Powered by Deep Web Technologies
Note: This page contains sample records for the topic "integrated test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Integrated development and testing plan for the plutonium immobilization project  

SciTech Connect (OSTI)

This integrated plan for the DOE Office of Fissile Materials Disposition (MD) describes the technology development and major project activities necessary to support the deployment of the immobilization approach for disposition of surplus weapons-usable plutonium. The plan describes details of the development and testing (D&T) tasks needed to provide technical data for design and operation of a plutonium immobilization plant based on the ceramic can-in-canister technology (''Immobilization Fissile Material Disposition Program Final Immobilization Form Assessment and Recommendation'', UCRL-ID-128705, October 3, 1997). The plan also presents tasks for characterization and performance testing of the immobilization form to support a repository licensing application and to develop the basis for repository acceptance of the plutonium form. Essential elements of the plant project (design, construction, facility activation, etc.) are described, but not developed in detail, to indicate how the D&T results tie into the overall plant project. Given the importance of repository acceptance, specific activities to be conducted by the Office of Civilian Radioactive Waste Management (RW) to incorporate the plutonium form in the repository licensing application are provided in this document, together with a summary of how immobilization D&T activities provide input to the license activity. The ultimate goal of the Immobilization Project is to develop, construct, and operate facilities that will immobilize from about 18 to 50 tonnes (MT) of U.S. surplus weapons usable plutonium materials in a manner that meets the ''spent fuel'' standard (Fissile Materials Storage and Disposition Programmatic Environmental Impact Statement Record of Decision, ''Storage and Disposition Final PEIS'', issued January 14, 1997, 62 Federal Register 3014) and is acceptable for disposal in a geologic repository. In the can-in-canister technology, this is accomplished by encapsulating the plutonium-containing ceramic forms within large canisters of high level waste (HLW) glass. Deployment of the immobilization capability should occur by 2006 and be completed within 10 years.

Kan, T.

1998-07-01T23:59:59.000Z

2

Academic Testing Services STRATEGIC PLAN  

E-Print Network [OSTI]

Academic Testing Services STRATEGIC PLAN 2009 MISSION STATEMENT Academic Testing Services provides proctored testing services administered in a secure and appropriate standardized testing environment. VISION STATEMENT Academic Testing Services will provide quality services that are integral to recruitment

Rock, Chris

3

Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site  

SciTech Connect (OSTI)

This document is an integrated plan for closing and monitoring two low-level radioactive waste disposal sites at the Nevada Test Site.

Bechtel Nevada

2005-06-01T23:59:59.000Z

4

IDC Integrated Master Plan.  

SciTech Connect (OSTI)

This is the IDC Re-Engineering Phase 2 project Integrated Master Plan (IMP). The IMP presents the major accomplishments planned over time to re-engineer the IDC system. The IMP and the associate Integrated Master Schedule (IMS) are used for planning, scheduling, executing, and tracking the project technical work efforts. REVISIONS Version Date Author/Team Revision Description Authorized by V1.0 12/2014 IDC Re- engineering Project Team Initial delivery M. Harris

Clifford, David J.; Harris, James M.

2014-12-01T23:59:59.000Z

5

MITG Test Plan  

SciTech Connect (OSTI)

The plan presented is for the testing of a prototypical slice of the Modular Isotopic Thermoelectric Generator (MITG). Cross Reference T48-1.

Eck, Marshall B.

1981-08-01T23:59:59.000Z

6

Primer on gas integrated resource planning  

SciTech Connect (OSTI)

This report discusses the following topics: gas resource planning: need for IRP; gas integrated resource planning: methods and models; supply and capacity planning for gas utilities; methods for estimating gas avoided costs; economic analysis of gas utility DSM programs: benefit-cost tests; gas DSM technologies and programs; end-use fuel substitution; and financial aspects of gas demand-side management programs.

Goldman, C.; Comnes, G.A.; Busch, J.; Wiel, S. [Lawrence Berkeley Lab., CA (United States)

1993-12-01T23:59:59.000Z

7

Academic Testing Services Strategic Plan 2010 -2015  

E-Print Network [OSTI]

Academic Testing Services Strategic Plan 2010 - 2015 Contribute to increasing enrollment and promoting student success: Provide test assessments which are integral to higher education participation and progression Provide a quality test environment conducive to optimal performance and success Provide quality

Rock, Chris

8

Plan for integrated testing for NNWSI [Nevada Nuclear Waste Storage Investigations] non EQ3/6 data base portion  

SciTech Connect (OSTI)

The purposes of the Integrated Testing Task are to develop laboratory data on thermodynamic properties for actinide and fission product elements for use in the EQ3/6 geochemical modelling code; to determine the transport properties of radionuclides in the near-field environment; and develop and validate a model to describe the rate of release of radionuclides from the near-field environment. Activities to achieve the firs item have been described in the Scientific Investigation Plan for EQ3/6, where quality assurance levels were assigned to the acitivities. This Scientific Investigation Plan describes activities to achieve the second and third purposes. The information gathered in these activities will be used to assess compliance with the performance objective for the Engineered Barrier System (EBS) to control the rate of release of radionuclides if the repository license application includes part of the host rock; to provide a source term for release of radionuclides from the waste package near-field environment to the system performance assessment task for use in showing compliance with the Environmental Protection Agency requirements; and to provide a source term for release of radionculides from the waste package near-field environment to the system performance assessment task for use in doing calculations of cumulative releases of radionuclides from the repository over 100,000 years as required by the site evaluation process. 5 refs.

Oversby, V.M.

1987-05-29T23:59:59.000Z

9

Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site  

SciTech Connect (OSTI)

Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) (one site is in Area 3 and the other is in Area 5) at the Nevada Test Site (NTS) for the U.S. Department of Energy's (DOE's) National Nuclear Security Administration Nevada Operations Office (NNSA/NV). The current DOE Order governing management of radioactive waste is 435.1. Associated with DOE Order 435.1 is a Manual (DOE M 435.1-1) and Guidance (DOE G 435.1-1). The Manual and Guidance specify that preliminary closure and monitoring plans for a low-level waste (LLW) management facility be developed and initially submitted with the Performance Assessment (PA) and Composite Analysis (CA) for that facility. The Manual and Guidance, and the Disposal Authorization Statement (DAS) issued for the Area 3 RWMS further specify that the preliminary closure and monitoring plans be updated within one year following issuance of a DAS. This Integrated Closure and Monitoring Plan (ICMP) fulfills both requirements. Additional updates will be conducted every third year hereafter. This document is an integrated plan for closing and monitoring both RWMSs, and is based on guidance issued in 1999 by the DOE for developing closure plans. The plan does not follow the format suggested by the DOE guidance in order to better accommodate differences between the two RWMSs, especially in terms of operations and site characteristics. The modification reduces redundancy and provides a smoother progression of the discussion. The closure and monitoring plans were integrated because much of the information that would be included in individual plans is the same, and integration provides efficient presentation and program management. The ICMP identifies the regulatory requirements, describes the disposal sites and the physical environment where they are located, and defines the approach and schedule for both closing and monitoring the sites.

S. E. Rawlinson

2001-09-01T23:59:59.000Z

10

Specific test and evaluation plan  

SciTech Connect (OSTI)

The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made to the 241-AX-B Valve Pit by the W-314 Project. The STEP develops the outline for test procedures that verify the system`s performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation Plan (TEP). Testing includes Validations and Verifications (e.g., Commercial Grade Item Dedication activities), Factory Acceptance Tests (FATs), installation tests and inspections, Construction Acceptance Tests (CATs), Acceptance Test Procedures (ATPs), Pre-Operational Test Procedures (POTPs), and Operational Test Procedures (OTPs). It should be noted that POTPs are not required for testing of the transfer line addition. The STEP will be utilized in conjunction with the TEP for verification and validation.

Hays, W.H.

1998-03-20T23:59:59.000Z

11

Integrated safeguards and security management plan  

E-Print Network [OSTI]

LBNL/PUB-3151 INTEGRATED SAFEGUARDS AND SECURITY MANAGEMENT76SF00098 iv • Integrated Safeguards and Security Managementprovided. Appendix A. Safeguards and Security Plan http://

Bowen editor, Sue

2001-01-01T23:59:59.000Z

12

Monitored Geologic Repository Test Evaluation Plan  

SciTech Connect (OSTI)

The Monitored Geologic Repository test & evaluation program will specify tests, demonstrations, examinations, and analyses, and describe procedures to conduct and document testing necessary to verify meeting Monitored Geologic Repository requirements for a safe and effective geologic repository for radioactive waste. This test program will provide assurance that the repository is performing as designed, and that the barriers perform as expected; it will also develop supporting documentation to support the licensing process and to demonstrate compliance with codes, standards, and regulations. This comprehensive program addresses all aspects of verification from the development of test requirements to the performance of tests and reporting of the test results. The ''Monitored Geologic Repository Test & Evaluation Plan'' provides a detailed description of the test program approach necessary to achieve the above test program objectives. This test plan incorporates a set of test phases focused on ensuring repository safety and operational readiness and implements a project-wide integrated product management team approach to facilitate test program planning, analysis, and implementation. The following sections provide a description of the individual test phases, the methodology for test program planning and analyses, and the management approach for implementing these activities.

M.B. Skorska

2002-01-02T23:59:59.000Z

13

Integrated test schedule for buried waste integrated demonstration  

SciTech Connect (OSTI)

The Integrated Test Schedule incorporates the various schedules the Buried Waste Integrated Demonstration (BWID) supports into one document. This document contains the Federal Facilities Agreement and Consent Order schedules for the Idaho National Engineering Laboratory, Hanford Reservation, Oak Ridge Reservation, and Fernald Environmental Materials Center. Included in the Integrated Test Schedule is the Buried Waste Integrated Demonstration ``windows of opportunity`` schedule. The ``windows of opportunity`` schedule shows periods of time in which Buried Waste Integrated Demonstration Program-sponsored technology demonstrations could support key decisions in the Federal Facilities Agreement and Consent Order. Schedules for the Buried Waste Integrated Demonstration-sponsored technology task plans are categorized by technology area and divided by current fiscal year and out-year. Total estimated costs for Buried Waste Integrated Demonstration-sponsored Technology Task Plans for FY-92 through FY-97 are $74.756M.

Brown, J.T.; McDonald, J.K.

1992-05-01T23:59:59.000Z

14

Integrated test schedule for buried waste integrated demonstration  

SciTech Connect (OSTI)

The Integrated Test Schedule incorporates the various schedules the Buried Waste Integrated Demonstration (BWID) supports into one document. This document contains the Federal Facilities Agreement and Consent Order schedules for the Idaho National Engineering Laboratory, Hanford Reservation, Oak Ridge Reservation, and Fernald Environmental Materials Center. Included in the Integrated Test Schedule is the Buried Waste Integrated Demonstration windows of opportunity'' schedule. The windows of opportunity'' schedule shows periods of time in which Buried Waste Integrated Demonstration Program-sponsored technology demonstrations could support key decisions in the Federal Facilities Agreement and Consent Order. Schedules for the Buried Waste Integrated Demonstration-sponsored technology task plans are categorized by technology area and divided by current fiscal year and out-year. Total estimated costs for Buried Waste Integrated Demonstration-sponsored Technology Task Plans for FY-92 through FY-97 are $74.756M.

Brown, J.T.; McDonald, J.K.

1992-05-01T23:59:59.000Z

15

Hydrogen Posture Plan: An Integrated Research, Development and...  

Broader source: Energy.gov (indexed) [DOE]

Posture Plan: An Integrated Research, Development and Demonstration Plan Hydrogen Posture Plan: An Integrated Research, Development and Demonstration Plan The 2006 Hydrogen Posture...

16

Buried Waste Integrated Demonstration Plan  

SciTech Connect (OSTI)

This document presents the plan of activities for the Buried Waste Integrated Demonstration (BWID) program which supports the environmental restoration (ER) objectives of the Department of Energy (DOE) Complex. Discussed in this plan are the objectives, organization, roles and responsibilities, and the process for implementing and managing BWID. BWID is hosted at the Idaho National Engineering Laboratory (INEL), but involves participants from throughout the DOE Complex, private industry, universities, and the international community. These participants will support, demonstrate, and evaluate a suite of advanced technologies representing a comprehensive remediation system for the effective and efficient remediation of buried waste. The processes for identifying technological needs, screening candidate technologies for applicability and maturity, selecting appropriate technologies for demonstration, field demonstrating, evaluation of results and transferring technologies to environmental restoration programs are also presented. This document further describes the elements of project planning and control that apply to BWID. It addresses the management processes, operating procedures, programmatic and technical objectives, and schedules. Key functions in support of each demonstration such as regulatory coordination, safety analyses, risk evaluations, facility requirements, and data management are presented.

Kostelnik, K.M.

1991-12-01T23:59:59.000Z

17

Integrated Planning and Performance Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

management systems need clarification - Consolidated planning annual timetable needed for efficiency * Organizational rolesresponsibilities need alignment to defined planning...

18

Planning Based Integration of Web Services  

Science Journals Connector (OSTI)

In this paper a planning system for goal directed integration of web services is presented. The presented model extends classical planning to manage some forms of non determinism in service execution and to manage collections of objects. The dynamical ...

Alfredo Milani; Fabio Rossi; Simonetta Pallottelli

2006-12-01T23:59:59.000Z

19

Integration of Biodiversity into National Forestry Planning:...  

Open Energy Info (EERE)

Forestry Planning: An Annotated Bibliography of Web-Based Resources, Methods, Experiences, and Case Studies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Integration...

20

7.0 - Integrated Acquisition Planning Process  

Broader source: Energy.gov (indexed) [DOE]

0 (August 2006) 0 (August 2006) 1 INTEGRATING ACQUISITION PLANNING PROCESSES - AN OVERVIEW REFERENCES 1. FAR Part 7 Acquisition Planning 2. FAR Part 34 Major System Acquisition 3. Acquisition Letter 2005-08R, Small Business Programs 4. Acquisition Guide Chapter 7.1, Acquisition Planning 5. Acquisition Guide Chapter 42.5, Contract Management Planning 6. DOE O 580.1 Department of Energy Property Management Program 7. DOE O 413.3 Program and Project Management for the Acquisition of Capital Assets Guiding Principles n Acquisition planning benefits from integrating independent planning processes and a team approach that includes appropriate representation

Note: This page contains sample records for the topic "integrated test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

INTEGRATED PLANNING: UNIVERSITY LIBRARY your library  

E-Print Network [OSTI]

INTEGRATED PLANNING: UNIVERSITY LIBRARY your library engage, enlighten, explore at library.usask.ca Transforming Library Services, Collections and Facilities: The University Library People Plan SUMMARY VERSION OVERVIEW Central themes in the library strategic plan highlight the critical importance which our people

Peak, Derek

22

Fermilab | Directorate | Office of Integrated Planning & Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Office of Integrated Planning & Performance Management (IPPM) Office of Integrated Planning & Performance Management (IPPM) Integrated Planning Diagram Integrated Planning Diagram [Download PPT] Mission: The Office of Integrated Planning and Performance Management (IPPM) within the Fermilab Directorate provides systems and management processes for institutional planning and performance assessment and evaluation. The office of IPPM leads multi-year, forward-looking planning and integration of institutional plans, programs, projects, operations and budgets. In addition it develops, implements and maintains integrated laboratory systems and management processes for strategic planning and goal setting, project and program oversight, enterprise risk management and performance planning and oversight. IPPM Facilitates:

23

Materials Sciences Division Integrated Safety Management Plan  

E-Print Network [OSTI]

..........................................................................................................................................2! 1.1 SAFETY CULTURE .......................................................4! 3. SAFETY RESPONSIBILITY, AUTHORITY, ACCOUNTABILITY AND A JUST CULTURE.........5! 3Materials Sciences Division Integrated Safety Management Plan Revised: February 9, 2012 Prepared by

24

Nevada National Security Site Integrated Groundwater Sampling Plan, Revision 0  

SciTech Connect (OSTI)

The purpose of the Nevada National Security Site (NNSS) Integrated Sampling Plan (referred to herein as the Plan) is to provide a comprehensive, integrated approach for collecting and analyzing groundwater samples to meet the needs and objectives of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) Activity. Implementation of this Plan will provide high-quality data required by the UGTA Activity for ensuring public protection in an efficient and cost-effective manner. The Plan is designed to ensure compliance with the UGTA Quality Assurance Plan (QAP). The Plan’s scope comprises sample collection and analysis requirements relevant to assessing the extent of groundwater contamination from underground nuclear testing. This Plan identifies locations to be sampled by corrective action unit (CAU) and location type, sampling frequencies, sample collection methodologies, and the constituents to be analyzed. In addition, the Plan defines data collection criteria such as well-purging requirements, detection levels, and accuracy requirements; identifies reporting and data management requirements; and provides a process to ensure coordination between NNSS groundwater sampling programs for sampling of interest to UGTA. This Plan does not address compliance with requirements for wells that supply the NNSS public water system or wells involved in a permitted activity.

Marutzky, Sam; Farnham, Irene

2014-10-01T23:59:59.000Z

25

Integrating economic costs into conservation planning  

E-Print Network [OSTI]

biodiversity losses, ecologists and conservation biologists have focused on how conservation plans affectIntegrating economic costs into conservation planning Robin Naidoo1 , Andrew Balmford2 , Paul J. Ferraro3 , Stephen Polasky4 , Taylor H. Ricketts1 and Mathieu Rouget5 1 Conservation Science Program, WWF

Vermont, University of

26

Integrating Timeliner and autonomous planning  

E-Print Network [OSTI]

Timeliner is used to automate tasks in a target system. Timeliner is capable of automating complex sequences of actions, but the desired actions must be planned out and understood in advance by human script-writers. This ...

Swanton, Daniel Reed

2006-01-01T23:59:59.000Z

27

Treatability Test Plan for an In Situ Biostimulation Reducing Barrier  

SciTech Connect (OSTI)

This treatability test plan supports a new, integrated strategy to accelerate cleanup of chromium in the Hanford 100 Areas. This plan includes performing a field-scale treatability test for bioreduction of chromate, nitrate, and dissolved oxygen. In addition to remediating a portion of the plume and demonstrating reduction of electron acceptors in the plume, the data from this test will be valuable for designing a full-scale bioremediation system to apply at this and other chromium plumes at Hanford.

Truex, Michael J.; Vermeul, Vince R.; Long, Philip E.; Brockman, Fred J.; Oostrom, Mart; Hubbard, Susan; Borden, Robert C.; Fruchter, Jonathan S.

2007-07-21T23:59:59.000Z

28

Background Information for the Nevada National Security Site Integrated Sampling Plan, Revision 0  

SciTech Connect (OSTI)

This document describes the process followed to develop the Nevada National Security Site (NNSS) Integrated Sampling Plan (referred to herein as the Plan). It provides the Plan’s purpose and objectives, and briefly describes the Underground Test Area (UGTA) Activity, including the conceptual model and regulatory requirements as they pertain to groundwater sampling. Background information on other NNSS groundwater monitoring programs—the Routine Radiological Environmental Monitoring Plan (RREMP) and Community Environmental Monitoring Program (CEMP)—and their integration with the Plan are presented. Descriptions of the evaluations, comments, and responses of two Sampling Plan topical committees are also included.

Farnham, Irene; Marutzky, Sam

2014-12-01T23:59:59.000Z

29

Integrated Robot Task and Motion Planning in the Now  

E-Print Network [OSTI]

This paper provides an approach to integrating geometric motion planning with logical task planning for long-horizon tasks in domains with many objects. We propose a tight integration between the logical and geometric ...

Kaelbling, Leslie Pack

2012-06-29T23:59:59.000Z

30

CMC Bench Scale Material Test Plan  

SciTech Connect (OSTI)

The test plan detailed in this topical report supports Task 3.5 of the project titled ''Development of Technologies and Capabilities for Coal Energy Resources - Advanced Gasification Systems Development (AGSD)''. The purpose of these tests is to verify that materials planned for use in an advanced gasifier pilot plant will withstand the environments in a commercial gasifier. Pratt & Whitney Rocketdyne (PWR) has developed this test plan with technical assistance from ceramic scientists at the Dept. of Energy Oak Ridge National Laboratory and Albany Research Center who will perform the environmental exposure tests.

Mark Fitzsimmons; Gerard Pelletier; Dave Grimmett

2006-05-30T23:59:59.000Z

31

Strategy to develop and test a multi-function scarifier end effector with an integral conveyance system for waste tank remediation. Strategy plan  

SciTech Connect (OSTI)

This strategy plan describes a coupled analytical/experimental approach to develop a multi-functional scarifier end effector coupled with a pneumatic conveyance system to retrieve wastes from underground storage tanks. The scarifier uses ultra-high-pressure water jets to rubblize and entrain waste forms such as salt cake, sludge, and viscous liquid that can be transported pneumatically. The three waste types (hard, brittle, salt cake, viscous liquid, and deformable sludge) present increasingly complex challenges for scarification and pneumatic conveyance. Salt cake is anticipated to be the easiest to retrieve because (1) a theoretical model of hydraulic rock fracture can be applied to estimate jet performance to fracture salt cake, and (2) gas-solids transport correlations can be used to predict pneumatic transport. Deformable sludge is anticipated to be the most difficult to retrieve: no theories, correlations, or data exist to predict this performance. However order-of-magnitude gas-solid correlations indicate particulate wastes of prototypic density can be transported to a height of 20 m within allowable pressure limits provided that the volume fraction of the gaseous phase is kept above 95%. Viscous liquid is anticipated to be of intermediate complexity to retrieve. Phenomena that are expected to affect system performance are ranked. Experiments and analyses necessary to evaluate the effects of these phenomena are proposed. Subsequent strategies for experiment test plans, system deployment, and operation and control will need to be developed.

Bamberger, J.A.; Bates, J.M.; Keska, J.K.; Elmore, M.R.; Lombardo, N.J.

1993-08-01T23:59:59.000Z

32

Treatability Test Plan for an In Situ Biostimulation Reducing Barrier  

SciTech Connect (OSTI)

This treatability test plan supports a new, integrated strategy to accelerate cleanup of chromium in the 100 Areas at the Hanford Site. This plan includes performing a field-scale treatability test for bioreduction of chromate, nitrate, and dissolved oxygen. In addition to remediating a portion of the plume and demonstrating reduction of electron acceptors in the plume, the data from this test will be valuable for designing a full-scale bioremediation system to apply at this and other chromium plumes at the Hanford Site.

Truex, Michael J.; Vermeul, Vince R.; Long, Philip E.; Brockman, Fred J.; Oostrom, Mart; Hubbard, Susan; Borden, Robert C.; Fruchter, Jonathan S.

2007-10-26T23:59:59.000Z

33

Identification and selection of interaction test scenarios for integration testing  

Science Journals Connector (OSTI)

Integration testing checks for compatibility and interoperability between the components in the system. Integration test models are, typically, generated independently from the other testing level models. In our research, we aim at a model-based framework ... Keywords: components, integration, interactions, model based testing, testing

Mohamed Mussa; Ferhat Khendek

2012-10-01T23:59:59.000Z

34

Guide to Integrating Renewable Energy in Federal Construction: Planning,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Planning, Programming, and Budgeting to someone by E-mail Planning, Programming, and Budgeting to someone by E-mail Share Guide to Integrating Renewable Energy in Federal Construction: Planning, Programming, and Budgeting on Facebook Tweet about Guide to Integrating Renewable Energy in Federal Construction: Planning, Programming, and Budgeting on Twitter Bookmark Guide to Integrating Renewable Energy in Federal Construction: Planning, Programming, and Budgeting on Google Bookmark Guide to Integrating Renewable Energy in Federal Construction: Planning, Programming, and Budgeting on Delicious Rank Guide to Integrating Renewable Energy in Federal Construction: Planning, Programming, and Budgeting on Digg Find More places to share Guide to Integrating Renewable Energy in Federal Construction: Planning, Programming, and Budgeting on

35

CANMET Gasifier Liner Coupon Material Test Plan  

SciTech Connect (OSTI)

The test plan detailed in this topical report supports Task 1 of the project titled ''Development of Technologies and Capabilities for Coal Energy Resources - Advanced Gasification Systems Development (AGSD)''. The purpose of these tests is to verify that materials planned for use in an advanced gasifier pilot plant will withstand the environments in a commercial gasifier. Pratt & Whitney Rocketdyne (PWR) has developed and designed the cooled liner test assembly article that will be tested at CANMET Energy Technology Centre (CETC-O) in Ottawa, Ontario, Canada (CETC-O). The Test Plan TP-00364 is duplicated in its entirety, with formatting changes to comply with the format required for this Topical Report. The table of contents has been modified to include the additional material required by this topical report. Test Request example and drawings of non-proprietary nature are also included as appendices.

Mark Fitzsimmons; Alan Darby; Fred Widman

2005-10-30T23:59:59.000Z

36

Integrating Pollution Prevention with NEPA Planning Activities  

Broader source: Energy.gov (indexed) [DOE]

DATE: REPLY TO ATTN OF: SUBJECT: TO: October 15, 1992 EH-25 Integrating Pollution Prevention with NEPA Planning Activities NEPA Compliance Officers The purpose of this memorandum is to advise you of the direction that the Environmental Protection Agency (EPA) and Council on Environmental Quality (CEQ) appear to be taking regarding pollution prevention and NEPA, and to encourage you to use the NEPA process to incorporate pollution prevention principles into the DOE planning and decisionmaking process. The Pollution Prevention Act of 1990 affirms Congressional commitment to a new approach in improving environmental quality. The Act establishes as national policy the following hierarchy of actions for environmental protection: 1. prevent or reduce pollution at the source wherever

37

Emergency Response Planning at the Nevada Test Site  

Science Journals Connector (OSTI)

......Dosimetry Article Emergency Response Planning at the Nevada Test Site D. Randerson A robust emergency response plan was...underground testing of nuclear weapons at the United States Nevada Test Site (NTS). This plan was designed to help protect the......

D. Randerson

1997-09-01T23:59:59.000Z

38

A Blueprint for Urban Sustainability: Integrating Sustainable Energy Practices into Metropolitan Planning, May 2004  

Broader source: Energy.gov [DOE]

Blueprint to define sustainable energy planning as integrated energy & environmental planning to support community sustainability

39

OUTLINE OF DETAILED TEST PLAN  

Broader source: Energy.gov (indexed) [DOE]

0/ 177 0/ 177 Implementation Plan and Initial Development of Nuclear Concrete Materials Database for Light Water Reactor Sustainability Program September 30, 2010 Prepared by Weiju Ren and Dan Naus Oak Ridge National Laboratory Barry Oland XCEL Engineering DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source. National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail info@ntis.gov

40

Buried Waste Integrated Demonstration Plan. Revision 1  

SciTech Connect (OSTI)

This document presents the plan of activities for the Buried Waste Integrated Demonstration (BWID) program which supports the environmental restoration (ER) objectives of the Department of Energy (DOE) Complex. Discussed in this plan are the objectives, organization, roles and responsibilities, and the process for implementing and managing BWID. BWID is hosted at the Idaho National Engineering Laboratory (INEL), but involves participants from throughout the DOE Complex, private industry, universities, and the international community. These participants will support, demonstrate, and evaluate a suite of advanced technologies representing a comprehensive remediation system for the effective and efficient remediation of buried waste. The processes for identifying technological needs, screening candidate technologies for applicability and maturity, selecting appropriate technologies for demonstration, field demonstrating, evaluation of results and transferring technologies to environmental restoration programs are also presented. This document further describes the elements of project planning and control that apply to BWID. It addresses the management processes, operating procedures, programmatic and technical objectives, and schedules. Key functions in support of each demonstration such as regulatory coordination, safety analyses, risk evaluations, facility requirements, and data management are presented.

Kostelnik, K.M.

1991-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Planning integration FY 1995 Multi-Year Program Plan (MYPP)/Fiscal Year Work Plan (FYWP)  

SciTech Connect (OSTI)

This Multi-Year Program Plan (MYPP) for the Planning Integration Program, Work Breakdown structure (WBS) Element 1.8.2, is the primary management tool to document the technical, schedule, and cost baseline for work directed by the US Department of Energy (DOE), Richland Operations Office (RL). As an approved document, it establishes a binding agreement between RL and the performing contractors for the work to be performed. It was prepared by the Westinghouse Hanford Company (WHC) and the Pacific Northwest Laboratory (PNL). This MYPP provides a picture from fiscal year 1995 through FY 2001 for the Planning Integration Program. The MYPP provides a window of detailed information for the first three years. It also provides `execution year` work plans. The MYPP provides summary information for the next four years, documenting the same period as the Activity Data Sheets.

Not Available

1994-09-01T23:59:59.000Z

42

Integration of process planning and scheduling— a review  

Science Journals Connector (OSTI)

In recent years, a few researchers have addressed the need for the integration of process planning and scheduling functions in order to achieve ... that the potential savings are substantial when process planning

Wei Tan; Behrokh Khoshnevis

2000-02-01T23:59:59.000Z

43

Integration of Safety Culture Attributes into EFCOG Work Planning...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Work Planning and Control Guidance Document May 15, 2013 Presenters: Steele Coddington, NSTec, Las Vegas, and John McDonald, WRPS, Hanford Topics Covered: Integration of Safety...

44

AGR-1 Irradiation Experiment Test Plan  

SciTech Connect (OSTI)

This document presents the current state of planning for the AGR-1 irradiation experiment, the first of eight planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The objectives of the AGR-1 experiment are: 1. To gain experience with multi-capsule test train design, fabrication, and operation with the intent to reduce the probability of capsule or test train failure in subsequent irradiation tests. 2. To irradiate fuel produced in conjunction with the AGR fuel process development effort. 3. To provide data that will support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. In order to achieve the test objectives, the AGR-1 experiment will be irradiated in the B-10 position of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). The test will contain six independently controlled and monitored capsules. Each capsule will contain a single type, or variant, of the AGR coated fuel. The irradiation is planned for about 700 effective full power days (approximately 2.4 calendar years) with a time-averaged, volume-average temperature of approximately 1050 °C. Average fuel burnup, for the entire test, will be greater than 17.7 % FIMA, and the fuel will experience fast neutron fluences between 2.4 and 4.5 x 1025 n/m2 (E>0.18 MeV).

John T. Maki

2009-10-01T23:59:59.000Z

45

Hydrogen Posture Plan: An Integrated Research, Development and Demonstration Plan  

Broader source: Energy.gov [DOE]

The 2006 Hydrogen Posture Plan satisfies Section 804 of the Energy Policy Act of 2005, which requires that the Secretary of Energy transmit to Congress a coordinated plan for the Department’s hydrogen and fuel cell programs.

46

RELAP-7 and PRONGHORN Initial Integration Plan  

SciTech Connect (OSTI)

Modern nuclear reactor safety codes require the ability to solve detailed coupled neutronicthermal fluids problems. For larger cores, this implies fully coupled 3-D spatial dynamics with appropriate feedback models that can provide enough resolution to accurately compute core heat generation and removal during steady and unsteady conditions. The reactor analyis code PRONGHORN is being coupled to RELAP-7 as a first step to extend RELAP's current capabilities. This report details the mathematical models, the type of coupling, and the testing that will be used to produce an integrated system. RELAP-7 is a MOOSE-based application that solves the continuity, momentum, and energy equations in 1-D for a compressible fluid. The pipe and joint capabilities enable it to model parts of the PCU system. The PRONGHORN application, also developed on the MOOSE infrastructure, solves the coupled equations that define the neutron diffusion, fluid flow, and heat transfer in a 3-D core model. Initially, the two systems will be loosely coupled to simplify the transition towards a more complex infrastructure. The integration will be tested with the OECD/NEA MHTGR-350 Coupled Neutronics-Thermal Fluids benchmark model.

J. Ortensi; D. Andrs; A.A. Bingham; R.C. Martineau; J.W. Peterson

2012-05-01T23:59:59.000Z

47

GEOCHEMICAL TESTING AND MODEL DEVELOPMENT - RESIDUAL TANK WASTE TEST PLAN  

SciTech Connect (OSTI)

This Test Plan describes the testing and chemical analyses release rate studies on tank residual samples collected following the retrieval of waste from the tank. This work will provide the data required to develop a contaminant release model for the tank residuals from both sludge and salt cake single-shell tanks. The data are intended for use in the long-term performance assessment and conceptual model development.

CANTRELL KJ; CONNELLY MP

2010-03-09T23:59:59.000Z

48

Integrating Pollution Prevention with NEPA Planning Activities | Department  

Broader source: Energy.gov (indexed) [DOE]

Integrating Pollution Prevention with NEPA Planning Activities Integrating Pollution Prevention with NEPA Planning Activities Integrating Pollution Prevention with NEPA Planning Activities The purpose of this memorandum is to advise you of the direction that the Environmental Protection Agency (EPA) and Council on Environmental Quality (CEQ) appear to be taking regarding pollution prevention and NEPA, and to encourage the use of the NEPA process to incorporate pollution prevention principles into the DOE planning and decisionmaking process. Integrating Pollution Prevention with NEPA Planning Activities More Documents & Publications Memorandum to Heads of Federal Departments and Agencies Regarding Pollution Prevention and the National Environmental Policy Act Guidance Regarding NEPA Regulations DOE NEPA Guidance and Requirements - Search Index - Table of Contents

49

Test plan for ISV laboratory-pyrolysis testing  

SciTech Connect (OSTI)

The objective of the laboratory-pyrolysis studies is to obtain information on the high temperature (< 1200{degree}C) degradation and alteration of organic chemicals and materials similar to those found in the Radioactive Waste Management Complex, Pit 9. This test plan describes experimental procedures, sampling and analysis strategy, sampling procedures, sample control, and document management. It addresses safety issues in the experimental apparatus and procedures, personal training, and hazardous waste disposal. Finally, it describes the data quality objectives using the EPA tiered approach to treatability studies to define where research/scoping tests fit into these studies and the EPA analytical levels required for the tests.

McAtee, R.E.

1991-09-01T23:59:59.000Z

50

Department of Energy Hydrogen and Fuel Cells Program Plan An Integrated Strategic Plan for the  

E-Print Network [OSTI]

Department of Energy Hydrogen and Fuel Cells Program Plan An Integrated Strategic Plan Program Plan The need for clean, sustainable, and domestically produced energy has never been greater Act).The Department of Energy (DOE) is responding to this challenge, collaborating with industry

51

Test Plan: WIPP bin-scale CH TRU waste tests  

SciTech Connect (OSTI)

This WIPP Bin-Scale CH TRU Waste Test program described herein will provide relevant composition and kinetic rate data on gas generation and consumption resulting from TRU waste degradation, as impacted by synergistic interactions due to multiple degradation modes, waste form preparation, long-term repository environmental effects, engineered barrier materials, and, possibly, engineered modifications to be developed. Similar data on waste-brine leachate compositions and potentially hazardous volatile organic compounds released by the wastes will also be provided. The quantitative data output from these tests and associated technical expertise are required by the WIPP Performance Assessment (PA) program studies, and for the scientific benefit of the overall WIPP project. This Test Plan describes the necessary scientific and technical aspects, justifications, and rational for successfully initiating and conducting the WIPP Bin-Scale CH TRU Waste Test program. This Test Plan is the controlling scientific design definition and overall requirements document for this WIPP in situ test, as defined by Sandia National Laboratories (SNL), scientific advisor to the US Department of Energy, WIPP Project Office (DOE/WPO). 55 refs., 16 figs., 19 tabs.

Molecke, M.A.

1990-08-01T23:59:59.000Z

52

Checkout, Testing, and Commissioning Plan RM | Department of...  

Office of Environmental Management (EM)

Checkout, Testing, and Commissioning Plan RM Checkout, Testing, and Commissioning Plan RM The CP RM Module is a tool that assists DOE federal project review teams in evaluating the...

53

AGA 12, Part 2 Performance Test Plan (November 2006) | Department...  

Broader source: Energy.gov (indexed) [DOE]

AGA 12, Part 2 Performance Test Plan (November 2006) AGA 12, Part 2 Performance Test Plan (November 2006) Under the guidance and sponsorship of DOE's Office of Electricity Delivery...

54

Integration of Biodiversity into National Forestry Planning: An Annotated  

Open Energy Info (EERE)

Integration of Biodiversity into National Forestry Planning: An Annotated Integration of Biodiversity into National Forestry Planning: An Annotated Bibliography of Web-Based Resources, Methods, Experiences, and Case Studies Jump to: navigation, search Tool Summary Name: Integration of Biodiversity into National Forestry Planning: An Annotated Bibliography of Web-Based Resources, Methods, Experiences, and Case Studies Agency/Company /Organization: Center for International Forestry Research Partner: United Nations Environment Programme, Global Environment Facility Sector: Land Focus Area: Forestry Resource Type: Lessons learned/best practices Website: www.unep.org/bpsp/forestry/forestry%20annotated%20bibliography/annotat References: Integration of Biodiversity into National Forestry Planning: An Annotated Bibliography of Web-Based Resources, Methods, Experiences, and Case Studies[1]

55

Integrated Program of Experimental Diagnostics at the NNSS: An Integrated, Prioritized Work Plan for Diagnostic Development and Maintenance and Supporting Capability  

SciTech Connect (OSTI)

This Integrated Program of Experimental Diagnostics at the NNSS is an integrated prioritized work plan for the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), program that is independent of individual National Security Enterprise Laboratories’ (Labs) requests or specific Subprograms being supported. This prioritized work plan is influenced by national priorities presented in the Predictive Capability Framework (PCF) and other strategy documents (Primary and Secondary Assessment Technologies Plans and the Plutonium Experiments Plan). This document satisfies completion criteria for FY 2010 MRT milestone #3496: Document an integrated, prioritized work plan for diagnostic development, maintenance, and supporting capability. This document is an update of the 3?year NNSS plan written a year ago, September 21, 2009, to define and understand Lab requests for diagnostic implementation. This plan is consistent with Lab interpretations of the PCF, Primary Assessment Technologies, and Plutonium Experiment plans.

NSTec Mission and Projects Division

2010-09-30T23:59:59.000Z

56

Phase Startup Initiative Phases 3 and 4 Test Plan and Test Specification ( OCRWM)  

SciTech Connect (OSTI)

Construction for the Spent Nuclear Fuel (SNF) Project facilities is continuing per the Level III Baseline Schedule, and installation of the Fuel Retrieval System (FRS) and Integrated Water Treatment System (IWTS) in K West Basin is now complete. In order to accelerate the project, a phased start up strategy to initiate testing of the FRS and IWTS early in the overall project schedule was proposed (Williams 1999). Wilkinson (1999) expands the definition of the original proposal into four functional testing phases of the Phased Startup Initiative (PSI). Phases 1 and 2 are based on performing functional tests using dummy fuel. This test plan provides overall guidance for Phase 3 and 4 tests, which are performed using actual irradiated N fuel assemblies. The overall objective of the Phase 3 and 4 testing is to verify how the FRS and IWTS respond while processing actual fuel. Conducting these tests early in the project schedule will allow identification and resolution of equipment and process problems before they become activities on the start-up critical path. The specific objectives of this test plan are to: Define the Phase 3 and 4 test scope for the FRS and IWTS; Provide detailed test requirements that can be used to write the specific test procedures; Define data required and measurements to be taken. Where existing methods to obtain these do not exist, enough detail will be provided to define required additional equipment; and Define specific test objectives and acceptance criteria.

PAJUNEN, A.L.; LANGEVIN, M.J.

2000-08-07T23:59:59.000Z

57

Integrative path planning and motion control for handling large components  

Science Journals Connector (OSTI)

For handling large components a large workspace and high precision are required. In order to simplify the path planning for automated handling systems, this task can be divided into global, regional and local motions. Accordingly, different types of ... Keywords: integrative production, motion control, path planning, robotic assembly application

Rainer Müller; Martin Esser; Markus Janssen

2011-12-01T23:59:59.000Z

58

100 area excavation treatability test plan  

SciTech Connect (OSTI)

This test plan documents the requirements for a treatability study on field radionuclide analysis and dust control techniques. These systems will be used during remedial actions involving excavation. The data from this treatability study will be used to support the feasibility study (FS) process. Development and screening of remedial alternatives for the 100 Area, using existing data, have been completed and are documented in the 100 Area Feasibility Study, Phases 1 and 2 (DOE-RL 1992a). Based on the results of the FS, the Treatability Study Program Plan (DOE-RL 1992b) identifies and prioritizes treatability studies for the 100 Area. The data from the treatability study program support future focused FS, interim remedial measures (IRM) selection, operable unit final remedy selection, remedial design, and remedial actions. Excavation is one of the high-priority, near-term, treatability study needs identified in the program plan (DOE-RL 1992b). Excavation of contaminated soils and buried solid wastes is included in several of the alternatives identified in the 100 Area FS. Although a common activity, excavation has only been used occasionally at the Hanford Site for waste removal applications.

Not Available

1993-05-01T23:59:59.000Z

59

Positioning Sea Grant An Integrated National Communications Plan  

E-Print Network [OSTI]

Positioning Sea Grant An Integrated National Communications Plan 2003-06 Prepared and Submitted March 10, 2003 by Stephen Wittman, Wisconsin Sea Grant #12;2 #12;3 Positioning Sea Grant: An Integrated communications "inside the beltway" to attain greater federal support for the National Sea Grant College Program

60

Generation and transmission expansion planning for renewable energy integration  

SciTech Connect (OSTI)

In recent years the expansion planning problem has become increasingly complex. As expansion planning (sometimes called composite or integrated resource planning) is a non-linear and non-convex optimization problem, researchers have traditionally focused on approximate models of power flows to solve the problem. The problem has also been split into generation expansion planning (GEP) and transmission network expansion planning (TNEP) to improve computational tractability. Until recently these approximations have produced results that are straight-forward to combine and adapt to the more complex and complete problem. However, the power grid is evolving towards a state where the adaptations are no longer easy (e.g. large amounts of limited control, renewable generation, comparable generation and transmission construction costs) and necessitates new approaches. Recent work on deterministic Discrepancy Bounded Local Search (DBLS) has shown it to be quite effective in addressing the TNEP. In this paper, we propose a generalization of DBLS to handle simultaneous generation and transmission planning.

Bent, Russell W [Los Alamos National Laboratory; Berscheid, Alan [Los Alamos National Laboratory; Toole, G. Loren [Los Alamos National Laboratory

2010-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "integrated test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

MO. IU~Y."U. : : I ~ Test Plans for Aceeptanc e I-..;A;.;;.;T;.;M~-,.;;5;.;4;.;;8;.......___....;;A-..___  

E-Print Network [OSTI]

of A the experiment at BxA and ·integration into ALSEP. This document covers the Engineering Model and prototype tests are applicable to this test plan to the extent referenced h.erein. l. Interface Control Specification prepared to document test plans for acceptance tests on the SIDE/CCGE Engineering Model. These plans cover

Rathbun, Julie A.

62

Performance Tests during the IBL Stave Integration  

E-Print Network [OSTI]

In preparation of the ATLAS Pixel Insertable B-Layer integration, detector components, so called staves, were mounted around the Beryllium ATLAS beam pipe and tested using production quality assurance measurements as well as dedicated data taking runs to validate a correct grounding and shielding schema. Each stave consists of 32 FE-I4 readout chips of ~ 2x2cm size which sums up to over 860k pixels per stave. The integration tests include verification that neither the silicon n-in-n nor the silicon 3D sensors were damaged by mechanical stress, and that their readout chips, including their bump bond and wire bond connections, did not suffered from the integration process. Evolution of the IBL performance during its integration will be discussed as well as its final performance before installation.

Backhaus, M; The ATLAS collaboration

2014-01-01T23:59:59.000Z

63

Performance tests during the IBL Stave Integration  

E-Print Network [OSTI]

In preparation of the ATLAS Pixel Insertable B-Layer integration, two detector components, so called staves, were mounted around the Beryllium ATLAS beam pipe and tested using production quality assurance measurements as well as dedicated data taking runs to validate a correct grounding and shielding schema. Each stave consists of 32 FE-I4 readout chips of ~ 2x2cm size which sums up to over 860k pixels per stave. The integration tests include verification that neither the silicon n-in-n nor the silicon 3D sensors were damaged by mechanical stress, and that their readout chips, including their bump bond and wire bond connections, did not suffered from the integration process. Evolution of the IBL performance during its integration will be discussed as well as its final performance before installation.

Jentzsch, J; The ATLAS collaboration

2014-01-01T23:59:59.000Z

64

Nevada Test Site Resource Management Plan  

SciTech Connect (OSTI)

The Nevada Test Site (NTS) Resource Management Plan (RMP) describes the NTS Stewardship Mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. The NTS Stewardship Mission is to manage the land and facilities at the NTS as a unique and valuable national resource. The RMP has defined goals for twelve resource areas based on the principles of ecosystem management. These goals were established using an interdisciplinary team of DOE/NV resource specialists with input from surrounding land managers, private parties, and representatives of Native American governments. The overall goal of the RMP is to facilitate improved NTS land use management decisions within the Great Basin and Mojave Desert ecoregions.

NONE

1998-12-01T23:59:59.000Z

65

Develop Standard Method of Test for Integrated Heat Pump - 2013...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Develop Standard Method of Test for Integrated Heat Pump - 2013 Peer Review Develop Standard Method of Test for Integrated Heat Pump - 2013 Peer Review Emerging Technologies...

66

Design of Integrated Laboratory and Heavy-Duty Emissions Testing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Integrated Laboratory and Heavy-Duty Emissions Testing Center Design of Integrated Laboratory and Heavy-Duty Emissions Testing Center Both simulated and actual diesel emissions...

67

Integrated Planning for Water and Energy Systems  

E-Print Network [OSTI]

Policy 2. Energy Intensity of Water 3. Water Intensity of Energy 1. Integrated Energy and Water Policy 2. Energy Intensity of Water 3. Water Intensity of Energy #12;Total Water Withdrawals, 2000Total Water at Edmonston #12;Energy Intensity of WaterEnergy Intensity of Water Energy intensity, or embedded energy

Keller, Arturo A.

68

Towards a model based approach for integration testing  

Science Journals Connector (OSTI)

In this paper, we introduce a model based approach for integration test cases generation. The approach is based on UML 2 Testing Profile and follows the Mode-Driven Architecture for generating integration test cases from unit test models. The generated ... Keywords: UTP, integration testing, model based testing, test cases generation

Mohamed Mussa; Ferhat Khendek

2011-07-01T23:59:59.000Z

69

Integrated Resource Planning Act (Georgia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Integrated Resource Planning Act (Georgia) Integrated Resource Planning Act (Georgia) < Back Eligibility Commercial Construction Developer General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Industry Recruitment/Support Siting and Permitting Georgia's Integrated Resource Planning Act, which was passed in 1991 and is now Georgia Code § 46-3A, requires that any proposed new electric plant receive certification by the Georgia Public Service Commission (PSC) before construction begins. A utility is entitled to recover pre-approved costs

70

Light Water Reactor Sustainability Program: Integrated Program Plan |  

Broader source: Energy.gov (indexed) [DOE]

Integrated Program Plan Integrated Program Plan Light Water Reactor Sustainability Program: Integrated Program Plan Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas- emitting electric power generation in the United States. Domestic demand for electrical energy is expected to grow by more than 30% from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license, for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power

71

AFRD EH&S: Integrated Safety Management Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Safety Management Integrated Safety Management The AFRD Integrated Safety Management or ISM Plan is the master document that guides AFRD policies and practices in environment, safety, and health. The guiding principles and core functions (below left) are the key to understanding ISM. Below, right are the topically arranged sections of the AFRD ISM Plan. Depending on your workplace and duties, more than one topic may apply to you. The ISM Plan is updated as of October 2013. Please contact us with any feedback. Guiding Principles Line-management responsibility for safety Clear roles and responsibilities Competence commensurate with responsibilities Balanced Priorities Identification of ES&H standards and requirements Hazard controls (including environmental controls) tailored to work being performed

72

Buried Waste Integrated Demonstration commercialization actions plans. Volume 1  

SciTech Connect (OSTI)

The Buried Waste Integrated Demonstration (BWID) is sponsored by US Department of Energy (DOE) Office of Technology Development. BWID supports the development and demonstration of a suite of technologies that when integrated with commercially available baseline technologies form a comprehensive system for the effective and efficient remediation of buried waste throughout the DOE complex. BWID evaluates, validates, and demonstrates technologies and transfers this information throughout DOE and private industry to support DOE. remediation planning and implementation activities. This report documents commercialization action plans for five technologies with near-term commercialization/ implementation potential as well as provides a status of commercial and academic partners for each technology.

Kaupanger, R.M. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Glore, D. [Advanced Sciences, Inc. (United States)

1994-04-01T23:59:59.000Z

73

Fusing Integration Test Management with Change Management  

E-Print Network [OSTI]

- 1 - Infuse: Fusing Integration Test Management with Change Management Gail E. Kaiser* Dewayne E, NJ 07974 Murray Hill, NJ 07974 Infuse is an experimental software development environment focusing the change set into the baseline. We have previously described how Infuse enforces static consistency at each

Perry, Dewayne E.

74

Design plan for development of the worldwide port system (WPS) regional integrated cargo database (ICDB)  

SciTech Connect (OSTI)

The Worldwide Port System (WPS) Regional Integrated Cargo Database (ICDB) is a major military computer system that provides visibility over international cargo. Development started in early 1993 and implementation began on the West Coast in August of 1995. The Design Plan coordinated developmental efforts for the ICDB and its related processes. A Design Plan was especially important because the ICDB was developed at multiple sites by Oak Ridge National Laboratory and Military Traffic Management Command personnel. A Design Plan was essential to ensure that a consistent design was maintained throughout all modules, that functional and technical requirements were accomplished, that all components and processes worked together successfully, and that the development schedule was met. This plan described ICDB modules and tasks within each module. It documented responsibilities and dependencies by module and presented a schedule for development, testing, and integration.

Truett, L.F.; Rollow, J.P.; Shipe, P.C.

1995-11-01T23:59:59.000Z

75

Integrated safeguards and security management plan  

SciTech Connect (OSTI)

Berkeley Lab is committed to scientific excellence and stewardship of its assets. While security principles apply to all work performed at the Laboratory, their implementation is flexible. Berkeley Lab adheres to the following principles: Line management owns security; Security roles and responsibilities are clearly defined and communicated; Security functions are integrated; An open environment supports the Laboratory's Mission; The security program must support the scientific and operational missions of the Laboratory and must be value added; and Security controls are tailored to individual and facility requirements.

Bowen, Sue, editor

2001-04-16T23:59:59.000Z

76

10 MWe solar thermal central receiver pilot plant. Collector subsystem functional test plan  

SciTech Connect (OSTI)

This Phase II Collector Subsystem Functional Test Plan presents the functional testing to be performed to demonstrate the readiness of the Collector Subsystem for the Integrated Acceptance Tests. The functional testing will be performed with the collector subsystem as a stand-alone subsystem. In this context, all heliostat operational commands will be issued from the Heliostat Array Controller (HAC) and heliostat responses will be verified by visual means and from the HAC status displays.

Not Available

1981-11-17T23:59:59.000Z

77

Visopt ShopFloor System: Integrating Planning into Production Scheduling  

E-Print Network [OSTI]

Visopt ShopFloor System: Integrating Planning into Production Scheduling Roman Barták Charles, the first machine pre-processes the item (3 time units) that is finished in the second machine (additional 3 in parallel and a worker is required (left) or via a serial production when the item is pre- processed

Bartak, Roman

78

Integrated Geothermal Well Testing: Test Objectives and Facilities  

SciTech Connect (OSTI)

A new and highly integrated geothermal well test program was designed for three geothermal operators in the US (MCR, RGI and Mapco Geothermal). This program required the design, construction and operation of new well test facilities. The main objectives of the test program and facilities are to investigate the critical potential and worst problems associated with the well and produced fluids in a period of approximately 30 days. Field and laboratory investigations are required to determine and quantify the problems of fluid production, utilization and reinjection. The facilities are designed to handle a flow rate from a geothermal well of one million pounds per hour at a wellhead temperature of approximately 268 C (515 F). The facilities will handle an entire spectrum of temperature and rate conditions up to these limits. All pertinent conditions for future fluid exploitations can be duplicated with these facilities, thus providing critical information at the very early stages of field development. The new well test facilities have been used to test high temperature, liquid-dominated geothermal wells in the Imperial Valley of California. The test facilities still have some problems which should be solvable. The accomplishments of this new and highly integrated geothermal well test program are described in this paper.

Nicholson, R. W.; Vetter, O. J.

1981-01-01T23:59:59.000Z

79

NREL: Transmission Grid Integration - Transmission Planning and Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transmission Planning and Analysis Transmission Planning and Analysis Thumbnail of map the United States that shows wind resources and transmission lines. Enlarge image This map shows the location of wind resources and transmission lines in the United States. See a larger image or state maps. NREL researchers are engaged in transmission planning and analysis to strengthen the electric power system through the integration of solar and wind power. As demand for electricity increases, electric power system operators must plan for and construct new generation and transmission lines. However, variable generation such as solar and wind power plants are often located far from the loads they serve. They depend on transmission lines to transport the electricity they produce to load centers. NREL is working with industry and utilities to address issues related to

80

Light Water Reactor Sustainability Program - Integrated Program Plan |  

Broader source: Energy.gov (indexed) [DOE]

Light Water Reactor Sustainability Program - Integrated Program Light Water Reactor Sustainability Program - Integrated Program Plan Light Water Reactor Sustainability Program - Integrated Program Plan The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U. S. Department of Energy (DOE), performed in close collaboration and cooperation with related industry R&D programs. The LWRS Program provides technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants, utilizing the unique capabilities of the national laboratory system. Sustainability is defined as the ability to maintain safe and economic operation of the existing fleet of nuclear power plants for a longer than-initially-licensed lifetime. It has two facets

Note: This page contains sample records for the topic "integrated test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Modeling renewable energy resources in integrated resource planning  

SciTech Connect (OSTI)

Including renewable energy resources in integrated resource planning (IRP) requires that utility planning models properly consider the relevant attributes of the different renewable resources in addition to conventional supply-side and demand-side options. Otherwise, a utility`s resource plan is unlikely to have an appropriate balance of the various resource options. The current trend toward regulatory set-asides for renewable resources is motivated in part by the perception that the capabilities of current utility planning models are inadequate with regard to renewable resources. Adequate modeling capabilities and utility planning practices are a necessary prerequisite to the long-term penetration of renewable resources into the electric utility industry`s resource mix. This report presents a review of utility planning models conducted for the National Renewable Energy Laboratory (NREL). The review examines the capabilities of utility planning models to address key issues in the choice between renewable resources and other options. The purpose of this review is to provide a basis for identifying high priority areas for advancing the state of the art.

Logan, D.; Neil, C.; Taylor, A. [RCG/Hagler, Bailly, Inc., Boulder, CO (United States)

1994-06-01T23:59:59.000Z

82

Fast flux test facility, transition project plan  

SciTech Connect (OSTI)

The FFTF Transition Project Plan, Revision 1, provides changes and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

Guttenberg, S.

1994-11-15T23:59:59.000Z

83

Nevada Test Site Resource Management Plan: Annual summary, January 2000  

SciTech Connect (OSTI)

The Nevada Test Site Resource Management Plan published in December of 1998 (DOE/NV--518) describes the Nevada Test Site stewardship mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. As part of the Nevada Test Site Resource Management Plan, DOE Nevada Operations Office has committed to perform and publish an annual summary review of DOE Nevada Operations' stewardship of the Nevada Test Site. This annual summary includes a description of progress made toward the goals of the Nevada Test Site Resource Management Plan, pertinent monitoring data, actions that were taken to adapt to changing conditions, and any other changes to the Nevada Test Site Resource Management Plan.

NONE

2000-01-01T23:59:59.000Z

84

Proactive Renewables Integration for Utility Distribution Planning and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Proactive Renewables Integration for Utility Distribution Planning and Proactive Renewables Integration for Utility Distribution Planning and Operations Speaker(s): Emma Stewart Date: March 5, 2013 - 12:00pm Location: 90-1099 Seminar Host/Point of Contact: Sila Kiliccote The interconnection process can be a laborious and expensive process for both utilities and developers. High PV penetration levels create a number of challenges for the management and operation of the utility grid. This study presents work being completed in Hawaii to improve and innovate the interconnect process, separating perceived issues from real technical concerns. Existing interconnection methods and standards such as IEEE 1547, Hawaii Rule 14H and California Rule 21 are evaluated in emerging high penetration scenarios. These rules define a 15% DG penetration level as a

85

High Burnup Dry Storage Cask Research and Development Project, Final Test Plan  

SciTech Connect (OSTI)

EPRI is leading a project team to develop and implement the first five years of a Test Plan to collect data from a SNF dry storage system containing high burnup fuel.12 The Test Plan defined in this document outlines the data to be collected, and the storage system design, procedures, and licensing necessary to implement the Test Plan.13 The main goals of the proposed test are to provide confirmatory data14 for models, future SNF dry storage cask design, and to support license renewals and new licenses for ISFSIs. To provide data that is most relevant to high burnup fuel in dry storage, the design of the test storage system must mimic real conditions that high burnup SNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to the ISFSI for multi-year storage.15 Along with other optional modeling, SETs, and SSTs, the data collected in this Test Plan can be used to evaluate the integrity of dry storage systems and the high burnup fuel contained therein over many decades. It should be noted that the Test Plan described in this document discusses essential activities that go beyond the first five years of Test Plan implementation.16 The first five years of the Test Plan include activities up through loading the cask, initiating the data collection, and beginning the long-term storage period at the ISFSI. The Test Plan encompasses the overall project that includes activities that may not be completed until 15 or more years from now, including continued data collection, shipment of the Research Project Cask to a Fuel Examination Facility, opening the cask at the Fuel Examination Facility, and examining the high burnup fuel after the initial storage period.

none,

2014-02-27T23:59:59.000Z

86

Integrated Renewable Hydrogen Utility System (IRHUS) business plan  

SciTech Connect (OSTI)

This business plan is for a proposed legal entity named IRHUS, Inc. which is to be formed as a subsidiary of Energy Partners, L.C. (EP) of West Palm Beach, Florida. EP is a research and development company specializing in hydrogen proton exchange membrane (PEM) fuel cells and systems. A fuel cell is an engine with no moving parts that takes in hydrogen and produces electricity. The purpose of IRHUS, Inc. is to develop and manufacture a self-sufficient energy system based on the fuel cell and other new technology that produces hydrogen and electricity. The product is called the Integrated renewable Hydrogen utility System (IRHUS). IRHUS, Inc. plans to start limited production of the IRHUS in 2002. The IRHUS is a unique product with an innovative concept in that it provides continuous electrical power in places with no electrical infrastructure, i.e., in remote and island locations. The IRHUS is a zero emissions, self-sufficient, hydrogen fuel generation system that produces electricity on a continuous basis by combining any renewable power source with hydrogen technology. Current plans are to produce a 10 kilowatt IRHUS MP (medium power). Future plans are to design and manufacture IRHUS models to provide power for a variety of power ranges for identified attractive market segments. The technological components of the IRHUS include an electrolyzer, hydrogen and oxygen storage subsystems, fuel cell system, and power control system. The IRHUS product is to be integrated with a variety of renewable energy technologies. 5 figs., 10 tabs.

NONE

1999-03-01T23:59:59.000Z

87

A Mix Testing Process Integrating Two Manual Testing Approaches: Exploratory Testing and Test Case Based Testing.  

E-Print Network [OSTI]

??Software testing is a key phase in software development lifecycle. Testing objectives corresponds to the discovery and detection of faults, which can be attained by… (more)

Shah, Syed

2010-01-01T23:59:59.000Z

88

Integrated gasification fuel cell (IGFC) demonstration test  

SciTech Connect (OSTI)

As concern about the environment generates interest in ultra-clean energy plants, fuel cell power plants can respond to the challenge. Fuel cells convert hydrocarbon fuels to electricity at efficiencies exceeding conventional heat engine technologies while generating extremely low emissions. Emissions of SOx and NOx are expected to be well below current and anticipated future standards. Nitrogen oxides, a product of combustion, will be extremely low in this power plant because power is produced electrochemically rather than by combustion. Due to its higher efficiencies, a fuel cell power plant also produces less carbon dioxide. Fuel cells in combination with coal gasification, are an efficient and environmentally acceptable means to utilize the abundant coal reserves both in the US and around the world. To demonstrate this technology, FuelCell Energy, Inc. (FCE), is planning to build and test a 2-MW Fuel Cell Power Plant for operation on coal derived gas. This power plant is based on Direct Fuel Cell (DFC{trademark}) technology and will be part of a Clean Coal V IGCC project supported by the US DOE. A British Gas Lurgi (BGL) slagging fixed-bed gasification system with cold gas clean up is planned as part of a 400 MW IGCC power plant to provide a fuel gas slip stream to the fuel cell. The IGFC power plant will be built by Kentucky Pioneer Energy, A subsidiary of Global Energy, in Clark County, KY. This demonstration will result in the world's largest fuel cell power plant operating on coal derived gas. The objective of this test is to demonstrate fuel cell operation on coal derived gas at a commercial scale and to verify the efficiency and environmental benefits.

Steinfeld, G.; Ghezel-Ayagh, H.; Sanderson, R.; Abens, S.

2000-07-01T23:59:59.000Z

89

Fast Flux Test Facility project plan. Revision 2  

SciTech Connect (OSTI)

The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

Hulvey, R.K.

1995-11-01T23:59:59.000Z

90

Fast Flux Test Facility (FFTF) standby plan  

SciTech Connect (OSTI)

The FFTF Standby Plan, Revision 0, provides changes to the major elements and project baselines to maintain the FFTF plant in a standby condition and to continue washing sodium from irradiated reactor fuel. The Plan is consistent with the Memorandum of Decision approved by the Secretary of Energy on January 17, 1997, which directed that FFTF be maintained in a standby condition to permit the Department to make a decision on whether the facility should play a future role in the Department of Energy`s dual track tritium production strategy. This decision would be made in parallel with the intended December 1998 decision on the selection of the primary, long- term source of tritium. This also allows the Department to review the economic and technical feasibility of using the FFTF to produce isotopes for the medical community. Formal direction has been received from DOE-RL and Fluor 2020 Daniel Hanford to implement the FFTF standby decision. The objective of the Plan is maintain the condition of the FFTF systems, equipment and personnel to preserve the option for plant restart within three and one-half years of a decision to restart, while continuing deactivation work which is consistent with the standby mode.

Hulvey, R.K.

1997-03-06T23:59:59.000Z

91

SAPHIRE 8 Software Acceptance Test Plan  

SciTech Connect (OSTI)

This document describe & report the overall SAPHIRE 8 Software acceptance test paln to offically release the SAPHIRE version 8 software to the NRC custoer for distribution.

Ted S. Wood; Curtis L. Smith

2009-07-01T23:59:59.000Z

92

Long-term corrosion testing plan.  

SciTech Connect (OSTI)

This document describes the testing and facility requirements to support the Yucca Mountain Project long-term corrosion testing program. The purpose of this document is to describe a corrosion testing program that will (a) reduce model uncertainty and variability, (b) reduce the reliance upon overly conservative assumptions, and (c) improve model defensibility. Test matrices were developed for 17 topical areas (tasks): each matrix corresponds to a specific test activity that is a subset of the total work performed in a task. A future document will identify which of these activities are considered to be performance confirmation activities. Detailed matrices are provided for FY08, FY09 and FY10 and rough order estimates are provided for FY11-17. Criteria for the selection of appropriate test facilities were developed through a meeting of Lead Lab and DOE personnel on October 16-17, 2007. These criteria were applied to the testing activities and recommendations were made for the facility types appropriate to carry out each activity. The facility requirements for each activity were assessed and activities were identified that can not be performed with currently available facilities. Based on this assessment, a total of approximately 10,000 square feet of facility space is recommended to accommodate all future testing, given that all testing is consolidated to a single location. This report is a revision to SAND2008-4922 to address DOE comments.

Wall, Frederick Douglas; Brown, Neil R. (Los Alamos National Laboratory, Los Alamos, NM)

2009-02-01T23:59:59.000Z

93

New Developments in Planning Accelerated Life Tests.  

E-Print Network [OSTI]

??Accelerated life tests (ALTs) are often used to make timely assessments of the life time distribution of materials and components. The goal of many ALTs… (more)

Ma, Haiming

2009-01-01T23:59:59.000Z

94

Nevada Test Site Treatment Plan. Revision 2  

SciTech Connect (OSTI)

Treatment Plans (STPS) are required for facilities at which the US Department of Energy (DOE) or stores mixed waste, defined by the Federal Facility Compliance Act (FFCAct) as waste containing both a hazardous waste subject to the Resource Conservation and Recovery Act and a radioactive material subject to the Atomic Energy Act. On April 6, 1993, DOE published a Federal Register notice (58 FR 17875) describing its proposed process for developing the STPs in three phases including a Conceptual, a Draft, and a Proposed Site Treatment Plan (PSTP). All of the DOE Nevada Operations Office STP iterations have been developed with the state of Nevada`s input. The options and schedules reflect a ``bottoms-up`` approach and have been evaluated for impacts on other DOE sites, as well as impacts to the overall DOE program. Changes may have occurred in the preferred option and associated schedules between the PSTP, which was submitted to the state of Nevada and US Environmental Protection Agency April 1995, and the Final STP (hereafter referred to as the STP) as treatment evaluations progressed. The STP includes changes that have occurred since the submittal of the PSTP as a result of state-to-state and DOE-to-state discussions.

NONE

1996-03-01T23:59:59.000Z

95

Sludge stabilization boat material test plan  

SciTech Connect (OSTI)

This document provides instructions for testing different types of potential boat materials in the HC-21C muffle furnace process. The boats must withstand corrosive environments at up to 1000 degrees C.

De Vries, M.L.

1995-04-05T23:59:59.000Z

96

Experimental Test Plan DOE Tidal and River Reference Turbines  

SciTech Connect (OSTI)

Our aim is to provide details of the experimental test plan for scaled model studies in St. Anthony Falls Laboratory (SAFL) Main Channel at the University of Minnesota, including a review of study objectives, descriptions of the turbine models, the experimental set-up, instrumentation details, instrument measurement uncertainty, anticipated experimental test cases, post-processing methods, and data archiving for model developers.

Neary, Vincent S [ORNL; Hill, Craig [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Chamorro, Leonardo [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Gunawan, Budi [ORNL

2012-09-01T23:59:59.000Z

97

Towards an Integrated Planning and Adaptive Resource Management Architecture for Distributed Real-time Embedded Systems  

E-Print Network [OSTI]

propose new goals/objectives. Conventional resource management approaches, such as end-to-end task. Solution approach Integrated planning and adap- tive resource management. To address the planningTowards an Integrated Planning and Adaptive Resource Management Architecture for Distributed Real

Koutsoukos, Xenofon D.

98

Annual update for the Nevada Test Site site treatment plan  

SciTech Connect (OSTI)

This document describes the purpose and scope of the Draft Annual Update for the Nevada Test Site Treatment Plan, the framework for developing the Annual Update, and the current inventory of mixed waste covered under the Site Treatment Plan and the Federal Facility Compliance Act Consent Order and stored at the Nevada Test Site. No Site Treatment Plan milestones or Federal Facility Cleanup Act Consent Order deadlines have been missed for fiscal year 1996. The Shipping Cask, a portion of the solvent sludge waste stream, and eight B-25 boxes from the lead-contaminated soil waste stream have been deleted from the Site Treatment Plan and the Federal Facility Cleanup Act Consent Order, in accordance with Part XI of the Federal Facility Cleanup Act Consent Order.

NONE

1997-04-01T23:59:59.000Z

99

Integrated Waste Treatment Unit GFSI Risk Management Plan  

SciTech Connect (OSTI)

This GFSI Risk Management Plan (RMP) describes the strategy for assessing and managing project risks for the Integrated Waste Treatment Unit (IWTU) that are specifically within the control and purview of the U.S. Department of Energy (DOE), and identifies the risks that formed the basis for the DOE contingency included in the performance baseline. DOE-held contingency is required to cover cost and schedule impacts of DOE activities. Prior to approval of the performance baseline (Critical Decision-2) project cost contingency was evaluated during a joint meeting of the Contractor Management Team and the Integrated Project Team for both contractor and DOE risks to schedule and cost. At that time, the contractor cost and schedule risk value was $41.3M and the DOE cost and schedule risk contingency value is $39.0M. The contractor cost and schedule risk value of $41.3M was retained in the performance baseline as the contractor's management reserve for risk contingency. The DOE cost and schedule risk value of $39.0M has been retained in the performance baseline as the DOE Contingency. The performance baseline for the project was approved in December 2006 (Garman 2006). The project will continue to manage to the performance baseline and change control thresholds identified in PLN-1963, ''Idaho Cleanup Project Sodium-Bearing Waste Treatment Project Execution Plan'' (PEP).

W. A. Owca

2007-06-21T23:59:59.000Z

100

Integrated system dynamics toolbox for water resources planning.  

SciTech Connect (OSTI)

Public mediated resource planning is quickly becoming the norm rather than the exception. Unfortunately, supporting tools are lacking that interactively engage the public in the decision-making process and integrate over the myriad values that influence water policy. In the pages of this report we document the first steps toward developing a specialized decision framework to meet this need; specifically, a modular and generic resource-planning ''toolbox''. The technical challenge lies in the integration of the disparate systems of hydrology, ecology, climate, demographics, economics, policy and law, each of which influence the supply and demand for water. Specifically, these systems, their associated processes, and most importantly the constitutive relations that link them must be identified, abstracted, and quantified. For this reason, the toolbox forms a collection of process modules and constitutive relations that the analyst can ''swap'' in and out to model the physical and social systems unique to their problem. This toolbox with all of its modules is developed within the common computational platform of system dynamics linked to a Geographical Information System (GIS). Development of this resource-planning toolbox represents an important foundational element of the proposed interagency center for Computer Aided Dispute Resolution (CADRe). The Center's mission is to manage water conflict through the application of computer-aided collaborative decision-making methods. The Center will promote the use of decision-support technologies within collaborative stakeholder processes to help stakeholders find common ground and create mutually beneficial water management solutions. The Center will also serve to develop new methods and technologies to help federal, state and local water managers find innovative and balanced solutions to the nation's most vexing water problems. The toolbox is an important step toward achieving the technology development goals of this center.

Reno, Marissa Devan; Passell, Howard David; Malczynski, Leonard A.; Peplinski, William J.; Tidwell, Vincent Carroll; Coursey, Don (University of Chicago, Chicago, IL); Hanson, Jason (University of New Mexico, Albuquerque, NM); Grimsrud, Kristine (University of New Mexico, Albuquerque, NM); Thacher, Jennifer (University of New Mexico, Albuquerque, NM); Broadbent, Craig (University of New Mexico, Albuquerque, NM); Brookshire, David (University of New Mexico, Albuquerque, NM); Chemak, Janie (University of New Mexico, Albuquerque, NM); Cockerill, Kristan (Cockeril Consulting, Boone, NC); Aragon, Carlos (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Hallett, Heather (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Vivoni, Enrique (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Roach, Jesse

2006-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

IFE Chamber Technology Testing Program In NIF and Chamber Development Test Plan Mohamed A. Abdou  

E-Print Network [OSTI]

. As ITER serves as a fusion testing facility for magnetic fusion energy (MFE) nuclear technology componentIFE Chamber Technology Testing Program In NIF and Chamber Development Test Plan Mohamed A. Abdou chamber technology testing program in NIF involoving: criteria for evaluation

Abdou, Mohamed

102

Tips for Planning, Building, and Testing a Model Car  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tips for Planning, Building, and Testing Your Lithium- Ion Battery Powered Car CONTENTS:  Teacher Overview  What Teachers Can Do To Help  Student Design Plan  Brainstorming  Materials  Chassis Design  Transmission  Gear Ratio  Wheels and Bearings  Battery  Testing  Trouble Shooting TEACHER OVERVIEW  The Lithium-ion battery powered car competition is designed to be an engineering challenge for middle school students.  Students will be exploring the following concepts while planning, building and testing their cars:  Alternative energy sources  Engineering design  Aerodynamics  Force and motion  Teamwork  Problem solving  Teams who do not have a completed car at the

103

Integrating LCA in the local energy planning for heat supply of buildings.  

E-Print Network [OSTI]

?? The objective of this study was to develop an approach to integrate LCA of different fuels and energy conversion technologies into the energy planning… (more)

Hammervold, Johanne

2007-01-01T23:59:59.000Z

104

Hanford Site waste management and environmental restoration integration plan  

SciTech Connect (OSTI)

The Hanford Site Waste Management and Environmental Restoration Integration Plan'' describes major actions leading to waste disposal and site remediation. The primary purpose of this document is to provide a management tool for use by executives who need to quickly comprehend the waste management and environmental restoration programs. The Waste Management and Environmental Restoration Programs have been divided into missions. Waste Management consists of five missions: double-shell tank (DST) wastes; single-shell tank (SST) wastes (surveillance and interim storage, stabilization, and isolation); encapsulated cesium and strontium; solid wastes; and liquid effluents. Environmental Restoration consists of two missions: past practice units (PPU) (including characterization and assessment of SST wastes) and surplus facilities. For convenience, both aspects of SST wastes are discussed in one place. A general category of supporting activities is also included. 20 refs., 14 figs., 7 tabs.

Merrick, D.L.

1990-04-30T23:59:59.000Z

105

Test Methods Standing Technical Committee Strategic Plan - February 2012  

Broader source: Energy.gov (indexed) [DOE]

Test Methods Standing Technical Committee Test Methods Standing Technical Committee 2011 Strategic Plan V1.1 - Draft 2/24/2012 Committee Chair: 2011-2012 Dane Christensen National Renewable Energy Laboratory 2 Prioritization of Gaps, Barriers and Needs The following table prioritizes the Gaps, Barriers and Needs described in this document. Rank Description Estimated Priority Effort 1 Heat Pump Water Heater Field Test Protocol H M 2a Method for infinitely variable fan airflow measurement H H 2b Non-Intrusive Natural Gas Flow Measurement H H 3 Data Logger with Increased Data Capabilities M M 4 Room Air Mixing Analysis M H Contents Summary of Test Methods STC Strategic Plan .......................................................................................................... 3

106

DNFSB Recommendation 94-1 Hanford site integrated stabilization management plan, volumes 1 and 2  

SciTech Connect (OSTI)

This document comprises the Hanford Site Integrated Stabilization Management Plan (SISMP). This document describes the DOE`s plans at the Hanford Site to address concerns identified in Defense Nuclear Facilites Safety Board (DNFSB) Recommendation 94-1. This document also identifies plans for other spent nuclear fuel (SNF) inventories at the Hanford Site which are not within the scope of DNFSB Recommendation 94-1 for reference purposes because of their interrelationship with plans for SNF within the scope of DNFSB Recommendation 94-1. The SISMP was also developed to assist DOE in initial formulation of the Research and Development Plan and the Integrated Facilities Plan.

Gerber, E.W.

1996-03-15T23:59:59.000Z

107

Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect (OSTI)

Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954; the Resource Conservation and Recovery Act of 1976; the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The U.S. Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/ frequency matrix for the entire site. The objectives of monitoring fall into three general categories: plume and trend tracking, treatment/ storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently.

Hartman, Mary J.; Dresel, P Evan; Lindberg, Jonathan W.; Newcomer, Darrell R.; Thornton, Edward C.

2000-10-18T23:59:59.000Z

108

Integrating the principles of strategic environmental assessment into local comprehensive land use plans in California  

E-Print Network [OSTI]

environmental assessment. The objective of this study is to examine the ability of local plans to integrate and implement the key SEA principles. This study focuses on increasing the understanding of how and where to integrate environmental impacts...

Tang, Zhenghong

2009-05-15T23:59:59.000Z

109

Robust Design of Reliability Test Plans Using Degradation Measures.  

SciTech Connect (OSTI)

With short production development times, there is an increased need to demonstrate product reliability relatively quickly with minimal testing. In such cases there may be few if any observed failures. Thus, it may be difficult to assess reliability using the traditional reliability test plans that measure only time (or cycles) to failure. For many components, degradation measures will contain important information about performance and reliability. These measures can be used to design a minimal test plan, in terms of number of units placed on test and duration of the test, necessary to demonstrate a reliability goal. Generally, the assumption is made that the error associated with a degradation measure follows a known distribution, usually normal, although in practice cases may arise where that assumption is not valid. In this paper, we examine such degradation measures, both simulated and real, and present non-parametric methods to demonstrate reliability and to develop reliability test plans for the future production of components with this form of degradation.

Lane, Jonathan Wesley; Lane, Jonathan Wesley; Crowder, Stephen V.; Crowder, Stephen V.

2014-10-01T23:59:59.000Z

110

Mixer pump test plan for double shell tank AZ-101  

SciTech Connect (OSTI)

Westinghouse Hanford Company has undertaken the task to develop and demonstrate a method of retrieval for double-shell tank (DST)waste. Mixer pumps were chosen as the planned method of retrieval for the DSTs, based on engineering technology studies,past experience with hydraulic sluicing at the Hanford Site, and experience with mixer pumps at the Westinghouse Savannah River Site. This document outlines a test plan to demonstrate the ability of two 300 hp mixer pumps installed in the AZ-101 tank to mobilize waste.

Symons, G.A.; Staehr, T.W., Westinghouse Hanford

1996-06-01T23:59:59.000Z

111

Test plan : reducing soft costs of rooftop solar installations attributed to structural considerations.  

SciTech Connect (OSTI)

This test plan is a document that provides a systematic approach to the planned testing of rooftop structures to determine their actual load carrying capacity. This document identifies typical tests to be performed, the responsible parties for testing, the general feature of the tests, the testing approach, test deliverables, testing schedule, monitoring requirements, and environmental and safety compliance.

Dwyer, Stephen F.

2013-05-01T23:59:59.000Z

112

INEL test plan for evaluating waste assay systems  

SciTech Connect (OSTI)

A test bed is being established at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC). These tests are currently focused on mobile or portable radioassay systems. Prior to disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP), radioassay measurements must meet the quality assurance objectives of the TRU Waste Characterization Quality Assurance Program Plan. This test plan provides technology holders with the opportunity to assess radioassay system performance through a three-tiered test program that consists of: (a) evaluations using non-interfering matrices, (b) surrogate drums with contents that resemble the attributes of INEL-specific waste forms, and (c) real waste tests. Qualified sources containing a known mixture and range of radionuclides will be used for the non-interfering and surrogate waste tests. The results of these tests will provide technology holders with information concerning radioassay system performance and provide the INEL with data useful for making decisions concerning alternative or improved radioassay systems that could support disposal of waste at WIPP.

Mandler, J.W.; Becker, G.K.; Harker, Y.D.; Menkhaus, D.E.; Clements, T.L. Jr.

1996-09-01T23:59:59.000Z

113

Multiscale Strategic Planning Model for the Design of Integrated Ethanol and Gasoline Supply Chain  

E-Print Network [OSTI]

1 Multiscale Strategic Planning Model for the Design of Integrated Ethanol and Gasoline Supply address the design and planning of an integrated ethanol and gasoline supply chain. We assume, distribution centers where blending takes place, and the retail gas stations where different blends of gasoline

Grossmann, Ignacio E.

114

NETL: PPII - Integration of Low-NOx Burners with an Optimization Plan for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion - Project Brief [PDF-72KB] Sunflower Electric Power Corp., Garden City, Finney County, KS PROJECT FACT SHEET Achieving New Source Performance Standards (NSPS) Through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion [PDF-260KB] (Oct 2008) PROGRAM PUBLICATIONS Final Report Achieving NSPS Emission Standards Through Integration of Low NOx Burners with an Optimization Plan for Boiler Combustion [PDF-3.4MB] (June 2006) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Achieving New Source Performance Standards (NSPS) Emission Standards through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion: A DOE Assessment [PDF-1.4MB] (Nov 2006)

115

Integrity assessment plan for PNL 300 area radioactive hazardous waste tank system. Final report  

SciTech Connect (OSTI)

The Pacific Northwest Laboratory (PNL), operated by Battelle Memorial Institute under contract to the U.S. Department of Energy, operates tank systems for the U.S. Department of Energy, Richland Operations Office (DOE-RL), that contain dangerous waste constituents as defined by Washington State Department of Ecology (WDOE) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-040(18). Chapter 173-303-640(2) of the WAC requires the performance of integrity assessments for each existing tank system that treats or stores dangerous waste, except those operating under interim status with compliant secondary containment. This Integrity Assessment Plan (IAP) identifies all tasks that will be performed during the integrity assessment of the PNL-operated Radioactive Liquid Waste Systems (RLWS) associated with the 324 and 325 Buildings located in the 300 Area of the Hanford Site. It describes the inspections, tests, and analyses required to assess the integrity of the PNL RLWS (tanks, ancillary equipment, and secondary containment) and provides sufficient information for adequate budgeting and control of the assessment program. It also provides necessary information to permit the Independent, Qualified, Registered Professional Engineer (IQRPE) to approve the integrity assessment program.

NONE

1996-03-01T23:59:59.000Z

116

Plan for decommissioning the Tokamak Fusion Test Reactor  

SciTech Connect (OSTI)

The Tokamak Fusion Test Reactor (TFTR) Project is in the planning phase of developing a decommissioning project. A Preliminary Decontamination and Decommissioning (D D) Plan has been developed which provides a framework for the baseline approach, and the cost and schedule estimates. TFTR will become activated and contaminated with tritium after completion of the deuterium-tritium (D-T) experiments. Hence some of the D D operations will require remote handling. It is expected that all of the waste generated will be low level radioactive waste (LLW). The objective of the D D Project is to make TFTR Test Cell available for use by a new fusion experiment. This paper discusses the D D objectives, the facility to be decommissioned, estimates of activation, the technical (baseline) approach, and the assumptions used to develop cost and schedule estimates.

Spampinato, P.T.; Walton, G.R. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Commander, J.C. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

1993-01-01T23:59:59.000Z

117

Plan for decommissioning the Tokamak Fusion Test Reactor  

SciTech Connect (OSTI)

The Tokamak Fusion Test Reactor (TFTR) Project is in the planning phase of developing a decommissioning project. A Preliminary Decontamination and Decommissioning (D&D) Plan has been developed which provides a framework for the baseline approach, and the cost and schedule estimates. TFTR will become activated and contaminated with tritium after completion of the deuterium-tritium (D-T) experiments. Hence some of the D&D operations will require remote handling. It is expected that all of the waste generated will be low level radioactive waste (LLW). The objective of the D&D Project is to make TFTR Test Cell available for use by a new fusion experiment. This paper discusses the D&D objectives, the facility to be decommissioned, estimates of activation, the technical (baseline) approach, and the assumptions used to develop cost and schedule estimates.

Spampinato, P.T.; Walton, G.R. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Commander, J.C. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1993-12-31T23:59:59.000Z

118

Gearbox Reliability Collaborative Phase 3 Gearbox 2 Test Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gearbox Reliability Collaborative Gearbox Reliability Collaborative Phase 3 Gearbox 2 Test Plan H. Link, J. Keller, and Y. Guo National Renewable Energy Laboratory B. McNiff McNiff Light Industry Technical Report NREL/TP-5000-58190 April 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Gearbox Reliability Collaborative Phase 3 Gearbox 2 Test Plan H. Link, J. Keller, and Y. Guo National Renewable Energy Laboratory B. McNiff McNiff Light Industry Prepared under Task No. WE11.0301 Technical Report

119

Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site  

SciTech Connect (OSTI)

The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.

NSTec Environmental Management

2008-09-01T23:59:59.000Z

120

E-Print Network 3.0 - acceptance test plan Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: acceptance test plan Page: << < 1 2 3 4 5 > >> 1 Using Plan Reasoning in the Generation of Plan...

Note: This page contains sample records for the topic "integrated test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Integral testing of relays and circuit breakers  

SciTech Connect (OSTI)

Among all equipment types considered for seismic qualification, relays have been most extensively studied through testing due to a wide variation of their designs and seismic capacities. A temporary electrical discontinuity or ``chatter`` is the common concern for relays. A chatter duration of 2 milliseconds is typically used as an acceptance criterion to determine the seismic capability of a relay. Many electrical devices, on the other hand, receiving input signals from relays can safely tolerate a chatter level much greater than 2 ms. In Phase I of a test program, Brookhaven National Laboratory performed testing of many relay models using the 2-ms chatter criterion. In Phase II of the program, the factors influencing the relay chatter criterion, and impacts of relay chatter on medium and low voltage circuit breakers and lockout relays were investigated. This paper briefly describes the Phase II tests and presents the important observations.

Bandyopadhyay, K.K.

1993-12-31T23:59:59.000Z

122

Integrated Performance Testing for Nonproliferation Support Project  

SciTech Connect (OSTI)

The objective of this workshop is to provide participants with training in testing techniques and methodologies for assessment of the performance of: Physical Protection system elements; Material Control and Accounting (MC&A) system elements.

Johns, Russell; Bultz, Garl Alan; Byers, Kenneth R.; Yaegle, William

2013-08-20T23:59:59.000Z

123

Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan  

SciTech Connect (OSTI)

The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).

Fix, N. J.

2008-02-20T23:59:59.000Z

124

Integrating Customized Test Requirements with Traditional Requirements in Web Application Testing  

E-Print Network [OSTI]

Integrating Customized Test Requirements with Traditional Requirements in Web Application Testing Existing test suite reduction techniques employed for test- ing web applications have either used-based requirements in relation to test suite reduction for web applications. We investigate the use of usage

Sampath, Sreedevi

125

Leveraging enterprise architecture to enable integrated test and evaluation sustainability  

E-Print Network [OSTI]

An analysis was performed to investigate how enterprise architecting methods can be applied to an integrate test and evaluation enterprise and make it a more sustainable enterprise to provide continuous value in the face ...

Sheets, Arlan C. (Arlan Christopher)

2011-01-01T23:59:59.000Z

126

DOE/OE National SCADA Test Bed Fiscal Year 2009 Work Plan | Department...  

Broader source: Energy.gov (indexed) [DOE]

OE National SCADA Test Bed Fiscal Year 2009 Work Plan DOEOE National SCADA Test Bed Fiscal Year 2009 Work Plan This document is designed to help guide and strengthen the DOEOE...

127

Research plan for integrated ecosystem and pollutant monitoring at remote wilderness study sites  

SciTech Connect (OSTI)

This research plan outlines an approach to the measurement of pollutants and ecosystem parameters at remote, high-elevation, wilderness study sites. A multimedia, systems approach to environmental monitoring is emphasized. The primary purpose of the research is to apply and field test a technical report entitled ''Guidelines for measuring the physical, chemical, and biological condition of wilderness ecosystems.'' This document intended to provide Federal Land Managers with information to establish environmental monitoring programs in wilderness areas. To date, this monitoring document has yet to be evaluated under rigorous field conditions at a remote, high-elevation Rocky Mountain site. For the purpose of field testing approaches to monitoring of pollutants and ecosystems in remote, wilderness areas, evaluation criteria were developed. These include useability, cost-effectiveness, data variability, alternative approaches, ecosystems conceptual approach, and quality assurance. Both the Forest Service and INEL environmental monitoring techniques will be evaluated with these criteria. Another objective of this research plan is to obtain an integrated data base on pollutants and ecosystem structure and function at a remote study site. The methods tested in this project will be used to acquire these data from a systems approach. This includes multimedia monitoring of air and water quality, soils, and forest, stream, and lake ecosystems. 71 refs., 1 fig., 9 tabs.

Bruns, D.A.; Wiersma, G.B.

1988-03-01T23:59:59.000Z

128

The Mixed Waste Management Facility. Design basis integrated operations plan (Title I design)  

SciTech Connect (OSTI)

The Mixed Waste Management Facility (MWMF) will be a fully integrated, pilotscale facility for the demonstration of low-level, organic-matrix mixed waste treatment technologies. It will provide the bridge from bench-scale demonstrated technologies to the deployment and operation of full-scale treatment facilities. The MWMF is a key element in reducing the risk in deployment of effective and environmentally acceptable treatment processes for organic mixed-waste streams. The MWMF will provide the engineering test data, formal evaluation, and operating experience that will be required for these demonstration systems to become accepted by EPA and deployable in waste treatment facilities. The deployment will also demonstrate how to approach the permitting process with the regulatory agencies and how to operate and maintain the processes in a safe manner. This document describes, at a high level, how the facility will be designed and operated to achieve this mission. It frequently refers the reader to additional documentation that provides more detail in specific areas. Effective evaluation of a technology consists of a variety of informal and formal demonstrations involving individual technology systems or subsystems, integrated technology system combinations, or complete integrated treatment trains. Informal demonstrations will typically be used to gather general operating information and to establish a basis for development of formal demonstration plans. Formal demonstrations consist of a specific series of tests that are used to rigorously demonstrate the operation or performance of a specific system configuration.

NONE

1994-12-01T23:59:59.000Z

129

100 Area excavation treatability test plan. Revision 1  

SciTech Connect (OSTI)

This test plan documents the requirements for a treatability study on field radionuclide analysis and dust control techniques. These systems will be used during remedial actions involving excavation. The data from this treatability study will be used to support the feasibility study (FS) process. Excavation is one of the high-priority, near-term, treatability study needs identified in the program plan (DOE-RL 1992f). Excavation of contaminated soils and buried solid wastes is included in several of the alternatives identified in the 100 Area FS. Although a common activity, excavation has only been used occasionally at the Hanford Site for waste removal applications. The most recent applications are excavation of the 618-9 burial ground and partial remediation of the 316-5 process trenches (DOE-RL 1992a, 1992b). Both projects included excavation of soil and dust control (using water sprays). Excavation is a well-developed technology and equipment is readily available; however, certain aspects of the excavation process require testing before use in full-scale operations. These include the following: Measurement and control of excavation-generated dust and airborne contamination; verification of field analytical system capabilities; demonstration of soil removal techniques specific to the 100 Area waste site types and configurations. The execution of this treatability test may produce up to 500 yd{sub 3} of contaminated soil, which will be used for future treatability tests. These tests may include soil washing with vitrification of the soil washing residuals. Other tests will be conducted if soil washing is not a viable alternative.

Not Available

1993-08-01T23:59:59.000Z

130

DNFSB recommendation 94-1 Hanford site integrated stabilization management plan - VOLUMES 1-3  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has developed an Integrated Program Plan (IPP) to address concerns identified in Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1. The IPP describes the actions that DOE plans to implement at its various sites to convert excess fissile materials to forms or conditions suitable for safe interim storage. The baseline IPP was issued as DOE's DNFSB Recommendation 94-1 Implementation Plan (IP), which was transmitted to the DNFSB on February 28, 1995. The IPP was subsequently supplemented with an Integrated Facilities Plan and a Research and Development Plan, which further develop complex-wide research and development and long-range facility requirements and plans. These additions to the baseline IPP were developed based on a systems engineering approach that integrated facilities and capabilities at the various DOE sites and focused on attaining safe interim storage with minimum safety risks and environmental impacts. Each affected DOE site has developed a Site Integrated Stabilization Management Plan (SISMP) to identify individual site plans to implement the DNFSB Recommendation 94-1 IPP. The SISMPs were developed based on the objectives, requirements, and commitments identified in the DNFSB Recommendation 94-1 IP. The SISMPs supported formulation of the initial versions of the Integrated Facilities Plan and the Research and Development Plan. The SISMPs are periodically updated to reflect improved integration between DOE sites as identified during the IPP systems engineering evaluations. This document constitutes the Hanford SISMP. This document includes the planned work scope, costs and schedules for activities at the Hanford site to implement the DNFSB Recommendation 94-1 IPP.

Gerber, E.W.

1996-09-23T23:59:59.000Z

131

Integration of reclamation and tailings management in oil sands surface mine planning  

Science Journals Connector (OSTI)

Abstract The processing of oil sands generates large volumes of slurry, known as tailings, that is impounded in tailings ponds. Oil sands operators are committed to develop reclamation plans to ensure that the mine site is restored to a natural or economically usable landscape. Since most of the material that is needed for capping of the tailings pond is produced in mining operation, it is reasonable to include material requirement for reclamation as part of mine planning. In this paper, an integrated long-term mine planning model is proposed that includes tailings capacity and reclamation material requirements. A mixed integer linear programming (MILP) model is developed to test the performance of the proposed model. The MILP model is coded in Matlab®. It is verified by carrying out a case study on an actual oil sands dataset, and has resulted in an integer solution within a 2% gap to the optimality. The resulted production schedule meets the capacity constraint of the tailings facility and guarantees the production of the required reclamation material.

Mohammad Mahdi Badiozamani; Hooman Askari-Nasab

2014-01-01T23:59:59.000Z

132

OTEC-1 Power System Test Program: test plan for first deployment  

SciTech Connect (OSTI)

This report describes in detail all tests planned for the first eight-month deployment of OTEC-1, a test facility constructed by the US Department of Energy in order to test heat exchangers for closed-cycle power plants using ocean thermal energy. Tests to be performed during the first-deployment period are aimed primarily at determining (1) the effectiveness of countermeasures in preventing biofouling of the heat exchanters, (2) the extent of environmental impacts associated with operation of an OTEC facility, and (3) the performance of a 1-MWe, titanium shell-and-tube evaporator and condenser pair. The condenser to be tested has plain tubes, and the evaporator employs the Linde High Flux surface on the working-fluid (ammonia) side to enhance the heat-transfer rate. This plan provides a statement of the objectives and priorities of the test program, describes the test equipment, gives a detailed account of all tests to be performed and the test schedule, and discusses provisions for management of the test program.

None

1980-03-01T23:59:59.000Z

133

Beam Physics of Integrable Optics Test Accelerator at Fermilab  

SciTech Connect (OSTI)

Fermilab's Integrable Optics Test Accelerator (IOTA) is an electron storage ring designed for testing advanced accelerator physics concepts, including implementation of nonlinear integrable beam optics and experiments on optical stochastic cooling. The machine is currently under construction at the Advanced Superconducting Test Accelerator facility. In this report we present the goals and the current status of the project, and describe the details of machine design. In particular, we concentrate on numerical simulations setting the requirements on the design and supporting the choice of machine parameters.

Nagaitsev, S.; Valishev, A.; /Fermilab; Danilov, V.V.; /Oak Ridge; Shatilov, D.N.; /Novosibirsk, IYF

2012-05-01T23:59:59.000Z

134

Vietnam-Integrated Action Plan to Reduce Vehicle Emissions | Open Energy  

Open Energy Info (EERE)

Vietnam-Integrated Action Plan to Reduce Vehicle Emissions Vietnam-Integrated Action Plan to Reduce Vehicle Emissions Jump to: navigation, search Name Vietnam-Integrated Action Plan to Reduce Vehicle Emissions Agency/Company /Organization Asian Development Bank Focus Area Transportation Topics Implementation, Policies/deployment programs, Background analysis Resource Type Guide/manual Website http://www.adb.org/documents/o Program Start 2002 Country Vietnam UN Region South-Eastern Asia References Vietnam-Integrated Action Plan to Reduce Vehicle Emissions[1] Background "A major goal of this strategy is to reduce mobile sources of air pollution in Viet Nam's largest cities. According to this strategy, industry, business units, management agencies and the transport sector must carefully control pollutant emissions such as carbon monoxide (CO), carbon dioxide

135

DOE National SCADA Test Bed Program Multi-Year Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

National SCADA Test Bed Program Multi-Year Plan National SCADA Test Bed Program Multi-Year Plan DOE National SCADA Test Bed Program Multi-Year Plan This document presents the National SCADA Test Bed Program Multi-Year Plan, a coherent strategy for improving the cyber security of control systems in the energy sector. The NSTB Program is conducted within DOE's Office of Electricity Delivery and Energy Reliability (OE), which leads national efforts to modernize the electric grid, enhance the security and reliability of the energy infrastructure, and facilitate recovery from disruptions to the energy supply. The Plan covers the planning period of fiscal year 2008 to 2013. DOE National SCADA Test Bed Program Multi-Year Plan More Documents & Publications DOE/OE National SCADA Test Bed Fiscal Year 2009 Work Plan

136

TEST PLAN FOR MONITORING COOLING COILS IN A LABORATORY SETTING  

SciTech Connect (OSTI)

The objective of this research project is to understand and quantify the moisture removal performance of cooling coils at part-load conditions. The project will include a comprehensive literature review, detailed measurement of cooling coil performance in a laboratory facility, monitoring cooling systems at several field test sites, and development/validation of engineering models that can be used in energy calculations and building simulations. This document contains the detailed test plan for monitoring cooling coil performance in a laboratory setting. Detailed measurements will be taken on up to 10 direct expansion (DX) and chilled water cooling coils in various configurations to understand the impact of coil geometry and operating conditions on transient moisture condensation and evaporation.

Don B. Shirey, III

2002-04-01T23:59:59.000Z

137

Test plan: Gas-threshold-pressure testing of the Salado Formation in the WIPP underground facility  

SciTech Connect (OSTI)

Performance assessment for the disposal of radioactive waste from the United States defense program in the WIPP underground facility must assess the role of post-closure was generation by waste degradation and the subsequent pressurization of the facility. be assimilated by the host formation will Whether or not the generated gas can be assimilated by the host formation will determine the ability of the gas to reach or exceed lithostatic pressure within the repository. The purpose of this test plan is (1) to present a test design to obtain realistic estimates of gas-threshold pressure for the Salado Formation WIPP underground facility including parts of the formation disturbed by the underground of the Salado, and (2) to provide a excavations and in the far-field or undisturbed part framework for changes and amendments to test objectives, practices, and procedures. Because in situ determinations of gas-threshold pressure in low-permeability media are not standard practice, the methods recommended in this testplan are adapted from permeability-testing and hydrofracture procedures. Therefore, as the gas-threshold-pressure testing program progresses, personnel assigned to the program and outside observers and reviewers will be asked for comments regarding the testing procedures. New and/or improved test procedures will be documented as amendments to this test plan, and subject to similar review procedures.

Saulnier, G.J. Jr. (INTERA, Inc., Austin, TX (United States))

1992-03-01T23:59:59.000Z

138

Should different impact assessment instruments be integrated? Evidence from English spatial planning  

SciTech Connect (OSTI)

This paper aims at providing empirical evidence to the question as to whether integration of different instruments is achieving its aim in supporting sustainable decision making, focusing on SEA inclusive sustainability appraisal (SA) and other impact assessments (IAs) currently used in English spatial planning. Usage of IAs in addition to SA is established and an analysis of the integration approach (in terms of process, output, and assessor) as well as its effectiveness is conducted. It is found that while integration enhances effectiveness to some extent, too much integration, especially in terms of the procedural element, appears to diminish the overall effectiveness of each IA in influencing decisions as they become captured by the balancing function of SA. -- Highlights: ? The usage of different impact assessments in English spatial planning is clarified. ? The relationship between integration approach and effectiveness is analyzed. ? Results suggest that integration does not necessarily lead to more sustainable decisions. ? Careful consideration is recommended upon process integration.

Tajima, Ryo, E-mail: tajima.ryo@nies.go.jp [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259-G5-9 Nagatsuta-cho, Midori-ku, Yokoyama City, Kanagawa, 226-8502 (Japan)] [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259-G5-9 Nagatsuta-cho, Midori-ku, Yokoyama City, Kanagawa, 226-8502 (Japan); Fischer, Thomas B., E-mail: fischer@liverpool.ac.uk [Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, 74 Bedford Street South, Liverpool L69 7ZQ (United Kingdom)

2013-07-15T23:59:59.000Z

139

Multiple pollutant removal using the condensing heat exchanger: Preliminary test plan for Task 2, Pilot scale IFGT testing  

SciTech Connect (OSTI)

The purpose of Task 2 (IFGT Pilot-Scale Tests at the B&W Alliance Research Center) is to evaluate the emission reduction performance of the Integrated Flue Gas Treatment (IFGT) process for coal-fired applications. The IFGT system is a two-stage condensing heat exchanger that captures multiple pollutants -- while recovering waste heat. The IFGT technology offers the potential of addressing the emission of S0{sub 2} and particulate from electric utilities currently regulated under the Phase 1 and Phase 2 requirements defined in Title IV, and many of the air pollutants that will soon be regulated under Title III of the Clean Air Act. The performance data will be obtained at pilot-scale conditions similar to full-scale operating systems. The Task 2 IFGT tests have been designed to investigate several aspects of IFGT process conditions at a broader range of variables than would be feasible at a larger scale facility. The data from these tests greatly expands the IFGT performance database for coals and is needed for the technology to progress from the component engineering phase to system integration and commercialization. The performance parameters that will be investigated are as follows: SO{sub 2} removal; particulate removal; removal of mercury and other heavy metals; NO{sub x} removal; HF and HCl removal; NH{sub 3} removal; ammonia-sulfur compounds generation; and steam injection for particle removal. For all of the pollutant removal tests, removal efficiency will be based on measurements at the inlet and outlet of the IFGT facility. Heat recovery measurements will also be made during these tests to demonstrate the heat recovery provided by the IFGT technology. This report provides a preliminary test plan for all of the Task 2 pilot-scale IFGT tests.

Jankura, B.J.

1995-11-01T23:59:59.000Z

140

Test plan for Enraf Series 854 level gauge testing in Tank 241-S-106  

SciTech Connect (OSTI)

An Enraf Series 854 level gauge was installed on Tank 241-S-106 (S-106) during the first week of June 1994. On August 11, 1994, the gauge`s measuring wire broke. An investigation has been started to determine how the wire broke. This test plan identifies a qualification test that is part of this investigation. This test will also provide evidence as to the location and extent of potential corrosion on the measuring wire due to tank environment. The results from this testing will provide data for better material selections. This test will involve placing the existing Enraf Series 854 level gauge back into service with the same type of measuring wire (316 stainless steel) that originally broke on August 11, 1994. The gauge will be operated for 14 days. At the end of the 14-day test, the wire shall be sent to Pacific Northwest Laboratory (PNL) for analysis.

Barnes, G.A.

1994-08-23T23:59:59.000Z

Note: This page contains sample records for the topic "integrated test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Performance tests during the ATLAS IBL Stave Integration  

E-Print Network [OSTI]

In preparation of the ATLAS Pixel Insertable B-Layer integration, detector components, so called staves, were mounted around the Beryllium ATLAS beam pipe and tested using production quality assurance measurements as well as dedicated data taking runs to validate a correct grounding and shielding schema. Each stave consists of 32 FE-I4 readout chips of roughly 2x2cm size which sums up to over 860k pixels per stave. The integration tests include verification that neither the silicon n-in-n nor the silicon 3D sensors were damaged by mechanical stress, and that their readout chips, including their bump bond and wire bond connections, did not suffered from the integration process. Evolution of the IBL performance during its integration will be discussed as well as its final performance before installation.

Jentzsch, Jennifer; The ATLAS collaboration

2014-01-01T23:59:59.000Z

142

Planning of grid integrated distributed generators: A review of technology, objectives and techniques  

Science Journals Connector (OSTI)

Abstract The world is witnessing a transition from its present centralized generation paradigm to a future with increased share of distributed generation (DG). Integration of renewable energy sources (RES) based distributed generators is seen as a solution to decrease reliance on depleting fossil fuel reserves, increase energy security and provide an environment friendly solution to growing power demand. The planning of power system incorporating \\{DGs\\} has to take into account various factors such as nature of DG technology, impact of DG on operating characteristics of power system and economic considerations. This paper put forwards a comprehensive review on planning of grid integrated distributed generators. An overview of different DG technologies has been presented. Different issues associated with DG integration have been discussed. The planning objectives of DG integration have been surveyed in detail and have been critically reviewed with respect to conventional and RES based DG technologies. Different techniques used for optimal placement of \\{DGs\\} have also been investigated and compared. The extensive literature survey revealed that researchers have mostly focussed on DG integration planning using conventional DGs. RES based \\{DGs\\} have not been given due consideration. While integrating RES, their stochastic behaviour has not been appropriately accounted. Finally, visualizing the wide scope of research in the planning of grid integrated DGs; an attempt has been made to identify future research avenues.

Priyanka Paliwal; N.P. Patidar; R.K. Nema

2014-01-01T23:59:59.000Z

143

Moving Bed, Granular Bed Filter Development Program: Option 1, Component Test Facility. Task 3, Test plan  

SciTech Connect (OSTI)

In the base contract, Combustion Power Co. developed commercial designs for a moving granular-bed filter (GBF). The proposed filter is similar to previous designs in terms of its shape and method of filtration. The commercial designs have scaled the filter from a 5 ft diameter to as large as a 20 ft diameter filter. In Task 2 of the Moving Bed-Granular Filter Development Program, all technical concerns related to the further development of the filter are identified. These issues are discussed in a Topical Report which has been issued as part of Task 2. Nineteen issues are identified in this report. Along with a discussion of these issues are the planned approaches for resolving each of these issues. These issues will be resolved in either a cold flow component test facility or in pilot scale testing at DOE`s Power System Development Facility (PSDF) located at Southem Company Services` Wilsonville facility. Task 3 presents a test plan for resolving those issues which can be addressed in component test facilities. The issues identified in Task 2 which will be addressed in the component test facilities are: GBF scale-up; effect of filter cone angle and sidewall materials on medium flow and ash segregation; maximum gas filtration rate; lift pipe wear; GBF media issues; mechanical design of the gas inlet duct; and filter pressure drop. This document describes a test program to address these issues, with testing to be performed at Combustion Power Company`s facility in Belmont, California.

Haas, J.C.; Purdhomme, J.W.; Wilson, K.B.

1994-04-01T23:59:59.000Z

144

Develop Standard Method of Test for Integrated Heat Pump  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Integrated Heat Pump (IHP) Wayne Reedy Oak Ridge National Laboratory wreedy2@comcast.net 574-583-5487 April 2, 2013 Develop Standard Method of Test (MOT) for IHP 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * IHP → ≥50% savings in energy used for space conditioning and water heating - C. K. Rice, V. D. Baxter, S. A. Hern, T. P. McDowell, J. D. Munk, and B. Shen, 2013. "Development of a Residential Ground- Source Integrated Heat Pump", 2013 ASHRAE Winter Conference Paper, Dallas, TX., January. * No generally accepted MOT or rating standard exists

145

Develop Standard Method of Test for Integrated Heat Pump  

Broader source: Energy.gov (indexed) [DOE]

Integrated Integrated Heat Pump (IHP) Wayne Reedy Oak Ridge National Laboratory wreedy2@comcast.net 574-583-5487 April 2, 2013 Develop Standard Method of Test (MOT) for IHP 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * IHP → ≥50% savings in energy used for space conditioning and water heating - C. K. Rice, V. D. Baxter, S. A. Hern, T. P. McDowell, J. D. Munk, and B. Shen, 2013. "Development of a Residential Ground- Source Integrated Heat Pump", 2013 ASHRAE Winter Conference Paper, Dallas, TX., January. * No generally accepted MOT or rating standard exists

146

Developing a Proficiency Testing Plan for your Laboratory Author and Presenter: Jeff C. Gust  

E-Print Network [OSTI]

by the participating laboratory. Why does my laboratory need a Proficiency Testing Plan? Regardless of the standard. The laboratory is required to plan and review the monitoring process. This section goes on to suggest severalDeveloping a Proficiency Testing Plan for your Laboratory Author and Presenter: Jeff C. Gust Vice

147

Fire Alarm Testing and Inspection Planning and Vendor Check In/Check Out Process  

E-Print Network [OSTI]

Fire Alarm Testing and Inspection Planning and Vendor Check In/Check Out Process DOCUMENT PURPOSE This process is used for fire alarm testing and inspection pre-work planning and vendor check in and check out ____________________________________________________ CHECK IN PRIOR TO TESTING NOTES _____ Central Monitoring (BSAC) notified of daily testing start time

Webb, Peter

148

Integrated Environment and Safety and Health Management System (ISMS) Implementation Project Plan  

SciTech Connect (OSTI)

The Integrated Environment, Safety and Health Management System (ISMS) Implementation Project Plan serves as the project document to guide the Fluor Hanford, Inc (FHI) and Major Subcontractor (MSC) participants through the steps necessary to complete the integration of environment, safety, and health into management and work practices at all levels.

MITCHELL, R.L.

2000-01-10T23:59:59.000Z

149

DNFSB Recommendation 94-1 Hanford Site Integrated Stabilization Management Plan. Volume 1  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has developed an Integrated Program Plan (IPP) to address concerns identified in Defense Nuclear Facilities Safety Board Recommendation 94-1. The IPP describes the actions that DOE plans to implement at its various sites to convert excess fissile materials to forms or conditions suitable for safe interim storage. The baseline IPP was issued as DOE`s Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1 Implementation Plan (IP), which was transmitted to the DNFSB on February 28, 1995. The IPP is being further developed to include complex-wide requirements for research and development and a long-range facility requirements section. The planned additions to the baseline IPP are being developed based on a systems engineering approach that integrates facilities and capabilities at the various DOE sites and focuses on attaining safe interim storage with minimum safety risks and environmental impacts. Each affected DOE site has developed a Site Integrated Stabilization Management Plan (SISMP) to identify individual site plans to implement the DNFSB Recommendation 94-1 and to provide a basis for formulating planned additions to the IPP. The SISMPs were developed based on the objectives, requirements, and commitments identified in the baseline DNFSB Recommendation 94-1 IPP. The SISMPs will be periodically updated to reflect improved integration between DOE sites as identified during the IPP systems engineering evaluations.

Gerber, E.W.

1995-10-01T23:59:59.000Z

150

MWTF jumper connector integral seal block development and leak testing  

SciTech Connect (OSTI)

In fiscal year 1993, tests of an o-ring/tetraseal retainer designed to replace a gasket-type seal used in PUREX-type process jumper connectors encouraged the design of an improved seal block. This new seal block combines several parts into one unitized component called an integral seal block. This report summarizes development and leak testing of the new integral seal block. The integral seal block uses a standard o-ring nested in a groove to accomplish leak tightness. This seal block eliminates the need to machine acme threads into the lower skirt casting and seal retainers, eliminates tolerance stack-up, reduces parts inventory, and eliminates an unnecessary leak path in the jumper connector assembly. This report also includes test data on various types of o-ring materials subjected to heat and pressure. Materials tested included Viton, Kalrez, and fluorosilicone, with some incidental data on teflon coated silicone o-rings. Test experience clearly demonstrates the need to test each seal material for temperature and pressure in its intended application. Some materials advertised as being {open_quotes}better{close_quotes} at higher temperatures did not perform up to expectations. Inspection of the fluorosilicone and Kalrez seals after thermal testing indicates that they are much more susceptible to heat softening than Viton.

Ruff, E.S.; Jordan, S.R.

1995-01-01T23:59:59.000Z

151

Project W-314 Specific Test and Evaluation Plan 241-AN-A Valve Pit  

SciTech Connect (OSTI)

The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made to the 241-AN-A Valve Pit by the W-314 Project. The STEP develops the outline for test procedures that verify the system's performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation Plan (TEP).

HAMMERS, J.S.

1999-08-25T23:59:59.000Z

152

Achieving New Source Performance Standards (NSPS) Through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improvement Improvement Initiative (PPII) CONTACTS Brad Tomer Director Office of Major Demonstrations National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4692 brad.tomer@netl.doe.gov PARTNER Sunflower Electric Power Corporation Garden City, KS Sunflower's 360 MWe Wall-fired Holcomb Station Achieving new Source PerformAnce StAndArdS (nSPS) through integrAtion of Low-no X BurnerS with An oPtimizAtion PLAn for BoiLer comBuStion (comPLeted) A unique combination of high-tech combustion modifications and sophisticated control systems was planned to be tested on a coal-fired boiler at Sunflower Electric's Holcomb Power Station in Finney County, Kansas, to demonstrate how new technology can reduce air emissions and save costs for ratepayers. However, due to larger than anticipated costs

153

Test plan: Hydraulic fracturing and hydrologic tests in Marker Beds 139 and 140  

SciTech Connect (OSTI)

Combined hydraulic fracturing and hydrological measurements in this test plan are designed to evaluate the potential influence of fracture formation in anhydrite Marker Beds 139 and 140 on gas pressure in and gas flow from the disposal rooms in the Waste Isolation Pilot Plant with time. The tests have the further purpose of providing comparisons of permeabilities of anhydrite interbeds in an undisturbed (virgin) state and after fracture development and/or opening and dilation of preexisting partially healed fractures. Three sets of combined hydraulic fracturing and hydrological measurements are planned. A set of trial measurements is expected to last four to six weeks. The duration of each subsequent experiment is anticipated to be six to eight weeks.

Wawersik, W.R.; Beauheim, R.L.

1991-03-01T23:59:59.000Z

154

WIPP (Waste Isolation Pilot Plant) test phase plan: Performance assessment  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is responsible for managing the disposition of transuranic (TRU) wastes resulting from nuclear weapons production activities of the United States. These wastes are currently stored nationwide at several of the DOE's waste generating/storage sites. The goal is to eliminate interim waste storage and achieve environmentally and institutionally acceptable permanent disposal of these TRU wastes. The Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico is being considered as a disposal facility for these TRU wastes. This document describes the first of the following two major programs planned for the Test Phase of WIPP: Performance Assessment -- determination of the long-term performance of the WIPP disposal system in accordance with the requirements of the EPA Standard; and Operations Demonstration -- evaluation of the safety and effectiveness of the DOE TRU waste management system's ability to emplace design throughput quantities of TRU waste in the WIPP underground facility. 120 refs., 19 figs., 8 tabs.

Not Available

1990-04-01T23:59:59.000Z

155

Testing robot controllers using constraint programming and continuous integration  

Science Journals Connector (OSTI)

AbstractContext Testing complex industrial robots (CIRs) requires testing several interacting control systems. This is challenging, especially for robots performing process-intensive tasks such as painting or gluing, since their dedicated process control systems can be loosely coupled with the robot’s motion control. Objective Current practices for validating \\{CIRs\\} involve manual test case design and execution. To reduce testing costs and improve quality assurance, a trend is to automate the generation of test cases. Our work aims to define a cost-effective automated testing technique to validate CIR control systems in an industrial context. Method This paper reports on a methodology, developed at ABB Robotics in collaboration with SIMULA, for the fully automated testing of \\{CIRs\\} control systems. Our approach draws on continuous integration principles and well-established constraint-based testing techniques. It is based on a novel constraint-based model for automatically generating test sequences where test sequences are both generated and executed as part of a continuous integration process. Results By performing a detailed analysis of experimental results over a simplified version of our constraint model, we determine the most appropriate parameterization of the operational version of the constraint model. This version is now being deployed at ABB Robotics’s CIR testing facilities and used on a permanent basis. This paper presents the empirical results obtained when automatically generating test sequences for \\{CIRs\\} at ABB Robotics. In a real industrial setting, the results show that our methodology is not only able to detect reintroduced known faults, but also to spot completely new faults. Conclusion Our empirical evaluation shows that constraint-based testing is appropriate for automatically generating test sequences for \\{CIRs\\} and can be faithfully deployed in an industrial context.

Morten Mossige; Arnaud Gotlieb; Hein Meling

2015-01-01T23:59:59.000Z

156

A Tool for Integrated Planning of Water Infrastructure Gwendolyn Woods  

E-Print Network [OSTI]

or inaccurate. Economy of scale for wastewater reclamation (treatment) facilities may conflict with the energy. Yet the need to plan for new water and wastewater infrastructure remains. In the Assessment of Climate Change in the Southwest United States: A Report Prepared for the National Climate Assessment, Theobald et

Fay, Noah

157

Steven P. Landau Technical Plans and Payload Integration  

E-Print Network [OSTI]

in Groton, Connecticut, integrating the TRIDENT II (D5) Strategic Weapon System into the OHIO Class across both the SSBN Strategic Weapon System and SSGN Attack Weapon System. Mr. Landau was also

158

Pilot test specific test plan for the removal of arsenic Socorro, New Mexico.  

SciTech Connect (OSTI)

Sandia National Laboratories (SNL) is conducting pilot scale evaluations of the performance and cost of innovative drinking water treatment technologies designed to meet the new arsenic maximum contaminant level (MCL) of 10 {micro}g/L (effective January 2006). As currently envisioned, pilots tests may include multiple phases. Phase I tests will involve side-by-side comparisons of several commercial technologies primarily using design parameters suggested by the Vendors. Subsequent tests (Phase II) may involve repeating some of the original tests, testing the same commercial technologies under different conditions and testing experimental technologies or additional commercial technologies. This Pilot Test Specific Test Plan (PTSTP) was written for Phase I of the Socorro Springs Pilot. The objectives of Phase I include evaluation of the treatment performance of five adsorptive media under ambient pH conditions (approximately 8.0) and assessment of the effect of contact time on the performance of one of the media. Addenda to the PTSTP may be written to cover Phase II studies and supporting laboratory studies. The Phase I demonstration began in the winter of 2004 and will last approximately 9 months. The information from the test will help the City of Socorro choose the best arsenic treatment technology for the Socorro Springs well. The pilot demonstration is a project of the Arsenic Water Technology Partnership program, a partnership between the American Water Works Association (AWWA) Research Foundation, SNL, and WERC (A Consortium for Environmental Education and Technology Development).

Collins, Sue S.; Aragon, Malynda Jo; Everett, Randy L.; Siegel, Malcolm Dean; Aragon, Alicia R.; Dwyer, Brian P.; Marbury, Justin Luke

2006-03-01T23:59:59.000Z

159

Testing for market integration crude oil, coal, and natural gas  

SciTech Connect (OSTI)

Prompted by the contemporaneous spike in coal, oil, and natural gas prices, this paper evaluates the degree of market integration both within and between crude oil, coal, and natural gas markets. Our approach yields parameters that can be readily tested against a priori conjectures. Using daily price data for five very different crude oils, we conclude that the world oil market is a single, highly integrated economic market. On the other hand, coal prices at five trading locations across the United States are cointegrated, but the degree of market integration is much weaker, particularly between Western and Eastern coals. Finally, we show that crude oil, coal, and natural gas markets are only very weakly integrated. Our results indicate that there is not a primary energy market. Despite current price peaks, it is not useful to think of a primary energy market, except in a very long run context.

Bachmeier, L.J.; Griffin, J.M. [Texas A& amp; M Univ, College Station, TX (United States)

2006-07-01T23:59:59.000Z

160

Biointrusion test plan for the Permanent Isolation Surface Barrier Prototype  

SciTech Connect (OSTI)

This document provides a testing and monitoring plan for the biological component of the prototype barrier slated for construction at the Hanford Site. The prototype barrier is an aboveground structure engineered to demonstrate the basic features of an earthen cover system. It is designed to permanently isolate waste from the biosphere. The features of the barrier include multiple layers of soil and rock materials and a low-permeability asphalt sublayer. The surface of the barrier consists of silt loam soil, covered with plants. The barrier sides are reinforced with rock or coarse earthen-fill to protect against wind and water erosion. The sublayers inhibit plant and animal intrusion and percolation of water. A series of tests will be conducted on the prototype barrier over the next several years to evaluate barrier performance under extreme climatic conditions. Plants and animals will play a significant role in the hydrologic and water and wind erosion characteristics of the prototype barrier. Studies on the biological component of the prototype barrier will include work on the initial revegetation of the surface, continued monitoring of the developing plant community, rooting depth and dispersion in the context of biointrusion potential, the role of plants in the hydrology of the surface and toe regions of the barrier, the role of plants in stabilizing the surface against water and wind erosion, and the role of burrowing animals in the hydrology and water and wind erosion of the barrier.

Link, S.O.; Cadwell, L.L.; Brandt, C.A.; Downs, J.L.; Rossi, R.E.; Gee, G.W.

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Irradiated test fuel shipment plan for the LWR MOX fuel irradiation test project  

SciTech Connect (OSTI)

This document outlines the responsibilities of DOE, DOE contractors, the commercial carrier, and other organizations participating in a shipping campaign of irradiated test specimen capsules containing mixed-oxide (MOX) fuel from the Idaho National Engineering and Environmental Laboratory (INEEL) to the Oak Ridge National Laboratory (ORNL). The shipments described here will be conducted according to applicable regulations of the US Department of Transportation (DOT), US Nuclear Regulatory Commission (NRC), and all applicable DOE Orders. This Irradiated Test Fuel Shipment Plan for the LWR MOX Fuel Irradiation Test Project addresses the shipments of a small number of irradiated test specimen capsules and has been reviewed and agreed to by INEEL and ORNL (as participants in the shipment campaign). Minor refinements to data entries in this plan, such as actual shipment dates, exact quantities and characteristics of materials to be shipped, and final approved shipment routing, will be communicated between the shipper, receiver, and carrier, as needed, using faxes, e-mail, official shipping papers, or other backup documents (e.g., shipment safety evaluations). Any major changes in responsibilities or data beyond refinements of dates and quantities of material will be prepared as additional revisions to this document and will undergo a full review and approval cycle.

Shappert, L.B.; Dickerson, L.S.; Ludwig, S.B.

1998-10-16T23:59:59.000Z

162

DNFSB recommendation 94-1 Hanford site integrated stabilization management plan  

SciTech Connect (OSTI)

In May 1994, the Defense Nuclear Facilities Safety Board (DNFSB) issued DNFSB Recommendation 94-1 (Conway 1994), which identified concerns related to US Department of Energy (DOE) management of legacy fissile materials remaining from past defense production activities. The DNFSB expressed concern about the existing storage conditions for these materials and the slow pace at which the conditions were being remediated. The DNFSB also expressed its belief that additional delays in stabilizing these fissile materials would be accompanied by further deterioration of safety and unnecessary increased risks to workers and the public. In February 1995, DOE issued the DNFSB Recommendation 94-1 Implementation Plan (O`Leary 1995) to address the concerns identified in DNFSB Recommendation 94-1. The Implementation Plan (IP) identifies several DOE commitments to achieve safe interim storage for the legacy fissile materials, and constitutes DOE`s baseline DNFSB Recommendation 94-1 Integrated Program Plan (IPP). The IPP describes the actions DOE plans to implement within the DOE complex to convert its excess fissile materials to forms or conditions suitable for safe interim storage. The IPP was subsequently supplemented with an Integrated Facilities Plan and a Research and Development Plan, which further develop complex-wide research and development and long-range facility requirements and plans. The additions to the baseline IPP were developed based on a systems engineering approach that integrated facilities and capabilities at the various DOE sites and focused on attaining safe interim storage with minimum safety risks and environmental impacts. Each affected DOE site has developed a Site Integrated Stabilization Management Plan (SISMP) to identify individual site plans to implement the DNFSB Recommendation 94-1 IPP. The SISMPs were developed based on the objectives, requirements, and commitments identified in the DNFSB Recommendation 94-1 IP. The SISMPs also supported formulation of the initial versions of the Integrated Facilities Plan and the Research and Development Plan. The SISMPs are periodically updated to reflect improved integration between DOE sites as identified during the IPP systems engineering evaluations. This document is the fifth update of the Hanford SISMP.

McCormack, R.L.

1997-05-07T23:59:59.000Z

163

Microsoft Word - 911133_0 SSC-1 Test Plan_rel.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SERVICES FOR THE NEXT GENERATION NUCLEAR PLANT (NGNP) WITH HYDROGEN PRODUCTION Test Plan for Reactor Control Equipment Prepared by General Atomics For the Battelle Energy...

164

Microsoft Word - 911141_0_SSC-9 RCCS Test Plan.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SERVICES FOR THE NEXT GENERATION NUCLEAR PLANT (NGNP) WITH HYDROGEN PRODUCTION Test Plan for the Reactor Cavity Cooling System Prepared by General Atomics For the Battelle...

165

Microsoft Word - 911147_0_SSC-16 RPS IPS and PCDIS Test Plan...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SERVICES FOR THE NEXT GENERATION NUCLEAR PLANT (NGNP) WITH HYDROGEN PRODUCTION Test Plan for RPS, IPS and PCDIS Prepared by General Atomics For the Battelle Energy...

166

Microsoft Word - 911140_0_SCHE Test Plan_rel.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SERVICES FOR THE NEXT GENERATION NUCLEAR PLANT (NGNP) WITH HYDROGEN PRODUCTION Test Plan - Shutdown Cooling Heat Exchanger Prepared by General Atomics For the Battelle...

167

Microsoft Word - 911135_0 SSC-4a Reactor Core Test Plan_rel.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SERVICES FOR THE NEXT GENERATION NUCLEAR PLANT (NGNP) WITH HYDROGEN PRODUCTION Test Plan for the Reactor Core Assembly Prepared by General Atomics For the Battelle Energy...

168

Microsoft Word - 911134_0 SSC-2 Control Rod Test Plan_rel.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SERVICES FOR THE NEXT GENERATION NUCLEAR PLANT (NGNP) WITH HYDROGEN PRODUCTION Test Plan - Control Rods Prepared by General Atomics For the Battelle Energy Alliance, LLC...

169

Microsoft Word - 911143_0_SSC-11 PCS Test Plan_rel.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SERVICES FOR THE NEXT GENERATION NUCLEAR PLANT (NGNP) WITH HYDROGEN PRODUCTION Test Plan - Power Conversion System Equipment for a Direct Combined Cycle Prepared by...

170

Microsoft Word - 911137_0 SSC-5 RPV Test Plan_rel.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SERVICES FOR THE NEXT GENERATION NUCLEAR PLANT (NGNP) WITH HYDROGEN PRODUCTION Test Plan - Reactor Pressure Vessel Prepared by General Atomics For the Battelle Energy...

171

Microsoft Word - 911136_0 SSC-4b Reactor Graphite Test Plan_rel...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Services for the Next Generation Nuclear Plant (NGNP) with Hydrogen Production Test Plan for Reactor Graphite Elements Prepared by General Atomics for the Battelle Energy...

172

Microsoft Word - 911138_0_SSC-6 Helium Circulator Test Plan_rel...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SERVICES FOR THE NEXT GENERATION NUCLEAR PLANT (NGNP) WITH HYDROGEN PRODUCTION Test Plan for Helium Circulators (PHTS, SCS, SHTS) Prepared by General Atomics For the...

173

Microsoft Word - 911145_0_SSC-14 FHSS Test Plan_rel.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SERVICES FOR THE NEXT GENERATION NUCLEAR PLANT (NGNP) WITH HYDROGEN PRODUCTION Test Plan - Fuel Handling and Storage System Prepared by General Atomics For the Battelle...

174

Microsoft Word - 911144_0_SSC-13 S-I HPS Test Plan_rel.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SERVICES FOR THE NEXT GENERATION NUCLEAR PLANT (NGNP) WITH HYDROGEN PRODUCTION Test Plan for S-I Hydrogen Production System (HPS) Prepared by General Atomics For the...

175

Microsoft Word - 911139_0_SSC-7 IHX Test Plan_rel.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SERVICES FOR THE NEXT GENERATION NUCLEAR PLANT (NGNP) WITH HYDROGEN PRODUCTION Test Plan - Intermediate Heat Exchanger PCHE Type Prepared by General Atomics For the...

176

Integrated High-Level Waste System Planning - Utilizing an Integrated Systems Planning Approach to Ensure End-State Definitions are Met and Executed - 13244  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is a Department of Energy site which has produced nuclear materials for national defense, research, space, and medical programs since the 1950's. As a by-product of this activity, approximately 37 million gallons of high-level liquid waste containing approximately 292 million curies of radioactivity is stored on an interim basis in 45 underground storage tanks. Originally, 51 tanks were constructed and utilized to support the mission. Four tanks have been closed and taken out of service and two are currently undergoing the closure process. The Liquid Waste System is a highly integrated operation involving safely storing liquid waste in underground storage tanks; removing, treating, and dispositioning the low-level waste fraction in grout; vitrifying the higher activity waste at the Defense Waste Processing Facility; and storing the vitrified waste in stainless steel canisters until permanent disposition. After waste removal and processing, the storage and processing facilities are decontaminated and closed. A Liquid Waste System Plan (hereinafter referred to as the Plan) was developed to integrate and document the activities required to disposition legacy and future High-Level Waste and to remove from service radioactive liquid waste tanks and facilities. It establishes and records a planning basis for waste processing in the liquid waste system through the end of the program mission. The integrated Plan which recognizes the challenges of constrained funding provides a path forward to complete the liquid waste mission within all regulatory and legal requirements. The overarching objective of the Plan is to meet all Federal Facility Agreement and Site Treatment Plan regulatory commitments on or ahead of schedule while preserving as much life cycle acceleration as possible through incorporation of numerous cost savings initiatives, elimination of non-essential scope, and deferral of other scope not on the critical path to compliance. There is currently a premium on processing and storage space in the radioactive liquid waste tank system. To enable continuation of risk reduction initiatives, the Plan establishes a processing strategy that provides tank space required to meet, or minimizes the impacts to meeting, programmatic objectives. The Plan also addresses perturbations in funding and schedule impacts. (authors)

Ling, Lawrence T. [URS-Savannah River Remediation, Savannah River Site, Building 766-H Room 2205, Aiken, SC 29808 (United States)] [URS-Savannah River Remediation, Savannah River Site, Building 766-H Room 2205, Aiken, SC 29808 (United States); Chew, David P. [URS-Savannah River Remediation, Savannah River Site, Building 766-H Room 2426, Aiken, SC 29808 (United States)] [URS-Savannah River Remediation, Savannah River Site, Building 766-H Room 2426, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

177

DNFSB Recommendation 94-1 Hanford Site Integrated Stabilization Management Plan. Volume 2  

SciTech Connect (OSTI)

The Hanford Site Integrated Stabilization Management Plan (SISMP) was developed in support of the US Department of Energy`s (DOE) Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1 Integrated Program Plan (IPP). Volume 1 of the SISMP identifies the technical scope and costs associated with Hanford Site plans to resolve concerns identified in DNFSB Recommendation 94-1. Volume 2 of the SISMP provides the Resource Loaded Integrated Schedules for Spent Nuclear Fuel Project and Plutonium Finishing Plant activities identified in Volume 1 of the SISMP. Appendix A provides the schedules and progress curves related to spent nuclear fuel management. Appendix B provides the schedules and progress curves related to plutonium-bearing material management. Appendix C provides programmatic logic diagrams that were referenced in Volume 1 of the SISMP.

Gerber, E.W.

1995-10-01T23:59:59.000Z

178

Windows Calorimeter Control (WinCal) program computer software test plan  

SciTech Connect (OSTI)

This document provides the information and guidelines necessary to conduct all the required testing of the Windows Calorimeter Control (WinCal) system. The strategy and essential components for testing the WinCal System Project are described in this test plan. The purpose of this test plan is to provide the customer and performing organizations with specific procedures for testing the specified system's functions.

Pertzborn, N.F.

1997-03-26T23:59:59.000Z

179

The integrated tank waste management plan at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

DOE`s Environmental Management Program at Oak Ridge has developed an integrated tank waste management plan that combines the accelerated deployment of innovative technologies with an aggressive waste transfer schedule. Oak Ridge is cleaning out waste from aging underground storage tanks in preparation of waste processing, packaging and final safe disposal. During remediation this plan will reduce the risk of environmental, worker, and civilian exposure, save millions of dollars, and cut years off of tank remediation schedules at Oak Ridge.

Billingsley, K. [STEP, Inc., Oak Ridge, TN (United States); Mims, C. [Dept. of Energy, Oak Ridge, TN (United States). Oak Ridge Operations Office; Robinson, S. [Oak Ridge National Lab., TN (United States)

1998-06-01T23:59:59.000Z

180

Integrated Safety Management System as the Basis for Work Planning and Control for Research and Development  

Broader source: Energy.gov [DOE]

Slide Presentation by Rich Davies, Kami Lowry, Mike Schlender, Pacific Northwest National Laboratory (PNNL) and Ted Pietrok, Pacific Northwest Site Office (PNSO). Integrated Safety Management System as the Basis for Work Planning and Control for Research and Development. Work Planning and Control (WP&C) is essential to assuring the safety of workers and the public regardless of the scope of work Research and Development (R&D) activities are no exception.

Note: This page contains sample records for the topic "integrated test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Integrating short-term demand response into long-term investment planning  

E-Print Network [OSTI]

discussions of the model in [79] and [80], and [81] for an application. 6 Developed by the Tennessee Valley Authority (TVA) and Oak Ridge National Laboratory (ORNL) of the United States of America [82]. EPRG No 1113 5 Planning (IRP) was developed.7... Integrating short-term demand response into long-term investment planning Cedric De Jonghe, Benjamin F. Hobbs and Ronnie Belmans 20 March 2011 CWPE 1132 & EPRG 1113 www.eprg.group.cam.ac.uk EP RG W...

De Jonghe, Cedric; Hobbs, Benjamin F.; Belmans, Ronnie

2011-03-20T23:59:59.000Z

182

Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications  

SciTech Connect (OSTI)

The objective of this report is to provide a test plan for V2G testing. The test plan is designed to test and evaluate the vehicle's power electronics capability to provide power to the grid, and to evaluate the vehicle's ability to connect and disconnect from the utility according to a subset of the IEEE Std. 1547 tests.

Chakraborty, S.; Kramer, W.; Kroposki, B.; Martin, G.; McNutt, P.; Kuss, M.; Markel, T.; Hoke, A.

2011-06-01T23:59:59.000Z

183

Data integration from product design to assembly planning in a collaborative environment  

Science Journals Connector (OSTI)

Virtual Manufacturing (VM) evaluates products in Virtual Environments (VEs) before actual production. A key issue in VM systems is the integration of design information into different product development stages. A product design model has to be accessible and reusable by downstream applications, such as product process planning and assembly planning. However, existing product modelling systems cannot fully support the downstream applications. This paper presents a method of extracting product design information from its CAD models for assembly planning and tool accessibility analysis. A web-based interface is developed for the system implementation and the process simulation. [Received 1 December 2008; Revised 21 July 2009; Accepted 31 July 2009

Xiumei Kang; Qingjin Peng

2010-01-01T23:59:59.000Z

184

Improving DOE Project Performance Using the DOD Integrated Master Plan - 12481  

SciTech Connect (OSTI)

DOE O 413 measures a project's progress to plan by the consumption of funding, the passage of time, and the meeting of milestones. In March of 2003, then Under Secretary, Energy, Science, Card received a memo directing the implementation of Project Management and the Project Management Manual, including the Integrated Master Plan and Integrated Master Schedule. This directive states 'the integrated master plan and schedule tie together all project tasks by showing their logical relationships and any constraints controlling the start or finish of each task. This process results in a hierarchy of related functional and layered schedules derived from the Work Breakdown Structure that can be used for monitoring and controlling project progress'. This paper shows how restoring the IMP/IMS paradigm to DOE program management increases the probability of program success in ways not currently available using DOD O 413 processes alone. Using DOE O 413 series guidance, adding the Integrated Master Plan and Integrated Master Schedule paradigm would provide a hierarchical set of performance measures for each 'package of work,' that provides measurable visibility to the increasing maturity of the project. This measurable maturity provides the mechanism to forecast future performance of cost, schedule, and technical outcomes in ways not available using just the activities in DOE O 413. With this information project managers have another tool available to address the issues identified in GAO-07-336 and GAO-09-406. (authors)

Alleman, Glen B. [DOD Programs, Project Time and Cost (United States); Nosbisch, Michael R. [Managing Principle, Western Region, Project Time and Cost (United States)

2012-07-01T23:59:59.000Z

185

Test plan for preparing the Rapid Transuranic Monitoring Laboratory for field deployment  

SciTech Connect (OSTI)

This plan describes experimental work that will be performed during fiscal year 1994 to prepare the Rapid Transuranic Monitoring Laboratory (RTML) for routine field use by US Department of Energy (DOE) Environmental Restoration and Waste Management programs. The RTML is a mobile, field-deployable laboratory developed at the Idaho National Engineering Laboratory (INEL) that provides a rapid, cost-effective means of characterizing and monitoring radioactive waste remediation sites for low-level radioactive contaminants. Analytical instruments currently installed in the RTML include an extended-range, germanium photon analysis spectrometer with an automatic sample changer; two, large-area, ionization chamber alpha spectrometers; and four alpha continuous air monitors. The RTML was field tested at the INEL during June 1993 in conjunction with the Buried Waste Integrated Demonstration`s remote retrieval demonstration. The major tasks described in this test plan are to (a) evaluate the beta detectors for use in screening soil samples for {sup 90}Sr, (b) upgrade the alpha spectral analysis software programs, and (c) upgrade the photon spectral analysis software programs.

McIsaac, C.V.; Sill, C.W.; Gehrke, R.J.; Killian, E.W.; Watts, K.D.

1994-04-01T23:59:59.000Z

186

We have developed an integrated plan to guide implementation  

Broader source: Energy.gov (indexed) [DOE]

Budget Overview Budget Overview 14 February, 2011 1 Winning the Future "We know what it takes to compete for the jobs and industries of our time. "We need to out-innovate, out-educate, and out-build the rest of the world. We have to make America the best place on Earth to do business. We need to take responsibility for our deficit and reform our government. "That's how our people will prosper. That's how we'll win the future." -- President Obama, 2011 State of the Union 2 Supporting the President's Plan to Win the Future 3 "Some of the most promising innovation is happening in the area of clean energy technology -- technology that is creating jobs, reducing

187

Method of and apparatus for testing the integrity of filters  

DOE Patents [OSTI]

A method of and apparatus are disclosed for testing the integrity of individual filters or filter stages of a multistage filtering system including a diffuser permanently mounted upstream and/or downstream of the filter stage to be tested for generating pressure differentials to create sufficient turbulence for uniformly dispersing trace agent particles within the airstream upstream and downstream of such filter stage. Samples of the particle concentration are taken upstream and downstream of the filter stage for comparison to determine the extent of particle leakage past the filter stage. 5 figs.

Herman, R.L.

1985-05-07T23:59:59.000Z

188

Nuclear fuels technologies fiscal year 1998 research and development test plan  

SciTech Connect (OSTI)

A number of research and development (R and D) activities are planned at Los Alamos National Laboratory (LANL) in FY98 in support of the Department of Energy Office of Fissile Materials Disposition (DOE-MD). During the past few years, the ability to fabricate mixed oxide (MOX) nuclear fuel using surplus-weapons plutonium has been researched, and various experiments have been performed. This research effort will be continued in FY98 to support further development of the technology required for MOX fuel fabrication for reactor-based plutonium disposition. R and D activities for FY98 have been divided into four major areas: (1) feed qualification/supply, (2) fuel fabrication development, (3) analytical methods development, and (4) gallium removal. Feed qualification and supply activities encompass those associated with the production of both PuO{sub 2} and UO{sub 2} feed materials. Fuel fabrication development efforts include studies with a new UO{sub 2} feed material, alternate sources of PuO{sub 2}, and determining the effects of gallium on the sintering process. The intent of analytical methods development is to upgrade and improve several analytical measurement techniques in support of other R and D and test fuel fabrication tasks. Finally, the purpose of the gallium removal system activity is to develop and integrate a gallium removal system into the Pit Disassembly and Conversion Facility (PDCF) design and the Phase 2 Advanced Recovery and Integrated Extraction System (ARIES) demonstration line. These four activities will be coordinated and integrated appropriately so that they benefit the Fissile Materials Disposition Program. This plan describes the activities that will occur in FY98 and presents the schedule and milestones for these activities.

Alberstein, D.; Blair, H.T.; Buksa, J.J. [and others

1998-06-01T23:59:59.000Z

189

Integration plan required by performance agreement SM 7.2.1  

SciTech Connect (OSTI)

Fluor Daniel Hanford, Inc. and its major subcontractors are in agreement that environmental monitoring performed under the Project Hanford Management Contract is to be done in accordance with a single, integrated program. The purpose of this Integration Plan for Environmental Monitoring is to document the policies, systems, and processes being put in place to meet one key objective: manage and integrate a technically competent, multi-media ambient environmental monitoring program, in an efficient, cost effective manner. Fluor Daniel Hanford, Inc. and its major subcontractors also commit to conducting business in a manner consistent with the International Standards Organization 14000 Environmental Management System concepts. Because the integration of sitewide groundwater monitoring activities is managed by the Environmental Restoration Contractor, groundwater monitoring it is outside the scope of this document. Therefore, for the purpose of this Integration Plan for Environmental Monitoring, the Integrated Environmental Monitoring Program is defined as applicable to all environmental media except groundwater. This document provides recommendations on future activities to better integrate the overall environmental monitoring program, with emphasis on the near-field program. In addition, included is the Fluor Daniel Hanford, Inc. team review of the environmental monitoring activities on the Hanford Site, with concurrence of Pacific Northwest National Laboratory and Bechtel Hanford, Inc. (The narrative provided later in the Discussion Section describes the review and consideration given to each topic.) This document was developed to meet the requirements of the Project Hanford Management Contract performance agreement (SM7.2) and the tenets of the U.S. Department of Energy's Effluent and Environmental Monitoring Planning Process. This Plan is prepared for the U.S. Department of Energy, Richland Operations Office, Environmental Assurance, Permits, and Policy Division to complete the requirements specified in the Performance Expectation 7.2.1, within the SM7 Environmental, Safety, and Health section of the Project Hanford Management Contract.

Diediker, L.P.

1997-03-28T23:59:59.000Z

190

AN INTEGRATED PLANNING-SIMULATION-ARCHITECTURE APPROACH FOR LOGISTICS SHARING MANAGEMENT  

E-Print Network [OSTI]

AN INTEGRATED PLANNING-SIMULATION-ARCHITECTURE APPROACH FOR LOGISTICS SHARING MANAGEMENT: A CASE In logistics, freight transportation is a major source of income in a country's economy. One of the most popular strategies is logistics sharing, which is a complex problem due to the involved stakeholders

Paris-Sud XI, Université de

191

A long-term investment planning model for mixed energy infrastructure integrated with renewable  

E-Print Network [OSTI]

A long-term investment planning model for mixed energy infrastructure integrated with renewable energy Jinxu Ding and Arun Somani Department of Electrical and Computer Engineering Iowa State University Ames, IA 50011 Email: {jxding,arun}@iastate.edu Abstract--The current energy infrastructure heavily

192

Integrated Electrorefining Efficiency Test for Pyrochemical Fuel Cycle  

SciTech Connect (OSTI)

Pyrochemical processing plays an important role in the development of next generation nuclear reactors and closed nuclear fuel cycle technology. The Idaho National Laboratory (INL) has implemented a pyrochemical process for the treatment of sodium-bonded spent fuel from the Experimental Breeder Reactor-II (EBR-II). A successful demonstration of the technology was performed from 1996 to 1999 for the Department of Energy (DOE) [1]. Processing of the spent fuel and associated research and development activities have been integrated into DOE’s Advanced Fuel Cycle Initiatives (AFCI) program since 2003. Electrorefining can be considered to be the signature or central technology for pyrochemical processing. In order to assess the efficiencies involved in the electrorefining process, an integrated electrorefining efficiency test was performed in the Mk-IV electrorefiner. This paper summarizes the observations and results obtained from the test. EXPERIMENT AND RESULTS The primary goal of the integrated processing efficiency test is to demonstrate the integrated actinide dissolution and recovery efficiencies typical for the fixed operating parameters that have been applied to Mk-IV electrorefiner (ER) and cathode processor (CP) to treat spent EBR-II driver fuel during the last three years. The findings are of importance for scaling-up the pyroprocess to recover and recycle valuable actinides from spent nuclear fuel. The test was performed in the Mk-IV electrorefiner. The ER is located in the hot cell of the Fuel Conditioning Facility at the Materials and Fuels Complex. Descriptions of the major components of the ER and the process in general have been provided elsewhere [2]. Salt and cadmium levels were measured, and multiple samples were obtained prior to performing the integrated test to establish an ER baseline for assessing the test results. The test consisted of four electrorefining batches of spent driver fuel with approximately 50 kg heavy metal. Typically, three to four ER runs are required to complete a batch. Fig. 1 shows pictures of the cathodes produced by three electrorefining runs during the second batch. The cathode No.3 in the figure has clearly different morphology than that of the first two. The cathodes produced by the other three batches have the similar morphology as those pictured. The first and second cathodes are ordinary uranium dendrite, and the third and fourth cathode show typically high Zr content morphology [3]. The end-point for each batch was determined by weighing each anode basket and assuring a net residue mass being equal or less than 3.0 kg. The 3.0 kg residue included any un-dissolved fuel constituents and adhering salt. Previous operating experience has shown that uranium dissolution in excess of 99.7 wt% was achieved when using this established end-point. Cladding hull samples were taken from each basket after it was removed from the ER. The actinide dissolution efficiency will be evaluated when the analytical results become available. Cathode No. 1 Cathode No. 2 Cathode No. 3 Fig.1 Three cathodes produced through electrorefining the second batch of spent EBR-II driver fuel As a part of the integrated efficiency test, the cat

S. X. Li; T. A. Johnson; R. W. Benedict; D. Vaden; B. R. Westphal

2006-11-01T23:59:59.000Z

193

STREAMLINED APPROACH FOR ENVIRONMENTAL RESTORATION PLAN FOR CORRECTIVE ACTION UNIT 116: AREA 25 TEST CELL C FACILITYNEVADA TEST SITE, NEVADA  

SciTech Connect (OSTI)

This Streamlined Approach for Environmental Restoration Plan identifies the activities required for the closure of Corrective Action Unit 116, Area 25 Test Cell C Facility. The Test Cell C Facility is located in Area 25 of the Nevada Test Site approximately 25 miles northwest of Mercury, Nevada.

NONE

2006-07-01T23:59:59.000Z

194

Light Water Reactor Sustainability Program Integrated Program Plan  

SciTech Connect (OSTI)

Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

Kathryn McCarthy; Jeremy Busby; Bruce Hallbert; Shannon Bragg-Sitton; Curtis Smith; Cathy Barnard

2013-04-01T23:59:59.000Z

195

Light Water Reactor Sustainability Program Integrated Program Plan  

SciTech Connect (OSTI)

Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

McCarthy, Kathryn A [INL; Busby, Jeremy [ORNL; Hallbert, Bruce [INL; Bragg-Sitton, Shannon [INL; Smith, Curtis [INL; Barnard, Cathy [INL

2014-04-01T23:59:59.000Z

196

Light Water Reactor Sustainability Program Integrated Program Plan  

SciTech Connect (OSTI)

Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline - even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy's Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans.

George Griffith; Robert Youngblood; Jeremy Busby; Bruce Hallbert; Cathy Barnard; Kathryn McCarthy

2012-01-01T23:59:59.000Z

197

Relay test program. Series 2 tests: Integral testing of relays and circuit breakers  

SciTech Connect (OSTI)

This report presents the results of a relay test program conducted by Brookhaven National Laboratory (BNL) under the sponsorship of the US Nuclear Regulatory Commission (NRC). The program is a continuation of an earlier test program the results of which were published in NUREG/CR-4867. The current program was carried out in two phases: electrical testing and vibration testing. The objective was primarily to focus on the electrical discontinuity or continuity of relays and circuit breaker tripping mechanisms subjected to electrical pulses and vibration loads. The electrical testing was conducted by KEMA-Powertest Company and the vibration testing was performed at Wyle Laboratories, Huntsville, Alabama. This report discusses the test procedures, presents the test data, includes an analysis of the data and provides recommendations regarding reliable relay testing.

Bandyopadhyay, K.K.; Kunkel, C.; Shteyngart, S. [Brookhaven National Lab., Upton, NY (United States)

1994-02-01T23:59:59.000Z

198

Power-Aware SoC Test Planning for Effective Utilization of Port-Scalable Testers  

E-Print Network [OSTI]

circuits contain embedded cores with different scan frequen- cies. To better meet the test requirements if the resulting test access architecture reduces the bit-width used to access it. We present a scalable test planning technique that exploits port scalability of testers to reduce SoC test time. We compare

Chakrabarty, Krishnendu

199

Double-shell tank integrity assessments ultrasonic test equipment performance test  

SciTech Connect (OSTI)

A double-shell tank (DST) inspection (DSTI) system was performance tested over three months until August 1995 at Pittsburgh, Pennsylvania, completing a contract initiated in February 1993 to design, fabricate, and test an ultrasonic inspection system intended to provide ultrasonic test (UT) and visual data to determine the integrity of 28 DSTs at Hanford. The DSTs are approximately one-million-gallon underground radioactive-waste storage tanks. The test was performed in accordance with a procedure (Jensen 1995) that included requirements described in the contract specification (Pfluger 1995). This report documents the results of tests conducted to evaluate the performance of the DSTI system against the requirements of the contract specification. The test of the DSTI system also reflects the performance of qualified personnel and operating procedures.

Pfluger, D.C.

1996-09-26T23:59:59.000Z

200

Integrity testing methods for drilled and grouted piles  

E-Print Network [OSTI]

) in diameter and 40 ft (12. 2 m) in length, with a 5 in. (127 mm) diameter, 3/8 in. (9. 5 mm) wall thickness insert casing. One of the two 8 in. (20. 3 mm) diameter piles was constructed with prepared defects while the other one was constructed without... of neutron scattering and ther- malization 6. 2. 3 Fast neutrons . 108 108 108 109 111 6. 3 Neutron Tools . 6. 4 Neutron Log Interpretation 7. ALTERNATIVE INTEGRITY TESTING METHODS 115 119 128 7. 1 Alternative Pile Logging Methods 7. 2 Gamma...

Dupin, Richard Martin

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "integrated test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Integrated testing of the SRL-165 glass waste form  

SciTech Connect (OSTI)

Integrated testing of the important components of a glass waste form waste package has been performed in order to gain a better understanding of the processes of radionuclide release and transport in the near field environment. Based upon an interpretation of the depth of penetration of hydrogen in reacted SRL-165 glass we have modeled the radionuclide release from the glass as a combined process of (1) the diffusive exchange of alkalis and boron in the glass for hydrogen species in the solution (D = 10{sup -16} cm{sup 2}/s) and (2) surface dissolution. Surface dissolution controls the release of components not exchanged by diffusion and takes place at a rate of 1.5 to 3.0 {mu}m/yr. Subsequent to release the radionuclides may remain in the leach solution, diffuse into the tuff, or precipitate as secondary phases. Precipitation is particularly important for plutonium and americium. Diffusive transport of radionuclides through the tuff takes place at an extremely slow rate, D = 10{sup -16} cm{sup 2}/s. As such, the mass of radionuclides incorporated in the tuff by diffusion during the tests is inconsequential relative to that in the leach solution (with the exception of plutonium) and can be ignored in mass balance calculations. Mass balance calculations based upon the release of radionuclides by surface dissolution of the glass waste form are in good agreement with observed solution chemistry when allowances are made for a pulse of dissolution early in the tests. This pulse may be due to either the rapid dissolution of high-energy surface features early in the integrated tests, or an initially high surface dissolution rate that decreases with time as silica saturation is approached, or a combination of the two.

Phinney, D.L.; Ryerson, F.J.; Oversby, V.M.; Lanford, W.A.; Aines, R.D.; Bates, J.K.

1986-12-01T23:59:59.000Z

202

Testing operations plan: Coso Geothermal Exploratory Hole No. 1 (CGEH-1) |  

Open Energy Info (EERE)

operations plan: Coso Geothermal Exploratory Hole No. 1 (CGEH-1) operations plan: Coso Geothermal Exploratory Hole No. 1 (CGEH-1) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Testing operations plan: Coso Geothermal Exploratory Hole No. 1 (CGEH-1) Details Activities (1) Areas (1) Regions (0) Abstract: Coso Geothermal Exploratory Hole No. 1 (CGEH-1) was drilled to investigate the potential of the Coso Hot Springs Known Geothermal Resource Area (KGRA) in southeastern California. Detailed background information is contained in the drilling plan, Coso Geothermal Exploratory Hole No. 1 (CGEH-1), NVO-184, dated June 1977. The purpose of this supplement to NVO-184 is to establish a plan of operations for testing the resource after completion of well drilling activities. Major elements of this plan include

203

Project W-314 specific test and evaluation plan for AZ tank farm upgrades  

SciTech Connect (OSTI)

The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made by the addition of the SN-631 transfer line from the AZ-O1A pit to the AZ-02A pit by the W-314 Project. The STEP develops the outline for test procedures that verify the system`s performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation P1 an (TEP). Testing includes Validations and Verifications (e.g., Commercial Grade Item Dedication activities, etc), Factory Tests and Inspections (FTIs), installation tests and inspections, Construction Tests and Inspections (CTIs), Acceptance Test Procedures (ATPs), Pre-Operational Test Procedures (POTPs), and Operational Test Procedures (OTPs). The STEP will be utilized in conjunction with the TEP for verification and validation.

Hays, W.H.

1998-08-12T23:59:59.000Z

204

Couplingbased Integration Testing \\Lambda Zhenyi Jin y and A. Jefferson Offutt  

E-Print Network [OSTI]

coverage crite­ ria, routine aspects of testing, particularly at the inte­ gration level. Formal coverageCoupling­based Integration Testing \\Lambda Zhenyi Jin y and A. Jefferson Offutt ISSE Department, 4A testing is an important part of the test­ ing process, but few integration testing techniques have been

Offutt, Jeff

205

Test Methods Standing Technical Committee Strategic Plan- February 2012  

Broader source: Energy.gov [DOE]

This document outlines gaps, needs, and opportunities identified by the Building America Standing Technical Committee on Test Methods.

206

Test plan for the irradiation of nonmetallic materials.  

SciTech Connect (OSTI)

A comprehensive test program to evaluate nonmetallic materials use in the Hanford Tank Farms is described in detail. This test program determines the effects of simultaneous multiple stressors at reasonable conditions on in-service configuration components by engineering performance testing.

Brush, Laurence H.; Farnum, Cathy Ottinger; Gelbard, Fred; Dahl, M. [ARES Corporation, Richland, WA; Joslyn, C. C. [Washington River Protection Solutions, Richland, WA; Venetz, T. J. [Washington River Protection Solutions, Richland, WA

2013-03-01T23:59:59.000Z

207

Integrated Energy-Water Planning in the Western and Texas Interconnections  

SciTech Connect (OSTI)

While long-term regional electricity transmission planning has traditionally focused on cost, infrastructure utilization, and reliability, issues concerning the availability of water represent an emerging issue. Thermoelectric expansion must be considered in the context of competing demands from other water use sectors balanced with fresh and non-fresh water supplies subject to climate variability. An integrated Energy-Water Decision Support System (DSS) is being developed that will enable planners in the Western and Texas Interconnections to analyze the potential implications of water availability and cost for long-range transmission planning. The project brings together electric transmission planners (Western Electricity Coordinating Council and Electric Reliability Council of Texas) with western water planners (Western Governors’ Association and the Western States Water Council). This paper lays out the basic framework for this integrated Energy-Water DSS.

Vincent Tidwell; John Gasper; Robert Goldstein; Jordan Macknick; Gerald Sehlke; Michael Webber; Mark Wigmosta

2013-07-01T23:59:59.000Z

208

Microsoft Word - AGA12 TestPlan 2-6-07.doc  

Broader source: Energy.gov (indexed) [DOE]

AGA 12, Part 2 AGA 12, Part 2 Performance Test Plan U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Enhancing control systems security in the energy sector NSTB Mark Hadley, Kristy Huston Pacific Northwest National Laboratories November 2006 Acknowledgements The authors wish to thank Bill Rush and Aakash Shah of the Gas Technology Institute as well as the members of the NERC Control Systems Security Working Group and Sandia National Laboratory for their contributions towards the development of this test plan. NSTB AGA 12, Part 2 Performance Test Plan i EXECUTIVE SUMMARY Under the guidance and sponsorship of DOE's Office of Electricity Delivery and Energy Reliability, Pacific Northwest National Laboratory (PNNL) developed a test plan for AGA 12, Part 2 compliant

209

High Burnup Dry Storage Cask Research and Development Project: Final Test Plan  

Broader source: Energy.gov [DOE]

This Test Plan for the High Burnup Dry Storage Research Project (HDRP) outlines the data to be collected, the high burnup fuel to be included, and the storage system design, procedures, and licensing necessary for implementation.

210

Test plan for high-burnup fuel cladding behavior under loss-of- coolant accident conditions  

SciTech Connect (OSTI)

Excessive oxidation, hydriding, and extensive irradiation damage occur in high-burnup fuel cladding, and as result, mechanical properties of high-burnup fuels are degraded significantly. This may influence the current fuel cladding failure limits for loss-of- coolant-accident (LOCA) situations, which are based on fuel cladding behavior for zero burnup. To avoid cladding fragmentation and fuel dispersal during a LOCA, 10 CFR 50.46 requires that peak cladding temperature shall not exceed 1204 degrees C (2200 degrees F) and that total oxidation of the fuel cladding nowhere exceeds 0.17 times total cladding thickness before oxidation. Because of the concern, a new experimental program to investigate high-burnup fuel cladding behavior under LOCA situations has been initiated under the sponsorship of the U.S. Nuclear Regulatory Commission. A hot-cell test plan to investigate single-rod behavior under simulated LOCA conditions is described in this paper. In the meantime, industry fuel design and operating conditions are expected to undergo further changes as more advanced cladding materials are developed. Under these circumstances, mechanical properties of high-burnup fuel cladding require further investigation so that results from studies on LOCA, reactivity- initiated-accident (RIA), operational transient, and power-ramping situations, can be extrapolated to modified or advanced cladding materials and altered irradiation conditions without repeating major integral experiments in test reactors. To provide the applicable data base and mechanistic understanding, tests will be conducted to determine dynamic and static fracture toughness and tensile properties. Background and rationale for selecting the specific mechanical properties tests are also described.

Chung, H.M.; Neimark, L.A.; Kassner, T.F.

1996-10-01T23:59:59.000Z

211

Underground test area subproject waste management plan. Revision No. 1  

SciTech Connect (OSTI)

The Nevada Test Site (NTS), located in southern Nevada, was the site of 928 underground nuclear tests conducted between 1951 and 1992. The tests were performed as part of the Atomic Energy Commission and U.S. Department of Energy (DOE) nuclear weapons testing program. The NTS is managed by the DOE Nevada Operations Office (DOE/NV). Of the 928 tests conducted below ground surface at the NTS, approximately 200 were detonated below the water table. As an unavoidable consequence of these testing activities, radionuclides have been introduced into the subsurface environment, impacting groundwater. In the few instances of groundwater sampling, radionuclides have been detected in the groundwater; however, only a very limited investigation of the underground test sites and associated shot cavities has been conducted to date. The Underground Test Area (UGTA) Subproject was established to fill this void and to characterize the risk posed to human health and the environment as a result of underground nuclear testing activities at the NTS. One of its primary objectives is to gather data to characterize the deep aquifer underlying the NTS.

NONE

1996-08-01T23:59:59.000Z

212

CRAD, Measuring and Testing Equipment Assessment Plan | Department...  

Energy Savers [EERE]

is to determine whether a program is in place which assures that Measuring and Test Equipment (M&TE) used in activities affecting quality and safety are properly...

213

TEST SYSTEM FOR EVALUATING SPENT NUCLEAR FUEL BENDING STIFFNESS AND VIBRATION INTEGRITY  

SciTech Connect (OSTI)

Transportation packages for spent nuclear fuel (SNF) must meet safety requirements specified by federal regulations. For normal conditions of transport, vibration loads incident to transport must be considered. This is particularly relevant for high-burnup fuel (>45 GWd/MTU). As the burnup of the fuel increases, a number of changes occur that may affect the performance of the fuel and cladding in storage and during transportation. The mechanical properties of high-burnup de-fueled cladding have been previously studied by subjecting defueled cladding tubes to longitudinal (axial) tensile tests, ring-stretch tests, ring-compression tests, and biaxial tube burst tests. The objective of this study is to investigate the mechanical properties and behavior of both the cladding and the fuel in it under vibration/cyclic loads similar to the sustained vibration loads experienced during normal transport. The vibration loads to SNF rods during transportation can be characterized by dynamic, cyclic, bending loads. The transient vibration signals in a specified transport environment can be analyzed, and frequency, amplitude and phase components can be identified. The methodology being implemented is a novel approach to study the vibration integrity of actual SNF rod segments through testing and evaluating the fatigue performance of SNF rods at defined frequencies. Oak Ridge National Laboratory (ORNL) has developed a bending fatigue system to evaluate the response of the SNF rods to vibration loads. A three-point deflection measurement technique using linear variable differential transformers is used to characterize the bending rod curvature, and electromagnetic force linear motors are used as the driving system for mechanical loading. ORNL plans to use the test system in a hot cell for SNF vibration testing on high burnup, irradiated fuel to evaluate the pellet-clad interaction and bonding on the effective lifetime of fuel-clad structure bending fatigue performance. Technical challenges include pure bending implementation, remote installation and detachment of the SNF test specimen, test specimen deformation measurement, and identification of a driving system suitable for use in a hot cell. Surrogate test specimens have been used to calibrate the test setup and conduct systematic cyclic tests. The calibration and systematic cyclic tests have been used to identify test protocol issues prior to implementation in the hot cell. In addition, cyclic hardening in unidirectional bending and softening in reverse bending were observed in the surrogate test specimens. The interface bonding between the surrogate clad and pellets was found to impact the bending response of the surrogate rods; confirming this behavior in the actual spent fuel segments will be an important aspect of the hot cell test implementation,

Wang, Jy-An John [ORNL] [ORNL; Wang, Hong [ORNL] [ORNL; Bevard, Bruce Balkcom [ORNL] [ORNL; Howard, Rob L [ORNL] [ORNL; Flanagan, Michelle [U.S. Nuclear Regulatory Commission] [U.S. Nuclear Regulatory Commission

2013-01-01T23:59:59.000Z

214

Integration Testing from Structured First-Order Specifications via Deduction Modulo  

E-Print Network [OSTI]

Integration Testing from Structured First-Order Specifications via Deduction Modulo Delphine.aiguier@ecp.fr Abstract. Testing from first-order specifications has mainly been studied for flat specifications of integration testing is to test the composition of modules assuming that they have previously been verified, i

Paris-Sud XI, Université de

215

Testing Gravity Against Early Time Integrated Sachs-Wolfe Effect  

E-Print Network [OSTI]

A generic prediction of general relativity is that the cosmological linear density growth factor $D$ is scale independent. But in general, modified gravities do not preserve this signature. A scale dependent $D$ can cause time variation in gravitational potential at high redshifts and provides a new cosmological test of gravity, through early time integrated Sachs-Wolfe (ISW) effect-large scale structure (LSS) cross correlation. We demonstrate the power of this test for a class of $f(R)$ gravity, with the form $f(R)=-\\lambda_1 H_0^2\\exp(-R/\\lambda_2H_0^2)$. Such $f(R)$ gravity, even with degenerate expansion history to $\\Lambda$CDM, can produce detectable ISW effect at $z\\ga 3$ and $l\\ga 20$. Null-detection of such effect would constrain $\\lambda_2$ to be $\\lambda_2>1000$ at $>95%$ confidence level. On the other hand, robust detection of ISW-LSS cross correlation at high $z$ will severely challenge general relativity.

Pengjie Zhang

2005-11-08T23:59:59.000Z

216

Test plan for the Parallex CANDU-MOX irradiation  

SciTech Connect (OSTI)

One of several options being considered by the United States and the Russian Federation for the disposition of excess plutonium from dismantled weapons is to convert it to mixed-oxide (MOX) fuel for use in Canadian uranium-deuterium (CANDU) reactors. This report describes an irradiation test demonstrating the feasibility of this concept with laboratory quantities of MOX fuel placed in the pressurized loops of the National Research Universal test reactor at the Atomic Energy of Canada, Ltd., Chalk River Laboratories. The objective of the Parallex (for parallel experiment) test is to simultaneously test laboratory-produced quantities of US and R.F. MOX fuel in a test reactor under heat generation rates representing those expected in the CANDU reactors. The MOX fuel will be produced with plutonium from disassembled weapons at the Los Alamos National Laboratory in the United States and at the Bochvar Institute in the Russian Federation. Thus, the test will serve to demonstrate the accomplishment of many parts of the disposition mission: disassembly of weapons, conversion of the plutonium to oxide, fabrication of MOX fuel, assembly of fuel elements and bundles, shipment to a reactor, irradiation, and finally, storage of the spent fuel elements awaiting eventual disposition in a geologic repository in Canada.

Copeland, G.L.

1997-06-01T23:59:59.000Z

217

Model-Based Testing for the Second Generation of Integrated Modular Avionics Christof Efkemann, Jan Peleska  

E-Print Network [OSTI]

activities regarding automated testing of Integrated Modular Avionics controllers in the European research, specialised electronics devices, many of them with cus- tom interfaces. In the Integrated Modular AvionicsModel-Based Testing for the Second Generation of Integrated Modular Avionics Christof Efkemann, Jan

Peleska, Jan - Fachbereich 3

218

Nevada Test Site, site treatment plan 1999 annual update  

SciTech Connect (OSTI)

A Site Treatment Plan (STP) is required for facilities at which the US Department of Energy Nevada Operations Office (DOE/NV) generates or stores mixed waste (MW), defined by the Federal Facility Compliance Act (FFC Act) as waste containing both a hazardous waste subject to the Resource Conservation and Recovery Act (RCRA) and a radioactive material subject to the Atomic Energy Act. This STP was written to identify specific treatment facilities for treating DOE/NV generated MW and provides proposed implementation schedules. This STP was approved by the Nevada Division of Environmental Protection (NDEP) and provided the basis for the negotiation and issuance of the FFC Act Consent Order (CO) dated March 6, 1996, and revised June 15, 1998. The FFC Act CO sets forth stringent regulatory requirements to comply with the implementation of the STP.

NONE

1999-03-01T23:59:59.000Z

219

Integration of hydrogen management in refinery planning with rigorous process models and product quality specifications  

Science Journals Connector (OSTI)

New trends of increased heavy crude markets and clean-fuel legislation, to produce ultra low-sulphur (ULS) gasoline and diesel fuels, are forcing refineries to increase their consumption of hydrogen. This critical situation raises the need to have a tool for operating refineries with flexibility and profitability. This paper addresses the planning of refinery with consideration to hydrogen availability. A systematic method for integrating a hydrogen management strategy within a rigorous refinery planning model is undertaken. The presented model consists of two main building blocks: a set of non-linear processing units' models and a hydrogen balance framework. The two blocks are integrated to produce a refinery-wide planning model with hydrogen management. The hydrogen management alternatives were determined by economic analysis. The proposed model improves the hidden hydrogen unavailability that prevents refineries from achieving their maximum production and profit. The model is illustrated on representative case studies and the results are discussed. It was found that an additional annual profit equivalent to $7 million could be achieved with a one-time investment of $13 million in a new purification unit.

Ali Elkamel; Ibrahim Alhajri; A. Almansoori; Yousef Saif

2011-01-01T23:59:59.000Z

220

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 5.0 Systems Integration  

Broader source: Energy.gov [DOE]

Systems Integration section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated July 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

Note: This page contains sample records for the topic "integrated test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

R&D ERL: G5 test and commissioning plan  

SciTech Connect (OSTI)

Gun-to-5-cell cavity (G5) setup (Fig 1-2) can be considered as the first stage of the final BNL ERL design. The goal of the G5 setup is to test critical ERL components with the beam and characterize the beam produced by the gun. Also, this test will be used to assess effectiveness of the zigzag merger, which will be installed later in the ERL setup. The major components under the test will include the SRF gun, the five-cell SRF cavity, vacuum components, parts of the control and diagnostic systems. G5 is designed to measure the following beam parameters: (1) projected bunch emittance (?) and Twiss parameters ({alpha}, {beta}); (2) slice emittance; (3) bunch length; and (4) longitudinal and transverse halo.

Kayran, D.; Pozdeyev, E.

2010-02-10T23:59:59.000Z

222

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 5.0 Systems Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Page 3.8 Page 3.8 2012 Systems Integration Multi-Year Research, Development and Demonstration Plan Page 5 - 1 5.0 Systems Integration The Systems Integration function of the DOE Hydrogen and Fuel Cells Program (the Program) provides independent, strategic, systems-level expertise and processes to enable system-level planning, data-driven decision-making, effective portfolio management, and program integration. System Integration ensures that system-level targets are developed, verified, and met and that the sub- programs are well-coordinated. Systems Integration provides tailored technical and programmatic support to ensure a disciplined approach to the research, design, development, and validation of complex systems. Systems Integration provides

223

Comprehensive Test Ban Treaty research and development FY95-96 program plan  

SciTech Connect (OSTI)

The Department of Energy (DOE) is responsible for the United States Government`s (USG) research and development (R&D) functions for monitoring nuclear explosions in the context of a Comprehensive Test Ban Treaty (CTBT). This responsibility includes the November 1993 transfer of the Department of Defense`s (DoD) CTBT R&D responsibility to DOE. The DOE research program builds on the broad base of USG expertise developed historically and includes R&D for detecting, locating, identifying, and characterizing nuclear explosions in all environments. The Office of Research and Development (NN-20), within the Department of Energy`s Office of Nonproliferation and National Security, formulates and executes the efforts necessary to meet the Department`s responsibilities. The following DOE laboratories as a team will support NN-20 in implementing the program plan: Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Pacific Northwest Laboratory, and Sandia National Laboratories. DOE has committed to a cooperative program that draws upon the core competencies of the national laboratories and upon the strengths of other government agencies and the private sector (academia and industry). The integration of resources under a common direction will allow the program to be flexible and responsive to changing technical and policy requirements while maximizing the effectiveness of funding appropriations. DOE will develop and demonstrate appropriate technologies, algorithms, procedures, and integrated systems in a cost-effective and timely manner. The program comprises seismic, radionuclide, hydroacoustic, and infrasound monitoring; on-site inspection; space-based monitoring; and automated data processing elements.

None

1994-11-01T23:59:59.000Z

224

Integrated PEV Charging Solutions and Reduced Energy for Occupant Comfort (Brochure), Vehicle Testing and Integration Facility (VTIF)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicle Testing and Integration Facility Vehicle Testing and Integration Facility Integrated PEV Charging Solutions and Reduced Energy for Occupant Comfort Plug-in electric vehicles (PEVs) offer the opportunity to shift transportation energy demands from petroleum to electricity, but broad adoption will require integration with other systems. While automotive experts work to reduce the cost of PEVs, fossil- fueled cars and trucks continue to burn hundreds of billions of gallons of petroleum each year-not only to get from point A to point B, but also to keep passengers comfortable with air condi- tioning and heat. At the National Renewable Energy Laboratory (NREL), three instal- lations form a research laboratory known as the Vehicle Testing and Integration Facility (VTIF). At the VTIF, engineers are develop-

225

300 Area Integrated Field-Scale Subsurface Research Challenge (IFRC) Field Site Management Plan  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) has established the 300 Area Integrated Field-Scale Subsurface Research Challenge (300 Area IFRC) on the Hanford Site in southeastern Washington State for the U.S. Department of Energy’s (DOE) Office of Biological and Environmental Research (BER) within the Office of Science. The project is funded by the Environmental Remediation Sciences Division (ERSD). The purpose of the project is to conduct research at the 300 IFRC to investigate multi-scale mass transfer processes associated with a subsurface uranium plume impacting both the vadose zone and groundwater. The management approach for the 300 Area IFRC requires that a Field Site Management Plan be developed. This is an update of the plan to reflect the installation of the well network and other changes.

Freshley, Mark D.

2008-12-31T23:59:59.000Z

226

Modular Integrated Monitoring System (MIMS) field test installations  

SciTech Connect (OSTI)

The MIMS program is funded by the Department of Energy under the Office of Nonproliferation and National Security. The program objective is to develop cost effective, modular, multi-sensor monitoring systems. Both in-plant and ground based sensors are envisioned. It is also desirable to develop sensors/systems that can be fielded/deployed in a rapid fashion. A MIMS architecture was selected to allow modular integration of sensors and systems and is based on LonWorks technology, commercially developed by Echelon Corporation. The first MIMS fieldable hardware was demonstrated at Lawrence Livermore National Laboratory. The field test, known within the DOE as the Item Tracking and Transparency (IT&I) demonstration, involved the collaboration and cooperation of five DOE laboratories (Sandia (SNL), Lawrence Livermore (LLNL), Pacific Northwest (PNL), Los Alamos (LANL), and Oak Ridge (ORNL)). The IT&T demonstration involved the monitoring of special nuclear material as it was transported around the facility utilizing sensors from the participating labs. The scenario was programmed to ignore normal activity in the facility until entry into the room where the material was stored. A second demonstration, which involved three separate scenarios, was conducted at Idaho National Engineering Laboratory (INEL). The participants included representatives from SNL, LLNL, PNL, and INEL. DOE has selected INEL as the long term testbed for MIMS developed sensors, systems, and scenarios. This paper will describe the installation, intended purpose, and results of the field demonstrations at LLNL and INEL under the MIMS program.

Martinez, R.L.; Waymire, D.R. [Sandia National Labs., Albuquerque, NM (United States); Fuess, D.A. [Lawrence Livermore National Lab., CA (United States)] [and others

1995-07-01T23:59:59.000Z

227

An Integrated Automatic Test Data Generation System A. Jefferson Offutt \\Lambda  

E-Print Network [OSTI]

An Integrated Automatic Test Data Generation System A. Jefferson Offutt \\Lambda Department of Computer Science Clemson University Clemson, SC 29634 January 21, 1996 Abstract The Godzilla automatic test data generator is an integrated collection of tools that implements a relatively new test data

Offutt, Jeff

228

An Integrated Automatic Test Data Generation System A. Je erson O utt  

E-Print Network [OSTI]

An Integrated Automatic Test Data Generation System A. Je erson O utt Department of Computer Science Clemson University Clemson, SC 29634 January 21, 1996 Abstract The Godzilla automatic test data generator is an integrated collection of tools that implements a relatively new test data generation method

Offutt, Jeff

229

NREL Next Generation Drivetrain: Mechanical Design and Test Plan (Poster)  

SciTech Connect (OSTI)

The Department of Energy and industry partners are sponsoring a $3m project for design and testing of a 'Next Generation' wind turbine drivetrain at the National Renewable Energy Laboratory (NREL). This poster focuses on innovative aspects of the gearbox design, completed as part of an end-to-end systems engineering approach incorporating innovations that increase drivetrain reliability, efficiency, torque density and minimize capital cost.

Keller, J.; Halse, C.

2014-05-01T23:59:59.000Z

230

PRELIMINARY PROJECT PLAN FOR LANSCE INTEGRATED FLIGHT PATHS 11A, 11B, 12, and 13  

SciTech Connect (OSTI)

This Preliminary Project Plan Summarizes the Technical, Cost, and Schedule baselines for an integrated approach to developing several flight paths at the Manual Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center. For example, the cost estimate is intended to serve only as a rough order of magnitude assessment of the cost that might be incurred as the flight paths are developed. Further refinement of the requirements and interfaces for each beamline will permit additional refinement and confidence in the accuracy of all three baselines (Technical, Cost, Schedule).

D. H. BULTMAN; D. WEINACHT - AIRES CORP.

2000-08-01T23:59:59.000Z

231

Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program  

SciTech Connect (OSTI)

This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Priorities and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects of the program. The report also outlines a process for establishing a database for the fusion research program that will indicate how each research element fits into the overall program. This database will also include near-term milestones associated with each research element, and will facilitate assessments of the balance within the program at different levels. The Office of Fusion Energy Sciences plans to begin assembling and using the database in the Spring of 2001 as we receive proposals from our laboratories and begin to prepare our budget proposal for Fiscal Year 2003.

None

2000-12-01T23:59:59.000Z

232

Status and plans for a SRF accelerator test faciliy at Fermilab  

E-Print Network [OSTI]

A superconducting RF accelerator test facility is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating an 810 MeV electron beam with ILC beam intensity. Expansion plans of the facility are underway that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. In addition to testing accelerator components, this facility will be used to test RF power equipment, instrumentation, LLRF and controls systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

Leibfritz, J; Carlson, K; Chase, B; Church, M; Harms, E; Klebaner, A; Kucera, M; Lackey, S; Martinez, A; Nagaitsev, S; Nobrega, L; Piot, P; Reid, J; Wendt, M; Wesseln, S

2012-01-01T23:59:59.000Z

233

Pilot-scale treatability test plan for the 200-BP-5 operable unit  

SciTech Connect (OSTI)

This document presents the treatability test plan for pilot-scale pump and treat testing at the 200-BP-5 Operable Unit. This treatability test plan has been prepared in response to an agreement between the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA), and the State of Washington Department of Ecology (Ecology), as documented in Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement, Ecology et al. 1989a) Change Control Form M-13-93-03 (Ecology et al. 1994) and a recent 200 NPL Agreement Change Control Form (Appendix A). The agreement also requires that, following completion of the activities described in this test plan, a 200-BP-5 Operable Unit Interim Remedial Measure (IRM) Proposed Plan be developed for use in preparing an Interim Action Record of Decision (ROD). The IRM Proposed Plan will be supported by the results of this treatability test plan, as well as by other 200-BP-5 Operable Unit activities (e.g., development of a qualitative risk assessment). Once issued, the Interim Action ROD will specify the interim action(s) for groundwater contamination at the 200-BP-5 Operable Unit. The treatability test approach is to conduct a pilot-scale pump and treat test for each of the two contaminant plumes associated with the 200-BP-5 Operable Unit. Primary contaminants of concern are {sup 99}Tc and {sup 60}Co for underwater affected by past discharges to the 216-BY Cribs, and {sup 90}Sr, {sup 239/240}Pu, and Cs for groundwater affected by past discharges to the 216-B-5 Reverse Well. The purpose of the pilot-scale treatability testing presented in this testplan is to provide the data basis for preparing an IRM Proposed Plan. To achieve this objective, treatability testing must: Assess the performance of groundwater pumping with respect to the ability to extract a significant amount of the primary contaminant mass present in the two contaminant plumes.

Not Available

1994-08-01T23:59:59.000Z

234

Development and Testing of an Integrated Sandia Cooler Thermoelectric Device (SCTD).  

SciTech Connect (OSTI)

This report describes a FY14 effort to develop an integrated Sandia Cooler T hermoelectric D evice (SCTD) . The project included a review of feasible thermoelectric (TE) cooling applications, baseline performance testing of an existing TE device, analysis and design development of an integrated SCTD assembly, and performance measurement and validation of the integrated SCTD prototype.

Johnson, Terry A.; Staats, Wayne Lawrence,; Leick, Michael Thomas; Zimmerman, Mark D.; Radermacher, Reinhard; Martin, Cara; Nasuta, Dennis; Kalinowski, Paul; Hoffman, William

2014-12-01T23:59:59.000Z

235

Test Plan for Long-Term Operation of a Ten-Cell High Temperature Electrolysis Stack  

SciTech Connect (OSTI)

This document defines a test plan for a long-term (2500 Hour) test of a ten-cell high-temperature electrolysis stack to be performed at INL during FY09 under the Nuclear Hydrogen Initiative. This test was originally planned for FY08, but was removed from our work scope as a result of the severe budget cuts in the FY08 NHI Program. The purpose of this test is to evaluate stack performance degradation over a relatively long time period and to attempt to identify some of the degradation mechanisms via post-test examination. This test will be performed using a planar ten-cell Ceramatec stack, with each cell having dimensions of 10 cm × 10 cm. The specific makeup of the stack will be based on the results of a series of shorter duration ten-cell stack tests being performed during FY08, funded by NGNP. This series of tests was aimed at evaluating stack performance with different interconnect materials and coatings and with or without brazed edge rails. The best performing stack from the FY08 series, in which five different interconnect/coating/edge rail combinations were tested, will be selected for the FY09 long-term test described herein.

James E. O'Brien; Carl M. Stoots; J. Stephen Herring

2008-07-01T23:59:59.000Z

236

Development and Test Plans for a small Vertical Axis Turbine Designed and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development and Test Plans for a small Vertical Axis Turbine Designed and Development and Test Plans for a small Vertical Axis Turbine Designed and Built by the Russian State Rocket Center under Berkeley Lab auspices Speaker(s): Anthony Radspieler Jr. Glen Dahlbacka Joseph Rasson Date: March 4, 2010 - 12:00pm Location: 90-3122 Berkeley Lab Engineering Division teamed with Empire Magnetics, Rohnert Park and the Makeyev State Rocket Center under a DOE NNSA non-proliferation project to develop and test a series of small wind turbines of vertical axis design. Over the years, about 100 Russian scientists and engineers worked on the project and the hydrodynamic, aerodynamic and mechanical test facilities of the SRC were used. The objective was to create a highly manufacturable Darieus unit with a modest Tip Speed Ratio (quiet and low

237

Innovative On-site Integrated Energy System Tested World Renewable Energy Congress VIII  

E-Print Network [OSTI]

and institutional settings. Recycling Waste Heat--a Key to Improving the Efficiency of Energy Supply In an eraInnovative On-site Integrated Energy System Tested World Renewable Energy Congress VIII August 29-September 3, 2004 Denver, Colorado #12;Innovative On-site Integrated Energy System Tested Jeanette B. Berry

Oak Ridge National Laboratory

238

Powerline Conductor Operational Testing Facility (PCOT) The Powerline Conductor Operational Testing Facility (PCOT), currently planned for  

E-Print Network [OSTI]

advanced overhead power line conductors and superconducting cables into an operational high-voltage (HV) transmission system for long-term testing and evaluation. The HV transmission test network within PCOT, Tennessee, 500-kV Substation. In addition to testing advanced conductors and cables, PCOT provides

239

Integrated Performance Testing Workshop - Supplemental Materials (Scripts and Procedures)  

SciTech Connect (OSTI)

A variety of performance tests are described relating to: Material Transfers; Emergency Evacuation; Alarm Response Assessment; and an Enhanced Limited Scope Performance Test (ELSPT). Procedures are given for: nuclear material physical inventory and discrepancy; material transfers; and emergency evacuation.

Baum, Gregory A.

2014-02-01T23:59:59.000Z

240

Pilot-scale treatability test plan for the 100-HR-3 operable unit  

SciTech Connect (OSTI)

This document presents the treatability test plan for pilot-scale pump-and-treat testing at the 100-HR-3 Operable Unit. The test will be conducted in fulfillment of interim Milestone M-15-06E to begin pilot-scale pump-and-treat operations by August 1994. The scope of the test was determined based on the results of lab/bench-scale tests (WHC 1993a) conducted in fulfillment of Milestone M-15-06B. These milestones were established per agreement between the U.S. Department of Energy (DOE), the Washington State Department of Ecology and the U.S. Environmental Protection Agency (EPA), and documented on Hanford Federal of Ecology Facility Agreement and Consent Order Change Control Form M-15-93-02. This test plan discusses a pilot-scale pump-and-treat test for the chromium plume associated with the D Reactor portion of the 100-HR-3 Operable Unit. Data will be collected during the pilot test to assess the effectiveness, operating parameters, and resource needs of the ion exchange (IX) pump-and-treat system. The test will provide information to assess the ability to remove contaminants by extracting groundwater from wells and treating extracted groundwater using IX. Bench-scale tests were conducted previously in which chromium VI was identified as the primary contaminant of concern in the 100-D reactor plume. The DOWEX 21K{trademark} resin was recommended for pilot-scale testing of an IX pump-and-treat system. The bench-scale test demonstrated that the system could remove chromium VI from groundwater to concentrations less than 50 ppb. The test also identified process parameters to monitor during pilot-scale testing. Water will be re-injected into the plume using wells outside the zone of influence and upgradient of the extraction well.

Not Available

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

HEATER TEST PLANNING FOR THE NEAR SURFACE TEST FACILITY AT THE HANFORD RESERVATION  

E-Print Network [OSTI]

Heater Experiment at Hanford. Berkeley, Lawre ;e BerkeleyTest Facility, Hole DC-11, Hanford Reservation. Prepared forof Gable Mountain Basalt Cores, Hanford Nuclear Reservation.

DuBois, A.

2010-01-01T23:59:59.000Z

242

The effect of an integrated catchment management plan on the greenhouse gas balance of the Mangaotama catchment of the Whatawhata Hill Country Research Station.  

E-Print Network [OSTI]

??An integrated catchment management plan implemented in the Mangaotama catchment of the Whatawhata Research Station in 2001 demonstrated that Pinus radiata forestry on marginal land,… (more)

Smiley, Daniel

2012-01-01T23:59:59.000Z

243

The 300 Area Integrated Field Research Challenge Quality Assurance Project Plan  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory and a group of expert collaborators are using the U.S. Department of Energy Hanford Site 300 Area uranium plume within the footprint of the 300-FF-5 groundwater operable unit as a site for an Integrated Field-Scale Subsurface Research Challenge (IFRC). The IFRC is entitled Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on the Hanford Site 300 Area Uranium Plume Project. The theme is investigation of multi-scale mass transfer processes. A series of forefront science questions on mass transfer are posed for research that relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements/approaches needed to characterize and model a mass transfer-dominated system. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the 300 Area IFRC Project. This plan is designed to be used exclusively by project staff.

Fix, N. J.

2009-04-29T23:59:59.000Z

244

Comparative risk analysis for the Rocky Flats Plant Integrated Project Planning  

SciTech Connect (OSTI)

The Rocky Flats Plant is developing a comprehensive planning strategy that will support transition of the Rocky Flats Plant from a nuclear weapons production facility to site cleanup and final disposition. Final disposition of the Rocky Flats Plant materials and contaminants requires consideration of the interrelated nature of sitewide problems, such as material movement and disposition, facility and land use endstates, costs, relative risks to workers and the public, and waste disposition. Comparative Risk Analysis employs both incremental risk and cumulative risk evaluations to compare risk from postulated options or endstates. Comparative Risk Analysis is an analytical tool for the Rocky Flats Plant Integrated Project Planning which can assist a decision-maker in evaluating relative risks among proposed remedial options or future endstates. It addresses the cumulative risks imposed by the Rocky Flats Plant and provides risk information, both human health and ecological, to aid in reducing unnecessary resource and monetary expenditures. Currently, there is no approved methodology that aggregates various risk estimates. Along with academic and field expert review, the Comparative Risk Analysis methodology is being reviewed and refined. A Rocky Flats Plant Risk Assessment Focus Group was established. Stakeholder involvement in the development provides an opportunity to influence the information delivered to a decision-maker. This paper discusses development of the methodology.

Jones, M.E. [EG& G Rocky Flats, Inc., Englewood, CO (United States); Shain, D.I. [EG& G Rocky Flats, Inc., Golden, CO (United States)

1994-12-31T23:59:59.000Z

245

Migrating data from TcSE to DOORS : an evaluation of the T-Plan Integrator software application.  

SciTech Connect (OSTI)

This report describes our evaluation of the T-Plan Integrator software application as it was used to transfer a real data set from the Teamcenter for Systems Engineering (TcSE) software application to the DOORS software application. The T-Plan Integrator was evaluated to determine if it would meet the needs of Sandia National Laboratories to migrate our existing data sets from TcSE to DOORS. This report presents the struggles of migrating data and focuses on how the Integrator can be used to map a data set and its data architecture from TcSE to DOORS. Finally, this report describes how the bulk of the migration can take place using the Integrator; however, about 20-30% of the data would need to be transferred from TcSE to DOORS manually. This report does not evaluate the transfer of data from DOORS to TcSE.

Post, Debra S. (Sandia National Laboratories, Livermore, CA); Manzanares, David A.; Taylor, Jeffrey L.

2011-02-01T23:59:59.000Z

246

The project for the historic center of Genoa : toward the integration of urban planning and design  

E-Print Network [OSTI]

A current concern in planning and architecture is the apparent inability of either profession to provide quality urban environments. Frequently the problem is attributed to the gap that exists between the plan and planning ...

Mehren, Barbara Theodora

1984-01-01T23:59:59.000Z

247

Testing integrability with a single bit of quantum information  

SciTech Connect (OSTI)

We show that deterministic quantum computing with a single bit can determine whether the classical limit of a quantum system is chaotic or integrable using O(N) physical resources, where N is the dimension of the Hilbert space of the system under study. This is a square-root improvement over all known classical procedures. Our study relies strictly on the random matrix conjecture. We also present numerical results for the nonlinear kicked top.

Poulin, David; Laflamme, Raymond [Perimeter Institute for Theoretical Physics, 35 King Street N., Waterloo, Ontario, N2J 2W9 (Canada); Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Milburn, G.J. [Centre for Quantum Computer Technology, School of Physical Science, University of Queensland, Queensland 4072 (Australia); Paz, Juan Pablo [Departamento de Fisica 'J.J. Giambiagi', FCEN, UBA, Pabell on 1, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Theory Division, MS B213, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2003-08-01T23:59:59.000Z

248

Fully Automated Simultaneous Integrated Boosted-Intensity Modulated Radiation Therapy Treatment Planning Is Feasible for Head-and-Neck Cancer: A Prospective Clinical Study  

SciTech Connect (OSTI)

Purpose: To prospectively determine whether overlap volume histogram (OVH)-driven, automated simultaneous integrated boosted (SIB)-intensity-modulated radiation therapy (IMRT) treatment planning for head-and-neck cancer can be implemented in clinics. Methods and Materials: A prospective study was designed to compare fully automated plans (APs) created by an OVH-driven, automated planning application with clinical plans (CPs) created by dosimetrists in a 3-dose-level (70 Gy, 63 Gy, and 58.1 Gy), head-and-neck SIB-IMRT planning. Because primary organ sparing (cord, brain, brainstem, mandible, and optic nerve/chiasm) always received the highest priority in clinical planning, the study aimed to show the noninferiority of APs with respect to PTV coverage and secondary organ sparing (parotid, brachial plexus, esophagus, larynx, inner ear, and oral mucosa). The sample size was determined a priori by a superiority hypothesis test that had 85% power to detect a 4% dose decrease in secondary organ sparing with a 2-sided alpha level of 0.05. A generalized estimating equation (GEE) regression model was used for statistical comparison. Results: Forty consecutive patients were accrued from July to December 2010. GEE analysis indicated that in APs, overall average dose to the secondary organs was reduced by 1.16 (95% CI = 0.09-2.33) with P=.04, overall average PTV coverage was increased by 0.26% (95% CI = 0.06-0.47) with P=.02 and overall average dose to the primary organs was reduced by 1.14 Gy (95% CI = 0.45-1.8) with P=.004. A physician determined that all APs could be delivered to patients, and APs were clinically superior in 27 of 40 cases. Conclusions: The application can be implemented in clinics as a fast, reliable, and consistent way of generating plans that need only minor adjustments to meet specific clinical needs.

Wu Binbin, E-mail: binbin.wu@gunet.georgetown.edu [Department of Radiation Oncology and Molecular Radiation Science, Johns Hopkins University, Baltimore, Maryland (United States); Department of Radiation Medicine, Georgetown University Hospital, Washington, DC (United States); McNutt, Todd [Department of Radiation Oncology and Molecular Radiation Science, Johns Hopkins University, Baltimore, Maryland (United States)] [Department of Radiation Oncology and Molecular Radiation Science, Johns Hopkins University, Baltimore, Maryland (United States); Zahurak, Marianna [Department of Oncology Biostatistics, Johns Hopkins University, Baltimore, Maryland (United States)] [Department of Oncology Biostatistics, Johns Hopkins University, Baltimore, Maryland (United States); Simari, Patricio [Autodesk Research, Toronto, ON (Canada)] [Autodesk Research, Toronto, ON (Canada); Pang, Dalong [Department of Radiation Medicine, Georgetown University Hospital, Washington, DC (United States)] [Department of Radiation Medicine, Georgetown University Hospital, Washington, DC (United States); Taylor, Russell [Department of Computer Science, Johns Hopkins University, Baltimore, Maryland (United States)] [Department of Computer Science, Johns Hopkins University, Baltimore, Maryland (United States); Sanguineti, Giuseppe [Department of Radiation Oncology and Molecular Radiation Science, Johns Hopkins University, Baltimore, Maryland (United States)] [Department of Radiation Oncology and Molecular Radiation Science, Johns Hopkins University, Baltimore, Maryland (United States)

2012-12-01T23:59:59.000Z

249

An integrated methodology for the specification, verification and testing of Professor Mike Holcombe,  

E-Print Network [OSTI]

testing issues are very rarely discussed by those involved in formal methods. This position is challenged and a mechanism is proposed whereby: testing is integrated more fully into the design process and, in particular to the extent of overcoming the traditional boundary between software and hardware design and testing methods

Holcombe, Mike

250

AN INTEGRATED TEST ENVIRONMENT FOR DISTRIBUTED APPLICATIONS HueyDer Chu and John E Dobson  

E-Print Network [OSTI]

1 AN INTEGRATED TEST ENVIRONMENT FOR DISTRIBUTED APPLICATIONS Huey­Der Chu and John E Dobson Centre ABSTRACT Software testing is an essential component in achieving software quality. However, it is a very, manual testing is unpopular and often inconsistently executed. Therefore, a powerful environment

Newcastle upon Tyne, University of

251

Applying Retirement-Planning Strategy to Sensor Networks: An Integrated Approach to Energy-Aware Medium Access  

E-Print Network [OSTI]

Applying Retirement-Planning Strategy to Sensor Networks: An Integrated Approach to Energy-Aware Medium Access Yunxia Chen, IEEE, Student Member, and Qing Zhao, IEEE, Member Department of Electrical-530-752-8428 Emails: {yxchen, qzhao}@ece.ucdavis.edu Abstract This report addresses the design of distributed medium

Islam, M. Saif

252

Overseas Affairs and Planning Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University  

E-Print Network [OSTI]

Contact: Overseas Affairs and Planning Institute for Integrated Cell-Material Sciences (i Cell-Material Sciences, iCeMS for short, I welcome you to the Seventh iCeMS International Symposium to develop them through evolution. They are also very important to design and create various novel "smart

Takada, Shoji

253

Aircraft Integration and Flight Testing of 4STAR  

SciTech Connect (OSTI)

Under funding from the U.S. Dept. of Energy, in conjunction with a funded NASA 2008 ROSES proposal, with internal support from Battelle Pacific Northwest Division (PNWD), and in collaboration with NASA Ames Research Center, we successfully integrated the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR-Air) instrument for flight operation aboard Battelle’s G-1 aircraft and conducted a series of airborne and ground-based intensive measurement campaigns (hereafter referred to as “intensives”) for the purpose of maturing the initial 4STAR-Ground prototype to a flight-ready science-ready configuration.

Flynn, CJ; Kassianov, E; Russell, P; Redemann, J; Dunagan, S; Holben, B

2012-10-12T23:59:59.000Z

254

Develop Standard Method of Test for Integrated Heat Pumps Research Project  

Broader source: Energy.gov (indexed) [DOE]

Develop Standard Method of Test for Develop Standard Method of Test for Integrated Heat Pumps Research Project Develop Standard Method of Test for Integrated Heat Pumps Research Project The U.S. Department of Energy is currently conducting research into the development of standard Method of Test (MOT) for integrated heat pumps (IHPs). No active, recognized test procedure or rating standard exists for IHPs. Generating a rating standard with supporting test procedure that is approved by the American Society of Heating, Refrigerating, and Air Conditioning (ASHRAE) and the Air Conditioning, Heating, and Refrigeration Institute (AHRI) is necessary for these products to be viably marketed. The primary market segment for IHPs is residential buildings, both single-family and small, low-rise multifamily dwellings.

255

Integration of reclamation and tailings management in oil sands surface mine planning  

Science Journals Connector (OSTI)

The processing of oil sands generates large volumes of slurry, known as tailings, that is impounded in tailings ponds. Oil sands operators are committed to develop reclamation plans to ensure that the mine site is restored to a natural or economically ... Keywords: Integer programming, Mine planning, Oil sands, Open-pit mining, Reclamation planning, Strategic planning, Tailings management

Mohammad Mahdi Badiozamani; Hooman Askari-Nasab

2014-01-01T23:59:59.000Z

256

Corrective action investigation plan for CAU Number 453: Area 9 Landfill, Tonopah Test Range  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and criteria for conducting site investigation activities at the Area 9 Landfill, Corrective Action Unit (CAU) 453/Corrective Action (CAS) 09-55-001-0952, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, Nevada. The Area 9 Landfill is located northwest of Area 9 on the TTR. The landfill cells associated with CAU 453 were excavated to receive waste generated from the daily operations conducted at Area 9 and from range cleanup which occurred after test activities.

NONE

1997-05-14T23:59:59.000Z

257

Molten-Caustic-Leaching (MCL or Gravimelt) System Integration Project. Topical report for test circuit operation  

SciTech Connect (OSTI)

This is a report of the results obtained from the operation of an integrated test circuit for the Molten-Caustic-Leaching (MCL or Gravimelt) process for the desulfurization and demineralization of coal. The objectives of operational testing of the 20 pounds of coal per hour integrated MCL test circuit are: (1) to demonstrate the technical capability of the process for producing a demineralized and desulfurized coal that meets New Source Performance Standards (NSPS); (2) to determine the range of effective process operation; (3) to test process conditions aimed at significantly lower costs; and (4) to deliver product coal.

Not Available

1990-11-01T23:59:59.000Z

258

Evaluation of Packaging Film Mechanical Integrity Using a Standardized Scratch Test  

E-Print Network [OSTI]

EVALUATION OF PACKAGING FILM MECHANICAL INTEGRITY USING A STANDARDIZED SCRATCH TEST A Thesis by BRIAN ANTHONY HARE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 2011 Major Subject: Materials Science and Engineering Evaluation of Packaging Film Mechanical Integrity Using a Standardized Scratch Test Copyright 2011 Brian...

Hare, Brian

2012-10-19T23:59:59.000Z

259

CoalFleet RD&D augmentation plan for integrated gasification combined cycle (IGCC) power plants  

SciTech Connect (OSTI)

To help accelerate the development, demonstration, and market introduction of integrated gasification combined cycle (IGCC) and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiative, which facilitates collaborative research by more than 50 organizations from around the world representing power generators, equipment suppliers and engineering design and construction firms, the U.S. Department of Energy, and others. This group advised EPRI as it evaluated more than 120 coal-gasification-related research projects worldwide to identify gaps or critical-path activities where additional resources and expertise could hasten the market introduction of IGCC advances. The resulting 'IGCC RD&D Augmentation Plan' describes such opportunities and how they could be addressed, for both IGCC plants to be built in the near term (by 2012-15) and over the longer term (2015-25), when demand for new electric generating capacity is expected to soar. For the near term, EPRI recommends 19 projects that could reduce the levelized cost-of-electricity for IGCC to the level of today's conventional pulverized-coal power plants with supercritical steam conditions and state-of-the-art environmental controls. For the long term, EPRI's recommended projects could reduce the levelized cost of an IGCC plant capturing 90% of the CO{sub 2} produced from the carbon in coal (for safe storage away from the atmosphere) to the level of today's IGCC plants without CO{sub 2} capture. EPRI's CoalFleet for Tomorrow program is also preparing a companion RD&D augmentation plan for advanced-combustion-based (i.e., non-gasification) clean coal technologies (Report 1013221). 7 refs., 30 figs., 29 tabs., 4 apps.

NONE

2007-01-15T23:59:59.000Z

260

Wave Tank Testing and Model Validation Â… An Integrated Approach  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wave Tank Testing and Model Validation - Lessons Learned Wave Tank Testing and Model Validation - Lessons Learned Mirko Previsic 7-7-12 2 Representing the Full-Scale System P, V qv q T u q Generator Guide vanes Turbine Blades Configuration 3 Appropriate Modeling of Physics Run-time is important to make a model useful as an engineering and/or optimization tool. * Have to be selective about how the physics is represented in the model * Different physical phenomena are important to different WEC devices Subscale modeling allows to help us understand and validate the models physics. * Ideally we can isolate physical phenomena to properly debug theoretical model * Focus is on validating fluid-structure interaction * Scaling of mechanical systems needs to represent the physics of the full- scale system (i.e. mooring, power-take-off, control system).

Note: This page contains sample records for the topic "integrated test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A Process Model of Applicant Faking on Overt Integrity Tests  

E-Print Network [OSTI]

of empirically tested models or appropriate theoretical structures to explain the process (Griffith & McDaniel, 2006; Murphy, 2000). Moreover, there seems to be a limited understanding of possible outcomes associated with applicant faking..., Barrett, & Hogan, 2007; McFarland & Ryan, 2006; Morgeson et al., 2007). According to recent studies, approximately 30-50% of job applicants consciously try to elevate their scores (Donovan, Dwight, & Hurtz, 2003; Griffith et al., 2007)1. Faking...

Yu, Janie

2010-01-14T23:59:59.000Z

262

Evaluation of component integrity by non-destructive testing  

Science Journals Connector (OSTI)

Non-destructive methods achieve an ever-increasing role in the inspection of structural components. However, restricting NDT to its classical domain, the detection of flaws, one takes only limited advantage of its possibilities. Non-destructive testing pro- vides the ability to differentiate different structures of materials or to measure internal and induced stresses, thus providing data for the calculation of reliability and potential lifetime. To reach this goal, NDT data must be combined with results of destructive testing. Here, a closer monitoring of fast processes like crack propagation, especially under an impact load, may provide a better understanding of materials behaviour. Again, inertia-free NDT methods with high time-resolution are especially suited to the task. The potentials of NDT are further increased by the development of automatic data acquisition and processing. Computerization provides highly discriminative evaluation methods, as cross-correlation or cluster analysis. To demonstrate the potentials of NDT, a variety of examples will be presented, including fast sensitive tests which allow a more accurate localization and appropriate description of flaws, structures and stresses by different optical, electromagnetic, radiographic and acoustic methods.

H.-A. Crostack; W. Reimers

1988-01-01T23:59:59.000Z

263

This course differs from other urban design or planning programmes in its integrated planning, design, science and  

E-Print Network [OSTI]

; with an understanding of global trends, such as economic globalisation, the financial and real estate crisis, climate in a critical way and to propose new solutions for an efficient, sustainable Coming to grips with global with the natural and man-made conditions of the site in order to shape and plan for more sustainable development

Langendoen, Koen

264

AFCI Fuel Irradiation Test Plan, Test Specimens AFC-1Ć and AFC-1F  

SciTech Connect (OSTI)

The U. S. Advanced Fuel Cycle Initiative (AFCI) seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products, thereby dramatically decreasing the volume of material requiring disposition and the long-term radiotoxicity and heat load of high-level waste sent to a geologic repository (DOE, 2003). One important component of the technology development is actinide-bearing transmutation fuel forms containing plutonium, neptunium, americium (and possibly curium) isotopes. There are little irradiation performance data available on non-fertile fuel forms, which would maximize the destruction rate of plutonium, and low-fertile (i.e., uranium-bearing) fuel forms, which would support a sustainable nuclear energy option. Initial scoping level irradiation tests on a variety of candidate fuel forms are needed to establish a transmutation fuel form design and evaluate deployment of transmutation fuels.

D. C. Crawford; S. L. Hayes; B. A. Hilton; M. K. Meyer; R. G. Ambrosek; G. S. Chang; D. J. Utterbeck

2003-11-01T23:59:59.000Z

265

Depolarizing the debate: Can retail wheeling co-exist with integrated resource planning?  

SciTech Connect (OSTI)

Antagonists in the retail wheeling debate share a disgruntlement with the present industry structure and a desire to rely more on competition to achieve savings and efficiencies. But the critical question - is retail electric service a natural monopoly? - must be answered in the negative if retail competition is to be efficient. Only then should one go on to examine how such a regime might be structured. This article offers an approach to retail wheeling that is grounded in principles shared by both sides: economic efficiency, nondiscrimination and fairness to customers and shareholders. The article then turns to the source of both sides` disgruntlement: the industry`s illogical structure. This article discusses four principles: (1) Where retail electric service is a natural monopoly, unconditioned retail wheeling is inefficient; (2) Most arguments for unconditioned retail wheeling substitute a pecuniary interest for the public interest; (3) Efficient retail procurement within a natural retail monopoly must be consistent with an integrated resource plan; (4) As presently framed, the retail wheeling debate does not confront the electric industry`s structural flaws.

Hempling, S.

1994-04-01T23:59:59.000Z

266

Integrating knowledge-based techniques into well-test interpretation  

SciTech Connect (OSTI)

The goal of the Spirit Project was to develop a prototype of next-generation well-test-interpretation (WTI) software that would include knowledge-based decision support for the WTI model selection task. This paper describes how Spirit makes use of several different types of information (pressure, seismic, petrophysical, geological, and engineering) to support the user in identifying the most appropriate WTI model. Spirit`s knowledge-based approach to type-curve matching is to generate several different feasible interpretations by making assumptions about the possible presence of both wellbore storage and late-time boundary effects. Spirit fuses information from type-curve matching and other data sources by use of a knowledge-based decision model developed in collaboration with a WTI expert. The sponsors of the work have judged the resulting prototype system a success.

Harrison, I.W.; Fraser, J.L. [Artificial Intelligence Applications Inst., Edinburgh (United Kingdom)

1995-04-01T23:59:59.000Z

267

DOE/NETL's Phase II Plans for Full-Scale Mercury Removal Technology Field-Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Phase II Plans for Full-Scale Phase II Plans for Full-Scale Mercury Removal Technology Field-Testing Air Quality III September 12, 2002 Arlington, Va Scott Renninger, Project Manager for Mercury Control Technology Enviromental Projects Division Presentation Outline * Hg Program goals & objectives * Focus on Future Hg control R&D * Q&As President Bush's Clear Skies Initiative Current Mid-Term 2008-2010 2018 SO 2 11 million tons 4.5 million tons 3 million tons NOx 5 million tons 2.1 million tons 1.7 million tons Mercury 48 tons 26 tons 15 tons Annual U.S. Power Plant Emissions Mercury Control * Developing technologies ready for commercial demonstration: - By 2005, reduce emissions 50-70% - By 2010, reduce emissions by 90% - Cost 25-50% less than current estimates 2000 Year 48 Tons $2 - 5 Billion @ 90% Removal w/Activated

268

RERTR Program: goals, progress and plans. [Reduced Enrichment Research and Test Reactor  

SciTech Connect (OSTI)

The status of the US Reduced Enrichment Research and Test Reactor (RERTR) Program is reviewed. After a brief outline of RERTR Program objectives and goals, program accomplishments are discussed with emphasis on the development, demonstration and application of new LEU fuels. Most program activities have proceeded as planned, and a combination of two silicide fuels (U/sub 3/Si/sub 2/-Al and U/sub 3/Si-Al) holds excellent promise for achieving the long-term program goals. Current plans and schedules project the uranium density of qualified RERTR fuels for plate-type reactors to grow by approximately 1 g U/cm/sup 3/ each year, from the nearly null value of 1982 to the 7.0 g U/cm/sup 3/ which will be reached in early 1989. The technical needs of research reactors for HEU exports are also estimated to undergo a gradual but dramatic decline in the coming years.

Travelli, A.

1984-09-25T23:59:59.000Z

269

Test Plan to Evaluate the Relationship Among IAQ, Comfort, Moisture, and Ventilation in Humid Climates  

SciTech Connect (OSTI)

This experimental plan describes research being conducted by Pacific Northwest National Laboratory (PNNL), in coordinatation with Florida Solar Energy Center (FSEC), Florida HERO, and Lawrence Berkeley National Laboratory (LBNL) to evaluate the impact of ventilation rate on interior moisture levels, temperature distributions, and indoor air contaminant concentrations. Specifically, the research team will measure concentrations of indoor air contaminants, ventilation system flow rates, energy consumption, and temperature and relative humidity in ten homes in Gainesville, FL to characterize indoor pollutant levels and energy consumption associated with the observed ventilation rates. PNNL and FSEC have collaboratively prepared this experimental test plan, which describes background and context for the proposed study; the experimental design; specific monitoring points, including monitoring equipment, and sampling frequency; key research questions and the associated data analysis approach; experimental logistics, including schedule, milestones, and team member contact information; and clearly identifies the roles and responsibilities of each team in support of project objectives.

Widder, Sarah H.; Martin, Eric

2013-03-15T23:59:59.000Z

270

Measuring and Testing Equipment Assessment plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Broader source: Energy.gov (indexed) [DOE]

Measuring and Test Equipment Measuring and Test Equipment Assessment Plan NNSA/Nevada Site Office Independent Oversight Division Performance Objective: The objective of this assessment is to determine whether a program is in place which assures that Measuring and Test Equipment (M&TE) used in activities affecting quality and safety are properly controlled, calibrated, and adjusted at specified times to maintain accuracy within necessary limits. Criteria: All M&TE is uniquely identified, calibrated, controlled, and provides accuracy traceability. A recall program maintains the total inventory and status of all M&TE. Out-of-tolerance M&TE is removed from service. Plant equipment calibrated with out-of-tolerance M&TE is evaluated in a timely manner for impact on previous output, current operability and is re-

271

Measuring and Testing Equipment Assessment plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Broader source: Energy.gov (indexed) [DOE]

Measuring and Test Equipment Measuring and Test Equipment Assessment Plan NNSA/Nevada Site Office Independent Oversight Division Performance Objective: The objective of this assessment is to determine whether a program is in place which assures that Measuring and Test Equipment (M&TE) used in activities affecting quality and safety are properly controlled, calibrated, and adjusted at specified times to maintain accuracy within necessary limits. Criteria: All M&TE is uniquely identified, calibrated, controlled, and provides accuracy traceability. A recall program maintains the total inventory and status of all M&TE. Out-of-tolerance M&TE is removed from service. Plant equipment calibrated with out-of-tolerance M&TE is evaluated in a timely manner for impact on previous output, current operability and is re-

272

Field operations plan for permeability testing in the WIPP-site underground facility  

SciTech Connect (OSTI)

This Field Operations Plan (FOP) describes the objectives, design, equipment, and methodology for permeability tests to be conducted in boreholes drilled from the underground facility currently under construction at the 655-meter depth level at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico into relatively undisturbed portions of the Salado formation. The WIPP is a U. S. Department of Energy research and development facility designed to demonstrate safe disposal of transuranic radioactive wastes resulting from the United States`s defense programs. The testing described in this FOP will be conducted by INTERA Technologies, Inc., under contract to the Earth Sciences Division of Sandia National Laboratories (SNL). The testing program is part of the WIPP-site Hydrogeologic Characterization and Plugging and Sealing programs being conducted by SNL`s Earth Sciences and Experimental Programs Divisions, respectively.

Saulnier, G.J. Jr. [Intera Technologies, Inc., Austin, TX (United States)

1988-08-09T23:59:59.000Z

273

Field operations plan for permeability testing in the WIPP-site underground facility  

SciTech Connect (OSTI)

This Field Operations Plan (FOP) describes the objectives, design, equipment, and methodology for permeability tests to be conducted in boreholes drilled from the underground facility currently under construction at the 655-meter depth level at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico into relatively undisturbed portions of the Salado formation. The WIPP is a U. S. Department of Energy research and development facility designed to demonstrate safe disposal of transuranic radioactive wastes resulting from the United States's defense programs. The testing described in this FOP will be conducted by INTERA Technologies, Inc., under contract to the Earth Sciences Division of Sandia National Laboratories (SNL). The testing program is part of the WIPP-site Hydrogeologic Characterization and Plugging and Sealing programs being conducted by SNL's Earth Sciences and Experimental Programs Divisions, respectively.

Saulnier, G.J. Jr. (Intera Technologies, Inc., Austin, TX (United States))

1988-08-09T23:59:59.000Z

274

Status and Plans for an SRF Accelerator Test Facility at Fermilab  

E-Print Network [OSTI]

A superconducting RF accelerator test facility is currently under construction at Fermilab. The accelerator will consist of an electron gun, 40 MeV injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, and multiple downstream beam lines for testing diagnostics and performing beam experiments. With 3 cryomodules installed this facility will initially be capable of generating an 810 MeV electron beam with ILC beam intensity. The facility can accommodate up to 6 cryomodules for a total beam energy of 1.5 GeV. This facility will be used to test SRF cryomodules under high intensity beam conditions, RF power equipment, instrumentation, and LLRF and controls systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

Church, M; Nagaitsev, S

2012-01-01T23:59:59.000Z

275

Quality Assurance Program Plan for TRUPACT-II Gas Generation Test Program  

SciTech Connect (OSTI)

The Gas Generation Test Program (GGTP), referred to as the Program, is designed to establish the concentration of flammable gases and/or gas generation rates in a test category waste container intended for shipment in the Transuranic Package Transporter-II (TRUPACT-II). The phrase "gas generationtesting" shall refer to any activity that establishes the flammable gas concentration or the flammable gas generation rate. This includes, but is not limited to, measurements performed directly on waste containers or during tests performed on waste containers. This Quality Assurance Program Plan (QAPP) documents the quality assurance (QA) and quality control (QC) requirements that apply to the Program. The TRUPACT-II requirements and technical bases for allowable flammable gas concentration and gas generation rates are described in the TRUPACT-II Authorized Methods for Payload Control (TRAMPAC).

Carlsbad Field Office

2002-03-01T23:59:59.000Z

276

warned that the world was asleep at the wheel. Back then, only two countries had plans to test  

E-Print Network [OSTI]

warned that the world was asleep at the wheel. Back then, only two countries had plans to test in a hospital examin- ing room in Rochester, New York. Pressing a ball of cotton into the crook of her elbow

Cai, Long

277

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 496: Buried Rocket Site, Antelope Lake, Tonopah Test Range  

SciTech Connect (OSTI)

This Streamlined Approach for Environmental Restoration (SAFER) plan details the activities necessary to close Corrective Action Unit 496: Buried Rocket Site, Antelope Lake. CAU 496 consists of one site located at the Tonopah Test Range, Nevada.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

2004-05-01T23:59:59.000Z

278

Record of Technical Change - Corrective Action Plan for Corrective Action Unit 204: Storage Bunkers, Nevada Test Site, Nevada, Revision 0  

SciTech Connect (OSTI)

Record of Technical Change, Technical Change No. CAP-1, dated April 13, 2005 for Corrective Action Plan for Corrective Action Unit 204: Storage Bunkers, Nevada Test Site, Nevada, Revision 0, September 2004, DOE/NV--1003.

U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office; Bechtel Nevada

2005-04-13T23:59:59.000Z

279

Multi-agent-based integrated framework for intra-class testing of object-oriented software  

Science Journals Connector (OSTI)

The primary features of the object-oriented paradigm lead to develop a complex and compositional testing framework for object-oriented software. Agent-oriented approach has become a trend in software engineering. Agent technologies facilitate the software testing by virtue of their high-level independency with parallel activation and automation. This paper proposed an integrated framework that has been built on two existing testing techniques namely Mutation Testing and Capability Testing. In both the cases, testing is carried out at Autonomous Unit Level (AUL) and Inter-Procedural Level (IPL). Mutation-Based Testing-Agent and Capability Assessment Testing-Agent have been developed for performing AUL testing and Method Interaction Testing-Agent has been developed for performing IPL testing. This agent-based framework is an attempt for developing an automated software testing environment and among the several phases of Software Development Life Cycle (SDLC), this framework is recommended for unit testing in code complete phase and alpha phase. This methodology gives the basic approach to agent-based frameworks for testing and to optimization of agent-based testing schedules, subject to timing constraints. This adds “interesting new opportunities in the object-oriented software testing phase” to the existing literature that is concerned with software testing frameworks.

P. Dhavachelvan; G.V. Uma

2005-01-01T23:59:59.000Z

280

Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab  

SciTech Connect (OSTI)

The Advanced Superconducting Test Accelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750 MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

Leibfritz, J.; Andrews, R.; Baffes, C.M.; Carlson, K.; Chase, B.; Church, M.D.; Harms, E.R.; Klebaner, A.L.; Kucera, M.; Martinez, A.; Nagaitsev, S.; /Fermilab

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

ESTER, Enel integrated System for TEsts on stoRage (Smart Grid Project) |  

Open Energy Info (EERE)

ESTER, Enel integrated System for TEsts on stoRage (Smart Grid Project) ESTER, Enel integrated System for TEsts on stoRage (Smart Grid Project) Jump to: navigation, search Project Name ESTER, Enel integrated System for TEsts on stoRage Country Italy Headquarters Location Livorno, Italy Coordinates 43.551876°, 10.308011° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.551876,"lon":10.308011,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

282

Addendum to environmental monitoring plan Nevada Test Site and support facilities  

SciTech Connect (OSTI)

This 1992 Addendum to the ``Environmental Monitoring Plan Nevada Test Site and Support Facilities -- 1991,`` Report No. DOE/NV/1 0630-28 (EMP) applies to the US Department of Energy`s (DOE`s) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Field Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this 1992 Addendum to the EMP brings together, in one document, updated information and/or new sections to the description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA) originally published in the EMP. The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards.

NONE

1992-11-01T23:59:59.000Z

283

Acid rain program: CEMS submission instructions for monitoring plans, certification test notifications, and quarterly reports  

SciTech Connect (OSTI)

The Acid Rain Program regulations require all affected utility units to continuously measure, record and report SO2, NOx, volumetric flow data and CO2 emissions. All affected units also must continuously measure and record opacity, and must report opacity exceedances to the appropriate State or Local Agency. To ensure that your CEMS and fuel flowmeters are performing at an acceptable level, and providing quality assured data, you are required under 40 CFR 75.53, 75.62 (a) to submit a monitoring plan and certification test data for acid rain CEM certificaton. The purpose of this handbook is to help you fulfill your requirements under the Acid Rain Program. This handbook will walk you through the necessary steps for gaining CEMS certification, including filling out and mailing the proper forms, administering the required tests, and applying for certification and sending in electronic data to EPA.

NONE

1995-05-12T23:59:59.000Z

284

Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan  

SciTech Connect (OSTI)

This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications.

TEMPLETON, A.M.

2000-01-31T23:59:59.000Z

285

IRSP (integrated resource strategic planning) with interconnected smart grids in integrating renewable energy and implementing DSM (demand side management) in China  

Science Journals Connector (OSTI)

Abstract The China's electricity consumption was 4966 TWh in 2012, which is the world top electricity consumer. The low carbon electricity is one of the key issues of its sustainable development. IRSP (integrated resource strategic planning) is a useful tool to implement DSM (demand side management) and power planning on the supply side. However, the role of interconnected smart grids with fast growing cross-region transmission is not considered in the IRSP. Therefore, the paper proposes the model of IRSP with interconnected smart grids to integrate more renewable power generation to the grids and implement more DSM projects, which is called as IRSP-sgs (IRSP smart grids) model. Two scenarios are projected to study the impact of cross-region transmission on low carbon electricity by using the IRSP-sgs model until 2025 in China. Results show that the scenario with enhanced cross-region transmission helps to reduce electricity generation by 784.38 TWh and reduce CO2 emission by 999.57 million tons during 2013–2025, since the multi-regional power operation can integrate more than 488.30 TWh renewable generation into the grids and implement more DSM projects to substitute generation. In addition, it also provides tremendous opportunities to improve the stable operation of the power system.

Yanan Zheng; Zhaoguang Hu; Jianhui Wang; Quan Wen

2014-01-01T23:59:59.000Z

286

Utility Integrated Resource Planning: An Emerging Driver of New Renewable Generation in the Western United States  

E-Print Network [OSTI]

in their treatment of renewable resources and the costs andtowards that portfolio. Renewable resources were once rarelyobjectively evaluate renewable resources. Planned Renewable

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

287

Radiobiological plan optimization in Proton therapy for Prostate tumors using a Patched Integrated Edge [PIE] technique.  

E-Print Network [OSTI]

?? Purpose: A novel treatment planning technique using proton pencil beam scanning (PBS) is proposed that takes advantage of the increased Linear Energy Transfer (LET)… (more)

Fager, Marcus

2013-01-01T23:59:59.000Z

288

Supplemental Investigation Plan for FFACO Use Restrictions, Nevada Test Site, Nevada, Revision 0  

SciTech Connect (OSTI)

This document is part of an effort to re-evaluate all FFACO URs against the current RBCA criteria (referred to in this document as the Industrial Sites [IS] RBCA process) as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006a). After reviewing all of the existing FFACO URs, the 12 URs addressed in this Supplemental Investigation Plan (SIP) could not be evaluated against the current RBCA criteria as sufficient information about the contamination at each site was not available. This document presents the plan for conducting field investigations to obtain the needed information. This SIP includes URs from Corrective Action Units (CAUs) 326, 339, 358, 452, 454, 464, and 1010, located in Areas 2, 6, 12, 19, 25, and 29 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada; and CAU 403, located in Area 3 of the Tonopah Test Range, which is approximately 165 miles north of Las Vegas, Nevada.

Lynn Kidman

2008-02-01T23:59:59.000Z

289

Design and Simulation of IOTA - a Novel Concept of Integrable Optics Test Accelerator  

SciTech Connect (OSTI)

The use of nonlinear lattices with large betatron tune spreads can increase instability and space charge thresholds due to improved Landau damping. Unfortunately, the majority of nonlinear accelerator lattices turn out to be nonintegrable, producing chaotic motion and a complex network of stable and unstable resonances. Recent advances in finding the integrable nonlinear accelerator lattices have led to a proposal to construct at Fermilab a test accelerator with strong nonlinear focusing which avoids resonances and chaotic particle motion. This presentation will outline the main challenges, theoretical design solutions and construction status of the Integrable Optics Test Accelerator (IOTA) underway at Fermilab.

Nagaitsev, S.; Valishev, A.; /Fermilab; Danilov, V.V.; /Oak Ridge; Shatilov, D.N.; /Novosibirsk, IYF

2012-05-01T23:59:59.000Z

290

Molten-Caustic-Leaching (Gravimelt) System Integration Project, Phase 2. Topical report for test circuit operation  

SciTech Connect (OSTI)

The objective of the task (Task 6) covered in this document was to operate the refurbished/modified test circuit of the Gravimeh Process in a continuous integrated manner to obtain the engineering and operational data necessary to assess the technical performance and reliability of the circuit. This data is critical to the development of this technology as a feasible means of producing premium clean burning fuels that meet New Source Performance Standards (NSPS). Significant refurbishments and design modifications had been made to the facility (in particular to the vacuum filtration and evaporation units) during Tasks 1 and 2, followed by off-line testing (Task 3). Two weeks of continuous around-the-clock operation of the refurbished/modified MCL test circuit were performed. During the second week of testing, all sections of the plant were operated in an integrated fashion for an extended period of time, including a substantial number of hours of on-stream time for the vacuum filters and the caustic evaporation unit. A new process configuration was tested in which centrate from the acid wash train (without acid addition) was used as the water makeup for the water wash train, thus-eliminating the one remaining process waste water stream. A 9-inch centrifuge was tested at various solids loadings and at flow rates up to 400 lbs/hr of coal feed to obtain a twenty-fold scaleup factor over the MCL integrated test facility centrifuge performance data.

Not Available

1993-02-01T23:59:59.000Z

291

Framework and systematic functional criteria for integrated work processes in complex assets: a case study on integrated planning in offshore oil and gas production industry  

Science Journals Connector (OSTI)

Improving the efficiency and cost-effectiveness of the oil and gas (O&G) production process is considered as a critical timely need. The core work processes in particular are targeted for considerable improvements. In this context, development related to integrated planning (IP) is seen as one of the major bases for developing collaborative work processes connecting offshore production and onshore support system. With feasible benefits, for instance, relating to reduction of non-working time, less work repetition, reduction of reduction in production losses, better resource utilisation, etc., a systematic and a complete IP system is today seen as an attractive solution for integrating complex operations and to work smarter. This paper, based on a case study from North Sea oil and gas production environment, describes the systematic functional criteria required as the basis for developing a fully functional IP system.

Yu Bai; Jayantha P. Liyanage

2012-01-01T23:59:59.000Z

292

Independent Verification and Validation Of SAPHIRE 8 System Test Plan Project Number: N6423 U.S. Nuclear Regulatory Commission  

SciTech Connect (OSTI)

The purpose of the Independent Verification and Validation (IV&V) role in the evaluation of the SAPHIRE System Test Plan is to assess the approach to be taken for intended testing activities associated with the SAPHIRE software product. The IV&V team began this endeavor after the software engineering and software development of SAPHIRE had already been in production.

Kent Norris

2010-02-01T23:59:59.000Z

293

Cold test plan for the Old Hydrofracture Facility tank contents removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This Old Hydrofracture Facility (OHF) Tanks Contents Removal Project Cold Test Plan describes the activities to be conducted during the cold test of the OHF sluicing and pumping system at the Tank Technology Cold Test Facility (TTCTF). The TTCTF is located at the Robotics and Process Systems Complex at the Oak Ridge National Laboratory (ORNL). The cold test will demonstrate performance of the pumping and sluicing system, fine-tune operating instructions, and train the personnel in the actual work to be performed. After completion of the cold test a Technical Memorandum will be prepared documenting completion of the cold test, and the equipment will be relocated to the OHF site.

NONE

1997-11-01T23:59:59.000Z

294

Fusion Engineering and Design 7579 (2005) 2932 First integrated test of the superconducting magnet systems  

E-Print Network [OSTI]

Fusion Engineering and Design 75­79 (2005) 29­32 First integrated test of the superconducting of Applied Physics and Applied Mathematics Room 210 S.W., Mudd Building, New York, NY 10027, USA Available at the center of a 5 m diameter, 3 m tall vacuum chamber. The Floating coil (F-coil) is designed for a maximum

295

Making Automated Testing of Cloud Applications an Integral Component of PaaS  

E-Print Network [OSTI]

Making Automated Testing of Cloud Applications an Integral Component of PaaS Stefan Bucur Johannes application software stacks. While the platform-as-a-service (PaaS) model has streamlined ap- plication difficult. We argue that a modern PaaS offering should include a facility to thoroughly and automatically

Candea, George

296

NREL Vehicle Testing and Integration Facility (VTIF): Rotating Shadowband Radiometer (RSR); Golden, Colorado (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This measurement station at NREL's Vehicle Testing and Integration Facility (VTIF) monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment.

Lustbader, J.; Andreas, A.

297

DNFSB Recommendation 94-1 Hanford Site Integrated Stabilization Management Plan. Volume 1  

SciTech Connect (OSTI)

This document describes the plans of the Hanford Site for the safe interim storage of fissile materials. Currently, spent nuclear fuels reside in storage basins that have leaked in the past and are projected to leak in the future. Other problems in the basins include; sludge from decomposition, degraded cladding of fuel elements, and construction defects which make the basins seismically unsafe. This management plan describes the time and cost that it will take to implement a safe interim storage plan for the fissile materials.

McCormack, R.L.

1995-08-01T23:59:59.000Z

298

Integrated Project Management Planning for the Deactivation of the Savannah River Site F-Canyon Complex  

SciTech Connect (OSTI)

This paper explains the planning process that is being utilized by the Westinghouse Savannah River Company to take the F-Canyon Complex facilities from operations to a deactivated condition awaiting final decommissioning.

Clark, T.G.

2000-12-01T23:59:59.000Z

299

Implementation of the Integrated Planning Concept to Strengthen Indonesian Radiation Emergency Response Capabilities  

E-Print Network [OSTI]

Nuclear power has been included in Indonesian national plan as an alternative solution for electricity production. However, Indonesia lies within the Pacific Ring of Fire with around 129 active volcanoes along its region. In addition, the Indonesian...

Volia, Merinda Fitri

2014-07-30T23:59:59.000Z

300

Cost-Efficiency in Water Management Through Demand Side Management and Integrated Planning  

Science Journals Connector (OSTI)

In the context of regional planning for efficient management of water and wastewater, it is crucial ... situation. This consists of measures for water demand side management, comparison of different scenarios of ...

Dr. Ing. Ralf Otterpohl

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Integrated method to create optimal dynamic strategic plans for corporate technology start-ups  

E-Print Network [OSTI]

This thesis presents an innovative method for evaluating and dynamically planning the development of uncertain technology investments. Its crux centers on a paradigm shift in the way managers assess investments, toward an ...

Mikati, Samir Omar

2009-01-01T23:59:59.000Z

302

Experimental plan and construction guidance for Hanford Protective Barrier Test at Hill AFB, Utah  

SciTech Connect (OSTI)

Permanent isolation surface barriers are needed to fully isolate buried waste materials for long periods of time from the general environment. Multi-layer surface barriers that use natural earthen materials overlying bio-intrusion layers of rock and/or asphalt are expected to reduce infiltration or deep percolation to less than 0.5 mm (0.02 in.) of water. The layering also reduces root penetration, preventing uptake and translocation of hazardous materials to the surface vegetation. The opportunity exists to test the Hanford Barrier in a wetter, colder climate at an existing lysimeter facility located at Hill Air Force Base near Salt Lake, Utah. The use of an existing lysimeter facility simplifies the construction effort and allows comparison of the Hanford Protective Barrier with an existing US Environmental Protection Agency-Resource Conservation and Recovery Act clay cap already undergoing tests at the lysimeter site. This document presents the experimental plan for testing the Hanford Protective Barrier in a wetter, colder climate.

Kirkham, R.R.; Gee, G.W.

1994-04-01T23:59:59.000Z

303

DOE-STD-3026-99; DOE Standard Filter Test Facility Quality Program Plan  

Broader source: Energy.gov (indexed) [DOE]

6-99 6-99 February 1999 Superseding DOE NE F 3-44 July 1986 DOE STANDARD FILTER TEST FACILITY QUALITY PROGRAM PLAN U.S. Department of Energy FSC 4460 Washington, D.C. 20585 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-3026-99 iii FOREWORD This Department of Energy standard supercedes DOE NE F 3-44 and is approved for use by all DOE components and their contractors.

304

W-026 integrated engineering cold run operational test report for balance of plant (BOP)  

SciTech Connect (OSTI)

This Cold Run test is designed to demonstrate the functionality of systems necessary to move waste drums throughout the plant using approved procedures, and the compatibility of these systems to function as an integrated process. This test excludes all internal functions of the gloveboxes. In the interest of efficiency and support of the facility schedule, the initial revision of the test (rev 0) was limited to the following: Receipt and storage of eight overpacked drums, four LLW and four TRU; Receipt, routing, and staging of eleven empty drums to the process area where they will be used later in this test; Receipt, processing, and shipping of two verification drums (Route 9); Receipt, processing, and shipping of two verification drums (Route 1). The above listed operations were tested using the rev 0 test document, through Section 5.4.25. The document was later revised to include movement of all staged drums to and from the LLW and TRU process and RWM gloveboxes. This testing was performed using Sections 5.5 though 5.11 of the rev 1 test document. The primary focus of this test is to prove the functionality of automatic operations for all mechanical and control processes listed. When necessary, the test demonstrates manual mode operations as well. Though the gloveboxes are listed, only waste and empty drum movement to, from, and between the gloveboxes was tested.

Kersten, J.K.

1998-02-24T23:59:59.000Z

305

Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interim Test Procedures for Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications S. Chakraborty, W. Kramer, B. Kroposki, G. Martin, P. McNutt, M. Kuss, T. Markel, and A. Hoke Technical Report NREL/TP-5500-51001 June 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications S. Chakraborty, W. Kramer, B. Kroposki, G. Martin, P. McNutt, M. Kuss, T. Markel,

306

Continuing the Validation of CCIM Processability for Glass Ceramic HLLW Forms: Plan for Test AFY14CCIM-GC1  

SciTech Connect (OSTI)

This test plan covers test AFY14CCIM-GC1which is the first of two scheduled FY-2014 test runs involving glass ceramic waste forms in the Idaho National Laboratory’s Cold Crucible Induction Melter Pilot Plant. The test plan is based on the successes and challenges of previous tests performed in FY-2012 and FY-2013. The purpose of this test is to continue to collect data for validating the glass ceramic High Level Liquid Waste form processability advantages using Cold Crucible Induction Melter technology. The major objective of AFYCCIM-GC1 is to complete additional proposed crucible pouring and post tapping controlled cooling experiments not completed during previous tests due to crucible drain failure. This is necessary to qualify that no heat treatments in standard waste disposal canisters are necessary for the operational scale production of glass ceramic waste forms. Other objectives include the production and post-test analysis of surrogate waste forms made from separate pours into the same graphite mold canister, testing the robustness of an upgraded crucible bottom drain and drain heater assembly, testing the effectiveness of inductive melt initiation using a resistive starter ring with a square wave configuration, and observing the tapped molten flow behavior in pans with areas identical to standard High Level Waste disposal canisters. Testing conditions, the surrogate waste composition, key testing steps, testing parameters, and sampling and analysis requirements are defined.

Vince Maio

2014-04-01T23:59:59.000Z

307

Industrial Sites Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada (including Record of Technical Change Nos. 1, 2, 3, and 4)  

SciTech Connect (OSTI)

This Leachfield Corrective Action Units (CAUs) Work Plan has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the U.S. Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the U.S. Department of Defense (FFACO, 1996). Under the FFACO, a work plan is an optional planning document that provides information for a CAU or group of CAUs where significant commonality exists. A work plan may be developed that can be referenced by leachfield Corrective Action Investigation Plans (CAIPs) to eliminate redundant CAU documentation. This Work Plan includes FFACO-required management, technical, quality assurance (QA), health and safety, public involvement, field sampling, and waste management documentation common to several CAUs with similar site histories and characteristics, namely the leachfield systems at the Nevada Test Site (NTS) and the Tonopah Test Range (TT R). For each CAU, a CAIP will be prepared to present detailed, site-specific information regarding contaminants of potential concern (COPCs), sampling locations, and investigation methods.

DOE/NV

1998-12-18T23:59:59.000Z

308

Integration and road tests of a self-sensing CNT concrete pavement system for traffic detection  

Science Journals Connector (OSTI)

In this paper, a self-sensing carbon nanotube (CNT) concrete pavement system for traffic detection is proposed and tested in a roadway. Pre-cast and cast-in-place self-sensing CNT concrete sensors were simultaneously integrated into a controlled pavement test section at the Minnesota Road Research Facility (MnROAD), USA. Road tests of the system were conducted by using an MnROAD five-axle semi-trailer tractor truck and a van, respectively, both in the winter and summer. Test results show that the proposed self-sensing pavement system can accurately detect the passing of different vehicles under different vehicular speeds and test environments. These findings indicate that the developed self-sensing CNT concrete pavement system can achieve real-time vehicle flow detection with a high detection rate and a low false-alarm rate.

Baoguo Han; Kun Zhang; Tom Burnham; Eil Kwon; Xun Yu

2013-01-01T23:59:59.000Z

309

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006 1289 Profile-Guided Microarchitectural Floor Planning  

E-Print Network [OSTI]

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006 1289 Profile-Guided Microarchitectural Floor Planning for Deep Submicron Processor Design Mongkol integration (VLSI) process tech- nology migrates to nanoscale with a feature size of less than 100 nm, global

Lim, Sung Kyu

310

Test plan for evaluating the operational performance of the prototype nested, fixed-depth fluidic sampler  

SciTech Connect (OSTI)

The PHMC will provide Low Activity Wastes (LAW) tank wastes for final treatment by a privatization contractor from two double-shell feed tanks, 241-AP-102 and 241-AP-104. Concerns about the inability of the baseline ''grab'' sampling to provide large volume samples within time constraints has led to the development of a nested, fixed-depth sampling system. This sampling system will provide large volume, representative samples without the environmental, radiation exposure, and sample volume impacts of the current base-line ''grab'' sampling method. A plan has been developed for the cold testing of this nested, fixed-depth sampling system with simulant materials. The sampling system will fill the 500-ml bottles and provide inner packaging to interface with the Hanford Sites cask shipping systems (PAS-1 and/or ''safe-send''). The sampling system will provide a waste stream that will be used for on-line, real-time measurements with an at-tank analysis system. The cold tests evaluate the performance and ability to provide samples that are representative of the tanks' content within a 95 percent confidence interval, to sample while mixing pumps are operating, to provide large sample volumes (1-15 liters) within a short time interval, to sample supernatant wastes with over 25 wt% solids content, to recover from precipitation- and settling-based plugging, and the potential to operate over the 20-year expected time span of the privatization contract.

REICH, F.R.

1999-05-18T23:59:59.000Z

311

Status of the RERTR program: overview, progress and plans. [Reduced Enrighment Research and Test Reactor  

SciTech Connect (OSTI)

The status of the US Reduced Enrichment Research and Test Reactor (RERTR) Program is reviewed. After a summary of the accomplishments which the RERTR Program had achieved by the end of 1984 with its many international partners, emphasis is placed on the progress achieved during 1985 and on current plans and schedules. A new miniplate series, concentrating on U/sub 3/Si/sub 2/-Al and U/sub 3/Si-Al fuels, was fabricated and is well into irradiation. The whole-core ORR demonstration is scheduled to begin in November 1985, with U/sub 3/Si/sub 2/-Al fuel at 4.8 g U/cm/sup 3/. Altogether, 921 full-size test and prototype elements have been ordered for fabrication with reduced enrichment and the new technologies. Qualification of U/sub 3/Si-Al fuel with approx.7 g U/cm/sup 3/ is still projected for 1989. This progress could not have been achieved without the close international cooperation which has existed since the beginning, and whose continuation and intensification will be essential to the achievement of the long-term RERTR goals.

Travelli, A.

1985-01-01T23:59:59.000Z

312

Application of a Mathematic Programming Model for Integrated Planning and Scheduling of Petroleum Supply Networks  

Science Journals Connector (OSTI)

Because the detailed scheduling constraints are often ignored in the planning model, there is no guarantee that an operable schedule can be obtained with this hierarchical approach. ... 2,3,4 A petroleum supply chain can be roughly divided into four segments:? (1) exploration, (2) transportation, (3) refining, and (4) distribution. ... A number of LP-based commercial software packages are available for generating production plans in the refineries, for example, RPMS9 (refinery and petrochemical modeling system) and PIMS10 (process industry modeling system). ...

Tung-Hsiung Kuo; Chuei-Tin Chang

2008-02-27T23:59:59.000Z

313

D-Site PRINCETON PLASMA TEST PLAN ISTP-NSTX-001  

E-Print Network [OSTI]

Planning Form #_______(ENG-032) Lockout/Tagout (ESH-016) Confined Space Permit (5008, Sec. 8, Chap 5) Lift

Princeton Plasma Physics Laboratory

314

Modeling and Field Test Planning Activities in Support of Disposal of Heat-Generating Waste in Salt  

SciTech Connect (OSTI)

The modeling efforts in support of the field test planning conducted at LBNL leverage on recent developments of tools for modeling coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. These are modeling capabilities that will be suitable for assisting in the design of field experiment, especially related to multiphase flow processes coupled with mechanical deformations, at high temperature. In this report, we first examine previous generic repository modeling results, focusing on the first 20 years to investigate the expected evolution of the different processes that could be monitored in a full-scale heater experiment, and then present new results from ongoing modeling of the Thermal Simulation for Drift Emplacement (TSDE) experiment, a heater experiment on the in-drift emplacement concept at the Asse Mine, Germany, and provide an update on the ongoing model developments for modeling brine migration. LBNL also supported field test planning activities via contributions to and technical review of framework documents and test plans, as well as participation in workshops associated with field test planning.

Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

2014-09-26T23:59:59.000Z

315

COS DCE BOOT FSW v1.13 Component Test Results Requirement 5.5.1.3 Check Upload Integrity  

E-Print Network [OSTI]

COS DCE BOOT FSW v1.13 Component Test Results Requirement 5.5.1.3 Check Upload Integrity Date. Brownsberger 2-13-01 The Center for Astrophysics and Space Astronomy Reviewed: Approved: COS DCE BOOT FSW v1 Initial Release COS DCE BOOT FSW v1.13 Component Test Results Requirement 5.5.1.3 Check Upload Integrity

Colorado at Boulder, University of

316

COS DCE BOOT FSW v1.09 Component Test Results Requirement 5.5.1.3 Check Upload Integrity  

E-Print Network [OSTI]

COS DCE BOOT FSW v1.09 Component Test Results Requirement 5.5.1.3 Check Upload Integrity Date. Brownsberger 2-13-01 The Center for Astrophysics and Space Astronomy Reviewed: Approved: COS DCE BOOT FSW v1 Initial Release COS DCE BOOT FSW v1.09 Component Test Results Requirement 5.5.1.3 Check Upload Integrity

Colorado at Boulder, University of

317

Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report.

NSTec Environmental Restoration

2007-07-01T23:59:59.000Z

318

Corrective Action Plan for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada  

SciTech Connect (OSTI)

This Corrective Action Plan provides methods for implementing the approved corrective action alternative as provided in the Corrective Action Decision Document for the Central Nevada Test Area (CNTA), Corrective Action Unit (CAU) 417 (DOE/NV, 1999). The CNTA is located in the Hot Creek Valley in Nye County, Nevada, approximately 137 kilometers (85 miles) northeast of Tonopah, Nevada. The CNTA consists of three separate land withdrawal areas commonly referred to as UC-1, UC-3, and UC-4, all of which are accessible to the public. CAU 417 consists of 34 Corrective Action Sites (CASs). Results of the investigation activities completed in 1998 are presented in Appendix D of the Corrective Action Decision Document (DOE/NV, 1999). According to the results, the only Constituent of Concern at the CNTA is total petroleum hydrocarbons (TPH). Of the 34 CASs, corrective action was proposed for 16 sites in 13 CASs. In fiscal year 1999, a Phase I Work Plan was prepared for the construction of a cover on the UC-4 Mud Pit C to gather information on cover constructibility and to perform site management activities. With Nevada Division of Environmental Protection concurrence, the Phase I field activities began in August 1999. A multi-layered cover using a Geosynthetic Clay Liner as an infiltration barrier was constructed over the UC-4 Mud Pit. Some TPH impacted material was relocated, concrete monuments were installed at nine sites, signs warning of site conditions were posted at seven sites, and subsidence markers were installed on the UC-4 Mud Pit C cover. Results from the field activities indicated that the UC-4 Mud Pit C cover design was constructable and could be used at the UC-1 Central Mud Pit (CMP). However, because of the size of the UC-1 CMP this design would be extremely costly. An alternative cover design, a vegetated cover, is proposed for the UC-1 CMP.

K. Campbell

2000-04-01T23:59:59.000Z

319

Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program  

SciTech Connect (OSTI)

EG&G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory`s (INEL`s) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), which identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG&G Idaho is responsible concerning the INEL WETP. Even though EG&G Idaho has no responsibility for the work that ANL-W is performing, EG&G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and efficiently completing the requirements for WETP.

Connolly, M.J.; Sayer, D.L.

1993-11-01T23:59:59.000Z

320

Distribution network planning integrating charging stations of electric vehicle with V2G  

Science Journals Connector (OSTI)

Abstract Accompanied by the popularization of EVs, the planning of electric vehicle (EV) charging stations becomes an important concern of distribution network planning. In this paper, the load density method is introduced to determine the optimal capacity of the EV charging stations in the areas to be planned, and the difference between 1 and the weight coefficients obtained by the analytic hierarchy process (AHP) method is used to calculate the cost coefficients of the charging station. The objective function of the optimal distribution network planning model should be the minimal cost of the fixed investments, the operational costs and the maintenance costs including the substations, charging stations and feeders. In this model, the effect of vehicle-to-grid (V2G) is considered, i.e., the EV is respectively treated as both the load and the source. Moreover, the electricity price volatility has been taken into consideration. In this case, EV owners can be guided to charge and discharge EV orderly. The ordinal optimization approach is applied to get the best solution. The results of the case study based on IEEE 54 nodes model show the feasibility and effectiveness of the proposed model.

Xiangning Lin; Jinwen Sun; Shengfang Ai; Xiaoping Xiong; Yunfei Wan; Dexian Yang

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Integration of Refinery Planning and Crude-Oil Scheduling using Lagrangian Decomposition  

E-Print Network [OSTI]

a large number of crude-oils, finished products such as liquified petroleum gas, gasoline, diesel fuel product blending and shipping. Some examples of nonlinear refinery planning problems including pooling, 2010 #12;crude-blends, and CDU feed charging. This problem has been addressed since the late 90s

Grossmann, Ignacio E.

322

The Application of Integrated Logistic Support Concepts in Energy Project Planning  

E-Print Network [OSTI]

ensure that a system will meet its performance requirements and receive effective and economical support throughout its life cycle. A major ILS objective is to ensure the integration within the design process of the various support elements. Techniques...

Meher-Homji, C. B.; Polad, F. S.

1983-01-01T23:59:59.000Z

323

Reversible Bending Fatigue Test System for Investigating Vibration Integrity of Spent Nuclear Fuel during Transportation  

SciTech Connect (OSTI)

Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading during road or rail shipment. Oak Ridge National Laboratory (ORNL) has been developing testing capabilities that can be used to improve the understanding of the impacts on SNF integrity due to vibration loading, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet the nuclear industry and U.S. Nuclear Regulatory Commission needs in the area of safety and security of spent nuclear fuel storage and transport operations. The ORNL developed test system can perform reversible-bending fatigue testing to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The testing apparatus is also designed to meet the challenges of hot-cell operation, including remote installation and detachment of the SNF test specimen, in-situ test specimen deformation measurement, and implementation of a driving system suitable for use in a hot cell. The system contains a U-frame set-up equipped with uniquely designed grip rigs, to protect SNF rod and to ensure valid test results, and use of 3 specially designed LVDTs to obtain the in-situ curvature measurement. A variety of surrogate test rods have been used to develop and calibrate the test system as well as in performing a series of systematic cyclic fatigue tests. The surrogate rods include stainless steel (SS) cladding, SS cladding with cast epoxy, and SS cladding with alumina pellets inserts simulating fuel pellets. Testing to date has shown that the interface bonding between the SS cladding and the alumina pellets has a significant impact on the bending response of the test rods as well as their fatigue strength. The failure behaviors observed from tested surrogate rods provides a fundamental understanding of the underlying failure mechanisms of the SNF surrogate rod under vibration which has not been achieved previously. The newly developed device is scheduled to be installed in the hot-cell in summer 2013 to test high burnup SNF.

Wang, Jy-An John [ORNL] [ORNL; Wang, Hong [ORNL] [ORNL; Bevard, Bruce Balkcom [ORNL] [ORNL; Howard, Rob L [ORNL] [ORNL; Flanagan, Michelle [U.S. Nuclear Regulatory Commission] [U.S. Nuclear Regulatory Commission

2013-01-01T23:59:59.000Z

324

Integral Benchmark Data for Nuclear Data Testing Through the ICSBEP & IRPhEP  

SciTech Connect (OSTI)

The status of the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and International Reactor Physics Experiment Evaluation Project (IRPhEP) was last discussed directly with the nuclear data community at ND2007. Since ND2007, integral benchmark data that are available for nuclear data testing have increased significantly. The status of the ICSBEP and the IRPhEP is discussed and selected benchmark configurations that have been added to the ICSBEP and IRPhEP Handbooks since ND2007 are highlighted.

J. Blair Briggs; John D. Bess; Jim Gulliford; Ian Hill

2013-10-01T23:59:59.000Z

325

Simulation of a small break loss of coolant accident conducted at the BETHSY Integral Test Facility  

E-Print Network [OSTI]

. The computer code RELAP5/MOD3 was used to model the BETHSY Integral Test Facility for a. small break loss of coolant accident. This transient simulates a 2 inch cold leg break without high pressure safety injection, following the conditions of International..., and general input to my gra, duate education. TABLE OF CONTENTS CHAPTER Page I INTRODUCTION I. 1 Need for Investigation I. 2 Computational Modeling . I. 3 Experimental Modeling I, 4 International Cooperation . 1 3 RELAP5 CODE DESCRIPTION II. 1...

Bott, Charles Patrick

1992-01-01T23:59:59.000Z

326

Independent Verification and Validation Of SAPHIRE 8 Software Acceptance Test Plan Project Number: N6423 U.S. Nuclear Regulatory Commission  

SciTech Connect (OSTI)

The purpose of the Independent Verification and Validation (IV&V) role in the evaluation of the SAPHIRE 8 Software Acceptance Test Plan is to assess the approach to be taken for intended testing activities. The plan typically identifies the items to be tested, the requirements being tested, the testing to be performed, test schedules, personnel requirements, reporting requirements, evaluation criteria, and any risks requiring contingency planning. The IV&V team began this endeavor after the software engineering and software development of SAPHIRE had already been in production.

Kent Norris

2010-03-01T23:59:59.000Z

327

ERRATA SHEET for Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada  

SciTech Connect (OSTI)

Section 2.1.1.3 of the Table of Contents reference on Page v and on Page 12 of the Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada erroneously refers to the Nevada Environmental Policy Act Determination. The correct title of the referenced document is the National Environmental Policy Act Determination.

K. B. Campbell

2002-04-01T23:59:59.000Z

328

Integrated project management plan for the Plutonium Finishing Plant stabilization and deactivation project  

SciTech Connect (OSTI)

This document sets forth the plans, organization, and control systems for managing the PFP Stabilization and Deactivation Project, and includes the top level cost and schedule baselines. The project includes the stabilization of Pu-bearing materials, storage, packaging, and transport of these and other nuclear materials, surveillance and maintenance of facilities and systems relied upon for storage of the materials, and transition of the facilities in the PFP Complex.

SINCLAIR, J.C.

1999-05-03T23:59:59.000Z

329

A new concept for utility integrated resource planning: ``Start with the customer``  

SciTech Connect (OSTI)

The competitive restructuring of the electric power industry is intensifying pressures for electric utilities to control costs through improved utilization of existing assets and by minimizing capital investment in new generation, transmission, and distribution capacity. This article introduces a new planning approach that can provide more informed business decisions, resulting in higher asset utilization, lower overall costs, and enhanced customer service. Unlike traditional planning methods, which assumed captive customer load growth, this process starts at the customer, focusing on how the customer`s energy service needs can best be met. Experience garnered from utilities on four continents illustrates the potential of this new approach to reduce capital expenditure for energy resource additions, often at less than one-half the cost of conventional solutions. By reorienting how utilities think, plan, and are internally organized, this new approach can assist utilities in making the fundamental transition to a customer-driven industry. Additional benefits include accurate costing of energy resources and wheeling, reduced vulnerability to conflicts over facility siting, reduced risk in a time of rapid industry change. The process proposed here may not be the best IRP process for utilities in the future but could be of significant benefit during the restructuring period.

Arsali, N.; Neelakanta, P.S.

1998-04-01T23:59:59.000Z

330

The RERTR (Reduced Enrichment Research and Test Reactor) Program: Progress and plans  

SciTech Connect (OSTI)

The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program is described. After a brief summary of the results which the RERTR Program, in collaboration with its many international partners, had achieved by the end of 1986, the activities, results, and new developments which occurred in 1987 are reviewed. Irradiation of the second miniplate series, concentrating on U/sub 3/Si/sub 2/-Al and U/sub 3/Si-Al fuels, was completed and postirradiation examinations were performed on many of its miniplates. The whole-core ORR demonstration with U/sub 3/Si/sub 2/-Al fuel at 4.8 g U/cm/sup 3/ was completed at the end of March with excellent results and with 29 elements estimated to have reached at least 40% average burnup. Good progress was made in the area of LEU usage for the production of fission /sup 99/Mo, and in the coordination of safety evaluations related to LEU conversions of US university reactors. Planned activities include testing and demonstrating advanced fuels intended to allow use of reduced enrichment uranium in very-high-performance reactors. Two candidate fuels are U/sub 3/Si-Al with 19.75% enrichment and U/sub 3/Si/sub 2/-Al with 45% enrichment. Demonstration of these fuels will include irradiation of full-size elements and, possibly, a full-core demonstration. Achievement of the final program goals is still projected for 1990. This progress could not have been possible without the close international cooperation which has existed from the beginning, and which is essential to the ultimate success of the RERTR Program.

Travelli, A.

1987-01-01T23:59:59.000Z

331

DOE/EA-1371; Integrated Natural Resources Management Plan, Environmental Assessment, and Finding of No Significant Impacts for Rock Creek Reserve (5/2001)  

Broader source: Energy.gov (indexed) [DOE]

INTEGRATED NATURAL RESOURCES MANAGEMENT PLAN, ENVIRONMENTAL ASSESSMENT and Finding Of No Significant Impacts for ROCK CREEK RESERVE 2001-Closure DOE/EA - 1371 Department of Energy Rocky Flats Environmental Technology Site and The U.S. Fish & Wildlife Service May, 2001 Dear Stakeholder: Enclosed is the Final Rock Creek Reserve Integrated Natural Resources Management Plan (Plan), Environmental Assessment (EA), and Finding Of No Significant Impacts (FONSI). The Rock Creek Reserve was dedicated on May 17, 1999, to be jointly managed by the US Fish and Wildlife Service and US Department of Energy. This Plan/EA was developed in accordance with the National Environmental Policy Act (NEPA) process. Through cooperation with the U.S. Fish and Wildlife Service for joint

332

Testing of a Receiver-Absorber-Converter (RAC) for the Integrated Solar Upper Stage (ISUS) program  

Science Journals Connector (OSTI)

The Integrated Solar Upper Stage (ISUS) is a solar bi-modal system based on a concept developed by Babcock & Wilcox in 1992. ISUS will provide advanced power and propulsion capabilities that will enable spacecraft designers to either increase the mass to orbit or decrease the cost to orbit for their satellites. In contrast to the current practice of using chemical propulsion for orbit transfer and photovoltaic conversion/battery storage for electrical power ISUS uses a single collection storage and conversion system for both the power and propulsion functions. The ISUS system is currently being developed by the Air Force’s Phillips Laboratory. The ISUS program consists of a systems analysis design and integration (SADI) effort and three major sub-system development efforts: the Concentrator Array and Tracking (CATS) sub-system which tracks the sun and collects/focuses the energy; the Receiver-Absorber-Converter (RAC) sub-system which receives and stores the solar energy transfers the stored energy to the propellant during propulsion operations and converts the stored energy to electricity during power operations; and the Cryogenic Storage and Propellant Feed Sub-system (CSPFS) which stores the liquid hydrogen propellant and provides it to the RAC during propulsion operations. This paper discuses the evolution of the RAC sub-system as a result of the component level testing and provides the initial results of systems level ground testing. A total of 5 RACs were manufactured as part of the Phillips Laboratory ISUS Technology Development program. The first series of component tests were carried out at the Solar Rocket Propulsion Laboratory at Edwards AFB California. These tests provided key information on the propulsion mode of operations. The second series of RAC tests were performed at the Thermionic Evaluation Facility (TEF) in Albuquerque New Mexico and provided information on the electrical performance of the RAC. The systems level testing was performed at the NASA Lewis Research Center Solar Simulator Facility (Tank 6) in Cleveland OH.

Kurt O. Westerman; Barry J. Miles

1998-01-01T23:59:59.000Z

333

Corrective Action Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

Corrective Action Unit (CAU) 543: Liquid Disposal Units is listed in Appendix III of the ''Federal Facility Agreement and Consent Order'' (FFACO) which was agreed to by the state of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). CAU 543 sites are located in Areas 6 and 15 of the Nevada Test Site (NTS), which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 543 consists of the following seven Corrective Action Sites (CASs) (Figure 1): CAS 06-07-01, Decon Pad; CAS 15-01-03, Aboveground Storage Tank; CAS 15-04-01, Septic Tank; CAS 15-05-01, Leachfield; CAS 15-08-01, Liquid Manure Tank; CAS 15-23-01, Underground Radioactive Material Area; and CAS 15-23-03, Contaminated Sump, Piping. All Area 15 CASs are located at the former U.S. Environmental Protection Agency (EPA) Farm, which operated from 1963 to 1981 and was used to support animal experiments involving the uptake of radionuclides. Each of the Area 15 CASs, except CAS 15-23-01, is associated with the disposal of waste effluent from Building 15-06, which was the primary location of the various tests and experiments conducted onsite. Waste effluent disposal from Building 15-06 involved piping, sumps, outfalls, a septic tank with leachfield, underground storage tanks, and an aboveground storage tank (AST). CAS 15-23-01 was associated with decontamination activities of farm equipment potentially contaminated with radiological constituents, pesticides, and herbicides. While the building structures were removed before the investigation took place, all the original tanks, sumps, piping, and concrete building pads remain in place. The Area 6 CAS is located at the Decontamination Facility in Area 6, a facility which operated from 1971 to 2001 and was used to decontaminate vehicles, equipment, clothing, and other materials that had become contaminated during nuclear testing activities. The CAS includes the effluent collection and distribution systems for Buildings 6-605, 6-606, and 6-607, which consists of septic tanks, sumps, piping, floor drains, drain trenches, cleanouts, and a concrete foundation. Additional details of the site history are provided in the CAU 543 Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2004a), and the CAU 543 Corrective Action Decision Document (CADD) (NNSA/NSO, 2005).

NSTec Environmental Restoration

2007-04-01T23:59:59.000Z

334

Test plan for evaluation of plasma melter technology for vitrification of high-sodium content low-level radioactive liquid wastes  

SciTech Connect (OSTI)

This document provides a test plan for the conduct of plasma arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384212] is the Westinghouse Science and Technology Center (WSTC) in Pittsburgh, PA. WSTC authors of the test plan are D. F. McLaughlin, E. J. Lahoda, W. R. Gass, and N. D`Amico. The WSTC Program Manager for this test is D. F. McLaughlin. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes melting of glass frit with Hanford LLW Double-Shell Slurry Feed waste simulant in a plasma arc fired furnace.

McLaughlin, D.F.; Lahoda, E.J.; Gass, W.R.; D`Amico, N. [ed.

1994-10-20T23:59:59.000Z

335

Integrated spare parts logistics and operations planning for maintenance service providers  

Science Journals Connector (OSTI)

Abstract This paper considers the problem of coordinated spare-part logistics and operations planning for third-party maintenance providers. Due to the multi-indenture structure of the equipment, different types of components might randomly fail to perform at different points of time. The spare part logistics literature has been focused on spare part inventory management in an in-house maintenance context. In this article, a mathematical programming model is first developed to formulate the problem in the context of a third-party maintenance provider who is faced with strict due dates for the delivery of repaired equipment. The model seeks the optimal number of maintenance jobs that can be completed to deliver at each period, as well as the order quantity of spare parts so as to minimize the procurement, inventory, and equipment late delivery costs, while taking into account the spare part supply lead-time. Next, we model the spare part demand uncertainty as a non-stationary stochastic process in each period in the planning horizon. The deterministic model is then reformulated as a multi-stage stochastic program with recourse. We also discuss the complexity of the stochastic model and propose a preprocessing approach to reduce its size for large instances. Numerical results demonstrate how the proposed model links the spare part logistics and equipment delivery decisions under spare part demand uncertainty.

Masoumeh Kazemi Zanjani; Mustapha Nourelfath

2014-01-01T23:59:59.000Z

336

Preliminary Investigations on a Test Bench for Integrated Micro-CHP Energy Systems  

Science Journals Connector (OSTI)

Abstract Micro-CHP (Combined Heat and Power) energy systems are potentially suitable for residential and tertiary utilities, typically characterized by low-grade heat demand and limited electric-to-thermal energy demand ratio values. Different innovative and under development CHP technologies are currently investigated in small scale units, but a standard has not been identified till now. Moreover, depending on the load request, the produced electricity can be used, stored in electric accumulator or in the external net, or integrated with other external sources. Contextually, the available heat can be used, accumulated inside the system or dissipated. The actual convenience of small size CHP systems depends on the demand profiles and the operation management logic. A test facility is being developed, at the University of Bologna, for the experimental characterization of the cogenerative performance of small scale hybrid power systems, composed of micro-CHP systems of different technologies (such as Organic Rankine Cycles and Proton Exchange Membrane Fuel Cells), a battery and a heat recovery subsystem. The test set-up is also integrated with an external load simulator, in order to generate variable load profiles. This report describes the main characteristics of the implemented test bench, the selection procedure of the adopted micro-CHP unit and expected performance.

Michele Bianchi; Lisa Branchini; Andrea De Pascale; Francesco Melino; Antonio Peretto

2014-01-01T23:59:59.000Z

337

DOE/NV/11718--449-REV1 INTEGRATED CLOSURE AND MONITORING PLAN  

National Nuclear Security Administration (NNSA)

Management Sites September 2001 28 Nevada Test Site The potential for oil and natural gas in southern Nye County is thought to be low (Garside et al., 1988; Castor, et al.,...

338

Safer Work Plan for CAUs 452, 454, 456, and 464 Closure of Historical UST Release Sites Nevada Test Site  

SciTech Connect (OSTI)

This plan addresses characterization and closure of nine underground storage tank petroleum hydrocarbon release sites. The sites are located at the Nevada Test Site in Areas 2, 9, 12, 23, and 25. The underground storage tanks associated with the release sites and addressed by this plan were closed between 1990 and 1996 by the U. S. Department of Energy, Nevada Operations Office. One underground storage tank was closed in place (23-111-1) while the remaining eight were closed by removal. Hydrocarbon releases were identified at each of the sites based upon laboratory analytical data samples collected below the tank bottoms. The objective of this plan is to provide a method for implementing characterization and closure of historical underground storage tank hydrocarbon release sites.

Jerry Bonn

1997-08-01T23:59:59.000Z

339

Barrier erosion control test plan: Gravel mulch, vegetation, and soil water interactions  

SciTech Connect (OSTI)

Soil erosion could reduce the water storage capacity of barriers that have been proposed for the disposal of near-surface waste at the US Department of Energy's Hanford Site. Gravel mixed into the top soil surface may create a self-healing veneer that greatly retards soil loss. However, gravel admixtures may also enhance infiltration of rainwater, suppress plant growth and water extraction, and lead to the leaching of underlying waste. This report describes plans for two experiments that were designed to test hypotheses concerning the interactive effects of surface gravel admixtures, revegetation, and enhanced precipitation on soil water balance and plant abundance. The first experiment is a factorial field plot set up on the site selected as a soil borrow area for the eventual construction of barriers. The treatments, arranged in a a split-split-plot design structure, include two densities of gravel admix, a mixture of native and introduced grasses, and irrigation to simulate a wetter climate. Changes in soil water storage and plant cover are monitored with neutron moisture probes and point intercept sampling, respectively. The second experiment consists of an array of 80 lysimeters containing several different barrier prototypes. Surface treatments are similar to the field-plot experiment. Drainage is collected from a valve at the base of each lysimeter tube, and evapotranspiration is estimated by subtraction. The lysimeters are also designed to be coupled to a whole-plant gas exchange system that will be used to conduct controlled experiments on evapotranspiration for modeling purposes. 56 refs., 6 figs., 8 tabs.

Waugh, W.J.; Link, S.O. (Pacific Northwest Lab., Richland, WA (USA))

1988-07-01T23:59:59.000Z

340

Comparative risk analysis for the Rocky Flats Plant integrated project planning  

SciTech Connect (OSTI)

The Rocky Flats Plant is developing, with active stakeholder participation, a comprehensive planning strategy that will support transition of the Rocky Flats Plant from a nuclear weapons production facility to site cleanup and final disposition. Final disposition of the Rocky Flats Plant materials and contaminants requires consideration of the interrelated nature of sitewide problems, such as material movement and disposition, facility and land use endstates, costs, relative risks to workers and the public, and waste disposition. Comparative risk analysis employs both incremental risk and cumulative risk evaluations to compare risks from postulated options or end states. These postulated options or end states can be various remedial alternatives, or future endstate uses of federal land.

Jones, M.E.; Shain, D.I.

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "integrated test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Comparative risk analysis for the Rocky Flats Plant integrated project planning  

SciTech Connect (OSTI)

The Rocky Flats Plant is developing, with active stakeholder a comprehensive planning strategy that will support transition of the Rocky Flats Plant from a nuclear weapons production facility to site cleanup and final disposition. Final disposition of the Rocky Flats Plant materials and contaminants requires consideration of the interrelated nature of sitewide problems, such as material movement and disposition, facility and land use endstates, costs relative risks to workers and the public, and waste disposition. Comparative Risk Analysis employs both incremental risk and cumulative risk evaluations to compare risks from postulated options or endstates. These postulated options or endstates can be various remedial alternatives, or future endstate uses of federal agency land. Currently, there does not exist any approved methodology that aggregates various incremental risk estimates. Comparative Risk Analysis has been developed to aggregate various incremental risk estimates to develop a site cumulative risk estimate. This paper discusses development of the Comparative Risk Analysis methodology, stakeholder participation and lessons learned from these challenges.

Jones, M.E.; Shain, D.I.

1994-05-01T23:59:59.000Z

342

Study plan for water movement test: Site Characterization Plan Study 8.3.1.2.2.2  

SciTech Connect (OSTI)

The water movement tracer test is designed to produce information derived from isotopic measurements of soil and tuff samples collected from Yucca Mountain that is pertinent for assessing the performance of a nuclear waste repository. Measurements of chlorine isotropic distributions will help characterize the percolation of precipitation into the unsaturated zone. The {sup 36}Cl in the unsaturated zone occurs from atmospheric fallout of {sup 36}Cl produced by cosmic-ray secondaries reacting with {sup 40}Ar and, to a lesser extent, with {sup 36}Ar. It also occurs as global fallout from high-yield nuclear weapons tests conducted at the Pacific Proving Grounds between 1952 and 1962. When chloride ions at the surface are washed underground by precipitation, the radioactive decay of the {sup 36}Cl in the chloride can be used to time the rate of water movement. The {sup 36}l half-life of 301,000 yr permits the detection of water movement in the range of approximately 50,000 to 2 million years. These data are part of the input for developing numerical models of ground water flow at this site. 5 refs., 4 figs., 4 tabs.

Norris, A.E.

1989-09-01T23:59:59.000Z

343

Streamlined Approach for Environmental Restoration Work Plan for Corrective Action Unit 461: Joint Test Assembly Sites and Corrective Action Unit 495: Unconfirmed Joint Test Assembly Sites Tonopah Test Range, Nevada  

SciTech Connect (OSTI)

This Streamlined Approach for Environmental Restoration plan addresses the action necessary for the clean closure of Corrective Action Unit 461 (Test Area Joint Test Assembly Sites) and Corrective Action Unit 495 (Unconfirmed Joint Test Assembly Sites). The Corrective Action Units are located at the Tonopah Test Range in south central Nevada. Closure for these sites will be completed by excavating and evaluating the condition of each artillery round (if found); detonating the rounds (if necessary); excavating the impacted soil and debris; collecting verification samples; backfilling the excavations; disposing of the impacted soil and debris at an approved low-level waste repository at the Nevada Test Site

Jeff Smith

1998-08-01T23:59:59.000Z

344

Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation  

E-Print Network [OSTI]

Report - 2006 Minnesota Wind Integration Study Volume I.NREL). 2010. Eastern Wind Integration and TransmissionAvista Corporation Wind Integration Study. March. http://

Eto, Joseph H.

2011-01-01T23:59:59.000Z

345

Full scale field test of the in situ air stripping process at the Savannah River integrated demonstration test site  

SciTech Connect (OSTI)

Under sponsorship from the US Department of Energy, technical personnel from the Savannah River Laboratory (SRL) and other DOE laboratories, universities and private industry have completed a full scale demonstration of environmental remediation using horizontal wells. This demonstration was performed as Phase I of an Integrated Demonstration Project designed to evaluate innovative remediation technologies for environmental restoration of sites contaminated with organic contaminants. The demonstration utilized two directionally drilled horizontal wells to deliver gases and extract contaminants from the subsurface. The resulting in situ air stripping process was designed to remediate soils and sediments above and below the water table as well as groundwater contaminated with volatile organic contaminants. The 139 day long test successfully removed volatile chlorinated solvents from the subsurface using the two horizontal wells. One well, approximately 300 ft (90m) long and 165 ft (50m) deep drilled below a contaminant plume in the groundwater, was used to inject air and strip the contaminants from the groundwater. A second horizontal well, approximately 175 ft (53m) long and 75 ft (23m) deep in the vadose zone, was used to extract residual contamination in the vadose zone along with the material purged from the groundwater. Pretest and posttest characterization data and monitoring data during the demonstration were collected to aid in interpretation of the test and to provide the information needed for future environmental restoration that employ directionally drilled wells as extraction or delivery systems. Contaminant concentration data and microbiological monitoring data are summarized in this report; the characterization data and geophysical monitoring data are documented in a series of related project reports.

Looney, B.B.; Hazen, T.C.; Kaback, D.S.; Eddy, C.A.

1991-06-29T23:59:59.000Z

346

An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems  

SciTech Connect (OSTI)

Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the same project [1]. However, this work focuses on two materials: the LiF-BeF2 eutectic (67 and 33 mol%, respectively, also known as flibe) as primary coolant and the LiF-NaF-KF eutectic (46.5, 11.5, and 52 mol%, respectively, also known as flinak) as secondary heat transport fluid. At first common issues are identified, involving the preparation and purification of the materials as well as the development of suitable diagnostics. Than issues specific to each material and its application are considered, with focus on the compatibility with structural materials and the extension of the existing properties database.

Pattrick Calderoni

2010-09-01T23:59:59.000Z

347

2013 Annual Planning Summary for the Rocky Mountain Oilfield Testing Center  

Broader source: Energy.gov [DOE]

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Rocky Mountain Oilfield Testing Center . The Rocky Mountain Oilfield Testing...

348

Corrective Action Investigation plan for Corrective Action Unit 263: Area 25 Building 4839 Leachfield, Nevada Test Site, Nevada, March 1999  

SciTech Connect (OSTI)

The Corrective Action Investigation Plan for Corrective Action Unit 263, the Area 25 Building 4839 Leachfield, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the US Department of Energy, Nevada Operations Office; the Nevada Division of Environmental Protection; and the US Department of Defense. Corrective Action Unit 263 is comprised of the Corrective Action Site 25-05-04 sanitary leachfield and associated collection system. This Corrective Action Investigation Plan is used in combination with the Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada (DOE/NV, 1998d). The Leachfield Work Plan was developed to streamline investigations at Leachfield Corrective Action Units by incorporating management, technical, quality assurance, health and safety, public involvement, field sampling, and waste management information common to a set of Corrective Action Units with similar site histories and characteristics into a single document that can be referenced. This Corrective Action Investigation Plan provides investigative details specific to Corrective Action Unit 263. Corrective Action Unit 263 is located southwest of Building 4839, in the Central Propellant Storage Area. Operations in Building 4839 from 1968 to 1996 resulted in effluent releases to the leachfield and associated collection system. In general, effluent released to the leachfield consisted of sanitary wastewater from a toilet, urinal, lavatory, and drinking fountain located within Building 4839. The subsurface soils in the vicinity of the collection system and leachfield may have been impacted by effluent containing contaminants of potential concern generated by support activities associated with the Building 4839 operations.

ITLV

1999-03-01T23:59:59.000Z

349

DOE/EA-1371; Integrated Natural Resources Management Plan, Environmental Assessment, and Finding of No Significant Impacts for Rock Creek Reserve (5/2001)  

Broader source: Energy.gov (indexed) [DOE]

Finding of No Significant Impact Finding of No Significant Impact Integrated Natural Resources Management Plan and Environmental Assessment for Rock Creek Reserve Summary: The Department of Energy (DOE) with the assistance and cooperation of the US. Fish and Wildlife Service, prepared an Integrated Natural Resources Management Plan and Environmental Assessment (Plan)(DOE/EA-1371) for the Rock Creek Reserve at the Rocky Flats Environmental Technology Site (Site) located north of Golden, Colorado. The Rock Creek Reserve was established in May 1999 in recognition of the area's biological significance. Although still under the ownership of the DOE, the Rock Creek Reserve will be co- managed with the U. S. Fish and Wildlife Service as part of an interagency agreement signed by these two

350

Corrective Action Investigation Plan for Corrective Action Unit 528: Polychlorinated Biphenyls Contamination, Nevada Test Site, Nevada, Rev. 0  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 528, Polychlorinated Biphenyls Contamination (PCBs), Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in the southwestern portion of Area 25 on the NTS in Jackass Flats (adjacent to Test Cell C [TCC]), CAU 528 consists of Corrective Action Site 25-27-03, Polychlorinated Biphenyls Surface Contamination. Test Cell C was built to support the Nuclear Rocket Development Station (operational between 1959 and 1973) activities including conducting ground tests and static firings of nuclear engine reactors. Although CAU 528 was not considered as a direct potential source of PCBs and petroleum contamination, two potential sources of contamination have nevertheless been identified from an unknown source in concentrations that could potentially pose an unacceptable risk to human health and/or the environment. This CAU's close proximity to TCC prompted Shaw to collect surface soil samples, which have indicated the presence of PCBs extending throughout the area to the north, east, south, and even to the edge of the western boundary. Based on this information, more extensive field investigation activities are being planned, the results of which are to be used to support a defensible evaluation of corrective action alternatives in the corrective action decision document.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

2003-05-08T23:59:59.000Z

351

Evaluation of Maxim Module-Integrated Electronics at the DOE Regional Test Centers (Presentation)  

SciTech Connect (OSTI)

Module-embedded power electronics developed by Maxim Integrated are under evaluation through a partnership with the Department of Energy's Regional Test Center (RTC) program. Field deployments of both conventional modules and electronics-enhanced modules are designed to quantify the performance advantage of Maxim's products under different amounts of interrow shading, and their ability to be deployed at a greater ground-coverage ratio than conventional modules. Simulations in PVSYST have quantified the predicted performance difference between conventional modules and Maxim's modules from interrow shading. Initial performance results have identified diffuse irradiance losses at tighter row spacing for both the Maxim and conventional modules. Comparisons with published models show good agreement with models predicting the greatest diffuse irradiance losses. At tighter row spacing, all of the strings equipped with embedded power electronics outperformed their conventional peers. An even greater performance advantage is predicted to occur in the winter months when the amount of interrow shading mismatch is at a maximum.

Deline, C.; Sekulic, B.; Barkaszi, S.; Yang, J.; Kahn, S.

2014-06-01T23:59:59.000Z

352

Record of Technical Change for Corrective Action Plan for Corrective Action Unit 140: Waste Dumps, burn Pits, and Storage Area, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

Record of Technical Change for Corrective Action Plan for Corrective Action Unit 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site, Nevada (DOE/NV--963-Rev 2, dated November 2004).

U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office; Bechtel Nevada

2005-01-05T23:59:59.000Z

353

Closure of the Fast Flux Test Facility: Current Status and Future Plans  

SciTech Connect (OSTI)

The Fast Flux Test Facility (FFTF) was a 400 MWt sodium cooled fast reactor designed and constructed in the 1970's. The original purpose of the facility was to develop and test advanced fuels and materials for the liquid metal fast breeder reactor program. The facility operated very successfully from 1982 through 1992, fulfilling its original mission as well as other identified missions. However, in 1993 the Department of Energy concluded that there was no longer a need for the FFTF and thus ordered that it be shut down. Following eight years of additional study of potential new missions, the final decision to shut down the facility was made in 2001. (During this eight year period the plant was maintained in a condition to allow safe and efficient shut down or restart). The complete closure of the FFTF consists of the following phases: - Deactivation - removal/stabilization of hazards to allow long-term storage (2001-2009); - Surveillance and maintenance - minimum cost compliant storage (2010-2015); - Decontamination and decommissioning (2016-2024). All of the FFTF fuel has been removed from the site except the sodium-bonded fuel that is destined for transportation to Idaho National Laboratory for final disposition. The sodium-bonded fuel had metallic sodium inside of the fuel pin to increase the heat transfer from the fuel pellet to the clad in order to reduce pellet centerline temperature. Three hundred and seventy-six (376) fuel assemblies have been washed (sodium removed) and transferred to storage at other Hanford locations. The majority of the spent fuel is stored in interim storage casks designed for a 50 year storage life, holding seven assemblies each. All sodium systems have been drained and the sodium stored under an inert gas blanket at ambient temperature in a Sodium Storage Facility at the FFTF site. This facility consists of four large tanks and associated piping. The main contaminants are sodium-22, cesium-137 and tritium. The sodium-potassium (NaK) that was used as an intermediate cooling fluid in several FFTF systems has been drained and removed or flushed to sodium systems where it became mixed with the sodium. The in-containment hot cell has minimal sodium contamination, is currently inerted with argon and is being used for loading of the T-3 transportation cask with the sodium-bonded fuel for transportation to Idaho National Laboratory. The majority of the fuel handling machines are still operational and being used for loading the sodium-bonded fuel into the T-3 casks. This equipment will be shut down immediately following completion of shipment of the sodium-bonded fuel. The majority of hotel systems are still operating. Four of the eight 400-ton chillers have been shut down and four of the cooling towers have been shut down. The argon system is operational and supplying gas for sodium systems cover gas, in-containment hot cell atmosphere and fuel handling systems. The nitrogen system remains in service supplying cover gas to the demineralized water system and fire suppression systems. Eleven of the facilities nineteen transformers containing polychlorinated biphenyls (PCBs) have been removed and significant re-routing of power has been performed to support the long term minimum cost surveillance mode. Future plans include the complete deactivation, the long-term surveillance and maintenance, the sodium disposition and the decontamination and decommissioning The most complex and costly activity during the decontamination and decommissioning phase will be the removal of the 'residual sodium' in the sodium systems. It was impractical to remove the residual sodium during the systems draining evolution. It is estimated that approximately 24,000 liters (6,400 gallons) remain within the systems. The complexity of design of the FFTF exceeds any sodium facility in the United States in which sodium removal has occurred. There are a total of 21 miles of sodium piping in the FFTF as well as three large vessels (the reactor vessel and two spent fuel pool vessels) that will require partial disassembly and drilli

Farabee, O.A. [US Department of Energy, PO Box 550, Richland, WA 99352 (United States); Witherspoon, W.V. [Fluor Hanford, PO Box 1000 N2-51, Richland, WA 99352 (United States)

2008-01-15T23:59:59.000Z

354

California Energy Commission Public Interest Energy Research/Energy System Integration -- Transmission-Planning Research & Development Scoping Project  

E-Print Network [OSTI]

stakeholders in transmission-line route planning and sitingan “optimal” transmission line route-finding tool. This tool

Eto, Joseph H.; Lesieutre, Bernard; Widergren, Steven

2004-01-01T23:59:59.000Z

355

Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation  

E-Print Network [OSTI]

2007. Integration of Renewable Resources. Transmissionfor integrating renewable resources on the California ISO-assess the level of renewable resources that can be reliably

Eto, Joseph H.

2011-01-01T23:59:59.000Z

356

Planning, Execution, and Analysis of the Meridian UAS Flight Test Program Including System and Parameter Identification  

E-Print Network [OSTI]

is delayed until the wind speeds are within the appropriate limits. Storm Systems The UAV only operates in Visual Flight Rules conditions. Flights are delayed until such conditions are present. 3.2 Phase II: Line-of-Sight Autonomous Flight Test....1.5 Emergency Procedures ........................................................................... 22 3.2 Phase II: Line-of-Sight Autonomous Flight Test .............................................. 24 3.2.1 Flight Test Objectives...

Tom, Jonathan

2010-04-27T23:59:59.000Z

357

Standard Review Plan (SRP) Modules | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Quality Assurance » Standard Quality Assurance » Standard Review Plan (SRP) Modules Standard Review Plan (SRP) Modules Standard Review Plan - Critical Decision Handbook Overview Project Management Project Execution Plan Review Module (RM) Risk Management RM Integrated Project Team RM Earned Value Management System RM Acquisition Strategy RM Decommissioning Plan RM Site Transition Guidance Engineering and Design Conceptual Design RM Preliminary Design RM Final Design RM Construction Readiness RM Checkout, Testing, and Commissioning Plan RM Readiness Review RM Seismic Design Expectations Report Technology Readiness Assessment Report External Technical Review Report Preparation for Facility Operations RM Safety Safety Design Strategy RM Conceptual Safety Design RM Preliminary Safety Design RM Facility Disposition Safety Strategy RM

358

Project W-314 specific test and evaluation plan for transfer line SN-633 (241-AX-B to 241-AY-02A)  

SciTech Connect (OSTI)

The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made by the addition of the SN-633 transfer line by the W-314 Project. The STEP develops the outline for test procedures that verify the system`s performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation Plan (TEP). This STEP encompasses all testing activities required to demonstrate compliance to the project design criteria as it relates to the addition of transfer line SN-633. The Project Design Specifications (PDS) identify the specific testing activities required for the Project. Testing includes Validations and Verifications (e.g., Commercial Grade Item Dedication activities), Factory Acceptance Tests (FATs), installation tests and inspections, Construction Acceptance Tests (CATs), Acceptance Test Procedures (ATPs), Pre-Operational Test Procedures (POTPs), and Operational Test Procedures (OTPs). It should be noted that POTPs are not required for testing of the transfer line addition. The STEP will be utilized in conjunction with the TEP for verification and validation.

Hays, W.H.

1998-03-20T23:59:59.000Z

359

C:\WINNT\Profiles\caseys\DESKTOP\L T R C\PICs Program\Permanent Markers\PM Test Plan.PDF  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0-3175 0-3175 Permanent Markers Testing Program Plan September 28, 2000 United States Department of Energy Waste Isolation Pilot Plant Carlsbad Area Office Carlsbad, New Mexico Permanent Markers Testing Program Plan Waste Isolation Pilot Plant Carlsbad, New Mexico DOE/WIPP 00-3175 September 28, 2000 DOE/WIPP 00-3175 -i- Table of Contents List of Abbreviations and Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 1.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2.0 Markers Testing Program Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.0 Markers Systems Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1 Screening Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.1 Large Surface Markers . . . . . . . . . . . .

360

Liquid Effluent Monitoring Information System test plans releases 2.0 and 3.0  

SciTech Connect (OSTI)

The Liquid Effluent Monitoring Information System (LEMIS) is being developed as the organized information repository facility in support of the liquid effluent monitoring requirements of the Tri-Party Agreement. It is necessary to provide an automated repository into which the results from liquid effluent sampling will be placed. This repository must provide for effective retention, review, and retrieval of selected sample data by authorized persons and organizations. This System Architecture document is the aggregation of the DMR P+ methodology project management deliverables. Together they represent a description of the project and its plan through four Releases, corresponding to the definition and prioritization of requirements defined by the user.

Guettler, D.A.

1995-05-26T23:59:59.000Z

Note: This page contains sample records for the topic "integrated test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Integrated Resource PlanIntegrated Resource Plan Integrated Resource PlanIntegrated Resource Plan  

E-Print Network [OSTI]

Nominal Average Annual Henry Hub Gas Prices $120 $140 Nominal CO2 Prices $ $2 $4 $6 $8 $10 $12 $/MMBtu $20 2028 2029 2030 2031 2032 9/28/2012 FPC High CO2 Low Gas No CO2 High Gas US Hard Cap Med Gas $- $20 2013 (94 Portfolios) 2 #12;CO2 Emission Levels and Preferred Portfolio SelectionSelection 50 60 -CO2

362

Designing and testing the neutron source deployment system and calibration plan for a dark matter detector  

E-Print Network [OSTI]

In this thesis, we designed and tested a calibration and deployment system for the MiniCLEAN dark matter detector. The deployment system uses a computer controlled winch to lower a canister containing a neutron source into ...

Westerdale, Shawn (Shawn S.)

2011-01-01T23:59:59.000Z

363

Corrective Action Decision Document/ Corrective Action Plan for Corrective Action Unit 443: Central Nevada Test Area-Subsurface Central Nevada Test Area, Nevada, Rev. No. 0  

SciTech Connect (OSTI)

This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for the subsurface at the Central Nevada Test Area (CNTA) Corrective Action Unit (CAU) 443, CNTA - Subsurface, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996). CAU 443 is located in Hot Creek Valley in Nye County, Nevada, north of U.S. Highway 6, about 48 kilometers north of Warm Springs, Nevada. The CADD/CAP combines the decision document (CADD) with the corrective action plan (CAP) and provides or references the specific information necessary to recommend corrective actions for the UC-1 Cavity (Corrective Action Site 58-57-001) at CAU 443, as provided in the FFACO. The purpose of the CADD portion of the document (Section 1.0 to Section 4.0) is to identify and provide a rationale for the selection of a recommended corrective action alternative for the subsurface at CNTA. To achieve this, the following tasks were required: (1) Develop corrective action objectives; (2) Identify corrective action alternative screening criteria; (3) Develop corrective action alternatives; (4) Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria; and (5) Recommend a preferred corrective action alternative for the subsurface at CNTA. A Corrective Action Investigation (CAI) was performed in several stages from 1999 to 2003, as set forth in the ''Corrective Action Investigation Plan for the Central Nevada Test Area Subsurface Sites (Corrective Action Unit No. 443)'' (DOE/NV, 1999). Groundwater modeling was the primary activity of the CAI. Three phases of modeling were conducted for the Faultless underground nuclear test. The first involved the gathering and interpretation of geologic and hydrogeologic data into a three-dimensional numerical model of groundwater flow, and use of the output of the flow model for a transport model of radionuclide release and migration behavior (Pohlmann et al., 2000). The second modeling phase (known as a Data Decision Analysis [DDA]) occurred after the Nevada Division of Environmental Protection reviewed the first model and was designed to respond to concerns regarding model uncertainty (Pohll and Mihevc, 2000). The third modeling phase updated the original flow and transport model to incorporate the uncertainty identified in the DDA, and focused the model domain on the region of interest to the transport predictions. This third phase culminated in the calculation of contaminant boundaries for the site (Pohll et al., 2003).

Susan Evans

2004-11-01T23:59:59.000Z

364

Evaluation of Maxim Module-Integrated Electronics at the DOE Regional Test Centers: Preprint  

SciTech Connect (OSTI)

Module-embedded power electronics developed by Maxim Integrated are under evaluation through a partnership with the Department of Energy's Regional Test Center (RTC) program. Field deployments of both conventional modules and electronics-enhanced modules are designed to quantify the performance advantage of Maxim's products under different amounts of inter-row shading, and their ability to be deployed at a greater ground-coverage-ratio than conventional modules. Simulations in PVSYST have quantified the predicted performance difference between conventional modules and Maxim's modules from inter-row shading. Initial performance results have identified diffuse irradiance losses at tighter row spacing for both the Maxim and conventional modules. Comparisons with published models show good agreement with models predicting the greatest diffuse irradiance losses. At tighter row spacing, all of the strings equipped with embedded power electronics outperformed their conventional peers. An even greater performance advantage is predicted to occur in the winter months when the amount of inter-row shading mismatch is at a maximum.

Deline, C.; Sekulic, B.; Stein, J.; Barkaszi, S.; Yang, J.; Kahn, S.

2014-07-01T23:59:59.000Z

365

An integrated approach to coal gasifier testing, modeling, and process optimization  

SciTech Connect (OSTI)

Gasification is an important method of converting coal into clean-burning fuels and high-value industrial chemicals. However, gasifier reliability can be severely limited by rapid degradation of the refractory lining in hot-wall gasifiers. This paper describes an integrated approach to provide the experimental data and engineering models needed to better understand how to control gasifier operation for extended refractory life. The experimental program includes slag viscosity testing and measurement of slag penetration into refractories as a function of time and temperature. The experimental data is used in slag flow, slag penetration, and refractory damage models to predict the limits on operating temperature for increased refractory life. A simplified entrained flow gasifier model is also described to simulate one-dimensional axial flow with average axial velocity, coal devolatilization, and combustion kinetics. The goal of this experimental and model program is to predict coal and oxidant feed rates and to control the gasifier operation to balance coal conversion efficiency with increased refractory life. 26 refs., 7 figs., 3 tabs.

S.K. Sundaram; K.I. Johnson; J. Matyas; R.E. Williford; S.P. Pilli; V.N. Korolev [Pacific Northwest National Laboratory, Richland, WA (United States)

2009-09-15T23:59:59.000Z

366

California Energy Commission Public Interest Energy Research/Energy System Integration -- Transmission-Planning Research & Development Scoping Project  

E-Print Network [OSTI]

California Energy Commission Transmission Planning Analysis92, No. 5, Dec. CEC (California Energy Commission). 2004.of MCPs. California Energy Commission. Nov. CERTS PIER

Eto, Joseph H.; Lesieutre, Bernard; Widergren, Steven

2004-01-01T23:59:59.000Z

367

Nevada Test Site site treatment plan, final annual update. Revision 1  

SciTech Connect (OSTI)

A Site Treatment Plan (STP) is required for facilities at which the US Department of Energy Nevada Operations Office (DOE/NV) generates or stores mixed waste (MW), defined by the Federal Facility Compliance Act (FFCAct) as waste containing both a hazardous waste subject to the Resource Conservation and Recovery Act (RCRA) and a radioactive material subject to the Atomic Energy Act. This STP was written to identify specific treatment facilities for treating DOE/NV generated MW and provides proposed implementation schedules. This STP was approved by the Nevada Division of Environmental Protection (NDEP) and provided the basis for the negotiation and issuance of the FFCAct Consent Order (CO) dated March 6, 1996. The FFCAct CO sets forth stringent regulatory requirements to comply with the implementation of the STP.

NONE

1998-04-01T23:59:59.000Z

368

Model-driven Service Integration Testing -A Case Study Sebastian Wieczorek and Alin Stefanescu and Andreas Roth  

E-Print Network [OSTI]

; Service- oriented Architecture; Case Study; Service Choreographies I. INTRODUCTION Service-oriented architectures (SOA) provide frameworks and methods to compose single services in order to realize complexModel-driven Service Integration Testing - A Case Study Sebastian Wieczorek and Alin Stefanescu

Southampton, University of

369

A One System Integrated Approach to Simulant Selection for Hanford High Level Waste Mixing and Sampling Tests  

SciTech Connect (OSTI)

The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capabilities using simulated Hanford High-Level Waste (HLW) formulations. This represents one of the largest remaining technical issues with the high-level waste treatment mission at Hanford. Previous testing has focused on very specific TOC or WTP test objectives and consequently the simulants were narrowly focused on those test needs. A key attribute in the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2 is to ensure testing is performed with a simulant that represents the broad spectrum of Hanford waste. The One System Integrated Project Team is a new joint TOC and WTP organization intended to ensure technical integration of specific TOC and WTP systems and testing. A new approach to simulant definition has been mutually developed that will meet both TOC and WTP test objectives for the delivery and receipt of HLW. The process used to identify critical simulant characteristics, incorporate lessons learned from previous testing, and identify specific simulant targets that ensure TOC and WTP testing addresses the broad spectrum of Hanford waste characteristics that are important to mixing, sampling, and transfer performance are described.

Thien, Mike G. [Washington River Protection Solutions, LLC, Richland, WA (United States); Barnes, Steve M. [URS, Richland, WA (United States)

2013-01-17T23:59:59.000Z

370

A One System Integrated Approach to Simulant Selection for Hanford High Level Waste Mixing and Sampling Tests - 13342  

SciTech Connect (OSTI)

The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capabilities using simulated Hanford High-Level Waste (HLW) formulations. This represents one of the largest remaining technical issues with the high-level waste treatment mission at Hanford. Previous testing has focused on very specific TOC or WTP test objectives and consequently the simulants were narrowly focused on those test needs. A key attribute in the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2 is to ensure testing is performed with a simulant that represents the broad spectrum of Hanford waste. The One System Integrated Project Team is a new joint TOC and WTP organization intended to ensure technical integration of specific TOC and WTP systems and testing. A new approach to simulant definition has been mutually developed that will meet both TOC and WTP test objectives for the delivery and receipt of HLW. The process used to identify critical simulant characteristics, incorporate lessons learned from previous testing, and identify specific simulant targets that ensure TOC and WTP testing addresses the broad spectrum of Hanford waste characteristics that are important to mixing, sampling, and transfer performance are described. (authors)

Thien, Mike G. [Washington River Protection Solutions, LLC, P.O Box 850, Richland WA, 99352 (United States)] [Washington River Protection Solutions, LLC, P.O Box 850, Richland WA, 99352 (United States); Barnes, Steve M. [Waste Treatment Plant, 2435 Stevens Center Place, Richland WA 99354 (United States)] [Waste Treatment Plant, 2435 Stevens Center Place, Richland WA 99354 (United States)

2013-07-01T23:59:59.000Z

371

Corrective Action Investigation Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada: Revision 0  

SciTech Connect (OSTI)

The general purpose of this Corrective Action Investigation Plan is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technically viable corrective action alternatives (CAAs) for Corrective Action Unit (CAU) 543: Liquid Disposal Units, Nevada Test Site (NTS), Nevada. Located in Areas 6 and 15 on the NTS, CAU 543 is comprised of a total of seven corrective action sites (CASs), one in Area 6 and six in Area 15. The CAS in Area 6 consists of a Decontamination Facility and its components which are associated with decontamination of equipment, vehicles, and materials related to nuclear testing. The six CASs in Area 15 are located at the U.S. Environmental Protection Agency Farm and are related to waste disposal activities at the farm. Sources of possible contamination at Area 6 include potentially contaminated process waste effluent discharged through a process waste system, a sanitary waste stream generated within buildings of the Decon Facility, and radiologically contaminated materials stored within a portion of the facility yard. At Area 15, sources of potential contamination are associated with the dairy operations and the animal tests and experiments involving radionuclide uptake. Identified contaminants of potential concern include volatile organic compounds, semivolatile organic compounds, petroleum hydrocarbons, pesticides, herbicides, polychlorinated biphenyls, metals, and radionuclides. Three corrective action closure alternatives - No Further Action, Close in Place, or Clean Closure - will be recommended for CAU 543 based on an evaluation of all the data quality objective-related data. Field work will be conducted following approval of the plan. The results of the field investigation will support a defensible evaluation of CAAs that will be presented in the Corrective Action Decision Document.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

2004-05-03T23:59:59.000Z

372

FINAL REPORT INTEGRATED DM1200 MELTER TESTING USING AZ 102 AND C 106/AY-102 HLW SIMULANTS: HLW SIMULANT VERIFICATION VSL-05R5800-1 REV 0 6/27/05  

SciTech Connect (OSTI)

The principal objectives of the DM1200 melter tests were to determine the effects of feed rheology, feed solid content, and bubbler configuration on glass production rate and off-gas system performance while processing the HLW AZ-101 and C-106/AY-102 feed compositions; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components, as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and perform pre- and post test inspections of system components. The specific objectives (including test success criteria) of this testing, along with how each objective was met, are outlined in a table. The data provided in this Final Report address the impacts of HLW melter feed rheology on melter throughput and validation of the simulated HLW melter feeds. The primary purpose of this testing is to further validate/verify the HLW melter simulants that have been used for previous melter testing and to support their continued use in developing melter and off-gas related processing information for the Project. The primary simulant property in question is rheology. Simulants and melter feeds used in all previous melter tests were produced by direct addition of chemicals; these feed tend to be less viscous than rheological the upper-bound feeds made from actual wastes. Data provided here compare melter processing for the melter feed used in all previous DM100 and DM1200 tests (nominal melter feed) with feed adjusted by the feed vendor (NOAH Technologies) to be more viscous, thereby simulating more closely the upperbounding feed produced from actual waste. This report provides results of tests that are described in the Test Plan for this work. The Test Plan is responsive to one of several test objectives covered in the WTP Test Specification for this work; consequently, only part of the scope described in the Test Specification was addressed in this particular Test Plan. For the purpose of comparison, the tests reported here were performed with AZ-102 and C-106/AY-102 HLW simulants and glass compositions that are essentially the same as those used for recent DM1200 tests. One exception was the use of an alternate, higher-waste-loading C-106/AY-102 glass composition that was used in previous DM100 tests to further evaluate the performance of the optimized bubbler configuration.

KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D'ANGELO NA; BRANDYS M; KOT WK; PEGG IL

2011-12-29T23:59:59.000Z

373

Second Line of Defense, Megaports Initiative, Operational Testing and Evaluation Plan, Port of Lazaro Cardenas, Mexico  

SciTech Connect (OSTI)

The purpose of the Operational Testing and Evaluation (OT&E) phases of the project is to prepare for turnover of the Megaports System supplied by U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA)—located at the Export Lanes of the Port of Lazaro Cardenas, Mexico—to the Government of Mexico (GOM).

Hughes, Jamie D.

2012-05-30T23:59:59.000Z

374

Corrective Action Investigation Plan for Corrective Action Unit 375: Area 30 Buggy Unit Craters, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

Corrective Action Unit (CAU) 375 is located in Areas 25 and 30 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 375 comprises the two corrective action sites (CASs) listed below: • 25-23-22, Contaminated Soils Site • 30-45-01, U-30a, b, c, d, e Craters Existing information on the nature and extent of potential contamination present at the CAU 375 CASs is insufficient to evaluate and recommend corrective action alternatives (CAAs). This document details an investigation plan that will provide for the gathering of sufficient information to evaluate and recommend CAAs. Corrective Action Site 25-23-22 is composed of the releases associated with nuclear rocket testing at Test Cell A (TCA). Test Cell A was used to test and develop nuclear rocket motors as part of the Nuclear Rocket Development Station from its construction in 1958 until 1966, when rocket testing began being conducted at Test Cell C. The rocket motors were built with an unshielded nuclear reactor that produced as much as 1,100 kilowatts (at full power) to heat liquid hydrogen to 4,000 degrees Fahrenheit, at which time the expanded gases were focused out a nozzle to produce thrust. The fuel rods in the reactor were not clad and were designed to release fission fragments to the atmosphere, but due to vibrations and loss of cooling during some operational tests, fuel fragments in excess of planned releases became entrained in the exhaust and spread in the immediate surrounding area. Cleanup efforts have been undertaken at times to collect the fuel rod fragments and other contamination. Previous environmental investigations in the TCA area have resulted in the creation of a number of use restrictions. The industrial area of TCA is encompassed by a fence and is currently posted as a radioactive material area. Corrective Action Site 30-45-01 (releases associated with the Buggy Plowshare test) is located in Area 30 on Chukar Mesa. It was a Plowshare test where five nuclear devices were buried 140 feet (ft) deep in a row at 150-ft intervals. These devices were detonated on March 12, 1968, to produce a trench 254 ft wide, 865 ft long, and 70 ft deep. The mesa where the test was conducted is surrounded on three sides by ravines, and the entire end of the mesa is fenced and posted as a contamination area. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend CAAs. Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on December 2, 2009, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 375.

Patrick Matthews

2010-03-01T23:59:59.000Z

375

Supplemental Immobilization Cast Stone Technology Development and Waste Form Qualification Testing Plan  

SciTech Connect (OSTI)

The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). The pretreatment facility will have the capacity to separate all of the tank wastes into the HLW and LAW fractions, and the HLW Vitrification Facility will have the capacity to vitrify all of the HLW. However, a second immobilization facility will be needed for the expected volume of LAW requiring immobilization. A number of alternatives, including Cast Stone—a cementitious waste form—are being considered to provide the additional LAW immobilization capacity.

Westsik, Joseph H.; Serne, R. Jeffrey; Pierce, Eric M.; Cozzi, Alex; Chung, Chul-Woo; Swanberg, David J.

2013-05-31T23:59:59.000Z

376

Treatability Test Plan for 300 Area Uranium Stabilization through Polyphosphate Injection  

SciTech Connect (OSTI)

The U.S. Department of Energy has initiated a study into possible options for stabilizing uranium at the 300 Area using polyphosphate injection. As part of this effort, PNNL will perform bench- and field-scale treatability testing designed to evaluate the efficacy of using polyphosphate injections to reduced uranium concentrations in the groundwater to meet drinking water standards (30 ug/L) in situ. This technology works by forming phosphate minerals (autunite and apatite) in the aquifer that directly sequester the existing aqueous uranium in autunite minerals and precipitates apatite minerals for sorption and long term treatment of uranium migrating into the treatment zone, thus reducing current and future aqueous uranium concentrations. Polyphosphate injection was selected for testing based on technology screening as part of the 300-FF-5 Phase III Feasibility Study for treatment of uranium in the 300-Area.

Vermeul, Vincent R.; Williams, Mark D.; Fritz, Brad G.; Mackley, Rob D.; Mendoza, Donaldo P.; Newcomer, Darrell R.; Rockhold, Mark L.; Williams, Bruce A.; Wellman, Dawn M.

2007-06-01T23:59:59.000Z

377

Distribution Grid Integration  

Broader source: Energy.gov [DOE]

The DOE Systems Integration team funds distribution grid integration research and development (R&D) activities to address the technical issues that surround distribution grid planning,...

378

Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations  

SciTech Connect (OSTI)

The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

1987-04-01T23:59:59.000Z

379

The ATLAS Liquid Argon Calorimeter Construction, Integration, Commissioning and Performance from Selected Particle Beam Test Results  

E-Print Network [OSTI]

­Construction of the ATLAS liquid argon calorimeter is now complete and integration with the ATLAS detector in the cavern with the move of the barrel cryostat to the ATLAS cavern. Since then, integration of the endcap calorimeters, waiting to be lowered into the cavern. The other will be moved to Point 1 by late 2005 / early 2006

Krieger, Peter

380

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Streamlined Approach for Environmental Restoration Plan covers activities associated with Corrective Action Unit (CAU) 107 of the Federal Facility Agreement and Consent Order (FFACO, 1996 [as amended February 2008]). CAU 107 consists of the following Corrective Action Sites (CASs) located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site. (1) CAS 01-23-02, Atmospheric Test Site - High Alt; (2) CAS 02-23-02, Contaminated Areas (2); (3) CAS 02-23-03, Contaminated Berm; (4) CAS 02-23-10, Gourd-Amber Contamination Area; (5) CAS 02-23-11, Sappho Contamination Area; (6) CAS 02-23-12, Scuttle Contamination Area; (7) CAS 03-23-24, Seaweed B Contamination Area; (8) CAS 03-23-27, Adze Contamination Area; (9) CAS 03-23-28, Manzanas Contamination Area; (10) CAS 03-23-29, Truchas-Chamisal Contamination Area; (11) CAS 04-23-02, Atmospheric Test Site T4-a; (12) CAS 05-23-06, Atmospheric Test Site; (13) CAS 09-23-06, Mound of Contaminated Soil; (14) CAS 10-23-04, Atmospheric Test Site M-10; and (15) CAS 18-23-02, U-18d Crater (Sulky). Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, engineering drawings, field screening, analytical results, and the results of data quality objectives process (Section 3.0), closure in place with administrative controls or no further action will be implemented for CAU 107. CAU 107 closure activities will consist of verifying that the current postings required under Title 10 Code of Federal Regulations (CFR) Part 835 are in place and implementing use restrictions (URs) at two sites, CAS 03-23-29 and CAS 18-23-02. The current radiological postings combined with the URs are adequate administrative controls to limit site access and worker dose.

NSTec Environmental Restoration

2008-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "integrated test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

New Pump and Treat Facility Remedial Action Work Plan For Test Area North Final Groundwater Remediation, Operable Unit 1-07B  

SciTech Connect (OSTI)

This remedial action work plan identifies the approach and requirements for implementing the medial zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory. This plan details the management approach for the construction and operation of the New Pump and Treat Facility (NPTF). As identified in the remediatial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action.

Nelson, L. O.

2007-06-12T23:59:59.000Z

382

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 408: Bomblet Target Area, Tonopah Test Range, Nevada  

SciTech Connect (OSTI)

This Streamlined Approach for Environmental Restoration Plan provides the details for the closure of Corrective Action Unit (CAU) 408, Bomblet Target Area. CAU 408 is located at the Tonopah Test Range and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order of 1996. One Corrective Action Site (CAS) is included in CAU 408: {lg_bullet} CAS TA-55-002-TAB2, Bomblet Target Areas Based on historical documentation, personnel interviews, process knowledge, site visits, aerial photography, multispectral data, preliminary geophysical surveys, and the results of data quality objectives process (Section 3.0), clean closure will be implemented for CAU 408. CAU 408 closure activities will consist of identification and clearance of bomblet target areas, identification and removal of depleted uranium (DU) fragments on South Antelope Lake, and collection of verification samples. Any soil containing contaminants at concentrations above the action levels will be excavated and transported to an appropriate disposal facility. Based on existing information, contaminants of potential concern at CAU 408 include explosives. In addition, at South Antelope Lake, bomblets containing DU were tested. None of these contaminants is expected to be present in the soil at concentrations above the action levels; however, this will be determined by radiological surveys and verification sample results. The corrective action investigation and closure activities have been planned to include data collection and hold points throughout the process. Hold points are designed to allow decision makers to review the existing data and decide which of the available options are most suitable. Hold points include the review of radiological, geophysical, and analytical data and field observations.

NSTec Environmental Management

2006-10-01T23:59:59.000Z

383

Software Testing Jos de Kloe,  

E-Print Network [OSTI]

/GUI interfaces) Integration tests: automatisch verzenden van files naar ECMWF triggeren van processen bij ECMWF Document SVVP=Software Validation and Verification Plan #12;MMM, J. de Kloe, 2 maart 2009 7 GSOV testing Werking van algorithmes Werking van allerhande scripts Complete processor Controleer ook dat foutieve

Stoffelen, Ad

384

Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada  

SciTech Connect (OSTI)

Corrective Action Unit (CAU) 490, Station 44 Burn Area is located on the Tonopah Test Range (TTR). CAU 490 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and includes for Corrective Action Sites (CASs): (1) Fire Training Area (CAS 03-56-001-03BA); (2) Station 44 Burn Area (CAS RG-56-001-RGBA); (3) Sandia Service Yard (CAS 03-58-001-03FN); and (4) Gun Propellant Burn Area (CAS 09-54-001-09L2).

K. B. Campbell

2002-04-01T23:59:59.000Z

385

Streamlined approach for environmental restoration plan for corrective action unit 430, buried depleted uranium artillery round No. 1, Tonopah test range  

SciTech Connect (OSTI)

This plan addresses actions necessary for the restoration and closure of Corrective Action Unit (CAU) No. 430, Buried Depleted Uranium (DU) Artillery Round No. 1 (Corrective Action Site No. TA-55-003-0960), a buried and unexploded W-79 Joint Test Assembly (JTA) artillery test projectile with high explosives (HE), at the U.S. Department of Energy, Nevada Operations Office (DOE/NV) Tonopah Test Range (TTR) in south-central Nevada. It describes activities that will occur at the site as well as the steps that will be taken to gather adequate data to obtain a notice of completion from Nevada Division of Environmental Protection (NDEP). This plan was prepared under the Streamlined Approach for Environmental Restoration (SAFER) concept, and it will be implemented in accordance with the Federal Facility Agreement and Consent Order (FFACO) and the Resource Conservation and Recovery Act (RCRA) Industrial Sites Quality Assurance Project Plan.

NONE

1996-09-01T23:59:59.000Z

386

Walkability Planning in Jakarta  

E-Print Network [OSTI]

Integrated accessibility strategy and design Legibility Integrated activity Shared spaces Strategy 1: Policy Pedestrian planning as constituency buildingIntegrated activity study Inclusive road designation WikiPlaces pedestrian network mapping Vernacular placemaking and Asian shared street design Pedestrian planning as constituency building

Lo, Ria S. Hutabarat

2011-01-01T23:59:59.000Z

387

Corrective Action Investigation Plan for Corrective Action Unit 252: Area 25 Engine Test Stand 1 Decontamination Pad, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit 252 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 252 consists of Corrective Action Site (CAS) 25-07-02, Engine Test Stand-1 (ETS-1) Decontamination Pad. Located in Area 25 at the intersection of Road H and Road K at the Nevada Test Site, ETS-1 was designed for use as a mobile radiation checkpoint and for vehicle decontamination. The CAS consists of a concrete decontamination pad with a drain, a gravel-filled sump, two concrete trailer pads, and utility boxes. Constructed in 1966, the ETS-1 facility was part of the Nuclear Rocket Development Station (NRDS) complex and used to test nuclear rockets. The ETS-1 Decontamination Pad and mobile radiation check point was built in 1968. The NRDS complex ceased primary operations in 1973. Based on site history, the focus of the field investigation activities will be to determine if any primary contaminants of potential concern (COPCs) (including radionuclides, total volatile organic compounds, total semivolatile organic compounds, total petroleum hydrocarbons as diesel-range organics, Resource Conservation and Recovery Act metals, total pesticides, and polychlorinated biphenyls) are present at this site. Vertical extent of migration of suspected vehicle decontamination effluent COPCs is expected to be less than 12 feet below ground surface. Lateral extent of migration of COPCs is expected to be limited to the sump area or near the northeast corner of the decontamination pad. Using a biased sampling approach, near-surface and subsurface sampling will be conducted at the suspected worst-case areas including the sump and soil near the northeast corner of the decontamination pad. The results of this field investigation will support a defensible e valuation of corrective action alternatives in the corrective action decision document.

U.S. Department of Energy, Nevada Operations Office

1999-08-20T23:59:59.000Z

388

CLOSURE OF THE FAST FLUX TEST FACILITY (FFTF) HISTORY & STATUS & FUTURE PLANS  

SciTech Connect (OSTI)

In 1993, the US Department of Energy (DOE) decided to shut down the Fast Flux Test Facility (FFTF) due to lack of national missions that justified the annual operating budget of approximately $88M/year. The initial vision was to ''deactive'' the facility to an industrially and radiologically safe condition to allow long-term, minimal surveillance storage until approximately 2045. This approach would minimize near term cash flow and allow the radioactive decay of activated components. The final decontamination and decommissioning (D and D) would then be performed using then-current methodology in a safe and efficient manner. the philosophy has now changed to close coupling the initial deactivation with final D and D. This paper presents the status of the facility and focuses on the future challenge of sodium removal.

FARABEE, O.A.

2006-02-24T23:59:59.000Z

389

Long-term Monitoring Plan for the Central Nevada Test Area  

SciTech Connect (OSTI)

The groundwater flow and transport model of the Faultless underground nuclear test conducted at the Central Nevada Test Area (CNTA) was accepted by the state regulator and the environmental remediation efforts at the site have progressed to the stages of model validation and long-term monitoring design. This report discusses the long-term monitoring strategy developed for CNTA. Subsurface monitoring is an expensive and time-consuming process, and the design approach should be based on a solid foundation. As such, a thorough literature review of monitoring network design is first presented. Monitoring well networks can be designed for a number of objectives including aquifer characterization, parameter estimation, compliance monitoring, detection monitoring, ambient monitoring, and research monitoring, to name a few. Design methodologies also range from simple hydrogeologic intuition-based tools to sophisticated statistical- and optimization-based tools. When designing the long-term monitoring well network for CNTA, a number of issues are carefully considered. These are the uncertainty associated with the subsurface environment and its implication for monitoring design, the cost associated with monitoring well installation and operation, the design criteria that should be used to select well locations, and the potential conflict between different objectives such as early detection versus impracticality of placing wells in the vicinity of the test cavity. Given these considerations and the literature review of monitoring design studies, a multi-staged approach for development of the long-term monitoring well network for CNTA is proposed. This multi-staged approach will proceed in parallel with the validation efforts for the groundwater flow and transport model of CNTA. Two main stages are identified as necessary for the development of the final long-term monitoring well network for the site. The first stage is to use hydrogeologic expertise combined with model simulations and probability based approaches to select the first set of monitoring wells that will serve two purposes. The first is to place the wells in areas likely to encounter migration pathways thereby enhancing the probability of detecting radionuclide migration in the long run. The second objective is crucial in the short run and is aimed at using this set of wells to collect validation data for the model. The selection criteria should thus balance these two objectives. Based on the results of the validation process that progresses concurrently with the first monitoring stage, either more wells will be needed in this first stage or the second stage will be initiated. The second monitoring design stage will be based on an optimum design methodology that uses a suitable statistical approach, combined with an optimization approach, to augment the initial set of wells and develop the final long-term monitoring network. The first-stage probabilistic analysis conducted using the CNTA model indicates that the likelihood of migration away from the test cavity is very low and the probability of detecting radionuclides in the next 100 years is extremely low. Therefore, it is recommended to place one well in the downstream direction along the model longitudinal centerline (i.e., directly north of the working point), which is the location with the highest probability of encountering the plume. Lack of significant plume spreading, coupled with the extremely low velocities, suggests that this one well is sufficient for the first stage. Data from this well, and from additional wells located with validation as the prime objective, will benefit the model validation process. In the long run, this first monitoring well is going to be crucial for the long-term monitoring of the site (assuming that the flow model is validated), as it will be the most likely place to detect any plume migration away from the cavity.

A. Hassan

2003-09-02T23:59:59.000Z

390

Second Line of Defense Megaports Initiative Operational Testing and Evaluation Plan Colon Container Terminal (CCT) Panama  

SciTech Connect (OSTI)

Report on the Operational Testing and Evaluation to validate and baseline an operable system that meets the Second Line of Defense (SLD) mission requirements. An SLD system is defined as the detection technology and associated equipment, the system operators from the host country, the standard operating procedures (SOPs), and other elements such as training and maintenance which support long-term system sustainment. To this end, the activities conducted during the OT&E phase must demonstrate that the Megaports System can be operated effectively in real-time by Panama Direccion General de Aduanas (DGA Panama Customs) personnel to the standards of the U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA).

Newhouse, Robert N.

2010-01-01T23:59:59.000Z

391

Test Plan to Demonstrate Removal of Iodine and Tritium from Simulated Nuclear Fuel Recycle Plant Off-gas Streams using Adsorption Processes  

SciTech Connect (OSTI)

This letter documents the completion of the FCR&D Level 4 milestone for the Sigma Team – Off-Gas - ORNL work package (FT-14OR031202), “Co-absorption studies - Design system complete/test plan complete” (M4FT-14OR0312022), due November 15, 2013. The objective of this test plan is to describe research that will determine the effectiveness of silver mordenite and molecular sieve beds to remove iodine and water (tritium) from off-gas streams arising from used nuclear fuel recycling processes, and to demonstrate that the iodine and water can be recovered separately from one another.

Bruffey, Stephanie H. [ORNL] [ORNL; Spencer, Barry B. [ORNL] [ORNL; Jubin, Robert Thomas [ORNL] [ORNL

2013-12-11T23:59:59.000Z

392

Second Line of Defense Megaports Initiative Operational Testing and Evaluation Plan - Kingston Container Terminal, Port of Kingston, Jamaica  

SciTech Connect (OSTI)

Operational Testing and Evaluation Plan - Kingston Container Terminal, Port of Kingston, Jamaica was written for the Second Line of Defense Megaports Initiative. The purpose of the Operational Testing and Evaluation (OT&E) phase of the project is to prepare for turnover of the Megaports system supplied by U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA) located at the Kingston Container Terminal (KCT) of the Port of Kingston, Jamaica to the Government of Jamaica (GOJ). Activities conducted during the OT&E phase must demonstrate that the Megaports system can be operated effectively in real time by Jamaica Customs and KCT personnel to the satisfaction of the DOE/NNSA. These activities will also determine if the Megaports system, as installed and accepted, is performing according to the Megaports Program objectives such that the system is capable of executing the mission of the Second Line of Defense Megaports Initiative. The OT&E phase of the project also provides an opportunity to consider potential improvements to the system and to take remedial action if performance deficiencies are identified during the course of evaluation. Changes to the system should be considered under an appropriate change-control process. DOE/NNSA will determine that OT&E is complete by examining whether the Megaports system is performing as intended and that the GOJ is fully capable of operating the system independently without continued onsite support from the U.S. team.

Deforest, Thomas J.; VanDyke, Damon S.

2012-03-01T23:59:59.000Z

393

Experiment Operations Plan for a Loss-of-Coolant Accident Simulation in the National Research Universal Reactor Materials Test 2  

SciTech Connect (OSTI)

A loss-of-coolant accident (LOCA) simulation program is evaluating the thermal-hydraulic and mechanical effects on pressurized water reactor (PWR) test fuel bundles. This Experiment Operation Plan (EOP) Addendum 2, together with the referenced EOP, describes the desired operating conditions and additional hazards review associated with the four-part MT-2 experiment. The primary portions of the experiment, MT-2.2 and MT-2.3, will evaluate the following: 1) the mechanical deformation of pressurized fuel rods subjected to a slow LOCA, using reflood water for temperature control, that is designed to produce cladding temperatures in the range from 1033 to 1089K (1400 to 1500°F) for an extended time, and 2) the effects of the deformed and possibly failed cladding on the thermal-hydraulic performance of the test assembly during simulated LOCA heating and reflooding. The secondary portions of the experiment, MT-2.1 and MT-2.4, are intended to provide thermal-hydraulic calibration information during two-stage reflood conditions for 1) relatively low cladding temperatures, <839K (1050°F), on nondeformed rods, and 2) moderately high cladding temperatures, <1089K (1500°F), on deformed rods.

Russcher, G. E.; Barner, J. O.; Hesson, G. M.; Wilson, C. L.; Parchen, L. J.; Cunningham, M. E.; Marshall, R. K.; Mohr, C. L.

1981-09-01T23:59:59.000Z

394

Corrective Action Investigation Plan for Corrective Action Unit 487: Thunderwell Site, Tonopah Test Range, Nevada (Rev. No.: 0, January 2001)  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's (DOE/NV's) approach to collect the data necessary to evaluate corrective action alternatives (CAAs) appropriate for the closure of Corrective Action Unit (CAU) 487, Thunderwell Site, Tonopah Test Range (TTR), Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 487 consists of a single Corrective Action Site (CAS), RG 26-001-RGRV, Thunderwell Site. The site is located in the northwest portion of the TTR, Nevada, approximately five miles northwest of the Area 3 Control Point and closest to the Cactus Flats broad basin. Historically, Sandia National Laboratories in New Mexico used CAU 487 in the early to mid-1960s for a series of high explosive tests detonated at the bottom of large cylindrical steel tubes. Historical photographs indicate that debris from these tests and subsequent operations may have been scattered and buried throughout the site. A March 2000 walk-over survey and a July 2000 geophysical survey indicated evidence of buried and surface debris in dirt mounds and areas throughout the site; however, a radiological drive-over survey also performed in July 2000 indicated that no radiological hazards were identified at this site. Based on site history, the scope of this plan is to resolve the problem statement identified during the Data Quality Objectives process that detonation activities at this CAU site may have resulted in the release of contaminants of concern into the surface/subsurface soil including total volatile and total semivolatile organic compounds, total Resource Conservation and Recovery Act metals, radionuclides, total petroleum hydrocarbons, and high explosives. Therefore, the scope of corrective action field investigation will involve excavation, drilling, and extensive soil sampling and analysis activities to determine the extent (if any) of both the lateral and vertical contamination and whether or not any such contamination extends beyond the historical boundaries of the site. The results of this field investigation will support a defensible evaluation of CAAs in the subsequent corrective action decision document.

DOE/NV

2001-01-02T23:59:59.000Z

395

Report of independent consultants reviewing Integrated Test Stands (ITS) performance and readiness of DARHT for construction start  

SciTech Connect (OSTI)

Independent consultants met at Los Alamos, June 15 and 16, 1993, to review progress on the commissioning of the Integrated Test Stand (ITS) for DARHT and to provide DOE with technical input on readiness for construction of the first radiographic arm of DARHT. The consultants concluded that all milestones necessary for demonstrating the performance of the DARHT accelerator have been met and that the project is ready for construction to resume. The experimental program using ITS should be continued to quantify the comparison of experiment and theory, to test improvements on the injector insulator, and to better evaluate the interaction of the beam and the target.

Not Available

1993-08-01T23:59:59.000Z

396

Multi-agent-based integrated framework for intra-class testing of object-oriented software  

Science Journals Connector (OSTI)

The primary features of the object-oriented paradigm lead to develop a complex and compositional testing framework for object-oriented software. Agent-oriented approach has become a trend in software engineering. Agent technologies facilitate the software ... Keywords: Agent-based framework, Combinatorial approach, Intra-class testing, Multi-agent based, Test automation framework

P. Dhavachelvan; G. V. Uma

2005-01-01T23:59:59.000Z

397

Towards Integrated Model-Driven Testing of SCADA Systems Using the Eclipse Modeling Framework and Modelica  

Science Journals Connector (OSTI)

Testing SCADA (Supervisory Control And Data Acquisition) near real-time systems is challenging, as it involves complex interactions and the simulation of the supervised and controlled environment. Model-driven testing techniques can help to achieve clarity ... Keywords: SCADA, Testing, MDT, MDA, EMF, Modelica

Jörn Guy Sü?; Adrian Pop; Peter Fritzson; Luke Wildman

2008-03-01T23:59:59.000Z

398

Plan for Using Solar-Powered Jack Pumps to Sample Groundwater at the Nevada Test Site  

SciTech Connect (OSTI)

Groundwater is sampled from 39 monitoring wells on the Nevada Test Site (NTS) as part of the Routine Radiological Environmental Monitoring Program. Many of these wells were not designed or constructed for long-term groundwater monitoring. Some have extensive completion zones and others have obstructions such as pumps and tubing. The high-volume submersible pumps in some wells are unsuitable for long-term monitoring and result in large volumes of water that may have to be contained and characterized before subsequent disposition. The configuration of most wells requires sampling stagnant well water with a wireline bailer. Although bailer sampling allows for the collection of depth-discrete samples, the collected samples may not be representative of local groundwater because no well purging is done. Low-maintenance, solar-powered jack pumps will be deployed in nine of these onsite monitoring wells to improve sample quality. These pumps provide the lift capacity to produce groundwater from the deep aquifers encountered in the arid environment of the NTS. The water depths in these wells range from 700 to 2,340 ft below ground surface. The considerable labor and electrical power requirements of electric submersible pumps are eliminated once these pumps are installed. Access tubing will be installed concurrent with the installation of the pump string to provide downhole access for water-level measurements or other wireline instruments. Micro-purge techniques with low pump rates will be used to minimize purge volumes and reduce hydraulic gradients. The set depths of the pumps will be determined by the borehole characteristics and screened interval.

David Hudson, Charles Lohrstorfer, Bruce Hurley

2007-05-03T23:59:59.000Z

399

Corrective Action Investigation Plan for Corrective Action Unit 562: Waste Systems Nevada Test Site, Nevada, Revision 0  

SciTech Connect (OSTI)

Corrective Action Unit 562 is located in Areas 2, 23, and 25 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 562 is comprised of the 13 corrective action sites (CASs) listed below: • 02-26-11, Lead Shot • 02-44-02, Paint Spills and French Drain • 02-59-01, Septic System • 02-60-01, Concrete Drain • 02-60-02, French Drain • 02-60-03, Steam Cleaning Drain • 02-60-04, French Drain • 02-60-05, French Drain • 02-60-06, French Drain • 02-60-07, French Drain • 23-60-01, Mud Trap Drain and Outfall • 23-99-06, Grease Trap • 25-60-04, Building 3123 Outfalls These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on December 11, 2008, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 562. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the corrective action investigation for CAU 562 includes the following activities: • Move surface debris and/or materials, as needed, to facilitate sampling. • Conduct radiological surveys. • Perform field screening. • Collect and submit environmental samples for laboratory analysis to determine the nature and extent of any contamination released by each CAS. • Collect samples of source material to determine the potential for a release. • Collect samples of potential remediation wastes. • Collect quality control samples. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; DOE, Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996; as amended February 2008). Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval of the plan.

Alfred Wickline

2009-04-01T23:59:59.000Z

400

New Pump and Treat Facility Remedial Action Work Plan for Test Area North (TAN) Final Groundwater Remediation, Operable Unit 1-07B  

SciTech Connect (OSTI)

This remedial action work plan identifies the approach and requirements for implementing the medical zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Engineering and Environmental Laboratory (INEEL). This plan details management approach for the construction and operation of the New Pump and Treat Facility. As identified in the remedial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action. This work plan was originally prepared as an early implementation of the final Phase C remediation. At that time, The Phase C implementation strategy was to use this document as the overall Phase C Work Plan and was to be revised to include the remedial actions for the other remedial zones (hotspot and distal zones). After the completion of Record of Decision Amendment: Technical Support Facility Injection Well (TSF-05) and Surrounding Groundwater Contamination (TSF-23) and Miscellaneous No Action Sites, Final Remedial Action, it was determined that each remedial zone would have it own stand-alone remedial action work plan. Revision 1 of this document converts this document to a stand-alone remedial action plan specific to the implementation of the New Pump and Treat Facility used for plume remediation within the medical zone of the OU 1-07B contaminated plume.

D. Vandel

2003-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0  

SciTech Connect (OSTI)

CAU 104 comprises the following corrective action sites (CASs): • 07-23-03, Atmospheric Test Site T-7C • 07-23-04, Atmospheric Test Site T7-1 • 07-23-05, Atmospheric Test Site • 07-23-06, Atmospheric Test Site T7-5a • 07-23-07, Atmospheric Test Site - Dog (T-S) • 07-23-08, Atmospheric Test Site - Baker (T-S) • 07-23-09, Atmospheric Test Site - Charlie (T-S) • 07-23-10, Atmospheric Test Site - Dixie • 07-23-11, Atmospheric Test Site - Dixie • 07-23-12, Atmospheric Test Site - Charlie (Bus) • 07-23-13, Atmospheric Test Site - Baker (Buster) • 07-23-14, Atmospheric Test Site - Ruth • 07-23-15, Atmospheric Test Site T7-4 • 07-23-16, Atmospheric Test Site B7-b • 07-23-17, Atmospheric Test Site - Climax These 15 CASs include releases from 30 atmospheric tests conducted in the approximately 1 square mile of CAU 104. Because releases associated with the CASs included in this CAU overlap and are not separate and distinguishable, these CASs are addressed jointly at the CAU level. The purpose of this CADD/CAP is to evaluate potential corrective action alternatives (CAAs), provide the rationale for the selection of recommended CAAs, and provide the plan for implementation of the recommended CAA for CAU 104. Corrective action investigation (CAI) activities were performed from October 4, 2011, through May 3, 2012, as set forth in the CAU 104 Corrective Action Investigation Plan.

Patrick Matthews

2012-10-01T23:59:59.000Z

402

Testing Challenges in Web-based Applications with respect to Interoperability and Integration.  

E-Print Network [OSTI]

??Testing is one of the critical processes in software development life cycle. It plays key role in the success of software product by improving its… (more)

Farooq, Umar

2009-01-01T23:59:59.000Z

403

PEP Integrated Test D Run Report Caustic and Oxidative Leaching in UFP-VSL-T02A  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed and operated as part of a plan to respond to issue M12, "Undemonstrated Leaching Processes" of the External Flowsheet Review Team (EFRT) issue response plan. The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario (Test B and D) has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario (Test A) has caustic leaching conducted in the UFP-1 ultrafiltration feed preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP and vessels UFP VSL-00001A and B in the WTP PTF). In Test D, 19M sodium hydroxide (NaOH, caustic) was added to the waste slurry in the UFP VSL T02 vessel after the solids were concentrated to ~20% undissolved solids. The NaOH was added to leach solid aluminum compounds (e.g., gibbsite, boehmite). Caustic addition is followed by heating to 85°C using direct injection of steam to accelerate the leach process. The main difference of Test D compared to Test B is that the leach temperature is 85°C for 24 hrs as compared to 100°C for 12 hours. The other difference is the Test D simulant had Cr in the simulant from the start of processing and Test B had Cr added to adjust the simulant composition after aluminum leaching. Following the caustic leach, the UFP-VSL-T02A vessel contents are cooled using the vessel cooling jacket. The slurry was then concentrated to 17 wt% undissolved solids and washed with inhibited water to remove NaOH and other soluble salts. Next, the slurry was oxidatively leached using sodium permanganate to solubilize chrome. The slurry was then washed to remove the dissolved chrome and concentrated.

Sevigny, Gary J.; Bredt, Ofelia P.; Burns, Carolyn A.; Kurath, Dean E.; Geeting, John GH; Golovich, Elizabeth C.; Guzman-Leong, Consuelo E.; Josephson, Gary B.

2009-12-11T23:59:59.000Z

404

Corrective Action Investigation Plan for Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nevada (Revision 1)  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan (CAIP) has been developed for Frenchman Flat Corrective Action Unit (CAU) 98. The Frenchman Flat CAU is located along the eastern border of the Nevada Test Site (NTS) and includes portions of Areas 5 and 11. The Frenchman Flat CAU constitutes one of several areas of the Nevada Test Site used for underground nuclear testing in the past. The nuclear tests resulted in groundwater contamination in the vicinity as well as downgradient of the underground test areas. The CAIP describes the Corrective Action Investigation (CAI) to be conducted at the Frenchman Flat CAU to evaluate the extent of contamination in groundwater due to the underground nuclear testing. The Frenchman Flat CAI will be conducted by the Underground Test Area (UGTA) Project which is a part of the U.S. Department of Energy, Nevada Operations Office (DOE/NV) Environmental Restoration Project. The CAIP is a requirement of the Federal Facility Agreement and Consent Order (FFACO) (1996 ) agreed to by the U.S. Department of Energy (DOE), the Nevada Division of Environmental Protection (NDEP), and the U.S. Department of Defense (DoD). Based on the general definition of a CAI from Section IV.14 of the FFACO, the purpose of the CAI is ''...to gather data sufficient to characterize the nature, extent, and rate of migration or potential rate of migration from releases or discharges of pollutants or contaminants and/or potential releases or discharges from corrective action units identified at the facilities...'' (FFACO, 1996). However, for the Underground Test Area (UGTA) CAUs, ''...the objective of the CAI process is to define boundaries around each UGTA CAU that establish areas that contain water that may be unsafe for domestic and municipal use.'', as stated in Appendix VI of the FFACO (1996). According to the UGTA strategy (Appendix VI of the FFACO), the CAI of a given CAU starts with the evaluation of the existing data. New data collection activities are generally contingent upon the results of the modeling and may or may not be part of the CAI. Such is the case for the Frenchman Flat CAU. The current scope of the Frenchman Flat CAI includes the development and use of a three-dimensional (3-D), numerical, CAU-scale groundwater flow and contaminant transport model to predict the location of the contaminant boundary. The CAU model will be developed and used to predict the location of the contaminant boundary. The scope of this CAI does not currently include any characterization activities; however, such activities will be conducted if the CAU model results indicate that further characterization information is needed to develop a sufficiently reliable CAU model. Two areas of importance to the CAU model are the model area and the investigation area. The CAU-model area will be selected to encompass the Frenchman Flat CAU and the region located immediately downgradient where contamination may migrate. The extent of the CAU-model area is dependent on the extent of contamination and is uncertain at this point. The extent of the investigation area is not expected to increase during the CAI.

USDOE/NV

1999-07-01T23:59:59.000Z

405

Elevated voltage level I.sub.DDQ failure testing of integrated circuits  

DOE Patents [OSTI]

Burn in testing of static CMOS IC's is eliminated by I.sub.DDQ testing at elevated voltage levels. These voltage levels are at least 25% higher than the normal operating voltage for the IC but are below voltage levels that would cause damage to the chip.

Righter, Alan W. (Albuquerque, NM)

1996-01-01T23:59:59.000Z

406

Elevated voltage level I{sub DDQ} failure testing of integrated circuits  

DOE Patents [OSTI]

Burn in testing of static CMOS IC`s is eliminated by I{sub DDQ} testing at elevated voltage levels. These voltage levels are at least 25% higher than the normal operating voltage for the IC but are below voltage levels that would cause damage to the chip. 4 figs.

Righter, A.W.

1996-05-21T23:59:59.000Z

407

Couplingbased Criteria for Integration Testing \\Lambda Zhenyi Jin and A. Jefferson Offutt  

E-Print Network [OSTI]

, Software testing. 1 Introduction Testing software is one of the most common methods for assuring quality quality and reliability. Such criteria also provide stopping rules and repeatability. A program unit that the tester will find any faults in the program and providing greater assurance that the software is of high

Offutt, Jeff

408

Integrated Dry NO sub x /SO sub 2 Emissions Control System baseline test report, November 11--December 15, 1991  

SciTech Connect (OSTI)

The DOE sponsored Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System program, which is a Clean Coal Technology Ill demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low sulfur western coal. The project goal is to demonstrate 70 percent reductions in NO{sub x} and S0{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) urea injection for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high sulfur coal will also be tested. This report documents the first baseline test results conducted during the program. The baseline tests were conducted with the original burners and auxiliary equipment and represent the unmodified boiler emissions. The burner design of Arapahoe Unit 4 results in relatively high NO{sub x} levels ranging from 740 to 850 ppM (corrected to 3% O{sub 2}, dry) over the load range. Excess air level was the primary factor influencing NO{sub x} emissions. During normal boiler operations, there was a wide range in NO{sub x} emissions, due to the variations of excess air, boiler load and other, secondary parameters. SO{sub 2} emissions ranged from 350 to 600 ppM (corrected to 3% O{sub 2}, dry) and reflected variations in the coal sulfur content.

Shiomoto, G.H.; Smith, R.A.

1992-03-01T23:59:59.000Z

409

Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) verification and validation plan. version 1.  

SciTech Connect (OSTI)

The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. To meet this objective, NEAMS Waste IPSC M&S capabilities will be applied to challenging spatial domains, temporal domains, multiphysics couplings, and multiscale couplings. A strategic verification and validation (V&V) goal is to establish evidence-based metrics for the level of confidence in M&S codes and capabilities. Because it is economically impractical to apply the maximum V&V rigor to each and every M&S capability, M&S capabilities will be ranked for their impact on the performance assessments of various components of the repository systems. Those M&S capabilities with greater impact will require a greater level of confidence and a correspondingly greater investment in V&V. This report includes five major components: (1) a background summary of the NEAMS Waste IPSC to emphasize M&S challenges; (2) the conceptual foundation for verification, validation, and confidence assessment of NEAMS Waste IPSC M&S capabilities; (3) specifications for the planned verification, validation, and confidence-assessment practices; (4) specifications for the planned evidence information management system; and (5) a path forward for the incremental implementation of this V&V plan.

Bartlett, Roscoe Ainsworth; Arguello, Jose Guadalupe, Jr.; Urbina, Angel; Bouchard, Julie F.; Edwards, Harold Carter; Freeze, Geoffrey A.; Knupp, Patrick Michael; Wang, Yifeng; Schultz, Peter Andrew; Howard, Robert (Oak Ridge National Laboratory, Oak Ridge, TN); McCornack, Marjorie Turner

2011-01-01T23:59:59.000Z

410

Corrective Action Investigation Plan for Corrective Action Unit 554: Area 23 Release Site, Nevada Test Site, Nevada, Rev. No.: 0  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan (CAIP) contains project-specific information for conducting site investigation activities at Corrective Action Unit (CAU) 554: Area 23 Release Site, Nevada Test Site, Nevada. Information presented in this CAIP includes facility descriptions, environmental sample collection objectives, and criteria for the selection and evaluation of environmental samples. Corrective Action Unit 554 is located in Area 23 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 554 is comprised of one Corrective Action Site (CAS), which is: 23-02-08, USTs 23-115-1, 2, 3/Spill 530-90-002. This site consists of soil contamination resulting from a fuel release from underground storage tanks (USTs). Corrective Action Site 23-02-08 is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation prior to evaluating corrective action alternatives and selecting the appropriate corrective action for this CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document for CAU 554. Corrective Action Site 23-02-08 will be investigated based on the data quality objectives (DQOs) developed on July 15, 2004, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; and contractor personnel. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 554.

David A. Strand

2004-10-01T23:59:59.000Z

411

Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO, CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites (FFACO, 1996). Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at CAU 135, Area 25 Underground Storage Tanks (USTs), which is located on the Nevada Test Site (NTS). The NTS is approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada.

U.S. Department of Energy, Nevada Operations Office

1999-05-05T23:59:59.000Z

412

Corrective Action Investigation Plan for Corrective Action Unit 240: Area 25 Vehicle Washdown Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO, CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites (FFACO, 1996). Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at CAU 240, Area 25 Vehicle Washdown, which is located on the Nevada Test Site (NTS).

DOE/NV

1999-01-25T23:59:59.000Z

413

TEST PLAN AND PROCEDURE FOR THE EXAMINATION OF TANK 241-AY-101 MULTI-PROBE CORROSION MONITORING SYSTEM  

SciTech Connect (OSTI)

This test plan describes the methods to be used in the forensic examination of the Multi-probe Corrosion Monitoring System (MPCMS) installed in the double-shell tank 241-AY-101 (AY-101). The probe was designed by Applied Research and Engineering Sciences (ARES) Corporation. The probe contains four sections, each of which can be removed from the tank independently (H-14-107634, AY-101 MPCMS Removable Probe Assembly) and one fixed center assembly. Each removable section contains three types of passive corrosion coupons: bar coupons, round coupons, and stressed C-rings (H-14-l07635, AY-101 MPCMS Details). Photographs and weights of each coupon were recorded and reported on drawing H-14-107634 and in RPP-RPT-40629, 241-AY-101 MPCMS C-Ring Coupon Photographs. The coupons will be the subject of the forensic analyses. The purpose of this examination will be to document the nature and extent of corrosion of the 29 coupons. This documentation will consist of photographs and photomicrographs of the C-rings and round coupons, as well as the weights of the bar and round coupons during corrosion removal. The total weight loss of the cleaned coupons will be used in conjunction with the surface area of each to calculate corrosion rates in mils per year. The bar coupons were presumably placed to investigate the liquid-air-interface. An analysis of the waste level heights in the waste tank will be investigated as part of this examination.

WYRWAS RB; PAGE JS; COOKE GS

2012-04-19T23:59:59.000Z

414

WATER CONSERVATION PLAN  

National Nuclear Security Administration (NNSA)

i WATER CONSERVATION PLAN TONOPAH TEST RANGE UNITED STATES DEPARTMENT OF ENERGY January 10, 2011 Prepared for: Tonopah Test Range Post Office Box 871 Tonopah, Nevada 89049 (702)...

415

INTEGRAL BENCHMARK DATA FOR NUCLEAR DATA TESTING THROUGH THE ICSBEP AND THE NEWLY ORGANIZED IRPHEP  

SciTech Connect (OSTI)

The status of the International Criticality Safety Benchmark Evaluation Project (ICSBEP) was last reported in a nuclear data conference at the International Conference on Nuclear Data for Science and Technology, ND-2004, in Santa Fe, New Mexico. Since that time the number and type of integral benchmarks have increased significantly. Included in the ICSBEP Handbook are criticality-alarm / shielding and fundamental physic benchmarks in addition to the traditional critical / subcritical benchmark data. Since ND 2004, a reactor physics counterpart to the ICSBEP, the International Reactor Physics Experiment Evaluation Project (IRPhEP) was initiated. The IRPhEP is patterned after the ICSBEP, but focuses on other integral measurements, such as buckling, spectral characteristics, reactivity effects, reactivity coefficients, kinetics measurements, reaction-rate and power distributions, nuclide compositions, and other miscellaneous-type measurements in addition to the critical configuration. The status of these two projects is discussed and selected benchmarks highlighted in this paper.

J. Blair Briggs; Lori Scott; Yolanda Rugama; Enrico Satori

2007-04-01T23:59:59.000Z

416

Achieving New Source Performance Standards (NSPS) Emission Standards Through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion  

SciTech Connect (OSTI)

The objective of this project was to demonstrate the use of an Integrated Combustion Optimization System to achieve NO{sub X} emission levels in the range of 0.15 to 0.22 lb/MMBtu while simultaneously enabling increased power output. The project plan consisted of the integration of low-NO{sub X} burners and advanced overfire air technology with various process measurement and control devices on the Holcomb Station Unit 1 boiler. The plan included the use of sophisticated neural networks or other artificial intelligence technologies and complex software to optimize several operating parameters, including NO{sub X} emissions, boiler efficiency, and CO emissions. The program was set up in three phases. In Phase I, the boiler was equipped with sensors that can be used to monitor furnace conditions and coal flow to permit improvements in boiler operation. In Phase II, the boiler was equipped with burner modifications designed to reduce NO{sub X} emissions and automated coal flow dampers to permit on-line fuel balancing. In Phase III, the boiler was to be equipped with an overfire air system to permit deep reductions in NO{sub X} emissions. Integration of the overfire air system with the improvements made in Phases I and II would permit optimization of boiler performance, output, and emissions. This report summarizes the overall results from Phases I and II of the project. A significant amount of data was collected from the combustion sensors, coal flow monitoring equipment, and other existing boiler instrumentation to monitor performance of the burner modifications and the coal flow balancing equipment.

Wayne Penrod

2006-12-31T23:59:59.000Z

417

Integrated Gas Analyzer for Complete Monitoring of Turbine Engine Test Cells  

Science Journals Connector (OSTI)

Fourier transform infrared (FT-IR) spectroscopy is proving to be reliable and economical for the quantification of many gas-phase species during testing and development of gas...

Markham, James R; Bush, Patrick M; Bonzani, Peter J; Scire, James J; Zaccardi, Vincent A; Jalbert, Paul A; Bryant, M Denise; Gardner, Donald G

2004-01-01T23:59:59.000Z

418

Dynamic system characterization of an integral test facility of an advanced PWR  

E-Print Network [OSTI]

series of tests to generate data for code assessment against AP600 relevant phenomena. The AP600 design relies only on passive safety features such as gravity driven draining pressurized tanks, and battery power logic and actuators for its safety...

Smith, Simon Gregory

2012-06-07T23:59:59.000Z

419

Single event upset test structures for digital CMOS application specific integrated circuits  

SciTech Connect (OSTI)

An approach has been developed for the design and utilization of SEU test structures for digital CMOS ASICs. This approach minimizes the number of test structures required by categorizing ASIC library cells according to their SEU response and designing a structure to characterize each response for each category. Critical SEU response parameters extracted from these structures are used to evaluate the SEU hardness of ASIC libraries and predict the hardness of ASIC chips.

Baze, M.P.; Bartholet, W.G.; Braatz, J.C.; Dao, T.A. (Boeing Defense and Space Group, Seattle, WA (United States))

1993-12-01T23:59:59.000Z

420

Corrective Action Investigation Plan for Corrective Action Unit 565: Stored Samples, Nevada Test Site, Nevada, Rev. No.: 0  

SciTech Connect (OSTI)

Corrective Action Unit (CAU) 565 is located in Area 26 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 565 is comprised of one corrective action site (CAS) listed--CAS 26-99-04, Ground Zero Soil Samples. This site is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend closure of CAU 565. Additional information will be obtained by conducting a corrective action investigation before evaluating closure objectives and selecting the appropriate corrective action. The results of the field investigation will support closure and waste management decisions that will be presented in the Corrective Action Decision Document/Closure Report. The site will be investigated based on the data quality objectives (DQOs) developed on June 1, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was utilized to identify and define the type, amount, and quality of data needed to develop and evaluate closure for CAU 565. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to this CAS. The scope of the corrective action investigation for CAU 565 includes the following activities: (1) Remove stored samples, shelves, and debris from the interior of Building 26-2106. (2) Perform field screening on stored samples, shelves, and debris. (3) Dispose of stored samples, shelves, and debris. (4) Collect samples of investigation-derived waste, as needed, for waste management purposes. (5) Conduct radiological surveys of Building 26-2106 in accordance with the requirements in the ''NV/YMP Radiological Control Manual'' to determine if there is residual radiological contamination that would prevent the release of the building for unrestricted use. This Corrective Action Investigation has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the ''Federal Facility Agreement and Consent Order'', this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Field work will be conducted following approval of the plan.

Wickline, Alfred; McCall, Robert

2006-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Management Plan Management Plan  

E-Print Network [OSTI]

; and 5) consistency with the Endangered Species Act and Clean Water Act. In addition, the management plan Plan, Management Plan Page MP­ 1 #12;Management Plan water quality standards, instream flows, privateManagement Plan Management Plan "Management and restoration programs for native salmonids have

422

Experiment Operations Plan for a Loss-of-Coolant Accident Simulation in the National Research Universal Reactor Materials Tests 1 and 2  

SciTech Connect (OSTI)

A loss of Coolant Accident (LOCA) simulation program is evaluating the thermal-hydraulic and mechanical effects of LOCA conditions on pressurized water reactor test fuel bundles. This experiment operation plan for the second and third experiments of the program will provide peak fuel cladding temperatures of up to 1172K (1650{degree}F) and 1061K (1450{degree}) respectively. for a long enough time to cause test fuel cladding deformation and rupture in both. Reflood coolant delay times and the reflooding rates for the experiments were selected from thermal-hydraulic data measured in the National Research Universal (NRU) reactor facilities and test train assembly during the first experiment.

Russcher, G. E.; Wilson, C. L.; Marshall, R, K.; King, L. L.; Parchen, L. J.; Pilger, J. P.; Hesson, G. M.; Mohr, C. L.

1981-09-01T23:59:59.000Z

423

An Integrated Science Plan for the Lake Tahoe Basin: Conceptual Framework and Research Strategies Patricia N. Manley,  

E-Print Network [OSTI]

always accompany the best efforts of environmental and resource managers. They are inescapable principles and practices in an integrated fashion to acquire objective and verifiable information to fill knowledge gaps, thereby reducing uncertainties. Scientific principles and practices employed to generate new

Standiford, Richard B.

424

Corrective Action Investigation Plan for Corrective Action Unit 145: Wells and Storage Holes, Nevada Test Site, Nevada, Rev. No.: 0  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan (CAIP) contains project-specific information for conducting site investigation activities at Corrective Action Unit (CAU) 145: Wells and Storage Holes. Information presented in this CAIP includes facility descriptions, environmental sample collection objectives, and criteria for the selection and evaluation of environmental samples. Corrective Action Unit 145 is located in Area 3 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 145 is comprised of the six Corrective Action Sites (CASs) listed below: (1) 03-20-01, Core Storage Holes; (2) 03-20-02, Decon Pad and Sump; (3) 03-20-04, Injection Wells; (4) 03-20-08, Injection Well; (5) 03-25-01, Oil Spills; and (6) 03-99-13, Drain and Injection Well. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) prior to evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. One conceptual site model with three release scenario components was developed for the six CASs to address all releases associated with the site. The sites will be investigated based on data quality objectives (DQOs) developed on June 24, 2004, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQOs process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 145.

David A. Strand

2004-09-01T23:59:59.000Z

425

Treatment plan for aqueous/organic/decontamination wastes under the Oak Ridge Reservation FFCA Development, Demonstration, Testing, and Evaluation Program  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Oak Ridge Operations Office and the U.S. Environmental Protection Agency (EPA)-Region IV have entered into a Federal Facility Compliance Agreement (FFCA) which seeks to facilitate the treatment of low-level mixed wastes currently stored at the Oak Ridge Reservation (ORR) in violation of the Resource, Conservation and Recovery Act Land Disposal Restrictions. The FFCA establishes schedules for DOE to identify treatment for wastes, referred to as Appendix B wastes, that current have no identified or existing capacity for treatment. A development, demonstration, testing, and evaluation (DDT&E) program was established to provide the support necessary to identify treatment methods for mixed was meeting the Appendix B criteria. The Program has assembled project teams to address treatment development needs for major categories of the Appendix B wastes based on the waste characteristics and possible treatment technologies. The Aqueous, Organic, and Decontamination (A/O/D) project team was established to identify pretreatment options for aqueous and organic wastes which will render the waste acceptable for treatment in existing waste treatment facilities and to identify the processes to decontaminate heterogeneous debris waste. In addition, the project must also address the treatment of secondary waste generated by other DDT&E projects. This report details the activities to be performed under the A/O/D Project in support of the identification, selection, and evaluation of treatment processes. The goals of this plan are (1) to determine the major aqueous and organic waste streams requiring treatment, (2) to determine the treatment steps necessary to make the aqueous and organic waste acceptable for treatment in existing treatment facilities on the ORR or off-site, and (3) to determine the processes necessary to decontaminate heterogeneous wastes that are considered debris.

Backus, P.M.; Benson, C.E.; Gilbert, V.P.

1994-08-01T23:59:59.000Z

426

Corrective action investigation plan for Corrective Action Unit 342: Area 23 Mercury Fire Training Pit, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO, CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites (FFACO, 1996). Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at CAU 342, the Area 23 Mercury Fire Training Pit (FTP), which is located in Area 23 at the Nevada Test Site (NTS). The NTS is approximately 88 km (55 mi) northwest of Las Vegas, Nevada. Corrective Action Unit 342 is comprised of CAS 23-56-01. The FTP is an area approximately 100 m by 140 m (350 ft by 450 ft) located west of the town of Mercury, Nevada, which was used between approximately 1965 and 1990 to train fire-fighting personnel (REECo, 1991; Jacobson, 1991). The surface and subsurface soils in the FTP have likely been impacted by hydrocarbons and other contaminants of potential concern (COPC) associated with burn activities and training exercises in the area.

NONE

1998-03-01T23:59:59.000Z

427

Coupling-based Criteria for Integration Testing Zhenyi Jin and A. Je erson O utt  

E-Print Network [OSTI]

Introduction Testing software is one of the most common methods for assuring quality of complex computer will nd any faults in the program and providing greater assurance that the software is of high quality and reliability. Such criteria also provide stopping rules and repeatability. A program unit, or procedure, is one

Offutt, Jeff

428

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 398: Area 25 Spill Sites, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Streamlined Approach for Environmental Restoration (SAFER) plan addresses the activities necessary to close Corrective Action Unit (CAU) 398: Area 25 Spill Sites. CAU 398, located in Area 25 of the Nevada Test Site, is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996), and consists of the following 13 Corrective Action Sites (CASs) (Figure 1): (1) CAS 25-44-01 , a fuel spill on soil that covers a concrete pad. The origins and use of the spill material are unknown, but the spill is suspected to be railroad bedding material. (2) CAS 25-44-02, a spill of liquid to the soil from leaking drums. (3) CAS 25-44-03, a spill of oil from two leaking drums onto a concrete pad and surrounding soil. (4) CAS 25-44-04, a spill from two tanks containing sulfuric acid and sodium hydroxide used for a water demineralization process. (5) CAS 25-25-02, a fuel or oil spill from leaking drums that were removed in 1992. (6) CAS 25-25-03, an oil spill adjacent to a tipped-over drum. The source of the drum is not listed, although it is noted that the drum was removed in 1991. (7) CAS 25-25-04, an area on the north side of the Engine-Maintenance, Assembly, and Disassembly (E-MAD) facility, where oils and cooling fluids from metal machining operations were poured directly onto the ground. (8) CAS 25-25-05, an area of oil and/or hydraulic fluid spills beneath the heavy equipment once stored there. (9) CAS 25-25-06, an area of diesel fuel staining beneath two generators that have since been removed. (10) CAS 25-25-07, an area of hydraulic oil spills associated with a tunnel-boring machine abandoned inside X-Tunnel. (11) CAS 25-25-08, an area of hydraulic fluid spills associated with a tunnel-boring machine abandoned inside Y-Tunnel. (12) CAS 25-25-16, a diesel fuel spill from an above-ground storage tank located near Building 3320 at Engine Test Stand-1 (ETS-1) that was removed in 1998. (13) CAS 25-25-17, a hydraulic oil spill associated with the historical operations of a vacuum pump oil recovery system at the E-MAD facility.

K. B. Campbell

2001-11-01T23:59:59.000Z

429

Complete Phase I Tests As Described in the Multi-lab Test Plan for the Evaluation of CH3I Adsorption on AgZ  

SciTech Connect (OSTI)

Silver-exchanged mordenite (AgZ) has been identified as a potential sorbent for iodine present in the off-gas streams of a used nuclear fuel reprocessing facility. In such a facility, both elemental and organic forms of iodine are released from the dissolver in gaseous form. These species of iodine must be captured with high efficiency for a facility to avoid radioactive iodine release above regulatory limits in the gaseous effluent of the plant. Studies completed at Idaho National Laboratory (INL) examined the adsorption of organic iodine in the form of CH3I by AgZ. Upon breakthrough of the feed gas through the sorbent bed, elemental iodine was observed in the effluent stream, despite the fact that the only source of iodine in the system was the CH3I in the feed gas.1 This behavior does not appear to have been reported previously nor has it been independently confirmed. Thus, as a result of these prior studies, multiple knowledge gaps relating to the adsorption of CH3I by AgZ were identified, and a multi-lab test plan, including Oak Ridge National Laboratory (ORNL), INL, Pacific Northwest National Laboratory (PNNL), and Sandia National Laboratories, was formulated to address each in a systematic way.2 For this report, the scope of work for ORNL was further narrowed to three thin-bed experiments that would characterize CH3I adsorption onto AgZ in the presence of water, NO, and NO2. Completion of these three-thin bed experiments demonstrated that organic iodine in the form of CH3I was adsorbed by reduced silver mordenite (Ag0Z) to a 50% higher loading than that of I2 when adsorbed from a dry air stream. Adsorption curves suggest different adsorption mechanisms for I2 and CH3I. In the presence of NO and NO2 gas, the loading of CH3I onto Ag0Z is suppressed and may be reversible. Further, the presence of NO and NO2 gas appears to oxidize CH3I to I2; this is indicated by an adsorption curve similar to that of I2 on Ag0Z. Finally, the loss of organic iodine loading capacity by Ag0Z in the presence of NOx is unaffected by the addition of water vapor to the gas stream; no marked additional loss in capacity or retention was observed.

Bruffey, S. H. [ORNL; Jubin, R. T. [ORNL

2014-09-30T23:59:59.000Z

430

JV Task 46 - Development and Testing of a Thermally Integrated SOFC-Gasification System for Biomass Power Generation  

SciTech Connect (OSTI)

The Energy & Environmental Research Center has designed a biomass power system using a solid oxide fuel cell (SOFC) thermally integrated with a downdraft gasifier. In this system, the high-temperature effluent from the SOFC enables the operation of a substoichiometric air downdraft gasifier at an elevated temperature (1000 C). At this temperature, moisture in the biomass acts as an essential carbon-gasifying medium, reducing the equivalence ratio at which the gasifier can operate with complete carbon conversion. Calculations show gross conversion efficiencies up to 45% (higher heating value) for biomass moisture levels up to 40% (wt basis). Experimental work on a bench-scale gasifier demonstrated increased tar cracking within the gasifier and increased energy density of the resultant syngas. A series of experiments on wood chips demonstrated tar output in the range of 9.9 and 234 mg/m{sup 3}. Both button cells and a 100-watt stack was tested on syngas from the gasifier. Both achieved steady-state operation with a 22% and 15% drop in performance, respectively, relative to pure hydrogen. In addition, tar tolerance testing on button cells demonstrated an upper limit of tar tolerance of approximately 1%, well above the tar output of the gasifier. The predicted system efficiency was revised down to 33% gross and 27% net system efficiency because of the results of the gasifier and fuel cell experiments. These results demonstrate the feasibility and benefits of thermally integrating a gasifier and a high-temperature fuel cell in small distributed power systems.

Phillip Hutton; Nikhil Patel; Kyle Martin; Devinder Singh

2008-02-01T23:59:59.000Z

431

Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field-Scale Subsurface Research Challenge Site at Rifle, Colorado, Quality Assurance Project Plan  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is cleaning up and/or monitoring large, dilute plumes contaminated by metals, such as uranium and chromium, whose mobility and solubility change with redox status. Field-scale experiments with acetate as the electron donor have stimulated metal-reducing bacteria to effectively remove uranium [U(VI)] from groundwater at the Uranium Mill Tailings Site in Rifle, Colorado. The Pacific Northwest National Laboratory and a multidisciplinary team of national laboratory and academic collaborators has embarked on a research proposed for the Rifle site, the object of which is to gain a comprehensive and mechanistic understanding of the microbial factors and associated geochemistry controlling uranium mobility so that DOE can confidently remediate uranium plumes as well as support stewardship of uranium-contaminated sites. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Rifle Integrated Field-Scale Subsurface Research Challenge Project.

Fix, N. J.

2008-01-07T23:59:59.000Z

432

Assessment of diurnal systemic dose of agrochemicals in regulatory toxicity testing – An integrated approach without additional animal use  

Science Journals Connector (OSTI)

Integrated toxicokinetics (TK) data provide information on the rate, extent and duration of systemic exposure across doses, species, strains, gender, and life stages within a toxicology program. While routine for pharmaceuticals, TK assessments of non-pharmaceuticals are still relatively rare, and have never before been included in a full range of guideline studies for a new agrochemical. In order to better understand the relationship between diurnal systemic dose (AUC24h) and toxicity of agrochemicals, TK analyses in the study animals is now included in all short- (excluding acute), medium- and long-term guideline mammalian toxicity studies including reproduction/developmental tests. This paper describes a detailed procedure for the implementation of TK in short-, medium- and long-term regulatory toxicity studies, without the use of satellite animals, conducted on three agrochemicals (X11422208, 2,4-D and X574175). In these studies, kinetically-derived maximum doses (KMD) from short-term studies instead of, or along with, maximum tolerated doses (MTD) were used for the selection of the high dose in subsequent longer-term studies. In addition to leveraging TK data to guide dose level selection, the integrated program was also used to select the most appropriate method of oral administration (i.e., gavage versus dietary) of test materials for rat and rabbit developmental toxicity studies. The integrated TK data obtained across toxicity studies (without the use of additional/satellite animals) provided data critical to understanding differences in response across doses, species, strains, sexes, and life stages. Such data should also be useful in mode of action studies and to improve human risk assessments.

Shakil A. Saghir; Michael J. Bartels; David L. Rick; Alene T. McCoy; Reza J. Rasoulpour; Robert G. Ellis-Hutchings; M. Sue Marty; Claire Terry; Jason P. Bailey; Richard Billington; James S. Bus

2012-01-01T23:59:59.000Z

433

Test results of a Stirling engine utilizing heat exchanger modules with an integral heat pipe  

SciTech Connect (OSTI)

The Heat Pipe Stirling Engine (HP-1000), a free-piston Stirling engine incorporating three heat exchanger modules, each having a sodium filled heat pipe, has been tested at the NASA-Lewis Research Center as part of the Civil Space Technology Initiative (CSTI). The heat exchanger modules were designed to reduce the number of potential flow leak paths in the heat exchanger assembly and incorporate a heat pipe as the link between the heat source and the engine. An existing RE-1000 free-piston Stirling engine was modified to operate using the heat exchanger modules. This paper describes heat exchanger module and engine performance during baseline testing. Condenser temperature profiles, brake power, and efficiency are presented and discussed.

Skupinski, R.C.; Tower, L.K.; Madi, F.J.; Brusk, K.D.

1993-04-01T23:59:59.000Z

434

Method for testing the strength and structural integrity of nuclear fuel particles  

DOE Patents [OSTI]

An accurate method for testing the strength of nuclear fuel particles. Each particle includes an upper and lower portion, and is placed within a testing apparatus having upper and lower compression members. The upper compression member includes a depression therein which is circular and sized to receive only part of the upper portion of the particle. The lower compression member also includes a similar depression. The compression members are parallel to each other with the depressions therein being axially aligned. The fuel particle is then placed between the compression members and engaged within the depressions. The particle is then compressed between the compression members until it fractures. The amount of force needed to fracture the particle is thereafter recorded. This technique allows a broader distribution of forces and provides more accurate results compared with systems which distribute forces at singular points on the particle.

Lessing, Paul A. (Idaho Falls, ID)

1995-01-01T23:59:59.000Z

435

Method for testing the strength and structural integrity of nuclear fuel particles  

DOE Patents [OSTI]

An accurate method for testing the strength of nuclear fuel particles is disclosed. Each particle includes an upper and lower portion, and is placed within a testing apparatus having upper and lower compression members. The upper compression member includes a depression therein which is circular and sized to receive only part of the upper portion of the particle. The lower compression member also includes a similar depression. The compression members are parallel to each other with the depressions therein being axially aligned. The fuel particle is then placed between the compression members and engaged within the depressions. The particle is then compressed between the compression members until it fractures. The amount of force needed to fracture the particle is thereafter recorded. This technique allows a broader distribution of forces and provides more accurate results compared with systems which distribute forces at singular points on the particle. 13 figs.

Lessing, P.A.

1995-10-17T23:59:59.000Z

436

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 484: Surface Debris, Waste Sites, and Burn Area, Tonopah Test Range, Nevada  

SciTech Connect (OSTI)

This Streamlined Approach for Environmental Restoration plan details the activities necessary to close Corrective Action Unit (CAU) 484: Surface Debris, Waste Sites, and Burn Area (Tonopah Test Range). CAU 484 consists of sites located at the Tonopah Test Range, Nevada, and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order. CAU 484 consists of the following six Corrective Action Sites: (1) CAS RG-52-007-TAML, Davis Gun Penetrator Test; (2) CAS TA-52-001-TANL, NEDS Detonation Area; (3) CAS TA-52-004-TAAL, Metal Particle Dispersion Test; (4) CAS TA-52-005-TAAL, Joint Test Assembly DU Sites; (5) CAS TA-52-006-TAPL, Depleted Uranium Site; and (6) CAS TA-54-001-TANL, Containment Tank and Steel Structure

Bechel Nevada

2004-05-01T23:59:59.000Z

437

Strategic Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Strategic Plan science-innovationassetsimagesicon-science.jpg Strategic Plan x Strategic Plan Los Alamos National Laboratory Strategic Plan - 2014 (pdf) Our Strategic Plan...

438

Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 130: Storage Tanks, Nevada Test Site, Nevada, Revision 0  

SciTech Connect (OSTI)

This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 130, Storage Tanks, identified in the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended February 2008). Corrective Action Unit 130 consists of the seven following corrective action sites (CASs) located in Areas 1, 7, 10, 20, 22, and 23 of the Nevada Test Site: • 01-02-01, Underground Storage Tank • 07-02-01, Underground Storage Tanks • 10-02-01, Underground Storage Tank • 20-02-03, Underground Storage Tank • 20-99-05, Tar Residue • 22-02-02, Buried UST Piping • 23-02-07, Underground Storage Tank This plan provides the methodology for field activities needed to gather the necessary information for closing each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 130 using the SAFER process. Additional information will be obtained by conducting a field investigation before selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible recommendation that no further corrective action is necessary. This will be presented in a Closure Report that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval. The sites will be investigated based on the data quality objectives (DQOs) finalized on April 3, 2008, by representatives of NDEP; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for each CAS in CAU 130. The DQO process developed for this CAU identified the following expected closure options: (1) investigation and confirmation that no contamination exists above the final action levels, leading to a no further action declaration; (2) characterization of the nature and extent of contamination, leading to closure in place with use restrictions; or (3) clean closure by remediation and verification. The following text summarizes the SAFER activities that will support the closure of CAU 130: • Perform site preparation activities (e.g., utilities clearances, geophysical surveys). • Move or remove and dispose of debris at various CASs, as required. • Collect environmental samples from designated target populations (e.g., stained soil) to confirm or disprove the presence of contaminants of concern (COCs) as necessary to supplement existing information. • If no COCs are present at a CAS, establish no further action as the corrective action. • If COCs exist, collect environmental samples from designated target populations (e.g., clean soil adjacent to contaminated soil) and submit for laboratory analyses to define the extent of COC contamination. • If a COC is present at a CAS, either: - Establish clean closure as the corrective action. The material to be remediated will be removed, disposed of as waste, and verification samples will be collected from remaining soil, or - Establish closure in place as the corrective action and implement the appropriate use restrictions. • Obtain consensus from NDEP that the preferred closure option is sufficient to protect human health and the environment. • Close the underground storage tank(s) and their contents, if any, in accordance with Nevada Administrative Code regulations. • Remove the lead brick(s) found at any CAS in accordance with the Resource Conservation and Recovery Act.

Alfred Wickline

2008-07-01T23:59:59.000Z

439

Insulated Concrete Form Walls Integrated With Mechanical Systems in a Cold Climate Test House  

SciTech Connect (OSTI)

Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction. This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate. Of primary interest is the influence of the ICF walls on developing an effective air sealing strategy and selecting an appropriate heating and cooling equipment type and capacity. The domestic water heating system is analyzed for costs and savings to investigate options for higher efficiency electric water heating. A method to ensure mechanical ventilation air flows is examined. The final solution package includes high-R mass walls, very low infiltration rates, multi-stage heat pump heating, solar thermal domestic hot water system, and energy recovery ventilation. This solution package can be used for homes to exceed 2012 International Energy Conservation Code requirements throughout all climate zones and achieves the DOE Challenge Home certification.

Mallay, D.; Wiehagen, J.

2014-09-01T23:59:59.000Z

440

Corrective Action Investigation Plan for Corrective Action Unit 335: Area 6 Injection Well and Drain Pit, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 335, Area 6 Injection Well and Drain Pit, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 335 consists of three Corrective Action Sites (CASs). The CAU is located in the Well 3 Yard in Area 6 at the Nevada Test Site. Historical records indicate that the Drain Pit (CAS 06-23-03) r