Control -- Process Review."

2002-10-01T23:59:59.000Z

63

Genetic lateral and amplitude tuning with rule selection for fuzzy control of heating, ventilating and air conditioning systems  

Science Conference Proceedings (OSTI)

In this work, we propose the use of a new post-processing method for the lateral and amplitude tuning of membership functions combined with a rule selection to develop accurate fuzzy logic controllers dedicated to the control of heating, ventilating ...

R. Alcalá; J. Alcalá-Fdez; F. J. Berlanga; M. J. Gacto; F. Herrera

2006-06-01T23:59:59.000Z

64

A multi-objective evolutionary algorithm for an effective tuning of fuzzy logic controllers in heating, ventilating and air conditioning systems  

Science Conference Proceedings (OSTI)

This paper focuses on the use of multi-objective evolutionary algorithms to develop smartly tuned fuzzy logic controllers dedicated to the control of heating, ventilating and air conditioning systems, energy performance, stability and indoor comfort ... Keywords: Fuzzy logic controllers, Genetic tuning, HVAC systems, Heating, ventilating, and air conditioning systems, Linguistic 2-tuples representation, Multi-objective evolutionary algorithms, Rule selection

María José Gacto; Rafael Alcalá; Francisco Herrera

2012-03-01T23:59:59.000Z

65

Vehicle Technologies Office: Thermal Control and System Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Control and System Integration The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the...

66

Energy Efficient Building Ventilation Systems: Innovative Building-Integrated Enthalpy Recovery  

Science Conference Proceedings (OSTI)

BEETIT Project: A2 is developing a building moisture and heat exchange technology that leverages a new material and design to create healthy buildings with lower energy use. Commercial building owners/operators are demanding buildings with greater energy efficiency and healthier indoor environments. A2 is developing a membrane-based heat and moisture exchanger that controls humidity by transferring the water vapor in the incoming fresh air to the drier air leaving the building. Unlike conventional systems, A2 locates the heat and moisture exchanger within the depths of the building’s wall to slow down the air flow and increase the surface area that captures humidity, but with less fan power. The system’s integration into the wall reduces the size and demand on the air conditioning equipment and increases liable floor area flexibility.

None

2010-10-15T23:59:59.000Z

67

Assessment of Energy Savings Potential from the Use of Demand Controlled Ventilation in General Office Spaces in California  

Science Conference Proceedings (OSTI)

A prototypical office building meeting the prescriptive requirements of the 2008 California building energy efficiency standards (Title 24) was used in EnergyPlus simulations to calculate the energy savings potential of demand controlled ventilation (DCV) in five typical California climates per three design occupancy densities and two minimum ventilation rates. The assumed minimum ventilation rates in offices without DCV, based on two different measurement methods employed in a large survey, were 38 and 13 L/s per occupant. The results of the life cycle cost analysis show DCV is cost effective for office spaces if the typical minimum ventilation rate without DCV is 38 L/s per person, except at the low design occupancy of 10.8 people per 100 m2 in climate zones 3 (north coast) and 6 (south Coast). DCV was not found to be cost effective if the typical minimum ventilation rate without DCV is 13 L/s per occupant, except at high design occupancy of 21.5 people per 100 m2 in climate zones 14 (desert) and 16 (mountains). Until the large uncertainties about the base case ventilation rates in offices without DCV are reduced, the case for requiring DCV in general office spaces will be a weak case. Under the Title 24 Standards office occupant density of 10.8 people per 100 m2, DCV becomes cost effective when the base case minimum ventilation rate is greater than 42.5, 43.0, 24.0, 19.0, and 18.0 L/s per person for climate zone 3, 6, 12, 14, and 16 respectively.

Hong, Tianzhen; Fisk, William

2010-01-01T23:59:59.000Z

68

Building Science - Ventilation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Ventilation Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com Build Tight - Ventilate Right Building Science Corporation Joseph Lstiburek 2 Build Tight - Ventilate Right How Tight? What's Right? Building Science Corporation Joseph Lstiburek 3 Air Barrier Metrics Material 0.02 l/(s-m2) @ 75 Pa Assembly 0.20 l/(s-m2) @ 75 Pa Enclosure 2.00 l/(s-m2) @ 75 Pa 0.35 cfm/ft2 @ 50 Pa 0.25 cfm/ft2 @ 50 Pa 0.15 cfm/ft2 @ 50 Pa Building Science Corporation Joseph Lstiburek 4 Getting rid of big holes 3 ach@50 Getting rid of smaller holes 1.5 ach@50 Getting German 0.6 ach@50 Building Science Corporation Joseph Lstiburek 5 Best As Tight as Possible - with - Balanced Ventilation Energy Recovery Distribution Source Control - Spot exhaust ventilation Filtration

69

Advanced, Integrated Control for Building Operations to Achieve 40% Energy Saving  

SciTech Connect

we developed and demonstrated a software based integrated advanced building control platform called Smart Energy Box (SEB), which can coordinate building subsystem controls, integrate variety of energy optimization algorithms and provide proactive and collaborative energy management and control for building operations using weather and occupancy information. The integrated control system is a low cost solution and also features: Scalable component based architecture allows to build a solution for different building control system configurations with needed components; Open Architecture with a central data repository for data exchange among runtime components; Extendible to accommodate variety of communication protocols. Optimal building control for central loads, distributed loads and onsite energy resource Uses web server as a loosely coupled way to engage both building operators and building occupants in collaboration for energy conservation. Based on the open platform of SEB, we have investigated and evaluated a variety of operation and energy saving control strategies on Carnegie Mellon University Intelligent Work place which is equipped with alternative cooling/heating/ventilation/lighting methods, including radiant mullions, radiant cooling/heating ceiling panels, cool waves, dedicated ventilation unit, motorized window and blinds, and external louvers. Based on the validation results of these control strategies, they were integrated in SEB in a collaborative and dynamic way. This advanced control system was programmed and computer tested with a model of the Intelligent Workplaceâ??s northern section (IWn). The advanced control program was then installed in the IWn control system; the performance were measured and compared with that of the state of the art control system to verify the overall energy savings great than 40%. In addition advanced human machine interfaces (HMI's) were developed to communicate both with building occupants and the building operator. Lifecycle cost analyses of the advanced building control were performed, and a Building Control System Guide was prepared and published to inform owners, architects, and engineers dealing with new construction or renovation of buildings.

Dr. Zhen Song, Prof. Vivian Loftness, Dr. Kun Ji, Dr. Sam Zheng, Mr. Bertrand Lasternas, Ms. Flore Marion, Mr. Yuebin Yu

2012-10-15T23:59:59.000Z

70

Ventilative cooling  

E-Print Network (OSTI)

This thesis evaluates the performance of daytime and nighttime passive ventilation cooling strategies for Beijing, Shanghai and Tokyo. A new simulation method for cross-ventilated wind driven airflow is presented . This ...

Graça, Guilherme Carrilho da, 1972-

1999-01-01T23:59:59.000Z

71

Ventilation Systems  

Energy.gov (U.S. Department of Energy (DOE))

Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings....

72

Vehicle Technologies Office: Thermal Control and System Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Control and System Integration to someone by E-mail Share Vehicle Technologies Office: Thermal Control and System Integration on Facebook Tweet about Vehicle Technologies...

73

Integrated Predictive Demand Response Controller Research Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Predictive Demand Response Predictive Demand Response Controller Research Project Integrated Predictive Demand Response Controller Research Project The U.S. Department of Energy (DOE) is currently conducting research into integrated predictive demand response (IPDR) controllers. The project team will attempt to design an IPDR controller so that it can be used in new or existing buildings or in collections of buildings. In the case of collections of buildings, they may be colocated on a single campus or remotely located as long as they are served by a single utility or independent service operator. Project Description This project seeks to perform the necessary applied research, development, and testing to provide a communications interface using industry standard open protocols and emerging National Institute of Standards and Technology

74

Integrated Safety Management (ISM) - Work Planning and Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Work Planning and Control Integrated Safety Management (ISM) ism logo NNSA Activity Level Work Planning & Control Processes - January 2006...

75

Preoperational test report, vent building ventilation system  

Science Conference Proceedings (OSTI)

This represents a preoperational test report for Vent Building Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides Heating, Ventilation, and Air Conditioning (HVAC) for the W-030 Ventilation Building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

Clifton, F.T.

1997-11-04T23:59:59.000Z

76

Equivalence in Ventilation and Indoor Air Quality  

SciTech Connect

We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

Sherman, Max; Walker, Iain; Logue, Jennifer

2011-08-01T23:59:59.000Z

77

Assessment of Energy Savings Potential from the Use of Demand Control Ventilation Systems in General Office Spaces in California  

E-Print Network (OSTI)

Nonresidential ACM Manual 2.0.3 Outdoor Air Ventilation ACM Manual 3   Table 4 – Minimum Outdoor Air

Hong, Tianzhen

2010-01-01T23:59:59.000Z

78

INTEGRATED CONTROL OF NEXT GENERATION POWER SYSTEM  

Science Conference Proceedings (OSTI)

Control methodologies provide the necessary data acquisition, analysis and corrective actions needed to maintain the state of an electric power system within acceptable operating limits. These methods are primarily software-based algorithms that are nonfunctional unless properly integrated with system data and the appropriate control devices. Components of the control of power systems today include protective relays, supervisory control and data acquisition (SCADA), distribution automation (DA), feeder automation, software agents, sensors, control devices and communications. Necessary corrective actions are still accomplished using large electromechanical devices such as vacuum, oil and gas-insulated breakers, capacitor banks, regulators, transformer tap changers, reclosers, generators, and more recently FACTS (flexible AC transmission system) devices. The recent evolution of multi-agent system (MAS) technologies has been reviewed and effort made to integrate MAS into next generation power systems. A MAS can be defined as ��a loosely-coupled network of problem solvers that work together to solve problems that are beyond their individual capabilities��. These problem solvers, often called agents, are autonomous and may be heterogeneous in nature. This project has shown that a MAS has significant advantages over a single, monolithic, centralized problem solver for next generation power systems. Various communication media are being used in the electric power system today, including copper, optical fiber and power line carrier (PLC) as well as wireless technologies. These technologies have enabled the deployment of substation automation (SA) at many facilities. Recently, carrier and wireless technologies have been developed and demonstrated on a pilot basis. Hence, efforts have been made by this project to penetrate these communication technologies as an infrastructure for next generation power systems. This project has thus pursued efforts to use specific MAS methods as well as pertinent communications protocols to imbed and assess such technologies in a real electric power distribution system, specifically the Circuit of the Future (CoF) developed by Southern California Edison (SCE). By modeling the behavior and communication for the components of a MAS, the operation and control of the power distribution circuit have been enhanced. The use of MAS to model and integrate a power distribution circuit offers a significantly different approach to the design of next generation power systems. For example, ways to control a power distribution circuit that includes a micro-grid while considering the impacts of thermal constraints, and integrating voltage control and renewable energy sources on the main power system have been pursued. Both computer simulations and laboratory testbeds have been used to demonstrate such technologies in electric power distribution systems. An economic assessment of MAS in electric power systems was also performed during this project. A report on the economic feasibility of MAS for electric power systems was prepared, and particularly discusses the feasibility of incorporating MAS in transmission and distribution (T&D) systems. Also, the commercial viability of deploying MAS in T&D systems has been assessed by developing an initial case study using utility input to estimate the benefits of deploying MAS. In summary, the MAS approach, which had previously been investigated with good success by APERC for naval shipboard applications, has now been applied with promising results for enhancing an electric power distribution circuit, such as the Circuit of the Future developed by Southern California Edison. The results for next generation power systems include better ability to reconfigure circuits, improve protection and enhance reliability.

None

2010-02-28T23:59:59.000Z

79

Simulation-based assessment of the energy savings benefits of integrated control in office buildings  

SciTech Connect

The purpose of this study is to use existing simulation tools to quantify the energy savings benefits of integrated control in office buildings. An EnergyPlus medium office benchmark simulation model (V1.0_3.0) developed by the Department of Energy (DOE) was used as a baseline model for this study. The baseline model was modified to examine the energy savings benefits of three possible control strategies compared to a benchmark case across 16 DOE climate zones. Two controllable subsystems were examined: (1) dimming of electric lighting, and (2) controllable window transmission. Simulation cases were run in EnergyPlus V3.0.0 for building window-to-wall ratios (WWR) of 33percent and 66percent. All three strategies employed electric lighting dimming resulting in lighting energy savings in building perimeter zones ranging from 64percent to 84percent. Integrated control of electric lighting and window transmission resulted in heating, ventilation, and air conditioning (HVAC) energy savings ranging from ?1percent to 40percent. Control of electric lighting and window transmission with HVAC integration (seasonal schedule of window transmission control) resulted in HVAC energy savings ranging from 3percent to 43percent. HVAC energy savings decreased moving from warm climates to cold climates and increased when moving from humid, to dry, to marine climates.

Hong, T.; Shen, E.

2009-11-01T23:59:59.000Z

80

CVG-venalum Potline Control and Supervisory Integrated System ...  

Science Conference Proceedings (OSTI)

To fulfill these targets, CVG-Venalum developed an aluminum reduction pot control and supervisory integrated system (VEN-PCSIS). The central control unit of ...

Note: This page contains sample records for the topic "integrated ventilation controller" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

AN INTEGRATED BIOLOGICAL CONTROL SYSTEM AT HANFORD  

SciTech Connect

In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimated spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

JOHNSON AR; CAUDILL JG; GIDDINGS RF; RODRIGUEZ JM; ROOS RC; WILDE JW

2010-02-11T23:59:59.000Z

82

Cliffside 6 integrated emissions control system  

Science Conference Proceedings (OSTI)

The article takes an inside look into the environmental hardware going into one of the highest profile coal-fired power plants projects in the US, a new 800 MW supercritical coal-fired facility at Cliffside, NC, Unit C6. This is currently under construction and scheduled to be in commercial service in 2012. To evaluate the alternative air quality control system (AQCS) options, Duke Energy established a cross-functional team and used a decision analysis process to select the 'best balanced choice'. Alstom's integrated AQCS which combines dry and wet flue gas desulfurization systems was the best balanced choice. Replacing an ESP with a spray dryer absorber achieved major cost savings and eliminated the need for wastewater treatment. 1 ref., 2 photos.

McGinnis, D.G.; Rader, P.C.; Gansley, R.R.; Wang, W. [Duke Energy, Charlotte, NC (United States)

2009-04-15T23:59:59.000Z

83

Integrated Inverter Control for Multiple Electric Machines  

engine volume to house them all. To improve options for motor design, ORNL researchers invented an integrated

84

Documentation of the Irvine Integrated Corridor Freeway Ramp Metering and Arterial Adaptive Control Field Operational Test  

E-Print Network (OSTI)

Integrated Ramp Metering/Adaptive Signal Control FieldIntegrated Ramp Metering/Adaptive Signal Control FieldTest Plan," Integrated Ramp Metering/Adaptive Signal Control

McNally, M. G.; Moore, II, James E.; MacCarley, C. Arthur

2001-01-01T23:59:59.000Z

85

Evaluating the controlled release properties of inhaled nanoparticles using isolated, perfused, and ventilated lung models  

Science Conference Proceedings (OSTI)

Polymeric nanoparticles meet the increasing interest for inhalation therapy and hold great promise to improve controlled drug delivery to the lung. The synthesis of tailored polymeric materials and the improvement of nanoparticle preparation techniques ...

Moritz Beck-Broichsitter; Thomas Schmehl; Werner Seeger; Tobias Gessler

2011-01-01T23:59:59.000Z

86

Transition dynamics between the multiple steady states in natural ventilation systems : from theories to applications in optimal controls  

E-Print Network (OSTI)

In this study, we investigated the multiple steady state behavior, an important observation in numerical and experimental studies in natural ventilation systems. The-oretical models are developed and their applications in ...

Yuan, Jinchao

2007-01-01T23:59:59.000Z

87

Integrated Building Energy and Control Systems: Challenges, Needs...  

NLE Websites -- All DOE Office Websites (Extended Search)

EETD Safety Program Development Contact Us Department Contacts Media Contacts Integrated Building Energy and Control Systems: Challenges, Needs and Opportunities Speaker(s):...

88

Integrated Forecasting and Inventory Control for Seasonal Demand  

E-Print Network (OSTI)

Mar 14, 2008 ... Abstract: We present a data-driven forecasting technique with integrated inventory control for seasonal data and compare it to the traditional ...

89

Subsurface Ventilation System Description Document  

Science Conference Proceedings (OSTI)

The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

Eric Loros

2001-07-25T23:59:59.000Z

90

Subsurface Ventilation System Description Document  

Science Conference Proceedings (OSTI)

The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

NONE

2000-10-12T23:59:59.000Z

91

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating, Ventilation and Air-Conditioning (HVAC) system for the computer room of the CERN Control Centre  

E-Print Network (OSTI)

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating, Ventilation and Air-Conditioning (HVAC) system for the computer room of the CERN Control Centre

2012-01-01T23:59:59.000Z

92

Review of Residential Ventilation Technologies.  

NLE Websites -- All DOE Office Websites (Extended Search)

Review of Residential Ventilation Technologies. Review of Residential Ventilation Technologies. Title Review of Residential Ventilation Technologies. Publication Type Journal Article LBNL Report Number LBNL-57730 Year of Publication 2007 Authors Russell, Marion L., Max H. Sherman, and Armin F. Rudd Journal HVAC&R Research Volume 13 Start Page Chapter Pagination 325-348 Abstract This paper reviews current and potential ventilation technologies for residential buildings in North America and a few in Europe. The major technologies reviewed include a variety of mechanical systems, natural ventilation, and passive ventilation. Key parameters that are related to each system include operating costs, installation costs, ventilation rates, heat recovery potential. It also examines related issues such as infiltration, duct systems, filtration options, noise, and construction issues. This report describes a wide variety of systems currently on the market that can be used to meet ASHRAE Standard 62.2. While these systems generally fall into the categories of supply, exhaust or balanced, the specifics of each system are driven by concerns that extend beyond those in the standard and are discussed. Some of these systems go beyond the current standard by providing additional features (such as air distribution or pressurization control). The market will decide the immediate value of such features, but ASHRAE may wish to consider modifications to the standard in the future.

93

NREL: Transmission Grid Integration - Active Power Controls  

NLE Websites -- All DOE Office Websites (Extended Search)

Active Power Controls Active Power Controls NREL has teamed with the Electric Power Research Institute, the Colorado School of Mines, the University of Colorado, and other industry members to research the potential of wind turbines and power plants to provide active power control (also known as real power or frequency control) to the electric power system. Under this multiyear project, researchers will perform simulations and field tests at the National Wind Technology Center to analyze system benefits and impacts on the operations of wind turbines and the electric power system. The project considers five topics: Steady state and economics Dynamic interconnection stability Controls design and simulation Controls testing and loads and structural impacts Dissemination of results.

94

Integration of Asset Information into Control Centers  

Science Conference Proceedings (OSTI)

This report documents the 2012 results of a multi-year R&D project, the long-term goal of which is to facilitate the development and integration of information, communication, and visualization analytics and tools that leverage the state-of-the-art equipment sensor technologies, in order to provide grid operators real-time information on key pieces of transmission equipment across the power system of interest. In recent years, transmission operators have expressed keen interest in having such ...

2012-12-14T23:59:59.000Z

95

Integrated Inverter Control for Multiple Electric Machines ...  

Wind Energy; Partners (27 ... control for directing multiple inverters with a single ... 57, 62), which may include a three-phase main ...

96

Status of Integrated Emission Control Process Development  

Science Conference Proceedings (OSTI)

As the need for more stringent controls for power plant emissions increases, so does the need for more cost-effective approaches to reducing these pollutants.

2005-11-17T23:59:59.000Z

97

Review of Literature on Terminal Box Control, Occupancy Sensing Technology and Multi-zone Demand Control Ventilation (DCV)  

Science Conference Proceedings (OSTI)

This report presents an overall review of the standard requirement, the terminal box control, occupancy sensing technology and DCV. There is system-specific guidance for single-zone systems, but DCV application guidance for multi-zone variable air volume (VAV) systems is not available. No real-world implementation case studies have been found using the CO2-based DCV. The review results also show that the constant minimum air flow set point causes excessive fan power consumption and potential simultaneous heating and cooling. Occupancy-based control (OBC) is needed for the terminal box in order to achieve deep energy savings. Key to OBC is a technology for sensing the actual occupancy of the zone served in real time. Several technologies show promise, but none currently fully meets the need with adequate accuracy and sufficiently low cost.

Liu, Guopeng; Dasu, Aravind R.; Zhang, Jian

2012-03-01T23:59:59.000Z

98

Liquid ventilation  

E-Print Network (OSTI)

For 350 million years, fish have breathed liquid through gills. Mammals evolved lungs to breathe air. Rarely, circumstances can occur when a mammal needs to `turn back the clock' to breathe through a special liquid medium. This is particularly true if surface tension at the air-liquid interface of the lung is increased, as in acute lung injury. In this condition, surface tension increases because the pulmonary surfactant system is damaged, causing alveolar collapse, atelectasis, increased right-to-left shunt and hypoxaemia. 69 The aims of treatment are: (i) to offset increased forces causing lung collapse by applying mechanical ventilation with PEEP; (ii) to decrease alveolar surface tension with exogenous surfactant; (iii) to eliminate the air-liquid interface by filling the lung with a fluid in

U. Kaisers; K. P. Kelly; T. Busch

2003-01-01T23:59:59.000Z

99

Control-flow integrity principles, implementations, and applications  

Science Conference Proceedings (OSTI)

Current software attacks often build on exploits that subvert machine-code execution. The enforcement of a basic safety property, control-flow integrity (CFI), can prevent such attacks from arbitrarily controlling program behavior. CFI enforcement is ... Keywords: Binary rewriting, control-flow graph, inlined reference monitors, vulnerabilities

Martín Abadi; Mihai Budiu; Úlfar Erlingsson; Jay Ligatti

2009-10-01T23:59:59.000Z

100

Integrated alarm annunciation and entry control systems -- Survey results  

SciTech Connect

This report provides the results and analyses of a detailed survey undertaken in Summer 1993 to address integrated intrusion detection alarm annunciation and entry control system issues. This survey was undertaken as a first attempt toward beginning to answer questions about integrated systems and commercial capabilities to meet or partially meet US Department of Energy (DOE) site needs.

Clever, J.J.; Arakaki, L.H.; Monaco, F.M.; Juarros, L.E.; Quintana, G.R.

1993-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated ventilation controller" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Integrated Language Approach to Simulation and Control  

E-Print Network (OSTI)

Winning,D.J. Davie,H. Siebert,J.P. Grant,N.F. Aitken,K.H. IEE Fourth International Conference on Trends in On-Line Computer Control, 1982, University of Warwick, England.

Winning, D.J.; Davie, H.; Siebert, J.P.

102

Vehicle Technologies Office: Thermal Control and System Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Control and System Integration Thermal Control and System Integration The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies. Thermal control is a critical element to enable power density, cost, and reliability of Power Electronics and Electric Machines (PEEM). Current hybrid electric vehicle systems typically use a dedicated 65°C coolant loop to cool the electronics and electric machines. A primary research focus is to develop cooling technologies that will enable the use of coolant temperatures of up to 105°C. Enabling the higher-temperature coolant would reduce system cost by using a single loop to cool the PEEM, internal combustion engine or fuel cell. Several candidate cooling technologies are being investigated along with the potential to reduce material and component costs through the use of more aggressive cooling. Advanced component modeling, fabrication, and manufacturing techniques are also being investigated.

103

Commissioning Ventilated Containment Systems in the Laboratory  

SciTech Connect

This Best Practices Guide focuses on the specialized approaches required for ventilated containment systems, understood to be all components that drive and control ventilated enclosures and local exhaust systems within the laboratory. Geared toward architects, engineers, and facility managers, this guide provides information about technologies and practices to use in designing, constructing, and operating operating safe, sustainable, high-performance laboratories.

Not Available

2008-08-01T23:59:59.000Z

104

Preoperational test report, primary ventilation system  

SciTech Connect

This represents a preoperational test report for Primary Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space filtered venting of tanks AY101, AY102, AZ101, AZ102. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

Clifton, F.T.

1997-11-04T23:59:59.000Z

105

Buried waste integrated demonstration human engineered control station. Final report  

SciTech Connect

This document describes the Human Engineered Control Station (HECS) project activities including the conceptual designs. The purpose of the HECS is to enhance the effectiveness and efficiency of remote retrieval by providing an integrated remote control station. The HECS integrates human capabilities, limitations, and expectations into the design to reduce the potential for human error, provides an easy system to learn and operate, provides an increased productivity, and reduces the ultimate investment in training. The overall HECS consists of the technology interface stations, supporting engineering aids, platform (trailer), communications network (broadband system), and collision avoidance system.

Not Available

1994-09-01T23:59:59.000Z

106

Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Ventilation Ventilation May 7, 2012 - 2:49pm Addthis This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. What does this mean for me? After you've reduced air leakage in your home, adequate ventilation is critical for health and comfort. Depending on your climate, there are a number of strategies to ventilate your home. Ventilation is very important in an energy-efficient home. Air sealing techniques can reduce air leakage to the point that contaminants with known health effects such as formaldehyde, volatile organic compounds, and radon

107

Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Ventilation Ventilation May 7, 2012 - 2:49pm Addthis This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. What does this mean for me? After you've reduced air leakage in your home, adequate ventilation is critical for health and comfort. Depending on your climate, there are a number of strategies to ventilate your home. Ventilation is very important in an energy-efficient home. Air sealing techniques can reduce air leakage to the point that contaminants with known health effects such as formaldehyde, volatile organic compounds, and radon

108

VENTILATION MODEL REPORT  

SciTech Connect

The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their postclosure analyses.

V. Chipman

2002-10-31T23:59:59.000Z

109

Review on Ventilation Rate Measuring and Modeling Techniques in Naturally  

NLE Websites -- All DOE Office Websites (Extended Search)

Review on Ventilation Rate Measuring and Modeling Techniques in Naturally Review on Ventilation Rate Measuring and Modeling Techniques in Naturally Ventilated Building Speaker(s): Sezin Eren Ozcan Date: May 16, 2006 - 12:00pm Location: Bldg. 90 Due to limited energy sources, countries are looking for alternative solutions to decrease energy needs. In that context, natural ventilation can be seen as a very attractive sustainable technique in building design. However, understanding of ventilation dynamics is needed to provide an efficient control. Ventilation rate has to be determined not only in terms of energy, but also for controlling indoor air quality and emissions. For these reasons, agricultural buildings (livestock houses, greenhouses, etc.), naturally ventilated industrial buildings, and residences require a reliable ventilation rate measuring technique. Measuring techniques suffer

110

INTEGRATED DESIGN AND CONTROL OF HEAT EXCHANGER NETWORKS  

E-Print Network (OSTI)

INTEGRATED DESIGN AND CONTROL OF HEAT EXCHANGER NETWORKS #12; by Knut Wiig Mathisen A Thesis examples in their research attitudes. Truls also introduced me to heat exchanger networks, and has been have worked closely together with John Ulvøy on a paper on heat exchanger network synthesis

Skogestad, Sigurd

111

Medical Image Integrity Control Combining Digital Signature and Lossless Watermarking  

E-Print Network (OSTI)

Medical Image Integrity Control Combining Digital Signature and Lossless Watermarking W. Pan1,3 , G protection of medical content becomes a major issue of computer security. Since medical contents are more proposed as a com- plementary mechanism for medical data protection. In this paper, we focus

Paris-Sud XI, Université de

112

Integrative path planning and motion control for handling large components  

Science Conference Proceedings (OSTI)

For handling large components a large workspace and high precision are required. In order to simplify the path planning for automated handling systems, this task can be divided into global, regional and local motions. Accordingly, different types of ... Keywords: integrative production, motion control, path planning, robotic assembly application

Rainer Müller; Martin Esser; Markus Janssen

2011-12-01T23:59:59.000Z

113

Integration of building envelope and services via control technologies  

Science Conference Proceedings (OSTI)

The last decade offered the foundation of several seminal concepts, which although natively composite and complex, amply demonstrate the potential of 21st century technology to affect important societal trends. Among notable candidates, the convergence ... Keywords: A/V ratio, EIB- KONNEX technology, bioclimatic architecture, bits, building envelope, building facades, bytes, communication protocols, control technologies, data telegram, integration, power line technology, services

Chris J. Koinakis; John K. Sakellaris

2009-07-01T23:59:59.000Z

114

An Integrated Architecture for Demand Response Communications and Control  

E-Print Network (OSTI)

and produced a maximum demand reduction Proceedings of the 41st Hawaii International Conference on SystemAn Integrated Architecture for Demand Response Communications and Control Michael LeMay, Rajesh,gross,cgunter}@uiuc.edu Abstract In the competitive electricity structure, demand re- sponse programs

Gross, George

115

Integration of fluctuating energy by electricity price control  

E-Print Network (OSTI)

Integration of fluctuating energy by electricity price control Master Thesis Olivier Corradi can be activated by means of a varying electricity price. We will focus on the appliances that offer results in a price that may be characterised as the market price of electricity in the Nordic countries

116

Ventilation in Multifamily Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2011 , 2011 Ventilation in Multifamily Buildings Welcome to the Webinar! We will start at 2:00 PM Eastern Time Be sure that you are also dialed into the telephone conference call: Dial-in number: 888-324-9601; Pass code: 5551971 Download the presentation at: www.buildingamerica.gov/meetings.html Building Technologies Program eere.energy.gov Building America: Introduction November 1, 2011 Cheryn Engebrecht Cheryn.engebrecht@nrel.gov Building Technologies Program Building Technologies Program eere.energy.gov * Reduce energy use in new and existing residential buildings * Promote building science and systems engineering / integration approach * "Do no harm": Ensure safety, health and durability are maintained or improved * Accelerate adoption of high performance technologies

117

Ventilation problems in heritage buildings  

Science Conference Proceedings (OSTI)

The control of indoor conditions in heritage buildings, such as castles or museums, is of paramount importance for the proper preservation of the artworks kept in. As heritage buildings are often not equipped with HVAC systems, it is necessary to provide ... Keywords: CO2 concentration, IAQ, heritage buildings, ventilation

S. Costanzo; A. Cusumano; C. Giaconia; S. Mazzacane

2007-05-01T23:59:59.000Z

118

Fuzzy adaptive control for the actuators position control and modeling of an expert system  

Science Conference Proceedings (OSTI)

In this paper, a heating, ventilating and air-conditioning (HVAC) system was designed and two different damper gap rates (actuators position) of the HVAC system were controlled by a conventional PID (proportional-integral-derivative) controller. One ... Keywords: Actuator position control, Air flow control, An expert system, Fuzzy adaptive control (FAC), Humidity control, Modeling, PID control, Software architecture

Servet Soyguder; Hasan Alli

2010-03-01T23:59:59.000Z

119

A Ventilation Index for Tropical Cyclones  

E-Print Network (OSTI)

An important environmental control of both tropical cyclone intensity and genesis is vertical wind shear. One hypothesized pathway by which vertical shear affects tropical cyclones is midlevel ventilation—or the flux of ...

Tang, Brian

120

Whole-House Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

into the house to be filtered to remove pollen and dust or dehumidified to provide humidity control Supply ventilation systems work best in hot or mixed climates. Because they...

Note: This page contains sample records for the topic "integrated ventilation controller" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Oxy-fuel combustion with integrated pollution control  

SciTech Connect

An oxygen fueled integrated pollutant removal and combustion system includes a combustion system and an integrated pollutant removal system. The combustion system includes a furnace having at least one burner that is configured to substantially prevent the introduction of air. An oxygen supply supplies oxygen at a predetermine purity greater than 21 percent and a carbon based fuel supply supplies a carbon based fuel. Oxygen and fuel are fed into the furnace in controlled proportion to each other and combustion is controlled to produce a flame temperature in excess of 3000 degrees F. and a flue gas stream containing CO2 and other gases. The flue gas stream is substantially void of non-fuel borne nitrogen containing combustion produced gaseous compounds. The integrated pollutant removal system includes at least one direct contact heat exchanger for bringing the flue gas into intimated contact with a cooling liquid to produce a pollutant-laden liquid stream and a stripped flue gas stream and at least one compressor for receiving and compressing the stripped flue gas stream.

Patrick, Brian R. (Chicago, IL); Ochs, Thomas Lilburn (Albany, OR); Summers, Cathy Ann (Albany, OR); Oryshchyn, Danylo B. (Philomath, OR); Turner, Paul Chandler (Independence, OR)

2012-01-03T23:59:59.000Z

122

ASHRAE and residential ventilation  

E-Print Network (OSTI)

conditioning Engineers. 2001. ASHRAE, “Indoor Air QualityABOUT/IAQ_papr01.htm ASHRAE. “Standard 62.2-2003:Ventilation Requirements. ” ASHRAE Journal, pp. 51- 55, June

Sherman, Max H.

2003-01-01T23:59:59.000Z

123

Measuring Residential Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

measured. The local exhaust flows can be measured or can meet prescriptive ducting and fan labeling requirements that use ratings provided by the Home Ventilating Institute (HVI,...

124

Integrated safeguards & security for material protection, accounting, and control.  

SciTech Connect

Traditional safeguards and security design for fuel cycle facilities is done separately and after the facility design is near completion. This can result in higher costs due to retrofits and redundant use of data. Future facilities will incorporate safeguards and security early in the design process and integrate the systems to make better use of plant data and strengthen both systems. The purpose of this project was to evaluate the integration of materials control and accounting (MC&A) measurements with physical security design for a nuclear reprocessing plant. Locations throughout the plant where data overlap occurs or where MC&A data could be a benefit were identified. This mapping is presented along with the methodology for including the additional data in existing probabilistic assessments to evaluate safeguards and security systems designs.

Duran, Felicia Angelica; Cipiti, Benjamin B.

2009-10-01T23:59:59.000Z

125

Model Predictive Control of Integrated Gasification Combined Cycle Power Plants  

SciTech Connect

The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

B. Wayne Bequette; Priyadarshi Mahapatra

2010-08-31T23:59:59.000Z

126

Performance Assessment of Photovoltaic Attic Ventilator Fans  

E-Print Network (OSTI)

Controlling summer attic heat gain is important to reducing air conditioning energy use in homes in hot-humid climates. Both heat transfer through ceilings and t attic duct systems can make up a large part of peak cooling demand, Attic ventilation has long been identified as a method to abate such heat gains. We present test results from using the photovoltaic (PV) attic ventilator fans in a test home to assess impact on attic and cooling energy performance.

Parker, D. S.; Sherwin, J. R.

2000-01-01T23:59:59.000Z

127

Why We Ventilate  

NLE Websites -- All DOE Office Websites (Extended Search)

Why We Ventilate Why We Ventilate Title Why We Ventilate Publication Type Conference Paper LBNL Report Number LBNL-5093E Year of Publication 2011 Authors Logue, Jennifer M., Phillip N. Price, Max H. Sherman, and Brett C. Singer Conference Name Proceedings of the 2011 32nd AIVC Conference and 1st Tightvent Conference Date Published October 2011 Conference Location Brussels, Belgium Keywords indoor environment department, resave, ventilation and air cleaning Abstract It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of "good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

128

Multifamily Ventilation Retrofit Strategies  

SciTech Connect

In multifamily buildings, central ventilation systems often have poor performance, overventilating some portions of the building (causing excess energy use), while simultaneously underventilating other portions (causing diminished indoor air quality). BSC and Innova Services Corporation performed a series of field tests at a mid-rise test building undergoing a major energy audit and retrofit, which included ventilation system upgrades.

Ueno, K.; Lstiburek, J.; Bergey, D.

2012-12-01T23:59:59.000Z

129

Simulation-based assessment of the energy savings benefits of integrated control in office buildings  

E-Print Network (OSTI)

building energy analysis using EnergyPlus. The benchmarkenergy savings benefits of integrated control using the medium office building benchmark

Hong, T.

2011-01-01T23:59:59.000Z

130

INFORMATION INTEGRATION IN CONTROL ROOMS AND TECHNICAL OFFICES IN NUCLEAR POWER PLANTS  

E-Print Network (OSTI)

Information integration in control rooms and technical offices in nuclear power plants Report prepared within the framework of the

unknown authors

2001-01-01T23:59:59.000Z

131

Integrated Numerical Modeling Process for Evaluating Automobile Climate Control Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

FCC-70 FCC-70 Integrated Numerical Modeling Process for Evaluating Automobile Climate Control Systems John Rugh National Renewable Energy Laboratory Copyright © 2002 Society of Automotive Engineers, Inc. ABSTRACT The air-conditioning (A/C) system compressor load can significantly impact the fuel economy and tailpipe emissions of conventional and hybrid electric automobiles. With the increasing emphasis on fuel economy, it is clear that the A/C compressor load needs to be reduced. In order to accomplish this goal, more efficient climate control delivery systems and reduced peak soak temperatures will be necessary to reduce the impact of vehicle A/C systems on fuel economy and tailpipe emissions. Good analytical techniques are important in identifying promising concepts. The goal at

132

Multifamily Ventilation - Best Practice?  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multifamily Ventilation - Best Practice? Multifamily Ventilation - Best Practice? Dianne Griffiths April 29, 2013 Presentation Outline * Basic Objectives * Exhaust Systems * Make-up Air Systems Two Primary Ventilation Objectives 1) Providing Fresh Air - Whole-House 2) Removing Pollutants - Local Exhaust Our goal is to find the simplest solution that satisfies both objectives while minimizing cost and energy impacts. Common Solution: Align local exhaust with fresh air requirements (Ex: 25 Bath + 25 Kitchen) Exhaust-Driven Fresh Air Design * Exhaust slightly depressurizes the units * Outside air enters through leaks, cracks, or planned inlets * Widely used in the North Multifamily Ventilation Best Practice * Step 1: Understand ventilation requirements * Step 2: Select the simplest design that can

133

Whole Building Ventilation Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Whole-Building Whole-Building Ventilation Systems for Existing Homes © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved. Home Performance / Weatherization  Addressing ventilation is the exception  Max tightness, e.g. BPI's "Building Airflow Standard" (BAS)  References ASHRAE 62-89  BAS = Max [0.35 ACH, 15 CFM/person], CFM50 eq.  If BD tests show natural infiltration below BAS...  Ventilation must be recommended or installed.  SO DON'T AIR SEAL TO MUCH! © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved. Ventilation Requirements Ventilation systems for existing homes that are:

134

Microsoft PowerPoint - S05-03_Boomer_Tank Integrity 11-2010 Final.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Kayle Boomer Kayle Boomer Kayle Boomer Hanford Tank Hanford Tank Integrity Project Integrity Project November 17, 2010 November 17, 2010 Print Close Tank Operations Contract 2 Page 2 Overview of Tank Integrity * Tank History * Double-Shell Tank Integrity Project - Objectives - Inspections - Chemistry Control * Single-Shell Tank Integrity Project - Objectives - Structural Integrity and Leak Monitoring - SST Integrity Panel Print Close Tank Operations Contract 3 Page 3 Double-shell Tank Integrity Program (DSTIP) *DST UT/Visual *DST System Videos *DST System Line Tests *DST Pit Inspections *DST Facility Integrity Assessments *Technical Safety Requirements for Chemistry Control *Annulus Ventilation System Operation *Corrosion Probe Development *Laboratory Testing INTEGRITY ASSESSME NTS CHEMISTRY CONTROL

135

Design of a step-down DC-DC controller integrated circuit with adaptive dead-time control  

E-Print Network (OSTI)

A constant-frequency peak current mode synchronous step-down DC-DC controller integrated circuit has been designed with adaptive dead-time control. The adaptive dead-time control circuitry is implemented as digital ...

Li, Zhipeng, M. Eng. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

136

AEDG Implementation Recommendations: Ventilation | Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation Ventilation The Advanced Energy Design Guide (AEDG) for Small Office Buildings, 30% series, seeks to achieve 30% savings over ASHRAE Standard 90.1-1999. This guide focuses on improvements to small office buildings, less than 20,000ft2. The recommendations in this article are adapted from the implementation section of the guide and focus on ventilation air; exhaust air; control strategies; carbon dioxide sensors; economizers. Publication Date: Wednesday, May 13, 2009 air_ventilation.pdf Document Details Affiliation: DOE BECP Focus: Compliance Building Type: Commercial Code Referenced: ASHRAE Standard 90.1-1999 Document type: AEDG Implementation Recommendations Target Audience: Architect/Designer Builder Contractor Engineer State: All States Contacts Web Site Policies

137

Solar ventilation preheating: FEMP fact sheet  

DOE Green Energy (OSTI)

Installing a ''solar wall'' to heat air before it enters a building, called solar ventilation preheating, is one of the most efficient ways of reducing energy costs using clean and renewable energy. A solar wall can be designed as an integral part of a new building or it can be added in a retrofit project.

Clyne, R.

1999-09-30T23:59:59.000Z

138

Evaluation of Existing Technologies for Meeting Residential Ventilation  

E-Print Network (OSTI)

) ........................................................................... 9 5. Central Fan Integrated (CFI) Supply with air inlet in return and continuously operating exhaust................................................................................................ 10 7. CFI with 7% Outside Air (OA), without continuous exhaust ­ not 62.2 compliant Ventilation from ACM........................................................................ 11

139

Residential pollutants and ventilation strategies: Moisture and combustion products  

SciTech Connect

This paper reviews literature that reports investigations of residential ventilation and indoor air quality. Two important residential pollutant classes, moisture and combustion pollutants, are examined. A companion paper examines volatile organic compounds and radon. Control strategies recommended from the review include appropriate building design to prevent or limit the sources of the pollutants within the space, proper operation and maintenance to prevent adverse conditions from developing during the building's life and appropriate use of ventilation. The characteristics of these pollutant sources suggest that ventilation systems in residences should have several properties. Moisture control puts significant restrictions on a ventilation system. The system should function continuously (averaged over days) and distribute ventilation throughout the habitable space. Combustion sources require task ventilation that functions reliably.

Hadlich, D.E.; Grimsrud, D.T.

1999-07-01T23:59:59.000Z

140

Dynamic MLC leaf sequencing for integrated linear accelerator control systems  

Science Conference Proceedings (OSTI)

Purpose: Leaf positions for dynamic multileaf collimator (DMLC) intensity modulated radiation therapy must be closely synchronized with MU delivery. For the Varian C3 series MLC controller, if the planned trajectory (leaf position vs. MU) requires velocities exceeding the capability of the MLC, the leaves fall behind the planned positions, causing the controller to momentarily hold the beam and thereby introduce dosimetric errors. We investigated the merits of a new commercial linear accelerator, TrueBeam, that integrates MLC control with prospective dose rate modulation. If treatment is delivered at dose rates so high that leaves would fall behind, the controller reduces the dose rate such that harmony between MU and leaf position is preserved. Methods: For three sets of DMLC leaf trajectories, point doses and two-dimensional dose distributions were measured in phantom using an ionization chamber and film, respectively. The first set, delivered using both a TrueBeam and a conventional C3 controller, comprised a single leaf bank closing at planned velocities of 2.4, 7.1, and 14 cm/s. The maximum achievable leaf velocity for both systems was 3 cm/s. The remaining two sets were derived from clinical fluence maps using a commercial treatment planning system for a range of planned dose rates and were delivered using TrueBeam set to the maximum dose rate, 600 MU/min. Generating trajectories using a planned dose rate that is lower than the delivery dose rate effectively increased the leaf velocity constraint used by the planning system for trajectory calculation. The second set of leaf trajectories was derived from two fluence maps containing regions of zero fluence obtained from representative beams of two different patient treatment plans. The third set was obtained from all nine fields of a head and neck treatment plan. For the head and neck plan, dose-volume histograms of the spinal cord and target for each planned dose rate were obtained. Results: For the single closing leaf bank trajectories, the TrueBeam control system reduced the dose rate such that the leaf velocity was less than the maximum. Dose deviations relative to the 2.4 cm/s trajectory were less than 3%. For the conventional controller, the leaves repeatedly fell behind the planned positions until the beam hold threshold was reached, resulting in deviations of up to 19% relative to the 2.4 cm/s trajectory. For the two clinical fluence maps, reducing the planned dose rate reduced the dose in the zero fluence regions by 15% and 24% and increased the delivery time by 5 s and 14 s. No significant differences were noted in the high and intermediate dose regions measured using film. The DVHs for the head and neck plan showed a 10% reduction in cord dose for 20 MU/min relative to 600 MU/min sequencing dose rate, which was confirmed by measurement. No difference in target DVHs were observed. The reduction in cord dose increased total treatment time by 1.8 min. Conclusions: Leaf sequencing algorithms for integrated control systems should be modified to reflect the reduced importance of maximum leaf velocity for accurate dose delivery.

Popple, Richard A.; Brezovich, Ivan A. [Department of Radiation Oncology, University of Alabama at Birmingham, 1700 6th Avenue South, Birmingham, Alabama 35249-6832 (United States)

2011-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "integrated ventilation controller" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Residential Ventilation & Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Residential Ventilation & Energy Figure 1: Annual Average Ventilation Costs of the Current U.S. Single-Family Housing Stock ($/year/house). Infiltration and ventilation in dwellings is conventionally believed to account for one-third to one-half of space conditioning energy. Unfortunately, there is not a great deal of measurement data or analysis to substantiate this assumption. As energy conservation improvements to the thermal envelope continue, the fraction of energy consumed by the conditioning of air may increase. Air-tightening programs, while decreasing energy requirements, have the tendency to decrease ventilation and its associated energy penalty at the possible expense of adequate indoor air quality. Therefore, more energy may be spent on conditioning air.

142

Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(often required by building codes) will help to reduce your use of air conditioning, and attic fans may also help keep cooling costs down. Learn More Whole-House Ventilation...

143

Why We Ventilate  

SciTech Connect

It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of"good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

Logue, Jennifer M.; Sherman, Max H.; Price, Phil N.; Singer, Brett C.

2011-09-01T23:59:59.000Z

144

Natural Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Ventilation Natural Ventilation Natural Ventilation May 30, 2012 - 7:56pm Addthis Opening a window is a simple natural ventilation strategy. | Credit: ©iStockphoto/Simotion Opening a window is a simple natural ventilation strategy. | Credit: ©iStockphoto/Simotion What does this mean for me? If you live in a part of the country with cool nights and breezes, you may be able to cool your house with natural ventilation. If you're building a new home, design it to take advantage of natural ventilation. Natural ventilation relies on the wind and the "chimney effect" to keep a home cool. Natural ventilation works best in climates with cool nights and regular breezes. The wind will naturally ventilate your home by entering or leaving windows, depending on their orientation to the wind. When wind blows against your

145

Evaluation of design ventilation requirements for enclosed parking facilities  

SciTech Connect

This paper proposes a new design approach to determine the ventilation requirements for enclosed parking garages. The design approach accounts for various factors that affect the indoor air quality within a parking facility, including the average CO emission rate, the average travel time, the number of cars, and the acceptable CO level within the parking garage. This paper first describes the results of a parametric analysis based on the design method that was developed. Then the design method is presented to explain how the ventilation flow rate can be determined for any enclosed parking facility. Finally, some suggestions are proposed to save fan energy for ventilating parking garages using demand ventilation control strategies.

Ayari, A.; Krarti, M.

2000-07-01T23:59:59.000Z

146

Summary of human responses to ventilation  

E-Print Network (OSTI)

low ventilation rates and increase in health problems:rate. As ventilation rates increase, benefits gained fordetermined that increases in ventilation rates above 10 Ls -

Seppanen, Olli A.; Fisk, William J.

2004-01-01T23:59:59.000Z

147

Infiltration in ASHRAE's Residential Ventilation Standards  

E-Print Network (OSTI)

Related  to  Residential  Ventilation  Requirements”.  Rudd,  A.   2005.   “Review  of  Residential  Ventilation and  Matson  N.E. ,  “Residential  Ventilation  and  Energy 

Sherman, Max

2008-01-01T23:59:59.000Z

148

Design methods for displacement ventilation: Critical review.  

E-Print Network (OSTI)

Displacement Ventilation. ASHRAE Research project-RP-949.displacement ventilation. ASHRAE Transaction, 96 (1). Ar ???due to displacement ventilation. ASHRAE Transaction, 96 (1).

Schiavon, Stefano

2006-01-01T23:59:59.000Z

149

Integrated Building Management System (IBMS) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Management System Building Management System (IBMS) Integrated Building Management System (IBMS) The U.S. Department of Energy (DOE) is currently conducting research into an integrated building management system (IBMS). Project Description This project seeks to develop an open integration framework that allows multivendor systems to interoperate seamlessly using internet protocols. The applicant will create an integrated control platform for implementing new integrated control strategies and to enable additional enterprise control applications, such as demand response. The project team seeks to develop several strategies that take advantage of the sensors and functionality of heating, ventilation, and air conditioning (HVAC); security; and information and communication technologies (ICT) subsystems;

150

Particle deposition in ventilation ducts  

SciTech Connect

Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 {micro}m were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on the experimental measurements was applied to evaluate particle losses in supply and return duct runs. Model results suggest that duct losses are negligible for particle sizes less than 1 {micro}m and complete for particle sizes greater than 50 {micro}m. Deposition to insulated ducts, horizontal duct floors and bends are predicted to control losses in duct systems. When combined with models for HVAC filtration and deposition to indoor surfaces to predict the ultimate fates of particles within buildings, these results suggest that ventilation ducts play only a small role in determining indoor particle concentrations, especially when HVAC filtration is present. However, the measured and modeled particle deposition rates are expected to be important for ventilation system contamination.

Sippola, Mark R.

2002-09-01T23:59:59.000Z

151

Integrated Forecasting and Inventory Control for Seasonal Demand ...  

E-Print Network (OSTI)

We present a data-driven forecasting technique with integrated inventory ... ponents of inventory management: the random demand is first estimated using ...

152

Measuring Residential Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Residential Ventilation Measuring Residential Ventilation System Airflows: Part 2 - Field Evaluation of Airflow Meter Devices and System Flow Verification J. Chris Stratton, Iain S. Walker, Craig P. Wray Environmental Energy Technologies Division October 2012 LBNL-5982E 2 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any

153

WASTE HANDLING BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect

The Waste Handling Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Handling Building (WHB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for equipment operation and personnel comfort, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WHB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. The contamination confinement areas ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination within the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WHB. The Waste Handling Building Ventilation System is designed to perform its safety functions under accident conditions and other Design Basis Events (DBEs) (such as earthquakes, tornadoes, fires, and loss of the primary electric power). Additional system design features (such as compartmentalization with independent subsystems) limit the potential for cross-contamination within the WHB. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Handling Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits. The system design, operations, and maintenance activities incorporate ALARA (as low as is reasonably achievable) principles to maintain personnel radiation doses to all occupational workers below regulatory limits and as low as is reasonably achievable. The Waste Handling Building Ventilation System interfaces with the Waste Handling Building System by being located within the WHB and by maintaining specific pressures, temperatures, and humidity within the building. The system also depends on the WHB for water supply. The system interfaces with the Site Radiological Monitoring System for continuous monitoring of the exhaust air; the Waste Handling Building Fire Protection System for detection of fire and smoke; the Waste Handling Building Electrical System for normal, emergency, and standby power; and the Monitored Geologic Repository Operations Monitoring and Control System for monitoring and control of the system.

P.A. Kumar

2000-06-21T23:59:59.000Z

154

WASTE TREATMENT BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect

The Waste Treatment Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Treatment Building (WTB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for personnel comfort and equipment operation, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WTB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. The contamination confinement area ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination with the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WTB. The Waste Treatment Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits, The system design, operations, and maintenance activities incorporate ALARA (as low as is reasonably achievable) principles to maintain personnel radiation doses to all occupational workers below regulatory limits and as low as is reasonably achievable. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Treatment Building Ventilation System interfaces with the Waste Treatment Building System by being located in the WTB, and by maintaining specific pressure, temperature, and humidity environments within the building. The system also depends on the WTB for normal electric power supply and the required supply of water for heating, cooling, and humidification. Interface with the Waste Treatment Building System includes the WTB fire protection subsystem for detection of fire and smoke. The Waste Treatment Building Ventilation System interfaces with the Site Radiological Monitoring System for continuous monitoring of the exhaust air and key areas within the WTB, the Monitored Geologic Repository Operations Monitoring and Control System for monitoring and control of system operations, and the Site Generated Radiological Waste Handling System and Site Generated Hazardous, Non-Hazardous & Sanitary Waste Disposal System for routing of pretreated toxic, corrosive, and radiologically contaminated effluent from process equipment to the HEPA filter exhaust ductwork and air-cleaning unit.

P.A. Kumar

2000-06-22T23:59:59.000Z

155

Residential pollutants and ventilation strategies: Volatile organic compounds and radon  

SciTech Connect

This paper reviews literature that reports investigations of residential ventilation and indoor air quality. Two important residential pollutant classes, volatile organic compounds and radon, are examined. A companion paper examines moisture and combustion pollutants. Control strategies recommended from the review include appropriate building design to prevent or limit the sources of the pollutants within the space, proper operation and maintenance to prevent adverse conditions from developing during the building's life and appropriate use of ventilation. The characteristics of these pollutant sources suggest that ventilation systems in residences should have several properties. They should have the extra capacity available to reduce short bursts of pollution, be located close to the expected source of the contamination, and be inexpensive. Mitigation of radon is technically a major success using a form of task ventilation. Whole-house ventilation is, at best, a secondary form of control of excess radon in residences.

Grimsrud, D.T.; Hadlich, D.E.

1999-07-01T23:59:59.000Z

156

Integrated Heat Pump (IHP) System Development - Air-Source IHP Control Strategy and Specifications and Ground-Source IHP Conceptual Design  

SciTech Connect

The integrated heat pump (IHP), as one appliance, can provide space cooling, heating, ventilation, and dehumidification while maintaining comfort and meeting domestic water heating needs in near-zero-energy home (NZEH) applications. In FY 2006 Oak Ridge National Laboratory (ORNL) completed development of a control strategy and system specification for an air-source IHP. The conceptual design of a ground-source IHP was also completed. Testing and analysis confirm the potential of both IHP concepts to meet NZEH energy services needs while consuming 50% less energy than a suite of equipment that meets current minimum efficiency requirements. This report is in fulfillment of an FY06 DOE Building Technologies (BT) Joule Milestone.

Murphy, Richard W [ORNL; Rice, C Keith [ORNL; Baxter, Van D [ORNL

2007-05-01T23:59:59.000Z

157

A Ventilation Index for Tropical Cyclones  

Science Conference Proceedings (OSTI)

An important environmental control of both tropical cyclone intensity and genesis is vertical wind shear. One hypothesized pathway by which vertical shear affects tropical cyclones is midlevel ventilation—or the flux of low-entropy air into the center of ...

Brian Tang; Kerry Emanuel

2012-12-01T23:59:59.000Z

158

Measure Guideline: Ventilation Cooling  

SciTech Connect

The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

Springer, D.; Dakin, B.; German, A.

2012-04-01T23:59:59.000Z

159

Relative Entropy and Free Energy Dualities: Connections to Path Integral and KL control  

E-Print Network (OSTI)

Relative Entropy and Free Energy Dualities: Connections to Path Integral and KL control Evangelos A and the fundamental dualities between free energy and relative entropy. We derive the path integral optimal control on Dynamic Programming with PI based on the duality between free energy and relative entropy. Moreover we

Anderson, Richard

160

ASHRAE and residential ventilation  

SciTech Connect

In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the logical place to provide leadership. This leadership has been demonstrated most recently by the publication of the first nationally recognized standard on ventilation in homes, ASHRAE Standard 62.2-2003, which builds on work that has been part of ASHRAE for many years and will presumably continue. Homeowners and occupants, which includes virtually all of us, will benefit from the application of Standard 62.2 and use of the top ten list. This activity is exactly the kind of benefit to society that the founders of ASHRAE envisioned and is consistent with ASHRAE's mission and vision. ASHRAE members should be proud of their Society for taking leadership in residential ventilation.

Sherman, Max H.

2003-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated ventilation controller" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Exact Admission-Control for Integrated Aperiodic and Periodic Tasks  

Science Conference Proceedings (OSTI)

Admission controllers are used to prevent overload in systems with dynamically arriving tasks. Typically, these admission controllers are based on sufficient (but not necessary) capacity bounds in order to maintain a low computational complexity. In ...

Bjorn Andersson; Cecilia Ekelin

2005-03-01T23:59:59.000Z

162

Dehumidification and cooling loads from ventilation air  

SciTech Connect

The importance of controlling humidity in buildings is cause for concern, in part, because of indoor air quality problems associated with excess moisture in air-conditioning systems. But more universally, the need for ventilation air has forced HVAC equipment (originally optimized for high efficiency in removing sensible heat loads) to remove high moisture loads. To assist cooling equipment and meet the challenge of larger ventilation loads, several technologies have succeeded in commercial buildings. Newer technologies such as subcool/reheat and heat pipe reheat show promise. These increase latent capacity of cooling-based systems by reducing their sensible capacity. Also, desiccant wheels have traditionally provided deeper-drying capacity by using thermal energy in place of electrical power to remove the latent load. Regardless of what mix of technologies is best for a particular application, there is a need for a more effective way of thinking about the cooling loads created by ventilation air. It is clear from the literature that all-too-frequently, HVAC systems do not perform well unless the ventilation air loads have been effectively addressed at the original design stage. This article proposes an engineering shorthand, an annual load index for ventilation air. This index will aid in the complex process of improving the ability of HVAC systems to deal efficiently with the amount of fresh air the industry has deemed useful for maintaining comfort in buildings. Examination of typical behavior of weather shows that latent loads usually exceed sensible loads in ventilation air by at least 3:1 and often as much as 8:1. A designer can use the engineering shorthand indexes presented to quickly assess the importance of this fact for a given system design. To size those components after they are selected, the designer can refer to Chapter 24 of the 1997 ASHRAE Handbook--Fundamentals, which includes separate values for peak moisture and peak temperature.

Harriman, L.G. III [Mason-Grant, Portsmouth, NH (United States); Plager, D. [Quantitative Decision Support, Portsmouth, NH (United States); Kosar, D. [Gas Research Inst., Chicago, IL (United States)

1997-11-01T23:59:59.000Z

163

Technical Evaluation of Emerging Integrated Environmental Control Processes  

Science Conference Proceedings (OSTI)

As the need for more stringent controls for power plant emissions increases, so does the need for more cost effective approaches to reducing these pollutants. Current methods employ technologies designed to reduce specific pollutants, which require combinations of different emission control systems to remove multiple pollutants. Some air pollution control suppliers and utilities are developing technologies that have the potential to reduce multiple pollutants simultaneously with the goal of developing in...

2004-12-16T23:59:59.000Z

164

HTGR-GT and electrical load integrated control  

Science Conference Proceedings (OSTI)

A discussion of the control and operation of the HTGR-GT power plant is presented in terms of its closely coupled electrical load and core cooling functions. The system and its controls are briefly described and comparisons are made with more conventional plants. The results of analyses of selected transients are presented to illustrate the operation and control of the HTGR-GT. The events presented were specifically chosen to show the controllability of the plant and to highlight some of the unique characteristics inherent in this multiloop closed-cycle plant.

Chan, T.; Openshaw, F.; Pfremmer, D.

1980-05-01T23:59:59.000Z

165

Control of systems integrating logic, dynamics, and constraints  

Science Conference Proceedings (OSTI)

This paper proposes a framework for modeling and controlling systems described by interdependent physical laws, logic rules, and operating constraints, denoted as mixed logical dynamical (MLD) systems. These are described by linear dynamic equations ... Keywords: Binary logic systems, Boolean logic, Dynamic models, Hybrid systems, Mixed-integer programming, Optimization problems, Predictive control

Alberto Bemporad; Manfred Morari

1999-03-01T23:59:59.000Z

166

Exact admission-control for integrated aperiodic and periodic tasks  

Science Conference Proceedings (OSTI)

Admission-controllers are used to prevent overload in systems with dynamically arriving tasks. Typically, these admission-controllers are based on sufficient (but not necessary) capacity bounds in order to maintain a low computational complexity. In ... Keywords: AVL tree, Earliest-deadline-first, Lazy evaluation, Online scheduling, Operating systems, Real-time systems, Schedulability analysis

Björn Andersson; Cecilia Ekelin

2007-03-01T23:59:59.000Z

167

Building Integrated Remote Control Systems for Electronics Boards  

E-Print Network (OSTI)

This paper addresses several aspects of implementing a remote control system for a large number of electronics boards in order to perform remote Field Programmable Gate Array (FPGA) programming, hardware configuration, data register access, and monitoring, as well as interfacing it to an expert system. The paper presents a common strategy for the representation of the boards in the abstraction layer of the control system, and generic communication protocols for the access to the board resources. In addition, an implementation is proposed in which the mapping between the functional parameters and the physical registers of the different boards is represented by descriptors in the board representation such that the translation can be handled automatically by a generic translation manager. Using the Distributed Information Management (DIM) package for the control communication with the boards, and the industry SCADA system PVSS II from ETM, a complete control system has been built for the Timing and Fast Control ...

Jacobsson, R

2008-01-01T23:59:59.000Z

168

Integrated environmental control and monitoring in the intelligent workplace. Final report  

SciTech Connect

This project involved the design and engineering of the control and monitoring of environmental quality - visual, thermal, air - in the Intelligent Workplace. The research objectives were to study the performance of the individual systems, to study the integration issues related to each system, to develop a control plan, and to implement and test the integrated systems in a real setting. In this project, a control strategy with related algorithms for distributed sensors, actuators, and controllers for negotiating central and individual control of HVAC, lighting, and enclosure was developed in order to maximize user comfort, and energy and environmental effectiveness. The goal of the control system design in the Intelligent Workplace is the integration of building systems for optimization of occupant satisfaction, organizational flexibility, energy efficiency and environmental effectiveness. The task of designing this control system involves not only the research, development and demonstration of state-of-the-art mechanical and electrical systems, but also their integration. The ABSIC research team developed functional requirements for the environmental systems considering the needs of both facility manager and the user. There are three levels of control for the environmental systems: scheduled control, sensor control, and user control. The challenges are to achieve the highest possible levels of energy effectiveness simultaneously with the highest levels of user satisfaction. The report describes the components of each system, their implementation in the Intelligent Workplace and related control and monitoring issues.

NONE

1997-12-31T23:59:59.000Z

169

Integrated system for control and monitoring in real time of efficient electrical and thermal energy production  

Science Conference Proceedings (OSTI)

The integrated monitoring and driving system is made of main distributed components: - first level:_one or two computers placed in the control room which monitors the thermal and electrical processes based on the datas provided by the second level via ... Keywords: cogenerative gas power plant, control of distributed parameter systems, distribution management system, electric power systems, optimization, process control, real time systems, simulation

Ion Miciu; Florin Hartescu

2008-08-01T23:59:59.000Z

170

Optimization Design of Supervising and Controlling on the SOFC Integration System  

Science Conference Proceedings (OSTI)

An optimized design of the SOFC integration system is put forward with a three-layer structure, which consists of data communication, data processing and Human-machine interaction. The key for the optimized design in the system is data communication ... Keywords: SOFC, integrated control, optimum design, data schedule

Suying Yang; Meng Wang; Jianying Lin; Kuijun Meng

2010-04-01T23:59:59.000Z

171

Performance modeling of daylight integrated photosensor-controlled lighting systems  

Science Conference Proceedings (OSTI)

Some building energy codes now require the incorporation of daylight into buildings and automatic photosensor-controlled switching or dimming of the electric lighting system in areas that receive daylight. This paper describes enhancements to the open-source ...

Richard G. Mistrick; Craig A. Casey

2011-12-01T23:59:59.000Z

172

Building Integrated Remote Control Systems for Electronic Boards  

E-Print Network (OSTI)

This paper addresses several aspects of implementing a remote control system for a large number of electronics boards in order to perform remote Field Programmable Gate Array (FPGA) programming, hardware configuration, data register access, and monitoring, as well as interfacing it to a configuration database and an expert system. The paper presents a common strategy for the representation of the boards in the abstraction layer of the control system, and generic communication protocols for the access to the board resources. In addition, an implementation is proposed in which the mapping between the functional parameters and the physical registers of the different boards is represented by descriptors in the board representation such that the translation can be handled automatically by a generic translation manager. Using the Distributed Information Management (DIM) package for the control communication with the boards, and the industry SCADA system PVSS II from ETM, a complete control system has been built for...

Jacobsson, Richard

2007-01-01T23:59:59.000Z

173

Plenary lecture VIII: a survey of some automotive integrated-starter-generators and their control  

Science Conference Proceedings (OSTI)

Integrated starter generator (ISG) uses one machine to replace conventional starter and alternator onboard vehicles and provides greater electrical generation capacity and improves the fuel economy and emissions. The main requirements of the ISG control ...

Dorin Dumitru Lucache

2008-06-01T23:59:59.000Z

174

Integrated Dry NOx/SO2 Emissions Control System, A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Integrated Dry NO X SO 2 Emissions Control System A DOE Assessment October 2001 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry...

175

Kitchen Ventilation Should be High Performance (Not Optional)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kitchen Ventilation Kitchen Ventilation Should be High Performance (not Optional) Brett C. Singer Residential Building Systems & Indoor Environment Groups Lawrence Berkeley National Laboratory Building America Technical Update Denver, CO April 30, 2013 Acknowledgements PROGRAM SUPPORT *U.S. Department of Energy - Building America Program *U.S. Environmental Protection Agency - Indoor Environments Division *U.S. Department of Housing and Urban Development - Office of Healthy Homes & Lead Hazard Control *California Energy Commission - Public Interest Energy Research Program TECHNICAL CONTRIBUTIONS *Woody Delp, Tosh Hotchi, Melissa Lunden, Nasim Mullen, Chris Stratton, Doug Sullivan, Iain Walker Kitchen Ventilation Simplified PROBLEM: * Cooking burners & cooking produce odors, moisture

176

Development of an integrated building energy simulation with optimal central plant control.  

E-Print Network (OSTI)

??The purpose of computer-based building energy analysis programs is to assist heating, ventilation, and air conditioning (HVAC) engineers in the design process and to help… (more)

Taylor, Russell Derek

1996-01-01T23:59:59.000Z

177

Proportional and Proportional-Integral Controllers for a Nonlinear Hydraulic  

E-Print Network (OSTI)

in a nonlinear hydraulic network of a reduced-size yet meaningful district heating system with two end correspondingly the controllers. In this paper we focus on one of these case studies, a district heating system to the system. Presently district heating systems are designed to meet the needs of a given number of end users

De Persis, Claudio

178

Adaptive nuclear reactor control for integral quadratic cost functions  

Science Conference Proceedings (OSTI)

The problem of optimally controlling the power level changes of a nuclear reactor is considered. The model of an existing power plant is used, which is a ninth-order nonlinear system, having time-varying parameters. A closed form solution of the optimal ...

George T. Bereznai; Naresh K. Sinha

1973-09-01T23:59:59.000Z

179

Ventilation and Work Performance in Office Work  

E-Print Network (OSTI)

A). When ventilation rate increases from V to V\\, the ratiowork when ventilation rates increase. Field studies withper 10 L/s person increase in ventilation rate and relative

Seppanen, Olli; Fisk, William J.; Lei, Q.H.

2005-01-01T23:59:59.000Z

180

NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS  

SciTech Connect

This is the tenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NO{sub x} control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, progress was made on the computational simulation of a full-scale boiler with the purpose of understanding the potential impacts of burner operating conditions on soot and NO{sub x} generation. Sulfation tests on both the titania support and vanadia/titania catalysts were completed using BYU's in situ spectroscopy reactor this quarter. These experiments focus on the extent to which vanadia and titania sulfate in an SO{sub 2}-laden, moist environment. Construction of the CCS reactor system is essentially complete and the control hardware and software are largely in place. A large batch of vanadia/titania catalyst in powder form has been prepared for use in poisoning tests. During this quarter, minor modifications were made to the multi-catalyst slipstream reactor and to the control system. The slipstream reactor was installed at AEP's Rockport plant at the end of November 2002. In this report, we describe the reactor system, particularly the control system, which was created by REI specifically for the reactor, as well as the installation at Rockport.

Mike Bockelie; Marc Cremer; Kevin Davis; Temi Linjewile; Connie Senior; Hong-Shig Shim; Bob Hurt; Eric Eddings; Larry Baxter

2003-01-30T23:59:59.000Z

Note: This page contains sample records for the topic "integrated ventilation controller" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Commercial Kitchen Ventilation Performance Report: Gas Underfired Broiler Under Wall-Mounted Canopy Hood  

Science Conference Proceedings (OSTI)

This report documents testing of ventilation requirements for a gas underfired broiler under a wall-mounted canopy hood. This appliance and hood combination is one of a series undertaken to provide electric utilities and the foodservice industry with data to optimize the design of commercial kitchen ventilation systems and integrate exhaust requirements with space conditioning design.

1997-11-14T23:59:59.000Z

182

Commercial Kitchen Ventilation Performance Report: Two Gas Pressure Fryers Under Wall-Mounted Canopy Hood  

Science Conference Proceedings (OSTI)

This report documents testing of ventilation requirements two gas pressure fryers under a wall-mounted canopy hood. This appliance and hood combination is one of a series undertaken to provide electric utilities and the foodservice industry with data to optimize the design of commercial kitchen ventilation systems and integrate exhaust requirements with space conditioning design.

1997-10-31T23:59:59.000Z

183

Commercial Kitchen Ventilation Performance Report: Electric Combination Oven Under Wall-Mounted Canopy Hood  

Science Conference Proceedings (OSTI)

This report documents testing of ventilation requirements for an electric combination oven under an exhaust-only canopy hood. This appliance and hood combination is one of a series undertaken to provide electric utilities and the foodservice industry with data to optimize the design of commercial kitchen ventilation systems and integrate exhaust requirements with space conditioning design.

1997-11-14T23:59:59.000Z

184

Commercial Kitchen Ventilation Performance Report: Electric Underfired Broiler Under Wall-Mounted Canopy Hood  

Science Conference Proceedings (OSTI)

This report documents testing of ventilation requirements for a three-foot electric underfired broiler positioned under an exhaust-only canopy hood. This appliance and hood combination is one of a series undertaken to provide electric utilities and the foodservice industry with data to optimize the design of commercial kitchen ventilation systems and integrate exhaust requirements with space conditioning design.

1997-05-13T23:59:59.000Z

185

Commercial Kitchen Ventilation Performance Report: Two Electric Pressure Fryers Under Wall-Mounted Canopy Hood  

Science Conference Proceedings (OSTI)

This report documents testing of ventilation requirements for two electric pressure fryers under a wall-mounted canopy hood. This appliance and hood combination is one of a series undertaken to provide electric utilities and the foodservice industry with data to optimize the design of commercial kitchen ventilation systems and integrate exhaust requirements with space conditioning design.

1997-09-17T23:59:59.000Z

186

Commercial Kitchen Ventilation Performance Report: Gas Combination Oven Under Wall-Mounted Canopy Hood  

Science Conference Proceedings (OSTI)

This report documents testing of ventilation requirements for a gas combination oven under an exhaust-only canopy hood. This appliance and hood combination is one of a series undertaken to provide electric utilities and the foodservice industry with data to optimize the design of commercial kitchen ventilation systems and integrate exhaust requirements with space conditioning design.

1997-11-14T23:59:59.000Z

187

VENTILATION (HVAC) FAILURE (BUILDING WIDE)  

E-Print Network (OSTI)

VENTILATION (HVAC) FAILURE (BUILDING WIDE) A failure or shutdown of the ventilation system will be signaled by cessation of the audible background "rumbling" sound of the building's HVAC system. As building durations. NOTE: Due to unpredictable pressure differentials in and around the labs during an HVAC failure

Strynadka, Natalie

188

RESIDENTIAL VENTILATION AND ENERGY CHARACTERISTICS*  

E-Print Network (OSTI)

while still providing ventilation for adequate indoor air quality. Various ASHRAE Standards (e.g., 62 to the ASHRAE Standard 119 levels while still providing adequate ventilation through infiltration or mechanical alternatives. Various ASHRAE Standards are used to assist us. ASHRAE Standard 119-19885 classifies the envelope

189

Transpired Air Collectors - Ventilation Preheating  

DOE Green Energy (OSTI)

Many commercial and industrial buildings have high ventilation rates. Although all that fresh air is great for indoor air quality, heating it can be very expensive. This short (2-page) fact sheet describes a technology available to use solar energy to preheat ventilation air and dramatically reduce utility bills.

Christensen, C.

2006-06-22T23:59:59.000Z

190

Model predictive control system and method for integrated gasification combined cycle power generation  

DOE Patents (OSTI)

Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

2013-04-09T23:59:59.000Z

191

Innovative Energy Efficient Industrial Ventilation  

E-Print Network (OSTI)

This paper was written to describe an innovative “on-demand” industrial ventilation system for woodworking, metalworking, food processing, pharmaceutical, chemical, and other industries. Having analyzed existing industrial ventilation in 130 factories, we found striking dichotomy between the classical “static” design of ventilation systems and constantly changing workflow and business demands. Using data from real factories, we are able to prove that classical industrial ventilation design consumes 70 % more energy than necessary. Total potential electricity saving achieved by using on-demand systems instead of classically designed industrial ventilation in the U.S. could be 26 billion kWh. At the average electricity cost of 7 cents per kWh, this would represent $1.875 billion. Eighty such systems are already installed in the USA and European Union.

Litomisky, A.

2005-01-01T23:59:59.000Z

192

Why We Ventilate - Recent Advances  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WHY WE VENTILATE: WHY WE VENTILATE: Recent Advances Max Sherman BA Stakeholders meeting ASHRAE BIO  Distinguished Lecturer  Exceptional Service Award  Board of Directors; TechC  Chair of committees:  62.2; Standards Committee  TC 4.3; TC 2.5  Holladay Distinguished Fellow OVERVIEW QUESTIONS  What is Ventilation? What is IAQ?  What functions does it provide?  How much do we need? Why?  How should ventilations standards be made? LBL has working on these problems Who Are You?  Engineers (ASHRAE Members & not);  architects,  contractors,  reps,  builders,  vendors,  code officials WHAT IS VENTILATION  Medicine: To Exchange Air In the Lungs  Latin: Ventilare, "to expose to the wind"  Today: To Bring In Outdoor Air And Replace

193

Integrated model-based control and diagnostic monitoring for automotive catalyst systems  

Science Conference Proceedings (OSTI)

An integrated model-based automotive catalyst control and diagnostic monitoring system is presented. This system incorporates a simplified dynamic catalyst model that describes oxygen storage and release in the catalyst and predicts the post-catalyst ... Keywords: automotive catalyst, model predictive control, on-board diagnostic monitoring

Kenneth R. Muske; James C. Peyton Jones

2007-11-01T23:59:59.000Z

194

Integration of Distributed Resources in Electric Utility Systems: Functional Definition for Communication and Control Requirements  

Science Conference Proceedings (OSTI)

Accelerating commercialization of distributed resources (DR) has created the need for improved practices for integrating them with electric utility distribution systems. A functional definition of DR for defining communication and control requirements in electric utility distribution systems is provided. The report is a tool that readers can use in developing communication and control strategies for DR in specific distribution systems.

1998-12-11T23:59:59.000Z

195

An integrated system to remote monitor and control anaerobic wastewater treatment plants through the internet  

E-Print Network (OSTI)

and manages the problem. Keywords Anaerobic digestion, automation, control, fault detection and isolationAn integrated system to remote monitor and control anaerobic wastewater treatment plants through of the anaerobic wastewater treatment plants that do not benefit from a local expert in wastewater treatment

Bernard, Olivier

196

Time-minimal control of dissipative two-level quantum systems: The Integrable case  

E-Print Network (OSTI)

The objective of this article is to apply recent developments in geometric optimal control to analyze the time minimum control problem of dissipative two-level quantum systems whose dynamics is governed by the Lindblad equation. We focus our analysis on the case where the extremal Hamiltonian is integrable.

B. Bonnard; D. Sugny

2008-09-24T23:59:59.000Z

197

Infiltration as ventilation: Weather-induced dilution  

NLE Websites -- All DOE Office Websites (Extended Search)

Infiltration as ventilation: Weather-induced dilution Title Infiltration as ventilation: Weather-induced dilution Publication Type Report LBNL Report Number LBNL-5795E Year of...

198

Equivalence in Ventilation and Indoor Air Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing...

199

Solar Ventilation Preheating Resources and Technologies | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Preheating Resources and Technologies Solar Ventilation Preheating Resources and Technologies October 7, 2013 - 11:50am Addthis Photo of a dark brown perforated metal...

200

Improving Ventilation and Saving Energy: Relocatable Classroom...  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Ventilation and Saving Energy: Relocatable Classroom Field Study Interim Report Title Improving Ventilation and Saving Energy: Relocatable Classroom Field Study Interim...

Note: This page contains sample records for the topic "integrated ventilation controller" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Whole-House Ventilation | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

air quality. There are four basic mechanical whole-house ventilation systems -- exhaust, supply, balanced, and energy recovery. Comparison of Whole-House Ventilation Systems...

202

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy  

SciTech Connect

Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

2010-10-27T23:59:59.000Z

203

NOx Control Options and Integration for US Coal Fired Boilers  

DOE Green Energy (OSTI)

This is the fourteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Using the initial CFD baseline modeling of the Gavin Station and the plant corrosion maps, six boiler locations for the corrosion probes were identified and access ports have been installed. Preliminary corrosion data obtained appear consistent and believable. In situ, spectroscopic experiments at BYU reported in part last quarter were completed. New reactor tubes have been made for BYU's CCR that allow for testing smaller amounts of catalyst and thus increasing space velocity; monolith catalysts have been cut and a small reactor that can accommodate these pieces for testing is in its final stages of construction. A poisoning study on Ca-poisoned catalysts was begun this quarter. A possible site for a biomass co-firing test of the slipstream reactor was visited this quarter. The slipstream reactor at Rockport required repair and refurbishment, and will be re-started in the next quarter. This report describes the final results of an experimental project at Brown University on the fundamentals of ammonia / fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. The Brown task focused on the measurement of ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes.

Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding; Robert Hurt

2003-12-31T23:59:59.000Z

204

Energy-saving strategies with personalized ventilation in cold climates  

E-Print Network (OSTI)

designs of personalized ventilation, International Journal of heating, Ventilation and Refrigeration

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

205

NOx Control Options and Integration for US Coal Fired Boilers  

DOE Green Energy (OSTI)

This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected in a pilot scale furnace and soot behavior predicted by the CFD model showed good agreement. Field and laboratory tests were performed for SCR catalysts used for coal and biomass co-firing applications. Fundamental laboratory studies were performed to better understand mechanisms involved with catalyst deactivation. Field tests with a slip stream reactor were used to create catalyst exposed to boiler flue gas for firing coal and for co-firing coal and biomass. The field data suggests the mechanisms leading to catalyst deactivation are, in order of importance, channel plugging, surface fouling, pore plugging and poisoning. Investigations were performed to better understand the mechanisms involved with catalyst regeneration through mechanical or chemical methods. A computer model was developed to predict NOx reduction across the catalyst in a SCR. Experiments were performed to investigate the fundamentals of ammonia/fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. Measurements were performed for ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes. This work resulted in the first fundamental ammonia isotherms on carbon-containing fly ash samples. This work confirms industrial reports that aqueous solution chemistry takes place upon the introduction of even very small amounts of water, while the ash remains in a semi-dry state.

Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

2006-06-30T23:59:59.000Z

206

NOx Control Options and Integration for US Coal Fired Boilers  

Science Conference Proceedings (OSTI)

This is the twelfth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, a new effort was begun on the development of a corrosion management system for minimizing the impacts of low NOx combustion systems on waterwalls; a kickoff meeting was held at the host site, AEP's Gavin Plant, and work commenced on fabrication of the probes. FTIR experiments for SCR catalyst sulfation were finished at BYU and indicated no vanadium/vanadyl sulfate formation at reactor conditions. Improvements on the mass-spectrometer system at BYU have been made and work on the steady state reactor system shakedown neared completion. The slipstream reactor continued to operate at AEP's Rockport plant; at the end of the quarter, the catalysts had been exposed to flue gas for about 1000 hours. Some operational problems were addressed that enable the reactor to run without excessive downtime by the end of the quarter.

Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

2003-06-30T23:59:59.000Z

207

Material protection, control and accounting cooperation at the Urals Electrochemical Integrated Plant (UEIP), Novouralsk, Russia  

Science Conference Proceedings (OSTI)

The Urals Electrochemical Integrated Plant is one of the Russian Ministry of Atomic Energy`s nuclear material production sites participating in the US Department of Energy`s Material Protection, Control and Accounting (MPC&A) Program. The Urals Electrochemical Integrated Plant is Russia`s largest uranium enrichment facility and blends tons of high-enriched uranium into low enriched uranium each year as part of the US high-enriched uranium purchase. The Electrochemical Integrated Plant and six participating national laboratories are cooperating to implement a series of enhancements to the nuclear material protection, control, and accountability systems at the site This paper outlines the overall objectives of the MPC&A program at Urals Electrochemical Integrated Plant and the work completed as of the date of the presentation.

McAllister, S., LLNL

1998-07-15T23:59:59.000Z

208

NOx Control Options and Integration for US Coal Fired Boilers  

SciTech Connect

This is the sixteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. During an unplanned outage, damage occurred to the electrochemical noise corrosion probes installed at the AEP Gavin plant; testing is expected to resume in August. The KEMCOP corrosion coupons were not affected by the unplanned outage; the coupons were removed and sent for analysis. BYU conducted a series of tests before the ISSR lab was relocated. Ammonia adsorption experiments provided clear evidence of the types of acidic sites present on catalyst surfaces. Data collected this quarter indicate that surface sulfation decreases Lewis acid site concentrations for all catalysts thus far studied, confirming that catalytic activity under commercial coal-based SCR conditions occurs primarily on Br{o}nsted acid sites and would be susceptible to basic impurities such as alkali and alkaline earth oxides, chlorides, and sulfates. SCR activity tests based on MS analysis showed that increasing sulfation generally increases NO reduction activity for both 0% and 1% vanadia catalysts. During this quarter, the slipstream reactor at Rockport operated for 720 hours on flue gas. Catalyst exposure time reached 4500 hours since installation. The reactor is out of service at the Rockport plant and plans are being made to move it to the Gadsden Plant. At Gadsden, modifications have begun in preparation for installation of the slipstream reactor next quarter.

Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

2004-06-30T23:59:59.000Z

209

NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS  

SciTech Connect

This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. Field tests for NOx reduction in a cyclone fired utility boiler due to using Rich Reagent Injection (RRI) have been started. CFD modeling studies have been started to evaluate the use of RRI for NOx reduction in a corner fired utility boiler using pulverized coal. Field tests of a corrosion monitor to measure waterwall wastage in a utility boiler have been completed. Computational studies to evaluate a soot model within a boiler simulation program are continuing. Research to evaluate SCR catalyst performance has started. A literature survey was completed. Experiments have been outlined and two flow reactor systems have been designed and are under construction. Commercial catalyst vendors have been contacted about supplying catalyst samples. Several sets of new experiments have been performed to investigate ammonia removal processes and mechanisms for fly ash. Work has focused on a promising class of processes in which ammonia is destroyed by strong oxidizing agents at ambient temperature during semi-dry processing (the use of moisture amounts less than 5 wt-%). Both ozone and an ozone/peroxide combination have been used to treat both basic and acidic ammonia-laden ashes.

Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

2001-10-10T23:59:59.000Z

210

A novel fractional order fuzzy PID controller and its optimal time domain tuning based on integral performance indices  

Science Conference Proceedings (OSTI)

A novel fractional order (FO) fuzzy Proportional-Integral-Derivative (PID) controller has been proposed in this paper which works on the closed loop error and its fractional derivative as the input and has a fractional integrator in its output. The fractional ... Keywords: FLC tuning, Fractional order controller, Fuzzy PID, Genetic algorithm, Integral performance indices, Optimal PID tuning

Saptarshi Das; Indranil Pan; Shantanu Das; Amitava Gupta

2012-03-01T23:59:59.000Z

211

Does Mixing Make Residential Ventilation More Effective?  

E-Print Network (OSTI)

2009. ASHRAE Handbook of Fundamentals, Ventilation andleakage. The ASHRAE Handbook of fundamentals (ASHRAE 2009),

Sherman, Max

2011-01-01T23:59:59.000Z

212

Ventilation System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation System Basics Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily higher heating and cooling loads. Natural Ventilation Natural ventilation occurs when outdoor air is drawn inside through open windows or doors. Natural ventilation is created by the differences in the distribution of air pressures around a building. Air moves from areas of

213

Ventilation Systems for Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Systems for Cooling Ventilation Systems for Cooling Ventilation Systems for Cooling May 30, 2012 - 6:19pm Addthis Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to avoid heat buildup in your home. In some cases, natural ventilation will suffice for cooling, although it usually needs to be supplemented with spot ventilation, ceiling fans, and window fans. For large homes, homeowners might want to investigate whole house fans. Interior ventilation is ineffective in hot, humid climates where

214

Ventilation Systems for Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Systems for Cooling Ventilation Systems for Cooling Ventilation Systems for Cooling May 30, 2012 - 6:19pm Addthis Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to avoid heat buildup in your home. In some cases, natural ventilation will suffice for cooling, although it usually needs to be supplemented with spot ventilation, ceiling fans, and window fans. For large homes, homeowners might want to investigate whole house fans. Interior ventilation is ineffective in hot, humid climates where

215

Ventilation System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation System Basics Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily higher heating and cooling loads. Natural Ventilation Natural ventilation occurs when outdoor air is drawn inside through open windows or doors. Natural ventilation is created by the differences in the distribution of air pressures around a building. Air moves from areas of

216

Ventilation Model and Analysis Report  

Science Conference Proceedings (OSTI)

This model and analysis report develops, validates, and implements a conceptual model for heat transfer in and around a ventilated emplacement drift. This conceptual model includes thermal radiation between the waste package and the drift wall, convection from the waste package and drift wall surfaces into the flowing air, and conduction in the surrounding host rock. These heat transfer processes are coupled and vary both temporally and spatially, so numerical and analytical methods are used to implement the mathematical equations which describe the conceptual model. These numerical and analytical methods predict the transient response of the system, at the drift scale, in terms of spatially varying temperatures and ventilation efficiencies. The ventilation efficiency describes the effectiveness of the ventilation process in removing radionuclide decay heat from the drift environment. An alternative conceptual model is also developed which evaluates the influence of water and water vapor mass transport on the ventilation efficiency. These effects are described using analytical methods which bound the contribution of latent heat to the system, quantify the effects of varying degrees of host rock saturation (and hence host rock thermal conductivity) on the ventilation efficiency, and evaluate the effects of vapor and enhanced vapor diffusion on the host rock thermal conductivity.

V. Chipman

2003-07-18T23:59:59.000Z

217

Integrated Emissions Control Cost Estimating Workbook (IECCOST) Version 3.1  

Science Conference Proceedings (OSTI)

The IECCOST economic analysis workbook produces rough-order-of-magnitude cost estimates of the installed capital and levelized annual operating costs for standalone and integrated environmental control systems installed on coal-fired power plants. The model allows for the comparison ...

2012-12-03T23:59:59.000Z

218

Integrated topology control and routing in wireless sensor networks for prolonged network lifetime  

Science Conference Proceedings (OSTI)

This study considers an integrated topology control and routing problem in wireless sensor networks (WSNs), which are employed to gather data via use of sensors with limited energy resources. We employ a hierarchical topology and routing structure with ... Keywords: Algorithms, Data gathering, Network design models, Wireless sensor networks

Halit íster; Hui Lin

2011-07-01T23:59:59.000Z

219

Formaldehyde emissions from ventilation filters under different relative  

NLE Websites -- All DOE Office Websites (Extended Search)

Formaldehyde emissions from ventilation filters under different relative Formaldehyde emissions from ventilation filters under different relative humidity conditions Title Formaldehyde emissions from ventilation filters under different relative humidity conditions Publication Type Journal Article Refereed Designation Refereed Year of Publication 2013 Authors Sidheswaran, Meera A., Wenhao Chen, Agatha Chang, Robert Miller, Sebastian Cohn, Douglas P. Sullivan, William J. Fisk, Kazukiyo Kumagai, and Hugo Destaillats Journal Environmental Science and Technology Date Published 04/18/2013 Abstract A method combining life cycle assessment (LCA) and real options analyses is developed to predict project environmental and financial performance over time, under market uncertainties and decision-making flexibility. The method is applied to examine alternative uses for oil sands coke, a carbonaceous byproduct of processing the unconventional petroleum found in northern Alberta, Canada. Under uncertainties in natural gas price and the imposition of a carbon price, our method identifies that selling the coke to China for electricity generation by integrated gasification combined cycle is

220

Energy and air quality implications of passive stack ventilation in residential buildings  

SciTech Connect

Ventilation requires energy to transport and condition the incoming air. The energy consumption for ventilation in residential buildings depends on the ventilation rate required to maintain an acceptable indoor air quality. Historically, U.S. residential buildings relied on natural infiltration to provide sufficient ventilation, but as homes get tighter, designed ventilation systems are more frequently required particularly for new energy efficient homes and retrofitted homes. ASHRAE Standard 62.2 is used to specify the minimum ventilation rate required in residential buildings and compliance is normally achieved with fully mechanical whole-house systems; however, alternative methods may be used to provide the required ventilation when their air quality equivalency has been proven. One appealing method is the use of passive stack ventilation systems. They have been used for centuries to ventilate buildings and are often used in ventilation regulations in other countries. Passive stacks are appealing because they require no fans or electrical supply (which could lead to lower cost) and do not require maintenance (thus being more robust and reliable). The downside to passive stacks is that there is little control of ventilation air flow rates because they rely on stack and wind effects that depend on local time-varying weather. In this study we looked at how passive stacks might be used in different California climates and investigated control methods that can be used to optimize indoor air quality and energy use. The results showed that passive stacks can be used to provide acceptable indoor air quality per ASHRAE 62.2 with the potential to save energy provided that they are sized appropriately and flow controllers are used to limit over-ventilation.

Mortensen, Dorthe Kragsig; Walker, Iain S.; Sherman, Max

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated ventilation controller" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Integrated Control of Active and Reactive Power Flow Controllers to Optimize Transmission System Utilization  

Science Conference Proceedings (OSTI)

Optimized power system control requires oversight of numerous control elements to efficiently and reliably transfer power across the system. The objective of this project was to minimize losses in the Consolidated Edison Electric power system via modification of control variables available to the system operator. These variables include generator voltages, transformer voltage/phase angle tap set points, and switched shunt status. System constraints include bus voltages, branch/interface flow limits, ...

2012-11-08T23:59:59.000Z

222

Integrated Emissions Control - Process Review: Multi-Pollutant Control Technology Descriptions and Performance  

Science Conference Proceedings (OSTI)

A few air pollution control suppliers are developing processes that may reduce several pollutants simultaneously in a configuration that is lower in cost than the total cost of using existing devices for each pollutant. It would benefit the industry if an independent organization that is technically knowledgeable about all the components of such multi-pollutant controls evaluated the opportunities these processes offer.

2002-03-13T23:59:59.000Z

223

Classroom HVAC: Improving ventilation and saving energy -- field study plan  

E-Print Network (OSTI)

in this study. Classroom HVAC: Improving Ventilation andV8doc.sas.com/sashtml. Classroom HVAC: Improving VentilationBerkeley, CA 94720. Classroom HVAC: Improving Ventilation

Apte, Michael G.; Faulkner, David; Hodgson, Alfred T.; Sullivan, Douglas P.

2004-01-01T23:59:59.000Z

224

On The Valuation of Infiltration towards Meeting Residential Ventilation Needs  

E-Print Network (OSTI)

Literature Related to Residential Ventilation Requirements”.A. 2005. “Review of Residential Ventilation Technologies”,M.H. and Matson N.E. , “Residential Ventilation and Energy

Sherman, Max H.

2008-01-01T23:59:59.000Z

225

Advanced Communication and Control for Distributed Energy Resource Integration: Phase 2 Scientific Report  

Science Conference Proceedings (OSTI)

The objective of this research project is to demonstrate sensing, communication, information and control technologies to achieve a seamless integration of multivendor distributed energy resource (DER) units at aggregation levels that meet individual user requirements for facility operations (residential, commercial, industrial, manufacturing, etc.) and further serve as resource options for electric and natural gas utilities. The fully demonstrated DER aggregation system with embodiment of communication and control technologies will lead to real-time, interactive, customer-managed service networks to achieve greater customer value. Work on this Advanced Communication and Control Project (ACCP) consists of a two-phase approach for an integrated demonstration of communication and control technologies to achieve a seamless integration of DER units to reach progressive levels of aggregated power output. Phase I involved design and proof-of-design, and Phase II involves real-world demonstration of the Phase I design architecture. The scope of work for Phase II of this ACCP involves demonstrating the Phase I design architecture in large scale real-world settings while integrating with the operations of one or more electricity supplier feeder lines. The communication and control architectures for integrated demonstration shall encompass combinations of software and hardware components, including: sensors, data acquisition and communication systems, remote monitoring systems, metering (interval revenue, real-time), local and wide area networks, Web-based systems, smart controls, energy management/information systems with control and automation of building energy loads, and demand-response management with integration of real-time market pricing. For Phase II, BPL Global shall demonstrate the Phase I design for integrating and controlling the operation of more than 10 DER units, dispersed at various locations in one or more Independent System Operator (ISO) Control Areas, at an aggregated scale of more than 1 MW, to provide grid support. Actual performance data with respect to each specified function above is to be collected during the Phase II field demonstration. At a minimum, the Phase II demonstration shall span one year of field operations. The demonstration performance will need to be validated by the target customer(s) for acceptance and subsequent implementation. An ISO must be involved in demonstration planning and execution. As part of the Phase II work, BPL Global shall develop a roadmap to commercialization that identifies and quantifies the potential markets for the integrated, aggregated DER systems and for the communication and control technologies demonstrated in Phase I. In addition, the roadmap must identify strategies and actions, as well as the regional and national markets where the aggregated DER systems with communication and control solutions will be introduced, along with a timeline projected for introduction into each identified market. In Phase I of this project, we developed a proof-of-concept ACCP system and architecture and began to test its functionality at real-world sites. These sites had just over 10 MW of DERs and allowed us to identify what needed to be done to commercialize this concept. As a result, we started Phase II by looking at our existing platform and identified its strengths and weaknesses as well as how it would need to evolve for commercialization. During this process, we worked with different stakeholders in the market including: Independent System Operators, DER owners and operators, and electric utility companies to fully understand the issues from all of the different perspectives. Once we had an understanding of the commercialized ACCP system, we began to document and prepare detailed designs of the different system components. The components of the system with the most significant design improvements were: the on-site remote terminal unit, the communication technology between the remote site and the data center, and the scalability and reliability of the data center application.

BPL Global

2008-09-30T23:59:59.000Z

226

Integrated Computing, Communication, and Distributed Control of Deregulated Electric Power Systems  

SciTech Connect

Restructuring of the electricity market has affected all aspects of the power industry from generation to transmission, distribution, and consumption. Transmission circuits, in particular, are stressed often exceeding their stability limits because of the difficulty in building new transmission lines due to environmental concerns and financial risk. Deregulation has resulted in the need for tighter control strategies to maintain reliability even in the event of considerable structural changes, such as loss of a large generating unit or a transmission line, and changes in loading conditions due to the continuously varying power consumption. Our research efforts under the DOE EPSCoR Grant focused on Integrated Computing, Communication and Distributed Control of Deregulated Electric Power Systems. This research is applicable to operating and controlling modern electric energy systems. The controls developed by APERC provide for a more efficient, economical, reliable, and secure operation of these systems. Under this program, we developed distributed control algorithms suitable for large-scale geographically dispersed power systems and also economic tools to evaluate their effectiveness and impact on power markets. Progress was made in the development of distributed intelligent control agents for reliable and automated operation of integrated electric power systems. The methodologies employed combine information technology, control and communication, agent technology, and power systems engineering in the development of intelligent control agents for reliable and automated operation of integrated electric power systems. In the event of scheduled load changes or unforeseen disturbances, the power system is expected to minimize the effects and costs of disturbances and to maintain critical infrastructure operational.

Bajura, Richard; Feliachi, Ali

2008-09-24T23:59:59.000Z

227

Residential ventilation standards scoping study  

SciTech Connect

The goals of this scoping study are to identify research needed to develop improved ventilation standards for California's Title 24 Building Energy Efficiency Standards. The 2008 Title 24 Standards are the primary target for the outcome of this research, but this scoping study is not limited to that timeframe. We prepared this scoping study to provide the California Energy Commission with broad and flexible options for developing a research plan to advance the standards. This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the ventilation needs of California residences, determining the bases for setting residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and corresponding levels of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

McKone, Thomas E.; Sherman, Max H.

2003-10-01T23:59:59.000Z

228

ELECTRIC POWER AND VENTILATION SYSTEM OF SILOE  

SciTech Connect

The 15-kv electric power of Siloe is supplied from a central substation, which serves all the laboratories in the Center. The substation transforms primary 3-phase power from 15 kv to 380 to 220 v. Control installations are supplied from sets of rectifiers and batteries with 127 and 48 v direct current. If the normal electric power supply fails, a 12000 kva diesel driven generator is automatically started and in a very short time supplies power. The ventilation system supplies the whole building with conditioned air, holds the shell in negative pressure, and exhausts radioactive effluents. (auth)

Mitault, G.; Faudou, J.-C.

1963-12-01T23:59:59.000Z

229

Modeling of integrated environmental control systems for coal-fired power plants  

SciTech Connect

The Integrated Environmental Control Model (IECM) was designed to permit the systematic evaluation of environmental control options for pulverized coal-fired (PC) power plants. Of special interest was the ability to compare the performance and cost of advanced pollution control systems to conventional'' technologies for the control of particulate, SO{sub 2} and NO{sub x}. Of importance also was the ability to consider pre-combustion, combustion and post-combustion control methods employed alone or in combination to meet tough air pollution emission standards. Finally, the ability to conduct probabilistic analyses is a unique capability of the IECM. Key results are characterized as distribution functions rather than as single deterministic values. (VC)

Rubin, E.S.; Salmento, J.S.; Frey, H.C.; Abu-Baker, A.; Berkenpas, M.

1991-05-01T23:59:59.000Z

230

Modeling of integrated environmental control systems for coal-fired power plants. Final report  

SciTech Connect

The Integrated Environmental Control Model (IECM) was designed to permit the systematic evaluation of environmental control options for pulverized coal-fired (PC) power plants. Of special interest was the ability to compare the performance and cost of advanced pollution control systems to ``conventional`` technologies for the control of particulate, SO{sub 2} and NO{sub x}. Of importance also was the ability to consider pre-combustion, combustion and post-combustion control methods employed alone or in combination to meet tough air pollution emission standards. Finally, the ability to conduct probabilistic analyses is a unique capability of the IECM. Key results are characterized as distribution functions rather than as single deterministic values. (VC)

Rubin, E.S.; Salmento, J.S.; Frey, H.C.; Abu-Baker, A.; Berkenpas, M.

1991-05-01T23:59:59.000Z

231

Commercial Kitchen Ventilation Performance Report: Six-Element Electric Range Top Under Wall-Mounted Canopy Hood  

Science Conference Proceedings (OSTI)

This report documents testing of ventilation requirements for a six-element electric range positioned under an exhaust-only canopy hood. This appliance and hood combination is one of a series undertaken to provide electric utilities and the food service industry with data to optimize the design of commercial kitchen ventilation systems and integrate exhaust requirements with space conditioning design.

1997-07-16T23:59:59.000Z

232

Commercial Kitchen Ventilation Performance Report: Six-Burner Gas Range Top Under Wall-Mounted Canopy Hood  

Science Conference Proceedings (OSTI)

This report documents testing of ventilation requirements for a six-element gas range positioned under an exhaust-only canopy hood. This appliance and hood combination is one of a series undertaken to provide electric utilities and the foodservice industry with data to optimize the design of commercial kitchen ventilation systems and integrate exhaust requirements with space conditioning design.

1997-09-17T23:59:59.000Z

233

Midlevel Ventilation’s Constraint on Tropical Cyclone Intensity  

Science Conference Proceedings (OSTI)

Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a tropical cyclone’s intensity. An idealized framework based ...

Brian Tang; Kerry Emanuel

2010-06-01T23:59:59.000Z

234

ESB Networks Case Study on Distribution Volt-VAR Control Integrated with Wind Turbine Inverter Control  

Science Conference Proceedings (OSTI)

The key topic addressed in this Smart Grid Demonstration case study is how the decoupled reactive power capability of modern, doubly fed induction generator (DFIG) wind farms can be used to actively control voltage at the point of common coupling. This was done within the context of assessing technologies that will allow higher penetration of renewable resources without violating voltage limits on local distribution systems.A trial was conducted, using a section of Ireland’s ESB ...

2012-12-31T23:59:59.000Z

235

Whole-House Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Whole-House Ventilation Whole-House Ventilation Whole-House Ventilation May 30, 2012 - 2:37pm Addthis A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. What does this mean for me? Whole-house ventilation is critical in an energy-efficient home to maintain adequate indoor air quality and comfort. The whole-house ventilation system you choose will depend upon your climate, budget, and the availability of experienced contractors in your area. Energy-efficient homes -- both new and existing -- require mechanical ventilation to maintain indoor air quality. There are four basic mechanical

236

Does Mixing Make Residential Ventilation More Effective?  

E-Print Network (OSTI)

under Contract No. DE-AC02-05CH11231. References ASHRAE.2009. ASHRAE Handbook of Fundamentals, Ventilation andChapter. Atlanta GA: ASHRAE. ASHRAE. 2007. “Ventilation and

Sherman, Max

2011-01-01T23:59:59.000Z

237

May 1999 LBNL -42975 ASHRAE'S RESIDENTIAL VENTILATION  

E-Print Network (OSTI)

May 1999 LBNL - 42975 ASHRAE'S RESIDENTIAL VENTILATION STANDARD: EXEGESIS OF PROPOSED STANDARD 62 Berkeley National Laboratory Berkeley, CA 94720 April 1999 In January 1999 ASHRAE's Standard Project, approved ASHRAE's first complete standard on residential ventilation for public review

238

Site-controlled Ag nanocrystals grown by molecular beam epitaxy-Towards plasmonic integration technology  

Science Conference Proceedings (OSTI)

We demonstrate site-controlled growth of epitaxial Ag nanocrystals on patterned GaAs substrates by molecular beam epitaxy with high degree of long-range uniformity. The alignment is based on lithographically defined holes in which position controlled InAs quantum dots are grown. The Ag nanocrystals self-align preferentially on top of the InAs quantum dots. No such ordering is observed in the absence of InAs quantum dots, proving that the ordering is strain-driven. The presented technique facilitates the placement of active plasmonic nanostructures at arbitrarily defined positions enabling their integration into complex devices and plasmonic circuits.

Urbanczyk, Adam [COBRA Research Institute on Communication Technology, Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Noetzel, Richard [Institute for Systems based on Optoelectronics and Microtechnology (ISOM), ETSI Telecommunication, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)

2012-12-15T23:59:59.000Z

239

DEMONSTRATION OF AN ADVANCED INTEGRATED CONTROL SYSTEM FOR SIMULTANEOUS EMISSIONS REDUCTION  

Science Conference Proceedings (OSTI)

The primary objective of the project titled ''Demonstration of an Advanced Integrated Control System for Simultaneous Emissions Reduction'' was to demonstrate at proof-of-concept scale the use of an online software package, the ''Plant Environmental and Cost Optimization System'' (PECOS), to optimize the operation of coal-fired power plants by economically controlling all emissions simultaneously. It combines physical models, neural networks, and fuzzy logic control to provide both optimal least-cost boiler setpoints to the boiler operators in the control room, as well as optimal coal blending recommendations designed to reduce fuel costs and fuel-related derates. The goal of the project was to demonstrate that use of PECOS would enable coal-fired power plants to make more economic use of U.S. coals while reducing emissions.

Suzanne Shea; Randhir Sehgal; Ilga Celmins; Andrew Maxson

2002-02-01T23:59:59.000Z

240

Ventilation Based on ASHRAE 62.2  

E-Print Network (OSTI)

Indoor Ventilation Based on ASHRAE 62.2 Arnold Schwarzenegger Governor California Energy Commission Ventilation (ASHRAE 62.2) Minimum Best Practices Guide - Exhaust-Only Ventilation Introduction: The California Energy Commission has created the following guide to provide assistance in complying with ANSI/ASHRAE

Note: This page contains sample records for the topic "integrated ventilation controller" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Utilizing Passive Ventilation to Complement HVAC Systems in Enclosed Buildings  

E-Print Network (OSTI)

Utilizing Passive Ventilation to Complement HVAC Systems in Enclosed Buildings Tom Rogg REU Student to assist HVAC has the potential to significantly reduce life cycle cost and energy consumption and electrical system that will tie thermostats to controlled valves in the actual HVAC system. Based on results

Mountziaris, T. J.

242

Integrated Sensing and Controls for Coal Gasification - Development of Model-Based Controls for GE's Gasifier and Syngas Cooler  

Science Conference Proceedings (OSTI)

This report summarizes the achievements and final results of this program. The objective of this program is to develop a comprehensive systems approach to integrated design of sensing and control systems for an Integrated Gasification Combined Cycle (IGCC) plant, using advanced model-based techniques. In particular, this program is focused on the model-based sensing and control system design for the core gasification section of an IGCC plant. The overall approach consists of (i) developing a first-principles physics-based dynamic model of the gasification section, (ii) performing model-reduction where needed to derive low-order models suitable for controls analysis and design, (iii) developing a sensing system solution combining online sensors with model-based estimation for important process variables not measured directly, and (iv) optimizing the steady-state and transient operation of the plant for normal operation as well as for startup using model predictive controls (MPC). Initially, available process unit models were implemented in a common platform using Matlab/Simulink{reg_sign}, and appropriate model reduction and model updates were performed to obtain the overall gasification section dynamic model. Also, a set of sensor packages were developed through extensive lab testing and implemented in the Tampa Electric Company IGCC plant at Polk power station in 2009, to measure temperature and strain in the radiant syngas cooler (RSC). Plant operation data was also used to validate the overall gasification section model. The overall dynamic model was then used to develop a sensing solution including a set of online sensors coupled with model-based estimation using nonlinear extended Kalman filter (EKF). Its performance in terms of estimating key unmeasured variables like gasifier temperature, carbon conversion, etc., was studied through extensive simulations in the presence sensing errors (noise and bias) and modeling errors (e.g. unknown gasifier kinetics, RSC fouling). In parallel, an MPC solution was initially developed using ideal sensing to optimize the plant operation during startup pre-heating as well as steady state and transient operation under normal high-pressure conditions, e.g. part-load, base-load, load transition and fuel changes. The MPC simulation studies showed significant improvements both for startup pre-heating and for normal operation. Finally, the EKF and MPC solutions were coupled to achieve the integrated sensing and control solution and its performance was studied through extensive steady state and transient simulations in the presence of sensor and modeling errors. The results of each task in the program and overall conclusions are summarized in this final report.

Aditya Kumar

2010-12-30T23:59:59.000Z

243

Beyond integrated safeguards: performance-based assessments for future nuclear controls.  

Science Conference Proceedings (OSTI)

In the future, iE the nuclear nonproliferation and arms control agendas are to advance, they will likely become increasingly seen as parallel undertakings with the objective of comprehensive cradle-to-grave controls over nuclear materials and possibly even warheads removed from defense programs along with materials in civilian use. This 'back to the future' prospect was envisioned in the Acheson-Lillienthal Report and the Baruch Plan, and more modestly in the Atoms-for-Peace Proposal. Unlike the grand plans of the early nuclear years, today's and tomorrow's undertakings will more likely consist of a series of incremental steps with the goal of expanding nuclear controls. These steps will be undertaken at a time of fundamental change in the IAEA safeguards system, and they will be influenced by those changes in profound ways. This prospective influence needs to be taken into account as the IAEA develops and implements integrated safeguards, including its efforts to establish new safeguards criteria, undertake technological and administrative improvements in safeguards, implement credible capabilities for the detection of undeclared nuclear facilities and activities and, perhaps, provide for a more intensive involvement in applying safeguards in new roles such as the verification of a fissile materials cutoff treaty. Performance-based criteria offer one promising way to address the effectiveness of integrated safeguards and to provide a common means of assessing the other key areas of a comprehensive approach to nuclear controls as these develop independently and to the extent that they are coordinated in the future.

Pilat, Joseph F.; Budlong-Sylvester, K. W. (Kory W.)

2001-01-01T23:59:59.000Z

244

Development of the integrated environmental control model. Quarterly progress report, April 1995--June 1995  

SciTech Connect

The purpose of this contract is to develop and refine the Integrated Environmental Control Model (IECM). In its current configuration, the IECM provides a capability to model various conventional and advanced processes for controlling air pollutant emissions from coal-fired power plants before, during, or after combustion. The principal purpose of the model is to calculate the performance, emissions, and cost of power plant configurations employing alternative environmental control methods. The model consists of various control technology modules, which may be integrated into a complete utility plant in any desired combination. In contrast to conventional deterministic models, the IECM offers the unique capability to assign probabilistic values to all model input parameters, and to obtain probabilistic outputs in the form of cumulative distribution functions indicating the likelihood of different costs and performance results. The work in this contract is divided into two phases. Phase I deals with further developing the existing version of the IECM and training PETC personnel on the effective use of the model. Phase H deals with creating new technology modules, linking the IECM with PETC databases, and training PETC personnel on the effective use of the updated model. The present report summarizes recent progress on the Phase I effort during the period April 1, 1995 through June 30, 1995. This report presents additional revisions to the new cost models of flue gas desulfurization (FGD) technology initially reported in our fourth quarterly report. For convenience, the complete description of the revised FGD models are presented here.

Kalagnanam, J.R.; Rubin, E.S.

1995-06-01T23:59:59.000Z

245

Effect of Outside Air Ventilation Rate on Volatile Organic Compound  

NLE Websites -- All DOE Office Websites (Extended Search)

Outside Air Ventilation Rate on Volatile Organic Compound Outside Air Ventilation Rate on Volatile Organic Compound Concentrations in a Call Center Title Effect of Outside Air Ventilation Rate on Volatile Organic Compound Concentrations in a Call Center Publication Type Journal Article Year of Publication 2003 Authors Hodgson, Alfred T., David Faulkner, Douglas P. Sullivan, Dennis L. DiBartolomeo, Marion L. Russell, and William J. Fisk Journal Atmospheric Environment Volume 37 Start Page Chapter Pagination 5517-5528 Abstract A study of the relationship between outside air ventilation rate and concentrations of volatile organic compounds (VOCs) generated indoors was conducted in a call center office building. The building, with two floors and a floor area of 4,600 m2, was located in the San Francisco Bay Area, CA. Ventilation rates were manipulated with the building's four air handling units (AHUs). VOC concentrations in the AHU returns were measured on seven days during a 13-week period. VOC emission factors were determined for individual zones on days when they were operating at near steady-state conditions. The emission factor data were subjected to principal component (PC) analysis to identify groups of co-varying compounds. Potential sources of the PC vectors were ascribed based on information from the literature supporting the associations. Two vectors with high loadings of compounds including formaldehyde, 2,2,4-trimethyl-1,3- pentanediol monoisobutyrate, decamethylcyclopentasiloxane (d5 siloxane), and isoprene likely identified occupant-related sources. One vector likely represented emissions from building materials. Another vector represented emissions of solvents from cleaning products. The relationships between indoor minus outdoor VOC concentrations and ventilation rate were qualitatively examined for eight VOCs. Of these, acetaldehyde and hexanal, which were likely associated with material sources, and d5 siloxane exhibited general trends of higher concentrations at lower ventilation rates. For other compounds, the operation of the building and variations in pollutant generation and removal rates apparently combined to obscure the inverse relationship between VOC concentrations and ventilation. This result emphasizes the importance of utilizing source control measures, in addition to adequate ventilation, to limit concentrations of VOCs of concern in office buildings

246

Integrated emissions control system for residential CWS furnace. Final report, September 20, 1989--March 20, 1993  

SciTech Connect

One of the major obstacles to the successful development and commercialization of a coal-fired residential furnace is the need for a reliable, cost-effective emission control system. Tecogen is developing a novel, integrated control system to control NO{sub x}SO{sub 2}, and particulate emissions. At the heart of this system is a unique emissions control reactor for the control of SO{sub 2}. This reactor provides high sorbent particle residence time within the reactor while doing so in a very compact geometry. Final cleanup of any fine particulates exiting the reactor including respirable-sized particulates, is completed with the use of high efficiency bag filters. Under a previous contract with PETC (Contract No. DE-AC22-87PC79650), Tecogen developed a residential-scale Coal Water Slurry (CWS) combustor to control NO{sub x}emission. This combustor makes use of centrifugal forces, set up by a predominantly tangential flow field, to separate and confine larger unburned coal particles in the furnace upper chamber. Various partitions are used to retard the axial, downward flow of these particles, and thus maximize their residence time in the hottest section of the combustor. By operating this combustor under staged conditions, the local stoichiometry in the primary zone can be controlled in such a manner as to minimize NO{sub x} emission.

Breault, R.W.; McLarnon, C.

1993-03-01T23:59:59.000Z

247

Are We Ready to Propose Guidelines for Health-Based Ventilation?  

NLE Websites -- All DOE Office Websites (Extended Search)

Are We Ready to Propose Guidelines for Health-Based Ventilation? Are We Ready to Propose Guidelines for Health-Based Ventilation? Speaker(s): Pawel Wargocki Date: October 14, 2013 - 12:00pm - 1:00pm Location: 90-3122 Seminar Host/Point of Contact: Mark Mendell Guidelines for health-based ventilation in Europe are proposed. They follow the premise of controlling exposures to indoor air pollutants of both indoor and outdoor origin. Exposures are controlled through a two-step sequential approach, in which source control is the primary strategy, while ventilation is the secondary strategy once all options for source control have been fully implemented. World Health Organization (WHO) air quality (AQ) guidelines are used to set the exposure limits. A decision diagram is created for guidance through the process of source control and to aid in

248

Direct Torque Control Based on Space Vector Modulation with Adaptive Neural Integrator for Stator Flux Estimation in Induction Motors  

Science Conference Proceedings (OSTI)

Direct torque control based on space vector modulation (SVM-DTC) preserve DTC transient merits, furthermore, produce better quality steady-state performance in a wide speed range. A new adaptive neural integration algorithm for estimating stator flux ... Keywords: DTC, space vector modulation, adaptive neural integrator, stator flux estimation

Chunhua Zang; Xianqing Cao

2009-08-01T23:59:59.000Z

249

An overview of the TA-55, Building PF-4 ventilation system  

Science Conference Proceedings (OSTI)

An overview of the TA-55, Building PF-4 ventilation system is provided in the following sections. Included are descriptions of the zone configurations, equipment-performance criteria, ventilation support systems, and the ventilation-system evaluation criteria. Section 4.2.1.1 provides a brief discussion of the ventilation system function. Section 4.2.1.2 provides details on the overall system configuration. Details of system interfaces and support systems are provided in Section 4.2.1.3. Section 4.2.1.4 describes instrumentation and control needed to operate the ventilation system. Finally, Sections 4.2.1.5 and 4.2.1.6 describe system surveillance/maintenance and Technical Safety Requirements (TSR) Limitations, respectively. Note that the numerical parameters included in this description are considered nominal; set points and other specifications actually fall within operational bands.

NONE

1994-02-22T23:59:59.000Z

250

Analysis of Demand Controlled Ventilation Technology and ...  

Science Conference Proceedings (OSTI)

... the adoption of the Alaska Building Energy Efficiency Standard ... the methanol-fueled vehicle until warm, then parking it in the garage and shutting ...

2005-10-07T23:59:59.000Z

251

A Passive Ventilation Device for Hydrogen Control  

DOE Green Energy (OSTI)

Pump pit tanks are employed at the Savannah River Site to facilitate the transfer of radioactive liquid waste between generation locations and waste tanks and among waste tanks.

Blanchard, A. [Westinghouse Savannah River Company, AIKEN, SC (United States); Thomas, J.K.

1998-07-01T23:59:59.000Z

252

From Design to Production Control Through the Integration of Engineering Data Management and Workflow Management Systems  

E-Print Network (OSTI)

At a time when many companies are under pressure to reduce "times-to-market" the management of product information from the early stages of design through assembly to manufacture and production has become increasingly important. Similarly in the construction of high energy physics devices the collection of (often evolving) engineering data is central to the subsequent physics analysis. Traditionally in industry design engineers have employed Engineering Data Management Systems (also called Product Data Management Systems) to coordinate and control access to documented versions of product designs. However, these systems provide control only at the collaborative design level and are seldom used beyond design. Workflow management systems, on the other hand, are employed in industry to coordinate and support the more complex and repeatable work processes of the production environment. Commercial workflow products cannot support the highly dynamic activities found both in the design stages of product development and in rapidly evolving workflow definitions. The integration of Product Data Management with Workflow Management can provide support for product development from initial CAD/CAM collaborative design through to the support and optimisation of production workflow activities. This paper investigates this integration and proposes a philosophy for the support of product data throughout the full development and production lifecycle and demonstrates its usefulness in the construction of CMS detectors.

J-M. Le Goff; G. Chevenier; A. Bazan; T. Le Flour; S. Lieunard; S. Murray; J-P. Vialle; N. Baker; F. Estrella; Z. Kovacs; R. McClatchey; G. Organtini; S. Bityukov

1998-02-06T23:59:59.000Z

253

Ion-beam apparatus and method for analyzing and controlling integrated circuits  

DOE Patents (OSTI)

An ion-beam apparatus and method for analyzing and controlling integrated circuits. The ion-beam apparatus comprises a stage for holding one or more integrated circuits (ICs); a source means for producing a focused ion beam; and a beam-directing means for directing the focused ion beam to irradiate a predetermined portion of the IC for sufficient time to provide an ion-beam-generated electrical input signal to a predetermined element of the IC. The apparatus and method have applications to failure analysis and developmental analysis of ICs and permit an alteration, control, or programming of logic states or device parameters within the IC either separate from or in combination with applied electrical stimulus to the IC for analysis thereof. Preferred embodiments of the present invention including a secondary particle detector and an electron floodgun further permit imaging of the IC by secondary ions or electrons, and allow at least a partial removal or erasure of the ion-beam-generated electrical input signal.

Campbell, Ann N. (Albuquerque, NM); Soden, Jerry M. (Placitas, NM)

1998-01-01T23:59:59.000Z

254

Improving Ventilation and Saving Energy: Laboratory Study in a Modular  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Ventilation and Saving Energy: Laboratory Study in a Modular Improving Ventilation and Saving Energy: Laboratory Study in a Modular Classroom Test Bed Title Improving Ventilation and Saving Energy: Laboratory Study in a Modular Classroom Test Bed Publication Type Report Year of Publication 2005 Authors Apte, Michael G., Ian S. Buchanan, David Faulkner, William J. Fisk, Chi-Ming Lai, Michael Spears, and Douglas P. Sullivan Publisher Lawrence Berkeley National Laboratory Abstract The primary goals of this research effort were to develop, evaluate, and demonstrate a practical HVAC system for classrooms that consistently provides classrooms with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research was motivated by several factors, including the public benefits of energy efficiency, evidence that many classrooms are under-ventilated, and public concerns about indoor environmental quality in classrooms. This project involved the installation and verification of the performance of an Improved Heat Pump Air Conditioning (IHPAC) system, and its comparison, a standard HVAC system having an efficiency of 10 SEER. The project included the verification of the physical characteristics suitable for direct replacement of existing 10 SEER systems, quantitative demonstration of improved energy efficiency, reduced acoustic noise levels, quantitative demonstration of improved ventilation control, and verification that the system would meet temperature control demands necessary for the thermal comfort of the occupants. Results showed that the IHPAC met these goals. The IHPAC was found to be a direct bolt-on replacement for the 10 SEER system. Calculated energy efficiency improvements based on many days of classroom cooling or heating showed that the IHPAC system is about 44% more efficient during cooling and 38% more efficient during heating than the 10 SEER system. Noise reduction was dramatic, with measured A-weighed sound level for fan only operation conditions of 34.3 dB(A), a reduction of 19 dB(A) compared to the 10 SEER system. Similarly, the IHPAC stage-1 and stage-2 compressor plus fan sound levels were 40.8 dB(A) and 42.7 dB(A), reductions of 14 and 13 dB(A), respectively. Thus, the IHPAC is 20 to 35 times quieter than the 10 SEER systems depending upon the operation mode. The IHPAC system met the ventilation requirements and was able to provide consistent outside air supply throughout the study. Indoor CO2 levels with simulated occupancy were maintained below 1000 ppm. Finally temperature settings were met and controlled accurately. The goals of the laboratory testing phase were met and this system is ready for further study in a field test of occupied classrooms

255

Design and Implementation of Switching Voltage Integrated Circuits Based on Sliding Mode Control  

E-Print Network (OSTI)

The need for high performance circuits in systems with low-voltage and low-power requirements has exponentially increased during the few last years due to the sophistication and miniaturization of electronic components. Most of these circuits are required to have a very good efficiency behavior in order to extend the battery life of the device. This dissertation addresses two important topics concerning very high efficiency circuits with very high performance specifications. The first topic is the design and implementation of class D audio power amplifiers, keeping their inherent high efficiency characteristic while improving their linearity performance, reducing their quiescent power consumption, and minimizing the silicon area. The second topic is the design and implementation of switching voltage regulators and their controllers, to provide a low-cost, compact, high efficient and reliable power conversion for integrated circuits. The first part of this dissertation includes a short, although deep, analysis on class D amplifiers, their history, principles of operation, architectures, performance metrics, practical design considerations, and their present and future market distribution. Moreover, the harmonic distortion of open-loop class D amplifiers based on pulse-width modulation (PWM) is analyzed by applying the duty cycle variation technique for the most popular carrier waveforms giving an easy and practical analytic method to evaluate the class D amplifier distortion and determine its specifications for a given linearity requirement. Additionally, three class D amplifiers, with an architecture based on sliding mode control, are proposed, designed, fabricated and tested. The amplifiers make use of a hysteretic controller to avoid the need of complex overhead circuitry typically needed in other architectures to compensate non-idealities of practical implementations. The design of the amplifiers based on this technique is compact, small, reliable, and provides a performance comparable to the state-of-the-art class D amplifiers, but consumes only one tenth of quiescent power. This characteristic gives to the proposed amplifiers an advantage for applications with minimal power consumption and very high performance requirements. The second part of this dissertation presents the design, implementation, and testing of switching voltage regulators. It starts with a description and brief analysis on the power converters architectures. It outlines the advantages and drawbacks of the main topologies, discusses practical design considerations, and compares their current and future market distribution. Then, two different buck converters are proposed to overcome the most critical issue in switching voltage regulators: to provide a stable voltage supply for electronic devices, with good regulation voltage, high efficiency performance, and, most important, a minimum number of components. The first buck converter, which has been designed, fabricated and tested, is an integrated dual-output voltage regulator based on sliding mode control that provides a power efficiency comparable to the conventional solutions, but potentially saves silicon area and input filter components. The design is based on the idea of stacking traditional buck converters to provide multiple output voltages with the minimum number of switches. Finally, a fully integrated buck converter based on sliding mode control is proposed. The architecture integrates the external passive components to deliver a complete monolithic solution with minimal silicon area. The buck converter employs a poly-phase structure to minimize the output current ripple and a hysteretic controller to avoid the generation of an additional high frequency carrier waveform needed in conventional solutions. The simulated results are comparable to the state-of-the-art works even with

Rojas Gonzalez, Miguel Angel

2009-08-01T23:59:59.000Z

256

Building America Top Innovations Hall of Fame Profile … Low-Cost Ventilation in Production Housing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

simple, cost-effective techniques for providing fresh air throughout the home, including exhaust-only and central fan-integrated supply ventilation. Building America has refined simple whole-house ventilation systems that cost less than $350 to install. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.3 Assured Health, Safety, and Durability Low-Cost Ventilation in Production Housing As high-performance homes get more air-tight and better insulated, attention to good indoor air quality becomes essential. Building America has effectively guided the nation's home builders to embrace whole-house ventilation by developing low-cost options that adapt well to their production processes. When the U.S. Department of Energy's Building America research teams began

257

Ventilation Industrielle de Bretagne VIB | Open Energy Information  

Open Energy Info (EERE)

Ventilation Industrielle de Bretagne VIB Ventilation Industrielle de Bretagne VIB Jump to: navigation, search Name Ventilation Industrielle de Bretagne (VIB) Place Ploudalmezeau, France Zip 29839 Sector Geothermal energy, Solar Product Ploudalmezeau-based company producing and marketing energy efficient and ventilation products including air source heat pumps, geothermal water source heat pumps, efficient air filtration systems and solar products. Coordinates 48.540325°, -4.657904° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.540325,"lon":-4.657904,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

258

Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet)  

SciTech Connect

The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley Habitat for Humanity (MVHfH) partnered with U.S. Department of Energy Building America team Building Science Corporation (BSC) to provide high performance affordable housing for 10 families in the retrofit of an existing mass masonry building (a former convent). The original ventilation design for the project was provided by a local engineer and consisted of a single large heat recovery ventilator (HRV) located in a mechanical room in the basement with a centralized duct system providing supply air to the main living space and exhausting stale air from the single bathroom in each apartment. This design was deemed to be far too costly to install and operate for several reasons: the large central HRV was oversized and the specified flows to each apartment were much higher than the ASHRAE 62.2 rate; an extensive system of ductwork, smoke and fire dampers, and duct chases were specified; ductwork required a significant area of dropped ceilings; and the system lacked individual ventilation control in the apartments

Metzger, C.; Ueno, K.; Kerrigan, P.; Wytrykowska, H.; Van Straaten, R.

2013-11-01T23:59:59.000Z

259

Case Study 1 - Ventilation in Manufactured Houses  

Science Conference Proceedings (OSTI)

... Ventilation in Manufactured Houses. ... fan operation, an outdoor air intake duct installed on the forced-air return, and whole house exhaust with and ...

260

Summary of human responses to ventilation  

E-Print Network (OSTI)

coils of commercial air-conditioning systems. Proceedings ofrefrigerating and air-conditioning engineers, inc. pp 601-for ventilation and air-conditioning systems - offices and

Seppanen, Olli A.; Fisk, William J.

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated ventilation controller" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Mixed-Mode Ventilation and Building Retrofits  

E-Print Network (OSTI)

November 1994, ENTPE, Lyon. [CIBSE] Chartered Institution ofMixed-mode ventilation. CIBSE Applications Manual AM13.incorporated by the design. CIBSE, 2000 Mixed-mode

Brager, Gail; Ackerly, Katie

2010-01-01T23:59:59.000Z

262

Indoor Air Quality & Ventilation Group Staff Directory  

Science Conference Proceedings (OSTI)

Indoor Air Quality and Ventilation Group Staff. Staff Listing. Dr. Andrew K. Persily, Leader, Supervisory Mechanical Engineer, 301-975-6418. ...

2013-08-30T23:59:59.000Z

263

Ventilation measurements in large office buildings  

SciTech Connect

Ventilation rates were measured in nine office buildings using an automated tracer gas measuring system. The buildings range in size from a two-story federal building with a floor area of about 20,000 ft/sup 2/ (1900 m/sup 2/) to a 26-story office building with a floor area of 700,000 ft/sup 2/ (65,000 m/sup 2/). The ventilation rates were measured for about 100 hours in each building over a range of weather conditions. The results are presented and examined for variation with time and weather. In most cases, the ventilation rate of a building is similar for hot and cold weather. In mild weather, outdoor air is used to cool the building and the ventilation rate increases. In the buildings where infiltration is a significant portion of the total ventilation rate, this total rate exhibits a dependence on weather conditions. The measured ventilation rates are discussed in relation to the outdoor air intake strategy in each building. The ventilation rates are also compared to the design rates in the buildings and ventilation rates based on the ASHRAE Standard 62-81. Some of the buildings are at times operated at lower ventilation rates than recommended in Standard 62-81.

Persily, A.K.; Grot, R.A.

1985-01-01T23:59:59.000Z

264

Does Mixing Make Residential Ventilation More Effective?  

E-Print Network (OSTI)

Does Mixing Make Residential Ventilation More Effective? Maxmanufacturer, or otherwise, does not necessarily constitutethe University of California. Does Mixing Make Residential

Sherman, Max

2011-01-01T23:59:59.000Z

265

The Mobil Integrated C{sup 3} (command control and communications) and Security System  

SciTech Connect

The current political and economic situations suggest that significant reductions of nuclear forces outside the US will continue. This implies that in times of crisis the rapid deployment of nuclear weapons into a theater may be required. This paper describes a proposed Mobile Integrated C{sup 3} and Security System (MICSS). The MICSS, together with associated personnel, could satisfy the command and control and security requirements of a deployed nuclear operation. Rapid deployment poses unique nuclear weapon surety difficulties that must be overcome for the operation to be effective and survivable. The MICSS must be portable, reliable, limited in size, and easily emplaced to facilitate movement, reduce the possibility of detection, and minimize manpower requirements. The MICSS will be based on existing technology. Sandia has designed prototype mobile command centers for the military. These command centers are based on an approach that stresses modularity, standards, and the use of an open architecture. Radio, telephone, satellite communications, communication security, and global positioning system equipment has been successfully integrated into the command centers. Sandia is also supporting the development of portable security systems for the military. These systems are rapidly deployable and mission flexible and are capable of intrusion detection, area and alarm display, night assessment, and wireless sensor communications. This paper is organized as follows: Background information about the prototype mobile command centers will be presented first. Background information about portable security systems concepts will then be given. Next, an integrated communications and security system will be presented, and finally, the design and status of a prototype MICSS will be described.

Eras, A.; Brown, R.D.

1993-06-15T23:59:59.000Z

266

COST-EFFECTIVE CONTROL OF NOx WITH INTEGRATED ULTRA LOW-NOx BURNERS AND SNCR  

SciTech Connect

Coal-fired electric utilities are facing a serious challenge with regards to curbing their NO{sub x} emissions. At issue are the NO{sub x} contributions to the acid rain, ground level ozone, and particulate matter formation. Substantial NO{sub x} control requirements could be imposed under the proposed Ozone Transport Rule, National Ambient Air Quality Standards, and New Source Performance Standards. McDermott Technology, Inc. (MTI), Babcock and Wilcox (B and W), and Fuel Tech are teaming to provide an integrated solution for NO{sub x} control. The system will be comprised of an ultra low-NO{sub x} pulverized coal (PC) burner technology plus a urea-based, selective non-catalytic reduction (SNCR) system. This system will be capable of meeting a target emission limit of 0.15 lb NO{sub x}/10{sup 6} Btu and target ammonia (NH3) slip level targeted below 5 ppmV for commercial units. Our approach combines the best available combustion and post-combustion NO{sub x} control technologies. More specifically, B and W's DRB-4Z TM ultra low-NO{sub x} PC burner technology will be combined with Fuel Tech's NO{sub x}OUT (SNCR) and NO{sub x}OUT Cascade (SNCR/SCR hybrid) systems and jointly evaluated and optimized in a state-of-the-art test facility at MTI. Although the NO{sub x}OUT Cascade (SNCR/SCR hybrid) system will not be tested directly in this program, its potential application for situations that require greater NO{sub x} reductions will be inferred from other measurements (i.e., SNCR NO{sub x} removal efficiency plus projected NO{sub x} reduction by the catalyst based on controlled ammonia slip). Our analysis shows that the integrated ultra low-NO{sub x} burner and SNCR system has the lowest cost when the burner emissions are 0.25 lb NO{sub x}/10{sup 6} Btu or less. At burner NO{sub x} emission level of 0.20 lb NO{sub x}/10{sup 6} Btu, the levelized cost per ton of NO{sub x} removed is 52% lower than the SCR cost.

Hamid Farzan

2001-07-01T23:59:59.000Z

267

Quantitative relationship of sick building syndrome symptoms with ventilation rates  

E-Print Network (OSTI)

32%), and as ventilation rate increases from 10 to 25 L/s-0.85) as ventilation rate increases from 10 to 25 L/s-29% as ventilation rate increases from 10 to 25 L/s-person.

Fisk, William J.

2009-01-01T23:59:59.000Z

268

Review of Literature Related to Residential Ventilation Requirements  

E-Print Network (OSTI)

typical existing house. Designed passive ventilation systemsPassive Ventilation by Constant Area Vents to Maintain Indoor Air Quality in Houses."House Ventilation Rates Local Exhaust Rates Air Distribution and Duct Leakage Infiltration Windows and Passive

McWilliams, Jennifer; Sherman, Max

2005-01-01T23:59:59.000Z

269

Indoor Chemistry: Materials, Ventilation Systems, and Occupant Activities  

Science Conference Proceedings (OSTI)

Chemical processes taking place in indoor environments can significantly alter the nature and concentrations of pollutants. Exposure to secondary contaminants generated in these reactions needs to be evaluated in association with many aspects of buildings to minimize their impact on occupant health and well-being. Focusing on indoor ozone chemistry, we describe alternatives for improving indoor air quality by controlling chemical changes related to building materials, ventilation systems, and occupant activities.

Morrison, G.C.; Corsi, R.L.; Destaillats, H.; Nazaroff, W.W.; Wells, J.R.

2006-05-01T23:59:59.000Z

270

HVAC Technology Report: A Review of Heating, Ventilation and Air Conditioning Technology and Markets  

Science Conference Proceedings (OSTI)

For many of us, roughly 95 percent of our time is spent indoors. To enable humans to spend this much time inside, mechanical equipment is necessary to provide space conditioning to control the temperature (heating and cooling), ventilation, humidity, and indoor air quality. This report introduces the heating, ventilation, and air-conditioning (HVAC) industry to EPRI member utility employees. The document describes the most common technologies and applications and provides an overview of industry statisti...

2000-12-14T23:59:59.000Z

271

Infiltration in ASHRAE's Residential Ventilation Standards  

Science Conference Proceedings (OSTI)

The purpose of ventilation is to dilute or remove indoor contaminants that an occupant could be exposed to. It can be provided by mechanical or natural means. ASHRAE Standards including standards 62, 119, and 136 have all considered the contribution of infiltration in various ways, using methods and data from 20 years ago. The vast majority of homes in the United States and indeed the world are ventilated through natural means such as infiltration caused by air leakage. Newer homes in the western world are tight and require mechanical ventilation. As we seek to provide acceptable indoor air quality at minimum energy cost, it is important to neither over-ventilate norunder-ventilate. Thus, it becomes critically important to correctly evaluate the contribution infiltration makes to both energy consumption and equivalent ventilation. ASHRAE Standard 62.2 specifies how much mechanical ventilation is considered necessary to provide acceptable indoor air quality, but that standard is weak on how infiltration can contribute towards meeting the total requirement. In the past ASHRAE Standard 136 was used to do this, but new theoretical approaches and expanded weather data have made that standard out of date. This article will describe how to properly treat infiltration as an equivalent ventilation approach and then use new data and these new approaches to demonstrate how these calculations might be done both in general and to update Standard 136.

Sherman, Max

2008-10-01T23:59:59.000Z

272

Loss of integrated control system power and overcooling transient at Rancho Seco on December 26, 1985  

Science Conference Proceedings (OSTI)

On December 26, 1985, Rancho Seco Nuclear Generating Station, located in Clay, California, about 25 miles southeast of Sacramento, experienced a loss of dc power within the integrated control system (ICS) while the plant was operating at 76% power. The plant is owned by the Sacramento Municipal Utility District (SMUD). Following the loss of ICS dc power, the reactor tripped on high reactor coolant system (RCS) pressure followed by a rapid overcooling transient and automatic initiation of the safety features actuation system on low RCS pressure. The overcooling transient continued until ICS dc power was restored 26 minutes after its loss. The fundamental causes for this transient were design weaknesses and vulnerabilities in the ICS and in the equipment controlled by that system. These weaknesses and vulnerabilities were not adequately compensated by other design features, plant procedures or operator training. These weaknesses and vulnerabilities were largely known to SMUD and the NRC staff by virtue of a number of precursor events and through related analyses and studies. Yet, adequate plant modifications were not made so that this event would be improbable, or so that its course or consequences would be altered significantly. The information was available and known which could have prevented this overcooling transient; but in the absence of adequate plant modifications, the incident should have been expected. The report includes findings and conclusions of the NRC Incident Investigation Team sent to Rancho Seco by the NRC Executive Director for Operations in conformance with NRC's recently established Incident Investigation Program. 33 figs.

Not Available

1986-02-01T23:59:59.000Z

273

Integrating Small Scale Distributed Generation into a Deregulated Market: Control Strategies and Price Feedback  

E-Print Network (OSTI)

Small scale power generating technologies, such as gas turbines, small hydro turbines, photovoltaics, wind turbines and fuel cells, are gradually replacing conventional generating technologies, for various applications, in the electric power system. The industry restructuring process in the United States is exposing the power sector to market forces, which is creating competitive structures for generation and alternative regulatory structures for the transmission and distribution systems. The potentially conflicting economic and technical demands of the new, independent generators introduce a set of significant uncertainties. What balance between market forces and centralized control will be found to coordinate distribution system operations? How will the siting of numerous small scale generators in distribution feeders impact the technical operations and control of the distribution system? Who will provide ancillary services (such as voltage support and spinning reserves) in the new competitive environment? This project investigates both the engineering and market integration of distributed generators into the distribution system. On the technical side, this project investigates the frequency performance of a distribution system that has multiple small scale generators. Using IEEE sample distribution systems and new dynamic generator models, this project develops general methods for

Judith Cardell; Marija Ili?; Richard D. Tabors

1997-01-01T23:59:59.000Z

274

Federal Energy Management Program: Solar Ventilation Preheating Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Ventilation Solar Ventilation Preheating Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Google Bookmark Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Delicious Rank Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on AddThis.com... Energy-Efficient Products

275

Ventilation, temperature, and HVAC characteristics in small and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California Title Ventilation, temperature, and HVAC characteristics in small and...

276

Association of Classroom Ventilation with Reduced Illness Absence...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation with Reduced Illness Absence: A Prospective Study in California Elementary Schools Title Association of Classroom Ventilation with Reduced Illness Absence: A...

277

Why We Ventilate Our Houses - An Historical Look  

NLE Websites -- All DOE Office Websites (Extended Search)

The knowledge of how to ventilate buildings, and how much ventilation is necessary for human health and comfort, has evolved over centuries of trial and error. Humans and...

278

Measuring Residential Ventilation System Airflows: Part 2 - Field...  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Residential Ventilation System Airflows: Part 2 - Field Evaluation of Airflow Meter Devices and System Flow Verification Title Measuring Residential Ventilation System...

279

Improving Ventilation and Saving Energy: Final Report on Indoor...  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms Title Improving Ventilation and Saving...

280

Modeling indoor exposures to VOCs and SVOCs as ventilation rates...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling indoor exposures to VOCs and SVOCs as ventilation rates vary Title Modeling indoor exposures to VOCs and SVOCs as ventilation rates vary Publication Type Conference Paper...

Note: This page contains sample records for the topic "integrated ventilation controller" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Report on Applicability of Residential Ventilation Standards in California  

E-Print Network (OSTI)

but also because passive, whole-house ventilation systemsPassive Ventilation by Constant Area Vents to Maintain Indoor Air Quality in Houses",

Sherman, Max H.; McWilliam, Jennifer A.

2005-01-01T23:59:59.000Z

282

Integrated powertrain control to meet future CO2 and Euro-6 emissions targets for a diesel hybrid with SCR-deNOx system  

Science Conference Proceedings (OSTI)

A new concept is introduced to optimize the performance of the entire powertrain: Integrated Powertrain Control (IPC). In this concept, the synergy between engine, driveline and aftertreatment system is exploited by integrated energy and emission management. ...

Frank Willems; Darren Foster

2009-06-01T23:59:59.000Z

283

Internal Microclimate Resulting From Ventilated Attics in Hot and Humid Regions  

E-Print Network (OSTI)

Ventilated spaces in the built environment create unique and beneficial microclimates. While the current trends in building physics suggest sealing attics and crawlspaces, comprehensive research still supports the benefits of the ventilated microclimate. Data collected at the University of Florida Energy Park show the attic environment of asphalt shingled roofs to be typically hotter than the outdoor conditions, but when properly ventilated sustains a much lower relative humidity. The hot, humid regions of the United States can utilize this internally convective, exchanging air mass to provide stable moisture levels within attic spaces. Positioning the buildings primary boundary at the ceiling deck allows for utilization of this buffer climate to minimize moisture trapping in insulation and maximize the insulation’s thermal benefits. This investigation concludes the conditions in a ventilated attic are stable through seasonal changes and promotes cost effective, energy efficient climate control of unconditioned spaces in hot, humid regions.

Mooney, B. L.; Porter, W. A.

2010-08-01T23:59:59.000Z

284

ASHRAE's Residential Ventilation Standard: Exegesis of Proposed Standard 62.2  

E-Print Network (OSTI)

In February 2000, ASHRAE's Standard Project Committee on "Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings", SPC 62.2P7 recommended ASHRAE's first complete standard on residential ventilation for public review. The standard is an attempt by the Society to address concerns over indoor air quality in dwellings and to set minimum standards that would allow for energy efficiency measures to be evaluated. The standard has requirements for whole-house ventilation, local exhaust ventilation, and source control. In addition to code-intended requirements, the standard also contains guidance information for the designer and/or user of the standard. This report summarizes the draft standard and attempts to address questions and concerns that those potentially affected by the standard might have. This report may also be of use to those considering public review comments on the draft standard.

Sherman, M.

2000-01-01T23:59:59.000Z

285

Classroom HVAC: Improving ventilation and saving energy -- field study plan  

SciTech Connect

The primary goals of this research effort are to develop, evaluate, and demonstrate a very practical HVAC system for classrooms that consistently provides classrooms (CRs) with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research is motivated by the public benefits of energy efficiency, evidence that many CRs are under-ventilated, and public concerns about indoor environmental quality in CRs. This document provides a summary of the detailed plans developed for the field study that will take place in 2005 to evaluate the energy and IAQ performance of a new classroom HVAC technology. The field study will include measurements of HVAC energy use, ventilation rates, and IEQ conditions in 10 classrooms with the new HVAC technology and in six control classrooms with a standard HVAC system. Energy use and many IEQ parameters will be monitored continuously, while other IEQ measurements will be will be performed seasonally. Continuously monitored data will be remotely accessed via a LonWorks network. Instrument calibration plans that vary with the type of instrumentation used are established. Statistical tests will be employed to compare energy use and IEQ conditions with the new and standard HVAC systems. Strengths of this study plan include the collection of real time data for a full school year, the use of high quality instrumentation, the incorporation of many quality control measures, and the extensive collaborations with industry that limit costs to the sponsors.

Apte, Michael G.; Faulkner, David; Hodgson, Alfred T.; Sullivan, Douglas P.

2004-10-14T23:59:59.000Z

286

Energy Efficient Ventilation for Maintaining Indoor Air Quality in Large Buildings  

E-Print Network (OSTI)

this paper was presented at the 3rd International Conference on Cold Climate Heating, Ventilating and Air-conditioning, Sapporo, Japan, November 2000 C. Y. Shaw Rsum Institute for Research in Construction, National Research Council Canada Achieving good indoor air quality in large residential and commercial buildings continues to be a top priority for owners, designers, building managers and occupants alike. Large buildings present a greater challenge in this regard than do smaller buildings and houses. The challenge is greater today because there are many new materials, furnishings, products and processes used in these buildings that are potential sources of air contaminants. There are three strategies for achieving acceptable indoor air quality: ventilation (dilution), source control and air cleaning/filtration. Of the three, the most frequently used strategy, and in most cases the only one available to building operators, is ventilation. Ventilation is the process of supplying outdoor air to an enclosed space and removing stale air from this space. It can control the indoor air quality by both diluting the indoor air with less contaminated outdoor air and removing the indoor contaminants with the exhaust air. Ventilation costs money because the outdoor air needs to be heated in winter and cooled in summer. To conserve energy, care must be taken to maximize the efficiency of the ventilation system. In this regard, a number of factors come into play

C. Y. Shaw; C. Y. Shaw Résumé

2000-01-01T23:59:59.000Z

287

D. Moreau IEA W60 Burning Plasma Physics and Simulation, Tarragona, July 2005 INTEGRATED REAL-TIME CONTROL  

E-Print Network (OSTI)

D. Moreau IEA W60 Burning Plasma Physics and Simulation, Tarragona, July 2005 INTEGRATED REAL-TIME CONTROL FOR ADVANCED STEADY STATE SCENARIOS AND APPLICATIONS TO BURNING PLASMAS EFDA-JET CSU, Culham. Sartori, and many other JET-EFDA Contributors D. Moreau #12;D. Moreau IEA W60 Burning Plasma Physics

288

ARRA-Multi-Level Energy Storage and Controls for Large-Scale Wind Energy Integration  

DOE Green Energy (OSTI)

The Project Objective is to design innovative energy storage architecture and associated controls for high wind penetration to increase reliability and market acceptance of wind power. The project goals are to facilitate wind energy integration at different levels by design and control of suitable energy storage systems. The three levels of wind power system are: Balancing Control Center level, Wind Power Plant level, and Wind Power Generator level. Our scopes are to smooth the wind power fluctuation and also ensure adequate battery life. In the new hybrid energy storage system (HESS) design for wind power generation application, the boundary levels of the state of charge of the battery and that of the supercapacitor are used in the control strategy. In the controller, some logic gates are also used to control the operating time durations of the battery. The sizing method is based on the average fluctuation of wind profiles of a specific wind station. The calculated battery size is dependent on the size of the supercapacitor, state of charge of the supercapacitor and battery wear. To accommodate the wind power fluctuation, a hybrid energy storage system (HESS) consisting of battery energy system (BESS) and super-capacitor is adopted in this project. A probability-based power capacity specification approach for the BESS and super-capacitors is proposed. Through this method the capacities of BESS and super-capacitor are properly designed to combine the characteristics of high energy density of BESS and the characteristics of high power density of super-capacitor. It turns out that the super-capacitor within HESS deals with the high power fluctuations, which contributes to the extension of BESS lifetime, and the super-capacitor can handle the peaks in wind power fluctuations without the severe penalty of round trip losses associated with a BESS. The proposed approach has been verified based on the real wind data from an existing wind power plant in Iowa. An intelligent controller that increases battery life within hybrid energy storage systems for wind application was developed. Comprehensive studies have been conducted and simulation results are analyzed. A permanent magnet synchronous generator, coupled with a variable speed wind turbine, is connected to a power grid (14-bus system). A rectifier, a DC-DC converter and an inverter are used to provide a complete model of the wind system. An Energy Storage System (ESS) is connected to a DC-link through a DC-DC converter. An intelligent controller is applied to the DC-DC converter to help the Voltage Source Inverter (VSI) to regulate output power and also to control the operation of the battery and supercapacitor. This ensures a longer life time for the batteries. The detailed model is simulated in PSCAD/EMTP. Additionally, economic analysis has been done for different methods that can reduce the wind power output fluctuation. These methods are, wind power curtailment, dumping loads, battery energy storage system and hybrid energy storage system. From the results, application of single advanced HESS can save more money for wind turbines owners. Generally the income would be the same for most of methods because the wind does not change and maximum power point tracking can be applied to most systems. On the other hand, the cost is the key point. For short term and small wind turbine, the BESS is the cheapest and applicable method while for large scale wind turbines and wind farms the application of advanced HESS would be the best method to reduce the power fluctuation. The key outcomes of this project include a new intelligent controller that can reduce energy exchanged between the battery and DC-link, reduce charging/discharging cycles, reduce depth of discharge and increase time interval between charge/discharge, and lower battery temperature. This improves the overall lifetime of battery energy storages. Additionally, a new design method based on probability help optimize the power capacity specification for BESS and super-capacitors. Recommendations include experimental imp

David Wenzhong Gao

2012-09-30T23:59:59.000Z

289

Floor-supply displacement ventilation system  

E-Print Network (OSTI)

Research on indoor environments has received more attention recently because reports of symptoms and other health complaints related to indoor environments have been increasing. Heating, ventilating, and air-conditioning ...

Kobayashi, Nobukazu, 1967-

2001-01-01T23:59:59.000Z

290

Scale model studies of displacement ventilation  

E-Print Network (OSTI)

Displacement ventilation is an air conditioning method that provides conditioned air to indoor environments with the goal to improve air quality while reducing energy consumption. This study investigates the performance ...

Okutan, Galip Mehmet

1995-01-01T23:59:59.000Z

291

Midlevel Ventilation's Constraint on Tropical Cyclone Intensity  

E-Print Network (OSTI)

Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a tropical cyclone’s intensity. An ...

Tang, Brian Hong-An

292

Cooling airflow design tool for displacement ventilation.  

E-Print Network (OSTI)

with Equation  7.4 of the ASHRAE Design Guidelines for efficiency air diffusers. The ASHRAE method does not takeVentilation” Atlanta: ASHRAE. Jiang, Z. , Chen, Q. , and

Schiavon, Stefano; Bauman, Fred

2009-01-01T23:59:59.000Z

293

Ventilation of the Subtropical North Pacific  

Science Conference Proceedings (OSTI)

The ventilation of the subtropical North Pacific is studied using a simple analytical model. The model is forced by winter mixed layer density and depth calculated from the Levitus climatology and wind stress curl from the Hellerman and ...

Rui Xin Huang; Sarah Russell

1994-12-01T23:59:59.000Z

294

Midlevel ventilation's constraint on tropical cyclone intensity  

E-Print Network (OSTI)

Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a TC's intensity. An idealized ...

Tang, Brian Hong-An

2010-01-01T23:59:59.000Z

295

Chlorofluorocarbon Constraints on North Atlantic Ventilation  

Science Conference Proceedings (OSTI)

The North Atlantic Ocean vigorously ventilates the ocean interior. Thermocline and deep water masses are exposed to atmospheric contact there and are sequestered in two principal classes: Subtropical Mode Water (STMW: 26.5 ? ?? ? 26.8) and ...

Thomas W. N. Haine; Kelvin J. Richards; Yanli Jia

2003-08-01T23:59:59.000Z

296

Decision-Support Software for Grid Operators: Transmission Topology Control for Infrastructure Resilience to the Integration of Renewable Generation  

SciTech Connect

GENI Project: The CRA team is developing control technology to help grid operators more actively manage power flows and integrate renewables by optimally turning on and off entire power lines in coordination with traditional control of generation and load resources. The control technology being developed would provide grid operators with tools to help manage transmission congestion by identifying the facilities whose on/off status must change to lower generation costs, increase utilization of renewable resources and improve system reliability. The technology is based on fast optimization algorithms for the near to real-time change in the on/off status of transmission facilities and their software implementation.

2012-03-16T23:59:59.000Z

297

The potential for control of carbon dioxide emissions from integrated gasification/combined-cycle systems  

SciTech Connect

Initiatives to limit carbon dioxide (CO{sub 2}) emissions have drawn considerable interest to integrated gasification/combined-cycle (IGCC) power generation, a process that reduces CO{sub 2} production through efficient fuel used is amenable to CO{sub 2} capture. This paper presents a comparison of energy systems that encompass fuel supply, an IGCC system, CO{sub 2} recovery using commercial technologies, CO{sub 2} transport by pipeline, and land-based sequestering in geological reservoirs. The intent is to evaluate the energy-efficiency impacts of controlling CO{sub 2} in such systems and to provide the CO{sub 2} budget, or an to equivalent CO{sub 2}`` budget, associated with each of the individual energy-cycle steps. The value used for the ``equivalent CO{sub 2}`` budget is 1 kg/kWh CO{sub 2}. The base case for the comparison is a 457-MW IGCC system that uses an air-blown Kellogg-Rust-Westinghouse (KRW) agglomerating fluidized-bed gasifier, Illinois No. 6 bituminous coal, and in-bed sulfur removal. Mining, preparation, and transportation of the coal and limestone result in a net system electric power production of 454 MW with a 0.835 kg/kwh CO{sub 2} release rate. For comparison, the gasifier output is taken through a water-gas shift to convert CO to CO{sub 2} and then processed in a glycol-based absorber unit to recover CO{sub 2} Prior to the combustion turbine. A 500-km pipeline then transports the CO{sub 2} for geological sequestering. The net electric power production for the system with CO{sub 2} recovery is 381 MW with a 0.156 kg/kwh CO{sub 2} release rate.

Livengood, C.D.; Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.

1994-06-01T23:59:59.000Z

298

Shut-off mechanism for ventilation hose  

DOE Patents (OSTI)

A shut-off mechanism to provide automatic closure of a ventilation hose when the operation of drawing air through the hose is terminated. The mechanism includes a tube of light gauge metal inside of which are mounted a plurality of louver doors positioned in the closed position due to gravity when the ventilation unit is not operational. When the unit is operational, air flowing into the unit maintains the doors in the open position. 5 figs.

Huyett, J.D.; Meskanick, G.R.

1989-12-07T23:59:59.000Z

299

Effect of attic ventilation on the performance of radiant barriers  

Science Conference Proceedings (OSTI)

The objective of the experiments was to quantify how attic ventilation would affect the performance of a radiant barrier. Ceiling heat flux and space cooling load were both measured. Results of side-by-side radiant barrier experiments using two identical 13.38 m[sup 2] (nominal) test houses are presented in this paper. The test houses responded similarly to weather variations. Indoor temperatures of the test houses were controlled to within 0.2 [degrees] C. Ceiling heat fluxes and space cooling load were within a 2.5 percent difference between both test houses. The results showed that a critical attic ventilation flow rate of 1.3 (1/sec)/m[sup 2] of the attic floor existed after which the percentage reduction in ceiling heat fluxes produced by the radiant barriers did not change with increasing attic airflow rates. The ceiling heat flux reductions produced by the radiant barriers were between 25 and 35 percent, with 28 percent being the percent reduction observed most often in the presence of attic ventilation. The space-cooling load reductions observed were between two to four percent. All results compiled in this paper were for attics with unfaced fiberglass insulation with a resistance level of 3.35 m[sup 2]K/W (nominal) and for a perforated radiant barrier with low emissivities (less than 0.05) on both sides.

Medina, M.A.; O'Neal, D.L. (Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering); Turner, W.D. (Texas A and M Univ., College Station, TX (United States). Coll. of Engineering)

1992-11-01T23:59:59.000Z

300

Tracer dating and ocean ventilation  

E-Print Network (OSTI)

The interpretation of transient tracer observations depends on dif•cult to obtain information on the evolution in time of the tracer boundary conditions and interior distributions. Recent studies have attempted to circumvent this problem by making use of a derived quantity, age, based on the simultaneous distribution of two complementary tracers, such as tritium and its daughter, helium 3. The age is defined with reference to the surface such that the boundary condition takes on a constant value of zero. We use a two-dimensional model to explore the circumstances under which such a combination of conservation equations for two complementary tracers can lead to a cancellation of the time derivative terms. An interesting aspect of this approach is that mixing can serve as a source or sink of tracer based age. We define an idealized "ventilation age tracer " that is conservative with respect to mixing, and we explore how its behavior compares with that of the tracer-based ages over a range of advective and diffusive parameters. 1.

G. Thiele; J. L. Sarmiento

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated ventilation controller" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Pretest Predictions for Phase II Ventilation Tests  

SciTech Connect

The objective of this calculation is to predict the temperatures of the ventilating air, waste package surface, and concrete pipe walls that will be developed during the Phase II ventilation tests involving various test conditions. The results will be used as inputs to validating numerical approach for modeling continuous ventilation, and be used to support the repository subsurface design. The scope of the calculation is to identify the physical mechanisms and parameters related to thermal response in the Phase II ventilation tests, and describe numerical methods that are used to calculate the effects of continuous ventilation. The calculation is limited to thermal effect only. This engineering work activity is conducted in accordance with the ''Technical Work Plan for: Subsurface Performance Testing for License Application (LA) for Fiscal Year 2001'' (CRWMS M&O 2000d). This technical work plan (TWP) includes an AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', activity evaluation (CRWMS M&O 2000d, Addendum A) that has determined this activity is subject to the YMP quality assurance (QA) program. The calculation is developed in accordance with the AP-3.12Q procedure, ''Calculations''. Additional background information regarding this activity is contained in the ''Development Plan for Ventilation Pretest Predictive Calculation'' (DP) (CRWMS M&O 2000a).

Yiming Sun

2001-09-19T23:59:59.000Z

302

Effect of outside air ventilation rate on VOC concentrations and emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Effect of outside air ventilation rate on VOC concentrations and emissions Effect of outside air ventilation rate on VOC concentrations and emissions in a call center Title Effect of outside air ventilation rate on VOC concentrations and emissions in a call center Publication Type Conference Proceedings Year of Publication 2002 Authors Hodgson, Alfred T., David Faulkner, Douglas P. Sullivan, Dennis L. DiBartolomeo, Marion L. Russell, and William J. Fisk Conference Name Proceedings of the Indoor Air 2002 Conference, Monterey, CA Volume 2 Pagination 168-173 Publisher Indoor Air 2002, Santa Cruz, CA Abstract A study of the relationship between outside air ventilation rate and concentrations of VOCs generated indoors was conducted in a call center. Ventilation rates were manipulated in the building's four air handling units (AHUs). Concentrations of VOCs in the AHU returns were measured on 7 days during a 13- week period. Indoor minus outdoor concentrations and emission factors were calculated. The emission factor data was subjected to principal component analysis to identify groups of co-varying compounds based on source type. One vector represented emissions of solvents from cleaning products. Another vector identified occupant sources. Direct relationships between ventilation rate and concentrations were not observed for most of the abundant VOCs. This result emphasizes the importance of source control measures for limiting VOC concentrations in buildings

303

ACT sup 2 project report: Ventilation and air tightness measurement of the Sunset Building  

Science Conference Proceedings (OSTI)

This report presents the results of ventilation and air tightness measurements made on the test section of the Sunset Building as part of the ACT{sup 2} project. Real-time measurements were made over a two-week period in July 1991 to determine the building's performance; most of the results derive from intensive measurements made during (unoccupied) weekend periods. The ventilation rate of the entire building was measured to be about 2 air changes per hour of outdoor air which exceeds ASHRAE Standard 62-1989 design requirements by over a factor of two. Ventilation in all specific locations was found to be adequate, except for conference rooms -- some of which were significantly under ventilated. Opportunities exist for energy savings with better control of the ventilation. Ventilation efficiency was measured for the test section and selected sub-sections as well. In order to account for interzonal and intrazonal interactions, axillary information was collected and used to adjust the data. The implications of this data may be important for future interpretation of the building's performance.

Sherman, M.; Dickerhoff, D.

1991-10-01T23:59:59.000Z

304

ACT{sup 2} project report: Ventilation and air tightness measurement of the Sunset Building  

Science Conference Proceedings (OSTI)

This report presents the results of ventilation and air tightness measurements made on the test section of the Sunset Building as part of the ACT{sup 2} project. Real-time measurements were made over a two-week period in July 1991 to determine the building`s performance; most of the results derive from intensive measurements made during (unoccupied) weekend periods. The ventilation rate of the entire building was measured to be about 2 air changes per hour of outdoor air which exceeds ASHRAE Standard 62-1989 design requirements by over a factor of two. Ventilation in all specific locations was found to be adequate, except for conference rooms -- some of which were significantly under ventilated. Opportunities exist for energy savings with better control of the ventilation. Ventilation efficiency was measured for the test section and selected sub-sections as well. In order to account for interzonal and intrazonal interactions, axillary information was collected and used to adjust the data. The implications of this data may be important for future interpretation of the building`s performance.

Sherman, M.; Dickerhoff, D.

1991-10-01T23:59:59.000Z

305

Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems  

DOE Green Energy (OSTI)

This paper presents a freely available Modelica library for building heating, ventilation and air conditioning systems. The library is based on the Modelica.Fluid library. It has been developed to support research and development of integrated building energy and control systems. The primary applications are controls design, energy analysis and model-based operation. The library contains dynamic and steady-state component models that are applicable for analyzing fast transients when designing control algorithms and for conducting annual simulations when assessing energy performance. For most models, dimensional analysis is used to compute the performance for operating points that differ from nominal conditions. This allows parameterizing models in the absence of detailed geometrical information which is often impractical to obtain during the conceptual design phase of building systems. In the first part of this paper, the library architecture and the main classes are described. In the second part, an example is presented in which we implemented a model of a hydronic heating system with thermostatic radiator valves and thermal energy storage.

Wetter, Michael

2009-06-17T23:59:59.000Z

306

Integrating planning and control for single-bodied wheeled mobile robots  

Science Conference Proceedings (OSTI)

This paper presents an approach to couple path planning and control for mobile robot navigation in a hybrid control framework. We build upon an existing hybrid control approach called sequential composition, in which a set of feedback control ... Keywords: Hybrid controls, Mobile robots, Sequential composition

David C. Conner; Howie Choset; Alfred A. Rizzi

2011-04-01T23:59:59.000Z

307

MLE+: a tool for integrated design and deployment of energy efficient building controls  

Science Conference Proceedings (OSTI)

Simulation engines for buildings can be realistic and accurate, but only provide basic control interfaces. Control engineers have developed robust and complex controls for energy-efficient building operation though such methods are often based on simplistic ...

Willy Bernal, Madhur Behl, Truong Nghiem, Rahul Mangharam

2013-07-01T23:59:59.000Z

308

Simulation-based assessment of the energy savings benefits of integrated control in office buildings  

E-Print Network (OSTI)

Control System. Energy and Buildings 33(2001): 477-487.control system. Energy and Buildings Lee ES, Yazdanian M ,Daylight Controls. Energy and Buildings 33(2001): 793-803.

Hong, T.

2011-01-01T23:59:59.000Z

309

RF signal inductors in iUHD for voltage controlled oscillators in configurable RF integrated circuits  

E-Print Network (OSTI)

The miniaturization of radio frequency wireless communications circuitry has resulted in a need for smaller inductors. This thesis presents designs of spiral inductors to be fabricated in Draper Laboratory's integrated ...

Karpe, Charvak (Charvak P.)

2006-01-01T23:59:59.000Z

310

Integrated model-based run-to-run uniformity control for epitaxial silicon deposition.  

E-Print Network (OSTI)

Semiconductor fabrication facilities require an increasingly expensive and integrated set of processes. The bounds on efficiency and repeatability for each process step continue to tighten under the pressure of economic ...

Gower, Aaron E. (Aaron Elwood)

2001-01-01T23:59:59.000Z

311

Simulation-based assessment of the energy savings benefits of integrated control in office buildings  

E-Print Network (OSTI)

lighting, daylighting, and heating systems via Simulink (performance of the daylighting control system. Energy andbuildings through daylighting control systems in New York

Hong, T.

2011-01-01T23:59:59.000Z

312

Integration of Nevada Test Site (NTS) Work Control Programs and Incorporating Integrated Safety Management (ISM) into Activity Level Work Planning and Control  

SciTech Connect

This session will examine a method developed by Federal and Contractor personnel at the Nevada Site Office (NSO) to improve the planning and execution of work activities utilizing an Activity Level Work Control process in response to Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2004-1, Oversight of Complex, High-Hazard Nuclear Operations. The process was initially developed during Fiscal Year (FY) 2007, and implementation is commencing during the fourth quarter of FY 2008. This process will significantly enhance the flexibility and the appropriate rigor in the performance of work activities.

Mike Kinney and Kevin Breen

2008-08-30T23:59:59.000Z

313

Heating, ventilation and air conditioning systems  

DOE Green Energy (OSTI)

A study is made of several outstanding issues concerning the commercial development of environmental control systems for electric vehicles (EVs). Engineering design constraints such as federal regulations and consumer requirements are first identified. Next, heating and cooling loads in a sample automobile are calculated using a computer model available from the literature. The heating and cooling loads are then used as a basis for estimating the electrical consumption that is to be expected for heat pumps installed in EVs. The heat pump performance is evaluated using an automobile heat pump computer model which has been developed recently at Oak Ridge National Laboratory (ORNL). The heat pump design used as input to the model consists of typical finned-tube heat exchangers and a hermetic compressor driven by a variable-speed brushless dc motor. The simulations suggest that to attain reasonable system efficiencies, the interior heat exchangers that are currently installed as automobile air conditioning will need to be enlarged. Regarding the thermal envelope of the automobile itself, calculations are made which show that considerable energy savings will result if steps are taken to reduce {open_quote}hot soak{close_quote} temperatures and if the outdoor air ventilation rate is well controlled. When these changes are made, heating and cooling should consume less than 10% of the total stored electrical energy for steady driving in most U.S. climates. However, this result depends strongly upon the type of driving: The fraction of total power for heating and cooling ({open_quote}range penalty{close_quote}) increases sharply for driving scenarios having low average propulsion power, such as stop-and-go driving.

Kyle, D.M. [Oak Ridge National Lab., TN (United States); Sullivan, R.A. [Dept. of Energy, Washington, DC (United States)

1993-02-01T23:59:59.000Z

314

An Integrated Refrigeration, Humidity Control and HVAC Solution for Supermarkets: Field Demonstration at a Wal-Mart SuperCenter  

Science Conference Proceedings (OSTI)

This report describes a systematic approach to developing an energy efficient and cost effective solution for refrigeration, humidity control, indoor air quality, and space heating and cooling for large retail super centers. The report also presents the results of a field demonstration using a newly developed integrated system that achieved significant energy savings and other benefits compared to the state-of-the-art system.

2004-04-20T23:59:59.000Z

315

Experimental Approach of a High Performance Control of Two PermanentMagnet Synchronous Machines in an Integrated Drive for Automotive Applications  

SciTech Connect

The close-loop digital signal processor (DSP) control of an integrated-dual inverter, which is able to drive two permanent magnet (PM) motors independently, is presented and evaluated experimentally. By utilizing the neutral point of the main traction motor, only two inverter poles are needed for the two-phase auxiliary motor. The modified field-oriented control scheme for this integrated inverter was introduced and employed in real-time control. The experimental results show the inverter is able to control two drives independently. An integrated, component count reduced drive is achieved.

Tang, Lixin [ORNL; Su, Gui-Jia [ORNL

2006-01-01T23:59:59.000Z

316

Automated Monitoring and Control Using New Data Integration Paradigm Mladen Kezunovi , Tanja Djoki Tatjana Kosti  

E-Print Network (OSTI)

-2003, Substation Committee of the IEEE Power Engineering Society [3] C.R.Ozansoy, A.Zayegh, A.Kalam, "Communications for Substation Automation and Integration", In Australasian Universities Power Engineering Substation Automation LiPing LU1,2 , GangYan LI1 , YeQiong SONG2 1 ­ School of Mechanical and Electronical

Kezunovic, Mladen

317

Demonstration of An Integrated Approach to Mercury Control at Lee Station  

SciTech Connect

General Electric (GE) has developed an approach whereby native mercury reduction on fly ash can be improved by optimizing the combustion system. This approach eliminates carbon-rich areas in the combustion zone, making the combustion process more uniform, and allows increasing carbon content in fly ash without significant increase in CO emissions. Since boiler excess O{sub 2} can be also reduced as a result of optimized combustion, this process reduces NO{sub x} emissions. Because combustion optimization improves native mercury reduction on fly ash, it can reduce requirements for activated carbon injection (ACI) when integrated with sorbent injection for more efficient mercury control. The approach can be tailored to specific unit configurations and coal types for optimal performance. This report describes results of a U.S. DOE sponsored project designed to evaluate the effect of combustion conditions on 'native' mercury capture on fly ash and integrate combustion optimization for improved mercury and NO{sub x} reduction with ACI. The technology evaluation took place in Lee Station Unit 3 located in Goldsboro, NC and operated by Progress Energy. Unit 3 burns a low-sulfur Eastern bituminous coal and is a 250 MW opposed-wall fired unit equipped with an ESP with a specific collection area of 249 ft{sup 2}/kacfm. Unit 3 is equipped with SO{sub 3} injection for ESP conditioning. The technical goal of the project was to evaluate the technology's ability to achieve 70% mercury reduction below the baseline emission value of 2.9 lb/TBtu, which was equivalent to 80% mercury reduction relative to the mercury concentration in the coal. The strategy to achieve the 70% incremental improvement in mercury removal in Unit 3 was (1) to enhance 'naturally' occurring fly ash mercury capture by optimizing the combustion process and using duct humidification to reduce flue gas temperatures at the ESP inlet, and (2) to use ACI in front of the ESP to further reduce mercury emissions. The program was comprised of field and pilot-scale tests, engineering studies and consisted of eight tasks. As part of the program, GE conducted pilot-scale evaluation of sorbent effect on mercury reduction, supplied and installed adjustable riffle boxes to assist in combustion optimization, performed combustion optimization, supplied mobile sorbent injection and flue gas humidification systems, conducted CFD modeling of sorbent injection and flue gas humidification, and performed mercury testing including a continuous 30-day sorbent injection trial. Combustion optimization was the first step in reduction of mercury emissions. Goals of combustion optimization activities were to improve 'native' mercury capture on fly ash and reduce NO{sub x}. Combustion optimization included balancing of coal flow through individual burners to eliminate zones of carbon-rich combustion, air flow balancing, and burner adjustments. As part of the project, the original riffle boxes were replaced with Foster-Wheeler's adjustable riffle boxes to allow for biasing the coal flow between the coal pipes. A 10-point CO/O{sub 2}/NO{sub x} grid was installed in the primary superheater region of the back pass to assist in these activities. Testing of mercury emissions before and after combustion optimization demonstrated that mercury emissions were reduced from 2.9 lb/TBtu to 1.8 lb/TBtu due to boiler operation differences in conjunction with combustion optimization, a 38% improvement in 'native' mercury capture on fly ash. Native mercury reduction from coal was {approx}42% at baseline conditions and 64% at optimized combustion conditions. As a result of combustion optimization NO{sub x} emissions were reduced by 18%. A three-dimensional CFD model was developed to study the flow distribution and sorbent injection in the post air heater duct in Lee Station Unit 3. Modeling of the flow pattern exiting the air pre-heater demonstrated that because of the duct transition from a circular opening at the exit of air-pre-heater to a rectangular ESP inlet duct, flow separation occurred at the corners afte

Vitali Lissianski; Pete Maly

2007-12-31T23:59:59.000Z

318

2012 SG Peer Review - GridLAB-D and Integrated T&D Control - David Chassin, PNNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GridLAB-D Analysis of Smart Grids David P. Chassin, PI Pacific Northwest National Laboratory June 7, 2012 !& =;;A & 5 " /'' # !&( &' Objective Life-cycle Funding Summary ($K) Prior to FY12 FY12 authorized FY13 requested *Out-year(s) $4,500 $1,425 $1,330 GridLAB-D Base $400 $400/yr NRECA $150 Micro-Grid Controls $240 Camp Smith Modeling $240 Integrated T&D Control $300 *Out-year(s) funding does not include new starts beyond FY13. Technical Scope Use GridLAB-D to quantify the impact of smart grid technologies, such as microgrids, distributed renewables, and new advanced load control strategies. GridLAB-D can simulation these different technologies in an accelerated time-frame to help

319

Integration of Advanced Emissions Controls to Produce Next-Generation Circulating Fluid Bed Coal Generating Unit (withdrawn prior to award)  

NLE Websites -- All DOE Office Websites (Extended Search)

contacts contacts Brad tomer Director Office of Major Demonstrations National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4692 brad.tomer@netl.doe.gov PaRtIcIPant Colorado Springs Utilities Colorado Springs, CO aDDItIonaL tEaM MEMBERs Foster Wheeler Power Group, Inc. Clinton, NJ IntegratIon of advanced emIssIons controls to Produce next-generatIon cIrculatIng fluId Bed coal generatIng unIt (wIthdrawn PrIor to award) Project Description Colorado Springs Utilities (Springs Utilities) and Foster Wheeler are planning a joint demonstration of an advanced coal-fired electric power plant using advanced, low-cost emission control systems to produce exceedingly low emissions. Multi- layered emission controls will be

320

Integrated Emissions Control - Process Review: Multi-Pollutant Process Cost Comparisons  

Science Conference Proceedings (OSTI)

As the need for more stringent controls for power plant emissions increases, so does the need for more cost effective approaches to reducing these pollutants. Current methods employ technologies designed to reduce specific pollutants, which require combinations of different emission control systems. Some air pollution control suppliers and utilities are developing technologies that have the potential to reduce the emission rates for multiple pollutants simultaneously with the goal of identifying integrat...

2002-12-17T23:59:59.000Z

Note: This page contains sample records for the topic "integrated ventilation controller" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

A Modular Building Controls Virtual Test Bed for the Integrations of Heterogeneous Systems  

E-Print Network (OSTI)

control and energy management systems. ” ASHRAE TransactionsSimulation of Energy Management Systems in EnergyPlus. ”the EnergyPlus Energy Management System module, cur- rently

Wetter, Michael

2008-01-01T23:59:59.000Z

322

Breathing HRV by the Concept of AC Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

Breathing HRV by the Concept of AC Ventilation Breathing HRV by the Concept of AC Ventilation Speaker(s): Hwataik Han Date: July 10, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Thomas McKone Heat recovery ventilators are frequently used to save heating/cooling loads of buildings for ventilation. There are several types of HRV's, including a parallel plate type, a rotary type, a capillary type, and a heat pipe type. The breathing HRV is a heat recovery ventilator of a new kind using the concept of alternating-current ventilation. The AC ventilation is the ventilation with the airflow directions reversed periodically. It has an advantage of using a single duct system, for both supply and exhaust purposes. In order to develop a breathing HRV system, the thermal recovery performance should be investigated depending on many parameters, such as

323

Modeling buoyancy-driven airflow in ventilation shafts  

E-Print Network (OSTI)

Naturally ventilated buildings can significantly reduce the required energy for cooling and ventilating buildings by drawing in outdoor air using non-mechanical forces. Buoyancy-driven systems are common in naturally ...

Ray, Stephen D. (Stephen Douglas)

2012-01-01T23:59:59.000Z

324

Natural ventilation : design for suburban houses in Thailand  

E-Print Network (OSTI)

Natural Ventilation is the most effective passive cooling design strategy for architecture in hot and humid climates. In Thailand, natural ventilation has been the most essential element in the vernacular architecture such ...

Tantasavasdi, Chalermwat, 1971-

1998-01-01T23:59:59.000Z

325

A scale model study of displacement ventilation with chilled ceilings  

E-Print Network (OSTI)

Displacement ventilation is a form of air-conditioning which provides good air quality and some energy savings. The air quality is better than for a conventional mixed ventilation system. The maximum amount of cooling that ...

Holden, Katherine J. A. (Katherine Joan Adrienne)

1995-01-01T23:59:59.000Z

326

Quantitative relationship of sick building syndrome symptoms with ventilation rates  

E-Print Network (OSTI)

at two outdoor air supply rates." Indoor Air 14 Suppl 8: 7-Miettinen (1995). "Ventilation rate in office buildings andAssociation of ventilation rates and CO 2 concentrations

Fisk, William J.

2009-01-01T23:59:59.000Z

327

Project: Ventilation and Indoor Air Quality in Low-Energy ...  

Science Conference Proceedings (OSTI)

Ventilation and Indoor Air Quality in Low-Energy Buildings Project. Summary: NIST is developing tools and metrics to both ...

2012-12-27T23:59:59.000Z

328

The design and evaluation of integrated envelope and lighting control strategies for commercial buildings  

SciTech Connect

This study investigates control strategies for coordinating the variable solar-optical properties of a dynamic building envelope system with a daylight controlled electric lighting system to reduce electricity consumption and increase comfort in the perimeter zone of commercial buildings. Control strategy design can be based on either simple, instantaneous measured data, or on complex, predictive algorithms that estimate the energy consumption for a selected operating state of the dynamic envelope and lighting system. The potential benefits of optimizing the operation of a dynamic envelope and lighting system are (1) significant reductions in electrical energy end-uses - lighting, and cooling due to solar and lighting heat gains - over that achieved by conventional static envelope and lighting systems, (2) significant reductions in peak demand, and (3) increased occupant visual and thermal comfort. The DOE-2 building energy simulation program was used to model two dynamic envelope and lighting systems, an automated venetian blind and an electrochromic glazing system, and their control strategies under a range of building conditions. The energy performance of simple control strategies are compared to the optimum performance of a theoretical envelope and lighting system to determine the maximum potential benefit of using more complex, predictive control algorithms. Results indicate that (1) predictive control algorithms may significantly increase the energy-efficiency of systems with non-optimal solar-optical properties such as the automated venetian blind, and (2) simpler, non-predictive control strategies may suffice for more advanced envelope systems 1 incorporating spectrally selective, narrow-band electrochromic coatings.

Lee, E.S.; Selkowitz, S.E.

1994-06-01T23:59:59.000Z

329

Performance analysis of an integrated eye gaze tracking / electromyogram cursor control system  

Science Conference Proceedings (OSTI)

Eye Gaze Tracking (EGT) systems allow individuals with motor disabilities to quickly move a screen cursor on a PC. However, there are limitations in the steadiness and the accuracy of cursor control and clicking capabilities they provide. On the other ... Keywords: EGT, EMG, cursor control, motor disabilities

Craig A. Chin; Armando Barreto; Gualberto Cremades; Malek Adjouadi

2007-10-01T23:59:59.000Z

330

Data Integration and Information Exchange for Enhanced Control and Protection of Power Systems  

E-Print Network (OSTI)

Mladen Kezunovic, IEEE Fellow Texas A&M University, Department of Electrical Engineering, College Station are connected directly to the switchyard via dedicated wiring typically terminated in the substation control) that are wired to the substation switchyard and located in the control house. In today's practice, the local

Kezunovic, Mladen

331

Microsoft Word - Draft Pier Final Report DCV and Classroom ventilation 05-11-12  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Controlled Ventilation and Classroom Ventilation William J. Fisk, Mark J. Mendell, Molly Davies, Ekaterina Eliseeva, David Faulkner, Tienzen Hong, Douglas P. Sullivan Indoor Environment Group Energy Analysis and Environmental Impacts Department Lawrence Berkeley National Laboratory Berkeley, CA 94720 May 2012 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program of the U.S. Department of Energy under contract DE-AC02- 05CH11231. LBNL-6258E Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither

332

Ventilation planning at Energy West's Deer Creek mine  

SciTech Connect

In 2004 ventilation planning was initiated to exploit a remote area of Deer Creek mine's reserve (near Huntington, Utah), the Mill Fork Area, located under a mountain. A push-pull ventilation system was selected. This article details the design process of the ventilation system upgrade, the procurement process for the new fans, and the new fan startup testing. 5 figs., 1 photo.

Tonc, L.; Prosser, B.; Gamble, G. [Pacific Corp., Huntington, UT (United States)

2009-08-15T23:59:59.000Z

333

Environmental Evaluation on Atmosphere Radioactive Pollution of Uranium Mine Shaft Ventilation Exhausts  

Science Conference Proceedings (OSTI)

A study on calculation and evaluation on atmosphere radioactive pollution of uranium mine well ventilation exhaust gas is presented in this paper. Neutral atmosphere conditions were taken into consideration. Nuclear industry standards on safety protection ... Keywords: atmosphere pollution, radiation protection, environmental evaluation, control methods

Dong Xie; Zehua Liu; Jun Xiong; Jianxiang Liu

2012-03-01T23:59:59.000Z

334

A database of PFT ventilation measurements  

SciTech Connect

About five years ago, a method for measuring the ventilation flows of a building was developed at Brookhaven National Laboratory (BNL). This method is based on the use of a family of compounds known as perfluorocarbon tracers or PFTs. Since 1982, BNL has measured ventilation in more than 4000 homes, comprising about 100 separate research projects throughout the world. This measurement set is unique in that it is the only set of ventilation measurements that acknowledge and measure the multizone characteristics of residences. Other large measurement sets assume that a home can be treated as a single well-mixed zone. This report describes the creation of a database of approximately half of the PFT ventilation measurements made by BNL over the last five years. The PFT database is currently available for use on any IBM PC or Apple Macintosh based personal computer system. In addition to its utility in modeling indoor pollutant dispersion, this database may also be useful to those people studying energy conservation, thermal comfort and heating system design in residential buildings. 2 refs.

D' Ottavio, T.W.; Goodrich, R.W.; Spandau, D.J.; Dietz, R.N.

1988-08-01T23:59:59.000Z

335

Hysteresis effects in hybrid building ventilation  

E-Print Network (OSTI)

radiation, external wind forcing and internal heat gains e.g. due to electrical equipment or building chloride, etc. Developing world: By-products of cooking or heating fires Ghiaus & Allard (2005) · Exposure-breeze, displacement ventilation dissipate internal heat gains e.g. from kitchen stove · Wintertime: Spaces filled

Flynn, Morris R.

336

Energy impacts of controlling carbon dioxide emissions from an integrated gasification/combined-cycle system  

SciTech Connect

This paper presents results from a study of the impacts associated with CO{sub 2} recovery in integrated gasification/combined-cycle (IGCC) systems which is being conducted for the Morgantown Energy Technology Center by Argonne National Laboratory. The objective of the study is to compare, on a consistent systems-oriented basis, the energy and economic impacts of adding CO{sub 2} capture and sequestration to an IGCC system. The research reported here has emphasized commercial technologies for capturing CO{sub 2}, but ongoing work is also addressing advanced technologies under development and alternate power-system configurations that may enhance system efficiency.

Livengood, C.D.; Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.

1994-08-01T23:59:59.000Z

337

Preconditioning Outside Air: Cooling Loads from Building Ventilation  

E-Print Network (OSTI)

HVAC equipment manufacturers, specifiers and end users interacting in the marketplace today are only beginning to address the series of issues promulgated by the increased outside air requirements in ASHRAE Standard 62- 1989, "Ventilation for Acceptable Indoor Air Quality", that has cascaded into building codes over the early to mid 1990's. There has been a twofold to fourfold increase in outside air requirements for many commercial building applications, compared to the 1981 version of the standard. To mitigate or nullify these additional weather loads, outdoor air preconditioning technologies are being promoted in combination with conventional HVAC operations downstream as a means to deliver the required fresh air and control humidity indoors. Preconditioning is the term applied for taking outside air to the indoor air setpoint (dry bulb temperature and relative humidity). The large humidity loads from outside air can now be readily recognized and quantified at cooling design point conditions using the extreme humidity ratios/dew points presented in the ASHRAE Handbook of Fundamentals Chapter 26 "Climatic Design Information". This paper presents an annual index called the Ventilation Load Index (VLI), recently developed by the Gas Research Institute (GRI) that measures the magnitude of latent (and sensible) loads for preconditioning outside air to indoor space conditions over the come of an entire year. The VLI has units of ton-hrs/scfm of outside air. The loads are generated using new weather data binning software called ~BinMaker, also from GRI, that organizes the 239 city, 8760 hour by hour, TMY2 weather data into user selected bidtables. The VLI provides a simple methodology for accessing the cooling load impact of increased ventilation air volumes and a potential basis for defining a "humid" climate location.

Kosar, D.

1998-01-01T23:59:59.000Z

338

System theoretic framework for assuring safety and dependability of highly integrated aero engine control systems  

E-Print Network (OSTI)

The development of complex, safety-critical systems for aero-engine control is subject to the, often competing, demands for higher safety and reduced development cost. Although the commercial aerospace industry has a general ...

Atherton, Malvern J

2005-01-01T23:59:59.000Z

339

Preliminary Guidelines for Integrated Controls and Monitoring for Fossil Fuel Plants  

Science Conference Proceedings (OSTI)

Modern digital distributed control systems offer a large number of advantages to operators of fossil fuel plants, and many utilities will be replacing their existing control systems with them. This report, consisting of the preliminary guidelines developed by the Southern California Edison Company during the first phase of its El Segundo power plant, units 3 and 4, retrofit project, offers advice applicable to other phased upgrades, complete changeouts, or new installations.

1990-07-09T23:59:59.000Z

340

Coupled urban wind flow and indoor natural ventilation modelling on a high-resolution grid: A case study for the Amsterdam ArenA stadium  

Science Conference Proceedings (OSTI)

Wind flow in urban environments is an important factor governing the dispersion of heat and pollutants from streets, squares and buildings. This paper presents a coupled CFD modelling approach for urban wind flow and indoor natural ventilation. A specific ... Keywords: Air exchange rate, Air quality, Computational Fluid Dynamics (CFD), Cross-ventilation, Full-scale measurements, Grid generation technique, Integrated model, Model validation and solution verification, Numerical simulation, Outdoor and indoor air flow, Sports stadium

T. van Hooff; B. Blocken

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated ventilation controller" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Development and evaluation of operational strategies for providing an integrated diamond interchange ramp-metering control system  

E-Print Network (OSTI)

Diamond interchanges and their associated ramps are where the surface street arterial system and the freeway system interface. Historically, these two elements of the system have been operated with little or no coordination between the two. Therefore, there is a lack of both analysis tools and operational strategies for considering them as an integrated system. One drawback of operating the ramp-metering system and the diamond interchange system in isolation is that traffic from the ramp, particularly if it is metered, can spill back into the diamond interchange, causing both congestion and safety concerns at the diamond interchange. While flushing the ramp queues by temporarily suspending ramp metering has been the primary strategy for preventing queue spillback, it can result in freeway system breakdown, which would affect the entire system's efficiency. The aim of this research was to develop operational strategies for managing an integrated diamond interchange ramp-metering system (IDIRMS). Enhanced modeling methodologies were developed for an IDIRMS. A computer model named DRIVE (Diamond Interchange and Ramp Metering Integration Via Evaluation) was developed, which was characterized as a mesoscopic simulation and analysis model. DRIVE incorporated the enhanced modeling methodologies developed in this study and could be used to perform system analysis for an IDIRMS given a set of system input parameters and variables. DRIVE was validated against a VISSIM microscopic simulation model, and general agreement was found between the two models. System operational characteristics were investigated using DRIVE to gain a better understanding of the system features. Integrated control strategies (ICS) were developed based on the two commonly used diamond interchange phasing schemes, basic three-phase and TTI four-phase. The ICS were evaluated using VISSIM microscopic simulation under three general traffic demand scenarios: low, medium, and high, as characterized by the volume-to-capacity ratios at the metered ramps. The results of the evaluation indicate that the integrated operations through an adaptive signal control system were most effective under the medium traffic demand scenario by preventing or delaying the onset of ramp-metering queue flush, thereby minimizing freeway breakdown and system delays.

Tian, Zongzhong

2003-05-01T23:59:59.000Z

342

SY Tank Farm ventilation isolation option risk assessment report  

DOE Green Energy (OSTI)

The safety of the 241-SY Tank Farm ventilation system has been under extensive scrutiny due to safety concerns associated with tank 101-SY. Hydrogen and other gases are generated and trapped in the waste below the liquid surface. Periodically, these gases are released into the dome space and vented through the exhaust system. This attention to the ventilation system has resulted in the development of several alternative ventilation system designs. The ventilation system provides the primary means of mitigation of accidents associated with flammable gases. This report provides an assessment of various alternatives ventilation system designs.

Powers, T.B.; Morales, S.D.

1994-03-01T23:59:59.000Z

343

On The Valuation of Infiltration towards Meeting Residential Ventilation Needs  

SciTech Connect

The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. It can be provided by mechanical or natural means. In most homes, especially existing homes, infiltration provides the dominant fraction of the ventilation. As we seek to provide acceptable indoor air quality at minimum energy cost, it is important to neither over-ventilate nor under-ventilate. Thus, it becomes critically important to correctly evaluate the contribution infiltration makes to both energy consumption and equivalent ventilation. ASHRAE Standards including standards 62, 119, and 136 have all considered the contribution of infiltration in various ways, using methods and data from 20 years ago.

Sherman, Max H.

2008-09-01T23:59:59.000Z

344

Monovalve with integrated fuel injector and port control valve, and engine using same  

DOE Patents (OSTI)

An engine includes an engine casing that defines a hollow piston cavity separated from an exhaust passage and an intake passage by a valve seat. A gas exchange valve member is positioned adjacent the valve seat and is moveable between an open position and a closed position. The gas exchange valve member also defines an opening that opens into the hollow piston cavity. A needle valve member is positioned in the gas exchange valve member adjacent a nozzle outlet and is moveable between an inject position and a blocked position. A port control valve member, which has a hydraulic surface, is mounted around the gas exchange valve member and moveable between an intake position and an exhaust position. A pilot valve is moveable between a first position at which the port control hydraulic surface is exposed to a source of high pressure fluid, and a second position at which the port control hydraulic surface is exposed to a source of low pressure fluid.

Milam, David M. (Metamora, IL)

2001-11-06T23:59:59.000Z

345

Homeostatic control: economic integration of solar technologies into electric power operations and planning  

DOE Green Energy (OSTI)

The economic and technical interfaces between the electrical utility and the distributed, nondispatchable electric generation systems are only minimally understood at the present time. The economic issues associated with the interface of new energy technologies and the electric utility grid are discussed. Then the concept of Homeostatic Control is introduced and the use of such an economic concept applied to the introduction of nondispatchable technologies into the existing utility system is discussed. The transition and potential impact of a Homoeostatic Control system working with the existing electric utility system is discussed.

Tabors, R.D.

1981-07-01T23:59:59.000Z

346

The Integration Of The LHC Cryogenics Control System Data Into The CERN Layout Database  

E-Print Network (OSTI)

The Large Hadron Collider’s Cryogenic Control System makes extensive use of several databases to manage data appertaining to over 34,000 cryogenic instrumentation channels. This data is essential for populating the software of the PLCs which are responsible for maintaining the LHC at the appropriate temperature. In order to reduce the number of data sources and the overall complexity of the system, the databases have been rationalised and the automatic tool, that extracts data for the control software, has been simplified. This paper describes the main improvements that have been made and considers the success of the project.

Fortescue-Beck, E; Gomes, P

2011-01-01T23:59:59.000Z

347

THE INTEGRATION OF ENGINEERED AND INSTITUTIONAL CONTROLS: A CASE STUDY APPROACH WITH LESSONS LEARNED FROM PREVIOUSLY CLOSED SITES  

Science Conference Proceedings (OSTI)

Environmental remediation efforts that are underway at hundreds of contaminated sites in the United States will not be able to remediate large portions of those sites to conditions that would permit unrestricted access. Rather, large volumes of waste materials, contaminated soils and cleanup residuals will have to be isolated either in place or in new, often on-site, disposal cells with long term monitoring, maintenance and institutional control needs. The challenge continues to be to provide engineering systems and controls that can ensure the protection of public health and the environment over very long time horizons (hundreds to perhaps thousands of years) with minimal intervention. Effective long term management of legacy hazardous and nuclear waste requires an integrated approach that addresses both the engineered containment and control system itself and the institutional controls and other responsibilities that are needed. Decisions concerning system design, monitoring and maintenance, and the institutional controls that will be employed are best done through a "risk-nformed, performance-based" approach. Such an approach should incorporate an analysis of potential "failure" modes and consequences for all important system features, together with lessons learned from experience with systems already in place. The authors will present the preliminary results of a case study approach that included several sites where contamination isolation systems including institutional controls have been implemented. The results are being used together with failure trees and logic diagrams that have been developed for both the engineered barriers and the institutional controls. The use of these analytical tools to evaluate the potential for different levels of failure and associated consequences will be discussed. Of special interest is the robustness of different approaches to providing long-term protection through redundancy and defense in depth.

Kevin M. Kostelnik; James H. Clarke; Jerry L. Harbour

2005-02-01T23:59:59.000Z

348

Operable windows, personal control and occupant comfort.  

E-Print Network (OSTI)

ASHRAE’s permission. Operable Windows, Personal Control, andcontrol of operable windows in naturally-ventilated officeences on the operation of windows in a naturally venti-

Brager, Gail; Paliaga, Gwelen; de Dear, Richard

2004-01-01T23:59:59.000Z

349

From Design to Production Control Through the Integration of Engineering Data Management and Workflow Management Systems  

E-Print Network (OSTI)

At a time when many companies are under pressure to reduce "times-to-market" the management of product information from the early stages of design through assembly to manufacture and production has become increasingly important. Similarly in the construction of high energy physics devices the collection of ( often evolving) engineering data is central to the subsequent physics analysis. Traditionally in industry design engineers have employed Engineering Data Management Systems ( also called Product Data Management Systems) to coordinate and control access to documented versions of product designs. However, these systems provide control only at the collaborative design level and are seldom used beyond design. Workflow management systems, on the other hand, are employed in industry to coordinate and support the more complex and repeatable work processes of the production environment. Commer cial workflow products cannot support the highly dynamic activities found both in the design stages of product developmen...

Le Goff, J M; Bityukov, S; Estrella, F; Kovács, Z; Le Flour, T; Lieunard, S; McClatchey, R; Murray, S; Organtini, G; Vialle, J P; Bazan, A; Chevenier, G

1997-01-01T23:59:59.000Z

350

A Parallel Row-Based Algorithm For Standard Cell Placement With Integrated Error Control  

E-Print Network (OSTI)

A new row-based parallel algorithm for standard-cell placement targeted for execution on a hypercube multiprocessor is presented. Key features of this implementation include a dynamic simulated-annealing schedule, row-partitioning of the VLSI chip image, and two novel approaches to control error in parallel cellplacement algorithms: (1) Heuristic Cell-Coloring; (2) Adaptive Sequence Length Control. 1. INTRODUCTION Simulated annealing is a general-purpose optimization method that has been successfully applied to solve a large variety of combinatorial optimization problems including many in VLSI design. Annealing is computationally very expensive, hence efforts to improve execution time has proceeded along two fronts: (1) accelerating the annealing schedule, and (2) parallelizing the annealing algorithm for execution on multiprocessors. Parallel implementations of annealing as applied to the cell placement application either attempt multiple cell moves in parallel [1-7], or distribute ...

Jeff S. Sargent; Prith Banerjee

1989-01-01T23:59:59.000Z

351

Title: “ENERGY MANAGEMENT OF MARINE ELECTRICAL POWER SYSTEMS – CONTROL OF INTEGRATED, AUTONOMOUS POWER SYSTEMS”  

E-Print Network (OSTI)

Norpropeller. Electric propulsion will provide better vessel manouverability, system redundancy and higher flexibility with engine room arrangement, Ådnanes (2003). On vessels where there is a large variation in load demand reduced fuel consumption and optimal power/energy management may be regarded as advantages that are still not fully utilized. In that respect, the new equipment and modern control systems can provide new possibilities for improving present control strategies, performance, and utilization of the installation. It is also expected that an improved control system should provide overall higher level of safety and reliability. The present state of the art type of tools and methods for analyzing combined power systems does only to a limited extent utilize the possibilities for increased knowledge available in the more advanced models and methods developed and used within each of the machinery and electrical engineering disciplines. To be able to analyze increasingly more complex systems of interest, the ability to easily combine models and methods to develop more fundamental insight into the total systems behavior, its characteristics and limitations will be an advantage in design of new systems. According to that it is first necessary to design the power system simulation model which should include mathematical models of electrical and mechanical machinery components to the required level

unknown authors

2004-01-01T23:59:59.000Z

352

Massively parallel solution of the inverse scattering problem for integrated circuit quality control  

Science Conference Proceedings (OSTI)

The authors developed and implemented a highly parallel computational algorithm for solution of the inverse scattering problem generated when an integrated circuit is illuminated by laser. The method was used as part of a system to measure diffraction grating line widths on specially fabricated test wafers and the results of the computational analysis were compared with more traditional line-width measurement techniques. The authors found they were able to measure the line width of singly periodic and doubly periodic diffraction gratings (i.e. 2D and 3D gratings respectively) with accuracy comparable to the best available experimental techniques. They demonstrated that their parallel code is highly scalable, achieving a scaled parallel efficiency of 90% or more on typical problems running on 1024 processors. They also made substantial improvements to the algorithmics and their original implementation of Rigorous Coupled Waveform Analysis, the underlying computational technique. These resulted in computational speed-ups of two orders of magnitude in some test problems. By combining these algorithmic improvements with parallelism the authors achieve speedups of between a few thousand and hundreds of thousands over the original engineering code. This made the laser diffraction measurement technique practical.

Leland, R.W.; Draper, B.L. [Sandia National Labs., NM (United States); Naqvi, S.; Minhas, B. [Univ. of New Mexico, Albuquerque, NM (United States). Electrical Engineering and Computer Sciences Dept.

1997-09-01T23:59:59.000Z

353

Integrated-circuit control for two-lamp electronic ballast. Final report  

SciTech Connect

Circuitry is described for a solid-state, high-frequency fluorescent ballast designed to operate two F40 T-12 rapid-start lamps. The circuits are designed to be produced by hybrid integrated circuit (IC) technology. The signal components are produced on a single IC chip; the power transistors are attached to an alumina substrate. The initial IC version reduces the component count by about 50%. The cost of each IC in 500K lots is $0.70, replacing discrete parts costing $2.25. Additional savings of more than $1.00 per unit are realized by the decreased assembly time and improved reliability of the ICs. The system performance (two-lamp F40) was compared to the discrete version of the ballast and to an efficient core-coil ballast and found to be 6% less and 20% more efficient, respectively. The decrease in efficiency relative to the discrete version of the ballast is due to retaining some power to the filaments during operation in order to maintain normal lamp life.

Kohler, T.P.

1982-11-01T23:59:59.000Z

354

Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes -- Update to Include Analyses of an Economizer Option and Alternative Winter Water Heating Control Option  

Science Conference Proceedings (OSTI)

The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment, ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. In 2006, the two top-ranked options from the 2005 study, air-source and ground-source versions of an integrated heat pump (IHP) system, were subjected to an initial business case study. The IHPs were subjected to a more rigorous hourly-based assessment of their performance potential compared to a baseline suite of equipment of legally minimum efficiency that provided the same heating, cooling, water heating, demand dehumidification, and ventilation services as the IHPs. Results were summarized in a project report, Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes, ORNL/TM-2006/130 (Baxter 2006). The present report is an update to that document. Its primary purpose is to summarize results of an analysis of the potential of adding an outdoor air economizer operating mode to the IHPs to take advantage of free cooling (using outdoor air to cool the house) whenever possible. In addition it provides some additional detail for an alternative winter water heating/space heating (WH/S

Baxter, Van D [ORNL

2006-12-01T23:59:59.000Z

355

ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS  

Science Conference Proceedings (OSTI)

ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further improve NOx emissions and related combustion performance. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive Powder River Basin coal (PRB) to a moderately reactive Midwestern bituminous coal (HVB) to a less reactive medium volatile Eastern bituminous coal (MVB). Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis.

Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

2002-12-30T23:59:59.000Z

356

Modeling attic humidity as a function of weather, building construction, and ventilation rates  

Science Conference Proceedings (OSTI)

A dynamic model for predicting attic relative humidity (RH) and roof-sheathing moisture content (MC) was developed for microcomputer application. The model accepts standard hourly weather data and building-design parameters as input. Model predictions gave good agreement with measured data from a house located in Madison, Wisconsin. Solar radiation varies with roof orientation and plays an important role in determining moisture transfer to and from the roof sheathing. Opposing roof surfaces must be differentiated in attic humidity models to account for the effect of solar radiation. The model described in this paper is capable of such differentiation. Snow accumulation on a roof can significantly alter the temperature and moisture conditions in an attic, but further research is needed to understand the effect of a snow layer on attic temperatures. Various scenarios were simulated with this model to determine the effect of building practice and ventilation strategies on roof sheathing MC. Direct control of RH in the living space by ventilation is very effective in lowering attic moisture conditions. Where natural ventilation is not adequate, a timer-controlled attic fan shows great promise for ensuring efficient and economical attic ventilation.

Gorman, T.M.

1987-01-01T23:59:59.000Z

357

Innovative approaches in integrated assessment modelling of European air pollution control strategies - Implications of dealing with multi-pollutant multi-effect problems  

Science Conference Proceedings (OSTI)

In this paper, crucial aspects of the implications and the complexity of interconnected multi-pollutant multi-effect assessments of both air pollution control strategies and the closely related reduction of greenhouse gas emissions will be discussed. ... Keywords: Emission control, Integrated assessment, Optimisation

Stefan Reis; Steffen Nitter; Rainer Friedrich

2005-12-01T23:59:59.000Z

358

High-Performance Control of Two Three-Phase Permanent-Magnet Synchronous Machines in an Integrated Drive for Automotive Applications  

SciTech Connect

The closed-loop control of an integrated dual AC drive system is presented to control two three-phase permanent-magnet motors. A five-leg inverter is employed in the drive system; three of the inverter legs are for a main traction motor, but only two are needed for a three-phase auxiliary motor by utilizing the neutral point of the traction motor. An integrated drive with reduced component count is therefore achieved by eliminating one inverter leg and its gate drivers. A modified current control scheme based on the rotor flux orientation principle is presented. Simulation and experimental results are included to verify the independent control capability of the integrated drive.

Tang, Lixin [ORNL; Su, Gui-Jia [ORNL

2008-01-01T23:59:59.000Z

359

The Ural Electrochemical Integrated Plant Sustainability Program of Nuclear Material Protection, Control and Accounting System Upgrades  

Science Conference Proceedings (OSTI)

UEIP has been working on a comprehensive sustainability program that includes establishing a site sustainability working group, information gathering, planning, organizing, developing schedule and estimated costs, trhough joint UEIP-US DOE/NNSA National Laboratory sustainability contracts. Considerable efforts have been necessary in the sustainability planning, monitoring, and control of the scope of work using tools such as Microsoft Excel, Microsoft Project and SAP R/3. While information interchanges within the sustainability program provides adequate US assurances that US funds are well spent through its quarterly reporting methodology, proper information security and protection measures are taken throughout the process. Decommissioning of outdated equipment has also become part of determining sustainability requirements and processes. The site’s sustainability program has facilitated the development of a transition plan toward eventual full Russian funding of sustaining nuclear security upgrades.

Vakhonin, Alexander; Yuldashev, Rashid; Dabbs, Richard D.; Carroll, Michael F.; Garrett, Albert G.; Patrick, Scott W.; Ku, Eshter M.

2009-09-30T23:59:59.000Z

360

PhotoVoltaic distributed generation for Lanai power grid real-time simulation and control integration scenario.  

Science Conference Proceedings (OSTI)

This paper discusses the modeling, analysis, and testing in a real-time simulation environment of the Lanai power grid system for the integration and control of PhotoVoltaic (PV) distributed generation. The Lanai Island in Hawaii is part of the Hawaii Clean Energy Initiative (HCEI) to transition to 30% renewable green energy penetration by 2030. In Lanai the primary loads come from two Castle and Cook Resorts, in addition to residential needs. The total peak load profile is 12470 V, 5.5 MW. Currently there are several diesel generators that meet these loading requirements. As part of the HCEI, Lanai has initially installed 1.2 MW of PV generation. The goal of this study has been to evaluate the impact of the PV with respect to the conventional carbon-based diesel generation in real time simulation. For intermittent PV distributed generation, the overall stability and transient responses are investigated. A simple Lanai 'like' model has been developed in the Matlab/Simulink environment (see Fig. 1) and to accommodate real-time simulation of the hybrid power grid system the Opal-RT Technologies RT-Lab environment is used. The diesel generators have been modelled using the SimPowerSystems toolbox swing equations and a custom Simulink module has been developed for the High level PV generation. All of the loads have been characterized primarily as distribution lines with series resistive load banks with one VAR load bank. Three-phase faults are implemented for each bus. Both conventional and advanced control architectures will be used to evaluate the integration of the PV onto the current power grid system. The baseline numerical results include the stable performance of the power grid during varying cloud cover (PV generation ramping up/down) scenarios. The importance of assessing the real-time scenario is included.

Robinett, Rush D., III; Kukolich, Keith (Opal RT Technologies, Montreal, Quebec, Canada); Wilson, David Gerald; Schenkman, Benjamin L.

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated ventilation controller" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Advanced Rooftop Control (ARC) Retrofit: Field-Test Results  

Science Conference Proceedings (OSTI)

The multi-year research study was initiated to find solutions to improve packaged equipment operating efficiency in the field. Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) and Bonneville Power Administration (BPA) conducted this research, development and demonstration (RD&D) study. Packaged equipment with constant speed supply fans is designed to provide ventilation at the design rate at all times when the fan is operating as required by building code. Although there are a number of hours during the day when a building may not be fully occupied or the need for ventilation is lower than designed, the ventilation rate cannot be adjusted easily with a constant speed fan. Therefore, modulating the supply fan in conjunction with demand controlled ventilation (DCV) will not only reduce the coil energy but also reduce the fan energy. The objective of this multi-year research, development and demonstration project was to determine the magnitude of energy savings achievable by retrofitting existing packaged rooftop air conditioners with advanced control strategies not ordinarily used for packaged units. First, through detailed simulation analysis, it was shown that significant energy (between 24% and 35%) and cost savings (38%) from fan, cooling and heating energy consumption could be realized when packaged air conditioning units with gas furnaces are retrofitted with advanced control packages (combining multi-speed fan control, integrated economizer controls and DCV). The simulation analysis also showed significant savings for heat pumps (between 20% and 60%). The simulation analysis was followed by an extensive field test of a retrofittable advanced rooftop unit (RTU) controller.

Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

2013-07-31T23:59:59.000Z

362

COST-EFFECTIVE CONTROL OF NOX WITH INTEGRATED ULTRA LOW-NOX BURNERS AND SNCR  

Science Conference Proceedings (OSTI)

The objective of this project is to develop an environmentally acceptable and cost-effective NO{sub x} control system that can achieve less than 0.15 lb NO{sub x}/10{sup 6} Btu for a wide range of coal-burning commercial boilers. The system will be comprised of an ultra low-NO{sub x} PC burner technology plus a urea-based, selective non-catalytic reduction (SNCR) system. In addition to the above stated NO{sub x} limit of 0.15 lb NO{sub x}/10{sup 6} Btu, ammonia (NH{sub 3}) slip levels will be targeted below 5 ppmV for commercial units. Testing will be performed in the 100 million Btu/hr Clean Environment Development Facility (CEDF) in Alliance, Ohio. Finally, by amendment action, a limited mercury measurement campaign was conducted to determine if the partitioning and speciation of mercury in the flue gas from a Powder River Basin coal is affected by the addition of Chlorides to the combustion zone.

Hamid Farzan

2001-10-01T23:59:59.000Z

363

Ventilation Effectiveness Research at UT-Typer Lab Houses  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Effectiveness Research Ventilation Effectiveness Research at UT-Tyler Lab Houses Source Of Outside Air, Distribution, Filtration Armin Rudd Twin (almost) Lab Houses at UT-Tyler House 2: Unvented attic, House 1: Vented attic lower loads + PV Ventilation Effectiveness Research 30 April 2013 2 * 1475 ft 2 , 3-bedroom houses * House 2 was mirrored plan * 45 cfm 62.2 ventilation rate * Garage connected to house on only one wall * Access to attic via pull-down stairs in garage * Further access to House 2 unvented attic through gasket sealed door Ventilation Effectiveness Research 30 April 2013 3 Testing Approach  Building enclosure and building mechanical systems characterization by measurement of building enclosure air leakage, central air distribution system airflows, and ventilation system airflows.

364

Subsystem of Data Acquisition Using the ModBus Protocol in Real Time of the Digital Electro-Hydraulic Control and Its Integration with the Integral System of Process Information of Laguna Verde Nuclear Power Plant  

Science Conference Proceedings (OSTI)

In this article, the achieved development is presented of a software module of data acquisition in real time using the ModBus protocol named Subsystem of Data Acquisition of the Digital Electro-Hydraulic Control and its integration with the New Data ... Keywords: Real time, Data acquisition System, Nuclear power plant, Modbus protocol, Linux, C++, TCP/IP

Efren Ruben Coronel Flores, Carlos Chairez Campos

2012-11-01T23:59:59.000Z

365

Dry Integrated Emissions Control Technology Options: EMO, DryFining, NeuStream-DR and DSI State-of-the-Art  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) technical update provides a series of enhanced Level 1 analyses of multiple dry integrated emissions reduction technology options for use at coal-fired, utility-scale generating plants. The report also contains a section covering the current state-of-the-art for Duct Sorbent Injection systems (DSI). This document also includes an updated listing of the Integrated Emissions Control (IEC) technologies that have been proposed in the past for use at ...

2013-12-21T23:59:59.000Z

366

Effect of Ventilation Strategies on Residential Ozone Levels  

NLE Websites -- All DOE Office Websites (Extended Search)

Effect of Ventilation Strategies on Residential Ozone Levels Effect of Ventilation Strategies on Residential Ozone Levels Title Effect of Ventilation Strategies on Residential Ozone Levels Publication Type Journal Article LBNL Report Number LBNL-5889E Year of Publication 2012 Authors Walker, Iain S., and Max H. Sherman Journal Building and Environment Volume 59 Start Page 456 Pagination 456-465 Date Published 01/2013 Keywords ashrae standard 62,2, filtration, infiltration, mechanical ventilation, ozone, simulation Abstract Elevated outdoor ozone levels are associated with adverse health effects. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone of outdoor origin would lower population exposures and might also lead to a reduction in ozone---associated adverse health effects. In most buildings, indoor ozone levels are diminished with respect to outdoor levels to an extent that depends on surface reactions and on the degree to which ozone penetrates the building envelope. Ozone enters buildings from outdoors together with the airflows that are driven by natural and mechanical means, including deliberate ventilation used to reduce concentrations of indoor---generated pollutants. When assessing the effect of deliberate ventilation on occupant health one should consider not only the positive effects on removing pollutants of indoor origin but also the possibility that enhanced ventilation might increase indoor levels of pollutants originating outdoors. This study considers how changes in residential ventilation that are designed to comply with ASHRAE Standard 62.2 might influence indoor levels of ozone. Simulation results show that the building envelope can contribute significantly to filtration of ozone. Consequently, the use of exhaust ventilation systems is predicted to produce lower indoor ozone concentrations than would occur with balanced ventilation systems operating at the same air---exchange rate. We also investigated a strategy for reducing exposure to ozone that would deliberately reduce ventilation rates during times of high outdoor ozone concentration while still meeting daily average ventilation requirements.

367

Summer Infiltration/Ventilation Test Results from the FRTF Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summer InfiltrationVentilation Test Results from the FRTF Laboratory Building America Technical Review Meeting April 29-30, 2013 A Research Institute of the University of Central...

368

New and Underutilized Heating, Ventilation, and Air Conditioning...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2013 - 2:56pm Addthis The following heating, ventilation, and air conditioning (HVAC) technologies are underutilized within the Federal sector. These technologies have been...

369

Energy Impact of Residential Ventilation Norms in the United States  

E-Print Network (OSTI)

5% of the total space conditioning) and the intermittentsupply lead to greater space conditioning energy use. AnnualkWh Distribution Ventilation Space Conditioning Leaky House

Sherman, Max H.; Walker, Iain S.

2007-01-01T23:59:59.000Z

370

Review on Ventilation Rate Measuring and Modeling Techniques...  

NLE Websites -- All DOE Office Websites (Extended Search)

Bldg. 90 Due to limited energy sources, countries are looking for alternative solutions to decrease energy needs. In that context, natural ventilation can be seen as a very...

371

Section 4.1.3 Natural Ventilation: Greening Federal Facilities...  

NLE Websites -- All DOE Office Websites (Extended Search)

in and through build- ings. These airflows may be used both for ventilation air and for passive cooling strategies. Natural ventila- tion is often strongly preferred by building...

372

Energy Impacts of Envelope Tightening and Mechanical Ventilation...  

NLE Websites -- All DOE Office Websites (Extended Search)

or absolute standards along with mechanical ventilation throughout the U.S. housing stock. We used a physics-based modeling framework to simulate the impact of envelope...

373

Review of Literature Related to Residential Ventilation Requirements  

E-Print Network (OSTI)

Refrigerating, and Air -Conditioning Engineers, Atlanta, GRefrigerat ing, and Air-Conditioning Engineers, Atlanta, Gof Ventilation and Air Conditioning: Is C E R N up to Date

McWilliams, Jennifer; Sherman, Max

2005-01-01T23:59:59.000Z

374

Critical Question #2: What are the Best Practices for Ventilation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Specific to Multifamily Buildings? What is the best practice to address ASHRAE 62.2 Addendum J (multifamily)? Why is exhaust only (with supply in hallway) the...

375

Characterization of air recirculation in multiple fan ventilation systems.  

E-Print Network (OSTI)

??Booster fans, large underground fans, can increase the volumetric efficiency of ventilation systems by helping to balance the pressure and quantity distribution throughout a mine,… (more)

Wempen, Jessica Michelle

2012-01-01T23:59:59.000Z

376

Ventilation and Solar Heat Storage System Offers Big Energy Savings  

Ventilation and Solar Heat Storage System Offers Big Energy Savings ... Heat is either reflected away from the building with radiant barriers, or heat is absorbed

377

Case Study 3 - Energy Impacts of Infiltration and Ventilation in ...  

Science Conference Proceedings (OSTI)

... the energy use in commercial buildings due to infiltration and ventilation airflows and to investigate the potential for energy savings that could be ...

378

Guide to Closing and Conditioning Ventilated Crawlspaces  

SciTech Connect

This how-to guide explains the issues and concerns with conventional ventilated crawlspaces and provides prescriptive measures for improvements that will create healthier and more durable spaces. The methods described in this guide are not the only acceptable ways to treat a crawlspace but represent a proven strategy that works in many areas of the United States. The designs discussed in this guide may or may not meet the local building codes and as such will need to be researched before beginning the project.

Dickson, B.

2013-01-01T23:59:59.000Z

379

A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators  

E-Print Network (OSTI)

. Material: Four turbine- based ventilators and nine conventional servo-valve compressed-gas ventilators were1 A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators Arnaud W. Thille,1 MD; Aissam Lyazidi,1 Biomed Eng MS; Jean-Christophe M

Paris-Sud XI, Université de

380

Co-simulation for performance prediction of integrated building and HVAC systems -An analysis of solution  

E-Print Network (OSTI)

Co-simulation for performance prediction of integrated building and HVAC systems - An analysis performance simulation of buildings and heating, ventilation and air- conditioning (HVAC) systems can help, heating, ventilation and air-conditioning (HVAC) systems are responsible for 10%-60% of the total building

Note: This page contains sample records for the topic "integrated ventilation controller" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Sensitivity of Tropical Cyclone Intensity to Ventilation in an Axisymmetric Model  

E-Print Network (OSTI)

The sensitivity of tropical cyclone intensity to ventilation of cooler, drier air into the inner core is examined using an axisymmetric tropical cyclone model with parameterized ventilation. Sufficiently strong ventilation ...

Tang, Brian

382

Quantification of the association of ventilation rates with sick building syndrome symptoms  

E-Print Network (OSTI)

42%) as ventilation rate increases from 10 to 25 L/s-person.0.85) as ventilation rate increases from 10 to 25 L/s-29% as ventilation rate increases from 10 to 25 L/s-person.

Fisk, William J.

2009-01-01T23:59:59.000Z

383

Sensitivity of Tropical Cyclone Intensity to Ventilation in an Axisymmetric Model  

Science Conference Proceedings (OSTI)

The sensitivity of tropical cyclone intensity to ventilation of cooler, drier air into the inner core is examined using an axisymmetric tropical cyclone model with parameterized ventilation. Sufficiently strong ventilation induces cooling of the ...

Brian Tang; Kerry Emanuel

2012-08-01T23:59:59.000Z

384

Minimum Energy Ventilation for Fast Food Restaurant Kitchens  

Science Conference Proceedings (OSTI)

Cooking equipment exhaust systems have a significant impact on the energy consumption of fast food restaurants. This research investigated issues that relate to the energy performance of commercial kitchen ventilation systems and demonstrated that significant energy and cost savings can be achieved by reducing ventilation rates.

1996-10-30T23:59:59.000Z

385

LBNL REPORT NUMBER 53776; OCTOBER 2003 ASHRAE &Residential Ventilation  

E-Print Network (OSTI)

LBNL REPORT NUMBER 53776; OCTOBER 2003 ASHRAE &Residential Ventilation Max Sherman Energy Performance of Buildings Group IED/EETD Lawrence Berkeley Laboratory1 MHSherman@lbl.gov ASHRAE, the American of heating, ventilating, air-conditioning and refrigeration (HVAC&R). ASHRAE has recently released a new

386

Absolute Glovebox Ventilation Filtration System with Unique Filter Replacement Feature  

SciTech Connect

A glovebox ventilation system was designed for a new plutonium-238 processing facility that provided 1) downdraft ventilation, 2) a leak tight seal around the High Efficiency Particulate Air (HEPA) filters, and 3) a method for changing the filters internally without risk of contaminating the laboratory.

Freeman, S. S.; Slusher, W. A.

1975-12-31T23:59:59.000Z

387

Fuel cell integral bundle assembly including ceramic open end seal and vertical and horizontal thermal expansion control  

Science Conference Proceedings (OSTI)

A plurality of integral bundle assemblies contain a top portion with an inlet fuel plenum and a bottom portion containing a base support, the base supports a dense, ceramic air exhaust manifold having four supporting legs, the manifold is below and connects to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the open end of the fuel cells rest upon and within a separate combination ceramic seal and bundle support contained in a ceramic support casting, where at least one flexible cushion ceramic band seal located between the recuperator and fuel cells protects and controls horizontal thermal expansion, and where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all of the weight of the generator.

Zafred, Paolo R. (Murrysville, PA); Gillett, James E. (Greensburg, PA)

2012-04-24T23:59:59.000Z

388

Secondary pollutants from ozone reactions with ventilation filters and  

NLE Websites -- All DOE Office Websites (Extended Search)

Secondary pollutants from ozone reactions with ventilation filters and Secondary pollutants from ozone reactions with ventilation filters and degradation of filter media additives Title Secondary pollutants from ozone reactions with ventilation filters and degradation of filter media additives Publication Type Journal Article Year of Publication 2011 Authors Destaillats, Hugo, Wenhao Chen, Michael G. Apte, Nuan Li, Michael Spears, Jérémie Almosni, Gregory Brunner, Jianshun(Jensen) Zhang, and William J. Fisk Journal Atmospheric Environment Volume 45 Start Page 3561 Issue 21 Pagination 3561-3568 Keywords commercial building ventilation & indoor environmental quality group, commercial building ventilation and indoor environmental quality group, energy analysis and environmental impacts department, indoor environment department, indoor environment group

389

Ventilation and Energy Saving in Auto Manufacturing Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation and Energy Saving in Auto Manufacturing Plants Ventilation and Energy Saving in Auto Manufacturing Plants Speaker(s): Alexander M. Zhivov Date: April 3, 2002 - 12:00pm Location: Bldg. 90 Dr. Alexander Zhivov is currently the chairman of the International Task Force "Autovent International" focusing on environmental problems within the Automotive Industry. This Task Force was formed in 1997 to develop the "Ventilation Guide for Automotive Industry". The guide was to be seen as a building block within the EU sponsored "Industrial Ventilation Design Guide Book" project, covering both theory and applications. In his presentation, Dr. Zhivov will talk about his work with the automotive industry, describe major highlights from the "Ventilation Guide for Automotive Industry" and talk about building, process and HVAC

390

Heating, Ventilation, and Air Conditioning Renovations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating, Ventilation, and Air Conditioning Renovations Heating, Ventilation, and Air Conditioning Renovations Heating, Ventilation, and Air Conditioning Renovations October 16, 2013 - 4:49pm Addthis Renewable Energy Options for HVAC Renovations Geothermal Heat Pumps (GHP) Solar Water Heating (SWH) Biomass Passive Solar Heating Biomass Heating Solar Ventilation Air Preheating Federal building renovations that encompass the heating, ventilation, and air conditioning (HVAC) systems in a facility provide a range of renewable energy opportunities. The primary technology option for HVAC renovations is geothermal heat pumps (GHP). Other options include leveraging a solar water heating (SWH) system to offset heating load or using passive solar heating or a biomass-capable furnace or boiler. Some facilities may also take

391

Opaque Ventilated Facades - Performance Simulation Method and Assessment of  

NLE Websites -- All DOE Office Websites (Extended Search)

Opaque Ventilated Facades - Performance Simulation Method and Assessment of Opaque Ventilated Facades - Performance Simulation Method and Assessment of Simulated Performance Speaker(s): Emanuele Naboni Date: May 29, 2007 - 12:00pm Location: 90-3122 Opaque ventilated façade systems are increasingly used in buildings, even though their effects on the overall thermal performance of buildings have not yet been fully understood. The research reported in this presentation focuses on the modeling of such systems with EnergyPlus. Ventilated façade systems are modeled in EnergyPlus with module "Exterior Naturally Vented Cavity." Not all façade systems can be modeled with this module; this research defined the types of systems that can be modeled, and the limitations of such simulation. The performance of a ventilated façade

392

Ventilation Systems Operating Experience Review for Fusion Applications  

SciTech Connect

This report is a collection and review of system operation and failure experiences for air ventilation systems in nuclear facilities. These experiences are applicable for magnetic and inertial fusion facilities since air ventilation systems are support systems that can be considered generic to nuclear facilities. The report contains descriptions of ventilation system components, operating experiences with these systems, component failure rates, and component repair times. Since ventilation systems have a role in mitigating accident releases in nuclear facilities, these data are useful in safety analysis and risk assessment of public safety. An effort has also been given to identifying any safety issues with personnel operating or maintaining ventilation systems. Finally, the recommended failure data were compared to an independent data set to determine the accuracy of individual values. This comparison is useful for the International Energy Agency task on fusion component failure rate data collection.

L. C. Cadwallader

1999-12-01T23:59:59.000Z

393

Buoyancy-Driven Ventilation of Hydrogen from Buildings: Laboratory Test and Model Validation  

DOE Green Energy (OSTI)

Passive, buoyancy-driven ventilation is one approach to limiting hydrogen concentration. We explored the relationship between leak rate, ventilation design, and hydrogen concentrations.

Barley, C. D.; Gawlik, K.

2009-05-01T23:59:59.000Z

394

The impact of ventilation rate on the emission rates of volatile...  

NLE Websites -- All DOE Office Websites (Extended Search)

impact of ventilation rate on the emission rates of volatile organic compounds in residences Title The impact of ventilation rate on the emission rates of volatile organic...

395

Engineering work plan and design basis for 241-SY ventilation improvements  

DOE Green Energy (OSTI)

There are three tanks in the 241-SY tank farm. Tank 241-SY101 and 241-SY-103 are flammable gas watch list tanks. Tank 241-SY-102 is included in the ventilation improvement process in an effort to further control air flow in the tank farm. This tank farm has only one outlet ventilation port for all three tanks. Flammable gas is released (may be steady and/or periodic) from the waste in the primary tank vapor space. The gas is removed from the tank by an active ventilation system. However, maintaining consistent measurable flow through the tank can be problematic due to the poor control capabilities of existing equipment. Low flow through the tank could allow flammable gas to build up in the tank and possibly exceed the lower flammability limit (LFL), prevent the most rapid removal of flammable gas from the tank after a sudden gas release, and/or cause high vacuum alarms to sound. Using the inlet and outlet down stream butterfly valves performs the current method of controlling flow in tank farm 241-SY. A filter station is installed on the inlet of each tank, but controlling air flow with its 12 inch butterfly valve is difficult. There is also in-leakage through pump and valve pits. Butterfly valves on the downstream side of each tank could also be used to control air flow. However, their large size and the relatively low air velocity make this control method also ineffective. The proposed method of optimizing tank air flow and pressure control capability is to install an air flow controller on the inlet of each existing filter station in SY farm, and seal as best as practical all other air leakage paths. Such air flow controllers have been installed on 241-AN and 241-AW tanks (see drawing H-2-85647).

Andersen, J.A.

1997-05-19T23:59:59.000Z

396

Improvements in dose accuracy delivered with static-MLC IMRT on an integrated linear accelerator control system  

Science Conference Proceedings (OSTI)

Purpose: Dose accuracy has been shown to vary with dose per segment and dose rate when delivered with static multileaf collimator (SMLC) intensity modulated radiation therapy (IMRT) by Varian C-series MLC controllers. The authors investigated the impact of monitor units (MUs) per segment and dose rate on the dose delivery accuracy of SMLC-IMRT fields on a Varian TrueBeam linear accelerator (LINAC), which delivers dose and manages motion of all components using a single integrated controller. Methods: An SMLC sequence was created consisting of ten identical 10 x 10 cm{sup 2} segments with identical MUs. Beam holding between segments was achieved by moving one out-of-field MLC leaf pair. Measurements were repeated for various combinations of MU/segment ranging from 1 to 40 and dose rates of 100-600 MU/min for a 6 MV photon beam (6X) and dose rates of 800-2400 MU/min for a 10 MV flattening-filter free photon (10XFFF) beam. All measurements were made with a Farmer (0.6 cm{sup 3}) ionization chamber placed at the isocenter in a solid-water phantom at 10 cm depth. The measurements were performed on two Varian LINACs: C-series Trilogy and TrueBeam. Each sequence was delivered three times and the dose readings for the corresponding segments were averaged. The effects of MU/segment, dose rate, and LINAC type on the relative dose variation ({Delta}{sub i}) were compared using F-tests ({alpha} = 0.05). Results: On the Trilogy, large {Delta}{sub i} was observed in small MU segments: at 1 MU/segment, the maximum {Delta}{sub i} was 10.1% and 57.9% at 100 MU/min and 600 MU/min, respectively. Also, the first segment of each sequence consistently overshot ({Delta}{sub i} > 0), while the last segment consistently undershot ({Delta}{sub i} dose rates greater than 100 MU/min. The linear trend of decreasing dose accuracy as a function of increasing dose rate on the Trilogy is no longer apparent on TrueBeam, even for dose rates as high as 2400 MU/min. Dose inaccuracy averaged over all ten segments in each beam delivery sequence was larger for Trilogy than TrueBeam, with the largest discrepancy (0.2% vs 3%) occurring for 1 MU/segment beams at both 300 and 600 MU/min. Conclusions: Earlier generations of Varian LINACs exhibited large dose variations for small MU segments in SMLC-IMRT delivery. Our results confirmed these findings. The dose delivery accuracy for SMLC-IMRT is significantly improved on TrueBeam compared to Trilogy for every combination of low MU/segment (1-10) and high dose rate (200-600 MU/min), in part due to the faster sampling rate (100 vs 20 Hz) and enhanced electronic integration of the MLC controller with the LINAC. SMLC-IMRT can be implemented on TrueBeam with higher dose accuracy per beam ({+-}0.2% vs {+-}3%) than previous generations of Varian C-series LINACs for 1 MU/segment delivered at 600 MU/min).

Li Ji; Wiersma, Rodney D.; Stepaniak, Christopher J.; Farrey, Karl J.; Al-Hallaq, Hania A. [Department of Radiation and Cellular Oncology, University of Chicago, 5758 South Maryland Avenue, MC9006, Chicago, Illinois 60637 (United States)

2012-05-15T23:59:59.000Z

397

DEMONSTRATION OF A HYBRID INTELLIGENT CONTROL STRATEGY FOR CRITICAL BUILDING HVAC SYSTEMS  

SciTech Connect

Many industrial facilities utilize pressure control gradients to prevent migration of hazardous species from containment areas to occupied zones, often using Proportional-Integral-Derivative (PID) control. Within these facilities, PID control is often inadequate to maintain desired performance due to changing operating conditions. As the goal of the Heating, Ventilation and Air-Conditioning (HVAC) control system is to optimize the pressure gradients and associated flows for the plant, Linear Quadratic Tracking (LQT) provides a time-based approach to guiding plant interactions. However, LQT methods are susceptible to modeling and measurement errors, and therefore a hybrid design using the integration of soft control methods with hard control methods is developed and demonstrated to account for these errors and nonlinearities.

Craig Rieger; D. Subbaram Naidu

2010-06-01T23:59:59.000Z

398

Heating, Ventilation and Air Conditioning Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presented By: WALTER E. JOHNSTON, PE Presented By: WALTER E. JOHNSTON, PE CEM, CEA, CLEP, CDSM, CPE Ventilation and Air Conditioning (HVAC) system is to provide and maintain a comfortable environment within a building for the occupants or for the process being conducted Many HVAC systems were not designed with energy efficiency as one of the design factors 3 Air Air is the major conductor of heat. Lack of heat = air conditioning OR 4 Btu - Amount of heat required to raise one pound of water 1 F = 0.252 KgCal 1 Pound of Water = About 1 Pint of Water ~ 1 Large Glass 1 Kitchen Match Basics of Air Conditioning = 1 Btu 5 = 6 Low Cost Cooling Unit 7 8 Typical Design Conditions 75 degrees F temperature 50% relative humidity 30 - 50 FPM air movement

399

FEMP-FS--Solar Ventilation Preheating  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Installing a "solar wall" to heat air before it enters a Installing a "solar wall" to heat air before it enters a building, called solar ventilation preheating, is one of the most efficient ways of reducing energy costs using clean and renewable energy. The system works by heating outside air with a south-facing solar collector-a dark-colored wall made of sheet metal and perforated with tiny holes. Outdoor air is drawn through the holes and heated as it absorbs the wall's warmth. The warm air rises in the space between the solar wall and the building wall and is moved into the air-duct system, usually by means of a fan, to heat the building. Any additional heating needed at night or on cloudy days is supplied by the build- ing's conventional heating system. During summer months, intake air bypasses the solar collector,

400

Fire protection countermeasures for containment ventilation systems  

SciTech Connect

The goal of this project is to find countermeasures to protect High Efficiency Particulate Air (HEPA) filters, in exit ventilation ducts, from the heat and smoke generated by fire. Initially, methods were developed to cool fire-heated air by fine water spray upstream of the filters. It was recognized that smoke aerosol exposure to HEPA filters could also cause disruption of the containment system. Through testing and analysis, several methods to partially mitigate the smoke exposure to the HEPA filters were identified. A continuous, movable, high-efficiency prefilter using modified commercial equipment was designed. The technique is capable of protecting HEPA filters over the total time duration of the test fires. The reason for success involved the modification of the prefiltration media. Commercially available filter media has particle sorption efficiency that is inversely proportional to media strength. To achieve properties of both efficiency and strength, rolling filter media were laminated with the desired properties. The approach was Edisonian, but truncation in short order to a combination of prefilters was effective. The application of this technique was qualified, since it is of use only to protect HEPA filters from fire-generated smoke aerosols. It is not believed that this technique is cost effective in the total spectrum of containment systems, especially if standard fire protection systems are available in the space. But in areas of high-fire risk, where the potential fuel load is large and ignition sources are plentiful, the complication of a rolling prefilter in exit ventilation ducts to protect HEPA filters from smoke aerosols is definitely justified.

Alvares, N.; Beason, D.; Bergman, V.; Creighton, J.; Ford, H.; Lipska, A.

1980-08-25T23:59:59.000Z

Note: This page contains sample records for the topic "integrated ventilation controller" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Modeling study of ventilation, IAQ and energy impacts of residential mechanical ventilation  

SciTech Connect

This paper reports on a simulation study of indoor air quality, ventilation and energy impacts of several mechanical ventilation approaches in a single-family residential building. The study focused on a fictitious two-story house in Spokane, Washington and employed the multizone airflow and contaminant dispersal model CONTAM. The model of the house included a number of factors related to airflow including exhaust fan and forced-air system operation, duct leakage and weather effects, as well as factors related to contaminant dispersal including adsorption/desorption of water vapor and volatile organic compounds, surface losses of particles and nitrogen dioxide, outdoor contaminant concentrations, and occupant activities. The contaminants studied include carbon monoxide, carbon dioxide, nitrogen dioxide, water vapor, fine and coarse particles, and volatile organic compounds. One-year simulations were performed for four different ventilation approaches: a base case of envelope infiltration only, passive inlet vents in combination with exhaust fan operation, an outdoor intake duct connected to the forced-air system return balanced by exhaust fan operation, and a continuously-operated exhaust fan. Results discussed include whole building air change rates, air distribution within the house, heating and cooling loads, contaminants concentrations, and occupant exposure to contaminants.

Persily, A.K.

1998-05-01T23:59:59.000Z

402

Effects of Radiant Barrier Systems on Ventilated Attics in a Hot and Humid Climate  

E-Print Network (OSTI)

Results of side-by-side radiant barrier experiments using two identical 144 ft2 (nominal) test houses are presented. The test houses responded very similarly to weather variations prior to the retrofit. The temperatures of the test houses were controlled to within 0.3°F. Ceiling heat fluxes were within 2 percent for each house. The results showed that a critical attic ventilation flow rate (0.25 CFM/ft2 ) existed after which the percentage reduction produced by the radiant barrier systems was not sensitive to increased airflows. The ceiling heat flux reductions produced by the radiant barrier systems were between 25 and 34 percent, with 28 percent being the reduction observed most often in the presence of attic ventilation. All results presented in this paper were for attics with R-19 unfaced fiberglass insulation and for a perforated radiant barrier with low emissivities on both sides.

Medina, M. A.; O'Neal, D. L.; Turner, W. D.

1992-05-01T23:59:59.000Z

403

Ventilation Control of Volatile Organic Compounds in New U  

NLE Websites -- All DOE Office Websites (Extended Search)

methods were used for VOC concentration measurements, and passive perfluorocarbon tracer gas emitters with active sampling were used to determine the overall air exchange rate...

404

Advanced Controls and Sustainable Systems for Residential Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

when electricity demand is low. Utility companies in the US are beginning to offer tariff-based incentives to consumers to help reduce peak energy demand and hence cost. An...

405

CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS  

E-Print Network (OSTI)

26 Errors from energy management systems versus sensorby building energy management systems were generally verysignals to the energy management systems. Laboratory-based

Fisk, William J.

2010-01-01T23:59:59.000Z

406

Procedures and Standards for Residential Ventilation System Commissioning:  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures and Standards for Residential Ventilation System Commissioning: Procedures and Standards for Residential Ventilation System Commissioning: An Annotated Bibliography Title Procedures and Standards for Residential Ventilation System Commissioning: An Annotated Bibliography Publication Type Report LBNL Report Number LBNL-6142E Year of Publication 2013 Authors J. Chris Stratton, and Craig P. Wray Keywords ASHRAE 62.2, commissioning, procedures, residential, standards, ventilation Abstract Beginning with the 2008 version of Title 24, new homes in California must comply with ANSI/ASHRAE Standard 62.2-2007 requirements for residential ventilation. Where installed, the limited data available indicate that mechanical ventilation systems do not always perform optimally or even as many codes and forecasts predict. Commissioning such systems when they are installed or during subsequent building retrofits is a step towards eliminating deficiencies and optimizing the tradeoff between energy use and acceptable IAQ. Work funded by the California Energy Commission about a decade ago at Berkeley Lab documented procedures for residential commissioning, but did not focus on ventilation systems. Since then, standards and approaches for commissioning ventilation systems have been an active area of work in Europe. This report describes our efforts to collect new literature on commissioning procedures and to identify information that can be used to support the future development of residential-ventilation-specific procedures and standards. We recommend that a standardized commissioning process and a commissioning guide for practitioners be developed, along with a combined energy and IAQ benefit assessment standard and tool, and a diagnostic guide for estimating continuous pollutant emission rates of concern in residences (including a database that lists emission test data for commercially-available labeled products).

407

HOW THE LEED VENTILATION CREDIT IMPACTS ENERGY CONSUMPTION OF GSHP SYSTEMS A CASE STUDY FOR PRIMARY SCHOOLS  

Science Conference Proceedings (OSTI)

This paper presents a study on the impacts of increased outdoor air (OA) ventilation on the performance of ground-source heat pump (GSHP) systems that heat and cool typical primary schools. Four locations Phoenix, Miami, Seattle, and Chicago are selected in this study to represent different climate zones in the United States. eQUEST, an integrated building and HVAC system energy analysis program, is used to simulate a typical primary school and the GSHP system at the four locations with minimum and 30% more than minimum OA ventilation. The simulation results show that, without an energy recovery ventilator, the 30% more OA ventilation results in an 8.0 13.3% increase in total GSHP system energy consumption at the four locations. The peak heating and cooling loads increase by 20.2 30% and 14.9 18.4%, respectively, at the four locations. The load imbalance of the ground heat exchanger is increased in hot climates but reduced in mild and cold climates.

Liu, Xiaobing [ORNL

2011-01-01T23:59:59.000Z

408

Energy Crossroads: Ventilation, Infiltration & Indoor Air Quality |  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation, Infiltration & Indoor Air Quality Ventilation, Infiltration & Indoor Air Quality Suggest a Listing Air Infiltration and Ventilation Centre (AIVC) The AIVC fulfills its objectives by providing a range of services and facilities which include: Information, Technical Analysis, Technical Interchange, and Coordination. American Conference of Governmental Industrial Hygienists (ACGIH) The ACGIH offers high quality technical publications and learning opportunities. Americlean Services Corp. (ASC) ASC is a certified SBA 8(a) engineering/consulting firm specializing in HVAC contamination detection, abatement, and monitoring. In addition to highly professional ductwork cleaning and HVAC cleaning services, ASC offers a wide range of other engineering/ consulting/ management services

409

Stability effects of frequency controllers and transmission line configurations on power systems with integration of wind power  

E-Print Network (OSTI)

This thesis investigates the stability effects of the integration of wind power on multi-machine power systems. First, the small-signal stability effects of turbine governors connected to synchronous generators in the ...

Abdelhalim, Hussein Mohamed

2012-01-01T23:59:59.000Z

410

A Description of a 1260-Year Control Integration with the Coupled ECHAM1/LSG General Circulation Model  

Science Conference Proceedings (OSTI)

A 1260-yr integration generated by the ECHAM1/LSG (Large Scale Geostrophic) coupled atmosphere–ocean general circulation model is analyzed in this paper. The analysis focuses on the climate drift and on the variations of the coupled atmosphere–...

Jin-Song von Storch; Viatcheslav V. Kharin; Ulrich Cubasch; Gabriele C. Hegerl; Dierk Schriever; Hans von Storch; Eduardo Zorita

1997-07-01T23:59:59.000Z

411

Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 2, ventilated concrete slab  

Science Conference Proceedings (OSTI)

This paper is the second of two papers that describe the modeling and design of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) adopted in a prefabricated, two-storey detached, low energy solar house and their performance assessment based on monitored data. The VCS concept is based on an integrated thermal-structural design with active storage of solar thermal energy while serving as a structural component - the basement floor slab ({proportional_to}33 m{sup 2}). This paper describes the numerical modeling, design, and thermal performance assessment of the VCS. The thermal performance of the VCS during the commissioning of the unoccupied house is presented. Analysis of the monitored data shows that the VCS can store 9-12 kWh of heat from the total thermal energy collected by the BIPV/T system, on a typical clear sunny day with an outdoor temperature of about 0 C. It can also accumulate thermal energy during a series of clear sunny days without overheating the slab surface or the living space. This research shows that coupling the VCS with the BIPV/T system is a viable method to enhance the utilization of collected solar thermal energy. A method is presented for creating a simplified three-dimensional, control volume finite difference, explicit thermal model of the VCS. The model is created and validated using monitored data. The modeling method is suitable for detailed parametric study of the thermal behavior of the VCS without excessive computational effort. (author)

Chen, Yuxiang; Galal, Khaled; Athienitis, A.K. [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 De Maisonneuve West, EV6.139, Montreal, Quebec (Canada)

2010-11-15T23:59:59.000Z

412

Dynamic simulation and load-following control of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture  

Science Conference Proceedings (OSTI)

Load-following control of future integrated gasification combined cycle (IGCC) plants with pre-combustion CO{sub 2} capture is expected to be far more challenging as electricity produced by renewable energy is connected to the grid and strict environmental limits become mandatory requirements. To study control performance during load following, a plant-wide dynamic simulation of a coal-fed IGCC plant with CO{sub 2} capture has been developed. The slurry-fed gasifier is a single-stage, downward-fired, oxygen-blown, entrained-flow type with a radiant syngas cooler (RSC). The syngas from the outlet of the RSC goes to a scrubber followed by a two-stage sour shift process with inter-stage cooling. The acid gas removal (AGR) process is a dual-stage physical solvent-based process for selective removal of H{sub 2}S in the first stage and CO{sub 2} in the second stage. Sulfur is recovered using a Claus unit with tail gas recycle to the AGR. The recovered CO{sub 2} is compressed by a split-shaft multistage compressor and sent for sequestration after being treated in an absorber with triethylene glycol for dehydration. The clean syngas is sent to two advanced “F”-class gas turbines (GTs) partially integrated with an elevated-pressure air separation unit. A subcritical steam cycle is used for heat recovery steam generation. A treatment unit for the sour water strips off the acid gases for utilization in the Claus unit. The steady-state model developed in Aspen Plus® is converted to an Aspen Plus Dynamics® simulation and integrated with MATLAB® for control studies. The results from the plant-wide dynamic model are compared qualitatively with the data from a commercial plant having different configuration, operating condition, and feed quality than what has been considered in this work. For load-following control, the GT-lead with gasifier-follow control strategy is considered. A modified proportional–integral–derivative (PID) control is considered for the syngas pressure control. For maintaining the desired CO{sub 2} capture rate while load-following, a linear model predictive controller (LMPC) is implemented in MATLAB®. A combined process and disturbance model is identified by considering a number of model forms and choosing the final model based on an information-theoretic criterion. The performance of the LMPC is found to be superior to the conventional PID control for maintaining CO{sub 2} capture rates in an IGCC power plant while load following.

Bhattacharyya, D,; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

413

Modeling and Control System Design for an Integrated Solar Generation and Energy Storage System with a Ride-Through Capability: Preprint  

DOE Green Energy (OSTI)

This paper presents a generic approach for PV panel modeling. Data for this modeling can be easily obtained from manufacturer datasheet, which provides a convenient way for the researchers and engineers to investigate the PV integration issues. A two-stage power conversion system (PCS) is adopted in this paper for the PV generation system and a Battery Energy Storage System (BESS) can be connected to the dc-link through a bi-directional dc/dc converter. In this way, the BESS can provide some ancillary services which may be required in the high penetration PV generation scenario. In this paper, the fault ride-through (FRT) capability is specifically focused. The integrated BESS and PV generation system together with the associated control systems is modeled in PSCAD and Matlab platforms and the effectiveness of the controller is validated by the simulation results.

Wang, X.; Yue, M.; Muljadi, E.

2012-09-01T23:59:59.000Z

414

Natural ventilation possibilities for buildings in the United States  

E-Print Network (OSTI)

In the United States, many of the commercial buildings built in the last few decades are completely mechanically air conditioned, without the capability to use natural ventilation. This habit has occurred in building designs ...

Dean, Brian N. (Brian Nathan), 1974-

2001-01-01T23:59:59.000Z

415

Ventilation Rates Estimated from Tracers in the Presence of Mixing  

Science Conference Proceedings (OSTI)

The intimate relationship among ventilation, transit-time distributions, and transient tracer budgets is analyzed. To characterize the advective–diffusive transport from the mixed layer to the interior ocean in terms of flux we employ a ...

Timothy M. Hall; Thomas W. N. Haine; Darryn W. Waugh; Mark Holzer; Francesca Terenzi; Deborah A. LeBel

2007-11-01T23:59:59.000Z

416

Ventilation and Energy Saving in Auto Manufacturing Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation and Energy Saving in Auto Manufacturing Plants Speaker(s): Alexander M. Zhivov Date: April 3, 2002 - 12:00pm Location: Bldg. 90 Dr. Alexander Zhivov is currently the...

417

Issue #9: What are the Best Ventilation Techniques? | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

do we address ventilation in all climates? What is the best compromise between occupant health and safety and energy efficiency? issue9recommendashrae.pdf issue9ashrae622vent...

418

Simulations of Indoor Air Quality and Ventilation Impacts of ...  

Science Conference Proceedings (OSTI)

... lighting load from ASHRAE Standard 90.1 (ANSI/ASHRAE ... with a nonzero base ventilation rate, such ... and C-T24, will help to temper such exposure. ...

2006-10-03T23:59:59.000Z

419

CANCELLED: Mechanism of Human Responses to Ventilation Rates...  

NLE Websites -- All DOE Office Websites (Extended Search)

CANCELLED: Mechanism of Human Responses to Ventilation Rates and Air Temperature Speaker(s): Henry Willem Date: July 2, 2010 - 12:00pm Location: 90-3122 Seminar HostPoint of...

420

Formaldehyde as a basis for residential ventilation rates  

E-Print Network (OSTI)

large numbers of houses using passive monitoring techniques.rates by passive techniques in 61 occupied houses, half ofhouses in the U.S. have been ventilated by passive

Sherman, M.H.; Hodgson, A.T.

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated ventilation controller" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

An Integrated Modeling Framework for Exploring Network Reconfiguration of Distributed Controlled Homogenous Power Inverter Network using Composite Lyapunov Function Based Reachability Bound  

Science Conference Proceedings (OSTI)

We describe an integrated modeling framework for an interactive power network (IPN) consisting of a power network (PN) and a wireless communication network (WCN). The PN is modeled using a set of piecewise linear (PWL) equations. The WCN is modeled using ... Keywords: Lyapunov stability, Markov-chain model, communication network, distributed control systems, electric power network, joint optimization, linear matrix inequality, optimization, piecewise linear systems, reaching conditions, stability, switching power converters, wireless

Sudip K. Mazumder; Muhammad Tahir; Kaustuva Acharya

2010-02-01T23:59:59.000Z

422

Evaluation of an Incremental Ventilation Energy Model for Estimating  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of an Incremental Ventilation Energy Model for Estimating Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Title Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Publication Type Report LBNL Report Number LBNL-5796E Year of Publication 2012 Authors Logue, Jennifer M., William J. N. Turner, Iain S. Walker, and Brett C. Singer Date Published 06/2012 Abstract Changing the rate of airflow through a home affects the annual thermal conditioning energy.Large-scale changes to airflow rates of the housing stock can significantly alter the energy consumption of the residential energy sector. However, the complexity of existing residential energy models hampers the ability to estimate the impact of policy changes on a state or nationwide level. The Incremental Ventilation Energy (IVE) model developed in this study was designed to combine the output of simple airflow models and a limited set of home characteristics to estimate the associated change in energy demand of homes. The IVE model was designed specifically to enable modelers to use existing databases of home characteristics to determine the impact of policy on ventilation at a population scale. In this report, we describe the IVE model and demonstrate that its estimates of energy change are comparable to the estimates of a well-validated, complex residential energy model when applied to homes with limited parameterization. Homes with extensive parameterization would be more accurately characterized by complex residential energy models. The demonstration included a range of home types, climates, and ventilation systems that cover a large fraction of the residential housing sector.

423

Key Factors in Displacement Ventilation Systems for Better IAQ  

E-Print Network (OSTI)

This paper sets up a mathematical model of three-dimensional steady turbulence heat transfer in an air-conditioned room of multi-polluting heat sources. Numerical simulation helps identify key factors in displacement ventilation systems that affect air-quality in rooms of multi-polluting heat sources. Results show that it is very important to determine the suitable air-intemperature , air-inflow, and heat source quantity and dispersion, to obtain better displacement ventilation results.

Wang, X.; Chen, J.; Li, Y.; Wang, Z.

2006-01-01T23:59:59.000Z

424

Development of a Dedicated 100 Percent Ventilation Air Heat Pump  

Science Conference Proceedings (OSTI)

The concept of using dedicated 100 percent ventilation makeup air conditioning units to meet indoor air quality standards is attractive because of the inherent advantages. However, it is challenging to design and build direct expansion unitary equipment for this purpose. EPRI teamed with ClimateMaster to develop and test a prototype of a vapor compression heat pump to advance the state of the art in such equipment. The prototype unit provides deep dehumidification and cooling of ventilation air in the su...

2000-12-14T23:59:59.000Z

425

Capture and Use of Coal Mine Ventilation Air Methane  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., in conjunction with MEGTEC Systems, Inc., and the U.S. Department of Energy with the U.S. Environmental Protection Agency, designed, built, and operated a commercial-size thermal flow reversal reactor (TFRR) to evaluate its suitability to oxidize coal mine ventilation air methane (VAM). Coal mining, and particularly coal mine ventilation air, is a major source of anthropogenic methane emissions, a greenhouse gas. Ventilation air volumes are large and the concentration of methane in the ventilation air is low; thus making it difficult to use or abate these emissions. This test program was conducted with simulated coal mine VAM in advance of deploying the technology on active coal mine ventilation fans. The demonstration project team installed and operated a 30,000 cfm MEGTEC VOCSIDIZER oxidation system on an inactive coal mine in West Liberty, WV. The performance of the unit was monitored and evaluated during months of unmanned operation at mostly constant conditions. The operating and maintenance history and how it impacts the implementation of the technology on mine fans were investigated. Emission tests showed very low levels of all criteria pollutants at the stack. Parametric studies showed that the equipment can successfully operate at the design specification limits. The results verified the ability of the TFRR to oxidize {ge}95% of the low and variable concentration of methane in the ventilation air. This technology provides new opportunities to reduce greenhouse gas emissions by the reduction of methane emissions from coal mine ventilation air. A large commercial-size installation (180,000 cfm) on a single typical mine ventilation bleeder fan would reduce methane emissions by 11,000 to 22,100 short tons per year (the equivalent of 183,000 to 366,000 metric tonnes carbon dioxide).

Deborah Kosmack

2008-10-31T23:59:59.000Z

426

Improving Ventilation and Saving Energy: Relocatable ClassroomField Study Interim Report  

Science Conference Proceedings (OSTI)

The primary goals of this research effort are to develop, evaluate, and demonstrate a very practical HVAC system for classrooms that consistently provides classrooms with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research is motivated by the public benefits of energy efficiency, evidence that many classrooms are under-ventilated, and public concerns about indoor environmental quality in classrooms. This report presents an interim status update and preliminary findings from energy and indoor environmental quality (IEQ) measurements in sixteen relocatable classrooms in California. The field study includes measurements of HVAC energy use, ventilation rates, and IEQ conditions. Ten of the classrooms were equipped with a new HVAC technology and six control classrooms were equipped with a standard HVAC system. Energy use and many IEQ parameters have been monitored continuously, while unoccupied acoustic measurements were measured in one of four planned seasonal measurement campaigns. Continuously monitored data are remotely accessed via a LonWorks{reg_sign} network and stored in a relational database at LBNL. Preliminary results are presented here.

Apte, Michael G.; Buchanan, Ian S.; Faulkner, David; Hotchi,Toshifumi; Spears,Michael; Sullivan, Douglas P.; Wang, Duo

2005-09-01T23:59:59.000Z

427

Energy Systems Integration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Integration Systems Integration Ben Kroposki, PhD, PE Director, Energy Systems Integration National Renewable Energy Laboratory 2 Reducing investment risk and optimizing systems in a rapidly changing energy world * Increasing penetration of variable RE in grid * Increasing ultra high energy efficiency buildings and controllable loads * New data, information, communications and controls * Electrification of transportation and alternative fuels * Integrating energy storage (stationary and mobile) and thermal storage * Interactions between electricity/thermal/fuels/data pathways * Increasing system flexibility and intelligence Current Energy Systems Future Energy Systems Why Energy Systems Integration? 3 Energy Systems Integration Continuum Scale Appliance (Plug)

428

Ventilating system for reprocessing of nuclear fuel rods  

Science Conference Proceedings (OSTI)

In a nuclear facility such as a reprocessing plant for nuclear fuel rods, the central air cleaner discharging ventilating gas to the atmosphere must meet preselected standards not only as to the momentary concentration of radioactive components, but also as to total quantity per year. In order to comply more satisfactorily with such standards, reprocessing steps are conducted by remote control in a plurality of separate compartments. The air flow for each compartment is regulated so that the air inventory for each compartment has a slow turnover rate of more than a day but less than a year, which slow rate is conveniently designated as quasihermetic sealing. The air inventory in each such compartment is recirculated through a specialized processing unit adapted to cool and/or filter and/or otherwise process the gas. Stale air is withdrawn from such recirculating inventory and fresh air is injected (eg., By the less than perfect sealing of a compartment) into such recirculating inventory so that the air turnover rate is more than a day but less than a year. The amount of air directed through the manifold and duct system from the reprocessing units to the central air cleaner is less than in reprocessing plants of conventional design.

Szulinski, M.J.

1981-07-07T23:59:59.000Z

429

Laboratory Evaluation of Energy Recovery Ventilators  

SciTech Connect

As deep retrofit measures and new construction practices are realizing lower infiltration levels in increasingly tighter envelopes, performance issues can arise with water vapor intrusion in building envelopes and the operation of exhaust only appliances in a depressurized home. Unbalancing (reducing exhaust airflows) of an energy recovery ventilator (ERV) can provide a means to supply makeup air and reduce the level of home depressurization to mitigate these issues, helping realize exhaust-only appliance rated performance, achieve safe atmospherically vented combustion, and/or improve envelope durability. ERV balanced flow operation is well documented, but there is not public domain information available that empirically establishes the effect of unbalanced flow on sensible and latent exchange, especially in the now dominant membrane type ERV used in residential applications. This laboratory evaluation focused on unbalanced flow performance of a membrane type ERV delivering 200 standard cubic feet per minute (SCFM )of supply air. The dataset generated yielded a limited set of curve fit algorithms for unbalanced flow performance that can be used to supplement current modeling approaches in simulation tools like EnergyPlus. Building America BA teams can then utilize such models to analyze whole house effects and determine best practices associated with unbalanced ERV operations.

Kosar, D.

2013-05-01T23:59:59.000Z

430

Integrated dynamic and simulation model on coupled closed-loop workstation capacity controls in a multi-workstation production system  

Science Conference Proceedings (OSTI)

In this paper, a dynamic model coupled with a simulation model is introduced to control a multi-workstation production system such that a given performance measure is achieved. In particular, we consider closed loop capacity controls for regulating WIP ...

Tao Wu; Leyuan Shi; Benjamin Quirt; N. A. Duffie

2008-12-01T23:59:59.000Z

431

ICTs and the limits of integration: Converging professional routines and ICT support in colocated emergency response control rooms  

Science Conference Proceedings (OSTI)

In this article we have tried to establish how the nature of professional routines affects the ICT supported standardization and scripting of work performed by operators in Dutch colocated emergency response control rooms. In this type of multidisciplinary ... Keywords: Emergency response control room, ICTs, colocated control room, emergency response services, inter-organizational collaboration, professional routines

Stefan Soeparman; Hein van Duivenboden; Pieter Wagenaar; Peter Groenewegen

2008-12-01T23:59:59.000Z

432

Quantitative troubleshooting of industrial exhaust ventilation systems  

SciTech Connect

This article proposes two troubleshooting tools that may allow precise and accurate assessment of changes to ventilation systems of any type. Both are useful in discovering and quantifying most modifications that affect the distribution of airflows among the branches and static pressures throughout the system. The approaches are derived from energy balance considerations, using power loss coefficients (X) computed for any contiguous section of the system from the duct velocities and static pressures measured at that section`s inlets and outlets. The value of X for a given portion of the system should be nearly constant with changes in airflow and with modifications to other portions of the system. Responsiveness to local modifications and insensitivity to changes elsewhere in the system - including gross changes in fan performance - make X coefficients a valuable troubleshooting tool. Static pressure ratios within a given branch are functionally related to ratios of X coefficients. Therefore, they vary with modifications to the branch and are highly insensitive to changes outside that branch. Unlike X coefficients, determination of static pressure ratios does not require velocity traverses, making them faster and easier to determine than X values. On the other hand, values of X are more universally applicable and have direct physical significance. Use of both static pressure ratios and X coefficients are described in a suggested troubleshooting procedure. Systematic measurement errors have surprisingly little impact on the usefulness of values of X or static pressure ratios. The major impediment to using either tool is the necessity for {open_quotes}baseline{close_quotes} measurements, which are often unavailable. On the other hand, a baseline for future comparisons can be created piecemeal, beginning at any time and extending over any period of time. 11 refs., 8 figs., 8 tabs.

Guffey, S.E. [Univ. of Washington, Seattle, WA (United States)

1994-04-01T23:59:59.000Z

433

Temporal model-based diagnostics generation for HVAC control systems  

Science Conference Proceedings (OSTI)

Optimizing energy usage in buildings requires global models that integrate multiple factors contributing to energy, such as lighting, "Heating, Ventilating, and Air Conditioning" (HVAC), security, etc. Model transformation methods can then use these ...

Marion Behrens; Gregory Provan

2010-06-01T23:59:59.000Z

434

Energy-Efficient Building HVAC Control Using Hybrid System LBMPC  

E-Print Network (OSTI)

Improving the energy-efficiency of heating, ventilation, and air-conditioning (HVAC) systems has the potential to realize large economic and societal benefits. This paper concerns the system identification of a hybrid system model of a building-wide HVAC system and its subsequent control using a hybrid system formulation of learning-based model predictive control (LBMPC). Here, the learning refers to model updates to the hybrid system model that incorporate the heating effects due to occupancy, solar effects, outside air temperature (OAT), and equipment, in addition to integrator dynamics inherently present in low-level control. Though we make significant modeling simplifications, our corresponding controller that uses this model is able to experimentally achieve a large reduction in energy usage without any degradations in occupant comfort. It is in this way that we justify the modeling simplifications that we have made. We conclude by presenting results from experiments on our building HVAC testbed, which s...

Aswani, Anil; Taneja, Jay; Krioukov, Andrew; Culler, David; Tomlin, Claire

2012-01-01T23:59:59.000Z

435

Building Technologies Office: Integrated Predictive Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Predictive Integrated Predictive Demand Response Controller Research Project to someone by E-mail Share Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Facebook Tweet about Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Twitter Bookmark Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Google Bookmark Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Delicious Rank Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Digg Find More places to share Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on AddThis.com...

436

Ventilation, temperature, and HVAC characteristics in small and medium  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation, temperature, and HVAC characteristics in small and medium Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California Title Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California Publication Type Journal Article Refereed Designation Refereed Year of Publication 2012 Authors Bennett, Deborah H., William J. Fisk, Michael G. Apte, X. Wu, Amber L. Trout, David Faulkner, and Douglas P. Sullivan Journal Indoor Air Volume 22 Issue 4 Pagination 309-20 Abstract This field study of 37 small and medium commercial buildings throughout California obtained information on ventilation rate, temperature, and heating, ventilating, and air-conditioning (HVAC) system characteristics. The study included seven retail establishments; five restaurants; eight offices; two each of gas stations, hair salons, healthcare facilities, grocery stores, dental offices, and fitness centers; and five other buildings. Fourteen (38%) of the buildings either could not or did not provide outdoor air through the HVAC system. The air exchange rate averaged 1.6 (s.d. = 1.7) exchanges per hour and was similar between buildings with and without outdoor air supplied through the HVAC system, indicating that some buildings have significant leakage or ventilation through open windows and doors. Not all buildings had sufficient air exchange to meet ASHRAE 62.1 Standards, including buildings used for fitness centers, hair salons, offices, and retail establishments. The majority of the time, buildings were within the ASHRAE temperature comfort range. Offices were frequently overcooled in the summer. All of the buildings had filters, but over half the buildings had a filter with a minimum efficiency reporting value rating of 4 or lower, which are not very effective for removing fine particles. PRACTICAL IMPLICATIONS: Most U.S. commercial buildings (96%) are small- to medium-sized, using nearly 18% of the country's energy, and sheltering a large population daily. Little is known about the ventilation systems in these buildings. This study found a wide variety of ventilation conditions, with many buildings failing to meet relevant ventilation standards. Regulators may want to consider implementing more complete building inspections at commissioning and point of sale.

437

Commissioning Residential Ventilation Systems: A Combined Assessment of  

NLE Websites -- All DOE Office Websites (Extended Search)

Commissioning Residential Ventilation Systems: A Combined Assessment of Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values Title Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values Publication Type Report LBNL Report Number LBNL-5969E Year of Publication 2012 Authors Turner, William J. N., Jennifer M. Logue, and Craig P. Wray Date Published 07/2012 Keywords commissioning, energy, health, indoor air quality, residential, valuation, ventilation Abstract Due to changes in building codes, whole-house mechanical ventilation systems are being installed in new California homes. Few measurements are available, but the limited data suggest that these systems don't always perform as code and forecasts predict. Such deficiencies occur because systems are usually field assembled without design specifications, and there is no consistent process to identify and correct problems. The value of such activities in terms of reducing energy use and improving indoor air quality (IAQ) is poorly understood. Commissioning such systems when they are installed or during subsequent building retrofits is a step towards eliminating deficiencies and optimizing the tradeoff between energy use and IAQ.

438

Ventilation Behavior and Household Characteristics in NewCalifornia Houses  

SciTech Connect

A survey was conducted to determine occupant use of windows and mechanical ventilation devices; barriers that inhibit their use; satisfaction with indoor air quality (IAQ); and the relationship between these factors. A questionnaire was mailed to a stratified random sample of 4,972 single-family detached homes built in 2003, and 1,448 responses were received. A convenience sample of 230 houses known to have mechanical ventilation systems resulted in another 67 completed interviews. Some results are: (1) Many houses are under-ventilated: depending on season, only 10-50% of houses meet the standard recommendation of 0.35 air changes per hour. (2) Local exhaust fans are under-utilized. For instance, about 30% of households rarely or never use their bathroom fan. (3) More than 95% of households report that indoor air quality is ''very'' or ''somewhat'' acceptable, although about 1/3 of households also report dustiness, dry air, or stagnant or humid air. (4) Except households where people cook several hours per week, there is no evidence that households with significant indoor pollutant sources get more ventilation. (5) Except households containing asthmatics, there is no evidence that health issues motivate ventilation behavior. (6) Security and energy saving are the two main reasons people close windows or keep them closed.

Price, Phillip N.; Sherman, Max H.

2006-02-01T23:59:59.000Z

439

Integrating Newer Technology Software Systems into the SLAC Legacy Control System - Two Case Histories and New CMLOG Developments  

E-Print Network (OSTI)

It has been the goal of SLAC Controls Software to offload processing from the aging Alpha/VMS based control system onto machines that are more widely accepted and used. An additional goal has been to provide more modern software tools to our user community. This paper presents two software products which satisfy those goals.

J. Chen; M. Laznovsky; R. MacKenzie

2001-11-27T23:59:59.000Z

440

Design of Control Systems for HVAC Applications  

E-Print Network (OSTI)

The design and application of temperature control systems on a commercial building will bring the question to mind: Should the system be Pneumatic? Should it be Electronic? There is concern as to which system will be more appropriate to a certain project. With cost, maintenance, performance, dependability, and the cost of energy as a main concern of owners, the temperature control system has become an important part of efficient utilization of energy. Application of temperature control systems to heating, ventilating, and air conditioning systems has become an integral part of energy management. The first phase of the program will address the problem of selection of a type of system that will be cost and energy efficient, with a minimum maintenance program. One area to be covered will be the technician and his ability to service the temperature control systems, in addition to information on the schools and technical training. The availability of trained and experienced service technicians creates a major problem for remote towns and communities. Control systems are integrated to energy management systems. Without proper maintenance the energy savings will not perform at their design level. A sub-topic on up-to-date temperature control systems with retrofit needs will he included in the presentation.

Smith, A. L.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated ventilation controller" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

BEYOND INTEGRATED SYSTEM VALIDATION: USE OF A CONTROL ROOM TRAINING SIMULATOR FOR PROOF-OF-CONCEPT INTERFACE DEVELOPMENT  

Science Conference Proceedings (OSTI)

This paper provides background on a reconfigurable control room simulator for nuclear power plants. The main control rooms in current nuclear power plants feature analog technology that is growing obsolete. The need to upgrade control rooms serves the practical need of maintainability as well as the opportunity to implement newer digital technologies with added functionality. There currently exists no dedicated research simulator for use in human factors design and evaluation activities for nuclear power plants in the US. The new research simulator discussed in this paper provides a test bed in which operator performance on new control room concepts can be benchmarked against existing control rooms and in which new technologies can be validated for safety and usability prior to deployment.

Ronald Boring; Vivek Agarwal

2012-07-01T23:59:59.000Z

442

Microsoft Word - Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation_Final2.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

XXXXX | Logue et al., Evaluation of an Incremental Ventilation Energy Model for Estimating XXXXX | Logue et al., Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation 1 Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Jennifer M. Logue, William J. N. Turner, Iain S. Walker, and Brett C. Singer Environmental Energy Technologies Division June 2012 LBNL-5796E LBNL-XXXXX | Logue et al., Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation 2 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor

443

Low Energy Buildings: CFD Techniques for Natural Ventilation and Thermal  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Energy Buildings: CFD Techniques for Natural Ventilation and Thermal Low Energy Buildings: CFD Techniques for Natural Ventilation and Thermal Comfort Prediction Speaker(s): Malcolm Cook Date: February 14, 2013 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Michael Wetter Malcolm's presentation will cover both his research and consultancy activities. This will cover the work he has undertaken during his time spent working with architects on low energy building design, with a particular focus on natural ventilation and passive cooling strategies, and the role computer simulation can play in this design process. Malcolm will talk about the simulation techniques employed, as well as the innovative passive design principles that have led to some of the UK's most energy efficient buildings. In addition to UK building projects, the talk will

444

Building Air Quality & Ventilation Models: Review - Evaluation - Proposals  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Air Quality & Ventilation Models: Review - Evaluation - Proposals Building Air Quality & Ventilation Models: Review - Evaluation - Proposals Speaker(s): James Axley Date: March 12, 1999 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Richard Sextro Developments in mathematical models for building air quality and ventilation analysis have changed the way we idealize buildings for purposes of analysis, the way we form system equations to effect the analysis, and the way we solve these equations to realize the analysis. While much has been achieved more is possible. This presentation will review the current state of the art - the building idealizations used, the system equations formed, and the solution methods applied - critically evaluate the completeness, complexity and utility of the most advanced models, and present proposals for future development

445

Capture and Use of Coal Mine Ventilation-Air Methane  

NLE Websites -- All DOE Office Websites (Extended Search)

Capture and use of Coal Mine Capture and use of Coal Mine Ventilation - air Methane Background Methane emissions from coal mines represent about 10 percent of the U.S. anthropogenic methane released to the atmosphere. Methane-the second most important non-water greenhouse gas-is 21 times as powerful as carbon dioxide (CO 2 ) in its global warming potential. Ventilation-air methane (VAM)-the exhaust air from underground coal mines-is the largest source of coal mine methane, accounting for about half of the methane emitted from coal mines in the United States. Unfortunately, because of the low methane concentration (0.3-1.5 percent) in ventilation air, its beneficial use is difficult. However, oxidizing the methane to CO 2 and water reduces its global warming potential by 87 percent. A thermal

446

Ventilation/Perfusion Mismatch Caused by Positive Pressure Ventilatory Support  

E-Print Network (OSTI)

In a patient with lobar atelectasis who was on positive pressure ventilatorysupport, ventilationand perfusion images showed absent ventilationand normal perfusion (reverse mismatch) in the region of the atelectasis and normal ventilation and decreased perfusion (true mismatch) not caused by pulmonaryembolism in another lung zone. We report this case to emphasize that the lung scan findingsin patients on positive pressure ventilatorySUppOrt be carefullyinterpreted for the diagnosis of pulmonaryemboli. J NuciMed30:1268—1270, 1989 ulmonary embolism (PE) is often difficult to diag nose because the symptoms and signs can be nonspe cific or subtle. Lung ventilation/perfusion (V/P) scm tigraphy is the principal noninvasive imaging modality for its diagnosis. We report a case demonstrating both classical V/P mismatch (false positive for PE in this case) and reverse V/P mismatch (absent ventilation and normal perfusion, therefore negative for PE) in a patient

Chun K. Kim; Sydney Heyman

1988-01-01T23:59:59.000Z

447

Air Distribution Effectiveness for Different MechanicalVentilation Systems  

SciTech Connect

The purpose of ventilation is to dilute indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix conditions between zones. Different types of ventilation systems will provide different amounts of dilution depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on work being done to both model the impact of different systems and measurements using a new multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The ultimate objective of this project is to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

Sherman, Max H.; Walker, Iain S.

2007-08-01T23:59:59.000Z

448

The Ocean’s Memory of the Atmosphere: Residence-Time and Ventilation-Rate Distributions of Water Masses  

Science Conference Proceedings (OSTI)

A conceptually new approach to diagnosing tracer-independent ventilation rates is developed. Tracer Green functions are exploited to partition ventilation rates according to the ventilated fluid’s residence time in the ocean interior and ...

François W. Primeau; Mark Holzer

2006-07-01T23:59:59.000Z

449

Measurements of waste tank passive ventilation rates using tracer gases  

Science Conference Proceedings (OSTI)

This report presents the results of ventilation rate studies of eight passively ventilated high-level radioactive waste tanks using tracer gases. Head space ventilation rates were determined for Tanks A-101, AX-102, AX-103, BY-105, C-107, S-102, U-103, and U-105 using sulfur hexafluoride (SF{sub 6}) and/or helium (He) as tracer gases. Passive ventilation rates are needed for the resolution of several key safety issues. These safety issues are associated with the rates of flammable gas production and ventilation, the rates at which organic salt-nitrate salt mixtures dry out, and the estimation of organic solvent waste surface areas. This tracer gas study involves injecting a tracer gas into the tank headspace and measuring its concentration at different times to establish the rate at which the tracer is removed by ventilation. Tracer gas injection and sample collection were performed by SGN Eurisys Service Corporation and/or Lockheed Martin Hanford Corporation, Characterization Project Operations. Headspace samples were analyzed for He and SF{sub 6} by Pacific Northwest National Laboratory (PNNL). The tracer gas method was first demonstrated on Tank S-102. Tests were conducted on Tank S-102 to verify that the tracer gas was uniformly distributed throughout the tank headspace before baseline samples were collected, and that mixing was sufficiently vigorous to maintain an approximately uniform distribution of tracer gas in the headspace during the course of the study. Headspace samples, collected from a location about 4 in away from the injection point and 15, 30, and 60 minutes after the injection of He and SF{sub 6}, indicated that both tracer gases were rapidly mixed. The samples were found to have the same concentration of tracer gases after 1 hour as after 24 hours, suggesting that mixing of the tracer gas was essentially complete within 1 hour.

Huckaby, J.L.; Olsen, K.B.; Sklarew, D.S.; Evans, J.C.; Remund, K.M.

1997-09-01T23:59:59.000Z

450

Natural vs. mechanical ventilation and cooling.  

E-Print Network (OSTI)

to a hybrid approach to space conditioning that uses aconditioning control strategies, usually in terms of whether they exist in different spaces (

Brager, Gail; Alspach, Peter; Nall, Daniel H.

2011-01-01T23:59:59.000Z

451

Improving Ventilation and Saving Energy: Laboratory Study in aModular Classroom Test Bed  

SciTech Connect

The primary goals of this research effort were to develop, evaluate, and demonstrate a practical HVAC system for classrooms that consistently provides classrooms with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research was motivated by several factors, including the public benefits of energy efficiency, evidence that many classrooms are under-ventilated, and public concerns about indoor environmental quality in classrooms. This project involved the installation and verification of the performance of an Improved Heat Pump Air Conditioning (IHPAC) system, and its comparison, a standard HVAC system having an efficiency of 10 SEER. The project included the verification of the physical characteristics suitable for direct replacement of existing 10 SEER systems, quantitative demonstration of improved energy efficiency, reduced acoustic noise levels, quantitative demonstration of improved ventilation control, and verification that the system would meet temperature control demands necessary for the thermal comfort of the occupants. Results showed that the IHPAC met these goals. The IHPAC was found to be a direct bolt-on replacement for the 10 SEER system. Calculated energy efficiency improvements based on many days of classroom cooling or heating showed that the IHPAC system is about 44% more efficient during cooling and 38% more efficient during heating than the 10 SEER system. Noise reduction was dramatic, with measured A-weighed sound level for fan only operation conditions of 34.3 dB(A), a reduction of 19 dB(A) compared to the 10 SEER system. Similarly, the IHPAC stage-1 and stage-2 compressor plus fan sound levels were 40.8 dB(A) and 42.7 dB(A), reductions of 14 and 13 dB(A), respectively. Thus, the IHPAC is 20 to 35 times quieter than the 10 SEER systems depending upon the operation mode. The IHPAC system met the ventilation requirements and was able to provide consistent outside air supply throughout the study. Indoor CO2 levels with simulated occupancy were maintained below 1000 ppm. Finally temperature settings were met and controlled accurately. The goals of the laboratory testing phase were met and this system is ready for further study in a field test of occupied classrooms.

Apte, Michael G.; Buchanan, Ian S.; Faulkner, David; Fisk,William J.; Lai, Chi-Ming; Spears, Michael; Sullivan, Douglas P.

2005-08-01T23:59:59.000Z

452

Water spray ventilator system for continuous mining machines  

DOE Patents (OSTI)

The invention relates to a water spray ventilator system mounted on a continuous mining machine to streamline airflow and provide effective face ventilation of both respirable dust and methane in underground coal mines. This system has two side spray nozzles mounted one on each side of the mining machine and six spray nozzles disposed on a manifold mounted to the underside of the machine boom. The six spray nozzles are angularly and laterally oriented on the manifold so as