National Library of Energy BETA

Sample records for integrated test plan

  1. IDC Integrated Master Plan.

    SciTech Connect (OSTI)

    Clifford, David J.; Harris, James M.

    2014-12-01

    This is the IDC Re-Engineering Phase 2 project Integrated Master Plan (IMP). The IMP presents the major accomplishments planned over time to re-engineer the IDC system. The IMP and the associate Integrated Master Schedule (IMS) are used for planning, scheduling, executing, and tracking the project technical work efforts. REVISIONS Version Date Author/Team Revision Description Authorized by V1.0 12/2014 IDC Re- engineering Project Team Initial delivery M. Harris

  2. Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site

    SciTech Connect (OSTI)

    Bechtel Nevada

    2005-06-01

    This document is an integrated plan for closing and monitoring two low-level radioactive waste disposal sites at the Nevada Test Site.

  3. Integrated rural energy planning

    SciTech Connect (OSTI)

    El Mahgary, Y.; Biswas, A.K.

    1985-01-01

    This book presents papers on integrated community energy systems in developing countries. Topics considered include an integrated rural energy system in Sri Lanka, rural energy systems in Indonesia, integrated rural food-energy systems and technology diffusion in India, bringing energy to the rural sector in the Philippines, the development of a new energy village in China, the Niaga Wolof experimental rural energy center, designing a model rural energy system for Nigeria, the Basaisa village integrated field project, a rural energy project in Tanzania, rural energy development in Columbia, and guidelines for the planning, development and operation of integrated rural energy projects.

  4. Plug-in Hybrid Electric Vehicle (PHEV) Integrated Test Plan and Evaluation Program - DRAFT 3-29-07

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1-12335 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity Plug-in Hybrid Electric Vehicle (PHEV) Integrated Test Plan and Evaluation Program DRAFT 3-29-07 Donald Karner Roberta Brayer Derek Peterson Mindy Kirkpatrick James Francfort March 2007 The Idaho National Laboratory is a U.S. Department of Energy National Laboratory Operated by Battelle Energy Alliance INL/EXT-01-12335 U.S. Department of Energy FreedomCAR & Vehicle Technologies

  5. Primer on gas integrated resource planning

    SciTech Connect (OSTI)

    Goldman, C.; Comnes, G.A.; Busch, J.; Wiel, S.

    1993-12-01

    This report discusses the following topics: gas resource planning: need for IRP; gas integrated resource planning: methods and models; supply and capacity planning for gas utilities; methods for estimating gas avoided costs; economic analysis of gas utility DSM programs: benefit-cost tests; gas DSM technologies and programs; end-use fuel substitution; and financial aspects of gas demand-side management programs.

  6. Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site

    SciTech Connect (OSTI)

    S. E. Rawlinson

    2001-09-01

    Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) (one site is in Area 3 and the other is in Area 5) at the Nevada Test Site (NTS) for the U.S. Department of Energy's (DOE's) National Nuclear Security Administration Nevada Operations Office (NNSA/NV). The current DOE Order governing management of radioactive waste is 435.1. Associated with DOE Order 435.1 is a Manual (DOE M 435.1-1) and Guidance (DOE G 435.1-1). The Manual and Guidance specify that preliminary closure and monitoring plans for a low-level waste (LLW) management facility be developed and initially submitted with the Performance Assessment (PA) and Composite Analysis (CA) for that facility. The Manual and Guidance, and the Disposal Authorization Statement (DAS) issued for the Area 3 RWMS further specify that the preliminary closure and monitoring plans be updated within one year following issuance of a DAS. This Integrated Closure and Monitoring Plan (ICMP) fulfills both requirements. Additional updates will be conducted every third year hereafter. This document is an integrated plan for closing and monitoring both RWMSs, and is based on guidance issued in 1999 by the DOE for developing closure plans. The plan does not follow the format suggested by the DOE guidance in order to better accommodate differences between the two RWMSs, especially in terms of operations and site characteristics. The modification reduces redundancy and provides a smoother progression of the discussion. The closure and monitoring plans were integrated because much of the information that would be included in individual plans is the same, and integration provides efficient presentation and program management. The ICMP identifies the regulatory requirements, describes the disposal sites and the physical environment where they are located, and defines the approach and schedule for both closing and monitoring the sites.

  7. Integrated Distribution Planning Concept Paper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Planning Concept Paper www.irecusa.org A Proactive Approach for Accommodating High Penetrations of Distributed Generation Resources May 2013 Integrated Distribution Planning Concept Paper A Proactive Approach for Accommodating High Penetrations of Distributed Generation Resources Tim Lindl and Kevin Fox Interstate Renewable Energy Council, Inc. Abraham Ellis and Robert Broderick Sandia National Laboratories May 2013 IREC enables greater use of clean energy in a sustainable way by

  8. Integrated Resource Planning Model (IRPM)

    SciTech Connect (OSTI)

    Graham, T. B.

    2010-04-01

    The Integrated Resource Planning Model (IRPM) is a decision-support software product for resource-and-capacity planning. Users can evaluate changing constraints on schedule performance, projected cost, and resource use. IRPM is a unique software tool that can analyze complex business situations from a basic supply chain to an integrated production facility to a distributed manufacturing complex. IRPM can be efficiently configured through a user-friendly graphical interface to rapidly provide charts, graphs, tables, and/or written results to summarize postulated business scenarios. There is not a similar integrated resource planning software package presently available. Many different businesses (from government to large corporations as well as medium-to-small manufacturing concerns) could save thousands of dollars and hundreds of labor hours in resource and schedule planning costs. Those businesses also could avoid millions of dollars of revenue lost from fear of overcommitting or from penalties and lost future business for failing to meet promised delivery by using IRPM to perform what-if business-case evaluations. Tough production planning questions that previously were left unanswered can now be answered with a high degree of certainty. Businesses can anticipate production problems and have solutions in hand to deal with those problems. IRPM allows companies to make better plans, decisions, and investments.

  9. 7.0 - Integrated Acquisition Planning Process

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    development and integration of associated acquisition planning documents and their influence on the establishment of the acquisition plan in order to improve the acquisition...

  10. Integrated Planning and Performance Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Lab Plan - Other plans (SiteFacilities, WFD, etc) * Execute--perform technical & business functions - Management systems (CAS) * Check--measureanalyze & evaluate...

  11. Integrated Waste Feed Delivery Plan - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documents Integrated Waste Feed Delivery Plan Documents Documents Hanford Site Cleanup Completion Framework Tri-Party Agreement Freedom of Information and Privacy Act Hanford Site Budget Hanford Site Safety Standards DOE - ORP Contracts/Procurements DOE - RL Contracts/Procurements Integrated Waste Feed Delivery Plan Single-Shell Tank Evaluations Deep Vadose Zone 100-F RI/FS Sitewide Probabilistic Seismic Hazard Analysis Environmental Integrated Waste Feed Delivery Plan Email Email Page | Print

  12. Fermilab | Directorate | Office of Integrated Planning & Performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In addition it develops, implements and maintains integrated laboratory systems and management processes for strategic planning and goal setting, project and program...

  13. Vendor System Vulnerability Testing Test Plan

    SciTech Connect (OSTI)

    James R. Davidson

    2005-01-01

    The Idaho National Laboratory (INL) prepared this generic test plan to provide clients (vendors, end users, program sponsors, etc.) with a sense of the scope and depth of vulnerability testing performed at the INLs Supervisory Control and Data Acquisition (SCADA) Test Bed and to serve as an example of such a plan. Although this test plan specifically addresses vulnerability testing of systems applied to the energy sector (electric/power transmission and distribution and oil and gas systems), it is generic enough to be applied to control systems used in other critical infrastructures such as the transportation sector, water/waste water sector, or hazardous chemical production facilities. The SCADA Test Bed is established at the INL as a testing environment to evaluate the security vulnerabilities of SCADA systems, energy management systems (EMS), and distributed control systems. It now supports multiple programs sponsored by the U.S. Department of Energy, the U.S. Department of Homeland Security, other government agencies, and private sector clients. This particular test plan applies to testing conducted on a SCADA/EMS provided by a vendor. Before performing detailed vulnerability testing of a SCADA/EMS, an as delivered baseline examination of the system is conducted, to establish a starting point for all-subsequent testing. The series of baseline tests document factory delivered defaults, system configuration, and potential configuration changes to aid in the development of a security plan for in depth vulnerability testing. The baseline test document is provided to the System Provider,a who evaluates the baseline report and provides recommendations to the system configuration to enhance the security profile of the baseline system. Vulnerability testing is then conducted at the SCADA Test Bed, which provides an in-depth security analysis of the Vendors system.b a. The term System Provider replaces the name of the company/organization providing the system being evaluated. This can be the system manufacturer, a system user, or a third party organization such as a government agency. b. The term Vendor (or Vendors) System replaces the name of the specific SCADA/EMS being tested.

  14. NSAR Ten Year Renewable Energy Plan - Integration Planning

    Office of Environmental Management (EM)

    OFFICE OF INDIAN ENERGY NSAR Ten Year Renewable Energy Plan - Integration Planning September 2015 1 Overview * Process * 3Ps * 3Cs 2 National Strategy for the Arctic Region (NSAR) - Federal Engagement * Step One - See Russia from your House * The Ten Year Renewable Energy Plan - captures existing energy planning and development activities within the context of renewable energy and energy efficiency - identifies gaps or areas appropriate for federal agency engagement as stated in: * Executive

  15. Integrated Planning and Performance Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Process Maintain Lab Agenda Prepare ALP Program Execution Plan PEMP PreparationApproval POG Support CAS M-3 Implementation FNAL Enterprise Risk Management...

  16. Vehicle Technologies Office: Integration, Validation and Testing...

    Broader source: Energy.gov (indexed) [DOE]

    Integration Laboratory to integrate, validate, and test advanced vehicle technologies. ... To integrate and test vehicle components and subsystems, DOE's national laboratories use ...

  17. Planning integration FY 1996 program plan. Revision 1

    SciTech Connect (OSTI)

    1995-09-01

    This Multi-Year Program Plan (MAP) Planning Integration Program, Work Breakdown Structure (WBS) Element 1.8.2, is the primary management tool to document the technical, schedule, and cost baseline for work directed by the US Department of Energy (DOE), Richland Operations Office (RL). As an approved document, it establishes an agreement between RL and the performing contractors for the work to be performed. It was prepared by Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL). The MYPPs for the Hanford Site programs are to provide a picture from fiscal year (FY) 1996 through FY 2002. At RL Planning and Integration Division (PID) direction, only the FY 1996 Planning Integration Program work scope has been planned and presented in this MAP. Only those known significant activities which occur after FY 1996 are portrayed in this MAP. This is due to the uncertainty of who will be accomplishing what work scope when, following the award of the Management and Integration (M&I) contract.

  18. Nevada National Security Site Integrated Groundwater Sampling Plan, Revision 0

    SciTech Connect (OSTI)

    Marutzky, Sam; Farnham, Irene

    2014-10-01

    The purpose of the Nevada National Security Site (NNSS) Integrated Sampling Plan (referred to herein as the Plan) is to provide a comprehensive, integrated approach for collecting and analyzing groundwater samples to meet the needs and objectives of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) Activity. Implementation of this Plan will provide high-quality data required by the UGTA Activity for ensuring public protection in an efficient and cost-effective manner. The Plan is designed to ensure compliance with the UGTA Quality Assurance Plan (QAP). The Plans scope comprises sample collection and analysis requirements relevant to assessing the extent of groundwater contamination from underground nuclear testing. This Plan identifies locations to be sampled by corrective action unit (CAU) and location type, sampling frequencies, sample collection methodologies, and the constituents to be analyzed. In addition, the Plan defines data collection criteria such as well-purging requirements, detection levels, and accuracy requirements; identifies reporting and data management requirements; and provides a process to ensure coordination between NNSS groundwater sampling programs for sampling of interest to UGTA. This Plan does not address compliance with requirements for wells that supply the NNSS public water system or wells involved in a permitted activity.

  19. Test Plan - Solids Accumulation Scouting Studies

    SciTech Connect (OSTI)

    Duignan, M. R.; Steeper, T. J.; Steimke, J. L.; Fowley, M. D.

    2012-05-10

    This plan documents the highlights of the Solids Accumulations Scouting Studies test; a project, from Washington River Protection Solutions (WRPS), that began on February 1, 2012. During the last 12 weeks considerable progress has been made to design and plan methods that will be used to estimate the concentration and distribution of heavy fissile solids in accumulated solids in the Hanford double-shell tank (DST) 241-AW-105 (AW-105), which is the primary goal of this task. This DST will be one of the several waste feed delivery staging tanks designated to feed the Pretreatment Facility (PTF) of the Waste Treatment and Immobilization Plant (WTP). Note that over the length of the waste feed delivery mission AW-105 is currently identified as having the most fill empty cycles of any DST feed tanks, which is the reason for modeling this particular tank. At SRNL an existing test facility, the Mixing Demonstration Tank, which will be modified for the present work, will use stainless steel particles in a simulant that represents Hanford waste to perform mock staging tanks transfers that will allow solids to accumulate in the tank heel. The concentration and location of the mock fissile particles will be measured in these scoping studies to produce information that will be used to better plan larger scaled tests. Included in these studies is a secondary goal of developing measurement methods to accomplish the primary goal. These methods will be evaluated for use in the larger scale experiments. Included in this plan are the several pretest activities that will validate the measurement techniques that are currently in various phases of construction. Aspects of each technique, e.g., particle separations, volume determinations, topographical mapping, and core sampling, have been tested in bench-top trials, as discussed herein, but the actual equipment to be employed during the full test will need evaluation after fabrication and integration into the test facility.

  20. Hydrogen Posture Plan: An Integrated Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Plan | Department of Energy Posture Plan: An Integrated Research, Development and Demonstration Plan Hydrogen Posture Plan: An Integrated Research, Development and Demonstration Plan The 2006 Hydrogen Posture Plan satisfies Section 804 of the Energy Policy Act of 2005, which requires that the Secretary of Energy transmit to Congress a coordinated plan for the Department's hydrogen and fuel cell programs. PDF icon Hydrogen Posture Plan: An Integrated Research, Development and

  1. Tritium High Vacuum Pump Test Plan

    Office of Environmental Management (EM)

    High Vacuum Pump Test Plan Tritium Programs Engineering Louis Boone Joel Bennett ... Shimming will have to be internal to the pump. Test System Measure ultimate vacuum with ...

  2. Hanford site integrated pest management plan

    SciTech Connect (OSTI)

    Giddings, R.F.

    1996-04-09

    The Hanford Site Integrated Pest Management Plan (HSIPMP) defines the Integrated Pest Management (IPM) decision process and subsequent strategies by which pest problems are to be solved at all Hanford Site properties per DOE-RL Site Infrastructure Division memo (WHC 9505090). The HSIPMP defines the roles that contractor organizations play in supporting the IPM process. In short the IPM process anticipates and prevents pest activity and infestation by combining several strategies to achieve long-term pest control solutions.

  3. Treatability Test Plan for an In Situ Biostimulation Reducing Barrier

    SciTech Connect (OSTI)

    Truex, Michael J.; Vermeul, Vince R.; Long, Philip E.; Brockman, Fred J.; Oostrom, Mart; Hubbard, Susan; Borden, Robert C.; Fruchter, Jonathan S.

    2007-07-21

    This treatability test plan supports a new, integrated strategy to accelerate cleanup of chromium in the Hanford 100 Areas. This plan includes performing a field-scale treatability test for bioreduction of chromate, nitrate, and dissolved oxygen. In addition to remediating a portion of the plume and demonstrating reduction of electron acceptors in the plume, the data from this test will be valuable for designing a full-scale bioremediation system to apply at this and other chromium plumes at Hanford.

  4. National integrated mitigation planning in agriculture: A review...

    Open Energy Info (EERE)

    National integrated mitigation planning in agriculture: A review paper This review of national greenhouse gas (GHG) mitigation planning in the agriculture sector has two...

  5. integrated-planning-and-operational-tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Announcement Presentation at Argonne TRACC March 29, 2011 11:00 AM(CST) Dr. Yue Liu Assistant Professor Department of Civil Engineering University of Wisconsin - Milwaukee Integrated planning and operational tools for emergency evacuation traffic management: case studies and system application in Washington DC Metropolitan Area ABSTRACT The evacuation of large municipal areas in an efficient manner during emergencies and disasters is one of the critical tasks faced by emergency management

  6. Jefferson Lab Project Management & Integrated Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vision: Partnering with our customers, we provide support to further the laboratory's mission to operate a world class user facility for conducting nuclear physics research. Our focus is to provide project management and integrated planning support across the Lab that is aligned with Lab goals, objectives and guidance. Mission: To ensure, through partnership with the Lab Leadership/staff, the successful conduct of the mission of the laboratory. As such, we provide technical and administrative

  7. Buried waste integrated demonstration FY 94 deployment plan

    SciTech Connect (OSTI)

    Hyde, R.A.; Walker, S.; Garcia, M.M.

    1994-05-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The fiscal year (FY) 1994 effort will fund thirty-eight technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. This document is the basic operational planning document for deployment of all BWID projects. Discussed in this document are the BWID preparations for INEL field demonstrations, INEL laboratory demonstrations, non-INEL demonstrations, and paper studies. Each technology performing tests will prepare a test plan to detail the specific procedures, objectives, and tasks of each test. Therefore, information specific to testing each technology is intentionally omitted from this document.

  8. Integrated Recycling Test Fuel Fabrication

    SciTech Connect (OSTI)

    R.S. Fielding; K.H. Kim; B. Grover; J. Smith; J. King; K. Wendt; D. Chapman; L. Zirker

    2013-03-01

    The Integrated Recycling Test is a collaborative irradiation test that will electrochemically recycle used light water reactor fuel into metallic fuel feedstock. The feedstock will be fabricated into a metallic fast reactor type fuel that will be irradiation tested in a drop in capsule test in the Advanced Test Reactor on the Idaho National Laboratory site. This paper will summarize the fuel fabrication activities and design efforts. Casting development will include developing a casting process and system. The closure welding system will be based on the gas tungsten arc burst welding process. The settler/bonder system has been designed to be a simple system which provides heating and controllable impact energy to ensure wetting between the fuel and cladding. The final major pieces of equipment to be designed are the weld and sodium bond inspection system. Both x-radiography and ultrasonic inspection techniques have been examine experimentally and found to be feasible, however the final remote system has not been designed. Conceptual designs for radiography and an ultrasonic system have been made.

  9. Background Information for the Nevada National Security Site Integrated Sampling Plan, Revision 0

    SciTech Connect (OSTI)

    Farnham, Irene; Marutzky, Sam

    2014-12-01

    This document describes the process followed to develop the Nevada National Security Site (NNSS) Integrated Sampling Plan (referred to herein as the Plan). It provides the Plans purpose and objectives, and briefly describes the Underground Test Area (UGTA) Activity, including the conceptual model and regulatory requirements as they pertain to groundwater sampling. Background information on other NNSS groundwater monitoring programsthe Routine Radiological Environmental Monitoring Plan (RREMP) and Community Environmental Monitoring Program (CEMP)and their integration with the Plan are presented. Descriptions of the evaluations, comments, and responses of two Sampling Plan topical committees are also included.

  10. Test Plan for the overburden removal demonstration

    SciTech Connect (OSTI)

    Rice, P.; Thompson, D.; Winberg, M.; Skaggs, J.

    1993-06-01

    The removal of soil overburdens from contaminated pits and trenches involves using equipment that will remove a small layer of soil from 3 to 6 in. at any time. As a layer of soil is removed, overburden characterization techniques perform surveys to a depth that exceeds each overburden removal layer to ensure that the removed soil will be free of contamination. It is generally expected that no contamination will be found in the soil overburden, which was brought in after the waste was put in place. It is anticipated that some containers in the waste zone have lost their integrity, and the waste leakage from those containers has migrated by gravity downward into the waste zone. To maintain a safe work environment, this method of overburden removal should allow safe preparation of a pit or trench for final remediation. To demonstrate the soil overburden techniques, the Buried Waste Integrated Demonstration Program has contracted vendor services to provide equipment and techniques demonstrating soil overburden removal technology. The demonstration will include tests that will evaluate equipment performance and techniques for removal of overburden soil, control of contamination spread, and dust control. To evaluate the performance of these techniques, air particulate samples, physical measurements of the excavation soil cuts, maneuverability measurements, and time versus volume (rate) of soil removal data will be collected during removal operations. To provide a medium for sample evaluation, the overburden will be spiked at specific locations and depths with rare earth tracers. This test plan will be describe the objectives of the demonstration, data quality objectives, methods to be used to operate the equipment and use the techniques in the test area, and methods to be used in collecting data during the demonstration.

  11. EUCI 16th Annual Integrated Resource Planning | Department of Energy

    Energy Savers [EERE]

    EUCI 16th Annual Integrated Resource Planning EUCI 16th Annual Integrated Resource Planning March 21, 2016 1:00PM PDT to March 22, 2016 4:00PM PDT Long Beach, California Hyatt The Pike 285 Bay Street Long Beach, CA 90802 EUCI is hosting an annual conference about integrated resource planning to showcase best practices that properly recognize and address changes in the grid. The program features leading utility, power resource planning professional and related industry experts addressing these

  12. Treatability Test Plan for an In Situ Biostimulation Reducing Barrier

    SciTech Connect (OSTI)

    Truex, Michael J.; Vermeul, Vince R.; Long, Philip E.; Brockman, Fred J.; Oostrom, Mart; Hubbard, Susan; Borden, Robert C.; Fruchter, Jonathan S.

    2007-10-26

    This treatability test plan supports a new, integrated strategy to accelerate cleanup of chromium in the 100 Areas at the Hanford Site. This plan includes performing a field-scale treatability test for bioreduction of chromate, nitrate, and dissolved oxygen. In addition to remediating a portion of the plume and demonstrating reduction of electron acceptors in the plume, the data from this test will be valuable for designing a full-scale bioremediation system to apply at this and other chromium plumes at the Hanford Site.

  13. CANMET Gasifier Liner Coupon Material Test Plan

    SciTech Connect (OSTI)

    Mark Fitzsimmons; Alan Darby; Fred Widman

    2005-10-30

    The test plan detailed in this topical report supports Task 1 of the project titled ''Development of Technologies and Capabilities for Coal Energy Resources - Advanced Gasification Systems Development (AGSD)''. The purpose of these tests is to verify that materials planned for use in an advanced gasifier pilot plant will withstand the environments in a commercial gasifier. Pratt & Whitney Rocketdyne (PWR) has developed and designed the cooled liner test assembly article that will be tested at CANMET Energy Technology Centre (CETC-O) in Ottawa, Ontario, Canada (CETC-O). The Test Plan TP-00364 is duplicated in its entirety, with formatting changes to comply with the format required for this Topical Report. The table of contents has been modified to include the additional material required by this topical report. Test Request example and drawings of non-proprietary nature are also included as appendices.

  14. Integration of Safety Culture Attributes into EFCOG Work Planning and

    Office of Environmental Management (EM)

    Control Guidance Document | Department of Energy Integration of Safety Culture Attributes into EFCOG Work Planning and Control Guidance Document Integration of Safety Culture Attributes into EFCOG Work Planning and Control Guidance Document May 15, 2013 Presenters: Steele Coddington, NSTec, Las Vegas, and John McDonald, WRPS, Hanford Topics Covered: Integration of Safety Culture (SC) Attributes into EFCOG Work Planning and Control Guidance Document Linking SC to WP&C CRADS EFCOG and DOE

  15. Visual Sample Plan (VSP) - FIELDS Integration

    SciTech Connect (OSTI)

    Pulsipher, Brent A.; Wilson, John E.; Gilbert, Richard O.; Hassig, Nancy L.; Carlson, Deborah K.; Bing-Canar, John; Cooper, Brian; Roth, Chuck

    2003-04-19

    Two software packages, VSP 2.1 and FIELDS 3.5, are being used by environmental scientists to plan the number and type of samples required to meet project objectives, display those samples on maps, query a database of past sample results, produce spatial models of the data, and analyze the data in order to arrive at defensible decisions. VSP 2.0 is an interactive tool to calculate optimal sample size and optimal sample location based on user goals, risk tolerance, and variability in the environment and in lab methods. FIELDS 3.0 is a set of tools to explore the sample results in a variety of ways to make defensible decisions with quantified levels of risk and uncertainty. However, FIELDS 3.0 has a small sample design module. VSP 2.0, on the other hand, has over 20 sampling goals, allowing the user to input site-specific assumptions such as non-normality of sample results, separate variability between field and laboratory measurements, make two-sample comparisons, perform confidence interval estimation, use sequential search sampling methods, and much more. Over 1,000 copies of VSP are in use today. FIELDS is used in nine of the ten U.S. EPA regions, by state regulatory agencies, and most recently by several international countries. Both software packages have been peer-reviewed, enjoy broad usage, and have been accepted by regulatory agencies as well as site project managers as key tools to help collect data and make environmental cleanup decisions. Recently, the two software packages were integrated, allowing the user to take advantage of the many design options of VSP, and the analysis and modeling options of FIELDS. The transition between the two is simple for the user VSP can be called from within FIELDS, automatically passing a map to VSP and automatically retrieving sample locations and design information when the user returns to FIELDS. This paper will describe the integration, give a demonstration of the integrated package, and give users download instructions and software requirements for running the integrated package.

  16. IDC Integrated Master Plan. (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    IDC system. The IMP and the associate Integrated Master Schedule (IMS) are used for planning, scheduling, executing, and tracking the project technical work efforts. REVISIONS...

  17. IDC Integrated Master Plan. Clifford, David J.; Harris, James...

    Office of Scientific and Technical Information (OSTI)

    IDC system. The IMP and the associate Integrated Master Schedule (IMS) are used for planning, scheduling, executing, and tracking the project technical work efforts. REVISIONS...

  18. Spent Nuclear Fuel project integrated safety management plan

    SciTech Connect (OSTI)

    Daschke, K.D.

    1996-09-17

    This document is being revised in its entirety and the document title is being revised to ``Spent Nuclear Fuel Project Integrated Safety Management Plan.

  19. RELAP-7 and PRONGHORN Initial Integration Plan

    SciTech Connect (OSTI)

    J. Ortensi; D. Andrs; A.A. Bingham; R.C. Martineau; J.W. Peterson

    2012-05-01

    Modern nuclear reactor safety codes require the ability to solve detailed coupled neutronicthermal fluids problems. For larger cores, this implies fully coupled 3-D spatial dynamics with appropriate feedback models that can provide enough resolution to accurately compute core heat generation and removal during steady and unsteady conditions. The reactor analyis code PRONGHORN is being coupled to RELAP-7 as a first step to extend RELAP's current capabilities. This report details the mathematical models, the type of coupling, and the testing that will be used to produce an integrated system. RELAP-7 is a MOOSE-based application that solves the continuity, momentum, and energy equations in 1-D for a compressible fluid. The pipe and joint capabilities enable it to model parts of the PCU system. The PRONGHORN application, also developed on the MOOSE infrastructure, solves the coupled equations that define the neutron diffusion, fluid flow, and heat transfer in a 3-D core model. Initially, the two systems will be loosely coupled to simplify the transition towards a more complex infrastructure. The integration will be tested with the OECD/NEA MHTGR-350 Coupled Neutronics-Thermal Fluids benchmark model.

  20. Test Plan for Solvent Extraction Data Acquisition to Support...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Test Plan for Solvent Extraction Data Acquisition to Support Modeling Efforts Citation Details In-Document Search Title: Test Plan for Solvent Extraction Data ...

  1. Test Methods Standing Technical Committee Strategic Plan - February...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategic Plan - February 2012 Test Methods Standing Technical Committee Strategic Plan - ... identified by the Building America Standing Technical Committee on Test Methods. ...

  2. Integration of Biodiversity into National Forestry Planning:...

    Open Energy Info (EERE)

    Biodiversity into National Forestry Planning: An Annotated Bibliography of Web-Based Resources, Methods, Experiences, and Case Studies Jump to: navigation, search Tool Summary...

  3. Jefferson Lab Project Management & Integrated Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Manager (757) 269-7511, rode@jlab.org Program Development & Planning The Program Development function of Project Management Office serves three main purposes: 1. Monitor...

  4. GEOCHEMICAL TESTING AND MODEL DEVELOPMENT - RESIDUAL TANK WASTE TEST PLAN

    SciTech Connect (OSTI)

    CANTRELL KJ; CONNELLY MP

    2010-03-09

    This Test Plan describes the testing and chemical analyses release rate studies on tank residual samples collected following the retrieval of waste from the tank. This work will provide the data required to develop a contaminant release model for the tank residuals from both sludge and salt cake single-shell tanks. The data are intended for use in the long-term performance assessment and conceptual model development.

  5. Tritium High Vacuum Pump Test Plan

    Office of Environmental Management (EM)

    High Vacuum Pump Test Plan Tritium Programs Engineering Louis Boone Joel Bennett M-TRT-H-00088 Rev 0 Date: 4/10/2014 Tritium Facilities Savannah River Nuclear Solutions, LLC Scope * Comparison of Normetex vs. Eumeca/ Air Squared/ Edwards/ Busch * Ultimate Vacuum * Develop Flow Curve * Provide basis for selecting the Normetex Pump Replacement Performance * Flow Rate - 9 cfm at 3 torr inlet pressure * Ultimate Vacuum Pressure - Acceptable: Less than 0.01 torr at discharge pressure of 30 torr -

  6. Tips for Planning, Building, and Testing a Model Car

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tips for Planning, Building, and Testing Your Lithium- Ion Battery Powered Car CONTENTS: Teacher Overview What Teachers Can Do To Help Student Design Plan ...

  7. Integration of Safety Culture Attributes into EFCOG Work Planning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and WP&C Collaboration Example WP&C Culture Related CRADS PDF icon Integration of Safety Culture Attributes into EFCOG Work Planning and Control Guidance Document More Documents &...

  8. ITEP Developing Tribal Integrated Solid Waste Management Plans

    Broader source: Energy.gov [DOE]

    The Institute for Tribal Environmental Professionals (ITEP) is offering a two-day training course providing the tools tribes needs to develop and implement a successful tribal integrated solid waste management plan.

  9. Light Water Reactor Sustainability Program - Integrated Program Plan |

    Office of Environmental Management (EM)

    Department of Energy Program - Integrated Program Plan Light Water Reactor Sustainability Program - Integrated Program Plan The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U. S. Department of Energy (DOE), performed in close collaboration and cooperation with related industry R&D programs. The LWRS Program provides technical foundations for licensing and managing the long-term, safe, and economical operation of

  10. Light Water Reactor Sustainability Program: Integrated Program Plan |

    Office of Environmental Management (EM)

    Department of Energy Program: Integrated Program Plan Light Water Reactor Sustainability Program: Integrated Program Plan Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas- emitting electric power generation in the United States. Domestic demand for electrical energy is expected to grow by more than 30% from 2009 to

  11. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    SciTech Connect (OSTI)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

  12. Test Plan: WIPP bin-scale CH TRU waste tests

    SciTech Connect (OSTI)

    Molecke, M.A.

    1990-08-01

    This WIPP Bin-Scale CH TRU Waste Test program described herein will provide relevant composition and kinetic rate data on gas generation and consumption resulting from TRU waste degradation, as impacted by synergistic interactions due to multiple degradation modes, waste form preparation, long-term repository environmental effects, engineered barrier materials, and, possibly, engineered modifications to be developed. Similar data on waste-brine leachate compositions and potentially hazardous volatile organic compounds released by the wastes will also be provided. The quantitative data output from these tests and associated technical expertise are required by the WIPP Performance Assessment (PA) program studies, and for the scientific benefit of the overall WIPP project. This Test Plan describes the necessary scientific and technical aspects, justifications, and rational for successfully initiating and conducting the WIPP Bin-Scale CH TRU Waste Test program. This Test Plan is the controlling scientific design definition and overall requirements document for this WIPP in situ test, as defined by Sandia National Laboratories (SNL), scientific advisor to the US Department of Energy, WIPP Project Office (DOE/WPO). 55 refs., 16 figs., 19 tabs.

  13. 118-B-1 excavation treatability test plan

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The Hanford 118-B-1 Burial Ground Treatability Study has been required by milestone change request {number_sign}M-15-93-04, dated September 30, 1993. The change request requires that a treatability test be conducted at the 100-B Area to obtain additional engineering information for remedial design of burial grounds receiving waste from 100 Area removal actions. This treatability study has two purposes: (1) to support development of the Proposed Plan (PP) and Record of Decision (ROD), which will identify the approach to be used for burial ground remediation, and (2) to provide specific engineering information for receiving waste generated from the 100 Area removal actions. Data generated from this test also will provide critical performance and cost information necessary for remedy evaluation in the detailed analysis of alternatives during preparation of the focused feasibility study (FFS). This treatability testing supports the following 100 Area alternatives: (1) excavation and disposal, and (2) excavation, sorting, (treatment), and disposal.

  14. NREL: Transmission Grid Integration - Transmission Planning and Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Planning and Analysis Thumbnail of map the United States that shows wind resources and transmission lines. Enlarge image This map shows the location of wind resources and transmission lines in the United States. See a larger image or state maps. NREL researchers are engaged in transmission planning and analysis to strengthen the electric power system through the integration of solar and wind power. As demand for electricity increases, electric power system operators must plan for

  15. Integrated Efficiency Test for Pyrochemical Fuel Cycles

    SciTech Connect (OSTI)

    Li, S.X.; Vaden, D.; Westphal, B.R.; Fredrickson, G.L.; Benedict, R.W.; Johnson, T.A.

    2007-07-01

    An integrated efficiency test was conducted with sodium bonded, spent EBR-II drive fuel elements. The major equipment involved in the test were the element chopper, Mk-IV electro-refiner, cathode processor, and casting furnace. Four electrorefining batches (containing 54.4 kg heavy metal) were processed under the fixed operating parameters that have been developed for this equipment based on over a decade's worth of processing experience. A mass balance across this equipment was performed. Actinide dissolution and recovery efficiencies were established based on the mass balance and chemical analytical results of various samples taken from process streams during the integrated efficiency test. (authors)

  16. Integrated Efficiency Test for Pyrochemical Fuel Cycles

    SciTech Connect (OSTI)

    S. X. Li; D. Vaden; R. W. Benedict; T. A. Johnson; B. R. Westphal; Guy L. Frederickson

    2007-09-01

    An integrated efficiency test was conducted with sodium bonded, spent EBR-II drive fuel elements. The major equipment involved in the test were the element chopper, Mk-IV electrorefiner, cathode processor, and casting furnace. Four electrorefining batches (containing 54.4 kg heavy metal) were processes under the fixed operating parameters that have been developed for this equipment based on over a decades worth of processing experience. A mass balance across this equipment was performed. Actinide dissolution and recovery efficiencies were established based on the mass balance and chemical analytical results of various samples taken from process streams during the integrated efficiency test.

  17. Generation and transmission expansion planning for renewable energy integration

    SciTech Connect (OSTI)

    Bent, Russell W; Berscheid, Alan; Toole, G. Loren

    2010-11-30

    In recent years the expansion planning problem has become increasingly complex. As expansion planning (sometimes called composite or integrated resource planning) is a non-linear and non-convex optimization problem, researchers have traditionally focused on approximate models of power flows to solve the problem. The problem has also been split into generation expansion planning (GEP) and transmission network expansion planning (TNEP) to improve computational tractability. Until recently these approximations have produced results that are straight-forward to combine and adapt to the more complex and complete problem. However, the power grid is evolving towards a state where the adaptations are no longer easy (e.g. large amounts of limited control, renewable generation, comparable generation and transmission construction costs) and necessitates new approaches. Recent work on deterministic Discrepancy Bounded Local Search (DBLS) has shown it to be quite effective in addressing the TNEP. In this paper, we propose a generalization of DBLS to handle simultaneous generation and transmission planning.

  18. Integrated Program of Experimental Diagnostics at the NNSS: An Integrated, Prioritized Work Plan for Diagnostic Development and Maintenance and Supporting Capability

    SciTech Connect (OSTI)

    NSTec Mission and Projects Division

    2010-09-30

    This Integrated Program of Experimental Diagnostics at the NNSS is an integrated prioritized work plan for the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), program that is independent of individual National Security Enterprise Laboratories (Labs) requests or specific Subprograms being supported. This prioritized work plan is influenced by national priorities presented in the Predictive Capability Framework (PCF) and other strategy documents (Primary and Secondary Assessment Technologies Plans and the Plutonium Experiments Plan). This document satisfies completion criteria for FY 2010 MRT milestone #3496: Document an integrated, prioritized work plan for diagnostic development, maintenance, and supporting capability. This document is an update of the 3?year NNSS plan written a year ago, September 21, 2009, to define and understand Lab requests for diagnostic implementation. This plan is consistent with Lab interpretations of the PCF, Primary Assessment Technologies, and Plutonium Experiment plans.

  19. Checkout, Testing, and Commissioning Plan RM | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Checkout, Testing, and Commissioning Plan RM Checkout, Testing, and Commissioning Plan RM The CP RM Module is a tool that assists DOE federal project review teams in evaluating the sufficiency of the Commissioning Plan and its implementation. The CP RM can be used by the DOE federal project teams both to evaluate the adequacy of the Commissioning Plan documentation/programs and the execution of programs by the contractor. PDF icon Commissioning Plan RM More Documents & Publications

  20. Tritium High Vacuum Pump Test Plan | Department of Energy

    Office of Environmental Management (EM)

    High Vacuum Pump Test Plan Tritium High Vacuum Pump Test Plan Presentation from the 33rd Tritium Focus Group Meeting held in Aiken, South Carolina on April 22-24, 2014. PDF icon Tritium High Vacuum Pump Test Plan More Documents & Publications Normetex Pump Replacement Tritium Operation Improvements at the Idaho National Laboratory (INL) Safety and Tritium Applied Research (STAR) facility Fusion Nuclear Science and Technology Program - Status and Plans for Tritium Research

  1. The Gemini Planet Imager: Integration and Test (Conference) ...

    Office of Scientific and Technical Information (OSTI)

    Conference: The Gemini Planet Imager: Integration and Test Citation Details In-Document Search Title: The Gemini Planet Imager: Integration and Test You are accessing a document...

  2. Test Methods Standing Technical Committee Strategic Plan - February 2012 |

    Energy Savers [EERE]

    Department of Energy Strategic Plan - February 2012 Test Methods Standing Technical Committee Strategic Plan - February 2012 This document outlines gaps, needs, and opportunities identified by the Building America Standing Technical Committee on Test Methods. PDF icon strategic_plan_test_methods.pdf More Documents & Publications Test Methods Standing Technical Committee Presentation Standing Technical Committee Working Sessions Analysis Methods and Tools Standing Technical Committee

  3. Vehicle Technologies Office: Integration, Validation and Testing Tools and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procedures | Department of Energy Modeling, Testing, Data & Results » Vehicle Technologies Office: Integration, Validation and Testing Tools and Procedures Vehicle Technologies Office: Integration, Validation and Testing Tools and Procedures The Vehicle Technologies Office supports facilities and tools such as Oak Ridge National Laboratory's Vehicle Systems Integration Laboratory to integrate, validate, and test advanced vehicle technologies. Read the text version. The Vehicle

  4. Templates and Examples — Planning Your Test

    Broader source: Energy.gov [DOE]

    Here you will find custom templates and EERE-specific examples you can use to plan, conduct, and report on your usability and analysis activities.

  5. Resource Planning Model: An Integrated Resource Planning and Dispatch Tool for Regional Electric Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Planning Model: An Integrated Resource Planning and Dispatch Tool for Regional Electric Systems Trieu Mai, Easan Drury, Kelly Eurek, Natalie Bodington, Anthony Lopez, and Andrew Perry Technical Report NREL/TP-6A20- 56723 January 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401

  6. Fast flux test facility, transition project plan

    SciTech Connect (OSTI)

    Guttenberg, S.

    1994-11-15

    The FFTF Transition Project Plan, Revision 1, provides changes and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

  7. Integrated monitoring plan for the Hanford groundwater monitoring project

    SciTech Connect (OSTI)

    Hartman, M.J.; Dresel, P.E.; McDonald, J.P.; Mercer, R.B.; Newcomer, D.R.; Thornton, E.C.

    1998-09-01

    Groundwater is monitored in hundreds of wells at the Hanford Site to fulfill a variety of requirements. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The US Department of Energy (DOE) manages these activities through the Hanford Groundwater Monitoring Project (groundwater project), which is the responsibility of Pacific Northwest National Laboratory. The groundwater project does not include all of the monitoring to assess performance of groundwater remediation or all monitoring associated with active facilities. This document is the first integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; other, established monitoring plans by reference; and a master well/constituent/frequency matrix for the entire Hanford Site.

  8. Nevada Test Site Resource Management Plan: Annual summary, January 2000

    SciTech Connect (OSTI)

    2000-01-01

    The Nevada Test Site Resource Management Plan published in December of 1998 (DOE/NV--518) describes the Nevada Test Site stewardship mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. As part of the Nevada Test Site Resource Management Plan, DOE Nevada Operations Office has committed to perform and publish an annual summary review of DOE Nevada Operations' stewardship of the Nevada Test Site. This annual summary includes a description of progress made toward the goals of the Nevada Test Site Resource Management Plan, pertinent monitoring data, actions that were taken to adapt to changing conditions, and any other changes to the Nevada Test Site Resource Management Plan.

  9. Test Plan for Solvent Extraction Data Acquisition to Support Modeling

    Office of Scientific and Technical Information (OSTI)

    Efforts (Technical Report) | SciTech Connect Technical Report: Test Plan for Solvent Extraction Data Acquisition to Support Modeling Efforts Citation Details In-Document Search Title: Test Plan for Solvent Extraction Data Acquisition to Support Modeling Efforts This testing will support NEAMS SafeSep Modeling efforts related to droplet simulation in liquid-liquid extraction equipment. Physical characteristic determinations will be completed for the fluids being used in the experiment

  10. CRAD, Measuring and Testing Equipment Assessment Plan | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Measuring and Testing Equipment Assessment Plan CRAD, Measuring and Testing Equipment Assessment Plan Performance Objective: The objective of this assessment is to determine whether a program is in place which assures that Measuring and Test Equipment (M&TE) used in activities affecting quality and safety are properly controlled, calibrated, and adjusted at specified times to maintain accuracy within necessary limits. Criteria: All M&TE is uniquely identified, calibrated,

  11. Long-term corrosion testing plan.

    SciTech Connect (OSTI)

    Wall, Frederick Douglas; Brown, Neil R. (Los Alamos National Laboratory, Los Alamos, NM)

    2009-02-01

    This document describes the testing and facility requirements to support the Yucca Mountain Project long-term corrosion testing program. The purpose of this document is to describe a corrosion testing program that will (a) reduce model uncertainty and variability, (b) reduce the reliance upon overly conservative assumptions, and (c) improve model defensibility. Test matrices were developed for 17 topical areas (tasks): each matrix corresponds to a specific test activity that is a subset of the total work performed in a task. A future document will identify which of these activities are considered to be performance confirmation activities. Detailed matrices are provided for FY08, FY09 and FY10 and rough order estimates are provided for FY11-17. Criteria for the selection of appropriate test facilities were developed through a meeting of Lead Lab and DOE personnel on October 16-17, 2007. These criteria were applied to the testing activities and recommendations were made for the facility types appropriate to carry out each activity. The facility requirements for each activity were assessed and activities were identified that can not be performed with currently available facilities. Based on this assessment, a total of approximately 10,000 square feet of facility space is recommended to accommodate all future testing, given that all testing is consolidated to a single location. This report is a revision to SAND2008-4922 to address DOE comments.

  12. SAPHIRE 8 Software Acceptance Test Plan

    SciTech Connect (OSTI)

    Ted S. Wood; Curtis L. Smith

    2009-07-01

    This document describe & report the overall SAPHIRE 8 Software acceptance test paln to offically release the SAPHIRE version 8 software to the NRC custoer for distribution.

  13. Nevada Test Site Treatment Plan. Revision 2

    SciTech Connect (OSTI)

    1996-03-01

    Treatment Plans (STPS) are required for facilities at which the US Department of Energy (DOE) or stores mixed waste, defined by the Federal Facility Compliance Act (FFCAct) as waste containing both a hazardous waste subject to the Resource Conservation and Recovery Act and a radioactive material subject to the Atomic Energy Act. On April 6, 1993, DOE published a Federal Register notice (58 FR 17875) describing its proposed process for developing the STPs in three phases including a Conceptual, a Draft, and a Proposed Site Treatment Plan (PSTP). All of the DOE Nevada Operations Office STP iterations have been developed with the state of Nevada`s input. The options and schedules reflect a ``bottoms-up`` approach and have been evaluated for impacts on other DOE sites, as well as impacts to the overall DOE program. Changes may have occurred in the preferred option and associated schedules between the PSTP, which was submitted to the state of Nevada and US Environmental Protection Agency April 1995, and the Final STP (hereafter referred to as the STP) as treatment evaluations progressed. The STP includes changes that have occurred since the submittal of the PSTP as a result of state-to-state and DOE-to-state discussions.

  14. DOE/NV/11718--449-REV1 INTEGRATED CLOSURE AND MONITORING PLAN

    National Nuclear Security Administration (NNSA)

    449-REV1 INTEGRATED CLOSURE AND MONITORING PLAN for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site Prepared by Prepared for National Nuclear Security Administration Nevada Operations Office under Contract Number DE-AC08-96NV11718 September 2001 DISCLAIMER NOTICE Reference herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or

  15. Test results of the Phase 1 Test Plan

    SciTech Connect (OSTI)

    Hey, B.E.

    1995-03-01

    Radioactive waste materials in underground high level waste (HLW) storage tanks at the Hanford Site evolve gaseous mixtures at varying rates. In order to verify the flammability of these gases and the mechanisms by which they are produced, it is necessary to sample material from these tanks in such a way as to preserve the gas phase of the material for analysis. Careful laboratory studies could then be performed on these samples which would allow judgement to be made of the hazard level of the storage tank. The Retained Gas Sampler (RGS) system is such a sampling method. A multidisciplinary team developed and issued a plan to obtain waste tank core samples for gas phase analysis. This plan contained the basic idea and function of the RGS system. Different organizations assumed responsibility of various aspects of the RGS program which they were most qualified to develop.

  16. Nitrate Salt Surrogate Blending Scoping Test Plan

    SciTech Connect (OSTI)

    Anast, Kurt Roy

    2015-11-13

    Test blending equipment identified in the “Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing”. Determine if the equipment will provide adequate mixing of zeolite and surrogate salt/Swheat stream; optimize equipment type and operational sequencing; impact of baffles and inserts on mixing performance; and means of validating mixing performance

  17. Test Plan for Solvent Extraction Data Acquisition to Support Modeling

    Office of Scientific and Technical Information (OSTI)

    Efforts (Technical Report) | SciTech Connect Test Plan for Solvent Extraction Data Acquisition to Support Modeling Efforts Citation Details In-Document Search Title: Test Plan for Solvent Extraction Data Acquisition to Support Modeling Efforts × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional

  18. Integrated Waste Treatment Unit GFSI Risk Management Plan

    SciTech Connect (OSTI)

    W. A. Owca

    2007-06-21

    This GFSI Risk Management Plan (RMP) describes the strategy for assessing and managing project risks for the Integrated Waste Treatment Unit (IWTU) that are specifically within the control and purview of the U.S. Department of Energy (DOE), and identifies the risks that formed the basis for the DOE contingency included in the performance baseline. DOE-held contingency is required to cover cost and schedule impacts of DOE activities. Prior to approval of the performance baseline (Critical Decision-2) project cost contingency was evaluated during a joint meeting of the Contractor Management Team and the Integrated Project Team for both contractor and DOE risks to schedule and cost. At that time, the contractor cost and schedule risk value was $41.3M and the DOE cost and schedule risk contingency value is $39.0M. The contractor cost and schedule risk value of $41.3M was retained in the performance baseline as the contractor's management reserve for risk contingency. The DOE cost and schedule risk value of $39.0M has been retained in the performance baseline as the DOE Contingency. The performance baseline for the project was approved in December 2006 (Garman 2006). The project will continue to manage to the performance baseline and change control thresholds identified in PLN-1963, ''Idaho Cleanup Project Sodium-Bearing Waste Treatment Project Execution Plan'' (PEP).

  19. Transmission planning in the era of integrated resource planning: A survey of recent cases

    SciTech Connect (OSTI)

    Baldick, R.; Kahn, E.P.

    1992-09-01

    State action is critical to the expansion of the high-voltage transmission network, because regulated utilities must seek approval from utility commissions for proposals to site new lines. It is the purpose of this report to survey the regulatory treatment of issues that are unique to or ubiquitous in transmission planning and use. The authors review recent transmission siting cases to examine how the issues are presented to and resolved by state regulatory commissions and to provide a perspective for more general discussion of transmission policy. Their primary focus is on planning issues. Transmission capacity expansion is not typically treated in integrated resource planning. It is usually assumed that there is adequate transmission to achieve any particular plan. The authors believe that one important reason for this omission is the inherent complexity of transmission system expansion. Regulators and competitors may be at a serious disadvantage in negotiating or adjudicating specific transmission proposals with utilities, who generally have greater knowledge of both general technological considerations and case specifics. This problem of asymmetric information must be addressed at some level in planning or dispute resolution. However, they observe that explicit consideration of the information problem is absent from most regulatory and technical analysis of transmission. The goal of this survey is to share knowledge about the problems facing state regulators over the siting of new transmission facilities, and help to define constructive approaches to them.

  20. High Burnup Dry Storage Cask Research and Development Project, Final Test Plan

    SciTech Connect (OSTI)

    2014-02-27

    EPRI is leading a project team to develop and implement the first five years of a Test Plan to collect data from a SNF dry storage system containing high burnup fuel.12 The Test Plan defined in this document outlines the data to be collected, and the storage system design, procedures, and licensing necessary to implement the Test Plan.13 The main goals of the proposed test are to provide confirmatory data14 for models, future SNF dry storage cask design, and to support license renewals and new licenses for ISFSIs. To provide data that is most relevant to high burnup fuel in dry storage, the design of the test storage system must mimic real conditions that high burnup SNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to the ISFSI for multi-year storage.15 Along with other optional modeling, SETs, and SSTs, the data collected in this Test Plan can be used to evaluate the integrity of dry storage systems and the high burnup fuel contained therein over many decades. It should be noted that the Test Plan described in this document discusses essential activities that go beyond the first five years of Test Plan implementation.16 The first five years of the Test Plan include activities up through loading the cask, initiating the data collection, and beginning the long-term storage period at the ISFSI. The Test Plan encompasses the overall project that includes activities that may not be completed until 15 or more years from now, including continued data collection, shipment of the Research Project Cask to a Fuel Examination Facility, opening the cask at the Fuel Examination Facility, and examining the high burnup fuel after the initial storage period.

  1. Integrated system dynamics toolbox for water resources planning.

    SciTech Connect (OSTI)

    Reno, Marissa Devan; Passell, Howard David; Malczynski, Leonard A.; Peplinski, William J.; Tidwell, Vincent Carroll; Coursey, Don; Hanson, Jason; Grimsrud, Kristine; Thacher, Jennifer; Broadbent, Craig; Brookshire, David; Chemak, Janie; Cockerill, Kristan; Aragon, Carlos , Socorro, NM); Hallett, Heather , Socorro, NM); Vivoni, Enrique , Socorro, NM); Roach, Jesse

    2006-12-01

    Public mediated resource planning is quickly becoming the norm rather than the exception. Unfortunately, supporting tools are lacking that interactively engage the public in the decision-making process and integrate over the myriad values that influence water policy. In the pages of this report we document the first steps toward developing a specialized decision framework to meet this need; specifically, a modular and generic resource-planning ''toolbox''. The technical challenge lies in the integration of the disparate systems of hydrology, ecology, climate, demographics, economics, policy and law, each of which influence the supply and demand for water. Specifically, these systems, their associated processes, and most importantly the constitutive relations that link them must be identified, abstracted, and quantified. For this reason, the toolbox forms a collection of process modules and constitutive relations that the analyst can ''swap'' in and out to model the physical and social systems unique to their problem. This toolbox with all of its modules is developed within the common computational platform of system dynamics linked to a Geographical Information System (GIS). Development of this resource-planning toolbox represents an important foundational element of the proposed interagency center for Computer Aided Dispute Resolution (CADRe). The Center's mission is to manage water conflict through the application of computer-aided collaborative decision-making methods. The Center will promote the use of decision-support technologies within collaborative stakeholder processes to help stakeholders find common ground and create mutually beneficial water management solutions. The Center will also serve to develop new methods and technologies to help federal, state and local water managers find innovative and balanced solutions to the nation's most vexing water problems. The toolbox is an important step toward achieving the technology development goals of this center.

  2. PROPERTIES IMPORTANT TO MIXING FOR WTP LARGE SCALE INTEGRATED TESTING

    SciTech Connect (OSTI)

    Koopman, D.; Martino, C.; Poirier, M.

    2012-04-26

    Large Scale Integrated Testing (LSIT) is being planned by Bechtel National, Inc. to address uncertainties in the full scale mixing performance of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. External review boards have raised questions regarding the overall representativeness of simulants used in previous mixing tests. Accordingly, WTP requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in LSIT. Among the first tasks assigned to SRNL was to develop a list of waste properties that matter to pulse-jet mixer (PJM) mixing of WTP tanks. This report satisfies Commitment 5.2.3.1 of the Department of Energy Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2010-2: physical properties important to mixing and scaling. In support of waste simulant development, the following two objectives are the focus of this report: (1) Assess physical and chemical properties important to the testing and development of mixing scaling relationships; (2) Identify the governing properties and associated ranges for LSIT to achieve the Newtonian and non-Newtonian test objectives. This includes the properties to support testing of sampling and heel management systems. The test objectives for LSIT relate to transfer and pump out of solid particles, prototypic integrated operations, sparger operation, PJM controllability, vessel level/density measurement accuracy, sampling, heel management, PJM restart, design and safety margin, Computational Fluid Dynamics (CFD) Verification and Validation (V and V) and comparison, performance testing and scaling, and high temperature operation. The slurry properties that are most important to Performance Testing and Scaling depend on the test objective and rheological classification of the slurry (i.e., Newtonian or non-Newtonian). The most important properties for testing with Newtonian slurries are the Archimedes number distribution and the particle concentration. For some test objectives, the shear strength is important. In the testing to collect data for CFD V and V and CFD comparison, the liquid density and liquid viscosity are important. In the high temperature testing, the liquid density and liquid viscosity are important. The Archimedes number distribution combines effects of particle size distribution, solid-liquid density difference, and kinematic viscosity. The most important properties for testing with non-Newtonian slurries are the slurry yield stress, the slurry consistency, and the shear strength. The solid-liquid density difference and the particle size are also important. It is also important to match multiple properties within the same simulant to achieve behavior representative of the waste. Other properties such as particle shape, concentration, surface charge, and size distribution breadth, as well as slurry cohesiveness and adhesiveness, liquid pH and ionic strength also influence the simulant properties either directly or through other physical properties such as yield stress.

  3. Test plan for: TSAP bit qualification: Temperature criteria

    SciTech Connect (OSTI)

    Ralston, G.L.

    1995-10-23

    This is the Test Plan for acquiring TSAP bit temperature performance data. Hanford Site waste tanks are currently being sampled by several methods. One of these, Rotary Mode Core Sampling (RMCS), uses a cutting bit/sample tube arrangement to obtain core samples of tank contents. Recent efforts to improve sample recovery have resulted in a new bit/sample tube design. Prior to field use, bit performance in two key areas needs to be tested. These areas are: penetration into steel plate, and a temperature rise as a function of downforce, rpm, and time. A performance test in the above two areas was conducted in August, 1995. Based on a review of that test activity, selected follow-on testing is planned to confirm data obtained in the temperature area. The results of both test activities will then be released as a single test report.

  4. Mixer pump test plan for double shell tank AZ-101

    SciTech Connect (OSTI)

    STAEHR, T.W.

    1999-05-12

    Mixer pump systems have been chosen as the method for retrieval of tank wastes contained in double shell tanks at Hanford. This document describes the plan for testing and demonstrating the ability of two 300 hp mixer pumps to mobilize waste in tank AZ-101. The mixer pumps, equipment and instrumentation to monitor the test were installed by Project W-151.

  5. Flammable gas interlock spoolpiece flow response test plan and procedure

    SciTech Connect (OSTI)

    Schneider, T.C., Fluor Daniel Hanford

    1997-02-13

    The purpose of this test plan and procedure is to test the Whittaker electrochemical cell and the Sierra Monitor Corp. flammable gas monitors in a simulated field flow configuration. The sensors are used on the Rotary Mode Core Sampling (RMCS) Flammable Gas Interlock (FGI), to detect flammable gases, including hydrogen and teminate the core sampling activity at a predetermined concentration level.

  6. Experimental Test Plan DOE Tidal and River Reference Turbines

    SciTech Connect (OSTI)

    Neary, Vincent S; Hill, Craig; Chamorro, Leonardo; Gunawan, Budi

    2012-09-01

    Our aim is to provide details of the experimental test plan for scaled model studies in St. Anthony Falls Laboratory (SAFL) Main Channel at the University of Minnesota, including a review of study objectives, descriptions of the turbine models, the experimental set-up, instrumentation details, instrument measurement uncertainty, anticipated experimental test cases, post-processing methods, and data archiving for model developers.

  7. Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    SciTech Connect (OSTI)

    Hartman, Mary J.; Dresel, P Evan; Lindberg, Jonathan W.; Newcomer, Darrell R.; Thornton, Edward C.

    2000-10-18

    Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954; the Resource Conservation and Recovery Act of 1976; the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The U.S. Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/ frequency matrix for the entire site. The objectives of monitoring fall into three general categories: plume and trend tracking, treatment/ storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently.

  8. Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    SciTech Connect (OSTI)

    Newcomer, D.R.; Thornton, E.C.; Hartman, M.J.; Dresel, P.E.

    1999-10-06

    Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954 the Resource Conservation and Recovery Act of 1976 the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The US Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/frequency matrix for the entire site. The objectives of monitoring fall into three general categories plume and trend tracking, treatment/storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently.

  9. Vehicle Testing and Integration Facility (Brochure), NREL (National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Vehicle Testing and Integration Facility 3 Vehicle Energy Management with Smart Grid * Optimize vehicle energy flow with residential grids and distributed renewables * Manage ...

  10. Decision support for integrated water-energy planning.

    SciTech Connect (OSTI)

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Kobos, Peter Holmes; Castillo, Cesar; Hart, William Eugene; Klise, Geoffrey T.

    2009-10-01

    Currently, electrical power generation uses about 140 billion gallons of water per day accounting for over 39% of all freshwater withdrawals thus competing with irrigated agriculture as the leading user of water. Coupled to this water use is the required pumping, conveyance, treatment, storage and distribution of the water which requires on average 3% of all electric power generated. While water and energy use are tightly coupled, planning and management of these fundamental resources are rarely treated in an integrated fashion. Toward this need, a decision support framework has been developed that targets the shared needs of energy and water producers, resource managers, regulators, and decision makers at the federal, state and local levels. The framework integrates analysis and optimization capabilities to identify trade-offs, and 'best' alternatives among a broad list of energy/water options and objectives. The decision support framework is formulated in a modular architecture, facilitating tailored analyses over different geographical regions and scales (e.g., national, state, county, watershed, NERC region). An interactive interface allows direct control of the model and access to real-time results displayed as charts, graphs and maps. Ultimately, this open and interactive modeling framework provides a tool for evaluating competing policy and technical options relevant to the energy-water nexus.

  11. Integrated Performance Testing Workshop, Modules 6 - 11

    SciTech Connect (OSTI)

    Leach, Janice; Torres, Teresa M.

    2012-10-01

    These modules cover performance testing of: Interior Detection Systems; Access Controls; Exterior Detection Systems; Video Assessment Systems; SNM / Contraband Detection Systems; Access Delay Elements

  12. PURADYN Oil Bypass Filtration System Evaluation Test Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies & Infrastructure Department PURADYN OIL BYPASS FILTRATION SYSTEM EVALUATION TEST PLAN October 2002 Reviewed: INEEL Fleet Maintenance Supervisor (Thomas) Date Reviewed: INEEL Bus & Heavy Equipment Foreman (Murdock) Date Reviewed: INEEL Fleet Maintenance Department Manager (Bullock) Date Approved: INEEL Central/Idaho Falls Facilities Director (Winn) Date Reviewed: INEEL Test Engineer (Zirker) Date Reviewed: INEEL Project Manager (Francfort) Date Approved: INEEL TT&I

  13. Robust Design of Reliability Test Plans Using Degradation Measures.

    SciTech Connect (OSTI)

    Lane, Jonathan Wesley; Lane, Jonathan Wesley; Crowder, Stephen V.; Crowder, Stephen V.

    2014-10-01

    With short production development times, there is an increased need to demonstrate product reliability relatively quickly with minimal testing. In such cases there may be few if any observed failures. Thus, it may be difficult to assess reliability using the traditional reliability test plans that measure only time (or cycles) to failure. For many components, degradation measures will contain important information about performance and reliability. These measures can be used to design a minimal test plan, in terms of number of units placed on test and duration of the test, necessary to demonstrate a reliability goal. Generally, the assumption is made that the error associated with a degradation measure follows a known distribution, usually normal, although in practice cases may arise where that assumption is not valid. In this paper, we examine such degradation measures, both simulated and real, and present non-parametric methods to demonstrate reliability and to develop reliability test plans for the future production of components with this form of degradation.

  14. Integrated Performance Testing for Nonproliferation Support Project

    SciTech Connect (OSTI)

    Johns, Russell; Bultz, Garl Alan; Byers, Kenneth R.; Yaegle, William

    2013-08-20

    The objective of this workshop is to provide participants with training in testing techniques and methodologies for assessment of the performance of: Physical Protection system elements; Material Control and Accounting (MC&A) system elements.

  15. Test Plan: Sludge Treatment Project Corrosion Process Chemistry Follow-on Testing

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Schmidt, Andrew J.; Poloski, Adam P.

    2007-08-17

    This test plan was prepared by the Pacific Northwest National Laboratory (PNNL) under contract with Fluor Hanford (FH). The test plan describes the scope and conditions to be used to perform laboratory-scale testing of the Sludge Treatment Project (STP) hydrothermal treatment of K Basin sludge. The STP, managed for the U. S. Department of Energy (DOE) by FH, was created to design and operate a process to eliminate uranium metal from the sludge prior to packaging for Waste Isolation Pilot Plant (WIPP) by using high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. The proposed testing builds on the approach and laboratory test findings for both K Basin sludge and simulated sludge garnered during prior testing from September 2006 to March 2007. The outlined testing in this plan is designed to yield further understanding of the nature of the chemical reactions, the effects of compositional and process variations and the effectiveness of various strategies to mitigate the observed high shear strength phenomenon observed during the prior testing. These tests are designed to provide process validation and refinement vs. process development and design input. The expected outcome is to establish a level of understanding of the chemistry such that successful operating strategies and parameters can be implemented within the confines of the existing STP corrosion vessel design. In July 2007, the DOE provided direction to FH regarding significant changes to the scope of the overall STP. As a result of the changes, FH directed PNNL to stop work on most of the planned activities covered in this test plan. Therefore, it is unlikely the testing described here will be performed. However, to preserve the test strategy and details developed to date, the test plan has been published.

  16. Hydrogen Posture Plan: An Integrated Research, Development and...

    Broader source: Energy.gov (indexed) [DOE]

    06 Hydrogen Posture Plan satisfies Section 804 of the Energy Policy Act of 2005, which requires that the Secretary of Energy transmit to Congress a coordinated plan for the...

  17. Integrated plan for LArTPC neutrino detectors in the US

    SciTech Connect (OSTI)

    Baller, B.; Fleming, B.; /Fermilab

    2009-11-01

    We present an integrated R&D plan aimed at demonstrating the ability to build a very large Liquid Argon Time Projection Chamber (LArTPC), on a scale suitable for use as a Far Detector for the LBNE neutrino oscillation experiment. This plan adopts current LArTPC R&D-related activities and proposes new ones to address questions that go beyond those being answered by the current efforts. We have employed a risk evaluation strategy to identify questions that can be answered (or risks that can be mitigated) through one or more R&D steps. In summary form, the plan consists of the following pre-existing components: (1) The Materials Test Stand program, now in operation at Fermilab, addressing questions pertaining to maintenance of argon purity; (2) Existing electronics test stands at FNAL and BNL; (3) The Liquid Argon Purity Demonstrator (LAPD) now being assembled at Fermilab; (4) The ArgoNeuT prototype LArTPC, now running in the NuMI beam; (5) The MicroBooNE experiment, proposed as a physics experiment that will advance our understanding of the LArTPC technology, now completing its conceptual design phase; (6) A software development effort that is well integrated across present and planned LArTPC detectors. We are proposing to add to these efforts the following: (1) A membrane cryostat mechanical prototype to evaluate and gain expertise with this technology; (2) An installation and integration prototype, to understand issues pertaining to detector assembly, particularly in an underground environment; (3) A {approx} 5% scale electronics systems test to understand system-wide issues as well as individual component reliability. (4) A calibration test stand that would consist of a small TPC to be exposed to a test beam for calibration studies, relevant for evaluation of physics sensitivities. We have developed a timeline and milestones for achieving these goals as discussed in Section 4. The proposed activities necessary for the final design of LAr20 are complete by CD3 in 2014.

  18. Test Plan: Phase 1, Hanford LLW melter tests, GTS Duratek, Inc.

    SciTech Connect (OSTI)

    Eaton, W.C.

    1995-06-14

    This document provides a test plan for the conduct of vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384215] is GTS Duratek, Inc., Columbia, Maryland. The GTS Duratek project manager for this work is J. Ruller. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes melting of glass with Hanford LLW Double-Shell Slurry Feed waste simulant in a DuraMelter{trademark} vitrification system.

  19. Hanford Integrated Planning Process: 1993 Hanford Site-specific science and technology plan

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    This document is the FY 1993 report on Hanford Site-specific science and technology (S&T) needs for cleanup of the Site as developed via the Hanford Integrated Planning Process (HIPP). It identifies cleanup problems that lack demonstrated technology solutions and technologies that require additional development. Recommendations are provided regarding allocation of funding to address Hanford`s highest-priority technology improvement needs, technology development needs, and scientific research needs, all compiled from a Sitewide perspective. In the past, the S&T agenda for Hanford Site cleanup was sometimes driven by scientists and technologists, with minimal input from the ``problem owners`` (i.e., Westinghouse Hanford Company [WHC] staff who are responsible for cleanup activities). At other times, the problem-owners made decisions to proceed with cleanup without adequate scientific and technological inputs. Under both of these scenarios, there was no significant stakeholder involvement in the decision-making process. One of the key objectives of HIPP is to develop an understanding of the integrated S&T requirements to support the cleanup mission, (a) as defined by the needs of the problem owners, the values of the stakeholders, and the technology development expertise that exists at Hanford and elsewhere. This requires a periodic, systematic assessment of these needs and values to appropriately define a comprehensive technology development program and a complementary scientific research program. Basic to our success is a methodology that is defensible from a technical perspective and acceptable to the stakeholders.

  20. Vadose zone transport field study: Detailed test plan for simulated leak tests

    SciTech Connect (OSTI)

    AL Ward; GW Gee

    2000-06-23

    The US Department of Energy (DOE) Groundwater/Vadose Zone Integration Project Science and Technology initiative was created in FY 1999 to reduce the uncertainty associated with vadose zone transport processes beneath waste sites at DOE's Hanford Site near Richland, Washington. This information is needed not only to evaluate the risks from transport, but also to support the adoption of measures for minimizing impacts to the groundwater and surrounding environment. The principal uncertainties in vadose zone transport are the current distribution of source contaminants and the natural heterogeneity of the soil in which the contaminants reside. Oversimplified conceptual models resulting from these uncertainties and limited use of hydrologic characterization and monitoring technologies have hampered the understanding contaminant migration through Hanford's vadose zone. Essential prerequisites for reducing vadose transport uncertainly include the development of accurate conceptual models and the development or adoption of monitoring techniques capable of delineating the current distributions of source contaminants and characterizing natural site heterogeneity. The Vadose Zone Transport Field Study (VZTFS) was conceived as part of the initiative to address the major uncertainties confronting vadose zone fate and transport predictions at the Hanford Site and to overcome the limitations of previous characterization attempts. Pacific Northwest National Laboratory (PNNL) is managing the VZTFS for DOE. The VZTFS will conduct field investigations that will improve the understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. Ideally, these methods will capture the extent of contaminant plumes using existing infrastructure (i.e., more than 1,300 steel-cased boreholes). The objectives of the VZTFS are to conduct controlled transport experiments at well-instrumented field sites at Hanford to: identify mechanisms controlling transport processes in soils typical of the hydrogeologic conditions of Hanford's waste disposal sites; reduce uncertainty in conceptual models; develop a detailed and accurate database of hydraulic and transport parameters for validation of three-dimensional numerical models; identify and evaluate advanced, cost-effective characterization methods with the potential to assess changing conditions in the vadose zone, particularly as surrogates of currently undetectable high-risk contaminants. This plan provides details for conducting field tests during FY 2000 to accomplish these objectives. Details of additional testing during FY 2001 and FY 2002 will be developed as part of the work planning process implemented by the Integration Project.

  1. INEL test plan for evaluating waste assay systems

    SciTech Connect (OSTI)

    Mandler, J.W.; Becker, G.K.; Harker, Y.D.; Menkhaus, D.E.; Clements, T.L. Jr.

    1996-09-01

    A test bed is being established at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC). These tests are currently focused on mobile or portable radioassay systems. Prior to disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP), radioassay measurements must meet the quality assurance objectives of the TRU Waste Characterization Quality Assurance Program Plan. This test plan provides technology holders with the opportunity to assess radioassay system performance through a three-tiered test program that consists of: (a) evaluations using non-interfering matrices, (b) surrogate drums with contents that resemble the attributes of INEL-specific waste forms, and (c) real waste tests. Qualified sources containing a known mixture and range of radionuclides will be used for the non-interfering and surrogate waste tests. The results of these tests will provide technology holders with information concerning radioassay system performance and provide the INEL with data useful for making decisions concerning alternative or improved radioassay systems that could support disposal of waste at WIPP.

  2. Integrity assessment plan for PNL 300 area radioactive hazardous waste tank system. Final report

    SciTech Connect (OSTI)

    1996-03-01

    The Pacific Northwest Laboratory (PNL), operated by Battelle Memorial Institute under contract to the U.S. Department of Energy, operates tank systems for the U.S. Department of Energy, Richland Operations Office (DOE-RL), that contain dangerous waste constituents as defined by Washington State Department of Ecology (WDOE) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-040(18). Chapter 173-303-640(2) of the WAC requires the performance of integrity assessments for each existing tank system that treats or stores dangerous waste, except those operating under interim status with compliant secondary containment. This Integrity Assessment Plan (IAP) identifies all tasks that will be performed during the integrity assessment of the PNL-operated Radioactive Liquid Waste Systems (RLWS) associated with the 324 and 325 Buildings located in the 300 Area of the Hanford Site. It describes the inspections, tests, and analyses required to assess the integrity of the PNL RLWS (tanks, ancillary equipment, and secondary containment) and provides sufficient information for adequate budgeting and control of the assessment program. It also provides necessary information to permit the Independent, Qualified, Registered Professional Engineer (IQRPE) to approve the integrity assessment program.

  3. Integrated Disposal Facility FY2011 Glass Testing Summary Report

    SciTech Connect (OSTI)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Westsik, Joseph H.

    2011-09-29

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10{sup 5} m{sup 3} of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10{sup 14} Bq total activity) of long-lived radionuclides, principally {sup 99}Tc (t{sub 1/2} = 2.1 x 10{sup 5}), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.

  4. AGA 12, Part 2 Performance Test Plan (November 2006) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AGA 12, Part 2 Performance Test Plan (November 2006) AGA 12, Part 2 Performance Test Plan (November 2006) Under the guidance and sponsorship of DOE's Office of Electricity Delivery and Energy Reliability, Pacific Northwest National Laboratory (PNNL) developed a test plan for AGA 12, Part 2 compliant devices. The test plan covers the following elements of performance and security. PDF icon AGA 12, Part 2 Performance Test Plan (November 2006) More Documents & Publications AGA-12, Part 2

  5. Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-02-20

    The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).

  6. Energy Conservation Program: Test Procedure for Integrated Light...

    Energy Savers [EERE]

    EERE-2011-BT-TP-0071 RIN: 1904-AC67 Energy Conservation Program: Test Procedures for Integrated Light-Emitting Diode Lamps AGENCY: Office of Energy Efficiency and Renewable ...

  7. Design of Integrated Laboratory and Heavy-Duty Emissions Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design of Integrated Laboratory and Heavy-Duty Emissions Testing Center Both simulated and ... emissions were able to be measured and analyzed using a bench-top adiabatic reactor. ...

  8. Resource Planning for Power Systems: Integrating Renewables and New Technologies

    Broader source: Energy.gov [DOE]

    Become Kinetic is hosting a course to review resource planning issues and how they are being addressed to provide reliable and economic operation of the bulk power system.

  9. Re-engineering the Federal planning process: A total Federal planning strategy, integrating NEPA with modern management tools

    SciTech Connect (OSTI)

    Eccleston, C.H.

    1997-09-05

    The National Environmental Policy Act (NEPA) of 1969 was established by Congress more than a quarter of a century ago, yet there is a surprising lack of specific tools, techniques, and methodologies for effectively implementing these regulatory requirements. Lack of professionally accepted techniques is a principal factor responsible for many inefficiencies. Often, decision makers do not fully appreciate or capitalize on the true potential which NEPA provides as a platform for planning future actions. New approaches and modem management tools must be adopted to fully achieve NEPA`s mandate. A new strategy, referred to as Total Federal Planning, is proposed for unifying large-scale federal planning efforts under a single, systematic, structured, and holistic process. Under this approach, the NEPA planning process provides a unifying framework for integrating all early environmental and nonenvironmental decision-making factors into a single comprehensive planning process. To promote effectiveness and efficiency, modem tools and principles from the disciplines of Value Engineering, Systems Engineering, and Total Quality Management are incorporated. Properly integrated and implemented, these planning tools provide the rigorous, structured, and disciplined framework essential in achieving effective planning. Ultimately, the goal of a Total Federal Planning strategy is to construct a unified and interdisciplinary framework that substantially improves decision-making, while reducing the time, cost, redundancy, and effort necessary to comply with environmental and other planning requirements. At a time when Congress is striving to re-engineer the governmental framework, apparatus, and process, a Total Federal Planning philosophy offers a systematic approach for uniting the disjointed and often convoluted planning process currently used by most federal agencies. Potentially this approach has widespread implications in the way federal planning is approached.

  10. Framework for integration of urban planning, strategic environmental assessment and ecological planning for urban sustainability within the context of China

    SciTech Connect (OSTI)

    He Jia; Bao Cunkuan; Shu Tingfei; Yun Xiaoxue; Jiang Dahe; Brwon, Lex

    2011-11-15

    Sustainable development or sustainability has been highlighted as an essential principle in urban master planning, with increasing recognition that uncontrollable urbanization may well give rise to various issues such as overexploitation of natural resources, ecosystem destruction, environmental pollution and large-scale climate change. Thus, it is deemed necessary to modify the existing urban and regional administrative system so as to cope with the challenges urban planning is being confronted with and realize the purpose of urban sustainability. This paper contributed to proposing a mechanism which helps to make urban planning with full consideration of issues with respect to sustainable development. We suggested that the integration of urban planning, SEA and ecological planning be a multi-win strategy to offset deficiency of each mentioned political tool being individually applied. We also proposed a framework where SEA and ecological planning are fully incorporated into urban planning, which forms a two-way constraint mechanism to ascertain environmental quality of urban planning, although in practice, planning and SEA processes may conditionally be unified. Moreover, as shown in the case study, the integration of the three political tools may be constrained due to slow changes in the contextual factors, in particular the political and cultural dimensions. Currently within the context of China, there may be three major elements which facilitate integration of the three political tools, which are (1) regulatory requirement of PEIA on urban planning, (2) the promotion or strong administrative support from government on eco-district building, and (3) the willingness of urban planners to collaborate with SEA experts or ecologists.

  11. Test plan : reducing soft costs of rooftop solar installations attributed to structural considerations.

    SciTech Connect (OSTI)

    Dwyer, Stephen F.

    2013-05-01

    This test plan is a document that provides a systematic approach to the planned testing of rooftop structures to determine their actual load carrying capacity. This document identifies typical tests to be performed, the responsible parties for testing, the general feature of the tests, the testing approach, test deliverables, testing schedule, monitoring requirements, and environmental and safety compliance.

  12. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2008-09-01

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.

  13. DNFSB recommendation 94-1 Hanford site integrated stabilization management plan - VOLUMES 1-3

    SciTech Connect (OSTI)

    Gerber, E.W.

    1996-09-23

    The US Department of Energy (DOE) has developed an Integrated Program Plan (IPP) to address concerns identified in Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1. The IPP describes the actions that DOE plans to implement at its various sites to convert excess fissile materials to forms or conditions suitable for safe interim storage. The baseline IPP was issued as DOE's DNFSB Recommendation 94-1 Implementation Plan (IP), which was transmitted to the DNFSB on February 28, 1995. The IPP was subsequently supplemented with an Integrated Facilities Plan and a Research and Development Plan, which further develop complex-wide research and development and long-range facility requirements and plans. These additions to the baseline IPP were developed based on a systems engineering approach that integrated facilities and capabilities at the various DOE sites and focused on attaining safe interim storage with minimum safety risks and environmental impacts. Each affected DOE site has developed a Site Integrated Stabilization Management Plan (SISMP) to identify individual site plans to implement the DNFSB Recommendation 94-1 IPP. The SISMPs were developed based on the objectives, requirements, and commitments identified in the DNFSB Recommendation 94-1 IP. The SISMPs supported formulation of the initial versions of the Integrated Facilities Plan and the Research and Development Plan. The SISMPs are periodically updated to reflect improved integration between DOE sites as identified during the IPP systems engineering evaluations. This document constitutes the Hanford SISMP. This document includes the planned work scope, costs and schedules for activities at the Hanford site to implement the DNFSB Recommendation 94-1 IPP.

  14. TRUPACT-II Hydrogen G-Valve Program Test Plan

    SciTech Connect (OSTI)

    Mroz, Eugene J.

    1999-01-01

    This test plan describes the objectives, scope, participants, and components of the Transuranic Package Transporter-II (TRUPACT-II) Hydrogen G-Value Program (GH2P). The GH2P builds on the experience, results, and experimental setup of the TRUPACT-II Matrix Depletion Program (MDP) to establish effective hydrogen G-values (G-values) for additional waste matrices. This plan details the experimental design and test matrices for experiments to measure the G-value for additional waste matrices, including first- and second-stage sludges at the Idaho National Engineering and Environmental Laboratory, and molten salt extraction residues with varying amounts of residual moisture (i.e., unbound water). Data collected from the GH2P will be used to support an application to the US Nuclear Regulatory Commission for G-values and corresponding wattage limits for the TRUPACT-II payloads containing these waste matrices. The testing will also evaluate the ability to determine G-values on a waste stream basis.

  15. Updated FY12 Ceramic Fuels Irradiation Test Plan

    SciTech Connect (OSTI)

    Nelson, Andrew T.

    2012-05-24

    The Fuel Cycle Research and Development program is currently devoting resources to study of numerous fuel types with the aim of furthering understanding applicable to a range of reactors and fuel cycles. In FY11, effort within the ceramic fuels campaign focused on planning and preparation for a series of rabbit irradiations to be conducted at the High Flux Isotope Reactor located at Oak Ridge National Laboratory. The emphasis of these planned tests was to study the evolution of thermal conductivity in uranium dioxide and derivative compositions as a function of damage induced by neutron damage. Current fiscal realities have resulted in a scenario where completion of the planned rabbit irradiations is unlikely. Possibilities for execution of irradiation testing within the ceramic fuels campaign in the next several years will thus likely be restricted to avenues where strong synergies exist both within and outside the Fuel Cycle Research and Development program. Opportunities to augment the interests and needs of modeling, advanced characterization, and other campaigns present the most likely avenues for further work. These possibilities will be pursued with the hope of securing future funding. Utilization of synthetic microstructures prepared to better understand the most relevant actors encountered during irradiation of ceramic fuels thus represents the ceramic fuel campaign's most efficient means to enhance understanding of fuel response to burnup. This approach offers many of the favorable attributes embraced by the Separate Effects Testing paradigm, namely production of samples suitable to study specific, isolated phenomena. The recent success of xenon-imbedded thick films is representative of this approach. In the coming years, this strategy will be expanded to address a wider range of problems in conjunction with use of national user facilities novel characterization techniques to best utilize programmatic resources to support a science-based research program.

  16. Fabrication, Integration and Initial Testing of a SMART Rotor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fabrication, Integration, and Initial Testing of a SMART Rotor * Jonathan Berg † , Dale Berg ‡ , and Jon White § Sandia National Laboratories ** , Albuquerque, NM, 87185-1124 Sandia National Laboratories has designed and built a full set of three 9-meter blades (based on the Sandia CX-100 blade design) equipped with active aerodynamic blade load control surfaces on the outboard trailing edges. The fabrication of the blades, modifications to allow integration of the active control modules,

  17. Should different impact assessment instruments be integrated? Evidence from English spatial planning

    SciTech Connect (OSTI)

    Tajima, Ryo; Fischer, Thomas B.

    2013-07-15

    This paper aims at providing empirical evidence to the question as to whether integration of different instruments is achieving its aim in supporting sustainable decision making, focusing on SEA inclusive sustainability appraisal (SA) and other impact assessments (IAs) currently used in English spatial planning. Usage of IAs in addition to SA is established and an analysis of the integration approach (in terms of process, output, and assessor) as well as its effectiveness is conducted. It is found that while integration enhances effectiveness to some extent, too much integration, especially in terms of the procedural element, appears to diminish the overall effectiveness of each IA in influencing decisions as they become captured by the balancing function of SA. -- Highlights: ? The usage of different impact assessments in English spatial planning is clarified. ? The relationship between integration approach and effectiveness is analyzed. ? Results suggest that integration does not necessarily lead to more sustainable decisions. ? Careful consideration is recommended upon process integration.

  18. The CHPRC Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2009-04-03

    The scope of the CH2M Hill Plateau Remediation Company, LLC (CHPRC) Groundwater and Technical Integration Support (Master Project) is for Pacific Northwest National Laboratory staff to provide technical and integration support to CHPRC. This work includes conducting investigations at the 300-FF-5 Operable Unit and other groundwater operable units, and providing strategic integration, technical integration and assessments, remediation decision support, and science and technology. The projects under this Master Project will be defined and included within the Master Project throughout the fiscal year, and will be incorporated into the Master Project Plan. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the CHPRC Groundwater and Technical Integration Support (Master Project) and all releases associated with the CHPRC Soil and Groundwater Remediation Project. The plan is designed to be used exclusively by project staff.

  19. Cost estimating issues in the Russian integrated system planning context

    SciTech Connect (OSTI)

    Allentuck, J.

    1996-03-01

    An important factor in the credibility of an optimal capacity expansion plan is the accuracy of cost estimates given the uncertainty of future economic conditions. This paper examines the problems associated with estimating investment and operating costs in the Russian nuclear power context over the period 1994 to 2010.

  20. FY 2002 Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    SciTech Connect (OSTI)

    Hartman, Mary J.; Dresel, P Evan; Lindberg, Jonathan W.; Newcomer, Darrell R.; Thornton, Edward C.

    2001-10-31

    This document is an integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders ("surveillance monitoring"); other, established monitoring plans by reference; and a master well/ constituent/frequency matrix for the entire Hanford Site.

  1. Plans for an ERL Test Facility at CERN (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Plans for an ERL Test Facility at CERN Citation Details In-Document Search Title: Plans for an ERL Test Facility at CERN You are accessing a document from the Department of...

  2. Integrated Disposal Facility FY2010 Glass Testing Summary Report

    SciTech Connect (OSTI)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Serne, R Jeffrey; Mattigod, Shas V.

    2010-09-30

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 105 m3 of glass (Puigh 1999). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 0.89 1018 Bq total activity) of long-lived radionuclides, principally 99Tc (t1/2 = 2.1 105), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessement (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2010 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses. The emphasis in FY2010 was the completing an evaluation of the most sensitive kinetic rate law parameters used to predict glass weathering, documented in Bacon and Pierce (2010), and transitioning from the use of the Subsurface Transport Over Reactive Multi-phases to Subsurface Transport Over Multiple Phases computer code for near-field calculations. The FY2010 activities also consisted of developing a Monte Carlo and Geochemical Modeling framework that links glass composition to alteration phase formation by 1) determining the structure of unreacted and reacted glasses for use as input information into Monte Carlo calculations, 2) compiling the solution data and alteration phases identified from accelerated weathering tests conducted with ILAW glass by PNNL and Viteous State Laboratory/Catholic University of America as well as other literature sources for use in geochemical modeling calculations, and 3) conducting several initial calculations on glasses that contain the four major components of ILAW-Al2O3, B2O3, Na2O, and SiO2.

  3. Testing for market integration crude oil, coal, and natural gas

    SciTech Connect (OSTI)

    Bachmeier, L.J.; Griffin, J.M.

    2006-07-01

    Prompted by the contemporaneous spike in coal, oil, and natural gas prices, this paper evaluates the degree of market integration both within and between crude oil, coal, and natural gas markets. Our approach yields parameters that can be readily tested against a priori conjectures. Using daily price data for five very different crude oils, we conclude that the world oil market is a single, highly integrated economic market. On the other hand, coal prices at five trading locations across the United States are cointegrated, but the degree of market integration is much weaker, particularly between Western and Eastern coals. Finally, we show that crude oil, coal, and natural gas markets are only very weakly integrated. Our results indicate that there is not a primary energy market. Despite current price peaks, it is not useful to think of a primary energy market, except in a very long run context.

  4. 2014-05-16 Issuance: Test Procedures for Integrated Light-Emitting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    16 Issuance: Test Procedures for Integrated Light-Emitting Diode Lamps; Supplemental Notice of Proposed Rulemaking 2014-05-16 Issuance: Test Procedures for Integrated Light-Emitting ...

  5. DNFSB Recommendation 94-1 Hanford Site Integrated Stabilization Management Plan. Volume 1

    SciTech Connect (OSTI)

    Gerber, E.W.

    1995-10-01

    The US Department of Energy (DOE) has developed an Integrated Program Plan (IPP) to address concerns identified in Defense Nuclear Facilities Safety Board Recommendation 94-1. The IPP describes the actions that DOE plans to implement at its various sites to convert excess fissile materials to forms or conditions suitable for safe interim storage. The baseline IPP was issued as DOE`s Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1 Implementation Plan (IP), which was transmitted to the DNFSB on February 28, 1995. The IPP is being further developed to include complex-wide requirements for research and development and a long-range facility requirements section. The planned additions to the baseline IPP are being developed based on a systems engineering approach that integrates facilities and capabilities at the various DOE sites and focuses on attaining safe interim storage with minimum safety risks and environmental impacts. Each affected DOE site has developed a Site Integrated Stabilization Management Plan (SISMP) to identify individual site plans to implement the DNFSB Recommendation 94-1 and to provide a basis for formulating planned additions to the IPP. The SISMPs were developed based on the objectives, requirements, and commitments identified in the baseline DNFSB Recommendation 94-1 IPP. The SISMPs will be periodically updated to reflect improved integration between DOE sites as identified during the IPP systems engineering evaluations.

  6. Multiple pollutant removal using the condensing heat exchanger: Preliminary test plan for Task 2, Pilot scale IFGT testing

    SciTech Connect (OSTI)

    Jankura, B.J.

    1995-11-01

    The purpose of Task 2 (IFGT Pilot-Scale Tests at the B&W Alliance Research Center) is to evaluate the emission reduction performance of the Integrated Flue Gas Treatment (IFGT) process for coal-fired applications. The IFGT system is a two-stage condensing heat exchanger that captures multiple pollutants -- while recovering waste heat. The IFGT technology offers the potential of addressing the emission of S0{sub 2} and particulate from electric utilities currently regulated under the Phase 1 and Phase 2 requirements defined in Title IV, and many of the air pollutants that will soon be regulated under Title III of the Clean Air Act. The performance data will be obtained at pilot-scale conditions similar to full-scale operating systems. The Task 2 IFGT tests have been designed to investigate several aspects of IFGT process conditions at a broader range of variables than would be feasible at a larger scale facility. The data from these tests greatly expands the IFGT performance database for coals and is needed for the technology to progress from the component engineering phase to system integration and commercialization. The performance parameters that will be investigated are as follows: SO{sub 2} removal; particulate removal; removal of mercury and other heavy metals; NO{sub x} removal; HF and HCl removal; NH{sub 3} removal; ammonia-sulfur compounds generation; and steam injection for particle removal. For all of the pollutant removal tests, removal efficiency will be based on measurements at the inlet and outlet of the IFGT facility. Heat recovery measurements will also be made during these tests to demonstrate the heat recovery provided by the IFGT technology. This report provides a preliminary test plan for all of the Task 2 pilot-scale IFGT tests.

  7. Remediation of DOE hazardous waste sites: Planning and integration requirements

    SciTech Connect (OSTI)

    Geffen, C.A.; Garrett, B.A.; Cowan, C.E.; Siegel, M.R.; Keller, J.F. )

    1989-09-01

    The US Department of Energy (DOE) is faced with a immense challenge in effectively implementing a program to mitigate and manage the environmental impacts created by current operations and from past activities at its facilities. The current regulatory framework and public interest in the environmental arena have made operating DOE facilities in an environmentally responsible manner a compelling priority. This paper provides information on the results of a project funded by DOE to obtain a better understanding of the regulatory and institutional drivers in the hazardous waste market and the costs and timeframes required for remediation activities. Few realize that before remediating a hazardous waste site, a comprehensive planning process must be conducted to characterize the nature and extent of site contamination, calculate the risk to the public, and assess the effectiveness of various remediation technologies. The US Environmental Protection Agency (EPA) and others have found that it may take up to 7 years to complete the planning process at an average cost of $1.0 million per site. While cost information is not yet available for DOE sites, discussions with hazardous waste consulting firms indicate that average characterization and assessment costs will be 5 to 10 times this amount for DOE sites. The higher costs are expected because of the additional administrative requirements placed on DOE sites, the need to handle mixed wastes, the amount and extent of contamination at many of these sites, and the visibility of the sites. 15 refs., 1 fig., 2 tabs.

  8. Test Plan for the Boiling Water Reactor Dry Cask Simulator

    SciTech Connect (OSTI)

    Durbin, Samuel; Lindgren, Eric R.

    2015-11-01

    The thermal performance of commercial nuclear spent fuel dry storage casks are evaluated through detailed numerical analysis . These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and by increasing the internal convection through greater canister helium pressure. These same vertical, canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above and below-ground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of above-ground and below-ground canistered dry cask systems. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern vertical, canistered dry cask systems. The BWR cask simulator (BCS) has been designed in detail for both the above-ground and below-ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 deg C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that represents the canister. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. Various configurations of outer concentric ducting will be used to mimic conditions for above and below-ground storage configurations of vertical, dry cask systems with canisters. Radial and axial temperature profiles will be measured for a wide range of decay power and helium cask pressures. Of particular interest is the evaluation of the effect of increased helium pressure on allowable heat load and the effect of simulated wind on a simplified below ground vent configuration. While incorporating the best available information, this test plan is subject to changes due to improved understanding from modeling or from as-built deviations to designs. As-built conditions and actual procedures will be documented in the final test report.

  9. Vehicle Testing and Integration Facility; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-03-02

    Engineers at the National Renewable Energy Laboratory’s (NREL’s) Vehicle Testing and Integration Facility (VTIF) are developing strategies to address two separate but equally crucial areas of research: meeting the demands of electric vehicle (EV) grid integration and minimizing fuel consumption related to vehicle climate control. Dedicated to renewable and energy-efficient solutions, the VTIF showcases technologies and systems designed to increase the viability of sustainably powered vehicles. NREL researchers instrument every class of on-road vehicle, conduct hardware and software validation for EV components and accessories, and develop analysis tools and technology for the Department of Energy, other government agencies, and industry partners.

  10. Develop Standard Method of Test for Integrated Heat Pump

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Heat Pump (IHP) Wayne Reedy Oak Ridge National Laboratory wreedy2@comcast.net 574-583-5487 April 2, 2013 Develop Standard Method of Test (MOT) for IHP 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * IHP → ≥50% savings in energy used for space conditioning and water heating - C. K. Rice, V. D. Baxter, S. A. Hern, T. P. McDowell, J. D. Munk, and B. Shen, 2013. "Development of a Residential Ground- Source Integrated Heat Pump",

  11. Integrated Project Teams - An Essential Element of Project Management during Project Planning and Execution - 12155

    SciTech Connect (OSTI)

    Burritt, James G.; Berkey, Edgar

    2012-07-01

    Managing complex projects requires a capable, effective project manager to be in place, who is assisted by a team of competent assistants in various relevant disciplines. This team of assistants is known as the Integrated Project Team (IPT). he IPT is composed of a multidisciplinary group of people who are collectively responsible for delivering a defined project outcome and who plan, execute, and implement over the entire life-cycle of a project, which can be a facility being constructed or a system being acquired. An ideal IPT includes empowered representatives from all functional areas involved with a project-such as engineering design, technology, manufacturing, test and evaluation, contracts, legal, logistics, and especially, the customer. Effective IPTs are an essential element of scope, cost, and schedule control for any complex, large construction project, whether funded by DOE or another organization. By recently assessing a number of major, on-going DOE waste management projects, the characteristics of high performing IPTs have been defined as well as the reasons for potential IPT failure. Project managers should use IPTs to plan and execute projects, but the IPTs must be properly constituted and the members capable and empowered. For them to be effective, the project manager must select the right team, and provide them with the training and guidance for them to be effective. IPT members must treat their IPT assignment as a primary duty, not some ancillary function. All team members must have an understanding of the factors associated with successful IPTs, and the reasons that some IPTs fail. Integrated Project Teams should be used by both government and industry. (authors)

  12. Apparatus and method for defect testing of integrated circuits

    DOE Patents [OSTI]

    Cole, Jr., Edward I. (Albuquerque, NM); Soden, Jerry M. (Placitas, NM)

    2000-01-01

    An apparatus and method for defect and failure-mechanism testing of integrated circuits (ICs) is disclosed. The apparatus provides an operating voltage, V.sub.DD, to an IC under test and measures a transient voltage component, V.sub.DDT, signal that is produced in response to switching transients that occur as test vectors are provided as inputs to the IC. The amplitude or time delay of the V.sub.DDT signal can be used to distinguish between defective and defect-free (i.e. known good) ICs. The V.sub.DDT signal is measured with a transient digitizer, a digital oscilloscope, or with an IC tester that is also used to input the test vectors to the IC. The present invention has applications for IC process development, for the testing of ICs during manufacture, and for qualifying ICs for reliability.

  13. Resource Planning Model: An Integrated Resource Planning and Dispatch Tool for Regional Electric Systems

    SciTech Connect (OSTI)

    Mai, T.; Drury, E.; Eurek, K.; Bodington, N.; Lopez, A.; Perry, A.

    2013-01-01

    This report introduces a new capacity expansion model, the Resource Planning Model (RPM), with high spatial and temporal resolution that can be used for mid- and long-term scenario planning of regional power systems. Although RPM can be adapted to any geographic region, the report describes an initial version of the model adapted for the power system in Colorado. It presents examples of scenario results from the first version of the model, including an example of a 30%-by-2020 renewable electricity penetration scenario.

  14. US Department of Energy Integrated Resource Planning Program: Accomplishments and opportunities

    SciTech Connect (OSTI)

    White, D.L.; Mihlmester, P.E.

    1993-12-17

    The US Department of Energy Integrated Resource Planning Program supports many activities and projects that enhance the process by which utilities assess demand and supply options and, subsequently, evaluate and select resources. The US Department of Energy program coordinates integrated resource planning in risk and regulatory analysis; utility and regional planning; evaluation and verification; information transfer/technological assistance; and demand-side management. Professional staff from the National Renewable Energy Laboratory, Oak Ridge National Laboratory, Lawrence Berkeley Laboratory, and Pacific Northwest Laboratories collaborate with peers and stakeholders, in particular, the National Association of Regulatory Utility Commissioners, and conduct research and activities for the US Department of Energy. Twelve integrated resource planning activities and projects are summarized in this report. The summaries reflect the diversity of planning and research activities supported by the Department. The summaries also reflect the high levels of collaboration and teaming that are required by the Program and practiced by the researchers. It is concluded that the Program is achieving its objectives by encouraging innovation and improving planning and decision making. Furthermore, as the Department continues to implement planned improvements in the Program, the Department is effectively positioned to attain its ambitious goals.

  15. Integrated High-Level Waste System Planning - Utilizing an Integrated Systems Planning Approach to Ensure End-State Definitions are Met and Executed - 13244

    SciTech Connect (OSTI)

    Ling, Lawrence T.; Chew, David P.

    2013-07-01

    The Savannah River Site (SRS) is a Department of Energy site which has produced nuclear materials for national defense, research, space, and medical programs since the 1950's. As a by-product of this activity, approximately 37 million gallons of high-level liquid waste containing approximately 292 million curies of radioactivity is stored on an interim basis in 45 underground storage tanks. Originally, 51 tanks were constructed and utilized to support the mission. Four tanks have been closed and taken out of service and two are currently undergoing the closure process. The Liquid Waste System is a highly integrated operation involving safely storing liquid waste in underground storage tanks; removing, treating, and dispositioning the low-level waste fraction in grout; vitrifying the higher activity waste at the Defense Waste Processing Facility; and storing the vitrified waste in stainless steel canisters until permanent disposition. After waste removal and processing, the storage and processing facilities are decontaminated and closed. A Liquid Waste System Plan (hereinafter referred to as the Plan) was developed to integrate and document the activities required to disposition legacy and future High-Level Waste and to remove from service radioactive liquid waste tanks and facilities. It establishes and records a planning basis for waste processing in the liquid waste system through the end of the program mission. The integrated Plan which recognizes the challenges of constrained funding provides a path forward to complete the liquid waste mission within all regulatory and legal requirements. The overarching objective of the Plan is to meet all Federal Facility Agreement and Site Treatment Plan regulatory commitments on or ahead of schedule while preserving as much life cycle acceleration as possible through incorporation of numerous cost savings initiatives, elimination of non-essential scope, and deferral of other scope not on the critical path to compliance. There is currently a premium on processing and storage space in the radioactive liquid waste tank system. To enable continuation of risk reduction initiatives, the Plan establishes a processing strategy that provides tank space required to meet, or minimizes the impacts to meeting, programmatic objectives. The Plan also addresses perturbations in funding and schedule impacts. (authors)

  16. Test results and commercialization plans for long life Stirling generators

    SciTech Connect (OSTI)

    Erbeznik, R.M.; White, M.A.

    1996-12-31

    Many optimistic predictions regarding commercialization of Stirling engines have been announced over the years, but to date no real successes have emerged. STC is excited to announce the availability of beta prototypes for its RemoteGen{trademark} family of free-piston Stirling generators. STC is working with suppliers, manufacturers, and beta customers to commercialize the RemoteGen family of generators. STC is proving that these machines overcome previously inhibiting barriers by providing long life, high reliability, cost effective mass production, and market relevance. Stirling power generators are generally acknowledged to offer much higher conversion efficiencies than direct energy conversion systems. Life and reliability, on the other hand, are generally considered superior for direct conversion systems, as established by the exceptional endurance records (though with degradation) for thermoelectric (TE) and photovoltaic (PV) systems. STC`s unique approaches combine dynamic system efficiency with static system reliability. The RemoteGen family presently includes a 10-watt RG-10, a 350-watt RG-350, and with 1-kW and 3-kW sizes planned for the future. They all use the same basic configuration with flexure bearings, clearance seals, and moving iron linear alternators. The third generation RG-10 has entered limited production with a radioisotope-fueled version, and a niche market for a propane-fueled version has been identified. Market analysis has led STC to focus on early commercial production of the RG-350. The linear alternator power module portion of the RG-350 is also used in its sister BeCool{trademark} family of coolers as the linear motor. By using a common power module, both programs will benefit by each other`s commercialization efforts. The technology behind the RemoteGen generators, test results, and plans for commercialization are described in this paper.

  17. DNFSB recommendation 94-1 Hanford site integrated stabilization management plan

    SciTech Connect (OSTI)

    McCormack, R.L.

    1997-05-07

    In May 1994, the Defense Nuclear Facilities Safety Board (DNFSB) issued DNFSB Recommendation 94-1 (Conway 1994), which identified concerns related to US Department of Energy (DOE) management of legacy fissile materials remaining from past defense production activities. The DNFSB expressed concern about the existing storage conditions for these materials and the slow pace at which the conditions were being remediated. The DNFSB also expressed its belief that additional delays in stabilizing these fissile materials would be accompanied by further deterioration of safety and unnecessary increased risks to workers and the public. In February 1995, DOE issued the DNFSB Recommendation 94-1 Implementation Plan (O`Leary 1995) to address the concerns identified in DNFSB Recommendation 94-1. The Implementation Plan (IP) identifies several DOE commitments to achieve safe interim storage for the legacy fissile materials, and constitutes DOE`s baseline DNFSB Recommendation 94-1 Integrated Program Plan (IPP). The IPP describes the actions DOE plans to implement within the DOE complex to convert its excess fissile materials to forms or conditions suitable for safe interim storage. The IPP was subsequently supplemented with an Integrated Facilities Plan and a Research and Development Plan, which further develop complex-wide research and development and long-range facility requirements and plans. The additions to the baseline IPP were developed based on a systems engineering approach that integrated facilities and capabilities at the various DOE sites and focused on attaining safe interim storage with minimum safety risks and environmental impacts. Each affected DOE site has developed a Site Integrated Stabilization Management Plan (SISMP) to identify individual site plans to implement the DNFSB Recommendation 94-1 IPP. The SISMPs were developed based on the objectives, requirements, and commitments identified in the DNFSB Recommendation 94-1 IP. The SISMPs also supported formulation of the initial versions of the Integrated Facilities Plan and the Research and Development Plan. The SISMPs are periodically updated to reflect improved integration between DOE sites as identified during the IPP systems engineering evaluations. This document is the fifth update of the Hanford SISMP.

  18. Test plan/procedure for the SPM-1 shipping container system. Revision 0

    SciTech Connect (OSTI)

    Flanagan, B.D.

    1995-07-01

    The 49 CFR 173.465 Type A packaging tests will verify that SPM-1 will provide adequate protection and pass as a Type A package. Test will determine that the handle of the Pig will not penetrate through the plywood spacer and rupture the shipping container. Test plan/procedure provides planning, pre-test, setup, testing, and post-testing guidelines and procedures for conducting the {open_quotes}Free Drop Test{close_quotes} procedure for the SPM-1 package.

  19. Strategic Petroleum Reserve: Nitrogen Monitoring & Integrity Testing of SW

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Louisiana Caverns Petroleum Reserve: Nitrogen Monitoring & Integrity Testing of SW Louisiana Caverns - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid

  20. Method of and apparatus for testing the integrity of filters

    DOE Patents [OSTI]

    Herman, Raymond L [Richland, WA

    1985-01-01

    A method of and apparatus for testing the integrity of individual filters or filter stages of a multistage filtering system including a diffuser permanently mounted upstream and/or downstream of the filter stage to be tested for generating pressure differentials to create sufficient turbulence for uniformly dispersing trace agent particles within the airstream upstream and downstream of such filter stage. Samples of the particle concentration are taken upstream and downstream of the filter stage for comparison to determine the extent of particle leakage past the filter stage.

  1. Methods of and apparatus for testing the integrity of filters

    DOE Patents [OSTI]

    Herman, R.L.

    1984-01-01

    A method of and apparatus for testing the integrity of individual filters or filter stages of a multistage filtering system including a diffuser permanently mounted upstream and/or downstream of the filter stage to be tested for generating pressure differentials to create sufficient turbulence for uniformly dispersing trace agent particles within the airstram upstream and downstream of such filter stage. Samples of the particel concentration are taken upstream and downstream of the filter stage for comparison to determine the extent of particle leakage past the filter stage.

  2. Method of and apparatus for testing the integrity of filters

    DOE Patents [OSTI]

    Herman, R.L.

    1985-05-07

    A method of and apparatus are disclosed for testing the integrity of individual filters or filter stages of a multistage filtering system including a diffuser permanently mounted upstream and/or downstream of the filter stage to be tested for generating pressure differentials to create sufficient turbulence for uniformly dispersing trace agent particles within the airstream upstream and downstream of such filter stage. Samples of the particle concentration are taken upstream and downstream of the filter stage for comparison to determine the extent of particle leakage past the filter stage. 5 figs.

  3. Lessons learned from CIRFT testing on SNF vibration integrity study

    SciTech Connect (OSTI)

    Wang, Jy-An John; Wang, Hong; Jiang, Hao; Bevard, Bruce Balkcom; Howard, Rob L; Scaglione, John M

    2015-01-01

    A cyclic integrated reversible-bending fatigue tester (CIRFT) was developed to support U.S. NRC and DOE Used Fuel Disposition Campaign studies on high burn-up (HBU) spent nuclear fuel (SNF) transportation during normal conditions of transport (NCT). Two devices were developed; the first CIRFT was successfully installed and operated in the ORNL hot-cells in September 2013. Since hot cell testing commenced several HBU SNF samples from both Zr-4 and M5 clads were investigated. The second CIRFT device was developed in February 2014, and has been used to test clad/fuel surrogate rods (stainless steel with alumina pellet inserts). The second CIRFT machine has also been used for sensor development and test sensitivity analyses, as well as loading boundary condition parameter studies. The lessons learned from CIRFT testing will be presented in this paper.

  4. Light Water Reactor Sustainability Program Integrated Program Plan

    SciTech Connect (OSTI)

    Kathryn McCarthy; Jeremy Busby; Bruce Hallbert; Shannon Bragg-Sitton; Curtis Smith; Cathy Barnard

    2013-04-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

  5. Light Water Reactor Sustainability Program Integrated Program Plan

    SciTech Connect (OSTI)

    McCarthy, Kathryn A.; Busby, Jeremy; Hallbert, Bruce; Bragg-Sitton, Shannon; Smith, Curtis; Barnard, Cathy

    2014-04-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

  6. Light Water Reactor Sustainability Program Integrated Program Plan

    SciTech Connect (OSTI)

    George Griffith; Robert Youngblood; Jeremy Busby; Bruce Hallbert; Cathy Barnard; Kathryn McCarthy

    2012-01-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline - even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy's Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans.

  7. Integrated Safety Management System as the Basis for Work Planning and Control for Research and Development

    Broader source: Energy.gov [DOE]

    Slide Presentation by Rich Davies, Kami Lowry, Mike Schlender, Pacific Northwest National Laboratory (PNNL) and Ted Pietrok, Pacific Northwest Site Office (PNSO). Integrated Safety Management System as the Basis for Work Planning and Control for Research and Development. Work Planning and Control (WP&C) is essential to assuring the safety of workers and the public regardless of the scope of work Research and Development (R&D) activities are no exception.

  8. BERLinPro Booster Cavity Design, Fabrication and Test Plans

    SciTech Connect (OSTI)

    Burrill, Andrew; Anders, W; Frahm, A.; Knobloch, Jens; Neumann, Axel; Ciovati, Gianluigi; Kneisel, Peter K.; Turlington, Larry D.

    2014-12-01

    The bERLinPro project, a 100 mA, 50 MeV superconducting RF (SRF) Energy Recovery Linac (ERL) is under construction at Helmholtz-Zentrum Berlin for the purpose of studying the technical challenges and physics of operating a high current, c.w., 1.3 GHz ERL. This machine will utilize three unique SRF cryomodules for the injector, booster and linac module respectively. The booster cryomodule will contain three 2-cell SRF cavities, based on the original design by Cornell University, and will be equipped with twin 115 kW RF power couplers in order to provide the appropriate acceleration to the high current electron beam. This paper will review the status of the fabrication of the 4 booster cavities that have been built for this project by Jefferson Laboratory and look at the challenges presented by the incorporation of fundamental power couplers capable of delivering 115 kW. The test plan for the cavities and couplers will be given along with a brief overview of the cryomodule design.

  9. Testing operations plan: Coso Geothermal Exploratory Hole No...

    Open Energy Info (EERE)

    of well drilling activities. Major elements of this plan include setting forth the management and organizational concept to be followed, describing the generalized site...

  10. Improving the effectiveness of planning EIA (PEIA) in China: Integrating planning and assessment during the preparation of Shenzhen's Master Urban Plan

    SciTech Connect (OSTI)

    Che Xiuzhen; English, Alex; Lu Jia; Chen, Yongqin David

    2011-11-15

    The enactment and implementation of the 2003 EIA Law in China institutionalised the role of plan environmental impact assessment (PEIA). While the philosophy, methodology and mechanisms of PEIA have gradually permeated through the various levels of government with a positive effect on the process and outcome of urban planning, only a few cities in China have so far carried out PEIA as a Strategic Environmental Assessment (SEA)-type procedure. One such case is the southern city of Shenzhen. During the past three decades, Shenzhen has grown from a small town to a large and booming city as China has successfully and rapidly developed its economy by adopting the 'reform and open door' policy. In response to the challenges arising from the generally divergent processes of rapid urbanisation, economic transformation and environment protection, Shenzhen has incrementally adopted the SEA concept in developing the city's Master Urban Plan. As such, this paper reviews the effectiveness of PEIA in three ways: {center_dot}as a tool and process for achieving more sustainable and strategic planning; {center_dot}to determine the level of integration of SEA within the planning system; and, {center_dot}its effectiveness vis-a-vis implementation. The implementation of PEIA within Shenzhen's Master Urban Plan offers important insights into the emergence of innovative practices in undertaking PEIA as well as theoretical contributions to the field, especially in exploring the relationship between PEIA and SEA and highlighting the central role of local governing institutions in SEA development.

  11. Site planning and integration fiscal year 1999 multi-year work plan (MYWP) update for WBS 1.8.2.1

    SciTech Connect (OSTI)

    SCHULTZ, E.A.

    1998-10-01

    The primary mission of the Site Planning and Integration (SP and I) project is to assist Fluor Daniel Project Direction to ensure that all work performed under the Project Hanford Management Contract (PHMC) is adequately planned, executed, controlled, and that performance is measured and reported in an integrated fashion. Furthermore, SP and I is responsible for the development, implementation, and management of systems and processes that integrate technical, schedule, and cost baselines for PHMC work.

  12. Resource Planning Model: An Integrated Resource Planning and Dispatch Tool for Regional Electric Systems

    Broader source: Energy.gov [DOE]

    In this report, we introduce a new transparent regional capacity expansion model with high spatio-temporal resolution and detailed representation of dispatch. The development of this model, referred to as the Resource Planning Model (RPM), is motivated by the lack of a tool in the public domain that can be used to characterize optimal regional deployment of resources with detailed dispatch modeling. In particular, RPM is designed to evaluate scenarios of renewable technology deployment to meet renewable portfolio standard (RPS) and emission-reduction goals, and to project possible deployment levels for various projections of future technology and fuel prices.

  13. Technology development: HEPA filter service life test plan

    SciTech Connect (OSTI)

    Kirchner, K.N.; Cummings, K.G.; Leck, W.C.; Fretthold, J.K.

    1995-05-31

    Rocky Flats Environmental Technology Site (the Site) has approximately 10,000 High Efficiency Particulate Air (HEPA) Filters installed in a variety of filter plenums. These ventilation/filtration plenum systems are used to control the release of airborne particulate contaminates to the environment during normal operations and also during potential design-based accidents. The operational integrity of the HEPA filter plenums is essential to maintaining the margins of safety as required by building specific Final Safety Analysis Reports (FSARS) for protection of the public and environment. An Unreviewed Safety Question Determination (USQD), USDQ-RFP94.0615-ARS, was conducted in 1994 addressing the potential inadequacy of the safety envelope for Protected Area building HEPA plenums. While conducting this USQD, questions were raised concerning the maximum service life criteria for HEPA filters. Accident scenarios in existing FSARs identify conditions that could potentially cause plugging or damage of down stream HEPA filters as a result of impaction from failed filters. Additionally, available data indicates that HEPA filters experience structural degradation due to the effects of age. The Unresolved Safety Question (USQ) compensatory measures thus require testing and analysis of used HEPA filters in order to determine and implement service life criteria.

  14. DOE National SCADA Test Bed Program Multi-Year Plan | Department of Energy

    Energy Savers [EERE]

    National SCADA Test Bed Program Multi-Year Plan DOE National SCADA Test Bed Program Multi-Year Plan This document presents the National SCADA Test Bed Program Multi-Year Plan, a coherent strategy for improving the cyber security of control systems in the energy sector. The NSTB Program is conducted within DOE's Office of Electricity Delivery and Energy Reliability (OE), which leads national efforts to modernize the electric grid, enhance the security and reliability of the energy infrastructure,

  15. Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications

    SciTech Connect (OSTI)

    Chakraborty, S.; Kramer, W.; Kroposki, B.; Martin, G.; McNutt, P.; Kuss, M.; Markel, T.; Hoke, A.

    2011-06-01

    The objective of this report is to provide a test plan for V2G testing. The test plan is designed to test and evaluate the vehicle's power electronics capability to provide power to the grid, and to evaluate the vehicle's ability to connect and disconnect from the utility according to a subset of the IEEE Std. 1547 tests.

  16. Integrated Assessment Plan Template and Operational Demonstration for SPIDERS Phase 2: Fort Carson

    SciTech Connect (OSTI)

    Barr, Jonathan L.; Tuffner, Francis K.; Hadley, Mark D.; Kreyling, Sean J.; Schneider, Kevin P.

    2013-09-01

    This document contains the Integrated Assessment Plan (IAP) for the Phase 2 Operational Demonstration (OD) of the Smart Power Infrastructure Demonstration for Energy Reliability (SPIDERS) Joint Capability Technology Demonstration (JCTD) project. SPIDERS will be conducted over a three year period with Phase 2 being conducted at Fort Carson, Colorado. This document includes the Operational Demonstration Execution Plan (ODEP) and the Operational Assessment Execution Plan (OAEP), as approved by the Operational Manager (OM) and the Integrated Management Team (IMT). The ODEP describes the process by which the OD is conducted and the OAEP describes the process by which the data collected from the OD is processed. The execution of the OD, in accordance with the ODEP and the subsequent execution of the OAEP, will generate the necessary data for the Quick Look Report (QLR) and the Utility Assessment Report (UAR). These reports will assess the ability of the SPIDERS JCTD to meet the four critical requirements listed in the Implementation Directive (ID).

  17. Double-shell tank integrity assessments ultrasonic test equipment performance test

    SciTech Connect (OSTI)

    Pfluger, D.C.

    1996-09-26

    A double-shell tank (DST) inspection (DSTI) system was performance tested over three months until August 1995 at Pittsburgh, Pennsylvania, completing a contract initiated in February 1993 to design, fabricate, and test an ultrasonic inspection system intended to provide ultrasonic test (UT) and visual data to determine the integrity of 28 DSTs at Hanford. The DSTs are approximately one-million-gallon underground radioactive-waste storage tanks. The test was performed in accordance with a procedure (Jensen 1995) that included requirements described in the contract specification (Pfluger 1995). This report documents the results of tests conducted to evaluate the performance of the DSTI system against the requirements of the contract specification. The test of the DSTI system also reflects the performance of qualified personnel and operating procedures.

  18. Integrated Disposal Facility FY 2012 Glass Testing Summary Report

    SciTech Connect (OSTI)

    Pierce, Eric M.; Kerisit, Sebastien N.; Krogstad, Eirik J.; Burton, Sarah D.; Bjornstad, Bruce N.; Freedman, Vicky L.; Cantrell, Kirk J.; Snyder, Michelle MV; Crum, Jarrod V.; Westsik, Joseph H.

    2013-03-29

    PNNL is conducting work to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility for Hanford immobilized low-activity waste (ILAW). Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program, PNNL is implementing a strategy, consisting of experimentation and modeling, to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. Key activities in FY12 include upgrading the STOMP/eSTOMP codes to do near-field modeling, geochemical modeling of PCT tests to determine the reaction network to be used in the STOMP codes, conducting PUF tests on selected glasses to simulate and accelerate glass weathering, developing a Monte Carlo simulation tool to predict the characteristics of the weathered glass reaction layer as a function of glass composition, and characterizing glasses and soil samples exhumed from an 8-year lysimeter test. The purpose of this report is to summarize the progress made in fiscal year (FY) 2012 and the first quarter of FY 2013 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of LAW glasses.

  19. Engineering test plan for field radionuclide migration experiments in climax granite

    SciTech Connect (OSTI)

    Isherwood, D.; Raber, E.; Stone, R.; Lord, D.; Rector, N.; Failor, R.

    1982-05-01

    This Engineering Test Plan (ETP) describes field studies of radionuclide migration in fractured rock designed for the Climax grainite at the Nevada Test Site. The purpose of the ETP is to provide a detailed written document of the method of accomplishing these studies. The ETP contains the experimental test plans, an instrumentation plan, system schematics, a description of the test facility, and a brief outline of the laboratory support studies needed to understand the chemistry of the rock/water/radionuclide interactions. Results of our initial hydrologic investigations are presented along with pretest predictions based on the hydrologic test results.

  20. 2013 Annual Planning Summary for the Rocky Mountain Oilfield Testing Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Rocky Mountain Oilfield Testing Center 2013 Annual Planning Summary for the Rocky Mountain Oilfield Testing Center The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Rocky Mountain Oilfield Testing Center . The Rocky Mountain Oilfield Testing Center's APS was consolidated within the Office of Fossil Energy's APS available here. More Documents & Publications 2013 Annual Planning Summary for the

  1. Environmental implications associated with integrated resource planning by public utilities in the western United States

    SciTech Connect (OSTI)

    Baechler, M.C.; Haber, G.S.; Cothran, J.N.; Hand, M.M.

    1994-08-01

    The Western Area Power Administration is about to impose integrated resource planning requirements on its 612 public-power customers as part of its Energy Planning and Management Program (EPAM) and consistent with the Energy Policy Act of 1992. EPAM will affect public utilities over a 15-state region stretching from Minnesota to California, Montana to Texas. In this study, an assessment is made of the environmental impacts of the IRP requirements. Environmental impacts are calculated based on modeled changes in electric power generation and capacity additions.

  2. ESTER, Enel integrated System for TEsts on stoRage (Smart Grid...

    Open Energy Info (EERE)

    ESTER, Enel integrated System for TEsts on stoRage (Smart Grid Project) Jump to: navigation, search Project Name ESTER, Enel integrated System for TEsts on stoRage Country Italy...

  3. System integration and performance of the EUV engineering test stand

    SciTech Connect (OSTI)

    Tichenor, Daniel A.; Ray-Chaudhuri, Avijit K.; Replogle, William C.; Stulen, Richard H.; Kubiak, Glenn D.; Rockett, Paul D.; Klebanoff, Leonard E.; Jefferson, Karen L.; Leung, Alvin H.; Wronosky, John B.; Hale, Layton C.; Chapman, Henry N.; Taylor, John S.; Folta, James A.; Montcalm, Claude; Soufli, Regina; Spiller, Eberhard; Blaedel, Kenneth; Sommargren, Gary E.; Sweeney, Donald W.; Naulleau, Patrick; Goldberg, Kenneth A.; Gullikson, Eric M.; Bokor, Jeffrey; Batson, Phillip J.; Attwood, David T.; Jackson, Keith H.; Hector, Scott D.; Gwyn, Charles W.; Yan, Pei-Yang; Yan, P.

    2001-03-01

    The Engineering Test Stand (ETS) is a developmental lithography tool designed to demonstrate full-field EUV imaging and provide data for commercial-tool development. In the first phase of integration, currently in progress, the ETS is configured using a developmental projection system, while fabrication of an improved projection system proceeds in parallel. The optics in the second projection system have been fabricated to tighter specifications for improved resolution and reduced flare. The projection system is a 4-mirror, 4x-reduction, ring-field design having a numeral aperture of 0.1, which supports 70 nm resolution at a k{sub 1} of 0.52. The illuminator produces 13.4 nm radiation from a laser-produced plasma, directs the radiation onto an arc-shaped field of view, and provides an effective fill factor at the pupil plane of 0.7. The ETS is designed for full-field images in step-and-scan mode using vacuum-compatible, magnetically levitated, scanning stages. This paper describes system performance observed during the first phase of integration, including static resist images of 100 nm isolated and dense features.

  4. Test plan for the irradiation of nonmetallic materials.

    SciTech Connect (OSTI)

    Brush, Laurence H.; Farnum, Cathy Ottinger; Dahl, M.; Joslyn, C. C.; Venetz, T. J.

    2013-05-01

    A comprehensive test program to evaluate nonmetallic materials use in the Hanford tank farms is described in detail. This test program determines the effects of simultaneous multiple stressors at reasonable conditions on in-service configuration components by engineering performance testing.

  5. Test plan for the irradiation of nonmetallic materials.

    SciTech Connect (OSTI)

    Brush, Laurence H.; Farnum, Cathy Ottinger; Gelbard, Fred; Dahl, M.; Joslyn, C. C.; Venetz, T. J.

    2013-03-01

    A comprehensive test program to evaluate nonmetallic materials use in the Hanford Tank Farms is described in detail. This test program determines the effects of simultaneous multiple stressors at reasonable conditions on in-service configuration components by engineering performance testing.

  6. DOE/OE National SCADA Test Bed Fiscal Year 2009 Work Plan | Department of

    Energy Savers [EERE]

    Energy OE National SCADA Test Bed Fiscal Year 2009 Work Plan DOE/OE National SCADA Test Bed Fiscal Year 2009 Work Plan This document is designed to help guide and strengthen the DOE/OE NSTB program's research and development (R&D) of advance security tools and to heighten awareness among energy sector partners of the more than 30 NSTB projects underway in FY2009. PDF icon DOE/OE National SCADA Test Bed Fiscal Year 2009 Work Plan More Documents & Publications National SCADA Test Bed -

  7. Integrated Energy-Water Planning in the Western and Texas Interconnections

    SciTech Connect (OSTI)

    Vincent Tidwell; John Gasper; Robert Goldstein; Jordan Macknick; Gerald Sehlke; Michael Webber; Mark Wigmosta

    2013-07-01

    While long-term regional electricity transmission planning has traditionally focused on cost, infrastructure utilization, and reliability, issues concerning the availability of water represent an emerging issue. Thermoelectric expansion must be considered in the context of competing demands from other water use sectors balanced with fresh and non-fresh water supplies subject to climate variability. An integrated Energy-Water Decision Support System (DSS) is being developed that will enable planners in the Western and Texas Interconnections to analyze the potential implications of water availability and cost for long-range transmission planning. The project brings together electric transmission planners (Western Electricity Coordinating Council and Electric Reliability Council of Texas) with western water planners (Western Governors Association and the Western States Water Council). This paper lays out the basic framework for this integrated Energy-Water DSS.

  8. Front-end Electronics for Unattended Measurement (FEUM). Prototype Test Plan

    SciTech Connect (OSTI)

    Conrad, Ryan C.; Morris, Scott J.; Smith, Leon E.; Keller, Daniel T.

    2015-09-16

    The IAEA has requested that PNNL perform an initial set of tests on front-end electronics for unattended measurement (FEUM) prototypes. The FEUM prototype test plan details the tests to be performed, the criteria for evaluation, and the procedures used to execute the tests.

  9. Electric utility system planning studies for OTEC power integration. Final report

    SciTech Connect (OSTI)

    1980-11-30

    Florida Power Corporation (FPC) conducted an evaluation of the possible integration of OTEC into the FPC system. Existing system planning procedures, assumptions, and corporate financial criteria for planning new generating capacity were used without modification. A baseline configuration for an OTEC plant was developed for review with standard planning procedures. The OTEC plant characteristics and costs were incorporated in considerable detail. These basic inputs were examined using the FPC system planning methods. It was found that with the initial set of conditions, OTEC would not be economically viable. Using the same system planning procedures, a number of adjustments were made to the key study assumptions. It was found that two considerations dominate the analysis; the assumed rate of fuel cost escalation, and the projected capital cost of the OTEC plant. The analysis produced a parametric curve: on one hand, if fuel costs were to escalate at a rate greater than assumed (12% vs the assumed 5% for coal), and if no change were made to the OTEC input assumptions, the basic economic competitive criteria would be equivalent to the principal alternative, coal fueled plants. Conversely, if the projected cost of the OTEC plant were to be reduced from the assumed $2256/kW to $1450/kW, the economic competitiveness criterion would be satisfied. After corporate financial analysis, it was found that even if the cost competitive criterion were to be reached, the plan including OTEC could not be financed by Florida Power Corporation. Since, under the existing set of conditions for financing new plant capital requirements, FPC could not construct an OTEC plant, some other means of ownership would be necessary to integrate OTEC into the FPC system. An alternative such as a third party owning the plant and selling power to FPC, might prove attractive. (WHK)

  10. Vadose Zone Transport Field Study: Detailed Test Plan for Simulated Leak Tests

    SciTech Connect (OSTI)

    Ward, Anderson L.; Gee, Glendon W.

    2000-06-23

    This report describes controlled transport experiments at well-instrumented field tests to be conducted during FY 2000 in support of DOE?s Vadose Zone Transport Field Study (VZTFS). The VZTFS supports the Groundwater/Vadose Zone Integration Project Science and Technology Initiative. The field tests will improve understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. These methods will capture the extent of contaminant plumes using existing steel-cased boreholes. Specific objectives are to 1) identify mechanisms controlling transport processes in soils typical of the hydrogeologic conditions of Hanford?s waste disposal sites; 2) reduce uncertainty in conceptual models; 3) develop a detailed and accurate data base of hydraulic and transport parameters for validation of three-dimensional numerical models; and 4) identify and evaluate advanced, cost-effective characterization methods with the potential to assess changing conditions in the vadose zone, particularly as surrogates of currently undetectable high-risk contaminants. Pacific Northwest National Laboratory (PNNL) manages the VZTFS for DOE.

  11. Gearbox Reliability Collaborative Phase 3 Gearbox 2 Test Plan

    SciTech Connect (OSTI)

    Link, H.; Keller, J.; Guo, Y.; McNiff, B.

    2013-04-01

    Gearboxes in wind turbines have not been achieving their expected design life even though they commonly meet or exceed the design criteria specified in current design standards. One of the basic premises of the National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) is that the low gearbox reliability results from the absence of critical elements in the design process or insufficient design tools. Key goals of the GRC are to improve design approaches and analysis tools and to recommend practices and test methods resulting in improved design standards for wind turbine gearboxes that lower the cost of energy (COE) through improved reliability. The GRC uses a combined gearbox testing, modeling and analysis approach, along with a database of information from gearbox failures collected from overhauls and investigation of gearbox condition monitoring techniques to improve wind turbine operations and maintenance practices. Testing of Gearbox 2 (GB2) using the two-speed turbine controller that has been used in prior testing. This test series will investigate non-torque loads, high-speed shaft misalignment, and reproduction of field conditions in the dynamometer. This test series will also include vibration testing using an eddy-current brake on the gearbox's high speed shaft.

  12. Closure Plan for the Area 3 Radioactive Waste Management Site at the Nevada Test Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2007-09-01

    The Area 3 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec) for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the interim closure plan for the Area 3 RWMS, which was presented in the Integrated Closure and Monitoring Plan (ICMP) (DOE, 2005). The format and content of this plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). The major updates to the plan include a new closure date, updated closure inventory, the new institutional control policy, and the Title II engineering cover design. The plan identifies the assumptions and regulatory requirements, describes the disposal sites and the physical environment in which they are located, presents the design of the closure cover, and defines the approach and schedule for both closing and monitoring the site. The Area 3 RWMS accepts low-level waste (LLW) from across the DOE Complex in compliance with the NTS Waste Acceptance Criteria (NNSA/NSO, 2006). The Area 3 RWMS accepts both packaged and unpackaged unclassified bulk LLW for disposal in subsidence craters that resulted from deep underground tests of nuclear devices in the early 1960s. The Area 3 RWMS covers 48 hectares (119 acres) and comprises seven subsidence craters--U-3ax, U-3bl, U-3ah, U-3at, U-3bh, U-3az, and U-3bg. The area between craters U-3ax and U-3bl was excavated to form one large disposal unit (U-3ax/bl); the area between craters U-3ah and U-3at was also excavated to form another large disposal unit (U-3ah/at). Waste unit U-3ax/bl is closed; waste units U-3ah/at and U-3bh are active; and the remaining craters, although currently undeveloped, are available for disposal of waste if required. This plan specifically addresses the closure of the U-3ah/at and the U-3bh LLW units. A final closure cover has been placed on unit U-3ax/bl (Corrective Action Unit 110) at the Area 3 RWMS. Monolayer-evapotranspirative closure cover designs for the U-3ah/at and U-3bh units are provided in this plan. The current-design closure cover thickness is 3 meters (10 feet). The final design cover will have an optimized cover thickness, which is expected to be less than 3 m (10 ft). Although waste operations at the Area 3 RWMS have ceased at the end of June 2006, disposal capacity is available for future disposals at the U-3ah/at and U-3bh units. The Area 3 RWMS is expected to start closure activities in fiscal year 2025, which include the development of final performance assessment and composite analysis documents, closure plan, closure cover design for construction, cover construction, and initiation of the post-closure care and monitoring activities. Current monitoring at the Area 3 RWMS includes monitoring the cover of the closed mixed waste unit U-3ax/bl as required by the Nevada Department of Environmental Protection, and others required under federal regulations and DOE orders. Monitoring data, collected via sensors and analysis of samples, are needed to evaluate radiation doses to the general public, for performance assessment maintenance, to demonstrate regulatory compliance, and to evaluate the actual performance of the RWMSs. Monitoring provides data to ensure the integrity and performance of waste disposal units. The monitoring program is designed to forewarn management and regulators of any failure and need for mitigating actions. The plan describes the program for monitoring direct radiation, air, vadose zone, biota, groundwater, meteorology, and subsidence. The requirements of post-closure cover maintenance and monitoring will be determined in the final closure plan.

  13. Dynamic Object Oriented Requirements System (DOORS) System Test Plan

    SciTech Connect (OSTI)

    JOHNSON, A.L.

    2000-04-01

    The U. S. Department of Energy, Office of River Protection (ORP) will use the Dynamic Object Oriented Requirements System (DOORS) as a tool to assist in identifying, capturing, and maintaining the necessary and sufficient set of requirements for accomplishing the ORP mission. By managing requirements as one integrated set, the ORP will be able to carry out its mission more efficiently and effectively. DOORS is a Commercial-Off-The-Shelf (COTS) requirements management tool. The tool has not been customized for the use of the PIO, at this time.

  14. Beta Test Plan for Advanced Inverters Interconnecting Distributed Resources with Electric Power Systems

    SciTech Connect (OSTI)

    Hoke, A.; Chakraborty, S.; Basso, T.; Coddington, M.

    2014-01-01

    This document provides a preliminary (beta) test plan for grid interconnection systems of advanced inverter-based DERs. It follows the format and methodology/approach established by IEEE Std 1547.1, while incorporating: 1. Upgraded tests for responses to abnormal voltage and frequency, and also including ride-through. 2. A newly developed test for voltage regulation, including dynamic response testing. 3. Modified tests for unintentional islanding, open phase, and harmonics to include testing with the advanced voltage and frequency response functions enabled. Two advanced inverters, one single-phase and one three-phase, were tested under the beta test plan. These tests confirmed the importance of including tests for inverter dynamic response, which varies widely from one inverter to the next.

  15. R&D ERL: G5 test and commissioning plan

    SciTech Connect (OSTI)

    Kayran, D.; Pozdeyev, E.

    2010-02-10

    Gun-to-5-cell cavity (G5) setup (Fig 1-2) can be considered as the first stage of the final BNL ERL design. The goal of the G5 setup is to test critical ERL components with the beam and characterize the beam produced by the gun. Also, this test will be used to assess effectiveness of the zigzag merger, which will be installed later in the ERL setup. The major components under the test will include the SRF gun, the five-cell SRF cavity, vacuum components, parts of the control and diagnostic systems. G5 is designed to measure the following beam parameters: (1) projected bunch emittance (?) and Twiss parameters ({alpha}, {beta}); (2) slice emittance; (3) bunch length; and (4) longitudinal and transverse halo.

  16. NEAC Nuclear Reactor Technology (NRT) Subcommittee Advanced Test and/or Demonstration Reactor Planning Study

    Office of Environmental Management (EM)

    Nuclear Reactor Technology (NRT) Subcommittee Advanced Test and/or Demonstration Reactor Planning Study October 6 th , 2015 Meeting Summary and Comments Given direction from Congress, the Department of Energy's Office of Nuclear Energy (DOE- NE) is conducting a planning study for an advanced test and/or demonstration reactor (AT/DR study) in the United States. The Nuclear Energy Advisory Committee (NEAC) and specifically its Nuclear Reactor Technology (NRT) subcommittee has been asked to provide

  17. NEAC Nuclear Reactor Technology (NRT) Subcommittee On the Planning Study of Future Test/Demonstration Reactors

    Office of Environmental Management (EM)

    Report and Recommendations of NEAC Nuclear Reactor Technology (NRT) Subcommittee On the Planning Study of Future Test/Demonstration Reactors March 2, 2015 Final Given direction from Congress and interest of several stakeholders, the Department of Energy's Office of Nuclear Energy (DOE-NE) requested that Nuclear Energy Advisory Committee (NEAC)-NRT Subcommittee help define the scope and process for conducting a planning study for an advanced test/demonstration reactor in the United States. The

  18. Title Environmental Monitoring Plan for the Tonopah Test Range SANDIA-ENVIR-6 Land

    National Nuclear Security Administration (NNSA)

    Environmental Monitoring Plan for the Tonopah Test Range SANDIA-ENVIR-6 Land Use/Infrastructure Author DOE, Albuquerque Office 101223 Document Date ERC Index number 2/24/92 05.09.267 Document Type Box Number Report 1712-1 Recipients USDOE NTSEIS ADMINfSTRATTVEREOORD g ENVIRONMENTAL MONITORING PLAN FORTHE TONOPAH TEST RANGE, NEVADA FEBRUARY 24,1992 BY SANDIA NATIONAL LABORATORIES Albuquerque, New Mexico FORTHE DEPARTMENT OF ENERGY Albuquerque Field Office Albuquerque, New Mexico SANDIA-ENVIR-6 .

  19. Integrated electric power and heat planning in Russia: The fossil-nuclear tradeoff

    SciTech Connect (OSTI)

    Shavel, I.H.; Blaney, J.C.

    1996-08-01

    For the Joint Energy Alternatives Study (JEAS), ICF Kaiser International was tasked to use its Integrated Planning Model (IPM{copyright}) to estimate the investment requirements for the Russian power sector. The IPM is a least-cost planning model that uses a linear programming algorithm to select investment options and to dispatch generating and load management resources to meet overall electricity demand. For the purpose, ICF was provided with input data by the five Working Groups established under the JEAS. Methodological approaches for processing and adjusting this data were specified by Working Group 5. In addition to the two Reference Cases, ICF used IPM to analyze over forty different Change Cases. For each of these cases, ICF generated summary reports on capacity additions, electric generation, and investment and system costs. These results, along with the parallel work undertaken by the Russian Energy Research Institute formed the analytical basis for the Joint Energy Alternatives Study.

  20. River Protection Project Integrated safety management system phase II verification review plan - 7/29/99

    SciTech Connect (OSTI)

    SHOOP, D.S.

    1999-09-10

    The purpose of this review is to verify the implementation status of the Integrated Safety Management System (ISMS) for the River Protection Project (RPP) facilities managed by Fluor Daniel Hanford, Inc. (FDH) and operated by Lockheed Martin Hanford Company (LMHC). This review will also ascertain whether within RPP facilities and operations the work planning and execution processes are in place and functioning to effectively protect the health and safety of the workers, public, environment, and federal property over the RPP life cycle. The RPP ISMS should support the Hanford Strategic Plan (DOERL-96-92) to safely clean up and manage the site's legacy waste and deploy science and technology while incorporating the ISMS central theme to ''Do work safely'' and protect human health and the environment.

  1. 300 Area Integrated Field-Scale Subsurface Research Challenge (IFRC) Field Site Management Plan

    SciTech Connect (OSTI)

    Freshley, Mark D.

    2008-12-31

    Pacific Northwest National Laboratory (PNNL) has established the 300 Area Integrated Field-Scale Subsurface Research Challenge (300 Area IFRC) on the Hanford Site in southeastern Washington State for the U.S. Department of Energys (DOE) Office of Biological and Environmental Research (BER) within the Office of Science. The project is funded by the Environmental Remediation Sciences Division (ERSD). The purpose of the project is to conduct research at the 300 IFRC to investigate multi-scale mass transfer processes associated with a subsurface uranium plume impacting both the vadose zone and groundwater. The management approach for the 300 Area IFRC requires that a Field Site Management Plan be developed. This is an update of the plan to reflect the installation of the well network and other changes.

  2. NREL Next Generation Drivetrain: Mechanical Design and Test Plan (Poster)

    SciTech Connect (OSTI)

    Keller, J.; Halse, C.

    2014-05-01

    The Department of Energy and industry partners are sponsoring a $3m project for design and testing of a 'Next Generation' wind turbine drivetrain at the National Renewable Energy Laboratory (NREL). This poster focuses on innovative aspects of the gearbox design, completed as part of an end-to-end systems engineering approach incorporating innovations that increase drivetrain reliability, efficiency, torque density and minimize capital cost.

  3. DOUBLE TRACKS Test Site interim corrective action plan

    SciTech Connect (OSTI)

    1996-06-01

    The DOUBLE TRACKS site is located on Range 71 north of the Nellis Air Force Range, northwest of the Nevada Test Site (NTS). DOUBLE TRACKS was the first of four experiments that constituted Operation ROLLER COASTER. On May 15, 1963, weapons-grade plutonium and depleted uranium were dispersed using 54 kilograms of trinitrotoluene (TNT) explosive. The explosion occurred in the open, 0.3 m above the steel plate. No fission yield was detected from the test, and the total amount of plutonium deposited on the ground surface was estimated to be between 980 and 1,600 grams. The test device was composed primarily of uranium-238 and plutonium-239. The mass ratio of uranium to plutonium was 4.35. The objective of the corrective action is to reduce the potential risk to human health and the environment and to demonstrate technically viable and cost-effective excavation, transportation, and disposal. To achieve these objectives, Bechtel Nevada (BN) will remove soil with a total transuranic activity greater then 200 pCI/g, containerize the soil in ``supersacks,`` transport the filled ``supersacks`` to the NTS, and dispose of them in the Area 3 Radioactive Waste Management Site. During this interim corrective action, BN will also conduct a limited demonstration of an alternative method for excavation of radioactive near-surface soil contamination.

  4. A planning study of simultaneous integrated boost with forward IMRT for multiple brain metastases

    SciTech Connect (OSTI)

    Liang, Xiaodong; Ni, Lingqin; Hu, Wei; Chen, Weijun; Ying, Shenpeng; Gong, Qiangjun; Liu, Yanmei

    2013-07-01

    The objective of this study was to evaluate the dose conformity and feasibility of whole-brain radiotherapy with a simultaneous integrated boost by forward intensity-modulated radiation therapy in patients with 1 to 3 brain metastases. Forward intensity-modulated radiation therapy plans were generated for 10 patients with 1 to 3 brain metastases on Pinnacle 6.2 Treatment Planning System. The prescribed dose was 30 Gy to the whole brain (planning target volume [PTV]{sub wbrt}) and 40 Gy to individual brain metastases (PTV{sub boost}) simultaneously, and both doses were given in 10 fractions. The maximum diameters of individual brain metastases ranged from 1.6 to 6 cm, and the summated PTVs per patient ranged from 1.62 to 69.81 cm{sup 3}. Conformity and feasibility were evaluated regarding conformation number and treatment delivery time. One hundred percent volume of the PTV{sub boost} received at least 95% of the prescribed dose in all cases. The maximum doses were less than 110% of the prescribed dose to the PTV{sub boost}, and all of the hot spots were within the PTV{sub boost}. The volume of the PTV{sub wbrt} that received at least 95% of the prescribed dose ranged from 99.2% to 100%. The mean values of conformation number were 0.682. The mean treatment delivery time was 2.79 minutes. Ten beams were used on an average in these plans. Whole-brain radiotherapy with a simultaneous integrated boost by forward intensity-modulated radiation therapy in 1 to 3 brain metastases is feasible, and treatment delivery time is short.

  5. Standard Method of Test for Integrated Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standard Method of Test for Integrated Heat Pumps Standard Method of Test for Integrated Heat Pumps Standard Method of Test for Integrated Heat Pumps Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partners: -- ASHRAE - Atlanta, GA -- Air Conditioning, Heating, and Refrigeration Institute (AHRI) - Arlington, VA DOE Funding: $960,000 Project Term: Oct. 2011 - Sept. 2015 Project Objective HVAC and water heating services to U.S. buildings is responsible for about 56% of all

  6. TMACS test procedure TP010: Integration summary. Revision 6

    SciTech Connect (OSTI)

    Spurling, D.G.

    1994-09-01

    The TMACS Software Project Test Procedures translate the project`s acceptance criteria into test steps. Software releases are certified when the affected Test Procedures are successfully performed and the customers authorize installation of these changes. This Test Procedure verifies that Test Procedures 1, 2, 3, 5 and 9 (WHC-SD-WM-TRP-105, 106, 107, 109 and 113) of TMACS Software Release 4.1 have been successfully completed.

  7. EA-2012: Strategic Test Well (s) Planning and Drilling for Long-Term Methane Hydrate Production Testing in Alaska

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE is preparing an EA that evaluates the potential environmental impacts of providing financial support for planning, analysis, and engineering services to support a proposed project of Petrotechnical Resources of Alaska with Japan Oil, Gas and Metals National Corporation to perform gas hydrate drilling and testing on the North Slope of Alaska.

  8. Deflagration studies on waste Tank 101-SY: Test plan

    SciTech Connect (OSTI)

    Cashdollar, K.L.; Zlochower, I.A.; Hertzberg, M.

    1991-07-01

    Waste slurries produced during the recovery of plutonium and uranium from irradiated fuel are stored in underground storage tanks. While a variety of waste types have been generated, of particular concern are the wastes stored in Tank 101-SY. A slurry growth-gas evolution cycle has been observed since 1981. The waste consists of a thick slurry, consisting of a solution high in NaOH, NaNO{sub 3}, NaAlO{sub 2}, dissolved organic complexants (EDTA, HEDTA, NTA, and degradation products), other salts (sulfates and phosphates), and radionuclides (primarily cesium and strontium). During a gas release the major gaseous species identified include: hydrogen and nitrous oxide (N{sub 2}O). Significant amounts of nitrogen may also be present. Traces of ammonia, carbon oxides, and other nitrogen oxides are also detected. Air and water vapor are also present in the tank vapor space. The purpose of the deflagration study is to determine risks of the hydrogen, nitrous oxide, nitrogen, and oxygen system. To be determined are pressure and temperature as a function of composition of reacting gases and the concentration of gases before and after the combustion event. Analyses of gases after the combustion event will be restricted to those tests that had an initial concentration of {le}8% hydrogen. This information will be used to evaluate safety issues related to periodic slurry growth and flammable gas releases from Tank 101-SY. the conditions to be evaluated will simulate gases in the vapor space above the salt cake as well as gases that potentially are trapped in pockets within/under the waste. The deflagration study will relate experimental laboratory results to conditions in the existing tanks.

  9. Plans for an ERL Test Facility at CERN (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Plans for an ERL Test Facility at CERN Citation Details In-Document Search Title: Plans for an ERL Test Facility at CERN The baseline electron accelerator for LHeC and one option for FCC-he is an Energy Recovery Linac. To prepare and study the necessary key technologies, CERNhas started - in collaboration with JLAB and Mainz University - the conceptual design of an ERL Test Facility (ERL-TF). Staged construction will allow the study under different conditions with up to 3 passes, beam energies

  10. Integrated Performance Testing Workshop - Supplemental Materials (Scripts and Procedures)

    SciTech Connect (OSTI)

    Baum, Gregory A.

    2014-02-01

    A variety of performance tests are described relating to: Material Transfers; Emergency Evacuation; Alarm Response Assessment; and an Enhanced Limited Scope Performance Test (ELSPT). Procedures are given for: nuclear material physical inventory and discrepancy; material transfers; and emergency evacuation.

  11. https://www.jlab.org/integrated-rss en Jefferson Lab to Test...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    integrated-rss en Jefferson Lab to Test its Tornado Warning Siren at 10:30 a.m. on Friday, Dec. 4 https:www.jlab.orgnewsreleasesjefferson-lab-test-its-tornado-warning-siren-10...

  12. Development and Testing of an Integrated Sandia Cooler Thermoelectric Device (SCTD).

    SciTech Connect (OSTI)

    Johnson, Terry A.; Staats, Wayne Lawrence,; Leick, Michael Thomas; Zimmerman, Mark D.; Radermacher, Reinhard; Martin, Cara; Nasuta, Dennis; Kalinowski, Paul; Hoffman, William

    2014-12-01

    This report describes a FY14 effort to develop an integrated Sandia Cooler T hermoelectric D evice (SCTD) . The project included a review of feasible thermoelectric (TE) cooling applications, baseline performance testing of an existing TE device, analysis and design development of an integrated SCTD assembly, and performance measurement and validation of the integrated SCTD prototype.

  13. The role of integrated resource planning, environmental externalities, and anticipation of future regulation in compliance planning under the Clean Air Act Amendments of 1990

    SciTech Connect (OSTI)

    Bernow, S.; Biewald, B.; Wulfsberg, K.

    1993-07-01

    Utilities are developing sulfur dioxide (SO{sub 2}) emission compliance plans to meet limitations of the Clean Air Act Amendments of 1990 (CAAA). Compliance plans will have long-term effects on resource selection, fuel choice, and system dispatch. Use of integrated resource planning (IRP) is necessary to ensure compliance plans are consistent with the overall societal goals. In particular, environmental externalities must be integrated with the compliance planning process. The focus of the CAAA is on air pollution reduction, specifically acid gases and toxics, and attainment of National Ambient Air Quality Standards (NAAQS) for criteria pollutants. Title IV specifically focuses on sulfur dioxide with a national allowance trading system, while further regulation of toxics and nitrogen oxides is slated for additional study. Yet, compliance planning based narrowly upon today`s environmental regulations could fail to meet the broad goals of IRP if a larger array of environmental externalities is excluded from the analysis. Compliance planning must consider a broad range of environmental effects from energy production and use to (1) protect society`s long-term stake in environmental quality, and (2) ensure that today`s plans are rich enough to accommodate potential changes in regulation and national environmental goals. The explicit recognition of environmental effects, such as those associated with CO{sub 2} release, will result in prudent compliance plans that take advantage of current opportunities for pollution avoidance and have long-term viability in the face of regulatory change. By including such considerations, the mix of resources acquired and operated (supply and demand, existing and new, conventional and renewable, fuel type and fuel quality, pollution control, and dispatch protocols) will be robust and truly least-cost.

  14. Underground Test Area Quality Assurance Project Plan Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Irene Farnham

    2011-05-01

    This Quality Assurance Project Plan (QAPP) provides the overall quality assurance (QA) program requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) Sub-Project (hereafter the Sub-Project) activities. The requirements in this QAPP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). The QAPP Revision 0 supersedes DOE--341, Underground Test Area Quality Assurance Project Plan, Nevada Test Site, Nevada, Revision 4.

  15. The 300 Area Integrated Field Research Challenge Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2009-04-29

    Pacific Northwest National Laboratory and a group of expert collaborators are using the U.S. Department of Energy Hanford Site 300 Area uranium plume within the footprint of the 300-FF-5 groundwater operable unit as a site for an Integrated Field-Scale Subsurface Research Challenge (IFRC). The IFRC is entitled Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on the Hanford Site 300 Area Uranium Plume Project. The theme is investigation of multi-scale mass transfer processes. A series of forefront science questions on mass transfer are posed for research that relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements/approaches needed to characterize and model a mass transfer-dominated system. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the 300 Area IFRC Project. This plan is designed to be used exclusively by project staff.

  16. Comparative risk analysis for the Rocky Flats Plant Integrated Project Planning

    SciTech Connect (OSTI)

    Jones, M.E.; Shain, D.I.

    1994-12-31

    The Rocky Flats Plant is developing a comprehensive planning strategy that will support transition of the Rocky Flats Plant from a nuclear weapons production facility to site cleanup and final disposition. Final disposition of the Rocky Flats Plant materials and contaminants requires consideration of the interrelated nature of sitewide problems, such as material movement and disposition, facility and land use endstates, costs, relative risks to workers and the public, and waste disposition. Comparative Risk Analysis employs both incremental risk and cumulative risk evaluations to compare risk from postulated options or endstates. Comparative Risk Analysis is an analytical tool for the Rocky Flats Plant Integrated Project Planning which can assist a decision-maker in evaluating relative risks among proposed remedial options or future endstates. It addresses the cumulative risks imposed by the Rocky Flats Plant and provides risk information, both human health and ecological, to aid in reducing unnecessary resource and monetary expenditures. Currently, there is no approved methodology that aggregates various risk estimates. Along with academic and field expert review, the Comparative Risk Analysis methodology is being reviewed and refined. A Rocky Flats Plant Risk Assessment Focus Group was established. Stakeholder involvement in the development provides an opportunity to influence the information delivered to a decision-maker. This paper discusses development of the methodology.

  17. TH-A-BRF-09: Integration of High-Resolution MRSI Into Glioblastoma Treatment Planning

    SciTech Connect (OSTI)

    Schreibmann, E; Cordova, J; Shu, H; Crocker, I; Curran, W; Holder, C; Shim, H

    2014-06-15

    Purpose: Identification of a metabolite signature that shows significant tumor cell infiltration into normal brain in regions that do not appear abnormal on standard MRI scans would be extremely useful for radiation oncologists to choose optimal regions of brain to treat, and to quantify response beyond the MacDonald criteria. We report on integration of high-resolution magnetic resonance spectroscopic imaging (HR-MRSI) with radiation dose escalation treatment planning to define and target regions at high risk for recurrence. Methods: We propose to supplement standard MRI with a special technique performed on an MRI scanner to measure the metabolite levels within defined volumes. Metabolite imaging was acquired using an advanced MRSI technique combining 3D echo-planar spectroscopic imaging (EPSI) with parallel acquisition (GRAPPA) using a multichannel head coil that allows acquisition of whole brain metabolite maps with 108 μl resolution in 12 minutes implemented on a 3T MR scanner. Elevation in the ratio of two metabolites, choline (Cho, elevated in proliferating high-grade gliomas) and N-acetyl aspartate (NAA, a normal neuronal metabolite), was used to image infiltrating high-grade glioma cells in vivo. Results: The metabolite images were co-registered with standard contrast-enhanced T1-weighted MR images using in-house registration software and imported into the treatment-planning system. Regions with tumor infiltration are identified on the metabolic images and used to create adaptive IMRT plans that deliver a standard dose of 60 Gy to the standard target volume and an escalated dose of 75 Gy (or higher) to the most suspicious regions, identified as areas with elevated Cho/NAA ratio. Conclusion: We have implemented a state-of-the-art HR-MRSI technology that can generate metabolite maps of the entire brain in a clinically acceptable scan time, coupled with introduction of an imaging co-registration/ analysis program that combines MRSI data with standard imaging studies in a clinically useful fashion.

  18. Pilot-scale treatability test plan for the 200-BP-5 operable unit

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This document presents the treatability test plan for pilot-scale pump and treat testing at the 200-BP-5 Operable Unit. This treatability test plan has been prepared in response to an agreement between the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA), and the State of Washington Department of Ecology (Ecology), as documented in Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement, Ecology et al. 1989a) Change Control Form M-13-93-03 (Ecology et al. 1994) and a recent 200 NPL Agreement Change Control Form (Appendix A). The agreement also requires that, following completion of the activities described in this test plan, a 200-BP-5 Operable Unit Interim Remedial Measure (IRM) Proposed Plan be developed for use in preparing an Interim Action Record of Decision (ROD). The IRM Proposed Plan will be supported by the results of this treatability test plan, as well as by other 200-BP-5 Operable Unit activities (e.g., development of a qualitative risk assessment). Once issued, the Interim Action ROD will specify the interim action(s) for groundwater contamination at the 200-BP-5 Operable Unit. The treatability test approach is to conduct a pilot-scale pump and treat test for each of the two contaminant plumes associated with the 200-BP-5 Operable Unit. Primary contaminants of concern are {sup 99}Tc and {sup 60}Co for underwater affected by past discharges to the 216-BY Cribs, and {sup 90}Sr, {sup 239/240}Pu, and Cs for groundwater affected by past discharges to the 216-B-5 Reverse Well. The purpose of the pilot-scale treatability testing presented in this testplan is to provide the data basis for preparing an IRM Proposed Plan. To achieve this objective, treatability testing must: Assess the performance of groundwater pumping with respect to the ability to extract a significant amount of the primary contaminant mass present in the two contaminant plumes.

  19. Technical task plan for testing filter box sorbent-paint filter test

    SciTech Connect (OSTI)

    Kilpatrick, L.L.

    1993-09-01

    At the Savannah River Plant, High Level Waste Engineering (HLWE) asked Interim Waste Technology (IWT) to choose and test a sorbent to add to the ITP filter box that meets the EPA requirement for land disposal of containerized liquid hazardous wastes per Paint Filter Liquids (PFL) test method 9095. This report outlines the process to be used in accomplishing this task.

  20. Assembly and method for testing the integrity of stuffing tubes

    DOE Patents [OSTI]

    Morrison, E.F.

    1997-08-26

    A stuffing tube integrity checking assembly includes first and second annular seals, with each seal adapted to be positioned about a stuffing tube penetration component. An annular inflation bladder is provided, the bladder having a slot extending longitudinally there along and including a separator for sealing the slot. A first valve is in fluid communication with the bladder for introducing pressurized fluid to the space defined by the bladder when mounted about the tube. First and second releasible clamps are provided. Each clamp assembly is positioned about the bladder for securing the bladder to one of the seals for thereby establishing a fluid-tight chamber about the tube. 5 figs.

  1. Assembly and method for testing the integrity of stuffing tubes

    DOE Patents [OSTI]

    Morrison, Edward Francis

    1997-01-01

    A stuffing tube integrity checking assembly includes first and second annular seals, with each seal adapted to be positioned about a stuffing tube penetration component. An annular inflation bladder is provided, the bladder having a slot extending longitudinally therealong and including a separator for sealing the slot. A first valve is in fluid communication with the bladder for introducing pressurized fluid to the space defined by the bladder when mounted about the tube. First and second releasible clamps are provided. Each clamp assembly is positioned about the bladder for securing the bladder to one of the seals for thereby establishing a fluid-tight chamber about the tube.

  2. Aircraft Integration and Flight Testing of 4STAR

    SciTech Connect (OSTI)

    Flynn, CJ; Kassianov, E; Russell, P; Redemann, J; Dunagan, S; Holben, B

    2012-10-12

    Under funding from the U.S. Dept. of Energy, in conjunction with a funded NASA 2008 ROSES proposal, with internal support from Battelle Pacific Northwest Division (PNWD), and in collaboration with NASA Ames Research Center, we successfully integrated the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR-Air) instrument for flight operation aboard Battelles G-1 aircraft and conducted a series of airborne and ground-based intensive measurement campaigns (hereafter referred to as intensives) for the purpose of maturing the initial 4STAR-Ground prototype to a flight-ready science-ready configuration.

  3. Corrective Action Plan for Corrective Action Unit 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada

    SciTech Connect (OSTI)

    Bechtel Nevada

    1998-08-31

    This corrective action plan provides the closure implementation methods for the Area 3 Landfill Complex, Corrective Action Unit (CAU) 424, located at the Tonopah Test Range. The Area 3 Landfill Complex consists of 8 landfill sites, each designated as a separate corrective action site.

  4. Evaluation of Integrated High Temperature Component Testing Needs

    SciTech Connect (OSTI)

    Rafael Soto; David Duncan; Vincent Tonc

    2009-05-01

    This paper describes the requirements for a large-scale component test capability to support the development of advanced nuclear reactor technology and their adaptation to commercial applications that advance U.S. energy economy, reliability, and security and reduce carbon emissions.

  5. Pilot-scale treatability test plan for the 100-HR-3 operable unit

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This document presents the treatability test plan for pilot-scale pump-and-treat testing at the 100-HR-3 Operable Unit. The test will be conducted in fulfillment of interim Milestone M-15-06E to begin pilot-scale pump-and-treat operations by August 1994. The scope of the test was determined based on the results of lab/bench-scale tests (WHC 1993a) conducted in fulfillment of Milestone M-15-06B. These milestones were established per agreement between the U.S. Department of Energy (DOE), the Washington State Department of Ecology and the U.S. Environmental Protection Agency (EPA), and documented on Hanford Federal of Ecology Facility Agreement and Consent Order Change Control Form M-15-93-02. This test plan discusses a pilot-scale pump-and-treat test for the chromium plume associated with the D Reactor portion of the 100-HR-3 Operable Unit. Data will be collected during the pilot test to assess the effectiveness, operating parameters, and resource needs of the ion exchange (IX) pump-and-treat system. The test will provide information to assess the ability to remove contaminants by extracting groundwater from wells and treating extracted groundwater using IX. Bench-scale tests were conducted previously in which chromium VI was identified as the primary contaminant of concern in the 100-D reactor plume. The DOWEX 21K{trademark} resin was recommended for pilot-scale testing of an IX pump-and-treat system. The bench-scale test demonstrated that the system could remove chromium VI from groundwater to concentrations less than 50 ppb. The test also identified process parameters to monitor during pilot-scale testing. Water will be re-injected into the plume using wells outside the zone of influence and upgradient of the extraction well.

  6. Field calculations, single-particle tracking, and beam dynamics with space charge in the electron lens for the Fermilab Integrable Optics Test Accelerator

    SciTech Connect (OSTI)

    Noll, Daniel; Stancari, Giulio

    2015-11-17

    An electron lens is planned for the Fermilab Integrable Optics Test Accelerator as a nonlinear element for integrable dynamics, as an electron cooler, and as an electron trap to study space-charge compensation in rings. We present the main design principles and constraints for nonlinear integrable optics. A magnetic configuration of the solenoids and of the toroidal section is laid out. Singleparticle tracking is used to optimize the electron path. Electron beam dynamics at high intensity is calculated with a particle-in-cell code to estimate current limits, profile distortions, and the effects on the circulating beam. In the conclusions, we summarize the main findings and list directions for further work.

  7. Integration of health into urban spatial planning through impact assessment: Identifying governance and policy barriers and facilitators

    SciTech Connect (OSTI)

    Carmichael, Laurence; Barton, Hugh; Gray, Selena; Lease, Helen; Pilkington, Paul

    2012-01-15

    This article presents the results of a review of literature examining the barriers and facilitators in integrating health in spatial planning at the local, mainly urban level, through appraisals. Our literature review covered the UK and non UK experiences of appraisals used to consider health issues in the planning process. We were able to identify four main categories of obstacles and facilitators including first the different knowledge and conceptual understanding of health by different actors/stakeholders, second the types of governance arrangements, in particular partnerships, in place and the political context, third the way institutions work, the responsibilities they have and their capacity and resources and fourth the timeliness, comprehensiveness and inclusiveness of the appraisal process. The findings allowed us to draw some lessons on the governance and policy framework regarding the integration of health impact into spatial planning, in particular considering the pros and cons of integrating health impact assessment (HIA) into other forms of impact assessment of spatial planning decisions such as environmental impact assessment (EIA) and strategic environment assessment (SEA). In addition, the research uncovered a gap in the literature that tends to focus on the mainly voluntary HIA to assess health outcomes of planning decisions and neglect the analysis of regulatory mechanisms such as EIA and SEA. - Highlights: Black-Right-Pointing-Pointer Governance and policy barriers and facilitators to the integration of health into urban planning. Black-Right-Pointing-Pointer Review of literature on impact assessment methods used across the world. Black-Right-Pointing-Pointer Knowledge, partnerships, management/resources and processes can impede integration. Black-Right-Pointing-Pointer HIA evaluations prevail uncovering research opportunities for evaluating other techniques.

  8. Brine migration test for Asse Mine, Federal Republic of Germany: final test plan

    SciTech Connect (OSTI)

    Not Available

    1983-07-01

    The United States and the Federal Republic of Germany (FRG) will conduct a brine migration test in the Asse Salt Mine in the FRG as part of the US/FRG Cooperative Radioactive Waste Management Agreement. Two sets of two tests each will be conducted to study both liquid inclusion migration and vapor migration in the two salt types chosen for the experiments: (1) pure salt, for its characteristics similar to the salt that might occur in potential US repositories, and (2) transitional salt, for its similarity to the salt that might occur in potential repositories in Germany.

  9. CoalFleet RD&D augmentation plan for integrated gasification combined cycle (IGCC) power plants

    SciTech Connect (OSTI)

    2007-01-15

    To help accelerate the development, demonstration, and market introduction of integrated gasification combined cycle (IGCC) and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiative, which facilitates collaborative research by more than 50 organizations from around the world representing power generators, equipment suppliers and engineering design and construction firms, the U.S. Department of Energy, and others. This group advised EPRI as it evaluated more than 120 coal-gasification-related research projects worldwide to identify gaps or critical-path activities where additional resources and expertise could hasten the market introduction of IGCC advances. The resulting 'IGCC RD&D Augmentation Plan' describes such opportunities and how they could be addressed, for both IGCC plants to be built in the near term (by 2012-15) and over the longer term (2015-25), when demand for new electric generating capacity is expected to soar. For the near term, EPRI recommends 19 projects that could reduce the levelized cost-of-electricity for IGCC to the level of today's conventional pulverized-coal power plants with supercritical steam conditions and state-of-the-art environmental controls. For the long term, EPRI's recommended projects could reduce the levelized cost of an IGCC plant capturing 90% of the CO{sub 2} produced from the carbon in coal (for safe storage away from the atmosphere) to the level of today's IGCC plants without CO{sub 2} capture. EPRI's CoalFleet for Tomorrow program is also preparing a companion RD&D augmentation plan for advanced-combustion-based (i.e., non-gasification) clean coal technologies (Report 1013221). 7 refs., 30 figs., 29 tabs., 4 apps.

  10. Wave Tank Testing and Model Validation … An Integrated Approach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tank Testing and Model Validation - Lessons Learned Mirko Previsic 7-7-12 2 Representing the Full-Scale System P, V qv q T u q Generator Guide vanes Turbine Blades Configuration 3 Appropriate Modeling of Physics Run-time is important to make a model useful as an engineering and/or optimization tool. * Have to be selective about how the physics is represented in the model * Different physical phenomena are important to different WEC devices Subscale modeling allows to help us understand and

  11. Test plan: Laboratory-scale testing of the first core sample from Tank 102-AZ

    SciTech Connect (OSTI)

    Morrey, E.V.

    1996-03-01

    The overall objectives of the Radioactive Process/Product Laboratory Testing (RPPLT), WBS 1.2.2.05.05, are to confirm that simulated HWVP feed and glass are representative of actual radioactive HWVP feed and glass and to provide radioactive leaching and glass composition data to WFQ. This study will provide data from one additional NCAW core sample (102-AZ Core 1) for these purposes.

  12. Enterprise Assessments Review of the Savannah River Site Salt Waste Processing Facility Construction Quality and Startup Test Plans – June 2015

    Broader source: Energy.gov [DOE]

    Review of the Savannah River Site Salt Waste Processing Facility Construction Quality and Startup Test Plans

  13. Mathematical model of testing of pipeline integrity by thermal fields

    SciTech Connect (OSTI)

    Vaganova, Nataliia

    2014-11-18

    Thermal fields testing at the ground surface above a pipeline are considered. One method to obtain and investigate an ideal thermal field in different environments is a direct numerical simulation of heat transfer processes taking into account the most important physical factors. In the paper a mathematical model of heat propagation from an underground source is described with accounting of physical factors such as filtration of water in soil and solar radiation. Thermal processes are considered in 3D origin where the heat source is a pipeline with constant temperature and non-uniform isolated shell (with 'damages'). This problem leads to solution of heat diffusivity equation with nonlinear boundary conditions. Approaches to analysis of thermal fields are considered to detect damages.

  14. Develop Standard Method of Test for Integrated Heat Pump - 2013 Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Develop Standard Method of Test for Integrated Heat Pump - 2013 Peer Review Develop Standard Method of Test for Integrated Heat Pump - 2013 Peer Review Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review PDF icon emrgtech06_reedy_040213.pdf More Documents & Publications Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review Multi-Function Fuel-Fired Heat Pump - 2013 Peer Review Buildings Performance

  15. Design of Integrated Laboratory and Heavy-Duty Emissions Testing Center |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy of Integrated Laboratory and Heavy-Duty Emissions Testing Center Design of Integrated Laboratory and Heavy-Duty Emissions Testing Center Both simulated and actual diesel emissions were able to be measured and analyzed using a bench-top adiabatic reactor. PDF icon deer08_muncrief.pdf More Documents & Publications Bench-Top Engine System for Fast Screening of Alternative Fuels and Fuel Additives University of Houston and City of Houston: Collaboration to Determine Best

  16. The Gemini Planet Imager: Integration and Test (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect The Gemini Planet Imager: Integration and Test Citation Details In-Document Search Title: The Gemini Planet Imager: Integration and Test Authors: Macintosh, B A Publication Date: 2012-08-27 OSTI Identifier: 1055835 Report Number(s): LLNL-CONF-577732 DOE Contract Number: W-7405-ENG-48 Resource Type: Conference Resource Relation: Conference: Presented at: SPIE Astronomical Instrumentation 2012, Amsterdam, Netherlands, Jul 01 - Jul 07, 2012 Research Org: Lawrence Livermore National

  17. AFCI Fuel Irradiation Test Plan, Test Specimens AFC-1 and AFC-1F

    SciTech Connect (OSTI)

    D. C. Crawford; S. L. Hayes; B. A. Hilton; M. K. Meyer; R. G. Ambrosek; G. S. Chang; D. J. Utterbeck

    2003-11-01

    The U. S. Advanced Fuel Cycle Initiative (AFCI) seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products, thereby dramatically decreasing the volume of material requiring disposition and the long-term radiotoxicity and heat load of high-level waste sent to a geologic repository (DOE, 2003). One important component of the technology development is actinide-bearing transmutation fuel forms containing plutonium, neptunium, americium (and possibly curium) isotopes. There are little irradiation performance data available on non-fertile fuel forms, which would maximize the destruction rate of plutonium, and low-fertile (i.e., uranium-bearing) fuel forms, which would support a sustainable nuclear energy option. Initial scoping level irradiation tests on a variety of candidate fuel forms are needed to establish a transmutation fuel form design and evaluate deployment of transmutation fuels.

  18. Fully Automated Simultaneous Integrated Boosted-Intensity Modulated Radiation Therapy Treatment Planning Is Feasible for Head-and-Neck Cancer: A Prospective Clinical Study

    SciTech Connect (OSTI)

    Wu Binbin; McNutt, Todd; Zahurak, Marianna; Simari, Patricio; Pang, Dalong; Taylor, Russell; Sanguineti, Giuseppe

    2012-12-01

    Purpose: To prospectively determine whether overlap volume histogram (OVH)-driven, automated simultaneous integrated boosted (SIB)-intensity-modulated radiation therapy (IMRT) treatment planning for head-and-neck cancer can be implemented in clinics. Methods and Materials: A prospective study was designed to compare fully automated plans (APs) created by an OVH-driven, automated planning application with clinical plans (CPs) created by dosimetrists in a 3-dose-level (70 Gy, 63 Gy, and 58.1 Gy), head-and-neck SIB-IMRT planning. Because primary organ sparing (cord, brain, brainstem, mandible, and optic nerve/chiasm) always received the highest priority in clinical planning, the study aimed to show the noninferiority of APs with respect to PTV coverage and secondary organ sparing (parotid, brachial plexus, esophagus, larynx, inner ear, and oral mucosa). The sample size was determined a priori by a superiority hypothesis test that had 85% power to detect a 4% dose decrease in secondary organ sparing with a 2-sided alpha level of 0.05. A generalized estimating equation (GEE) regression model was used for statistical comparison. Results: Forty consecutive patients were accrued from July to December 2010. GEE analysis indicated that in APs, overall average dose to the secondary organs was reduced by 1.16 (95% CI = 0.09-2.33) with P=.04, overall average PTV coverage was increased by 0.26% (95% CI = 0.06-0.47) with P=.02 and overall average dose to the primary organs was reduced by 1.14 Gy (95% CI = 0.45-1.8) with P=.004. A physician determined that all APs could be delivered to patients, and APs were clinically superior in 27 of 40 cases. Conclusions: The application can be implemented in clinics as a fast, reliable, and consistent way of generating plans that need only minor adjustments to meet specific clinical needs.

  19. ORNL/TM-2012/301 Experimental Test Plan - DOE Tidal And River Reference Turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2/301 Experimental Test Plan - DOE Tidal And River Reference Turbines August 2012 Prepared by Vincent S. Neary Craig Hill Leonardo P. Chamorro Budi Gunawan Fotis Sotiropoulos DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source. National Technical

  20. Microsoft Word - AGA12 TestPlan 2-6-07.doc

    Office of Environmental Management (EM)

    AGA 12, Part 2 Performance Test Plan U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Enhancing control systems security in the energy sector NSTB Mark Hadley, Kristy Huston Pacific Northwest National Laboratories November 2006 Acknowledgements The authors wish to thank Bill Rush and Aakash Shah of the Gas Technology Institute as well as the members of the NERC Control Systems Security Working Group and Sandia National Laboratory for their contributions towards the

  1. Radioactive waste isolation in salt: Peer review of the Golder Associates draft test plan for in situ testing in an exploratory shaft in salt

    SciTech Connect (OSTI)

    Hambley, D.F.; Mraz, D.Z.; Unterberter, R.R.; Stormont, J.C.; Neuman, S.P.; Russell, J.E.; Jacoby, C.H.; Hull, A.B.; Brady, B.H.G.; Ditmars, J.D.

    1987-01-01

    This report documents the peer review conducted by Argonne National Laboratory of a document entitled ''Draft Test Plan for In Situ Testing in an Exploratory Shaft in Salt,'' prepared for Battelle Memorial Institute's Office of Nuclear Waste Isolation by Golder Associates, Inc. In general, the peer review panelists found the test plan to be technically sound, although some deficiencies were identified. Recommendations for improving the test plan are presented in this review report. A microfiche copy of the following unpublished report is attached to the inside back cover of this report: ''Draft Test Plan for In Situ Testing in an Exploratory Shaft in Salt,'' prepared by Golder Associates, Inc., for Office of Nuclear Waste Isolation, Battelle Memorial Institute, Columbus, Ohio (March 1985).

  2. Corrective action investigation plan for CAU Number 453: Area 9 Landfill, Tonopah Test Range

    SciTech Connect (OSTI)

    1997-05-14

    This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and criteria for conducting site investigation activities at the Area 9 Landfill, Corrective Action Unit (CAU) 453/Corrective Action (CAS) 09-55-001-0952, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, Nevada. The Area 9 Landfill is located northwest of Area 9 on the TTR. The landfill cells associated with CAU 453 were excavated to receive waste generated from the daily operations conducted at Area 9 and from range cleanup which occurred after test activities.

  3. New York City Energy-Water Integrated Planning: A Pilot Study

    SciTech Connect (OSTI)

    Bhatt,V.; Crosson, K. M.; Horak, W.; Reisman, A.

    2008-12-16

    The New York City Energy-Water Integrated Planning Pilot Study is one of several projects funded by Sandia National Laboratories under the U.S. Department of Energy Energy-Water Nexus Program. These projects are intended to clarify some key issues and research needs identified during the Energy-Water Nexus Roadmapping activities. The objectives of the New York City Pilot Project are twofold: to identify energy-water nexus issues in an established urban area in conjunction with a group of key stakeholders and to define and apply an integrated energy and water decision support tool, as proof-of-concept, to one or more of these issues. During the course of this study, the Brookhaven National Laboratory project team worked very closely with members of a Pilot Project Steering Committee. The Steering Committee members brought a breadth of experience across the energy, water and climate disciplines, and all are well versed in the particular issues faced by an urban environment, and by New York City in particular. The first task was to identify energy-water issues of importance to New York City. This exercise was followed by discussion of the qualities and capabilities that an ideal decision support tool should display to address these issues. The decision was made to start with an existing energy model, the New York City version of the MARKAL model, developed originally at BNL and now used globally by many groups for energy analysis. MARKAL has the virtue of being well-vetted, transparent, and capable of calculating 'material' flows, such as water use by the energy system and energy requirements of water technology. The Steering Committee members defined five scenarios of interest, representing a broad spectrum of New York City energy-water issues. Brookhaven National Laboratory researchers developed a model framework (Water-MARKAL) at the desired level of detail to address the scenarios, and then attempted to gather the New York City-specific information required to analyze the scenarios using Water-MARKAL. This report describes the successes and challenges of defining and demonstrating the decision tool, Water-MARKAL. The issues that the stakeholders perceive for New York City are listed and the difficulties in gathering required information for Water-MARKAL to analyze these issues at the desired level of detail are described.

  4. Issues and methods in incorporating environmental externalities into the integrated resource planning process

    SciTech Connect (OSTI)

    Fang, J.M.; Galen, P.S.

    1994-11-01

    This report is a review of current practices and policies in considering environmental externalities in the integrated resource planning and performance based regulation (IRP/PBR) process. The following issues are presented and examined: What are the pros and cons of treating environmental externalities in the IRP process? How are potential future environmental regulations being treated? Are externalities being qualitatively or quantitatively considered, or monetized? Are offsets being allowed? How are externality policies being coordinated among different levels and branches of governments? Should environmental externalities be considered in dispatching a utility`s existing resources? What are the procedures for addressing uncertainty in incorporating environmental externalities into IRP? How are externalities valued? What are other approaches to addressing environmental externalities. This report describes seven major approaches for addressing environmental externalities in the IRP process: qualitative treatment, weighting and ranking, cost of control, damage function, percentage adders, monetization by emission, and multiattribute trade-off analysis. The discussion includes a taxonomy of the full range of alternative methods for addressing environmental externalities, a summary of state PUC actions, the role of state laws, the debate on environmental adders, and the choice of methodologies. In addition, this report characterizes the interests of stakeholders such as the electric industry, fuel suppliers, energy consumers, governmental agencies, public interest groups, consultants, and others. It appears that the views, positions, and interests of these stakeholders are affected by their perceptions of the potential impacts on their economic interests or the viability of their position on environmental policy, by the societal perspective they take, and by the orientation of the analysts toward market competition and their respective accumulated expertise.

  5. Resource Conservation and Recovery Act Industrial Sites quality assurance project plan: Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This quality assurance project plan (QAPjP) describes the measures that shall be taken to ensure that the environmental data collected during characterization and closure activities of Resource Conservation and Recovery Act (RCRA) Industrial Sites at the Nevada Test Site (NTS) are meaningful, valid, defensible, and can be used to achieve project objectives. These activities are conducted by the US Department of Energy Nevada Operations Office (DOE/NV) under the Nevada Environmental Restoration (ER) Project. The Nevada ER Project consists of environmental restoration activities on the NTS, Tonopah Test Range, Nellis Air Force Range, and eight sites in five other states. The RCRA Industrial Sites subproject constitutes a component of the Nevada ER Project. Currently, this QAPjP is limited to the seven RCRA Industrial Sites identified within this document that are to be closed under an interim status and pertains to all field-investigation, analytical-laboratory, and data-review activities in support of these closures. The information presented here supplements the RCRA Industrial Sites Project Management Plan and is to be used in conjunction with the site-specific subproject sampling and analysis plans.

  6. Coal-fired MHD test progress at the component development and integration facility

    SciTech Connect (OSTI)

    Hart, A.T.; Lofftus, D.

    1994-12-31

    The Component and Development and Integration Facility (CDIF) is a Department of Energy test facility operated by MSE, Inc. MSE personnel were responsible for the integration of topping cycle components for the national coal-fired magnetohydrodynamics development program. Initial facility checkout and baseline data generation testing at the CDIF used a 50-megawatt (MW{sub t}), oil-fired combustor (with ash injection to simulate coal slag carryover) coupled to the 1A{sub 1} supersonic channel. In the fall of 1984, a 50-MW{sub t}, pressurized, slag rejecting coal-fired combustor replaced the oil-fired combustor in the test train. In the spring of 1989, a coal-fired precombustor was added to the workhorse test hardware. In the spring of 1992, workhorse hardware was replaced with the prototypic coal-fired test train. Testing during the last year emphasized prototypic hardware testing targeted at longer duration testing, some intermediate checkout testing, and more reliable operation. These phases of testing and the associated facility modifications are discussed. Progress of the proof-of-concept testing, through the time of testing shutdown, is addressed.

  7. Using Integrated Resource Planning to Encourage Investment in Cost-Effective Energy Efficiency

    SciTech Connect (OSTI)

    Shenot, John

    2011-09-01

    Describes how utility planning processes that allow demand-side resources to compete with supply-side resources can promote cost-effective energy efficiency.

  8. Test Plan to Evaluate the Relationship Among IAQ, Comfort, Moisture, and Ventilation in Humid Climates

    SciTech Connect (OSTI)

    Widder, Sarah H.; Martin, Eric

    2013-03-15

    This experimental plan describes research being conducted by Pacific Northwest National Laboratory (PNNL), in coordinatation with Florida Solar Energy Center (FSEC), Florida HERO, and Lawrence Berkeley National Laboratory (LBNL) to evaluate the impact of ventilation rate on interior moisture levels, temperature distributions, and indoor air contaminant concentrations. Specifically, the research team will measure concentrations of indoor air contaminants, ventilation system flow rates, energy consumption, and temperature and relative humidity in ten homes in Gainesville, FL to characterize indoor pollutant levels and energy consumption associated with the observed ventilation rates. PNNL and FSEC have collaboratively prepared this experimental test plan, which describes background and context for the proposed study; the experimental design; specific monitoring points, including monitoring equipment, and sampling frequency; key research questions and the associated data analysis approach; experimental logistics, including schedule, milestones, and team member contact information; and clearly identifies the roles and responsibilities of each team in support of project objectives.

  9. Status and Plans for an SRF Accelerator Test Facility at Fermilab

    SciTech Connect (OSTI)

    Church, M.; Leibfritz, J.; Nagaitsev, S.; /Fermilab

    2011-07-29

    A superconducting RF accelerator test facility is currently under construction at Fermilab. The accelerator will consist of an electron gun, 40 MeV injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, and multiple downstream beam lines for testing diagnostics and performing beam experiments. With 3 cryomodules installed this facility will initially be capable of generating an 810 MeV electron beam with ILC beam intensity. The facility can accommodate up to 6 cryomodules for a total beam energy of 1.5 GeV. This facility will be used to test SRF cryomodules under high intensity beam conditions, RF power equipment, instrumentation, and LLRF and controls systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

  10. Quality Assurance Program Plan for TRUPACT-II Gas Generation Test Program

    SciTech Connect (OSTI)

    Carlsbad Field Office

    2002-03-01

    The Gas Generation Test Program (GGTP), referred to as the Program, is designed to establish the concentration of flammable gases and/or gas generation rates in a test category waste container intended for shipment in the Transuranic Package Transporter-II (TRUPACT-II). The phrase "gas generationtesting" shall refer to any activity that establishes the flammable gas concentration or the flammable gas generation rate. This includes, but is not limited to, measurements performed directly on waste containers or during tests performed on waste containers. This Quality Assurance Program Plan (QAPP) documents the quality assurance (QA) and quality control (QC) requirements that apply to the Program. The TRUPACT-II requirements and technical bases for allowable flammable gas concentration and gas generation rates are described in the TRUPACT-II Authorized Methods for Payload Control (TRAMPAC).

  11. Integrated dry NO{sub x}/SO{sub 2} emissions control system: integrated system test report

    SciTech Connect (OSTI)

    Smith, R.A.; Muzio, L.J.; Hunt, T.

    1997-04-01

    The DOE sponsored Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System Program, is a Clean Coal Technology III demonstration, being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, a 100 MWe, down-fired utility boiler burning a low-sulfur Western coal. The project goal is to demonstrate up to 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low NO{sub x} burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) Dry Sorbent Injection (DSI) and duct humidification for SO{sub 2} removal. This report documents the final phase of the test program, in which the overall performance of the integrated system was evaluated. Previous testing has shown that the goal of 70 percent NO{sub x} removal was easily achieved with the combination of low-NO{sub x} burners, overfire air, and urea-based SNCR. Similarly, the ability of the sodium-based DSI system to achieve 70 percent SO{sub 2} removal was also demonstrated previously. The integrated tests demonstrated the synergistic benefit of operating the SNCR and sodium-based DSI systems concurrently. With the automatic control system set to limit the NH{sub 3} emissions to less than 8 ppm, the NO{sub 2} emissions from the sodium-based DSI system were reduced by nominally 50 percent compared to operation with the DSI system alone. Comparably, the combined operation reduced NH{sub 3} emissions, as reflected by a higher urea injection rate for a fixed NH{sub 3} emission limit. With combined DSI and SNCR operation, an ammonia odor problem was encountered around the Unit 4 ash silo (this did not occur with the SNCR system operated alone at comparable NH{sub 3} slip levels). This odor problem is attributed to the sodium changing the rate at which NH{sub 3} is released from the ash when it is wetted for truck transport to the disposal site.

  12. Chemical Reactivity Testing for the National Spent Nuclear Fuel Program. Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Newsom, H.C.

    1999-01-24

    This quality assurance project plan (QAPjP) summarizes requirements used by Lockheed Martin Energy Systems, Incorporated (LMES) Development Division at Y-12 for conducting chemical reactivity testing of Department of Energy (DOE) owned spent nuclear fuel, sponsored by the National Spent Nuclear Fuel Program (NSNFP). The requirements are based on the NSNFP Statement of Work PRO-007 (Statement of Work for Laboratory Determination of Uranium Hydride Oxidation Reaction Kinetics.) This QAPjP will utilize the quality assurance program at Y-12, QA-101PD, revision 1, and existing implementing procedures for the most part in meeting the NSNFP Statement of Work PRO-007 requirements, exceptions will be noted.

  13. DOE-STD-3026-99; DOE Standard Filter Test Facility Quality Program Plan

    Office of Environmental Management (EM)

    6-99 February 1999 Superseding DOE NE F 3-44 July 1986 DOE STANDARD FILTER TEST FACILITY QUALITY PROGRAM PLAN U.S. Department of Energy FSC 4460 Washington, D.C. 20585 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S.

  14. DNFSB Recommendation 94-1 Hanford Site Integrated Stabilization Management Plan. Volume 1

    SciTech Connect (OSTI)

    McCormack, R.L.

    1995-08-01

    This document describes the plans of the Hanford Site for the safe interim storage of fissile materials. Currently, spent nuclear fuels reside in storage basins that have leaked in the past and are projected to leak in the future. Other problems in the basins include; sludge from decomposition, degraded cladding of fuel elements, and construction defects which make the basins seismically unsafe. This management plan describes the time and cost that it will take to implement a safe interim storage plan for the fissile materials.

  15. Testing and monitoring plan for the permanent isolation surface barrier prototype

    SciTech Connect (OSTI)

    Gee, G.W.; Cadwell, L.L.; Freeman, H.D.; Ligotke, M.W.; Link, S.O.; Romine, R.A.; Walters, W.H. Jr.

    1993-06-01

    This document is a testing and monitoring plan for a prototype barrier to be constructed at the Hanford Site in 1993. The prototype barrier is an aboveground structure engineered to demonstrate the basic features of an earthen cover system, designed to permanently isolate waste from the biosphere. These features include multiple layers of soil and rock materials and a low-permeability asphalt sublayer. The surface of the barrier consists of silt loam soil, vegetated with plants. The barrier sides are reinforced with rock or coarse earthen-fill to protect against wind and water erosion. The sublayers inhibit plant and animal intrusion and percolation of water. A series of tests will be conducted on the prototype over the next several years to evaluate barrier performance under extreme climatic conditions.

  16. HWMA/RCRA CLOSURE PLAN FOR THE MATERIALS TEST REACTOR WING (TRA-604) LABORATORY COMPONENTS VOLUNTARY CONSENT ORDER ACTION PLAN VCO-5.8 D REVISION2

    SciTech Connect (OSTI)

    KIRK WINTERHOLLER

    2008-02-25

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the laboratory components of the Test Reactor Area Catch Tank System (TRA-630) that are located in the Materials Test Reactor Wing (TRA-604) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan VCO-5.8.d. The TRA-604 laboratory components addressed in this closure plan were deferred from the TRA-630 Catch Tank System closure plan due to ongoing laboratory operations in the areas requiring closure actions. The TRA-604 laboratory components include the TRA-604 laboratory warm wastewater drain piping, undersink drains, subheaders, and the east TRA-604 laboratory drain header. Potentially contaminated surfaces located beneath the TRA-604 laboratory warm wastewater drain piping and beneath the island sinks located in Laboratories 126 and 128 (located in TRA-661) are also addressed in this closure plan. The TRA-604 laboratory components will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, Subparts G and J. This closure plan presents the closure performance standards and the methods for achieving those standards.

  17. Test results of a 90 MHZ integrated circuit sixteen channel analog pipeline for SSC detector calorimetry

    SciTech Connect (OSTI)

    Kleinfelder, S.A.; Levi, M.; Milgrome, O.

    1990-10-01

    A sixteen channel analog transient recorder with 128 cells per channel has been fabricated as an integrated circuit and tested at speeds of up to 90 MHz. The circuit uses a switched capacitor array technology to achieve a simultaneous read and write capability and twelve bit dynamic range. The high performance of this part should satisfy the demanding electronics requirements of calorimeter detectors at the SSC. The circuit parameters and test results are presented. 2 refs., 3 figs., 1 tab.

  18. Microgrid Testing (Brochure), Energy Systems Integration (ESI), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MICROGRID TESTING ENERGY SYSTEMS INTEGRATION ESI optimizes the design and performance of electrical, thermal, fuel, and water pathways at all scales. MICROGRID TESTING Think small Cities, utilities, businesses, universities, and the U.S. military are turning to microgrids for supplemental and backup power. It isn't hard to see why. Microgrids offer the flexibility, quick response and control, and security that the larger grid can't. They also respond to customers' desire for more local control

  19. Supplemental Investigation Plan for FFACO Use Restrictions, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Lynn Kidman

    2008-02-01

    This document is part of an effort to re-evaluate all FFACO URs against the current RBCA criteria (referred to in this document as the Industrial Sites [IS] RBCA process) as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006a). After reviewing all of the existing FFACO URs, the 12 URs addressed in this Supplemental Investigation Plan (SIP) could not be evaluated against the current RBCA criteria as sufficient information about the contamination at each site was not available. This document presents the plan for conducting field investigations to obtain the needed information. This SIP includes URs from Corrective Action Units (CAUs) 326, 339, 358, 452, 454, 464, and 1010, located in Areas 2, 6, 12, 19, 25, and 29 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada; and CAU 403, located in Area 3 of the Tonopah Test Range, which is approximately 165 miles north of Las Vegas, Nevada.

  20. Integrating impact assessment and conflict management in urban planning: Experiences from Finland

    SciTech Connect (OSTI)

    Peltonen, Lasse; Sairinen, Rauno

    2010-09-15

    The article examines the interlinkages between recent developments in conflict management and impact assessment procedures in the context of urban planning in Finland. It sets out by introducing the fields of impact assessment and conflict mediation. It then proceeds to discuss the development of impact assessment practices and the status of conflict mediation in Finnish land use planning. The case of Korteniitty infill development plan in Jyvaeskylae is used to demonstrate how the Finnish planning system operates in conflict situations - and how social impact assessment can contribute to managing planning conflicts. The authors ask how the processes of impact assessment contribute to conflict management. Based on the Finnish experience, it is argued that social impact assessment of land use plans can contribute to conflict management, especially in the absence of institutionalised conflict mediation processes. In addition, SIA may acquire features of conflict mediation, depending on extent and intensity of stakeholder participation in the process, and the quality of linkages it between knowledge production and decision-making. Simultaneously, conflict mediation practices and theoretical insights can inform the application of SIA to help it address land use conflicts more consciously.

  1. Status of the direct absorption receiver panel research experiment: Salt flow and solar test requirements and plans

    SciTech Connect (OSTI)

    Tyner, C.E.

    1989-03-01

    The Panel Research Experiment (PRE) is the first large-scale solar test of the molten nitrate salt direct absorption receiver (DAR) concept. The purpose of the PRE is to demonstrate the engineering feasibility and practicality of the DAR. We will conduct the test at the Central Receiver Test Facility in Albuquerque in two phases: salt flow testing and solar testing. This is a working document to define PRE test objectives and requirements, document the test hardware design, and define test plans. 13 refs., 12 figs., 1 tab.

  2. NREL Vehicle Testing and Integration Facility (VTIF): Rotating Shadowband Radiometer (RSR); Golden, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lustbader, J.; Andreas, A.

    This measurement station at NREL's Vehicle Testing and Integration Facility (VTIF) monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment.

  3. NREL Vehicle Testing and Integration Facility (VTIF): Rotating Shadowband Radiometer (RSR); Golden, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lustbader, J.; Andreas, A.

    2012-04-01

    This measurement station at NREL's Vehicle Testing and Integration Facility (VTIF) monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment.

  4. Coal-fired MHD test progress at the Component Development and Integration Facility

    SciTech Connect (OSTI)

    Hart, A.T.; Filius, K.D.; Micheletti, D.A.; Cashell, P.V.

    1993-12-31

    The Component Development and Integration Facility (CDIF) is a Department of Energy test facility operated by MSE, Inc. MSE personnel are responsible for integrated testing of topping cycle components for the national coal-fired magnetohydrodynamics (MHD) development program. Initial facility checkout and baseline data generation testing at the CDIF used a 50-MW{sub t}, oil-fired combustor (with ash injection to simulate coal slag carryover) coupled to the 1A{sub 1} supersonic workhorse channel. In the fall of 1984, a 50-MW{sub t}, pressurized, slag rejecting coal-fired workhorse combustor replaced the oil-fired combustor in the test train. In the spring of 1989, a coal-fired precombustor was added to the test hardware, and current controls were installed in the spring of 1990. In the fall of 1990, the slag rejector was installed. In the spring of 1992, a 50-MW{sub t} pressurized, slag rejecting coal-fired prototypical combustor replaced the workhorse combustor in the test train. A 1A{sub 4} supersonic prototypical channel replaced the 1A{sub 1} workhorse channel in the fall of 1993. This prototypical hardware is slated to be used for the proof-of-concept (POC) testing. Improved facility systems targeting longer duration testing and more reliable operation will be discussed, including the air emissions control and monitoring hardware, oxygen and nitrogen expansion, coal and seed system upgrades, A-Bay modifications, and new solid suspension injection equipment.

  5. Test and evaluation plan for Project W-314 tank farm restoration and safe operations

    SciTech Connect (OSTI)

    Hays, W.H.

    1998-06-25

    The ``Tank Farm Restoration and Safe Operations`` (TFRSO), Project W-314 will restore and/or upgrade existing Hanford Tank Farm facilities and systems to ensure that the Tank Farm infrastructure will be able to support near term TWRS Privatization`s waste feed delivery and disposal system and continue safe management of tank waste. The capital improvements provided by this project will increase the margin of safety for Tank Farms operations, and will aid in aligning affected Tank Farm systems with compliance requirements from applicable state, Federal, and local regulations. Secondary benefits will be realized subsequent to project completion in the form of reduced equipment down-time, reduced health and safety risks to workers, reduced operating and maintenance costs, and minimization of radioactive and/or hazardous material releases to the environment. The original regulatory (e.g., Executive Orders, WACS, CFRS, permit requirements, required engineering standards, etc.) and institutional (e.g., DOE Orders, Hanford procedures, etc.) requirements for Project W-314 were extracted from the TWRS S/RIDs during the development of the Functions and Requirements (F and Rs). The entire family of requirements were then validated for TWRS and Project W-314. This information was contained in the RDD-100 database and used to establish the original CDR. The Project Hanford Management Contract (PHMC) team recognizes that safety, quality, and cost effectiveness in the Test and Evaluation (T and E) program is achieved through a planned systematic approach to T and E activities. It is to this end that the Test and Evaluation Plan (TEP) is created. The TEP for the TFRSO Project, was developed based on the guidance in HNF-IP-0842, and the Good Practice Guide GPG-FM-005, ``Test and Evaluation,`` which is derived from DOE Order 430.1, ``Life Cycle Asset Management.`` It describes the Test and Evaluation program for the TFRSO project starting with the definitive design phase and ending with operational testing and turn-over of the upgraded systems to Tank Farm Operations. The TEP will be updated as required to reflect the appropriate test acceptance and startup requirements to support design, construction, turnover and initial operations.

  6. SRNL report for the tank waste disposition integrated flowsheet: Corrosion testing

    SciTech Connect (OSTI)

    Wyrwas, R. B.

    2015-09-30

    A series of cyclic potentiodynamic polarization (CPP) tests were performed in support of the Tank Waste Disposition Integrated Flowsheet (TWDIF). The focus of the testing was to assess the effectiveness of the SRNL model for predicting the amount of nitrite inhibitor needed to prevent pitting induced by increasing halide concentrations. The testing conditions were selected to simulate the dilute process stream that is proposed to be returned to tank farms from treating the off-gas from the low activity waste melter in the Waste Treatment and Immobilization Plant.

  7. Underground Test Area Activity Quality Assurance Plan Nevada National Security Site, Nevada. Revision 1

    SciTech Connect (OSTI)

    Farnham, Irene; Krenzien, Susan

    2012-10-01

    This Quality Assurance Plan (QAP) provides the overall quality assurance (QA) requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) activities. The requirements in this QAP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). NNSA/NSO, or designee, must review this QAP every two years. Changes that do not affect the overall scope or requirements will not require an immediate QAP revision but will be incorporated into the next revision cycle after identification. Section 1.0 describes UGTA objectives, participant responsibilities, and administrative and management quality requirements (i.e., training, records, procurement). Section 1.0 also details data management and computer software requirements. Section 2.0 establishes the requirements to ensure newly collected data are valid, existing data uses are appropriate, and environmental-modeling methods are reliable. Section 3.0 provides feedback loops through assessments and reports to management. Section 4.0 provides the framework for corrective actions. Section 5.0 provides references for this document.

  8. Underground Test Area Activity Quality Assurance Plan Nevada National Security Site, Nevada. Revision 2

    SciTech Connect (OSTI)

    Krenzien, Susan; Farnham, Irene

    2015-06-01

    This Quality Assurance Plan (QAP) provides the overall quality assurance (QA) requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) activities. The requirements in this QAP are consistent with DOE Order 414.1D, Change 1, Quality Assurance (DOE, 2013a); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). If a participants requirement document differs from this QAP, the stricter requirement will take precedence. NNSA/NFO, or designee, must review this QAP every two years. Changes that do not affect the overall scope or requirements will not require an immediate QAP revision but will be incorporated into the next revision cycle after identification. Section 1.0 describes UGTA objectives, participant responsibilities, and administrative and management quality requirements (i.e., training, records, procurement). Section 1.0 also details data management and computer software requirements. Section 2.0 establishes the requirements to ensure newly collected data are valid, existing data uses are appropriate, and environmental-modeling methods are reliable. Section 3.0 provides feedback loops through assessments and reports to management. Section 4.0 provides the framework for corrective actions. Section 5.0 provides references for this document.

  9. Corrective action investigation plan for CAU No. 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada

    SciTech Connect (OSTI)

    1997-04-01

    This Correction Action Investigation Plan contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the Area 3 Landfill Complex, CAU No. 424, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, nevada. The CAU 424 is comprised of eight individual landfill sites that are located around and within the perimeter of the Area 3 Compound. Due to the unregulated disposal activities commonly associated with early landfill operations, an investigation will be conducted at each CAS to complete the following tasks: identify the presence and nature of possible contaminant migration from the landfills; determine the vertical and lateral extent of possible contaminant migration; ascertain the potential impact to human health and the environment; and provide sufficient information and data to develop and evaluate appropriate corrective action strategies for each CAS.

  10. Independent Verification and Validation Of SAPHIRE 8 System Test Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect (OSTI)

    Kent Norris

    2010-02-01

    The purpose of the Independent Verification and Validation (IV&V) role in the evaluation of the SAPHIRE System Test Plan is to assess the approach to be taken for intended testing activities associated with the SAPHIRE software product. The IV&V team began this endeavor after the software engineering and software development of SAPHIRE had already been in production.

  11. Scaling Analysis Techniques to Establish Experimental Infrastructure for Component, Subsystem, and Integrated System Testing

    SciTech Connect (OSTI)

    Sabharwall, Piyush; O'Brien, James E.; McKellar, Michael G.; Housley, Gregory K.; Bragg-Sitton, Shannon M.

    2015-03-01

    Hybrid energy system research has the potential to expand the application for nuclear reactor technology beyond electricity. The purpose of this research is to reduce both technical and economic risks associated with energy systems of the future. Nuclear hybrid energy systems (NHES) mitigate the variability of renewable energy sources, provide opportunities to produce revenue from different product streams, and avoid capital inefficiencies by matching electrical output to demand by using excess generation capacity for other purposes when it is available. An essential step in the commercialization and deployment of this advanced technology is scaled testing to demonstrate integrated dynamic performance of advanced systems and components when risks cannot be mitigated adequately by analysis or simulation. Further testing in a prototypical environment is needed for validation and higher confidence. This research supports the development of advanced nuclear reactor technology and NHES, and their adaptation to commercial industrial applications that will potentially advance U.S. energy security, economy, and reliability and further reduce carbon emissions. Experimental infrastructure development for testing and feasibility studies of coupled systems can similarly support other projects having similar developmental needs and can generate data required for validation of models in thermal energy storage and transport, energy, and conversion process development. Experiments performed in the Systems Integration Laboratory will acquire performance data, identify scalability issues, and quantify technology gaps and needs for various hybrid or other energy systems. This report discusses detailed scaling (component and integrated system) and heat transfer figures of merit that will establish the experimental infrastructure for component, subsystem, and integrated system testing to advance the technology readiness of components and systems to the level required for commercial application and demonstration under NHES.

  12. Integral Benchmark Data for Nuclear Data Testing Through the ICSBEP & IRPhEP

    SciTech Connect (OSTI)

    J. Blair Briggs; John D. Bess; Jim Gulliford; Ian Hill

    2013-10-01

    The status of the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and International Reactor Physics Experiment Evaluation Project (IRPhEP) was last discussed directly with the nuclear data community at ND2007. Since ND2007, integral benchmark data that are available for nuclear data testing have increased significantly. The status of the ICSBEP and the IRPhEP is discussed and selected benchmark configurations that have been added to the ICSBEP and IRPhEP Handbooks since ND2007 are highlighted.

  13. Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications S. Chakraborty, W. Kramer, B. Kroposki, G. Martin, P. McNutt, M. Kuss, T. Markel, and A. Hoke Technical Report NREL/TP-5500-51001 June 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado

  14. Reversible Bending Fatigue Test System for Investigating Vibration Integrity of Spent Nuclear Fuel during Transportation

    SciTech Connect (OSTI)

    Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L; Flanagan, Michelle

    2013-01-01

    Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading during road or rail shipment. Oak Ridge National Laboratory (ORNL) has been developing testing capabilities that can be used to improve the understanding of the impacts on SNF integrity due to vibration loading, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet the nuclear industry and U.S. Nuclear Regulatory Commission needs in the area of safety and security of spent nuclear fuel storage and transport operations. The ORNL developed test system can perform reversible-bending fatigue testing to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The testing apparatus is also designed to meet the challenges of hot-cell operation, including remote installation and detachment of the SNF test specimen, in-situ test specimen deformation measurement, and implementation of a driving system suitable for use in a hot cell. The system contains a U-frame set-up equipped with uniquely designed grip rigs, to protect SNF rod and to ensure valid test results, and use of 3 specially designed LVDTs to obtain the in-situ curvature measurement. A variety of surrogate test rods have been used to develop and calibrate the test system as well as in performing a series of systematic cyclic fatigue tests. The surrogate rods include stainless steel (SS) cladding, SS cladding with cast epoxy, and SS cladding with alumina pellets inserts simulating fuel pellets. Testing to date has shown that the interface bonding between the SS cladding and the alumina pellets has a significant impact on the bending response of the test rods as well as their fatigue strength. The failure behaviors observed from tested surrogate rods provides a fundamental understanding of the underlying failure mechanisms of the SNF surrogate rod under vibration which has not been achieved previously. The newly developed device is scheduled to be installed in the hot-cell in summer 2013 to test high burnup SNF.

  15. Continuing the Validation of CCIM Processability for Glass Ceramic HLLW Forms: Plan for Test AFY14CCIM-GC1

    SciTech Connect (OSTI)

    Vince Maio

    2014-04-01

    This test plan covers test AFY14CCIM-GC1which is the first of two scheduled FY-2014 test runs involving glass ceramic waste forms in the Idaho National Laboratorys Cold Crucible Induction Melter Pilot Plant. The test plan is based on the successes and challenges of previous tests performed in FY-2012 and FY-2013. The purpose of this test is to continue to collect data for validating the glass ceramic High Level Liquid Waste form processability advantages using Cold Crucible Induction Melter technology. The major objective of AFYCCIM-GC1 is to complete additional proposed crucible pouring and post tapping controlled cooling experiments not completed during previous tests due to crucible drain failure. This is necessary to qualify that no heat treatments in standard waste disposal canisters are necessary for the operational scale production of glass ceramic waste forms. Other objectives include the production and post-test analysis of surrogate waste forms made from separate pours into the same graphite mold canister, testing the robustness of an upgraded crucible bottom drain and drain heater assembly, testing the effectiveness of inductive melt initiation using a resistive starter ring with a square wave configuration, and observing the tapped molten flow behavior in pans with areas identical to standard High Level Waste disposal canisters. Testing conditions, the surrogate waste composition, key testing steps, testing parameters, and sampling and analysis requirements are defined.

  16. Corrective Action Plan for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada

    SciTech Connect (OSTI)

    K. Campbell

    2000-04-01

    This Corrective Action Plan provides methods for implementing the approved corrective action alternative as provided in the Corrective Action Decision Document for the Central Nevada Test Area (CNTA), Corrective Action Unit (CAU) 417 (DOE/NV, 1999). The CNTA is located in the Hot Creek Valley in Nye County, Nevada, approximately 137 kilometers (85 miles) northeast of Tonopah, Nevada. The CNTA consists of three separate land withdrawal areas commonly referred to as UC-1, UC-3, and UC-4, all of which are accessible to the public. CAU 417 consists of 34 Corrective Action Sites (CASs). Results of the investigation activities completed in 1998 are presented in Appendix D of the Corrective Action Decision Document (DOE/NV, 1999). According to the results, the only Constituent of Concern at the CNTA is total petroleum hydrocarbons (TPH). Of the 34 CASs, corrective action was proposed for 16 sites in 13 CASs. In fiscal year 1999, a Phase I Work Plan was prepared for the construction of a cover on the UC-4 Mud Pit C to gather information on cover constructibility and to perform site management activities. With Nevada Division of Environmental Protection concurrence, the Phase I field activities began in August 1999. A multi-layered cover using a Geosynthetic Clay Liner as an infiltration barrier was constructed over the UC-4 Mud Pit. Some TPH impacted material was relocated, concrete monuments were installed at nine sites, signs warning of site conditions were posted at seven sites, and subsidence markers were installed on the UC-4 Mud Pit C cover. Results from the field activities indicated that the UC-4 Mud Pit C cover design was constructable and could be used at the UC-1 Central Mud Pit (CMP). However, because of the size of the UC-1 CMP this design would be extremely costly. An alternative cover design, a vegetated cover, is proposed for the UC-1 CMP.

  17. An integrated computer modeling environment for regional land use, air quality, and transportation planning

    SciTech Connect (OSTI)

    Hanley, C.J.; Marshall, N.L.

    1997-04-01

    The Land Use, Air Quality, and Transportation Integrated Modeling Environment (LATIME) represents an integrated approach to computer modeling and simulation of land use allocation, travel demand, and mobile source emissions for the Albuquerque, New Mexico, area. This environment provides predictive capability combined with a graphical and geographical interface. The graphical interface shows the causal relationships between data and policy scenarios and supports alternative model formulations. Scenarios are launched from within a Geographic Information System (GIS), and data produced by each model component at each time step within a simulation is stored in the GIS. A menu-driven query system is utilized to review link-based results and regional and area-wide results. These results can also be compared across time or between alternative land use scenarios. Using this environment, policies can be developed and implemented based on comparative analysis, rather than on single-step future projections. 16 refs., 3 figs., 2 tabs.

  18. Task Plans

    Office of Environmental Management (EM)

    TEC Work Plan (begun 392) J. Holm 799 Updating, maintenance and revamping of the Work Plan is an integral part of the TEC process itself and is not by itself a substantive DOE...

  19. Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program

    SciTech Connect (OSTI)

    Connolly, M.J.; Sayer, D.L.

    1993-11-01

    EG&G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory`s (INEL`s) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), which identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG&G Idaho is responsible concerning the INEL WETP. Even though EG&G Idaho has no responsibility for the work that ANL-W is performing, EG&G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and efficiently completing the requirements for WETP.

  20. Testing three health impact assessment tools in planning: A process evaluation

    SciTech Connect (OSTI)

    Schively Slotterback, Carissa; Forsyth, Ann; Krizek, Kevin J.; Johnson, Amanda; Pennucci, Aly

    2011-03-15

    There is increasing interest in Health Impact Assessment in planning. This paper describes the results of different approaches to health impact assessment (HIA) conducted in 10 municipalities and one county in Minnesota. The paper outlines the HIA processes, outputs, and short-term outcomes concluding that it is important to engage a diverse group of stakeholders. Overall, HIA is potentially an important new tool in the planning toolkit. Strategic use of HIA to evaluate draft plans and inform plan updates and project redesigns can help raise awareness about health issues and focus planning on important human problems.

  1. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    SciTech Connect (OSTI)

    Corwin, William R; Burchell, Timothy D; Katoh, Yutai; McGreevy, Timothy E; Nanstad, Randy K; Ren, Weiju; Snead, Lance Lewis; Wilson, Dane F

    2008-08-01

    Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. The focus of this document will be the overall range of DOE's structural materials research activities being conducted to support VHTR development. By far, the largest portion of material's R&D supporting VHTR development is that being performed directly as part of the Next-Generation Nuclear Plant (NGNP) Project. Supplementary VHTR materials R&D being performed in the DOE program, including university and international research programs and that being performed under direct contracts with the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, will also be described. Specific areas of high-priority materials research that will be needed to deploy the NGNP and provide a basis for subsequent VHTRs are described, including the following: (1) Graphite: (a) Extensive unirradiated materials characterization and assessment of irradiation effects on properties must be performed to qualify new grades of graphite for nuclear service, including thermo-physical and mechanical properties and their changes, statistical variations from billot-to-billot and lot-to-lot, creep, and especially, irradiation creep. (b) Predictive models, as well as codification of the requirements and design methods for graphite core supports, must be developed to provide a basis for licensing. (2) Ceramics: Both fibrous and load-bearing ceramics must be qualified for environmental and radiation service as insulating materials. (3) Ceramic Composites: Carbon-carbon and SiC-SiC composites must be qualified for specialized usage in selected high-temperature components, such as core stabilizers, control rods, and insulating covers and ducting. This will require development of component-specific designs and fabrication processes, materials characterization, assessment of environmental and irradiation effects, and establishment of codes and standards for materials testing and design requirements. (4) Pressure Vessel Steels: (a) Qualification of short-term, high-temperature properties of light water reactor steels for anticipated VHTR off-normal conditions must be determined, as well as the effects of aging on tensile, creep, and toughness properties, and on thermal emissivity. (b) Large-scale fabrication process for higher temperature alloys, such as 9Cr-1MoV, including ensuring thick-section and weldment integrity must be developed, as well as improved definitions of creep-fatigue and negligible creep behavior. (5) High-Temperature Alloys: (a) Qualification and codification of materials for the intermediate heat exchanger, such as Alloys 617 or 230, for long-term very high-temperature creep, creep-fatigue, and environmental aging degradation must be done, especially in thin sections for compact designs, for both base metal and weldments. (b) Constitutive models and an improved methodology for high-temperature design must be developed.

  2. Fabrication Control Plan for ORNL RH-LOCA ATF Test Specimens to be Irradiated in the ATR

    SciTech Connect (OSTI)

    Kevin G. Field; Richard Howard; Michael Teague

    2014-06-01

    The purpose of this fabrication plan is (1) to summarize the design of a set of rodlets that will be fabricated and then irradiated in the Advanced Test Reactor (ATR) and (2) provide requirements for fabrication and acceptance criteria for inspections of the Light Water Reactor (LWR) – Accident Tolerant Fuels (ATF) rodlet components. The functional and operational (F&OR) requirements for the ATF program are identified in the ATF Test Plan. The scope of this document only covers fabrication and inspections of rodlet components detailed in drawings 604496 and 604497. It does not cover the assembly of these items to form a completed test irradiation assembly or the inspection of the final assembly, which will be included in a separate INL final test assembly specification/inspection document. The controls support the requirements that the test irradiations must be performed safely and that subsequent examinations must provide valid results.

  3. Comparative risk analysis for the Rocky Flats Plant integrated project planning

    SciTech Connect (OSTI)

    Jones, M.E.; Shain, D.I.

    1994-12-31

    The Rocky Flats Plant is developing, with active stakeholder participation, a comprehensive planning strategy that will support transition of the Rocky Flats Plant from a nuclear weapons production facility to site cleanup and final disposition. Final disposition of the Rocky Flats Plant materials and contaminants requires consideration of the interrelated nature of sitewide problems, such as material movement and disposition, facility and land use endstates, costs, relative risks to workers and the public, and waste disposition. Comparative risk analysis employs both incremental risk and cumulative risk evaluations to compare risks from postulated options or end states. These postulated options or end states can be various remedial alternatives, or future endstate uses of federal land.

  4. Prototype integration of the joint munitions assessment and planning model with the OSD threat methodology

    SciTech Connect (OSTI)

    Lynn, R.Y.S.; Bolmarcich, J.J.

    1994-06-01

    The purpose of this Memorandum is to propose a prototype procedure which the Office of Munitions might employ to exercise, in a supportive joint fashion, two of its High Level Conventional Munitions Models, namely, the OSD Threat Methodology and the Joint Munitions Assessment and Planning (JMAP) model. The joint application of JMAP and the OSD Threat Methodology provides a tool to optimize munitions stockpiles. The remainder of this Memorandum comprises five parts. The first is a description of the structure and use of the OSD Threat Methodology. The second is a description of JMAP and its use. The third discusses the concept of the joint application of JMAP and OSD Threat Methodology. The fourth displays sample output of the joint application. The fifth is a summary and epilogue. Finally, three appendices contain details of the formulation, data, and computer code.

  5. Comparative risk analysis for the Rocky Flats Plant integrated project planning

    SciTech Connect (OSTI)

    Jones, M.E.; Shain, D.I.

    1994-05-01

    The Rocky Flats Plant is developing, with active stakeholder a comprehensive planning strategy that will support transition of the Rocky Flats Plant from a nuclear weapons production facility to site cleanup and final disposition. Final disposition of the Rocky Flats Plant materials and contaminants requires consideration of the interrelated nature of sitewide problems, such as material movement and disposition, facility and land use endstates, costs relative risks to workers and the public, and waste disposition. Comparative Risk Analysis employs both incremental risk and cumulative risk evaluations to compare risks from postulated options or endstates. These postulated options or endstates can be various remedial alternatives, or future endstate uses of federal agency land. Currently, there does not exist any approved methodology that aggregates various incremental risk estimates. Comparative Risk Analysis has been developed to aggregate various incremental risk estimates to develop a site cumulative risk estimate. This paper discusses development of the Comparative Risk Analysis methodology, stakeholder participation and lessons learned from these challenges.

  6. Modeling and Field Test Planning Activities in Support of Disposal of Heat-Generating Waste in Salt

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

    2014-09-26

    The modeling efforts in support of the field test planning conducted at LBNL leverage on recent developments of tools for modeling coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. These are modeling capabilities that will be suitable for assisting in the design of field experiment, especially related to multiphase flow processes coupled with mechanical deformations, at high temperature. In this report, we first examine previous generic repository modeling results, focusing on the first 20 years to investigate the expected evolution of the different processes that could be monitored in a full-scale heater experiment, and then present new results from ongoing modeling of the Thermal Simulation for Drift Emplacement (TSDE) experiment, a heater experiment on the in-drift emplacement concept at the Asse Mine, Germany, and provide an update on the ongoing model developments for modeling brine migration. LBNL also supported field test planning activities via contributions to and technical review of framework documents and test plans, as well as participation in workshops associated with field test planning.

  7. Integral and Separate Effects Tests for Thermal Hydraulics Code Validation for Liquid-Salt Cooled Nuclear Reactors

    SciTech Connect (OSTI)

    Peterson, Per

    2012-10-30

    The objective of the 3-year project was to collect integral effects test (IET) data to validate the RELAP5-3D code and other thermal hydraulics codes for use in predicting the transient thermal hydraulics response of liquid salt cooled reactor systems, including integral transient response for forced and natural circulation operation. The reference system for the project is a modular, 900-MWth Pebble Bed Advanced High Temperature Reactor (PB-AHTR), a specific type of Fluoride salt-cooled High temperature Reactor (FHR). Two experimental facilities were developed for thermal-hydraulic integral effects tests (IETs) and separate effects tests (SETs). The facilities use simulant fluids for the liquid fluoride salts, with very little distortion to the heat transfer and fluid dynamics behavior. The CIET Test Bay facility was designed, built, and operated. IET data for steady state and transient natural circulation was collected. SET data for convective heat transfer in pebble beds and straight channel geometries was collected. The facility continues to be operational and will be used for future experiments, and for component development. The CIET 2 facility is larger in scope, and its construction and operation has a longer timeline than the duration of this grant. The design for the CIET 2 facility has drawn heavily on the experience and data collected on the CIET Test Bay, and it was completed in parallel with operation of the CIET Test Bay. CIET 2 will demonstrate start-up and shut-down transients and control logic, in addition to LOFC and LOHS transients, and buoyant shut down rod operation during transients. Design of the CIET 2 Facility is complete, and engineering drawings have been submitted to an external vendor for outsourced quality controlled construction. CIET 2 construction and operation continue under another NEUP grant. IET data from both CIET facilities is to be used for validation of system codes used for FHR modeling, such as RELAP5-3D. A set of numerical models were developed in parallel to the experimental work. RELAP5-3D models were developed for the salt-cooled PB-AHTR, and for the simulat fluid CIET natural circulation experimental loop. These models are to be validated by the data collected from CIET. COMSOL finite element models were used to predict the temperature and fluid flow distribution in the annular pebble bed core; they were instrumental for design of SETs, and they can be used for code-to-code comparisons with RELAP5-3D. A number of other small SETs, and numerical models were constructed, as needed, in support of this work. The experiments were designed, constructed and performed to meet CAES quality assurance requirements for test planning, implementation, and documentation; equipment calibration and documentation, procurement document control; training and personnel qualification; analysis/modeling software verification and validation; data acquisition/collection and analysis; and peer review.

  8. Corrective Action Decision Document/Corrective Action Plan for CAU 443: Central Nevada Test Area-Subsurface CNTA, NV

    Office of Legacy Management (LM)

    Document/ Corrective Action Plan for Corrective Action Unit 443: Central Nevada Test Area-Subsurface Central Nevada Test Area, Nevada Controlled Copy No.: Revision No.: 0 November 2004 Approved for public release; further dissemination unlimited. DOE/NV--977 Available for public sale, in paper, from: U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Phone: 800.553.6847 Fax: 703.605.6900 Email: orders@ntis.gov Online ordering:

  9. Milestone Report - M4FT-14OR0312022 - Co-absorption studies - Design system complete/test plan complete

    SciTech Connect (OSTI)

    Bruffey, Stephanie H.; Spencer, Barry B.; Jubin, Robert Thomas

    2013-12-01

    The objective of this test plan is to describe research that will determine the effectiveness of silver mordenite and molecular sieve beds to remove iodine and water (tritium) from off-gas streams arising from used nuclear fuel recycling processes, and to demonstrate that the iodine and water can be recovered separately from one another.

  10. Effective early planning and integration of NEPA into the decision-making process

    SciTech Connect (OSTI)

    Hannon, W.C.; Gensler, J.D. )

    1993-01-01

    This paper covers several key challenges and lessons learned in a federal agency assignment to educate the decision makers in NEPA and then to effectuate decisions early in the decision-making process based on the information derived from the NEPA process participants and documentation. Many of the key challenges faced by these federal decision makers stem, in part, from unfamiliarity with NEPA requirements and the benefits that can be derived by utilizing the process to support making an informed decision. Secondly, federal managers, at times believe that the process is a hindrance to accomplishing their mission. Lastly, there was a genuine belief that the public and other organizations within the agency should have no part in evaluating or commenting on the proposed action. Using the knowledge gained from drafting and reviewing EISs and EAs, Booz, Allen devised a systematic process that effectively: educated management on NEPA requirements; developed a management tool to guide and integrate the process; and encouraged the early and effective use of environmental and social information into all decision-making processes.

  11. Barrier erosion control test plan: Gravel mulch, vegetation, and soil water interactions

    SciTech Connect (OSTI)

    Waugh, W.J.; Link, S.O. (Pacific Northwest Lab., Richland, WA (USA))

    1988-07-01

    Soil erosion could reduce the water storage capacity of barriers that have been proposed for the disposal of near-surface waste at the US Department of Energy's Hanford Site. Gravel mixed into the top soil surface may create a self-healing veneer that greatly retards soil loss. However, gravel admixtures may also enhance infiltration of rainwater, suppress plant growth and water extraction, and lead to the leaching of underlying waste. This report describes plans for two experiments that were designed to test hypotheses concerning the interactive effects of surface gravel admixtures, revegetation, and enhanced precipitation on soil water balance and plant abundance. The first experiment is a factorial field plot set up on the site selected as a soil borrow area for the eventual construction of barriers. The treatments, arranged in a a split-split-plot design structure, include two densities of gravel admix, a mixture of native and introduced grasses, and irrigation to simulate a wetter climate. Changes in soil water storage and plant cover are monitored with neutron moisture probes and point intercept sampling, respectively. The second experiment consists of an array of 80 lysimeters containing several different barrier prototypes. Surface treatments are similar to the field-plot experiment. Drainage is collected from a valve at the base of each lysimeter tube, and evapotranspiration is estimated by subtraction. The lysimeters are also designed to be coupled to a whole-plant gas exchange system that will be used to conduct controlled experiments on evapotranspiration for modeling purposes. 56 refs., 6 figs., 8 tabs.

  12. Independent Verification and Validation Of SAPHIRE 8 Software Acceptance Test Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect (OSTI)

    Kent Norris

    2010-03-01

    The purpose of the Independent Verification and Validation (IV&V) role in the evaluation of the SAPHIRE 8 Software Acceptance Test Plan is to assess the approach to be taken for intended testing activities. The plan typically identifies the items to be tested, the requirements being tested, the testing to be performed, test schedules, personnel requirements, reporting requirements, evaluation criteria, and any risks requiring contingency planning. The IV&V team began this endeavor after the software engineering and software development of SAPHIRE had already been in production.

  13. SUMMARY PLAN FOR BENCH-SCALE REFORMER AND PRODUCT TESTING TREATABILITY STUDIES USING HANFORD TANK WASTE

    SciTech Connect (OSTI)

    DUNCAN JB

    2010-08-19

    This paper describes the sample selection, sample preparation, environmental, and regulatory considerations for shipment of Hanford radioactive waste samples for treatability studies of the FBSR process at the Savannah River National Laboratory and the Pacific Northwest National Laboratory. The U.S. Department of Energy (DOE) Hanford tank farms contain approximately 57 million gallons of wastes, most of which originated during the reprocessing of spent nuclear fuel to produce plutonium for defense purposes. DOE intends to pre-treat the tank waste to separate the waste into a high level fraction, that will be vitrified and disposed of in a national repository as high-level waste (HLW), and a low-activity waste (LAW) fraction that will be immobilized for on-site disposal at Hanford. The Hanford Waste Treatment and Immobilization Plant (WTP) is the focal point for the treatment of Hanford tank waste. However, the WTP lacks the capacity to process all of the LAW within the regulatory required timeframe. Consequently, a supplemental LAW immobilization process will be required to immobilize the remainder of the LAW. One promising supplemental technology is Fluidized Bed Steam Reforming (FBSR) to produce a sodium-alumino-silicate (NAS) waste form. The NAS waste form is primarily composed of nepheline (NaAlSiO{sub 4}), sodalite (Nas[AlSiO{sub 4}]{sub 6}Cl{sub 2}), and nosean (Na{sub 8}[AlSiO{sub 4}]{sub 6}SO{sub 4}). Semivolatile anions such as pertechnetate (TcO{sub 4}{sup -}) and volatiles such as iodine as iodide (I{sup -}) are expected to be entrapped within the mineral structures, thereby immobilizing them (Janzen 2008). Results from preliminary performance tests using surrogates, suggests that the release of semivolatile radionuclides {sup 99}Tc and volatile {sup 129}I from granular NAS waste form is limited by Nosean solubility. The predicted release of {sup 99}Tc from the NAS waste form at a 100 meters down gradient well from the Integrated Disposal Facility (IDF) was found to be comparable to immobilized low-activity waste glass waste form in the initial supplemental LAW treatment technology risk assessment (Mann 2003). To confirm this hypothesis, DOE is funding a treatability study where three actual Hanford tank waste samples (containing both {sup 99}Tc and {sup 125}I) will be processed in Savannah River National Laboratory's (SRNL) Bench-Scale Reformer (BSR) to form the mineral product, similar to the granular NAS waste form, that will then be subject to a number of waste form qualification tests. In previous tests, SRNL have demonstrated that the BSR product is chemically and physically equivalent to the FBSR product (Janzen 2005). The objective of this paper is to describe the sample selection, sample preparation, and environmental and regulatory considerations for treatability studies of the FBSR process using Hanford tank waste samples at the SNRL. The SNRL will process samples in its BSR. These samples will be decontaminated in the 222-S Laboratory to remove undissolved solids and selected radioisotopes to comply with Department of Transportation (DOT) shipping regulations and to ensure worker safety by limiting radiation exposure to As Low As Reasonably Achievable (ALARA). These decontamination levels will also meet the Nuclear Regulatory Commission's (NRC's) definition of low activity waste (LAW). After the SNRL has processed the tank samples to a granular mineral form, SRNL and Pacific Northwest National Laboratory (PNNL) will conduct waste form testing on both the granular material and monoliths prepared from the granular material. The tests being performed are outlined in Appendix A.

  14. AVTA: Plug-in Hybrid Electric Vehicle Specifications and Test...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon DRAFT - Integrated Test Plan and Evaluation Program for Review for Plug-in Hybrid Electric Vehicles (PHEVs) More Documents & Publications AVTA: Hybrid Electric Vehicle ...

  15. Integrated testing of the Thales LPT9510 pulse tube cooler and the iris LCCE electronics

    SciTech Connect (OSTI)

    Johnson, Dean L.; Rodriguez, Jose I.; Carroll, Brian A.; Bustamante, John G.; Kirkconnell, Carl S.; Luong, Thomas T.; Murphy, J. B.; Haley, Michael F.

    2014-01-29

    The Jet Propulsion Laboratory (JPL) has identified the Thales LPT9510 pulse tube cryocooler as a candidate low cost cryocooler to provide active cooling on future cost-capped scientific missions. The commercially available cooler can provide refrigeration in excess of 2 W at 100K for 60W of power. JPL purchased the LPT9510 cooler for thermal and dynamic performance characterization, and has initiated the flight qualification of the existing cooler design to satisfy near-term JPL needs for this cooler. The LPT9510 has been thermally tested over the heat reject temperature range of 0C to +40C during characterization testing. The cooler was placed on a force dynamometer to measure the selfgenerated vibration of the cooler. Iris Technology has provided JPL with a brass board version of the Low Cost Cryocooler Electronics (LCCE) to drive the Thales cooler during characterization testing. The LCCE provides precision closed-loop temperature control and embodies extensive protection circuitry for handling and operational robustness; other features such as exported vibration mitigation and low frequency input current filtering are envisioned as options that future flight versions may or may not include based upon the mission requirements. JPL has also chosen to partner with Iris Technology for the development of electronics suitable for future flight applications. Iris Technology is building a set of radiation-hard, flight-design electronics to deliver to the Air Force Research Laboratory (AFRL). Test results of the thermal, dynamic and EMC testing of the integrated Thales LPT9510 cooler and Iris LCCE electronics is presented here.

  16. Oxy-Combustion Burner and Integrated Pollutant Removal Research and Development Test Facility

    SciTech Connect (OSTI)

    Mark Schoenfield; Manny Menendez; Thomas Ochs; Rigel Woodside; Danylo Oryshchyn

    2012-09-30

    A high flame temperature oxy-combustion test facility consisting of a 5 MWe equivalent test boiler facility and 20 KWe equivalent IPR® was constructed at the Hammond, Indiana manufacturing site. The test facility was operated natural gas and coal fuels and parametric studies were performed to determine the optimal performance conditions and generated the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up. Flame temperatures between 4930-6120F were achieved with high flame temperature oxy-natural gas combustion depending on whether additional recirculated flue gases are added to balance the heat transfer. For high flame temperature oxy-coal combustion, flame temperatures in excess of 4500F were achieved and demonstrated to be consistent with computational fluid dynamic modeling of the burner system. The project demonstrated feasibility and effectiveness of the Jupiter Oxygen high flame temperature oxy-combustion process with Integrated Pollutant Removal process for CCS and CCUS. With these technologies total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20% of the gross power output. The Jupiter Oxygen high flame temperature oxy-combustion process has been demonstrated at a Technology Readiness Level of 6 and is ready for commencement of a demonstration project.

  17. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    SciTech Connect (OSTI)

    Pattrick Calderoni

    2010-09-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the same project [1]. However, this work focuses on two materials: the LiF-BeF2 eutectic (67 and 33 mol%, respectively, also known as flibe) as primary coolant and the LiF-NaF-KF eutectic (46.5, 11.5, and 52 mol%, respectively, also known as flinak) as secondary heat transport fluid. At first common issues are identified, involving the preparation and purification of the materials as well as the development of suitable diagnostics. Than issues specific to each material and its application are considered, with focus on the compatibility with structural materials and the extension of the existing properties database.

  18. Test plan for evaluation of plasma melter technology for vitrification of high-sodium content low-level radioactive liquid wastes

    SciTech Connect (OSTI)

    McLaughlin, D.F.; Lahoda, E.J.; Gass, W.R.; D`Amico, N.

    1994-10-20

    This document provides a test plan for the conduct of plasma arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384212] is the Westinghouse Science and Technology Center (WSTC) in Pittsburgh, PA. WSTC authors of the test plan are D. F. McLaughlin, E. J. Lahoda, W. R. Gass, and N. D`Amico. The WSTC Program Manager for this test is D. F. McLaughlin. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes melting of glass frit with Hanford LLW Double-Shell Slurry Feed waste simulant in a plasma arc fired furnace.

  19. ISSUANCE 2015-06-25: Energy Conservation Program: Test Procedures for Integrated Light-Emitting Diode Lamps, Supplemental Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Test Procedures for Integrated Light-Emitting Diode Lamps, Supplemental Notice of Proposed Rulemaking

  20. Evaluation of Maxim Module-Integrated Electronics at the DOE Regional Test Centers (Presentation)

    SciTech Connect (OSTI)

    Deline, C.; Sekulic, B.; Barkaszi, S.; Yang, J.; Kahn, S.

    2014-06-01

    Module-embedded power electronics developed by Maxim Integrated are under evaluation through a partnership with the Department of Energy's Regional Test Center (RTC) program. Field deployments of both conventional modules and electronics-enhanced modules are designed to quantify the performance advantage of Maxim's products under different amounts of interrow shading, and their ability to be deployed at a greater ground-coverage ratio than conventional modules. Simulations in PVSYST have quantified the predicted performance difference between conventional modules and Maxim's modules from interrow shading. Initial performance results have identified diffuse irradiance losses at tighter row spacing for both the Maxim and conventional modules. Comparisons with published models show good agreement with models predicting the greatest diffuse irradiance losses. At tighter row spacing, all of the strings equipped with embedded power electronics outperformed their conventional peers. An even greater performance advantage is predicted to occur in the winter months when the amount of interrow shading mismatch is at a maximum.

  1. Test plan for glass melter system technologies for vitrification of high-sodium content low-level radioactive liquid waste, Project No. RDD-43288

    SciTech Connect (OSTI)

    Higley, B.A.

    1995-03-15

    This document provides a test plan for the conduct of combustion fired cyclone vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System, Low-Level Waste Vitrification Program. The vendor providing this test plan and conducting the work detailed within it is the Babcock & Wilcox Company Alliance Research Center in Alliance, Ohio. This vendor is one of seven selected for glass melter testing.

  2. Post-Service Examination of PWR Baffle Bolts, Part I. Examination and Test Plan

    SciTech Connect (OSTI)

    Leonard, Keith J.; Sokolov, Mikhail A.; Gussev, Maxim N.

    2015-04-30

    In support of extended service and current operations of the US nuclear reactor plants, the Oak Ridge National Laboratory (ORNL), through the Department of Energy (DOE), Light Water Reactor Sustainability (LWRS) Program, is coordinating with Ginna Nuclear Power Plant, The Westinghouse Electric Company, LLC, and ATI Consulting, the selective procurement of baffle bolts that were withdrawn from service in 2011 and currently stored on site at Ginna. The goal of this program is to perform detailed microstructural and mechanical property characterization of baffle former bolts following in-service exposures. This report outlines the selection criteria of the bolts and the techniques to be used in this study. The bolts available are the original alloy 347 steel fasteners used in holding the baffle plates to the baffle former structures within the lower portion of the pressurized water reactor vessel. Of the eleven possible bolts made available for this work, none were identified to have specific damage. The bolts, however, did show varying levels of breakaway torque required in their removal. The bolts available for this study varied in peak fluence (highest dose within the head of the bolt) between 9.9 and 27.8x1021 n/cm2 (E>1MeV). As no evidence for crack initiation was determined for the available bolts from preliminary visual examination, two bolts with the higher fluence values were selected for further post-irradiation examination. The two bolts showed different breakaway torque levels necessary in their removal. The information from these bolts will be integral to the LWRS program initiatives in evaluating end of life microstructure and properties. Furthermore, valuable data will be obtained that can be incorporated into model predictions of long-term irradiation behavior and compared to results obtained in high flux experimental reactor conditions. The two bolts selected for the ORNL study will be shipped to Westinghouse with bolts of interest to their collaborative efforts with the Electric Power Research Institute. Westinghouse will section the ORNL bolts into samples specified in this report and return them to ORNL. Samples will include bend bars for fracture toughness and crack propagation studies along with thin sections from which specimens for bend testing, subscale tensile and microstructural analysis can be obtained. Additional material from the high stress concentration region at the transition between the bolt head and shank will also be preserved to allow for further investigation of possible crack initiation sites.

  3. Streamlined Approach for Environmental Restoration Work Plan for Corrective Action Unit 461: Joint Test Assembly Sites and Corrective Action Unit 495: Unconfirmed Joint Test Assembly Sites Tonopah Test Range, Nevada

    SciTech Connect (OSTI)

    Jeff Smith

    1998-08-01

    This Streamlined Approach for Environmental Restoration plan addresses the action necessary for the clean closure of Corrective Action Unit 461 (Test Area Joint Test Assembly Sites) and Corrective Action Unit 495 (Unconfirmed Joint Test Assembly Sites). The Corrective Action Units are located at the Tonopah Test Range in south central Nevada. Closure for these sites will be completed by excavating and evaluating the condition of each artillery round (if found); detonating the rounds (if necessary); excavating the impacted soil and debris; collecting verification samples; backfilling the excavations; disposing of the impacted soil and debris at an approved low-level waste repository at the Nevada Test Site

  4. W-026 acceptance test plan plant control system hardware (submittal {number_sign} 216)

    SciTech Connect (OSTI)

    Watson, T.L., Fluor Daniel Hanford

    1997-02-14

    Acceptance Testing of the WRAP 1 Plant Control System Hardware will be conducted throughout the construction of WRAP I with the final testing on the Process Area hardware being completed in November 1996. The hardware tests will be broken out by the following functional areas; Local Control Units, Operator Control Stations in the WRAP Control Room, DMS Server, PCS Server, Operator Interface Units, printers, DNS terminals, WRAP Local Area Network/Communications, and bar code equipment. This document will contain completed copies of each of the hardware tests along with the applicable test logs and completed test exception reports.

  5. Corrective Action Investigation plan for Corrective Action Unit 263: Area 25 Building 4839 Leachfield, Nevada Test Site, Nevada, March 1999

    SciTech Connect (OSTI)

    ITLV

    1999-03-01

    The Corrective Action Investigation Plan for Corrective Action Unit 263, the Area 25 Building 4839 Leachfield, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the US Department of Energy, Nevada Operations Office; the Nevada Division of Environmental Protection; and the US Department of Defense. Corrective Action Unit 263 is comprised of the Corrective Action Site 25-05-04 sanitary leachfield and associated collection system. This Corrective Action Investigation Plan is used in combination with the Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada (DOE/NV, 1998d). The Leachfield Work Plan was developed to streamline investigations at Leachfield Corrective Action Units by incorporating management, technical, quality assurance, health and safety, public involvement, field sampling, and waste management information common to a set of Corrective Action Units with similar site histories and characteristics into a single document that can be referenced. This Corrective Action Investigation Plan provides investigative details specific to Corrective Action Unit 263. Corrective Action Unit 263 is located southwest of Building 4839, in the Central Propellant Storage Area. Operations in Building 4839 from 1968 to 1996 resulted in effluent releases to the leachfield and associated collection system. In general, effluent released to the leachfield consisted of sanitary wastewater from a toilet, urinal, lavatory, and drinking fountain located within Building 4839. The subsurface soils in the vicinity of the collection system and leachfield may have been impacted by effluent containing contaminants of potential concern generated by support activities associated with the Building 4839 operations.

  6. Closure of the Fast Flux Test Facility: Current Status and Future Plans

    SciTech Connect (OSTI)

    Farabee, O.A.; Witherspoon, W.V.

    2008-01-15

    The Fast Flux Test Facility (FFTF) was a 400 MWt sodium cooled fast reactor designed and constructed in the 1970's. The original purpose of the facility was to develop and test advanced fuels and materials for the liquid metal fast breeder reactor program. The facility operated very successfully from 1982 through 1992, fulfilling its original mission as well as other identified missions. However, in 1993 the Department of Energy concluded that there was no longer a need for the FFTF and thus ordered that it be shut down. Following eight years of additional study of potential new missions, the final decision to shut down the facility was made in 2001. (During this eight year period the plant was maintained in a condition to allow safe and efficient shut down or restart). The complete closure of the FFTF consists of the following phases: - Deactivation - removal/stabilization of hazards to allow long-term storage (2001-2009); - Surveillance and maintenance - minimum cost compliant storage (2010-2015); - Decontamination and decommissioning (2016-2024). All of the FFTF fuel has been removed from the site except the sodium-bonded fuel that is destined for transportation to Idaho National Laboratory for final disposition. The sodium-bonded fuel had metallic sodium inside of the fuel pin to increase the heat transfer from the fuel pellet to the clad in order to reduce pellet centerline temperature. Three hundred and seventy-six (376) fuel assemblies have been washed (sodium removed) and transferred to storage at other Hanford locations. The majority of the spent fuel is stored in interim storage casks designed for a 50 year storage life, holding seven assemblies each. All sodium systems have been drained and the sodium stored under an inert gas blanket at ambient temperature in a Sodium Storage Facility at the FFTF site. This facility consists of four large tanks and associated piping. The main contaminants are sodium-22, cesium-137 and tritium. The sodium-potassium (NaK) that was used as an intermediate cooling fluid in several FFTF systems has been drained and removed or flushed to sodium systems where it became mixed with the sodium. The in-containment hot cell has minimal sodium contamination, is currently inerted with argon and is being used for loading of the T-3 transportation cask with the sodium-bonded fuel for transportation to Idaho National Laboratory. The majority of the fuel handling machines are still operational and being used for loading the sodium-bonded fuel into the T-3 casks. This equipment will be shut down immediately following completion of shipment of the sodium-bonded fuel. The majority of hotel systems are still operating. Four of the eight 400-ton chillers have been shut down and four of the cooling towers have been shut down. The argon system is operational and supplying gas for sodium systems cover gas, in-containment hot cell atmosphere and fuel handling systems. The nitrogen system remains in service supplying cover gas to the demineralized water system and fire suppression systems. Eleven of the facilities nineteen transformers containing polychlorinated biphenyls (PCBs) have been removed and significant re-routing of power has been performed to support the long term minimum cost surveillance mode. Future plans include the complete deactivation, the long-term surveillance and maintenance, the sodium disposition and the decontamination and decommissioning The most complex and costly activity during the decontamination and decommissioning phase will be the removal of the 'residual sodium' in the sodium systems. It was impractical to remove the residual sodium during the systems draining evolution. It is estimated that approximately 24,000 liters (6,400 gallons) remain within the systems. The complexity of design of the FFTF exceeds any sodium facility in the United States in which sodium removal has occurred. There are a total of 21 miles of sodium piping in the FFTF as well as three large vessels (the reactor vessel and two spent fuel pool vessels) that will require partial disassembly and drilling in order react/remove remaining sodium.

  7. Corrective Action Investigation Plan for Corrective Action Unit 528: Polychlorinated Biphenyls Contamination, Nevada Test Site, Nevada, Rev. 0

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-05-08

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 528, Polychlorinated Biphenyls Contamination (PCBs), Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in the southwestern portion of Area 25 on the NTS in Jackass Flats (adjacent to Test Cell C [TCC]), CAU 528 consists of Corrective Action Site 25-27-03, Polychlorinated Biphenyls Surface Contamination. Test Cell C was built to support the Nuclear Rocket Development Station (operational between 1959 and 1973) activities including conducting ground tests and static firings of nuclear engine reactors. Although CAU 528 was not considered as a direct potential source of PCBs and petroleum contamination, two potential sources of contamination have nevertheless been identified from an unknown source in concentrations that could potentially pose an unacceptable risk to human health and/or the environment. This CAU's close proximity to TCC prompted Shaw to collect surface soil samples, which have indicated the presence of PCBs extending throughout the area to the north, east, south, and even to the edge of the western boundary. Based on this information, more extensive field investigation activities are being planned, the results of which are to be used to support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  8. Whole breast and excision cavity radiotherapy plan comparison: Conformal radiotherapy with sequential boost versus intensity-modulated radiation therapy with a simultaneously integrated boost

    SciTech Connect (OSTI)

    Small, Katherine; Kelly, Chris; Beldham-Collins, Rachael; Gebski, Val

    2013-03-15

    A comparative study was conducted comparing the difference between (1) conformal radiotherapy (CRT) to the whole breast with sequential boost excision cavity plans and (2) intensity-modulated radiation therapy (IMRT) to the whole breast with simultaneously integrated boost to the excision cavity. The computed tomography (CT) data sets of 25 breast cancer patients were used and the results analysed to determine if either planning method produced superior plans. CT data sets from 25 past breast cancer patients were planned using (1) CRT prescribed to 50 Gy in 25 fractions (Fx) to the whole-breast planning target volume (PTV) and 10 Gy in 5Fx to the excision cavity and (2) IMRT prescribed to 60 Gy in 25Fx, with 60 Gy delivered to the excision cavity PTV and 50 Gy delivered to the whole-breast PTV, treated simultaneously. In total, 50 plans were created, with each plan evaluated by PTV coverage using conformity indices, plan maximum dose, lung dose, and heart maximum dose for patients with left-side lesions. CRT plans delivered the lowest plan maximum doses in 56% of cases (average CRT = 6314.34 cGy, IMRT = 6371.52 cGy). They also delivered the lowest mean lung dose in 68% of cases (average CRT = 1206.64 cGy, IMRT = 1288.37 cGy) and V20 in 88% of cases (average CRT = 20.03%, IMRT = 21.73%) and V30 doses in 92% of cases (average CRT = 16.82%, IMRT = 17.97%). IMRT created more conformal plans, using both conformity index and conformation number, in every instance, and lower heart maximum doses in 78.6% of cases (average CRT = 5295.26 cGy, IMRT = 5209.87 cGy). IMRT plans produced superior dose conformity and shorter treatment duration, but a slightly higher planning maximum and increased lung doses. IMRT plans are also faster to treat on a daily basis, with shorter fractionation.

  9. Coal combustion by wet oxidation. Wet oxidation of coal for energy production: test plan and partial results. Interim report

    SciTech Connect (OSTI)

    Bettinger, J.A.

    1980-07-10

    A test plan has been developed which will provide the data necessary to carry out design and economic studies of a steam generating facility, employing the wet oxidation of coal as a heat source. It is obvious, from the literature search and preliminary testing, that the higher the reaction temperature, the more complete the combustion of coal. However, operation at elevated temperatures and pressures present difficult design problems, and the necessary equipment is costly. Operation under these conditions can only be justified by the higher economic value of high pressure and temperature steam. With a reduction in temperature from 550/sup 0/F (228/sup 0/C) to 450/sup 0/F (232/sup 0/C), the operating pressure is reduced by more than half, thus holding down the overall cost of the system. For this reason, our plan is to study both the enhancement of low temperature wet oxidation of coal, and the higher operating regions. The coal selected for the first portion of this test is an Eastern Appalachian high-volatile-A Bituminous type, from the Upper Clarion seam in Pennsylvania. This coal was selected as being a typical high sulfur, eastern coal. The wet oxidation of coal to produce low pressure steam is a process suited for a high sulfur, low grade, coal. It is not intended that wet oxidation be used in all applications with all types of coals, as it does not appear to be competitive, economically, with conventional combustion, therefore the testing will focus on using high sulfur, low grade coals. In the later portion of testing all the available coals will be tested. In addition, a sample of Minnesota peat will be tested to determine if it also can be used in the process.

  10. Evaluation of Maxim Module-Integrated Electronics at the DOE Regional Test Centers: Preprint

    SciTech Connect (OSTI)

    Deline, C.; Sekulic, B.; Stein, J.; Barkaszi, S.; Yang, J.; Kahn, S.

    2014-07-01

    Module-embedded power electronics developed by Maxim Integrated are under evaluation through a partnership with the Department of Energy's Regional Test Center (RTC) program. Field deployments of both conventional modules and electronics-enhanced modules are designed to quantify the performance advantage of Maxim's products under different amounts of inter-row shading, and their ability to be deployed at a greater ground-coverage-ratio than conventional modules. Simulations in PVSYST have quantified the predicted performance difference between conventional modules and Maxim's modules from inter-row shading. Initial performance results have identified diffuse irradiance losses at tighter row spacing for both the Maxim and conventional modules. Comparisons with published models show good agreement with models predicting the greatest diffuse irradiance losses. At tighter row spacing, all of the strings equipped with embedded power electronics outperformed their conventional peers. An even greater performance advantage is predicted to occur in the winter months when the amount of inter-row shading mismatch is at a maximum.

  11. SU-E-J-88: Margin Reduction of Level II/III Planning Target Volume for Image-Guided Simultaneous Integrated Boost Head-And-Neck Treatment

    SciTech Connect (OSTI)

    Can, S; Neylon, J; Qi, S; Santhanam, A; Low, D

    2014-06-01

    Purpose: To investigate the feasibility of improved normal tissue sparing for head-and-neck (H'N) image-guided radiotherapy (IGRT) by employing tighter CTV-to-PTV margins for target level II/III though a GPU-based deformable image registration and dose accumulation framework. Methods: Ten H'N simultaneous integrated boost cases treated on TomoTherapy were retrospectively analyzed. Weekly kVCT scans in addition to daily MVCT scans were acquired for each patient. Reduced margin plans were generated with 0- mm margin for level II and III PTV (while 3-5 mm margin for PTV1) and compared with the standard margin plan using 3-5mm margin to all CTV1-3 (reference plan). An in-house developed GPU-based 3D image deformation tool was used to register and deform the weekly KVCTs with the planning CT and determine the delivered mean/minimum/maximum dose, dose volume histograms (DVHs), etc. Results: Compared with the reference plans, the averaged cord maximum, the right and left parotid doses reduced by 22.7 %, 16.5 %, and 9 % respectively in the reduced margin plans. The V95 for PTV2 and PTV3 were found within 2 and 5% between the reference and tighter margin plans. For the reduced margin plans, the averaged cumulative mean doses were consistent with the planned dose for PTV1, PTV2 and PTV3 within 1.5%, 1.7% and 1.4%. Similar dose variations of the delivered dose were seen for the reference and tighter margin plans. The delivered maximum and mean doses for the cord were 3.55 % and 2.37% higher than the planned doses; a 5 % higher cumulative mean dose for the parotids was also observed for the delivered dose than the planned doses in both plans. Conclusion: By imposing tighter CTV-to-PTV margins for level II and III targets for H'N irradiation, acceptable cumulative doses were achievable when coupled with weekly kVCT guidance while improving normal structure sparing.

  12. Molten carbonate fuel cell product development test environmental assessment/protection plan

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    Objective of proposed action is to conduct a 250-kW product development test of M-C Power Corporation`s molten carbonate fuel cell concept, at the Kaiser Permanente San Diego Medical Center. Review of environmental impacts of this test indicate the following: no impact on solid waste disposal, water quality, noise levels, floodplains, wetlands, ecology, historic areas, or socioeconomic resources. Impact on air quality are expected to be positive.

  13. Molten carbonate fuel cell product development test environmental assessment/protection plan

    SciTech Connect (OSTI)

    Brunton, Jack; Furukawa, Vance; Frost, Grant; Danna, Mike; Figueroa, Al; Scroppo, Joseph

    1992-11-01

    Objective of proposed action is to conduct a 250-kW product development test of M-C Power Corporation's molten carbonate fuel cell concept, at the Kaiser Permanente San Diego Medical Center. Review of environmental impacts of this test indicate the following: no impact on solid waste disposal, water quality, noise levels, floodplains, wetlands, ecology, historic areas, or socioeconomic resources. Impact on air quality are expected to be positive.

  14. Demonstration testing and evaluation of in situ soil heating. Health and safety plan (Revision 2)

    SciTech Connect (OSTI)

    Dev, H.

    1994-12-28

    This document is the Health and Safety Plan (HASP) for the demonstration of IITRI`s EM Treatment Technology. In this process, soil is heated in situ by means of electrical energy for the removal of hazardous organic contaminants. This process will be demonstrated on a small plot of contaminated soil located in the Pit Area of Classified Burial Ground K-1070-D, K-25 Site, Oak Ridge, TN. The purpose of the demonstration is to remove organic contaminants present in the soil by heating to a temperature range of 85{degrees} to 95{degrees}C. The soil will be heated in situ by applying 60-Hz AC power to an array of electrodes placed in boreholes drilled through the soil. In this section a brief description of the process is given along with a description of the site and a listing of the contaminants found in the area.

  15. Quality Assurance Project Plan for the Gas Generation Testing Program at the INEL

    SciTech Connect (OSTI)

    NONE

    1994-10-01

    The data quality objectives (DQOs) for the Program are to evaluate compliance with the limits on total gas generation rates, establish the concentrations of hydrogen and methane in the total gas flow, determine the headspace concentration of VOCs in each drum prior to the start of the test, and obtain estimates of the concentrations of several compounds for mass balance purposes. Criteria for the selection of waste containers at the INEL and the parameters that must be characterized prior to and during the tests are described. Collection of gaseous samples from 55-gallon drums of contact-handled transuranic waste for the gas generation testing is discussed. Analytical methods and calibrations are summarized. Administrative quality control measures described in this QAPjP include the generation, review, and approval of project documentation; control and retention of records; measures to ensure that personnel, subcontractors or vendors, and equipment meet the specifications necessary to achieve the required data quality for the project.

  16. Energy Smart Schools--Applied Research, Field Testing, and Technology Integration

    SciTech Connect (OSTI)

    Nebiat Solomon; Robin Vieira; William L. Manz; Abby Vogen; Claudia Orlando; Kimberlie A. Schryer

    2004-12-01

    The National Association of State Energy Officials (NASEO) in conjunction with the California Energy Commission, the Energy Center of Wisconsin, the Florida Solar Energy Center, the New York State Energy Research and Development Authority, and the Ohio Department of Development's Office of Energy Efficiency conducted a four-year, cost-share project with the U.S. Department of Energy (USDOE), Office of Energy Efficiency and Renewable Energy to focus on energy efficiency and high-performance technologies in our nation's schools. NASEO was the program lead for the MOU-State Schools Working group, established in conjunction with the USDOE Memorandum of Understanding process for collaboration among state and federal energy research and demonstration offices and organizations. The MOU-State Schools Working Group included State Energy Offices and other state energy research organizations from all regions of the country. Through surveys and analyses, the Working Group determined the school-related energy priorities of the states and established a set of tasks to be accomplished, including the installation and evaluation of microturbines, advanced daylighting research, testing of schools and classrooms, and integrated school building technologies. The Energy Smart Schools project resulted in the adoption of advanced energy efficiency technologies in both the renovation of existing schools and building of new ones; the education of school administrators, architects, engineers, and manufacturers nationwide about the energy-saving, economic, and environmental benefits of energy efficiency technologies; and improved the learning environment for the nation's students through use of better temperature controls, improvements in air quality, and increased daylighting in classrooms. It also provided an opportunity for states to share and replicate successful projects to increase their energy efficiency while at the same time driving down their energy costs.

  17. Test Plan for Evaluating Hammer and Fixed Cutter Grinders Using Multiple Varieties and Moistures of Biomass Feedstock

    SciTech Connect (OSTI)

    Not listed

    2007-07-01

    Biomass preprocessing is a critical operation in the preparation of feedstock for the front-end of a cellulosic ethanol biorefinery. Its purpose is to chop, grind, or otherwise format the biomass material into a suitable feedstock for optimum conversion to ethanol and other bioproducts. Without this operation, the natural size, bulk density, and flowability characteristics of harvested biomass would decrease the capacities and efficiencies of feedstock assembly unit operations and biorefinery conversion processes to the degree that programmatic cost targets could not be met. The preprocessing unit operation produces a bulk flowable material that 1) improves handling and conveying efficiencies throughout the feedstock assembly system and biorefinery 2) increases biomass surface areas for improved pretreatment efficiencies, 3) reduces particle sizes for improved feedstock uniformity and density, and 4) fractionates structural components for improved compositional quality. The Idaho National Laboratory (INL) is tasked with defining the overall efficiency/effectiveness of current commercial hammer and fixed cutter grinding systems and other connecting systems such as harvest and collection, storage, transportation, and handling for a wide variety of feedstock types used in bioethanol or syngas production. This test plan details tasks and activities for two separate full-scale grinding tests: Material Characterization Test and Machine Characterization Test. For the Material Characterization Test, a small amount (~5-7 tons each) of several feedstock varieties will be ground. This test will define the fractionation characteristics of the grinder that affect the bulk density, particle size distribution, and quality of the size reduced biomass resulting from different separation screen sizes. A specific screen size will be selected based on the characteristics of the ground material. The Machine Characterization Test will then use this selected screen to grind several 30-ton batches of different feedstock varieties and moistures. This test will focus on identifying the performance parameters of the grinding system specific to the feed, fractionation, and screen separation components and their affect on machine capacity and efficiency.

  18. ACQUISITION PLANNING

    Office of Environmental Management (EM)

    --------------------------Chapter 7.1 (February 2015) ACQUISITION PLANNING Guiding Principles  Sound acquisition planning ensures that the contracting process is conducted in a timely manner, in accordance with statutory, regulatory, and policy requirements, and reflects the mission needs of the program.  An integrated team approach that includes appropriate representation from all organizations having an interest in the requirement will benefit the acquisition planning process. 

  19. ACQUISITION PLANNING

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April 2014) ACQUISITION PLANNING Guiding Principles  Sound acquisition planning ensures that the contracting process is conducted in a timely manner, in accordance with statutory, regulatory, and policy requirements, and reflects the mission needs of the program.  An integrated team approach that includes appropriate representation from all organizations having an interest in the requirement will benefit the acquisition planning process.  Contracting professionals play a key role in

  20. ACQUISITION PLANNING

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February 2015) ACQUISITION PLANNING Guiding Principles  Sound acquisition planning ensures that the contracting process is conducted in a timely manner, in accordance with statutory, regulatory, and policy requirements, and reflects the mission needs of the program.  An integrated team approach that includes appropriate representation from all organizations having an interest in the requirement will benefit the acquisition planning process.  Contracting professionals play a key role in

  1. Washington: Integrated Transportation Programs & Coordinated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Transportation Programs & Coordinated Regional Planning Washington: Integrated Transportation Programs & Coordinated Regional Planning November 6, 2013 - 5:42pm Addthis ...

  2. Second Line of Defense, Megaports Initiative, Operational Testing and Evaluation Plan, Port of Lazaro Cardenas, Mexico

    SciTech Connect (OSTI)

    Hughes, Jamie D.

    2012-05-30

    The purpose of the Operational Testing and Evaluation (OT&E) phases of the project is to prepare for turnover of the Megaports System supplied by U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA)located at the Export Lanes of the Port of Lazaro Cardenas, Mexicoto the Government of Mexico (GOM).

  3. A One System Integrated Approach to Simulant Selection for Hanford High Level Waste Mixing and Sampling Tests

    SciTech Connect (OSTI)

    Thien, Mike G.; Barnes, Steve M.

    2013-01-17

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capabilities using simulated Hanford High-Level Waste (HLW) formulations. This represents one of the largest remaining technical issues with the high-level waste treatment mission at Hanford. Previous testing has focused on very specific TOC or WTP test objectives and consequently the simulants were narrowly focused on those test needs. A key attribute in the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2 is to ensure testing is performed with a simulant that represents the broad spectrum of Hanford waste. The One System Integrated Project Team is a new joint TOC and WTP organization intended to ensure technical integration of specific TOC and WTP systems and testing. A new approach to simulant definition has been mutually developed that will meet both TOC and WTP test objectives for the delivery and receipt of HLW. The process used to identify critical simulant characteristics, incorporate lessons learned from previous testing, and identify specific simulant targets that ensure TOC and WTP testing addresses the broad spectrum of Hanford waste characteristics that are important to mixing, sampling, and transfer performance are described.

  4. Test Plan: Phase 1 demonstration of 3-phase electric arc melting furnace technology for vitrifying high-sodium content low-level radioactive liquid wastes

    SciTech Connect (OSTI)

    Eaton, W.C.

    1995-05-31

    This document provides a test plan for the conduct of electric arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384216] is the US Bureau of Mines, Department of the Interior, Albany Research Center, Albany, Oregon. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes feed preparation activities and melting of glass with Hanford LLW Double-Shell Slurry Feed waste simulant in a 3-phase electric arc (carbon electrode) furnace.

  5. Supplemental Immobilization Cast Stone Technology Development and Waste Form Qualification Testing Plan

    SciTech Connect (OSTI)

    Westsik, Joseph H.; Serne, R. Jeffrey; Pierce, Eric M.; Cozzi, Alex; Chung, Chul-Woo; Swanberg, David J.

    2013-05-31

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). The pretreatment facility will have the capacity to separate all of the tank wastes into the HLW and LAW fractions, and the HLW Vitrification Facility will have the capacity to vitrify all of the HLW. However, a second immobilization facility will be needed for the expected volume of LAW requiring immobilization. A number of alternatives, including Cast Stonea cementitious waste formare being considered to provide the additional LAW immobilization capacity.

  6. C:\WINNT\Profiles\caseys\DESKTOP\L T R C\PICs Program\Permanent Markers\PM Test Plan.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0-3175 Permanent Markers Testing Program Plan September 28, 2000 United States Department of Energy Waste Isolation Pilot Plant Carlsbad Area Office Carlsbad, New Mexico Permanent Markers Testing Program Plan Waste Isolation Pilot Plant Carlsbad, New Mexico DOE/WIPP 00-3175 September 28, 2000 DOE/WIPP 00-3175 -i- Table of Contents List of Abbreviations and Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 1.0 Introduction . . . . . . . . . . . .

  7. Corrective Action Decision Document/ Corrective Action Plan for Corrective Action Unit 443: Central Nevada Test Area-Subsurface Central Nevada Test Area, Nevada, Rev. No. 0

    SciTech Connect (OSTI)

    Susan Evans

    2004-11-01

    This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for the subsurface at the Central Nevada Test Area (CNTA) Corrective Action Unit (CAU) 443, CNTA - Subsurface, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996). CAU 443 is located in Hot Creek Valley in Nye County, Nevada, north of U.S. Highway 6, about 48 kilometers north of Warm Springs, Nevada. The CADD/CAP combines the decision document (CADD) with the corrective action plan (CAP) and provides or references the specific information necessary to recommend corrective actions for the UC-1 Cavity (Corrective Action Site 58-57-001) at CAU 443, as provided in the FFACO. The purpose of the CADD portion of the document (Section 1.0 to Section 4.0) is to identify and provide a rationale for the selection of a recommended corrective action alternative for the subsurface at CNTA. To achieve this, the following tasks were required: (1) Develop corrective action objectives; (2) Identify corrective action alternative screening criteria; (3) Develop corrective action alternatives; (4) Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria; and (5) Recommend a preferred corrective action alternative for the subsurface at CNTA. A Corrective Action Investigation (CAI) was performed in several stages from 1999 to 2003, as set forth in the ''Corrective Action Investigation Plan for the Central Nevada Test Area Subsurface Sites (Corrective Action Unit No. 443)'' (DOE/NV, 1999). Groundwater modeling was the primary activity of the CAI. Three phases of modeling were conducted for the Faultless underground nuclear test. The first involved the gathering and interpretation of geologic and hydrogeologic data into a three-dimensional numerical model of groundwater flow, and use of the output of the flow model for a transport model of radionuclide release and migration behavior (Pohlmann et al., 2000). The second modeling phase (known as a Data Decision Analysis [DDA]) occurred after the Nevada Division of Environmental Protection reviewed the first model and was designed to respond to concerns regarding model uncertainty (Pohll and Mihevc, 2000). The third modeling phase updated the original flow and transport model to incorporate the uncertainty identified in the DDA, and focused the model domain on the region of interest to the transport predictions. This third phase culminated in the calculation of contaminant boundaries for the site (Pohll et al., 2003).

  8. Treatability Test Plan for 300 Area Uranium Stabilization through Polyphosphate Injection

    SciTech Connect (OSTI)

    Vermeul, Vincent R.; Williams, Mark D.; Fritz, Brad G.; Mackley, Rob D.; Mendoza, Donaldo P.; Newcomer, Darrell R.; Rockhold, Mark L.; Williams, Bruce A.; Wellman, Dawn M.

    2007-06-01

    The U.S. Department of Energy has initiated a study into possible options for stabilizing uranium at the 300 Area using polyphosphate injection. As part of this effort, PNNL will perform bench- and field-scale treatability testing designed to evaluate the efficacy of using polyphosphate injections to reduced uranium concentrations in the groundwater to meet drinking water standards (30 ug/L) in situ. This technology works by forming phosphate minerals (autunite and apatite) in the aquifer that directly sequester the existing aqueous uranium in autunite minerals and precipitates apatite minerals for sorption and long term treatment of uranium migrating into the treatment zone, thus reducing current and future aqueous uranium concentrations. Polyphosphate injection was selected for testing based on technology screening as part of the 300-FF-5 Phase III Feasibility Study for treatment of uranium in the 300-Area.

  9. Corrective Action Investigation Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada: Revision 0

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2004-05-03

    The general purpose of this Corrective Action Investigation Plan is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technically viable corrective action alternatives (CAAs) for Corrective Action Unit (CAU) 543: Liquid Disposal Units, Nevada Test Site (NTS), Nevada. Located in Areas 6 and 15 on the NTS, CAU 543 is comprised of a total of seven corrective action sites (CASs), one in Area 6 and six in Area 15. The CAS in Area 6 consists of a Decontamination Facility and its components which are associated with decontamination of equipment, vehicles, and materials related to nuclear testing. The six CASs in Area 15 are located at the U.S. Environmental Protection Agency Farm and are related to waste disposal activities at the farm. Sources of possible contamination at Area 6 include potentially contaminated process waste effluent discharged through a process waste system, a sanitary waste stream generated within buildings of the Decon Facility, and radiologically contaminated materials stored within a portion of the facility yard. At Area 15, sources of potential contamination are associated with the dairy operations and the animal tests and experiments involving radionuclide uptake. Identified contaminants of potential concern include volatile organic compounds, semivolatile organic compounds, petroleum hydrocarbons, pesticides, herbicides, polychlorinated biphenyls, metals, and radionuclides. Three corrective action closure alternatives - No Further Action, Close in Place, or Clean Closure - will be recommended for CAU 543 based on an evaluation of all the data quality objective-related data. Field work will be conducted following approval of the plan. The results of the field investigation will support a defensible evaluation of CAAs that will be presented in the Corrective Action Decision Document.

  10. Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada

    SciTech Connect (OSTI)

    K. B. Campbell

    2002-04-01

    Corrective Action Unit (CAU) 490, Station 44 Burn Area is located on the Tonopah Test Range (TTR). CAU 490 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and includes for Corrective Action Sites (CASs): (1) Fire Training Area (CAS 03-56-001-03BA); (2) Station 44 Burn Area (CAS RG-56-001-RGBA); (3) Sandia Service Yard (CAS 03-58-001-03FN); and (4) Gun Propellant Burn Area (CAS 09-54-001-09L2).

  11. CLOSURE OF THE FAST FLUX TEST FACILITY (FFTF) CURRENT STATUS & FUTURE PLANS

    SciTech Connect (OSTI)

    BURKE, T.M.

    2005-04-13

    Deactivation activities are currently in progress at the Fast Flux Test Facility. These deactivation activities are intended to remove most hazardous materials and prepare the facility for final disposition. The two major hazards to be removed are the nuclear fuel and the alkali metal (most sodium) coolant. The fuel and coolant removal activities are proceeding well and are expected to complete in 2006. Plant systems are being shut down as allowed by completion of various fuel and coolant removal actions. A Decommissioning Environmental Impact Statement is in progress to evaluate a range of potential final disposition end states.

  12. Laboratory Testing of Bulk Vitrified Low-Activity Waste Forms to Support the 2005 Integrated Disposal Facility Performance Assessment

    SciTech Connect (OSTI)

    Pierce, Eric M.; McGrail, B. Peter; Bagaasen, Larry M.; Rodriguez, Elsa A.; Wellman, Dawn M.; Geiszler, Keith N.; Baum, Steven R.; Reed, Lunde R.; Crum, Jarrod V.; Schaef, Herbert T.

    2006-06-30

    The purpose of this report is to document the results from laboratory testing of the bulk vitri-fied (BV) waste form that was conducted in support of the 2005 integrated disposal facility (IDF) performance assessment (PA). Laboratory testing provides a majority of the key input data re-quired to assess the long-term performance of the BV waste package with the STORM code. Test data from three principal methods, as described by McGrail et al. (2000a; 2003a), are dis-cussed in this testing report including the single-pass flow-through test (SPFT) and product con-sistency test (PCT). Each of these test methods focuses on different aspects of the glass corrosion process. See McGrail et al. (2000a; 2003a) for additional details regarding these test methods and their use in evaluating long-term glass performance. In addition to evaluating the long-term glass performance, this report discusses the results and methods used to provided a recommended best estimate of the soluble fraction of 99Tc that can be leached from the engineer-ing-scale BV waste package. These laboratory tests are part of a continuum of testing that is aimed at improving the performance of the BV waste package.

  13. Laboratory Testing of Bulk Vitrified Low-Activity Waste Forms to Support the 2005 Integrated Disposal Facility Performance Assessment

    SciTech Connect (OSTI)

    Pierce, Eric M.; McGrail, B. Peter; Bagaasen, Larry M.; Rodriguez, Elsa A.; Wellman, Dawn M.; Geiszler, Keith N.; Baum, Steven R.; Reed, Lunde R.; Crum, Jarrod V.; Schaef, Herbert T.

    2005-03-31

    The purpose of this report is to document the results from laboratory testing of the bulk vitri-fied (BV) waste form that was conducted in support of the 2005 integrated disposal facility (IDF) performance assessment (PA). Laboratory testing provides a majority of the key input data re-quired to assess the long-term performance of the BV waste package with the STORM code. Test data from three principal methods, as described by McGrail et al. (2000a; 2003a), are dis-cussed in this testing report including the single-pass flow-through test (SPFT) and product con-sistency test (PCT). Each of these test methods focuses on different aspects of the glass corrosion process. See McGrail et al. (2000a; 2003a) for additional details regarding these test methods and their use in evaluating long-term glass performance. In addition to evaluating the long-term glass performance, this report discusses the results and methods used to provided a recommended best estimate of the soluble fraction of 99Tc that can be leached from the engineer-ing-scale BV waste package. These laboratory tests are part of a continuum of testing that is aimed at improving the performance of the BV waste package.

  14. Irradiation Programs and Test Plans to Assess High-Fluence Irradiation Assisted Stress Corrosion Cracking Susceptibility.

    SciTech Connect (OSTI)

    Teysseyre, Sebastien

    2015-03-01

    . Irradiation assisted stress corrosion cracking (IASCC) is a known issue in current reactors. In a 60 year lifetime, reactor core internals may experience fluence levels up to 15 dpa for boiling water reactors (BWR) and 100+ dpa for pressurized water reactors (PWR). To support a safe operation of our fleet of reactors and maintain their economic viability it is important to be able to predict any evolution of material behaviors as reactors age and therefore fluence accumulated by reactor core component increases. For PWR reactors, the difficulty to predict high fluence behavior comes from the fact that there is not a consensus of the mechanism of IASCC and that little data is available. It is however possible to use the current state of knowledge on the evolution of irradiated microstructure and on the processes that influences IASCC to emit hypotheses. This report identifies several potential changes in microstructure and proposes to identify their potential impact of IASCC. The susceptibility of a component to high fluence IASCC is considered to not only depends on the intrinsic IASCC susceptibility of the component due to radiation effects on the material but to also be related to the evolution of the loading history of the material and interaction with the environment as total fluence increases. Single variation type experiments are proposed to be performed with materials that are representative of PWR condition and with materials irradiated in other conditions. To address the lack of IASCC propagation and initiation data generated with material irradiated in PWR condition, it is proposed to investigate the effect of spectrum and flux rate on the evolution of microstructure. A long term irradiation, aimed to generate a well-controlled irradiation history on a set on selected materials is also proposed for consideration. For BWR, the study of available data permitted to identify an area of concern for long term performance of component. The efficiency of hydrogen water chemistry mitigation technology may decrease as fluence increases for high-stress intensity factors. This report describes a program plan to determine the efficiency of hydrogen water chemistry as a function of the stress intensity factor applied and fluence. The use of existing, available, materials and the generation of additional materials via irradiation in a research reactor are considered.

  15. APEX: A Prime EXperiment at Jefferson Lab - Test Run Results and Full Run Plans; Update

    SciTech Connect (OSTI)

    Beacham, James

    2015-06-01

    APEX is an experiment at Thomas Jefferson National Accelerator Facility (JLab) in Virginia, USA, that searches for a new gauge boson (A') with sub-GeV mass and coupling to ordinary matter of g' ~ (10^-6 - 10?)e. Electrons impinge upon a fixed target of high-Z material. An A' is produced via a process analogous to photon bremsstrahlung, decaying to an e?+e? pair. A test run was held in July of 2010, covering mA' = 175 to 250 MeV and couplings g'/e > 10?. A full run is approved and will cover mA' ~ 65 to 525 MeV and g'/e > 2.3 x 10??, and is expected to occur sometime in 2016 or 2017.

  16. CLOSURE OF THE FAST FLUX TEST FACILITY (FFTF) HISTORY & STATUS & FUTURE PLANS

    SciTech Connect (OSTI)

    FARABEE, O.A.

    2006-02-24

    In 1993, the US Department of Energy (DOE) decided to shut down the Fast Flux Test Facility (FFTF) due to lack of national missions that justified the annual operating budget of approximately $88M/year. The initial vision was to ''deactive'' the facility to an industrially and radiologically safe condition to allow long-term, minimal surveillance storage until approximately 2045. This approach would minimize near term cash flow and allow the radioactive decay of activated components. The final decontamination and decommissioning (D and D) would then be performed using then-current methodology in a safe and efficient manner. the philosophy has now changed to close coupling the initial deactivation with final D and D. This paper presents the status of the facility and focuses on the future challenge of sodium removal.

  17. Second Line of Defense Megaports Initiative Operational Testing and Evaluation Plan Colon Container Terminal (CCT) Panama

    SciTech Connect (OSTI)

    Newhouse, Robert N.

    2010-01-01

    Report on the Operational Testing and Evaluation to validate and baseline an operable system that meets the Second Line of Defense (SLD) mission requirements. An SLD system is defined as the detection technology and associated equipment, the system operators from the host country, the standard operating procedures (SOPs), and other elements such as training and maintenance which support long-term system sustainment. To this end, the activities conducted during the OT&E phase must demonstrate that the Megaports System can be operated effectively in real-time by Panama Direccion General de Aduanas (DGA Panama Customs) personnel to the standards of the U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA).

  18. Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

    1987-04-01

    The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

  19. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2008-09-30

    This Streamlined Approach for Environmental Restoration Plan covers activities associated with Corrective Action Unit (CAU) 107 of the Federal Facility Agreement and Consent Order (FFACO, 1996 [as amended February 2008]). CAU 107 consists of the following Corrective Action Sites (CASs) located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site. (1) CAS 01-23-02, Atmospheric Test Site - High Alt; (2) CAS 02-23-02, Contaminated Areas (2); (3) CAS 02-23-03, Contaminated Berm; (4) CAS 02-23-10, Gourd-Amber Contamination Area; (5) CAS 02-23-11, Sappho Contamination Area; (6) CAS 02-23-12, Scuttle Contamination Area; (7) CAS 03-23-24, Seaweed B Contamination Area; (8) CAS 03-23-27, Adze Contamination Area; (9) CAS 03-23-28, Manzanas Contamination Area; (10) CAS 03-23-29, Truchas-Chamisal Contamination Area; (11) CAS 04-23-02, Atmospheric Test Site T4-a; (12) CAS 05-23-06, Atmospheric Test Site; (13) CAS 09-23-06, Mound of Contaminated Soil; (14) CAS 10-23-04, Atmospheric Test Site M-10; and (15) CAS 18-23-02, U-18d Crater (Sulky). Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, engineering drawings, field screening, analytical results, and the results of data quality objectives process (Section 3.0), closure in place with administrative controls or no further action will be implemented for CAU 107. CAU 107 closure activities will consist of verifying that the current postings required under Title 10 Code of Federal Regulations (CFR) Part 835 are in place and implementing use restrictions (URs) at two sites, CAS 03-23-29 and CAS 18-23-02. The current radiological postings combined with the URs are adequate administrative controls to limit site access and worker dose.

  20. CLOSURE OF THE FAST FLUX TEST FACILITY (FFTF) CURRENT STATUS & FUTURE PLANS

    SciTech Connect (OSTI)

    LESPERANCE, C.P.

    2007-05-23

    The Fast Flux Test Facility (FFTF) was a 400 MWt sodium-cooled fast reactor situated on the U.S. Department of Energy's (DOE) Hanford Site in the southeastern portion of Washington State. DOE issued the final order to shut down the facility in 2001, when it was concluded that there was no longer a need for FFTF. Deactivation activities are in progress to remove or stabilize major hazards and deactivate systems to achieve end points documented in the project baseline. The reactor has been defueled, and approximately 97% of the fuel has been removed from the facility. Approximately 97% of the sodium has been drained from the plant's systems and placed into an on-site Sodium Storage Facility. The residual sodium will be kept frozen under a blanket of inert gas until it is removed later as part of the facility's decontamination and decommissioning (D&D). Plant systems have been shut down and placed in a low-risk state to minimize requirements for surveillance and maintenance. D&D work cannot begin until an Environmental Impact Statement has been prepared to evaluate various end state options and to provide a basis for selecting one of the options. The Environmental Impact Statement is expected to be issued in 2009.

  1. Integrated exposure and dose modeling and analysis system. 1. Formulation and testing of microenvironmental and pharmacokinetic components

    SciTech Connect (OSTI)

    Georgopoulos, P.G.; Walia, A.; Roy, A.; Lioy, P.J.

    1997-01-01

    The conceptual and theoretical framework for a modular integrated Exposure and Dose Modeling and Analysis System (EDMAS) has been formulated, and its stepwise implementation and testing is currently in progress. This system aims to provide state-of-the art tools for performing integrated assessments of exposure and dose for individuals and populations. The integration of modeling components with each other as well as with available environmental, exposure, and toxicological databases in being accomplished with the use of computational tools that include interactive simulation environments, Geographical information Systems, and various data retrieval, management, statistical analysis, and visualization methods. This paper overviews the structure and modular nature of this integrated modeling system and focuses specifically on two of its components: (a) a hierarchy of physiologically based pharmacokinetic models (PBPKM), representing various levels of detail and sophistication, and (b) a family of microenvironmental models, that incorporate complex physical and chemical transformations. The deterministic implementation of these components is also presented here in two test applications: (i) a case study of benzene exposure indoors resulting from the volatilization of contaminated tap water and (ii) a case study of photochemical pollution infiltration indoors, in an office building environment. 77 refs., 6 figs., 2 tabs.

  2. Plan for Using Solar-Powered Jack Pumps to Sample Groundwater at the Nevada Test Site

    SciTech Connect (OSTI)

    David Hudson, Charles Lohrstorfer, Bruce Hurley

    2007-05-03

    Groundwater is sampled from 39 monitoring wells on the Nevada Test Site (NTS) as part of the Routine Radiological Environmental Monitoring Program. Many of these wells were not designed or constructed for long-term groundwater monitoring. Some have extensive completion zones and others have obstructions such as pumps and tubing. The high-volume submersible pumps in some wells are unsuitable for long-term monitoring and result in large volumes of water that may have to be contained and characterized before subsequent disposition. The configuration of most wells requires sampling stagnant well water with a wireline bailer. Although bailer sampling allows for the collection of depth-discrete samples, the collected samples may not be representative of local groundwater because no well purging is done. Low-maintenance, solar-powered jack pumps will be deployed in nine of these onsite monitoring wells to improve sample quality. These pumps provide the lift capacity to produce groundwater from the deep aquifers encountered in the arid environment of the NTS. The water depths in these wells range from 700 to 2,340 ft below ground surface. The considerable labor and electrical power requirements of electric submersible pumps are eliminated once these pumps are installed. Access tubing will be installed concurrent with the installation of the pump string to provide downhole access for water-level measurements or other wireline instruments. Micro-purge techniques with low pump rates will be used to minimize purge volumes and reduce hydraulic gradients. The set depths of the pumps will be determined by the borehole characteristics and screened interval.

  3. Integrating spatial support tools into strategic planning-SEA of the GMS North-South Economic Corridor Strategy and Action Plan

    SciTech Connect (OSTI)

    Ramachandran, Pavit; Linde, Lothar

    2011-11-15

    The GMS countries, supported by the Asian Development Bank, have adopted a holistic, multidimensional approach to strengthen infrastructural linkages and facilitate cross border trade through (i) the establishment of a trans-boundary road connecting two economic nodes across marginalised areas, followed by 2) facilitation of environmentally and socially sound investments in these newly connected areas as a means to develop livelihoods. The North-South Economic Corridor is currently in its second phase of development, with investment opportunities to be laid out in the NSEC Strategy and Action Plan (SAP). It targets the ecologically and culturally sensitive border area between PR China's Yunnan Province, Northern Lao PDR, and Thailand. A trans-boundary, cross-sectoral Strategic Environmental Assessment was conducted to support the respective governments in assessing potential environmental and social impacts, developing alternatives and mitigation options, and feeding the findings back into the SAP writing process. Given the spatial dimension of corridor development-both with regard to opportunities and risks-particular emphasis was put in the application of spatial modelling tools to help geographically locate and quantify impacts as a means to guide interventions and set priorities.

  4. Technical Highlight: NREL Tests Integrated Heat Pump Water Heater Performance in Different Climates

    SciTech Connect (OSTI)

    Sparn, Bethany

    2012-01-01

    This technical highlight describes NREL tests to capture information about heat pump performance across a wide range of ambient conditions for five heat pump water heaters.

  5. Distribution Grid Integration

    Broader source: Energy.gov [DOE]

    The DOE Systems Integration team funds distribution grid integration research and development (R&D) activities to address the technical issues that surround distribution grid planning,...

  6. FINAL REPORT INTEGRATED DM1200 MELTER TESTING USING AZ 102 AND C 106/AY-102 HLW SIMULANTS: HLW SIMULANT VERIFICATION VSL-05R5800-1 REV 0 6/27/05

    SciTech Connect (OSTI)

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D'ANGELO NA; BRANDYS M; KOT WK; PEGG IL

    2011-12-29

    The principal objectives of the DM1200 melter tests were to determine the effects of feed rheology, feed solid content, and bubbler configuration on glass production rate and off-gas system performance while processing the HLW AZ-101 and C-106/AY-102 feed compositions; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components, as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and perform pre- and post test inspections of system components. The specific objectives (including test success criteria) of this testing, along with how each objective was met, are outlined in a table. The data provided in this Final Report address the impacts of HLW melter feed rheology on melter throughput and validation of the simulated HLW melter feeds. The primary purpose of this testing is to further validate/verify the HLW melter simulants that have been used for previous melter testing and to support their continued use in developing melter and off-gas related processing information for the Project. The primary simulant property in question is rheology. Simulants and melter feeds used in all previous melter tests were produced by direct addition of chemicals; these feed tend to be less viscous than rheological the upper-bound feeds made from actual wastes. Data provided here compare melter processing for the melter feed used in all previous DM100 and DM1200 tests (nominal melter feed) with feed adjusted by the feed vendor (NOAH Technologies) to be more viscous, thereby simulating more closely the upperbounding feed produced from actual waste. This report provides results of tests that are described in the Test Plan for this work. The Test Plan is responsive to one of several test objectives covered in the WTP Test Specification for this work; consequently, only part of the scope described in the Test Specification was addressed in this particular Test Plan. For the purpose of comparison, the tests reported here were performed with AZ-102 and C-106/AY-102 HLW simulants and glass compositions that are essentially the same as those used for recent DM1200 tests. One exception was the use of an alternate, higher-waste-loading C-106/AY-102 glass composition that was used in previous DM100 tests to further evaluate the performance of the optimized bubbler configuration.

  7. Elevated voltage level I{sub DDQ} failure testing of integrated circuits

    DOE Patents [OSTI]

    Righter, A.W.

    1996-05-21

    Burn in testing of static CMOS IC`s is eliminated by I{sub DDQ} testing at elevated voltage levels. These voltage levels are at least 25% higher than the normal operating voltage for the IC but are below voltage levels that would cause damage to the chip. 4 figs.

  8. Elevated voltage level I.sub.DDQ failure testing of integrated circuits

    DOE Patents [OSTI]

    Righter, Alan W. (Albuquerque, NM)

    1996-01-01

    Burn in testing of static CMOS IC's is eliminated by I.sub.DDQ testing at elevated voltage levels. These voltage levels are at least 25% higher than the normal operating voltage for the IC but are below voltage levels that would cause damage to the chip.

  9. INTEGRAL BENCHMARK DATA FOR NUCLEAR DATA TESTING THROUGH THE ICSBEP AND THE NEWLY ORGANIZED IRPHEP

    SciTech Connect (OSTI)

    J. Blair Briggs; Lori Scott; Yolanda Rugama; Enrico Satori

    2007-04-01

    The status of the International Criticality Safety Benchmark Evaluation Project (ICSBEP) was last reported in a nuclear data conference at the International Conference on Nuclear Data for Science and Technology, ND-2004, in Santa Fe, New Mexico. Since that time the number and type of integral benchmarks have increased significantly. Included in the ICSBEP Handbook are criticality-alarm / shielding and fundamental physic benchmarks in addition to the traditional critical / subcritical benchmark data. Since ND 2004, a reactor physics counterpart to the ICSBEP, the International Reactor Physics Experiment Evaluation Project (IRPhEP) was initiated. The IRPhEP is patterned after the ICSBEP, but focuses on other integral measurements, such as buckling, spectral characteristics, reactivity effects, reactivity coefficients, kinetics measurements, reaction-rate and power distributions, nuclide compositions, and other miscellaneous-type measurements in addition to the critical configuration. The status of these two projects is discussed and selected benchmarks highlighted in this paper.

  10. New Pump and Treat Facility Remedial Action Work Plan For Test Area North Final Groundwater Remediation, Operable Unit 1-07B

    SciTech Connect (OSTI)

    Nelson, L. O.

    2007-06-12

    This remedial action work plan identifies the approach and requirements for implementing the medial zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory. This plan details the management approach for the construction and operation of the New Pump and Treat Facility (NPTF). As identified in the remediatial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action.

  11. Corrective Action Plan for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    K. B. Campbell

    2002-06-01

    This Corrective Action Plan (CAP) provides selected corrective action alternatives and proposes the closure methodology for Corrective Action Unit (CAU) 262, Area 25 Septic Systems and Underground Discharge Point. CAU 262 is identified in the Federal Facility Agreement and Consent Order (FFACO) of 1996. Remediation of CAU 262 is required under the FFACO. CAU 262 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles [mi]) northwest of Las Vegas, Nevada. The nine Corrective Action Sites (CASs) within CAU 262 are located in the Nuclear Rocket Development Station complex. Individual CASs are located in the vicinity of the Reactor Maintenance, Assembly, and Disassembly (R-MAD); Engine Maintenance, Assembly, and Disassembly (E-MAD); and Test Cell C compounds. CAU 262 includes the following CASs as provided in the FFACO (1996); CAS 25-02-06, Underground Storage Tank; CAS 25-04-06, Septic Systems A and B; CAS 25-04-07, Septic System; CAS 25-05-03, Leachfield; CAS 25-05-05, Leachfield; CAS 25-05-06, Leachfield; CAS 25-05-08, Radioactive Leachfield; CAS 25-05-12, Leachfield; and CAS 25-51-01, Dry Well. Figures 2, 3, and 4 show the locations of the R-MAD, the E-MAD, and the Test Cell C CASs, respectively. The facilities within CAU 262 supported nuclear rocket reactor engine testing. Activities associated with the program were performed between 1958 and 1973. However, several other projects used the facilities after 1973. A significant quantity of radioactive and sanitary waste was produced during routine operations. Most of the radioactive waste was managed by disposal in the posted leachfields. Sanitary wastes were disposed in sanitary leachfields. Septic tanks, present at sanitary leachfields (i.e., CAS 25-02-06,2504-06 [Septic Systems A and B], 25-04-07, 25-05-05,25-05-12) allowed solids to settle out of suspension prior to entering the leachfield. Posted leachfields do not contain septic tanks. All CASs located in CAU 262 are inactive or abandoned. However, some leachfields may still receive liquids from runoff during storm events. Results from the 2000-2001 site characterization activities conducted by International Technology (IT) Corporation, Las Vegas Office are documented in the Corrective Action Investigation Report for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada. This document is located in Appendix A of the Corrective Action Decision Document for CAU 262. Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada. (DOE/NV, 2001).

  12. Scientific design of Purdue University Multi-Dimensional Integral Test Assembly (PUMA) for GE SBWR

    SciTech Connect (OSTI)

    Ishii, M.; Ravankar, S.T.; Dowlati, R.

    1996-04-01

    The scaled facility design was based on the three level scaling method; the first level is based on the well established approach obtained from the integral response function, namely integral scaling. This level insures that the stead-state as well as dynamic characteristics of the loops are scaled properly. The second level scaling is for the boundary flow of mass and energy between components; this insures that the flow and inventory are scaled correctly. The third level is focused on key local phenomena and constitutive relations. The facility has 1/4 height and 1/100 area ratio scaling; this corresponds to the volume scale of 1/400. Power scaling is 1/200 based on the integral scaling. The time will run twice faster in the model as predicted by the present scaling method. PUMA is scaled for full pressure and is intended to operate at and below 150 psia following scram. The facility models all the major components of SBWR (Simplified Boiling Water Reactor), safety and non-safety systems of importance to the transients. The model component designs and detailed instrumentations are presented in this report.

  13. Progress Letter Report on Bending Fatigue Test System Development for Spent Nuclear Fuel Vibration Integrity Study (Out-of-cell fatigue testing development - Task 2.4)

    SciTech Connect (OSTI)

    Wang, Jy-An John [ORNL; Wang, Hong [ORNL; Cox, Thomas S [ORNL; Baldwin, Charles A [ORNL; Bevard, Bruce Balkcom [ORNL

    2013-08-01

    Vibration integrity of high burn-up spent nuclear fuel in transportation remains to be a critical component of US nuclear waste management system. The structural evaluation of package for spent fuel transportation eventually will need to see if the content or spent fuel is in a subcritical condition. However, a system for testing and characterizing such spent fuel is still lacking mainly due to the complication involved with dealing radioactive specimens in a hot cell environment. Apparently, the current state-of-the-art in spent fuel research and development is quite far away from the delivery of reliable mechanical property data for the assessment of spent fuels in the transport package evaluation. Under the sponsorship of US NRC, ORNL has taken the challenge in developing a robust testing system for spent fuel in hot cell. An extensive literature survey was carried out and unique requirements of such testing system were identified. The U-frame setup has come to the top among various designs examined for reverse bending fatigue test of spent fuel rod. The U-frame has many features that deserve mentioned here: Easy to install spent fuel rod in test; Less linkages than in conventional bending test setup such as three-point or four-point bending; Target the failure mode relevant to the fracture of spent fuel rod in transportation by focusing on pure bending; The continuous calibrations and modifications resulted in the third generation (3G) U-frame testing setup. Rigid arms are split along the LBB axis at rod sample ends. For each arm, this results in a large arm body and an end piece. Mating halves of bushings were modified into two V-shaped surfaces on which linear roller bearings (LRB) are embedded. The rod specimen is installed into the test fixture through opening and closing slide end-pieces. The 3G apparently has addressed major issues of setup identified in the previous stage and been proven to be eligible to be further pursued in this project. On the other hand, the purchase of universal testing machine or Bose dual LM2 TB was completed and the testing system was delivered to ORNL in August 2012. The preliminary confirmation of the system and on-site training were given by Bose field engineer and regional manager on 8/1-8/2/2012. The calibration of Bose testing system has been performed by ORNL because the integration of ORNL setup into the Bose TestBench occurred after the installation. Major challenge with this process arose from two aspects: 1) the load control involves two load cells, and 2) U-frame setup itself is a non-standard specimen. ORNL has been able to implement the load control through Cycle Indirect along with pinning the U-frame setup. Two meetings with ORNL hot-cell group (November 2012 and January 2013) were held to discuss the potential issues with both epoxy mounting of rigid sleeve and U-frame setup. Many suggestions were provided to make the procedure friendlier to the manipulator in hot cell. Addressing of these suggestions resulted in another cycle of modifications of both vise mold and setup. The initial meeting with ORNL I&C group occurred in November 2012 with regard to the Bose cable modification and design of central panel to integrate the cables and wires. The first round of cable modification and central panel fabrication was completed in February 2012. The testing with the modified cables exhibited substantial noises and the testing system was not shown to be stable. It was believed the cross talk was responsible to the noise, and a central panel with a better grounding and shielding was highly recommended. The central panel has been re-designed and fabricated in March 2013. In the subsequent period, the ORNL made substantial effort to debug the noises with the load cell channel, and to resolve the noises and nonlinearity with RDP LVDTs related to the integration of RDP LVDTs to Bose system. At the same time, ORNL has completed the verification tests of Bose test system, including cycle tests under reversal bending in load control, bending tests under monotonic load, and cycle test

  14. Corrective Action Investigation Plan for Corrective Action Unit 562: Waste Systems Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2009-04-01

    Corrective Action Unit 562 is located in Areas 2, 23, and 25 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 562 is comprised of the 13 corrective action sites (CASs) listed below: 02-26-11, Lead Shot 02-44-02, Paint Spills and French Drain 02-59-01, Septic System 02-60-01, Concrete Drain 02-60-02, French Drain 02-60-03, Steam Cleaning Drain 02-60-04, French Drain 02-60-05, French Drain 02-60-06, French Drain 02-60-07, French Drain 23-60-01, Mud Trap Drain and Outfall 23-99-06, Grease Trap 25-60-04, Building 3123 Outfalls These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on December 11, 2008, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 562. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the corrective action investigation for CAU 562 includes the following activities: Move surface debris and/or materials, as needed, to facilitate sampling. Conduct radiological surveys. Perform field screening. Collect and submit environmental samples for laboratory analysis to determine the nature and extent of any contamination released by each CAS. Collect samples of source material to determine the potential for a release. Collect samples of potential remediation wastes. Collect quality control samples. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; DOE, Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996; as amended February 2008). Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval of the plan.

  15. The TST: A small Steady-State Tokamak for Integrated Divertor Testing

    SciTech Connect (OSTI)

    Peng, Y.K.M.; Colchin, R.J.; Swain, D.W.; Nelson, B.E.; Monday, J.F.

    1993-09-01

    This report discusses the following topics: The TST program; the TST physics basis; the TST auxiliary H&CD systems; the test divertors; the TST device; and ancillary systems.

  16. Streamlined approach for environmental restoration plan for corrective action unit 430, buried depleted uranium artillery round No. 1, Tonopah test range

    SciTech Connect (OSTI)

    NONE

    1996-09-01

    This plan addresses actions necessary for the restoration and closure of Corrective Action Unit (CAU) No. 430, Buried Depleted Uranium (DU) Artillery Round No. 1 (Corrective Action Site No. TA-55-003-0960), a buried and unexploded W-79 Joint Test Assembly (JTA) artillery test projectile with high explosives (HE), at the U.S. Department of Energy, Nevada Operations Office (DOE/NV) Tonopah Test Range (TTR) in south-central Nevada. It describes activities that will occur at the site as well as the steps that will be taken to gather adequate data to obtain a notice of completion from Nevada Division of Environmental Protection (NDEP). This plan was prepared under the Streamlined Approach for Environmental Restoration (SAFER) concept, and it will be implemented in accordance with the Federal Facility Agreement and Consent Order (FFACO) and the Resource Conservation and Recovery Act (RCRA) Industrial Sites Quality Assurance Project Plan.

  17. Integrated Dry NO sub x /SO sub 2 Emissions Control System baseline test report, November 11--December 15, 1991

    SciTech Connect (OSTI)

    Shiomoto, G.H.; Smith, R.A.

    1992-03-01

    The DOE sponsored Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System program, which is a Clean Coal Technology Ill demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low sulfur western coal. The project goal is to demonstrate 70 percent reductions in NO{sub x} and S0{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) urea injection for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high sulfur coal will also be tested. This report documents the first baseline test results conducted during the program. The baseline tests were conducted with the original burners and auxiliary equipment and represent the unmodified boiler emissions. The burner design of Arapahoe Unit 4 results in relatively high NO{sub x} levels ranging from 740 to 850 ppM (corrected to 3% O{sub 2}, dry) over the load range. Excess air level was the primary factor influencing NO{sub x} emissions. During normal boiler operations, there was a wide range in NO{sub x} emissions, due to the variations of excess air, boiler load and other, secondary parameters. SO{sub 2} emissions ranged from 350 to 600 ppM (corrected to 3% O{sub 2}, dry) and reflected variations in the coal sulfur content.

  18. Assessment of the integrity of spent fuel assemblies used in dry storage demonstrations at the Nevada Test Site

    SciTech Connect (OSTI)

    Johnson, A.B. Jr.; Dobbins, J.C.; Zaloudek, F.R.

    1987-07-01

    This report summarizes the histories of 17 Zircaloy-clad spent fuel assemblies used in dry storage tests and demonstrations at the Engine Maintenance and Disassembly (EMAD) and Climax facilities at the Nevada Test Site (NTS). The 18th assembly was shipped to the Battelle Columbus Laboratory (BCL) and remained there for extensive characterization and as a source of specimens for whole-rod and rod-segment dry storage tests. The report traces the history of the assemblies after discharge from the Turkey Point Unit 3 pressurized-water reactor (1975 and 1977) through shipment (first arrival at EMAD in December 1978), dry storage tests and demonstrations, and shipment by truck cask from EMAD to the Idaho National Engineering Laboratory (INEL) in May/June 1986. The principal objectives of this report are to assess and document the integrity of the fuel during the extensive dry storage activities at NTS and BCL, and to briefly summarize the dry storage technologies and procedures demonstrated in this program. The dry storage tests and demonstrations involved the following concepts and facilities: (1) surface drywells (EMAD); (2) deep drywells (425 m underground in the Climax granite formation); (3) concrete silo (EMAD); (4) air-cooled vault (EMAD); (5) electrically-heated module for fuel assembly thermal calibration and testing (EMAD/FAITM). 20 refs., 43 figs., 9 tabs.

  19. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) verification and validation plan. version 1.

    SciTech Connect (OSTI)

    Bartlett, Roscoe Ainsworth; Arguello, Jose Guadalupe, Jr.; Urbina, Angel; Bouchard, Julie F.; Edwards, Harold Carter; Freeze, Geoffrey A.; Knupp, Patrick Michael; Wang, Yifeng; Schultz, Peter Andrew; Howard, Robert (Oak Ridge National Laboratory, Oak Ridge, TN); McCornack, Marjorie Turner

    2011-01-01

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. To meet this objective, NEAMS Waste IPSC M&S capabilities will be applied to challenging spatial domains, temporal domains, multiphysics couplings, and multiscale couplings. A strategic verification and validation (V&V) goal is to establish evidence-based metrics for the level of confidence in M&S codes and capabilities. Because it is economically impractical to apply the maximum V&V rigor to each and every M&S capability, M&S capabilities will be ranked for their impact on the performance assessments of various components of the repository systems. Those M&S capabilities with greater impact will require a greater level of confidence and a correspondingly greater investment in V&V. This report includes five major components: (1) a background summary of the NEAMS Waste IPSC to emphasize M&S challenges; (2) the conceptual foundation for verification, validation, and confidence assessment of NEAMS Waste IPSC M&S capabilities; (3) specifications for the planned verification, validation, and confidence-assessment practices; (4) specifications for the planned evidence information management system; and (5) a path forward for the incremental implementation of this V&V plan.

  20. Achieving New Source Performance Standards (NSPS) Emission Standards Through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion

    SciTech Connect (OSTI)

    Wayne Penrod

    2006-12-31

    The objective of this project was to demonstrate the use of an Integrated Combustion Optimization System to achieve NO{sub X} emission levels in the range of 0.15 to 0.22 lb/MMBtu while simultaneously enabling increased power output. The project plan consisted of the integration of low-NO{sub X} burners and advanced overfire air technology with various process measurement and control devices on the Holcomb Station Unit 1 boiler. The plan included the use of sophisticated neural networks or other artificial intelligence technologies and complex software to optimize several operating parameters, including NO{sub X} emissions, boiler efficiency, and CO emissions. The program was set up in three phases. In Phase I, the boiler was equipped with sensors that can be used to monitor furnace conditions and coal flow to permit improvements in boiler operation. In Phase II, the boiler was equipped with burner modifications designed to reduce NO{sub X} emissions and automated coal flow dampers to permit on-line fuel balancing. In Phase III, the boiler was to be equipped with an overfire air system to permit deep reductions in NO{sub X} emissions. Integration of the overfire air system with the improvements made in Phases I and II would permit optimization of boiler performance, output, and emissions. This report summarizes the overall results from Phases I and II of the project. A significant amount of data was collected from the combustion sensors, coal flow monitoring equipment, and other existing boiler instrumentation to monitor performance of the burner modifications and the coal flow balancing equipment.

  1. Corrective Action Investigation Plan for Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nevada (Revision 1)

    SciTech Connect (OSTI)

    USDOE/NV

    1999-07-01

    This Corrective Action Investigation Plan (CAIP) has been developed for Frenchman Flat Corrective Action Unit (CAU) 98. The Frenchman Flat CAU is located along the eastern border of the Nevada Test Site (NTS) and includes portions of Areas 5 and 11. The Frenchman Flat CAU constitutes one of several areas of the Nevada Test Site used for underground nuclear testing in the past. The nuclear tests resulted in groundwater contamination in the vicinity as well as downgradient of the underground test areas. The CAIP describes the Corrective Action Investigation (CAI) to be conducted at the Frenchman Flat CAU to evaluate the extent of contamination in groundwater due to the underground nuclear testing. The Frenchman Flat CAI will be conducted by the Underground Test Area (UGTA) Project which is a part of the U.S. Department of Energy, Nevada Operations Office (DOE/NV) Environmental Restoration Project. The CAIP is a requirement of the Federal Facility Agreement and Consent Order (FFACO) (1996 ) agreed to by the U.S. Department of Energy (DOE), the Nevada Division of Environmental Protection (NDEP), and the U.S. Department of Defense (DoD). Based on the general definition of a CAI from Section IV.14 of the FFACO, the purpose of the CAI is ''...to gather data sufficient to characterize the nature, extent, and rate of migration or potential rate of migration from releases or discharges of pollutants or contaminants and/or potential releases or discharges from corrective action units identified at the facilities...'' (FFACO, 1996). However, for the Underground Test Area (UGTA) CAUs, ''...the objective of the CAI process is to define boundaries around each UGTA CAU that establish areas that contain water that may be unsafe for domestic and municipal use.'', as stated in Appendix VI of the FFACO (1996). According to the UGTA strategy (Appendix VI of the FFACO), the CAI of a given CAU starts with the evaluation of the existing data. New data collection activities are generally contingent upon the results of the modeling and may or may not be part of the CAI. Such is the case for the Frenchman Flat CAU. The current scope of the Frenchman Flat CAI includes the development and use of a three-dimensional (3-D), numerical, CAU-scale groundwater flow and contaminant transport model to predict the location of the contaminant boundary. The CAU model will be developed and used to predict the location of the contaminant boundary. The scope of this CAI does not currently include any characterization activities; however, such activities will be conducted if the CAU model results indicate that further characterization information is needed to develop a sufficiently reliable CAU model. Two areas of importance to the CAU model are the model area and the investigation area. The CAU-model area will be selected to encompass the Frenchman Flat CAU and the region located immediately downgradient where contamination may migrate. The extent of the CAU-model area is dependent on the extent of contamination and is uncertain at this point. The extent of the investigation area is not expected to increase during the CAI.

  2. Corrective Action Plan for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    D. L. Gustafason

    2001-02-01

    This Corrective Action Plan (CAP) has been prepared for Corrective Action Unit (CAU) 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order of 1996. This CAP provides the methodology for implementing the approved corrective action alternative as listed in the Corrective Action Decision Document (U.S. Department of Energy, Nevada Operations Office, 2000). The CAU includes two Corrective Action Sites (CASs): 25-23-09, Contaminated Waste Dump Number 1; and 25-23-03, Contaminated Waste Dump Number 2. Investigation of CAU 143 was conducted in 1999. Analytes detected during the corrective action investigation were evaluated against preliminary action levels to determine constituents of concern for CAU 143. Radionuclide concentrations in disposal pit soil samples associated with the Reactor Maintenance, Assembly, and Disassembly Facility West Trenches, the Reactor Maintenance, Assembly, and Disassembly Facility East Trestle Pit, and the Engine Maintenance, Assembly, and Disassembly Facility Trench are greater than normal background concentrations. These constituents are identified as constituents of concern for their respective CASs. Closure-in-place with administrative controls involves use restrictions to minimize access and prevent unauthorized intrusive activities, earthwork to fill depressions to original grade, placing additional clean cover material over the previously filled portion of some of the trenches, and placing secondary or diversion berm around pertinent areas to divert storm water run-on potential.

  3. Corrective Action Investigation Plan for Corrective Action Unit 552: Area 12 Muckpile and Ponds, Nevada Test Site, Nevada: Revision 0

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2004-04-06

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach for collecting the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 552: Area 12 Muckpile and Ponds, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in Area 12 on the NTS, CAU 552 consists of two Corrective Action Sites (CASs): 12-06-04, Muckpile; 12-23-05, Ponds. Corrective Action Site 12-06-04 in Area 12 consists of the G-Tunnel muckpile, which is the result of tunneling activities. Corrective Action Site 12-23-05 consists of three dry ponds adjacent to the muckpile. The toe of the muckpile extends into one of the ponds creating an overlap of two CASs. The purpose of the investigation is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technic ally viable corrective actions. The results of the field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  4. TEST PLAN AND PROCEDURE FOR THE EXAMINATION OF TANK 241-AY-101 MULTI-PROBE CORROSION MONITORING SYSTEM

    SciTech Connect (OSTI)

    WYRWAS RB; PAGE JS; COOKE GS

    2012-04-19

    This test plan describes the methods to be used in the forensic examination of the Multi-probe Corrosion Monitoring System (MPCMS) installed in the double-shell tank 241-AY-101 (AY-101). The probe was designed by Applied Research and Engineering Sciences (ARES) Corporation. The probe contains four sections, each of which can be removed from the tank independently (H-14-107634, AY-101 MPCMS Removable Probe Assembly) and one fixed center assembly. Each removable section contains three types of passive corrosion coupons: bar coupons, round coupons, and stressed C-rings (H-14-l07635, AY-101 MPCMS Details). Photographs and weights of each coupon were recorded and reported on drawing H-14-107634 and in RPP-RPT-40629, 241-AY-101 MPCMS C-Ring Coupon Photographs. The coupons will be the subject of the forensic analyses. The purpose of this examination will be to document the nature and extent of corrosion of the 29 coupons. This documentation will consist of photographs and photomicrographs of the C-rings and round coupons, as well as the weights of the bar and round coupons during corrosion removal. The total weight loss of the cleaned coupons will be used in conjunction with the surface area of each to calculate corrosion rates in mils per year. The bar coupons were presumably placed to investigate the liquid-air-interface. An analysis of the waste level heights in the waste tank will be investigated as part of this examination.

  5. Insulated Concrete Form Walls Integrated With Mechanical Systems in a Cold Climate Test House

    SciTech Connect (OSTI)

    Mallay, D.; Wiehagen, J.

    2014-09-01

    Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction. This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate.

  6. 2014-06-18 Issuance: Test Procedure for Integrated Light-Emitting Diode Lamps; Supplemental Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register Supplemental Notice of Proposed Rulemaking regarding Test Procedures for Integrated Light-Emitting Diode Lamps, as issued by the Deputy Assistant Secretary for Energy Efficiency on June 18, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  7. 2014-05-16 Issuance: Test Procedures for Integrated Light-Emitting Diode Lamps; Supplemental Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register supplemental notice of proposed rulemaking regarding test procedures for integrated light-emitting diode lamps, as issued by the Deputy Assistant Secretary for Energy Efficiency on May 16, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  8. SRC burn test in 700-hp oil-designed boiler. Volume 1. Integrated report. Final technical report

    SciTech Connect (OSTI)

    Not Available

    1983-09-01

    This burn test program was conducted during the period of August 1982 to February 1983 to demonstrate that Solvent Refined Coal (SRC) products can displace petroleum as a boiler fuel in oil- and gas-designed boilers. The test program was performed at the U.S. Department of Energy's Pittsburgh Energy Technology Center (PETC). Three forms of SRC (pulverized SRC, a solution of SRC dissolved in process-derived distillates, and a slurry of SRC and water) and No. 6 Fuel Oil were evaluated in the 700-hp (30 x 10/sup 6/ Btu/hour) watertube, oil-designed boiler facility at PETC. The test program was managed by the International Coal Refining Company (ICRC) and sponsored by the Department of Energy. Other organizations were involved as necessary to provide the expertise required to execute the test program. This final report represents an integrated overview of the test program conducted at PETC. More detailed information with preliminary data can be obtained from separate reports prepared by PETC, Southern Research Institute, Wheelabrator-Frye, Babcock and Wilcox, and Combustion Engineering. These are presented as Annex Volumes A-F. 25 references, 41 figures, 15 tables.

  9. NREL Tests Integrated Heat Pump Water Heater Performance in Different Climates (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    This technical highlight describes NREL tests to capture information about heat pump performance across a wide range of ambient conditions for five heat pump water heaters (HPWH). These water heaters have the potential to significantly reduce water heater energy use relative to traditional electric resistance water heaters. These tests have provided detailed performance data for these appliances, which have been used to evaluate the cost of saved energy as a function of climate. The performance of HPWHs is dependent on ambient air temperature and humidity and the logic controlling the heat pump and the backup resistance heaters. The laboratory tests were designed to measure each unit's performance across a range of air conditions and determine the specific logic controlling the two heat sources, which has a large effect on the comfort of the users and the energy efficiency of the system. Unlike other types of water heaters, HPWHs are both influenced by and have an effect on their surroundings. Since these effects are complex and different for virtually every house and climate region, creating an accurate HPWH model from the data gathered during the laboratory tests was a main goal of the project. Using the results from NREL's laboratory tests, such as the Coefficient of Performance (COP) curves for different air conditions as shown in Figure 1, an existing HPWH model is being modified to produce more accurate whole-house simulations. This will allow the interactions between the HPWH and the home's heating and cooling system to be evaluated in detail, for any climate region. Once these modeling capabilities are in place, a realistic cost-benefit analysis can be performed for a HPWH installation anywhere in the country. An accurate HPWH model will help to quantify the savings associated with installing a HPWH in the place of a standard electric water heater. In most locations, HPWHs are not yet a cost-effective alternative to natural gas water heaters. The detailed system performance maps that were developed by this testing program will be used to: (1) Target regions of the country that would benefit most from this technology; (2) Identify improvements in current systems to maximize homeowner cost savings; and (3) Explore opportunities for development of advanced hot water heating systems.

  10. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2012-10-01

    CAU 104 comprises the following corrective action sites (CASs): 07-23-03, Atmospheric Test Site T-7C 07-23-04, Atmospheric Test Site T7-1 07-23-05, Atmospheric Test Site 07-23-06, Atmospheric Test Site T7-5a 07-23-07, Atmospheric Test Site - Dog (T-S) 07-23-08, Atmospheric Test Site - Baker (T-S) 07-23-09, Atmospheric Test Site - Charlie (T-S) 07-23-10, Atmospheric Test Site - Dixie 07-23-11, Atmospheric Test Site - Dixie 07-23-12, Atmospheric Test Site - Charlie (Bus) 07-23-13, Atmospheric Test Site - Baker (Buster) 07-23-14, Atmospheric Test Site - Ruth 07-23-15, Atmospheric Test Site T7-4 07-23-16, Atmospheric Test Site B7-b 07-23-17, Atmospheric Test Site - Climax These 15 CASs include releases from 30 atmospheric tests conducted in the approximately 1 square mile of CAU 104. Because releases associated with the CASs included in this CAU overlap and are not separate and distinguishable, these CASs are addressed jointly at the CAU level. The purpose of this CADD/CAP is to evaluate potential corrective action alternatives (CAAs), provide the rationale for the selection of recommended CAAs, and provide the plan for implementation of the recommended CAA for CAU 104. Corrective action investigation (CAI) activities were performed from October 4, 2011, through May 3, 2012, as set forth in the CAU 104 Corrective Action Investigation Plan.

  11. Test results of a Stirling engine utilizing heat exchanger modules with an integral heat pipe

    SciTech Connect (OSTI)

    Skupinski, R.C.; Tower, L.K.; Madi, F.J.; Brusk, K.D.

    1993-04-01

    The Heat Pipe Stirling Engine (HP-1000), a free-piston Stirling engine incorporating three heat exchanger modules, each having a sodium filled heat pipe, has been tested at the NASA-Lewis Research Center as part of the Civil Space Technology Initiative (CSTI). The heat exchanger modules were designed to reduce the number of potential flow leak paths in the heat exchanger assembly and incorporate a heat pipe as the link between the heat source and the engine. An existing RE-1000 free-piston Stirling engine was modified to operate using the heat exchanger modules. This paper describes heat exchanger module and engine performance during baseline testing. Condenser temperature profiles, brake power, and efficiency are presented and discussed.

  12. Method for testing the strength and structural integrity of nuclear fuel particles

    DOE Patents [OSTI]

    Lessing, P.A.

    1995-10-17

    An accurate method for testing the strength of nuclear fuel particles is disclosed. Each particle includes an upper and lower portion, and is placed within a testing apparatus having upper and lower compression members. The upper compression member includes a depression therein which is circular and sized to receive only part of the upper portion of the particle. The lower compression member also includes a similar depression. The compression members are parallel to each other with the depressions therein being axially aligned. The fuel particle is then placed between the compression members and engaged within the depressions. The particle is then compressed between the compression members until it fractures. The amount of force needed to fracture the particle is thereafter recorded. This technique allows a broader distribution of forces and provides more accurate results compared with systems which distribute forces at singular points on the particle. 13 figs.

  13. Method for testing the strength and structural integrity of nuclear fuel particles

    DOE Patents [OSTI]

    Lessing, Paul A.

    1995-01-01

    An accurate method for testing the strength of nuclear fuel particles. Each particle includes an upper and lower portion, and is placed within a testing apparatus having upper and lower compression members. The upper compression member includes a depression therein which is circular and sized to receive only part of the upper portion of the particle. The lower compression member also includes a similar depression. The compression members are parallel to each other with the depressions therein being axially aligned. The fuel particle is then placed between the compression members and engaged within the depressions. The particle is then compressed between the compression members until it fractures. The amount of force needed to fracture the particle is thereafter recorded. This technique allows a broader distribution of forces and provides more accurate results compared with systems which distribute forces at singular points on the particle.

  14. High-R Walls for New Construction Structural Performance: Integrated Rim Header Testing

    SciTech Connect (OSTI)

    DeRenzis, A.; Kochkin, V.; Wiehagen, J.

    2013-01-01

    Two prominent approaches within the Building America Program to construct higher R-value walls have included use of larger dimension framing and exterior rigid foam insulation. These approaches have been met with some success; however for many production builders, where the cost of changing framing systems is expensive, the changes have been slow to be realized. In addition, recent building code changes have raised some performance issues for exterior sheathing and raised heel trusses, for example, that indicates a need for continued performance testing for wall systems. The testing methods presented in this report evaluate structural rim header designs over openings up to 6 ft wide and applicable to one- and two-story homes.

  15. Wind-To-Hydrogen Project: Operational Experience, Performance Testing, and Systems Integration

    SciTech Connect (OSTI)

    Harrison, K. W.; Martin, G. D.; Ramsden, T. G.; Kramer, W. E.; Novachek, F. J.

    2009-03-01

    The Wind2H2 system is fully functional and continues to gather performance data. In this report, specifications of the Wind2H2 equipment (electrolyzers, compressor, hydrogen storage tanks, and the hydrogen fueled generator) are summarized. System operational experience and lessons learned are discussed. Valuable operational experience is shared through running, testing, daily operations, and troubleshooting the Wind2H2 system and equipment errors are being logged to help evaluate the reliability of the system.

  16. Novel scanning electron microscope bulge test technique integrated with loading function

    SciTech Connect (OSTI)

    Li, Chuanwei; Xie, Huimin E-mail: xiehm@mail.tsinghua.edu.cn; Liu, Zhanwei E-mail: xiehm@mail.tsinghua.edu.cn

    2014-10-15

    Membranes and film-on-substrate structures are critical elements for some devices in electronics industry and for Micro Electro Mechanical Systems devices. These structures are normally at the scale of micrometer or even nanometer. Thus, the measurement for the mechanical property of these membranes poses a challenge over the conventional measurements at macro-scales. In this study, a novel bulge test method is presented for the evaluation of mechanical property of micro thin membranes. Three aspects are discussed in the study: (a) A novel bulge test with a Scanning Electron Microscope system realizing the function of loading and measuring simultaneously; (b) a simplified Digital Image Correlation method for a height measurement; and (c) an imaging distortion correction by the introduction of a scanning Moir method. Combined with the above techniques, biaxial modulus as well as Young's modulus of the polyimide film can be determined. Besides, a standard tensile test is conducted as an auxiliary experiment to validate the feasibility of the proposed method.

  17. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 114: Area 25 EMAD Facility Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    Mark Krauss

    2010-06-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 114, Area 25 EMAD Facility, identified in the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 114 comprises the following corrective action site (CAS) located in Area 25 of the Nevada Test Site: 25-41-03, EMAD Facility This plan provides the methodology for field activities needed to gather the necessary information for closing CAS 25-41-03. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 114 using the SAFER process. Additional information will be obtained by conducting a field investigation before selecting the appropriate corrective action for CAS 25-41-03. It is anticipated that the results of the field investigation and implementation of corrective actions will support a defensible recommendation that no further corrective action is necessary. If it is determined that complete clean closure cannot be accomplished during the SAFER, then a hold point will have been reached and the Nevada Division of Environmental Protection (NDEP) will be consulted to determine whether the remaining contamination will be closed under the alternative corrective action of closure in place. This will be presented in a closure report that will be prepared and submitted to NDEP for review and approval. The CAS will be investigated based on the data quality objectives (DQOs) developed on April 30, 2009, by representatives of NDEP and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for CAS 25-41-03. The following text summarizes the SAFER activities that will support the closure of CAU 114: Perform site preparation activities (e.g., utilities clearances, radiological surveys). Collect samples of materials to determine whether potential source material (PSM) is present that may cause the future release of a contaminant of concern to environmental media. If no PSMs are present at the CAS, establish no further action as the corrective action. If a PSM is present at the CAS, either: - Establish clean closure as the corrective action. The material to be remediated will be removed and disposed of as waste, or - Establish closure in place as the corrective action and implement the appropriate use restrictions. Confirm the selected closure option is sufficient to protect human health and the environment.

  18. Enterprise Assessments Review of the Savannah River Site Salt Waste Processing Facility Construction Quality and Startup Test Plans … June 2015

    Office of Environmental Management (EM)

    Review of the Savannah River Site Salt Waste Processing Facility Construction Quality and Startup Test Plans June 2015 Office of Nuclear Safety and Environmental Assessments Office of Environment, Safety and Health Assessments Office of Enterprise Assessments U.S. Department of Energy i Table of Contents Acronyms ..................................................................................................................................................... iii Executive Summary

  19. Insulated Concrete Form Walls Integrated With Mechanical Systems in a Cold Climate Test House

    SciTech Connect (OSTI)

    Mallay, D.; Wiehagen, J.

    2014-09-01

    Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction. This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate. Of primary interest is the influence of the ICF walls on developing an effective air sealing strategy and selecting an appropriate heating and cooling equipment type and capacity. The domestic water heating system is analyzed for costs and savings to investigate options for higher efficiency electric water heating. A method to ensure mechanical ventilation air flows is examined. The final solution package includes high-R mass walls, very low infiltration rates, multi-stage heat pump heating, solar thermal domestic hot water system, and energy recovery ventilation. This solution package can be used for homes to exceed 2012 International Energy Conservation Code requirements throughout all climate zones and achieves the DOE Challenge Home certification.

  20. JV Task 46 - Development and Testing of a Thermally Integrated SOFC-Gasification System for Biomass Power Generation

    SciTech Connect (OSTI)

    Phillip Hutton; Nikhil Patel; Kyle Martin; Devinder Singh

    2008-02-01

    The Energy & Environmental Research Center has designed a biomass power system using a solid oxide fuel cell (SOFC) thermally integrated with a downdraft gasifier. In this system, the high-temperature effluent from the SOFC enables the operation of a substoichiometric air downdraft gasifier at an elevated temperature (1000 C). At this temperature, moisture in the biomass acts as an essential carbon-gasifying medium, reducing the equivalence ratio at which the gasifier can operate with complete carbon conversion. Calculations show gross conversion efficiencies up to 45% (higher heating value) for biomass moisture levels up to 40% (wt basis). Experimental work on a bench-scale gasifier demonstrated increased tar cracking within the gasifier and increased energy density of the resultant syngas. A series of experiments on wood chips demonstrated tar output in the range of 9.9 and 234 mg/m{sup 3}. Both button cells and a 100-watt stack was tested on syngas from the gasifier. Both achieved steady-state operation with a 22% and 15% drop in performance, respectively, relative to pure hydrogen. In addition, tar tolerance testing on button cells demonstrated an upper limit of tar tolerance of approximately 1%, well above the tar output of the gasifier. The predicted system efficiency was revised down to 33% gross and 27% net system efficiency because of the results of the gasifier and fuel cell experiments. These results demonstrate the feasibility and benefits of thermally integrating a gasifier and a high-temperature fuel cell in small distributed power systems.

  1. High-R Walls for New Construction Structural Performance: Integrated Rim Header Testing

    SciTech Connect (OSTI)

    DeRenzis, A.; Kochkin, V.; Wiehagen, J.

    2013-01-01

    Two prominent approaches within the Building America Program to construct higher R-value walls have included use of larger dimension framing and exterior rigid foam insulation. These approaches have been met with some success; however for many production builders, where the cost of changing framing systems is expensive, the changes have been slow to be realized. In addition, recent building code changes have raised some performance issues for exterior sheathing and raised heel trusses, for example, that indicates a need for continued performance testing for wall systems.

  2. Develop and test fuel cell powered on-site integrated total energy systems

    SciTech Connect (OSTI)

    Kaufman, A.; Werth, J.

    1988-12-01

    This report describes the design, fabrication and testing of a 25kW phosphoric acid fuel cell system aimed at stationary applications, and the technology development underlying that system. The 25kW fuel cell ran at rated power in both the open and closed loop mode in the summer of 1988. Problems encountered and solved include acid replenishment leakage, gas cross-leakage and edge-leakage in bipolar plates, corrosion of metallic cooling plates and current collectors, cooling groove depth variations, coolant connection leaks, etc. 84 figs., 7 tabs.

  3. Integrating Environmental Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrating Environmental Stewardship Integrating Environmental Stewardship Integrating environmental stewardship to enable the national security mission August 1, 2013 graphic depicting the integration of programs that result in environmental stewardship Many Laboratory functions are integrated with environmental stewardship. This Strategy cannot be effective without systematic integration with other related Laboratory functions, such as site planning, project management, and facilities

  4. Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field-Scale Subsurface Research Challenge Site at Rifle, Colorado, Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-01-07

    The U.S. Department of Energy (DOE) is cleaning up and/or monitoring large, dilute plumes contaminated by metals, such as uranium and chromium, whose mobility and solubility change with redox status. Field-scale experiments with acetate as the electron donor have stimulated metal-reducing bacteria to effectively remove uranium [U(VI)] from groundwater at the Uranium Mill Tailings Site in Rifle, Colorado. The Pacific Northwest National Laboratory and a multidisciplinary team of national laboratory and academic collaborators has embarked on a research proposed for the Rifle site, the object of which is to gain a comprehensive and mechanistic understanding of the microbial factors and associated geochemistry controlling uranium mobility so that DOE can confidently remediate uranium plumes as well as support stewardship of uranium-contaminated sites. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Rifle Integrated Field-Scale Subsurface Research Challenge Project.

  5. Aerosols released during large-scale integral MCCI tests in the ACE Program

    SciTech Connect (OSTI)

    Fink, J.K.; Thompson, D.H.; Spencer, B.W.; Sehgal, B.R.

    1992-04-01

    As part of the internationally sponsored Advanced Containment Experiments (ACE) program, seven large-scale experiments on molten core concrete interactions (MCCIs) have been performed at Argonne National Laboratory. One of the objectives of these experiments is to collect and characterize all the aerosols released from the MCCIs. Aerosols released from experiments using four types of concrete (siliceous, limestone/common sand, serpentine, and limestone/limestone) and a range of metal oxidation for both BWR and PWR reactor core material have been collected and characterized. Release fractions were determined for UO{sup 2}, Zr, the fission-products: BaO, SrO, La{sub 2}O{sub 3}, CeO{sub 2}, MoO{sub 2}, Te, Ru, and control materials: Ag, In, and B{sub 4}C. Release fractions of UO{sub 2} and the fission products other than Te were small in all tests. However, release of control materials was significant.

  6. Aerosols released during large-scale integral MCCI tests in the ACE Program

    SciTech Connect (OSTI)

    Fink, J.K.; Thompson, D.H.; Spencer, B.W. ); Sehgal, B.R. )

    1992-01-01

    As part of the internationally sponsored Advanced Containment Experiments (ACE) program, seven large-scale experiments on molten core concrete interactions (MCCIs) have been performed at Argonne National Laboratory. One of the objectives of these experiments is to collect and characterize all the aerosols released from the MCCIs. Aerosols released from experiments using four types of concrete (siliceous, limestone/common sand, serpentine, and limestone/limestone) and a range of metal oxidation for both BWR and PWR reactor core material have been collected and characterized. Release fractions were determined for UO{sup 2}, Zr, the fission-products: BaO, SrO, La{sub 2}O{sub 3}, CeO{sub 2}, MoO{sub 2}, Te, Ru, and control materials: Ag, In, and B{sub 4}C. Release fractions of UO{sub 2} and the fission products other than Te were small in all tests. However, release of control materials was significant.

  7. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.:0

    SciTech Connect (OSTI)

    Wickline, Alfred

    2005-12-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting corrective action alternatives.

  8. An integrated approach to monitoring a field test of in situ contaminant destruction

    SciTech Connect (OSTI)

    Aines, R D; Carrigan, C; Chiarappa, M; Eaker, C; Elsholtz, A; Hudson, G B; Leif, R; Newmark, R L

    1998-12-01

    The development of in situ thermal remediation techniques requires parallel development of techniques capable of monitoring the physical and chemical changes for purposes of process control. Recent research indicates that many common contaminants can be destroyed in situ by hydrous pyrolysis/oxidation (HPO), eliminating the need for costly surface treatment and disposal. Steam injection, combined with supplemental air, can create the conditions in which HP0 occurs. Field testing of this process, conducted in the summer of 1997, indicates rapid destruction of polycyclic aromatic hydrocarbons (PAHs). Previous work established a suite of underground geophysical imaging techniques capable of providing sufficient knowledge of the physical changes in the subsurface during thermal treatment at sufficient frequencies to be used to monitor and guide the heating and extraction processes. In this field test, electrical resistance tomography (ERT) and temperature measurements provided the primary information regarding the temporal and spatial distribution of the heated zones. Verifying the in situ chemical destruction posed new challenges. We developed field methods for sampling and analyzing hot water for contaminants, oxygen, intermediates and products of reaction. Since the addition of air or oxygen to the contaminated region is a critical aspect of HPO, noble gas tracers were used to identify fluids from different sources. The combination of physical monitoring with noble gas identification of the native and injected fluids and accurate fluid sampling resulted in an excellent temporal and spatial evaluation of the subsurface processes, from which the amount of in situ destruction occurring in the treated region could be quantified. The experimental field results constrain the destruction rates throughout the site, and enable site management to make accurate estimates of total in situ destruction based on the recovered carbon. As of October, 1998, over 400,000 kg (900,000 lb) of contaminant have been removed from the site; about 18% of this has been destroyed in situ.

  9. CITSS Project Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CITSS Project Plan CITSS Project Plan The Customer Information Technology Support System (CITSS) Training Plan, from an actual DOE Commercial Off-The-Shelf (COTS) software integration project, can be used as a template to facilitate the creation of the training plan for your particular project. PDF icon CITSS Project Plan More Documents & Publications CITSS Project Plan Software Configuration Management Plan Training Plan

  10. Environmental planning and categorical exclusions: Making the categorical exclusion an integral part of your NEPA tool kit

    SciTech Connect (OSTI)

    Holthoff, M.G.; Hanrahan, T.P.

    1994-06-01

    As contained in the Regulations for Implementing the Procedural Provisions of the National Environmental Policy Act, 40 CFR 1500--1508, the Council on Environmental Quality (CEQ) directs federal agencies to adopt their own procedures for implementing the Act. The US Department of Energy (DOE) and the US Department of Agriculture Forest Service (USFS) are two examples of federal agencies with dissimilar but functionally equivalent CX processes. The DOE and USFS were selected as subjects for this study because of their distinctly different missions and as a results of the author`s familiarity with the policies of both agencies. The objectives of this study are to: (1) describe the CX policies and processes of the two agencies, (2) identify the similarities and differences between the two processes, and (3) suggest ways for improving these processes. In performing this evaluation, the authors will identify the components of each agency`s CX process that clearly contributes qualitative information for the purpose of making environmental planning decisions. Drawing from the best elements of each process, the authors will provide some general recommendations that should enable the agencies to fulfill their various obligations to the CX process while concurrently performing early, thorough, and expeditious environmental reviews under NEPA.

  11. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 398: Area 25 Spill Sites, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    K. B. Campbell

    2001-11-01

    This Streamlined Approach for Environmental Restoration (SAFER) plan addresses the activities necessary to close Corrective Action Unit (CAU) 398: Area 25 Spill Sites. CAU 398, located in Area 25 of the Nevada Test Site, is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996), and consists of the following 13 Corrective Action Sites (CASs) (Figure 1): (1) CAS 25-44-01 , a fuel spill on soil that covers a concrete pad. The origins and use of the spill material are unknown, but the spill is suspected to be railroad bedding material. (2) CAS 25-44-02, a spill of liquid to the soil from leaking drums. (3) CAS 25-44-03, a spill of oil from two leaking drums onto a concrete pad and surrounding soil. (4) CAS 25-44-04, a spill from two tanks containing sulfuric acid and sodium hydroxide used for a water demineralization process. (5) CAS 25-25-02, a fuel or oil spill from leaking drums that were removed in 1992. (6) CAS 25-25-03, an oil spill adjacent to a tipped-over drum. The source of the drum is not listed, although it is noted that the drum was removed in 1991. (7) CAS 25-25-04, an area on the north side of the Engine-Maintenance, Assembly, and Disassembly (E-MAD) facility, where oils and cooling fluids from metal machining operations were poured directly onto the ground. (8) CAS 25-25-05, an area of oil and/or hydraulic fluid spills beneath the heavy equipment once stored there. (9) CAS 25-25-06, an area of diesel fuel staining beneath two generators that have since been removed. (10) CAS 25-25-07, an area of hydraulic oil spills associated with a tunnel-boring machine abandoned inside X-Tunnel. (11) CAS 25-25-08, an area of hydraulic fluid spills associated with a tunnel-boring machine abandoned inside Y-Tunnel. (12) CAS 25-25-16, a diesel fuel spill from an above-ground storage tank located near Building 3320 at Engine Test Stand-1 (ETS-1) that was removed in 1998. (13) CAS 25-25-17, a hydraulic oil spill associated with the historical operations of a vacuum pump oil recovery system at the E-MAD facility.

  12. Complete Phase I Tests As Described in the Multi-lab Test Plan for the Evaluation of CH3I Adsorption on AgZ

    SciTech Connect (OSTI)

    Bruffey, S. H.; Jubin, R. T.

    2014-09-30

    Silver-exchanged mordenite (AgZ) has been identified as a potential sorbent for iodine present in the off-gas streams of a used nuclear fuel reprocessing facility. In such a facility, both elemental and organic forms of iodine are released from the dissolver in gaseous form. These species of iodine must be captured with high efficiency for a facility to avoid radioactive iodine release above regulatory limits in the gaseous effluent of the plant. Studies completed at Idaho National Laboratory (INL) examined the adsorption of organic iodine in the form of CH3I by AgZ. Upon breakthrough of the feed gas through the sorbent bed, elemental iodine was observed in the effluent stream, despite the fact that the only source of iodine in the system was the CH3I in the feed gas.1 This behavior does not appear to have been reported previously nor has it been independently confirmed. Thus, as a result of these prior studies, multiple knowledge gaps relating to the adsorption of CH3I by AgZ were identified, and a multi-lab test plan, including Oak Ridge National Laboratory (ORNL), INL, Pacific Northwest National Laboratory (PNNL), and Sandia National Laboratories, was formulated to address each in a systematic way.2 For this report, the scope of work for ORNL was further narrowed to three thin-bed experiments that would characterize CH3I adsorption onto AgZ in the presence of water, NO, and NO2. Completion of these three-thin bed experiments demonstrated that organic iodine in the form of CH3I was adsorbed by reduced silver mordenite (Ag0Z) to a 50% higher loading than that of I2 when adsorbed from a dry air stream. Adsorption curves suggest different adsorption mechanisms for I2 and CH3I. In the presence of NO and NO2 gas, the loading of CH3I onto Ag0Z is suppressed and may be reversible. Further, the presence of NO and NO2 gas appears to oxidize CH3I to I2; this is indicated by an adsorption curve similar to that of I2 on Ag0Z. Finally, the loss of organic iodine loading capacity by Ag0Z in the presence of NOx is unaffected by the addition of water vapor to the gas stream; no marked additional loss in capacity or retention was observed.

  13. PMU Data Integrity Evaluation through Analytics on a Virtual Test-Bed

    SciTech Connect (OSTI)

    Olama, Mohammed M.; Shankar, Mallikarjun

    2014-01-01

    Power systems are rapidly becoming populated by phasor measurement units (PMUs) in ever increasing numbers. PMUs are critical components of today s energy management systems, designed to enable near real-time wide area monitoring and control of the electric power system. They are able to measure highly accurate bus voltage phasors as well as branch current phasors incident to the buses at which PMUs are equipped. Synchrophasor data is used for applications varying from state estimation, islanding control, identifying outages, voltage stability detection and correction, disturbance recording, and others. However, PMU-measured readings may suffer from errors due to meter biases or drifts, incorrect configurations, or even cyber-attacks. Furthermore, the testing of early PMUs showed a large disparity between the reported values from PMUs provided by different manufacturers, particularly when frequency was off-nominal, during dynamic events, and when harmonic/inter-harmonic content was present. Detection and identification of PMU gross measurement errors are thus crucial in maintaining highly accurate phasor readings throughout the system. In this paper, we present our work in conducting analytics to determine the trustworthiness and worth of the PMU readings collected across an electric network system. By implementing the IEEE 118 bus test case on a virtual test bed (VTB) , we are able to emulate PMU readings (bus voltage and branch current phasors in addition to bus frequencies) under normal and abnormal conditions using (virtual) PMU sensors deployed across major substations in the network. We emulate a variety of failures such as bus, line, transformer, generator, and/or load failures. Data analytics on the voltage phase angles and frequencies collected from the PMUs show that specious (or compromised) PMU device(s) can be identified through abnormal behaviour by comparing the trend of its frequency and phase angle reading with the ensemble of all other PMU readings in the network. If the reading trend of a particular PMU deviates from the weighted average of the reading trends of other PMUs at nearby substations, then it is likely that the PMU is malfunctioning. We assign a weight to each PMU denoting how electric-topology-wise close it is from where the PMU under consideration is located. The closer a PMU is, the higher the weight it has. To compute the closeness between two nodes in the power network, we employ a form of the resistance distance metric. It computes the electrical distance by taking into consideration the underlying topology as well as the physical laws that govern the electrical connections or flows between the network components. The detection accuracy of erroneous PMUs should be improved by employing this metric. We present results to validate the proposed approach. We also discuss the effectiveness of using an end-to-end VTB approach that allows us to investigate different types of failures and their responses as seen by the ensemble of PMUs. The collected data on certain types of events may be amenable to certain types of analysis (e.g., alerting for sudden changes can be done on a small window of data) and hence determine the data analytics architectures is required to evaluate the streaming PMU data.

  14. Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation

    SciTech Connect (OSTI)

    Eto, Joseph H.; Undrill, John; Mackin, Peter; Daschmans, Ron; Williams, Ben; Haney, Brian; Hunt, Randall; Ellis, Jeff; Illian, Howard; Martinez, Carlos; O'Malley, Mark; Coughlin, Katie; LaCommare, Kristina Hamachi

    2010-12-20

    An interconnected electric power system is a complex system that must be operated within a safe frequency range in order to reliably maintain the instantaneous balance between generation and load. This is accomplished by ensuring that adequate resources are available to respond to expected and unexpected imbalances and restoring frequency to its scheduled value in order to ensure uninterrupted electric service to customers. Electrical systems must be flexible enough to reliably operate under a variety of"change" scenarios. System planners and operators must understand how other parts of the system change in response to the initial change, and need tools to manage such changes to ensure reliable operation within the scheduled frequency range. This report presents a systematic approach to identifying metrics that are useful for operating and planning a reliable system with increased amounts of variable renewable generation which builds on existing industry practices for frequency control after unexpected loss of a large amount of generation. The report introduces a set of metrics or tools for measuring the adequacy of frequency response within an interconnection. Based on the concept of the frequency nadir, these metrics take advantage of new information gathering and processing capabilities that system operators are developing for wide-area situational awareness. Primary frequency response is the leading metric that will be used by this report to assess the adequacy of primary frequency control reserves necessary to ensure reliable operation. It measures what is needed to arrest frequency decline (i.e., to establish frequency nadir) at a frequency higher than the highest set point for under-frequency load shedding within an interconnection. These metrics can be used to guide the reliable operation of an interconnection under changing circumstances.

  15. Test plan for the M-100 container, (model M-101/7A/12/90) docket 96-43-7A, type A container. Revision 1

    SciTech Connect (OSTI)

    Kelly, D.L.

    1997-07-22

    This report concerns the packaging configurations being tested by the U.S. DOE and its contractors, and according to U.S. DOT specification 7A Type A (DOT-7A) requirements. The objective of this Test Plan is to describe the testing for the qualification of the M-100 Container, Model M-101/7A/12/90 as a DOT-7A Type A packaging. This packaging system is designed to ship Type A solid radioactive materials, normal form, Form Number 1, Form Number 2, and Form Number 3.

  16. Inverter Ground Fault Overvoltage Testing

    SciTech Connect (OSTI)

    Hoke, Andy; Nelson, Austin; Chakraborty, Sudipta; Chebahtah, Justin; Wang, Trudie; McCarty, Michael

    2015-08-12

    This report describes testing conducted at NREL to determine the duration and magnitude of transient overvoltages created by several commercial PV inverters during ground fault conditions. For this work, a test plan developed by the Forum on Inverter Grid Integration Issues (FIGII) has been implemented in a custom test setup at NREL. Load rejection overvoltage test results were reported previously in a separate technical report.

  17. Streamlined Approach for (SAFER) Plan for Corrective Action Unit 566: E-MAD Compound, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Mark Krauss

    2010-06-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 566, EMAD Compound, identified in the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 566 comprises the following corrective action site (CAS) located in Area 25 of the Nevada Test Site: 25-99-20, EMAD Compound This plan provides the methodology for field activities needed to gather the necessary information for closing CAS 25-99-20. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 566 using the SAFER process. Additional information will be obtained by conducting a field investigation before selecting the appropriate corrective action. It is anticipated that the results of the field investigation and implementation of a corrective action of clean closure will support a defensible recommendation that no further corrective action is necessary. If it is determined that complete clean closure cannot be accomplished during the SAFER, then a hold point will have been reached and the Nevada Division of Environmental Protection (NDEP) will be consulted to determine whether the remaining contamination will be closed under the alternative corrective action of closure in place. This will be presented in a closure report that will be prepared and submitted to NDEP for review and approval. The data quality objective (DQO) strategy for CAU 566 was developed at a meeting on April 30, 2009, by representatives of NDEP and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for CAU 566. The following text summarizes the SAFER activities that will support the closure of CAU 566: Perform site preparation activities (e.g., utilities clearances, radiological surveys). Collect environmental samples from designated target populations (e.g., stained soil) to confirm or disprove the presence of contaminants of concern (COCs) as necessary to supplement existing information. Collect samples of materials to determine whether potential source material (PSM) is present that may cause the future release of a COC to environmental media. If no COCs or PSMs are present at a CAS, establish no further action as the corrective action. If COCs exist, collect environmental samples from designated target populations (e.g., clean soil adjacent to contaminated soil) and submit for laboratory analyses to define the extent of COC contamination. If a COC or PSM is present at a CAS, either: - Establish clean closure as the corrective action. The material to be remediated will be removed, disposed of as waste, and verification samples will be collected from remaining soil, or - Establish closure in place as the corrective action and implement the appropriate use restrictions. Confirm the selected closure option is sufficient to protect human health and the environment.

  18. SINGLE-SHELL TANK INTEGRITY PROJECT ANALYSIS OF RECORD-PRELIMINARY MODELING PLAN FOR THERMAL AND OPERATING LOADS

    SciTech Connect (OSTI)

    RAST RS; RINKER MW; BAPANAALLI SK; DEIBLER JE; GUZMAN-LEONG CE; JOHNSON KI; KARRI NK; PILLI SP; SANBORN SE

    2010-10-22

    This document is a Phase I deliverable for the Single-Shell Tank Analysis of Record effort. This document is not the Analysis of Record. The intent of this document is to guide the Phase II detailed modeling effort. Preliminary finite element models for each of the tank types were developed and different case studies were performed on one or more of these tank types. Case studies evaluated include thermal loading, waste level variation, the sensitivity of boundary effects (soil radial extent), excavation slope or run to rise ratio, soil stratigraphic (property and layer thickness) variation at different farm locations, and concrete material property variation and their degradation under thermal loads. The preliminary analysis document reviews and preliminary modeling analysis results are reported herein. In addition, this report provides recommendations for the next phase of the SST AOR project, SST detailed modeling. Efforts and results discussed in this report do not include seismic modeling as seismic modeling is covered by a separate report. The combined results of both static and seismic models are required to complete this effort. The SST AOR project supports the US Department of Energy's (DOE) Office of River Protection (ORP) mission for obtaining a better understanding of the structural integrity of Hanford's SSTs. The 149 SSTs, with six different geometries, have experienced a range of operating histories which would require a large number of unique analyses to fully characterize their individual structural integrity. Preliminary modeling evaluations were conducted to determine the number of analyses required for adequate bounding of each of the SST tank types in the Detailed Modeling Phase of the SST AOR Project. The preliminary modeling was conducted in conjunction with the Evaluation Criteria report, Johnson et al. (2010). Reviews of existing documents were conducted at the initial stage of preliminary modeling. These reviews guided the topics that were explored in the SST preliminary modeling. The reviews determined the level of detail necessary to perform the analyses of the SSTs. To guide the Phase II detailed modeling effort, preliminary finite element models for each of the tank types were developed and different case studies were performed on one or more of these tank types. Case studies evaluated include thermal loading, waste level variation, the sensitivity of boundary effects (soil radial extent), excavation slope or run to rise ratio, soil stratigraphic (property and layer thickness) variation at different farm locations, and concrete material property variation and their degradation under thermal loads. Conclusions were derived from case studies on one of the tank types when no additional runs of similar cases on other types of tanks were found necessary to derive those conclusions. The document reviews provided relatively complete temperature histories for Type IV tanks. The temperature history data for Type I, II, and III tanks was almost nonexistent for years prior to 1975. Document reviews indicate that there might be additional useful data in the US Department of Energy, Richland Operations Office (DOE-RL) records in Seattle, WA, and these records need to be reviewed to extract data that might have been disregarded during previous reviews. Thermal stress analyses were conducted using different temperature distribution scenarios on Type IV tanks. Such studies could not be carried out for other tank types due to lack of temperature history data. The results from Type IV tank analyses indicate that factors such as temperature distribution in the tank waste and rate of rise in waste temperature have a significant impact on the thermal stresses in the tank structures. Overall, the conclusion that can drawn from the thermal stress analyses is that these studies should be carried out for all tank types during the detailed analysis phase with temperature values that are reasonably close to the typical temperature histories of the respective tank types. If and/or when additional waste temperature data is acquired for tank Type I, II, and III tanks, additional cases need to be considered as tank structural integrity is sensitive to thermal loads. A few case studies were also performed using Type IV-b models to comprehend the effects of excavation boundaries, change in soil stratigraphy (layer thickness and properties), and radial extent of soil in the finite element models. The result from the case studies indicates that the slight variation in soil stratigraphy has little effects on the tank sections force and moment demands under mechanical loads. The case study for excavation slope or backfill transition boundary indicated that inclusion of such boundary yields conservative demands in the wall region while demands at other locations remain unaffected. Hence this excavation slope will be modeled in the detailed analysis of SSTs.

  19. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 484: Surface Debris, Waste Sites, and Burn Area, Tonopah Test Range, Nevada

    SciTech Connect (OSTI)

    Bechel Nevada

    2004-05-01

    This Streamlined Approach for Environmental Restoration plan details the activities necessary to close Corrective Action Unit (CAU) 484: Surface Debris, Waste Sites, and Burn Area (Tonopah Test Range). CAU 484 consists of sites located at the Tonopah Test Range, Nevada, and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order. CAU 484 consists of the following six Corrective Action Sites: (1) CAS RG-52-007-TAML, Davis Gun Penetrator Test; (2) CAS TA-52-001-TANL, NEDS Detonation Area; (3) CAS TA-52-004-TAAL, Metal Particle Dispersion Test; (4) CAS TA-52-005-TAAL, Joint Test Assembly DU Sites; (5) CAS TA-52-006-TAPL, Depleted Uranium Site; and (6) CAS TA-54-001-TANL, Containment Tank and Steel Structure

  20. Generalized Test Plan for the Vitrification of Simulated High-Level -Waste Calcine in the Idaho National Laboratorys Bench -Scale Cold Crucible Induction Melter

    SciTech Connect (OSTI)

    Vince Maio

    2011-08-01

    This Preliminary Idaho National Laboratory (INL) Test Plan outlines the chronological steps required to initially evaluate the validity of vitrifying INL surrogate (cold) High-Level-Waste (HLW) solid particulate calcine in INL's Cold Crucible Induction Melter (CCIM). Its documentation and publication satisfies interim milestone WP-413-INL-01 of the DOE-EM (via the Office of River Protection) sponsored work package, WP 4.1.3, entitled 'Improved Vitrification' The primary goal of the proposed CCIM testing is to initiate efforts to identify an efficient and effective back-up and risk adverse technology for treating the actual HLW calcine stored at the INL. The calcine's treatment must be completed by 2035 as dictated by a State of Idaho Consent Order. A final report on this surrogate/calcine test in the CCIM will be issued in May 2012-pending next fiscal year funding In particular the plan provides; (1) distinct test objectives, (2) a description of the purpose and scope of planned university contracted pre-screening tests required to optimize the CCIM glass/surrogate calcine formulation, (3) a listing of necessary CCIM equipment modifications and corresponding work control document changes necessary to feed a solid particulate to the CCIM, (4) a description of the class of calcine that will be represented by the surrogate, and (5) a tentative tabulation of the anticipated CCIM testing conditions, testing parameters, sampling requirements and analytical tests. Key FY -11 milestones associated with this CCIM testing effort are also provided. The CCIM test run is scheduled to be conducted in February of 2012 and will involve testing with a surrogate HLW calcine representative of only 13% of the 4,000 m3 of 'hot' calcine residing in 6 INL Bin Sets. The remaining classes of calcine will have to be eventually tested in the CCIM if an operational scale CCIM is to be a feasible option for the actual INL HLW calcine. This remaining calcine's make-up is HLW containing relatively high concentrations of zirconium and aluminum, representative of the cladding material of the reprocessed fuel that generated the calcine. A separate study to define the CCIM testing needs of these other calcine classifications in currently being prepared under a separate work package (WP-0) and will be provided as a milestone report at the end of this fiscal year.

  1. Routine Radiological Environmental Monitoring Plan. Volume 1

    SciTech Connect (OSTI)

    Bechtel Nevada

    1999-12-31

    The U.S. Department of Energy manages the Nevada Test Site in a manner that meets evolving DOE Missions and responds to the concerns of affected and interested individuals and agencies. This Routine Radiological Monitoring Plan addressess complicance with DOE Orders 5400.1 and 5400.5 and other drivers requiring routine effluent monitoring and environmental surveillance on the Nevada Test Site. This monitoring plan, prepared in 1998, addresses the activities conducted onsite NTS under the Final Environmental Impact Statement and Record of Decision. This radiological monitoring plan, prepared on behalf of the Nevada Test Site Landlord, brings together sitewide environmental surveillance; site-specific effluent monitoring; and operational monitoring conducted by various missions, programs, and projects on the NTS. The plan provides an approach to identifying and conducting routine radiological monitoring at the NTS, based on integrated technical, scientific, and regulatory complicance data needs.

  2. Corrective Action Investigation Plan for Corrective Action Unit 309: Area 12 Muckpiles, Nevada Test Site, Nevada, Rev. No. 0

    SciTech Connect (OSTI)

    Robert F. Boehlecke

    2004-12-01

    This Corrective Action Investigation Plan (CAIP) for Corrective Action Unit (CAU) 309, Area 12 Muckpiles, Nevada Test Site (NTS), Nevada, has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. The general purpose of the investigation is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technically viable corrective actions. Corrective Action Unit 309 is comprised of the following three corrective action sites (CASs) in Area 12 of the NTS: (1) CAS 12-06-09, Muckpile; (2) CAS 12-08-02, Contaminated Waste Dump (CWD); and (3) CAS 12-28-01, I-, J-, and K-Tunnel Debris. Corrective Action Site 12-06-09 consists of a muckpile and debris located on the hillside in front of the I-, J-, and K-Tunnels on the eastern slopes of Rainier Mesa in Area 12. The muckpile includes mining debris (muck) and debris generated during the excavation and construction of the I-, J-, and K-Tunnels. Corrective Action Site 12-08-02, CWD, consists of a muckpile and debris and is located on the hillside in front of the re-entry tunnel for K-Tunnel. For the purpose of this investigation CAS 12-28-01 is defined as debris ejected by containment failures during the Des Moines and Platte Tests and the associated contamination that is not covered in the two muckpile CASs. This site consists of debris scattered south of the I-, J-, and K-Tunnel muckpiles and extends down the hillside, across the valley, and onto the adjacent hillside to the south. In addition, the site will cover the potential contamination associated with ''ventings'' along the fault, fractures, and various boreholes on the mesa top and face. One conceptual site model was developed for all three CASs to address possible contamination migration pathways associated with CAU 309. The data quality objective (DQO) process was used to identify and define the type, quantity, and quality of data needed to complete the investigation phase of the corrective action process. The DQO process addresses the primary problem that sufficient information is not available to determine the appropriate corrective action for the CAU. Due to the practical constraints posed by steep slopes on and around the CAU 309 muckpiles, a conservative, simplifying strategy was developed to resolve the presence and nature of contaminants. This strategy includes the use of historical data from similar sites (i.e., previously investigated NTS muckpiles) and the collection of samples from accessible areas of the muckpiles. Based on site history, process knowledge, and previous investigations of similar sites, contaminants of potential concern for CAU 309 collectively include radionuclides, total petroleum hydrocarbons (diesel range only), polychlorinated biphenyls, ''Resource Conservation and Recovery Act'' metals, volatile organic compounds, and semivolatile organic compounds.

  3. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 121: Storage Tanks and Miscellaneous Sites, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2007-06-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for the closure of Corrective Action Unit (CAU) 121, Storage Tanks and Miscellaneous Sites. CAU 121 is currently listed in Appendix III of the ''Federal Facility Agreement and Consent Order'' (FFACO, 1996) and consists of three Corrective Action Sites (CASs) located in Area 12 of the Nevada Test Site (NTS): CAS 12-01-01, Aboveground Storage Tank; CAS 12-01-02, Aboveground Storage Tank; and CAS 12-22-26, Drums; 2 AST's. CASs 12-01-01 and 12-01-02 are located to the west of the Area 12 Camp, and CAS 12-22-26 is located near the U-12g Tunnel, also known as G-tunnel, in Area 12 (Figure 1). The aboveground storage tanks (ASTs) present at CASs 12-01-01 and 12-01-02 will be removed and disposed of at an appropriate facility. Soil below the ASTs will be sampled to identify whether it has been impacted with chemicals or radioactivity above action levels. If impacted soil above action levels is present, the soil will be excavated and disposed of at an appropriate facility. The CAS 12-22-26 site is composed of two overlapping areas, one where drums had formerly been stored, and the other where an AST was used to dispense diesel for locomotives used at G-tunnel. This area is located above an underground radioactive materials area (URMA), and within an area that may have elevated background radioactivity because of containment breaches during nuclear tests and associated tunnel reentry operations. CAS 12-22-26 does not include the URMA or the elevated background radioactivity. An AST that had previously been used to store liquid magnesium chloride (MgCl) was properly disposed of several years ago, and releases from this tank are not an environmental concern. The diesel AST will be removed and disposed of at an appropriate facility. Soil at the former drum area and the diesel AST area will be sampled to identify whether it has been impacted by releases, from the drums or the AST, with chemicals or radioactivity above action levels. CAS 12-22-26 has different potential closure pathways that are dependent upon the concentrations and chemicals detected. If only petroleum hydrocarbons are detected above action levels, then the area will be use-restricted. It will not be excavated because of the more significant hazard of excavating within a URMA. Similarly, polychlorinated biphenyls (PCBs) will only be excavated for concentrations of 50 parts per million (ppm) or greater, if there are no other factors that require excavation. For PCBs at concentrations above 1 ppm, the area will be use-restricted as required by Title 40, Code of Federal Regulations (CFR) Part 761 for PCBs (CFR, 2006), in the ''Toxic Substances Control Act'' (TSCA). Other chemicals at concentrations above the final action levels (FALs) will be excavated. If radioactivity is above action levels, then the soil will be excavated only to a depth of 1 foot (ft) below ground surface (bgs) and replaced with clean fill. This action is intended to remove the ''hot spot'' on the surface caused by leakage from a drum, and not to remediate the URMA.

  4. Test plan for the M-100 container model M-101/7A/12/90 Docket 96-43-7A, type A container

    SciTech Connect (OSTI)

    Kelly, D.L.

    1997-05-30

    This document describes the test plan for the M-100 Container, Model M-101/7A/12/90. This packaging system is designed to ship Type A solid, radioactive materials, normal form, Form Nos. 1, 2, and 3. The nominal overall dimensions, including risers, of the M-100 Container are 79 x 54 x 42 inches. The capacity of the container is approximately 89.9 ft. The estimated gross weight of the packaging and contents is 9,000 lb.

  5. Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Modeling, Simulation and Experimental Integration RD&D Plan

    SciTech Connect (OSTI)

    Adkins, Harold E.

    2013-04-01

    Under current U.S. Nuclear Regulatory Commission regulation, it is not sufficient for used nuclear fuel (UNF) to simply maintain its integrity during the storage period, it must maintain its integrity in such a way that it can withstand the physical forces of handling and transportation associated with restaging the fuel and moving it to treatment or recycling facilities, or a geologic repository. Hence it is necessary to understand the performance characteristics of aged UNF cladding and ancillary components under loadings stemming from transport initiatives. Researchers would like to demonstrate that enough information, including experimental support and modeling and simulation capabilities, exists to establish a preliminary determination of UNF structural performance under normal conditions of transport (NCT). This research, development and demonstration (RD&D) plan describes a methodology, including development and use of analytical models, to evaluate loading and associated mechanical responses of UNF rods and key structural components. This methodology will be used to provide a preliminary assessment of the performance characteristics of UNF cladding and ancillary components under rail-related NCT loading. The methodology couples modeling and simulation and experimental efforts currently under way within the Used Fuel Disposition Campaign (UFDC). The methodology will involve limited uncertainty quantification in the form of sensitivity evaluations focused around available fuel and ancillary fuel structure properties exclusively. The work includes collecting information via literature review, soliciting input/guidance from subject matter experts, performing computational analyses, planning experimental measurement and possible execution (depending on timing), and preparing a variety of supporting documents that will feed into and provide the basis for future initiatives. The methodology demonstration will focus on structural performance evaluation of Westinghouse WE 1717 pressurized water reactor fuel assemblies with a discharge burnup range of 30-58 GWd/MTU (assembly average), loaded in a representative high-capacity (?32 fuel rod assemblies) transportation package. Evaluations will be performed for representative normal conditions of rail transport involving a rail conveyance capable of meeting the Association of American Railroads (AAR) S-2043 specification. UNF modeling is anticipated to be defined to the pellet-cladding level and take in to account influences associated with spacer grids, intermediate fluid mixers, and control components. The influence of common degradation issues such as ductile-to-brittle-transition will also be accounted for. All model development and analysis will be performed with commercially available software packages exclusively. Inputs and analyses will be completely documented, all supporting information will be traceable, and bases will be defendable so as to be most useful to the U.S. Department of Energy community and mission. The expected completion date is the end of fiscal year (FY) 2013.

  6. Transition Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transition Plan Transition Plan This template is used to define the objectives, resources, and plans for systems transition, e.g., scheduling the transition from acceptance testing to full operational status, identifying staffing and training needs for system operation and maintenance, planning for data migration, etc PDF icon Transition Plan More Documents & Publications System Design Feasibility Study Report Template Configuration Management Plan

  7. Test plan/procedure for the shock limiting device of the radioisotope thermoelectric generator package mounting subsystem 145. Revision 1

    SciTech Connect (OSTI)

    Satoh, J.A.

    1995-05-25

    This document defines the procedure to be used in the 18 inch drop test to be used for design verification of the RTG Transportation System Package Mounting.

  8. WIPP - Passive Institutional Controls (PICs) Plans

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Plans Files below are in PDF format and can be viewed with Adobe Acrobat Reader. PICs Implementation Plan Permanent Markers Implementation Plan Permanent Markers Testing...

  9. AVTA: Plug-in Hybrid Electric Vehicle Specifications and Test Procedures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Plug-in Hybrid Electric Vehicle Specifications and Test Procedures AVTA: Plug-in Hybrid Electric Vehicle Specifications and Test Procedures Plug-in Hybrid Electric Vehicle Test Plan PDF icon DRAFT - Integrated Test Plan and Evaluation Program for Review for Plug-in Hybrid Electric Vehicles (PHEVs) More Documents & Publications AVTA: Hybrid Electric Vehicle Specifications and Test Procedures Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing

  10. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 124: Storage Tanks, Nevada Test Site, Nevada (Draft), Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2007-04-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses closure for Corrective Action Unit (CAU) 124, Areas 8, 15, and 16 Storage Tanks, identified in the Federal Facility Agreement and Consent Order. Corrective Action Unit 124 consists of five Corrective Action Sites (CASs) located in Areas 8, 15, and 16 of the Nevada Test Site as follows: 08-02-01, Underground Storage Tank 15-02-01, Irrigation Piping 16-02-03, Underground Storage Tank 16-02-04, Fuel Oil Piping 16-99-04, Fuel Line (Buried) and UST This plan provides the methodology of field activities necessary to gather information to close each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 124 using the SAFER process.

  11. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 113: Reactor Maintenance, Assembly, and Disassembly Building Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    J. L. Smith

    2001-01-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the action necessary for the closure in place of Corrective Action Unit (CAU) 113 Area 25 Reactor Maintenance, Assembly, and Disassembly Facility (R-MAD). CAU 113 is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) (NDEP, 1996). The CAU is located in Area 25 of the Nevada Test Site (NTS) and consists of Corrective Action Site (CAS) 25-04-01, R-MAD Facility (Figures 1-2). This plan provides the methodology for closure in place of CAU 113. The site contains radiologically impacted and hazardous material. Based on preassessment field work, there is sufficient process knowledge to close in place CAU 113 using the SAFER process. At a future date when funding becomes available, the R-MAD Building (25-3110) will be demolished and inaccessible radiologic waste will be properly disposed in the Area 3 Radiological Waste Management Site (RWMS).

  12. Sandia National Laboratories: News: Publications: Strategic Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Plan Sandia's FY16-FY20 Strategic Plan both reflects our continued dedication to the work we do and reinforces the importance of the integrated Laboratories'...

  13. Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2012-09-01

    Corrective Action Unit (CAU) 105 is located in Area 2 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 105 is a geographical grouping of sites where there has been a suspected release of contamination associated with atmospheric nuclear testing. This document describes the planned investigation of CAU 105, which comprises the following corrective action sites (CASs): 02-23-04, Atmospheric Test Site - Whitney 02-23-05, Atmospheric Test Site T-2A 02-23-06, Atmospheric Test Site T-2B 02-23-08, Atmospheric Test Site T-2 02-23-09, Atmospheric Test Site - Turk These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 30, 2012, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 105. The site investigation process will also be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with all CAU 105 CASs are from atmospheric nuclear testing activities. The presence and nature of contamination at CAU 105 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose at sample locations to the dose-based final action level. The total effective dose will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample location will be used to measure external radiological dose. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; DOE, Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted after the plan is approved.

  14. Test Plan for Westinghouse Hanford Company`s Hedgehog Shielded Container, Docket 94-39-7A, Type A Container

    SciTech Connect (OSTI)

    Kelly, D.L.

    1995-02-27

    This report documents the US Department of Transportation Specification 7A Type A (DOT-7A) compliance testing to be followed for qualification of the Westinghouse Hanford Company`s Hedgehog Shielded Container for use as a Type A packaging. The packaging configurations being tested are intended for liquids and solids, and for air transportation.

  15. Corrective Action Investigation Plan for Corrective Action Unit 541: Small Boy Nevada National Security Site and Nevada Test and Training Range, Nevada with ROTC 1

    SciTech Connect (OSTI)

    Matthews, Patrick

    2014-09-01

    Corrective Action Unit (CAU) 541 is co-located on the boundary of Area 5 of the Nevada National Security Site and Range 65C of the Nevada Test and Training Range, approximately 65 miles northwest of Las Vegas, Nevada. CAU 541 is a grouping of sites where there has been a suspected release of contamination associated with nuclear testing. This document describes the planned investigation of CAU 541, which comprises the following corrective action sites (CASs): 05-23-04, Atmospheric Tests (6) - BFa Site 05-45-03, Atmospheric Test Site - Small Boy These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the investigation report. The sites will be investigated based on the data quality objectives (DQOs) developed on April 1, 2014, by representatives of the Nevada Division of Environmental Protection; U.S. Air Force; and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 541. The site investigation process also will be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with CASs 05-23-04 and 05-45-03 are from nuclear testing activities conducted at the Atmospheric Tests (6) - BFa Site and Atmospheric Test Site - Small Boy sites. The presence and nature of contamination at CAU 541 will be evaluated based on information collected from field investigations. Radiological contamination will be evaluated based on a comparison of the total effective dose at sample locations to the dose-based final action level. The total effective dose will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample location will be used to measure external radiological dose. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.

  16. Workforce Plans | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workforce Plans Workforce Plans Workforce Planning is an integral part of the human capital planning process. The intent of every workforce planning effort is to ensure that organizations have the resources necessary to meet mission requirements and program priorities. To achieve this intent, organizations must first identify and understand those mission requirements and program priorities; typically through Strategic Planning. These goals and objectives not only provide the basis for

  17. Strategic Plans | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategic Plans Strategic Plans September 20, 2013 DOE OIG Strategic Plan Fiscal Years 2014 - 2019 The Office of Inspector General's plan to strengthen the integrity, economy, and efficiency of the Department's programs and operations. December 31, 2007 DOE OIG Strategic Plan Fiscal Years 2009 - 2013 This Strategic Plan offers a glance at the Office of the Inspector General's long term effort to work with the Department of Energy's leadership to improve the management and performance of the

  18. Test Plan for the Demonstration of Geophysical Techniques for Single-Shell Tank Leak Detection at the Hanford Mock Tank Site: Fiscal Year 2001

    SciTech Connect (OSTI)

    Barnett, D. Brent; Gee, Glendon W.; Sweeney, Mark D.

    2001-07-31

    As part of the Leak Detection, Monitoring and Mitigation (LDMM) program conducted by CH2M HILL 105-A during FY 2001. These tests are being conducted to assess the applicability of these methods (Electrical Resistance Tomography [ERT], High Resolution Resistivity [HRR], Cross-Borehole Seismography [XBS], Cross-Borehole Radar [XBR], and Cross-Borehole Electromagnetic Induction [CEMI]) to the detection and measurement of Single Shell Tank (SST) leaks into the vadose zone during planned sluicing operations. The testing in FY 2001 will result in the selection of up to two methods for further testing in FY 2002. In parallel with the geophysical tests, a Partitioning Interwell Tracer Test (PITT) study will be conducted simultaneously at the Mock Tank to assess the effectiveness of this technology in detecting and quantifying tank leaks in the vadose zone. Preparatory and background work using Cone Penetrometer methods (CPT) will be conducted at the Mock Tank site and an adjacent test area to derive soil properties for groundtruthing purposes for all methods.

  19. FINAL REPORT INTEGRATED DM1200 MELTER TESTING OF REDOX EFFECTS USING HLW AZ-101 AND C-106/AY-102 SIMULANTS VSL-04R4800-1 REV 0 5/6/

    SciTech Connect (OSTI)

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D'ANGELO NA; LUTZE W; BIZOT PM; CALLOW RA; BRANDYS M; KOT WK; PEGG IL

    2011-12-29

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of AZ-101 and C-106/AY-102 HLW simulants. The tests reported herein are a subset of three tests from a larger series of tests described in the Test Plan for the work; results from the remaining tests will be reported separately. Three nine day tests, one with AZ-101 and two with C-106/AY-102 feeds were conducted with variable amounts of added sugar to address the effects of redox. The test with AZ-101 included ruthenium spikes to also address the effects of redox on ruthenium volatility. One of tests addressed the effects of increased flow-sheet nitrate levels using C-106/AY-102 feeds. With high nitrate/nitrite feeds (such as WTP LAW feeds), reductants are required to prevent melt foaming and deleterious effects on glass production rates. Sugar is the baseline WTP reductant for this purpose. WTP HLW feeds typically have relatively low nitrate/nitrite content in comparison to the organic carbon content and, therefore, have typically not required sugar additions. However, HLW feed variability, particularly with respect to nitrate levels, may necessitate the use of sugar in some instances. The tests reported here investigate the effects of variable sugar additions to the melter feed as well as elevated nitrate levels in the waste. Variables held constant to the extent possible included melt temperature, bubbling rate, plenum temperature, cold cap coverage, the waste simulant composition, and the target glass composition. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW feeds with variable amounts of added sugar and increased nitrate levels; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and perform pre- and post test inspections of system components. The specific objectives (including test success criteria) of this testing, along with how each objective was met, are outlined in a table.

  20. Final environmental impact statement for the Nevada Test Site and off-site locations in the state of Nevada: Mitigation action plan

    SciTech Connect (OSTI)

    1997-02-01

    The DOE Notice of Availability for this environmental impact statement was published in the Federal Register on Friday, October 18, 1996 (61 FR 54437). The final environmental impact statement identifies potential adverse effects resulting from the four use alternatives evaluated and discusses measures that DOE considered for the mitigation of these potential adverse effects. The Secretary of Energy signed the Record of Decision on the management and operation of the Nevada Test Site and other DOE sites in the state of Nevada on December 9, 1996. These decisions will result in the continuation of the multipurpose, multi-program use of the Nevada Test Site, under which DOE will pursue a further diversification of interagency, private industry, and public-education uses while meeting its Defense Program, Waste Management, and Environmental Restoration mission requirements at the Nevada Test Site and other Nevada sites, including the Tonopah Test Range, the Project Shoal Site, the Central Nevada Test Area, and on the Nellis Air Force Range Complex. The Record of Decision also identifies specific mitigation actions beyond the routine day-to-day physical and administrative controls needed for implementation of the decisions. These specific mitigation actions are focused on the transportation of waste and on groundwater availability. This Mitigation Action Plan elaborates on these mitigation commitments.

  1. Planning for hybrid-cycle OTEC experiments using the HMTSTA test facility at the Natural Energy Laboratory of Hawaii

    SciTech Connect (OSTI)

    Panchal, C.; Rabas, T.; Genens, L.

    1989-01-01

    The US Department of Energy has built an experimental apparatus for studying the open-cycle Ocean Thermal Energy Conversion (OC-OTEC) system. Experiments using warm and cold seawater are currently uderway to validate the performance predictions for an OC-TEC flash evaporator, surface condenser, and direct-contact condenser. The hybrid cycle is another OTEC option that produces both power and desalinated water, it is comparable in capital cost to OC-OTEC, and it eliminates the problems associated with the large steam turbine. Means are presented in this paper for modifying the existing apparatus to conduct similar experiments on hybrid-cycle OTEC heat exchangers. These data are required to validate predictive methods of the components and for the system integration that were identified in an earlier study of hybrid-cycle OTEC power plants. 7 refs., 4 figs., 2 tabs.

  2. ISTStrategicPlanFinal.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science at Matters: Integrating Information, Science, and Technology for Prediction Strategic Plan December 2010 Predicting Materials Behavior Situational Awareness Energy Climate...

  3. Planning for the future

    SciTech Connect (OSTI)

    Lesh, Pamela

    2009-06-15

    Four changes to integrated resource planning could significantly improve alignment between future utility spending and the forces and changes that are upending past preconceptions of how to predict future load. (author)

  4. Corrective Action Investigation Plan for Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada with Errata and ROTC 1, Rev. No. 0

    SciTech Connect (OSTI)

    John McCord; Marutzky, Sam

    2004-12-01

    This Corrective Action Investigation Plan (CAIP) was developed for Corrective Action Unit (CAU) 99, Rainier Mesa/Shoshone Mountain. The CAIP is a requirement of the ''Federal Facility Agreement and Consent Order'' (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (DoD) (FFACO, 1996). The FFACO addresses environmental restoration activities at U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) facilities and sites including the underground testing area(s) of the Nevada Test Site (NTS). This CAIP describes the investigation activities currently planned for the Rainier Mesa/Shoshone Mountain CAU. These activities are consistent with the current Underground Test Area (UGTA) Project strategy described in Section 3.0 of Appendix VI, Revision No. 1 (December 7, 2000) of the FFACO (1996) and summarized in Section 2.1.2 of this plan. The Rainier Mesa/Shoshone Mountain CAU extends over several areas of the NTS (Figure 1-1) and includes former underground nuclear testing locations in Areas 12 and 16. The area referred to as ''Rainier Mesa'' includes the geographical area of Rainier Mesa proper and the contiguous Aqueduct Mesa. Figure 1-2 shows the locations of the tests (within tunnel complexes) conducted at Rainier Mesa. Shoshone Mountain is located approximately 20 kilometers (km) south of Rainier Mesa, but is included within the same CAU due to similarities in their geologic setting and in the nature and types of nuclear tests conducted. Figure 1-3 shows the locations of the tests conducted at Shoshone Mountain. The Rainier Mesa/Shoshone Mountain CAU falls within the larger-scale Rainier Mesa/Shoshone Mountain Investigation Area, which also includes the northwest section of the Yucca Flat CAU as shown in Figure 1-1. Rainier Mesa and Shoshone Mountain lie adjacent to the Timber Mountain Caldera Complex and are composed of volcanic rocks that erupted from the caldera as well as from more distant sources. This has resulted in a layered volcanic stratigraphy composed of thick deposits of welded and nonwelded ash-flow tuff and lava flows. These deposits are proximal to the source caldera and are interstratified with the more distal facies of fallout tephra and bedded reworked tuff from more distant sources. In each area, a similar volcanic sequence was deposited upon Paleozoic carbonate and siliciclastic rocks that are disrupted by various thrust faults, normal faults, and strike-slip faults. In both Rainier Mesa (km) to the southwest, and Tippipah Spring, 4 km to the north, and the tunnel complex is dry. Particle-tracking simulations performed during the value of information analysis (VOIA) (SNJV, 2004b) indicate that most of the regional groundwater that underlies the test locations at Rainier Mesa and Shoshone Mountain eventually follows similar and parallel paths and ultimately discharges in Death Valley and the Amargosa Desert. Particle-tracking simulations conducted for the regional groundwater flow and risk assessment indicated that contamination from Rainier Mesa and Shoshone Mountain were unlikely to leave the NTS during the 1,000-year period of interest (DOE/NV, 1997a). It is anticipated that CAU-scale modeling will modify these results somewhat, but it is not expected to radically alter the outcome of these previous particle-tracking simulations within the 1,000-year period of interest. The Rainier Mesa/Shoshone Mountain CAIP describes the corrective action investigation (CAI) to be conducted at the Rainier Mesa/Shoshone Mountain CAU to evaluate the extent of contamination in groundwater due to the underground nuclear testing. The CAI will be conducted by the UGTA Project, which is part of the NNSA/NSO Environmental Restoration Project (ERP). The purpose and scope of the CAI are presented in this section, followed by a summary of the entire document.

  5. Ten Year Site Plans | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ten Year Site Plans Ten Year Site Plans A Ten Year Site Plan (TYSP) is the essential planning document linking a site's real property requirements to its mission in support of the Department of Energy's overall strategic plan. It is a comprehensive site-wide plan encompassing the needs of tenant activities. The TYSP is integral to and supports the Department's Planning, Programming, Budgeting, and Evaluation System (PPBES). The TYSP also describes site-specific actions the programs plans in

  6. Second Line of Defense, Port of Buenos Aires and Exolgan Container Terminal Operational Testing and Evaluation Plan, Buenos Aires, Argentina

    SciTech Connect (OSTI)

    Roberts, Bryan W.

    2012-08-23

    The Office of the Second Line of Defense (SLD) Megaports project team for Argentina will conduct operational testing and evaluation (OT&E) at Exolgan Container Terminal at the Port of Dock Sud from July 16-20, 2012; and at the Port of Buenos Aires from September 3-7, 2012. SLD is installing radiation detection equipment to screen export, import, and transshipment containers at these locations. The purpose of OT&E is to validate and baseline an operable system that meets the SLD mission and to ensure the system continues to perform as expected in an operational environment with Argentina Customs effectively adjudicating alarms.

  7. FINAL REPORT INTEGRATED DM1200 MELTER TESTING OF BUBBLER CONFIGURATIONS USING HLW AZ-101 SIMULANTS VSL-04R4800-4 REV 0 10/5/04

    SciTech Connect (OSTI)

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D'ANGELO NA; LUTZE W; CALLOW RA; BRANDYS M; KOT WK; PEGG IL

    2011-12-29

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of AZ-101 HLW simulants. The tests reported herein are a subset of six tests from a larger series of tests described in the Test Plan for the work; results from the other tests have been reported separately. The solids contents of the melter feeds were based on the WTP baseline value for the solids content of the feeds from pretreatment which changed during these tests from 20% to 15% undissolved solids resulting in tests conducted at two feed solids contents. Based on the results of earlier tests with single outlet 'J' bubblers, initial tests were performed with a total bubbling rate of 651 pm. The first set of tests (Tests 1A-1E) addressed the effects of skewing this total air flow rate back and forth between the two installed bubblers in comparison to a fixed equal division of flow between them. The second set of tests (2A-2D) addressed the effects of bubbler depth. Subsequently, as the location, type and number of bubbling outlets were varied, the optimum bubbling rate for each was determined. A third (3A-3C) and fourth (8A-8C) set of tests evaluated the effects of alternative bubbler designs with two gas outlets per bubbler instead of one by placing four bubblers in positions simulating multiple-outlet bubblers. Data from the simulated multiple outlet bubblers were used to design bubblers with two outlets for an additional set of tests (9A-9C). Test 9 was also used to determine the effect of small sugar additions to the feed on ruthenium volatility. Another set of tests (10A-10D) evaluated the effects on production rate of spiking the feed with chloride and sulfate. Variables held constant to the extent possible included melt temperature, plenum temperature, cold cap coverage, the waste simulant composition, and the target glass composition. The feed rate was increased to the point that a constant, essentially complete, cold cap was achieved, which was used as an indicator of a maximized feed rate for each test. The first day of each test was used to build the cold cap and decrease the plenum temperature. The remainder of each test was split into two- to six-day segments, each with a different bubbling rate, bubbler orientation, or feed concentration of chloride and sulfur.

  8. Project test plan for runoff and erosion on fine-soil barrier surfaces and rock-covered side slopes

    SciTech Connect (OSTI)

    Walters, W.H.; Hoover, K.A.; Cadwell, L.L.

    1990-06-01

    Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company are working together to develop protective barriers to isolate near-surface radioactive waste. The purpose of the barriers is to protect defense wastes at the US Department of Energy's (DOE) Hanford Site from infiltration of precipitation, biointrusion, and surficial erosion for up to 10,000 years without the need for long-term monitoring, maintenance, or institutional control. The barriers will be constructed of layered earth and rock material designed to direct surface and groundwater pathways away from the buried waste. To address soil erosion as it applies to barrier design and long-term stability, a task designed to study this problem has been included in the Protective Barriers Program at PNL. The barrier soil-erosion task will investigate the ability of the soil cover and side slopes to resist the erosional and destabilizing processes from externally applied water. The study will include identification and field testing of the dominant processes contributing to erosion and barrier failure. The effects of rock mulches, vegetation cover on the top fine-grained soil surface, as well as the stability of rock armoring on the side slopes, will be evaluated. Some of the testing will include the effects of animal intrusion on barrier erosion, and these will be coordinated with other animal intrusion studies. 6 refs., 4 figs., 1 tab.

  9. Integrated dry NO{sub x}/SO{sub 2} emissions control systems: Advanced retractable injection lance SNCR test report. NOELL ARIL test period: April 20, 1995--December 21, 1995; DPSC test period: August 16--26, 1996

    SciTech Connect (OSTI)

    Muzio, L.J.; Smith, R.A.; Hunt, T.

    1997-04-01

    The test site is Arapahoe Generating Station Unit 4, a 100 MWe down-fired utility boiler burning a low-sulfur western coal. The project goal is to demonstrate up to 70% reductions in NOx and SO{sub 2} emission through the integration of: (1) down-fired low-NOx burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NOx removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. This report documents the third phase of SNCR tests, where an additional injection location was installed to increase the low-load NOx removal performance. The new injectors consist of a pair of retractable in-furnace lances which were designed to provide a high degree of load following flexibility through on-line adjustments of the injection angle. With the new lances, NOx removals in excess of 35% are achievable at the same load and HN{sub 3} slip limit. At loads of 43 to 60 MWe, NOx removals with the lances range from 37--52%. At loads greater than 60 MWe, the wall-injection location is more efficient, and at loads of 70 to 100 MWe, NOx removals range from 37--41%. The coal mill-in-service pattern was found to have a large effect on both NOx removal and NH{sub 3} slip for injection at the new lance location. At 60 MWe, the NOx removal at the 10 ppm NH{sub 3} slip limit ranges from 28--52% depending on the mill-in-service pattern. Biasing the coal mills to provide uniform combustion conditions ahead of the injection location was found to be the best option for improving SNCR system performance under these conditions.

  10. Integrated dry NO{sub x}/SO{sub 2} emissions control system low-NO{sub x} combustion system SNCR test report. Test period, January 11--April 9, 1993

    SciTech Connect (OSTI)

    Smith, R.A.; Muzio, L.J.; Hunt, T.

    1994-06-01

    The DOE sponsored Integrated Dry NO{sub x}/SO{sub 2}, Emissions Control System program, which is a Clean Coal Technology III demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low-sulfur western coal. The project goal is to demonstrate up to 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high-sulfur coal will also be tested. This report documents the fourth phase of the test program, where the performance of the SNCR system, after the low-NO{sub x} combustion system retrofit, was assessed. Previous to this phase of testing, a subsystem was added to the existing SNCR system which allowed on-line conversion of a urea solution to aqueous ammonium compounds. Both convened and unconverted urea were investigated as SNCR chemicals.

  11. The 1993 baseline biological studies and proposed monitoring plan for the Device Assembly Facility at the Nevada Test Site

    SciTech Connect (OSTI)

    Woodward, B.D.; Hunter, R.B.; Greger, P.D.; Saethre, M.B.

    1995-02-01

    This report contains baseline data and recommendations for future monitoring of plants and animals near the new Device Assembly Facility (DAF) on the Nevada Test Site (NTS). The facility is a large structure designed for safely assembling nuclear weapons. Baseline data was collected in 1993, prior to the scheduled beginning of DAF operations in early 1995. Studies were not performed prior to construction and part of the task of monitoring operational effects will be to distinguish those effects from the extensive disturbance effects resulting from construction. Baseline information on species abundances and distributions was collected on ephemeral and perennial plants, mammals, reptiles, and birds in the desert ecosystems within three kilometers (km) of the DAF. Particular attention was paid to effects of selected disturbances, such as the paved road, sewage pond, and the flood-control dike, associated with the facility. Radiological monitoring of areas surrounding the DAF is not included in this report.

  12. Corrective Action Investigation Plan for Corrective Action Unit 570: Area 9 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2012-08-01

    CAU 570 comprises the following six corrective action sites (CASs): 02-23-07, Atmospheric Test Site - Tesla 09-23-10, Atmospheric Test Site T-9 09-23-11, Atmospheric Test Site S-9G 09-23-14, Atmospheric Test Site - Rushmore 09-23-15, Eagle Contamination Area 09-99-01, Atmospheric Test Site B-9A These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 30, 2012, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 570. The site investigation process will also be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The presence and nature of contamination at CAU 570 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose at sample locations to the dose-based final action level. The total effective dose will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed near the center of each sample location will be used to measure external radiological dose. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.

  13. Pretreatment Engineering Platform (PEP) Integrated Test B Run Report--Caustic and Oxidative Leaching in UFP-VSL-T02A

    SciTech Connect (OSTI)

    Geeting, John GH; Bredt, Ofelia P.; Burns, Carolyn A.; Golovich, Elizabeth C.; Guzman-Leong, Consuelo E.; Josephson, Gary B.; Kurath, Dean E.; Sevigny, Gary J.; Aaberg, Rosanne L.

    2009-12-10

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed and operated as part of a plan to respond to issue M12, Undemonstrated Leaching Processes of the External Flowsheet Review Team (EFRT) issue response plan.( ) The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing.

  14. INTEGRATED DM 1200 MELTER TESTING OF HLW C-106/AY-102 COMPOSITION USING BUBBLERS VSL-03R3800-1 REV 0 9/15/03

    SciTech Connect (OSTI)

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D'ANGELO NA; KOT WK; PEGG IL

    2011-12-29

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of simulated HLW C-106/AY-102 feed. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW C-106/AY-102 feed; determine the effect of bubbling rate on production rate; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and to perform pre- and post test inspections of system components.

  15. Proceedings of the 22nd Annual DoD/DOE Seismic Research Symposium: Planning for Verification of and Compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT)

    SciTech Connect (OSTI)

    Nichols, James W., LTC

    2000-09-15

    These proceedings contain papers prepared for the 22nd Annual DoD/DOE Seismic Research Symposium: Planning for Verification of and Compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), held 13-15 September 2000 in New Orleans, Louisiana. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), Department of Defense (DoD), US Army Space and Missile Defense Command, Defense Special Weapons Agency (DSWA), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  16. Streamlined approach for environmental restoration (SAFER) plan for corrective action unit 412: clean slate I plutonium dispersion (TTR) tonopah test range, Nevada, revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick K.

    2015-04-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 412. CAU 412 is located on the Tonopah Test Range and consists of a single corrective action site (CAS), TA-23-01CS, Pu Contaminated Soil. There is sufficient information and historical documentation from previous investigations and the 1997 interim corrective action to recommend closure of CAU 412 using the SAFER process. Based on existing data, the presumed corrective action for CAU 412 is clean closure. However, additional data will be obtained during a field investigation to document and verify the adequacy of existing information and determine whether the CAU 412 closure objectives have been achieved. This SAFER Plan provides the methodology to gather the necessary information for closing the CAU.The following summarizes the SAFER activities that will support the closure of CAU 412:• Collect environmental samples from designated target populations to confirm or disprove the presence of contaminants of concern (COCs) as necessary to supplement existing information.• If no COCs are present, establish clean closure as the corrective action. • If COCs are present, the extent of contamination will be defined and further corrective actions will be evaluated with the stakeholders (NDEP, USAF).• Confirm the preferred closure option is sufficient to protect human health and the environment.

  17. Corrective Action Investigation Plan for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2007-06-01

    Corrective Action Unit 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, consists of seven inactive sites located in the Yucca Flat area and one inactive site in the Pahute Mesa area. The eight CAU 545 sites consist of craters used for mud disposal, surface or buried waste disposed within craters or potential crater areas, and sites where surface or buried waste was disposed. The CAU 545 sites were used to support nuclear testing conducted in the Yucca Flat area during the 1950s through the early 1990s, and in Area 20 in the mid-1970s. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval.

  18. Integrating Safeguards, Security, & Emergency Services at CNS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    manager with developing an integration plan for his or her group then guided and assisted them in surmounting obstacles as they worked through their plans. Brian Deorocki...

  19. ORISE: Exercise Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exercise Planning Exercise Planning The Oak Ridge Institute for Science and Education (ORISE) helps federal, state and local emergency management personnel plan and prepare for the threat of a national security or public safety disaster. ORISE incorporates a wide range of security exercises to test disaster preparedness plans, including full-function exercises, drills and tabletops to ready the U.S. Department of Energy (DOE) and other government agencies to effectively respond to emergencies.

  20. Initiating the Validation of CCIM Processability for Multi-phase all Ceramic (SYNROC) HLW Form: Plan for Test BFY14CCIM-C

    SciTech Connect (OSTI)

    Vince Maio

    2014-08-01

    This plan covers test BFY14CCIM-C which will be a firstofits-kind demonstration for the complete non-radioactive surrogate production of multi-phase ceramic (SYNROC) High Level Waste Forms (HLW) using Cold Crucible Induction Melting (CCIM) Technology. The test will occur in the Idaho National Laboratorys (INL) CCIM Pilot Plant and is tentatively scheduled for the week of September 15, 2014. The purpose of the test is to begin collecting qualitative data for validating the ceramic HLW form processability advantages using CCIM technology- as opposed to existing ceramiclined Joule Heated Melters (JHM) currently producing BSG HLW forms. The major objectives of BFY14CCIM-C are to complete crystalline melt initiation with a new joule-heated resistive starter ring, sustain inductive melting at temperatures between 1600 to 1700C for two different relatively high conductive materials representative of the SYNROC ceramic formation inclusive of a HLW surrogate, complete melter tapping and pouring of molten ceramic material in to a preheated 4 inch graphite canister and a similar canister at room temperature. Other goals include assessing the performance of a new crucible specially designed to accommodate the tapping and pouring of pure crystalline forms in contrast to less recalcitrant amorphous glass, assessing the overall operational effectiveness of melt initiation using a resistive starter ring with a dedicated power source, and observing the tapped molten flow and subsequent relatively quick crystallization behavior in pans with areas identical to standard HLW disposal canisters. Surrogate waste compositions with ceramic SYNROC forming additives and their measured properties for inductive melting, testing parameters, pre-test conditions and modifications, data collection requirements, and sampling/post-demonstration analysis requirements for the produced forms are provided and defined.

  1. Corrective Action Investigation Plan for Corrective Action Unit 190: Contaminated Waste Sites Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    Wickline, Alfred

    2006-12-01

    Corrective Action Unit (CAU) 190 is located in Areas 11 and 14 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 190 is comprised of the four Corrective Action Sites (CASs) listed below: (1) 11-02-01, Underground Centrifuge; (2) 11-02-02, Drain Lines and Outfall; (3) 11-59-01, Tweezer Facility Septic System; and (4) 14-23-01, LTU-6 Test Area. These sites are being investigated because existing information is insufficient on the nature and extent of potential contamination to evaluate and recommend corrective action alternatives. Additional information will be obtained before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS by conducting a corrective action investigation (CAI). The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on August 24, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture, and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 190. The scope of the CAU 190 CAI includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling; (2) Conduct radiological and geophysical surveys; (3) Perform field screening; (4) Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern (COCs) are present; (5) If COCs are present, collect additional step-out samples to define the lateral and vertical extent of the contamination; (6) Collect samples of source material, if present, to determine the potential for a release; (7) Collect samples of investigation-derived waste, as needed, for waste management and minimization purposes; and (8) Collect quality control samples. This Corrective Action Investigation Document (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) agreed to by the State of Nevada, U.S. Department of Energy, and U.S. Department of Defense. Under the FFACO, this CAIP will be submitted to the Nevada Division of Environmental Protection for approval. Field work will be conducted following approval.

  2. Vision Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vision Plan Vision Plan A comprehensive benefits package with plan options for health care and retirement to take care of our employees today and tomorrow. Contact Benefits Office...

  3. Strategic Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Plan Print ALS Strategic Plan Update: September 2015 The Advanced Light Source Strategic Plan, originally published in 2009, has been revised to reflect completed...

  4. Program management plan for development, demonstration, testing, and evaluation efforts associated with Oak Ridge Reservation`s Land Disposal Restrictions Federal Facility Compliance Agreement

    SciTech Connect (OSTI)

    Conley, T.B.

    1994-04-01

    This program management plan covers the development, demonstration, testing, and evaluation efforts necessary to identify treatment methods for all the waste listed in Appendix B of the ORR`s LDR/FFCA as well as any new wastes which meet Appendix B criteria. To successfully identify a treatment method, at least a proof-of-principle level of understanding must be obtained: that is, the candidate processes must be demonstrated as effective in treating the wastes to the LDR; however, an optimized process is not required. Where applicable and deemed necessary and where the budgets will support them, pilot-scale demonstrations will be pursued. The overall strategy being adopted in this program will be composed of the following activities: Scoping of the study; characterization; development and screening of alternatives; treatability investigations; and detailed analysis of alternatives.

  5. Corrective Action Investigation Plan for Corrective Action Unit 374: Area 20 Schooner Unit Crater Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2010-02-01

    Corrective Action Unit 374 is located in Areas 18 and 20 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 374 comprises the five corrective action sites (CASs) listed below: • 18-22-05, Drum • 18-22-06, Drums (20) • 18-22-08, Drum • 18-23-01, Danny Boy Contamination Area • 20-45-03, U-20u Crater (Schooner) These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on October 20, 2009, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 374.

  6. NREL: Energy Systems Integration - Systems Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Integration Systems Integration considers the relationships among electricity, thermal, and fuel systems and data and information networks to ensure optimal integration and interoperability across the entire energy system spectrum. Advanced R&D in systems integration ranges from technology innovation to electric, fuel, thermal, and water infrastructure deployment. System integration research areas include: Prototype testing through hardware-in-the-loop Energy system integration

  7. Hanfords Supplemental Treatment Project: Full-Scale Integrated Testing of In-Container-Vitrification and a 10,000-Liter Dryer

    SciTech Connect (OSTI)

    Witwer, Keith S.; Dysland, Eric J.; Garfield, J. S.; Beck, T. H.; Matyas, Josef; Bagaasen, Larry M.; Cooley, Scott K.; Pierce, Eric M.; Kim, Dong-Sang; Schweiger, Michael J.

    2008-02-22

    The GeoMelt In-Container Vitrification (ICV) process was selected by the U.S. Department of Energy (DOE) in 2004 for further evaluation as the supplemental treatment technology for Hanfords low-activity waste (LAW). Also referred to as bulk vitrification, this process combines glass forming minerals, LAW, and chemical amendments; dries the mixture; and then vitrifies the material in a refractory-lined steel container. AMEC Nuclear Ltd. (AMEC) is adapting its GeoMelt ICV technology for this application with technical and analytical support from Pacific Northwest National Laboratory (PNNL). The DVBS project is funded by the DOE Office of River Protection and administered by CH2M HILL Hanford Group, Inc. The Demonstration Bulk Vitrification Project (DBVS) was initiated to engineer, construct, and operate a full-scale bulk vitrification pilot-plant to treat up to 750,000 liters of LAW from Waste Tank 241-S-109 at the DOE Hanford Site. Since the beginning of the DBVS project in 2004, testing has used laboratory, crucible-scale, and engineering-scale equipment to help establish process limitations of selected glass formulations and identify operational issues. Full-scale testing has provided critical design verification of the ICV process before operating the Hanford pilot-plant. In 2007, the projects fifth full-scale test, called FS-38D, (also known as the Integrated Dryer Melter Test, or IDMT,) was performed. This test had three primary objectives: 1) Demonstrate the simultaneous and integrated operation of the ICV melter with a 10,000-liter dryer, 2) Demonstrate the effectiveness of a new feed reformulation and change in process methodology towards reducing the production and migration of molten ionic salts (MIS), and, 3) Demonstrate that an acceptable glass product is produced under these conditions. Testing was performed from August 8 to 17, 2007. Process and analytical results demonstrated that the primary test objectives, along with a dozen supporting objectives, were successfully met. Glass performance exceeded all disposal performance criteria. A previous issue with MIS containment was successfully resolved in FS-38D, and the ICV melter was integrated with a full-scale, 10,000-liter dryer. This paper describes the rationale for performing the test, the purpose and outcome of scale-up tests preceding it, and the performance and outcome of FS-38D.

  8. Hanford's Supplemental Treatment Project: Full-Scale Integrated Testing of In-Container-Vitrification and a 10,000-Liter Dryer

    SciTech Connect (OSTI)

    Witwer, K.S.; Dysland, E.J.; Garfield, J.S.; Beck, T.H.; Matyas, J.; Bagaasen, L.M.; Cooley, S.K.; Pierce, E.; Kim, D.S.; Schweiger, M.J.

    2008-07-01

    The GeoMelt{sup R} In-Container Vitrification{sup TM} (ICV{sup TM}) process was selected by the U.S. Department of Energy (DOE) in 2004 for further evaluation as the supplemental treatment technology for Hanford's low-activity waste (LAW). Also referred to as 'bulk vitrification', this process combines glass forming minerals, LAW, and chemical amendments; dries the mixture; and then vitrifies the material in a refractory-lined steel container. AMEC Nuclear Ltd. (AMEC) is adapting its GeoMelt ICV{sup TM} technology for this application with technical and analytical support from Pacific Northwest National Laboratory (PNNL). The DVBS project is funded by the DOE Office of River Protection and administered by CH2M HILL Hanford Group, Inc. The Demonstration Bulk Vitrification Project (DBVS) was initiated to engineer, construct, and operate a full-scale bulk vitrification pilot-plant to treat up to 750,000 liters of LAW from Waste Tank 241-S-109 at the DOE Hanford Site. Since the beginning of the DBVS project in 2004, testing has used laboratory, crucible-scale, and engineering-scale equipment to help establish process limitations of selected glass formulations and identify operational issues. Full-scale testing has provided critical design verification of the ICV{sup TM} process before operating the Hanford pilot-plant. In 2007, the project's fifth full-scale test, called FS-38D, (also known as the Integrated Dryer Melter Test, or IDMT,) was performed. This test had three primary objectives: 1) Demonstrate the simultaneous and integrated operation of the ICV{sup TM} melter with a 10,000- liter dryer, 2) Demonstrate the effectiveness of a new feed reformulation and change in process methodology towards reducing the production and migration of molten ionic salts (MIS), and, 3) Demonstrate that an acceptable glass product is produced under these conditions. Testing was performed from August 8 to 17, 2007. Process and analytical results demonstrated that the primary test objectives, along with a dozen supporting objectives, were successfully met. Glass performance exceeded all disposal performance criteria. A previous issue with MIS containment was successfully resolved in FS-38D, and the ICV{sup TM} melter was integrated with a full-scale, 10,000-liter dryer. This paper describes the rationale for performing the test, the purpose and outcome of scale-up tests preceding it, and the performance and outcome of FS-38D. (authors)

  9. Design, testing, and commercialization plans for the SAIC/STM 20 kW{sub e} solar dish/Stirling system

    SciTech Connect (OSTI)

    Beninga, K.J.; Davenport, R.L.; Johansson, S.N.

    1995-12-31

    As a part of the US Department of Energy`s (DOE) Utility-Scale Joint-Venture Program, Science Applications International Corporation (SAIC) and Stirling Thermal Motors (STM) have teamed to produce a solar dish/Stirling system for utility electricity generation. The 90 m{sup 2} dish concentrator consists of 16 stretched membrane mirror facets on a truss structure with an azimuth/elevation gear drive. The design modifies a faceted stretched membrane dish design developed previously by SAIC and WGA, Inc. in order to simplify the structure and reduce manufacturing costs, The Stirling engine used in the system is the STM 4-120 kinematic Stirling engine. It features variable swash plate control and a direct absorption solar receiver with hydrogen as the operating fluid. A prototype dish/Stirling system has been installed at a test site near Golden, Colorado and is now undergoing tests. The optical and thermal performance of the dish is being characterized using a Coldwater calorimeter and the optical Beam Characterization System (BCS) developed by Sandia National Labs in Albuquerque, New Mexico. After completion of the dish characterization tests, the STM engine will be installed on the dish and system power generation and efficiency will be measured. This paper presents a summary of the SAIC/STM dish/Stirling system design and gives results from initial testing of the system. Also described are SAIC`s plans for manufacturing and commercialization of the dish/Stirling system to utilities and other markets in the US and abroad.

  10. A Blueprint for Urban Sustainability: Integrating Sustainable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Blueprint for Urban Sustainability: Integrating Sustainable Energy Practices into Metropolitan Planning, May 2004 A Blueprint for Urban Sustainability: Integrating Sustainable ...

  11. Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System baseline test report, November 11--December 15, 1991

    SciTech Connect (OSTI)

    Shiomoto, G.H.; Smith, R.A.

    1992-03-01

    The DOE sponsored Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System program, which is a Clean Coal Technology Ill demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low sulfur western coal. The project goal is to demonstrate 70 percent reductions in NO{sub x} and S0{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) urea injection for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high sulfur coal will also be tested. This report documents the first baseline test results conducted during the program. The baseline tests were conducted with the original burners and auxiliary equipment and represent the unmodified boiler emissions. The burner design of Arapahoe Unit 4 results in relatively high NO{sub x} levels ranging from 740 to 850 ppM (corrected to 3% O{sub 2}, dry) over the load range. Excess air level was the primary factor influencing NO{sub x} emissions. During normal boiler operations, there was a wide range in NO{sub x} emissions, due to the variations of excess air, boiler load and other, secondary parameters. SO{sub 2} emissions ranged from 350 to 600 ppM (corrected to 3% O{sub 2}, dry) and reflected variations in the coal sulfur content.

  12. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 408: Bomblet Target Area Tonopah Test Range (TTR), Nevada, Revision 1

    SciTech Connect (OSTI)

    Mark Krauss

    2010-03-01

    This Streamlined Approach for Environmental Restoration Plan addresses the actions needed to achieve closure of Corrective Action Unit (CAU) 408, Bomblet Target Area (TTR). Corrective Action Unit 408 is located at the Tonopah Test Range and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order. Corrective Action Unit 408 comprises Corrective Action Site TA-55-002-TAB2, Bomblet Target Areas. Clean closure of CAU 408 will be accomplished by removal of munitions and explosives of concern within seven target areas and potential disposal pits. The target areas were used to perform submunitions related tests for the U.S. Department of Energy (DOE). The scope of CAU 408 is limited to submunitions released from DOE activities. However, it is recognized that the presence of other types of unexploded ordnance and munitions may be present within the target areas due to the activities of other government organizations. The CAU 408 closure activities consist of: Clearing bomblet target areas within the study area. Identifying and remediating disposal pits. Collecting verification samples. Performing radiological screening of soil. Removing soil containing contaminants at concentrations above the action levels. Based on existing information, contaminants of potential concern at CAU 408 include unexploded submunitions, explosives, Resource Conservation Recovery Act metals, and depleted uranium. Contaminants are not expected to be present in the soil at concentrations above the action levels; however, this will be determined by radiological surveys and verification sample results.

  13. CITSS Project Plan | Department of Energy

    Energy Savers [EERE]

    Project Plan CITSS Project Plan The Customer Information Technology Support System (CITSS) Project Plan, from an actual DOE Commercial Off-The-Shelf (COTS) software integration project, can be used as a template to facilitate the creation of the project plan for your particular proje PDF icon CITSS Project Plan More Documents & Publications Software Configuration Management Plan CITSS Project Plan CITSS Configurable Item List: COTS Software

  14. Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System baseline SNCR test report, February 4--March 6, 1992

    SciTech Connect (OSTI)

    Smith, R.A.; Shiomoto, G.H.; Muzio, L.J.; Hunt, T.

    1993-09-01

    The DOE sponsored Integrated Dry NO{sub x}SO{sub 2} Emissions Control System program, which is a Clean Coal Technology III demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low sulfur western coal. The project goal is to demonstrate 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) selective Non-Catalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high-sulfur coal will also be tested. This report documents the second test phase of the program. This second test phase was comprised of the start up of the SNCR system followed by a brief parametric test series. Time constraints due to the retrofit schedule precluded optimizing the SNCR system. Testing investigated both urea and aqueous ammonia as SNCR chemicals. Other parameters investigated included boiler load, the amount of chemical injected, as well as injection parameters (injection location, amount of mixing air, dilution water flow, and injector orifice sizes). NO{sub x} removals of nominally 35 percent could be obtained with both chemicals while maintaining ammonia slip levels less than 10 ppM at full load. At higher chemical injection rates (nominal N/NO molar ratios of 1.5 to 2.0), NO{sub x} reductions in the range of 60 to 70 percent were achieved, but with unacceptable levels of NH{sub 3} slip. For a given level of NO{sub x} reduction, ammonia slip was lower with aqueous ammonia injection than with urea. The test program also confirmed prior observations that (1) the optimum temperature for NO{sub x} reduction with ammonia is lower than with urea, and (2) N{sub 2}O emissions as a by-product of the SNCR process are lower for ammonia compared to urea.

  15. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 411. Double Tracks Plutonium Dispersion (Nellis), Nevada Test and Training Range, Nevada, Revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick K.

    2015-03-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 411, Double Tracks Plutonium Dispersion (Nellis). CAU 411 is located on the Nevada Test and Training Range and consists of a single corrective action site (CAS), NAFR-23-01, Pu Contaminated Soil. There is sufficient information and historical documentation from previous investigations and the 1996 interim corrective action to recommend closure of CAU 411 using the SAFER process. Based on existing data, the presumed corrective action for CAU 411 is clean closure. However, additional data will be obtained during a field investigation to document and verify the adequacy of existing information, and to determine whether the CAU 411 closure objectives have been achieved. This SAFER Plan provides the methodology to gather the necessary information for closing the CAU. The results of the field investigation will be presented in a closure report that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval. The site will be investigated based on the data quality objectives (DQOs) developed on November 20, 2014, by representatives of NDEP, the U.S. Air Force (USAF), and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office. The DQO process was used to identify and define the type, amount, and quality of data needed to determine whether CAU 411 closure objectives have been achieved. The following text summarizes the SAFER activities that will support the closure of CAU 411; Collect environmental samples from designated target populations to confirm or disprove the presence of contaminants of concern (COCs) as necessary to supplement existing information; If COCs are no longer present, establish clean closure as the corrective action; If COCs are present, the extent of contamination will be defined and further corrective actions will be evaluated with the stakeholders (NDEP, USAF); and Confirm the preferred closure option is sufficient to protect human health and the environment.

  16. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 118: Area 27 Super Kukla Facility, Nevada Test Site, Nevada, Rev. No.: 1

    SciTech Connect (OSTI)

    David Strand

    2006-09-01

    This Streamlined Approach for Environmental Restoration (SAFER) plan addresses closure for Corrective Action Unit (CAU) 118, Area 27 Super Kukla Facility, identified in the ''Federal Facility Agreement and Consent Order''. Corrective Action Unit 118 consists of one Corrective Action Site (CAS), 27-41-01, located in Area 27 of the Nevada Test Site. Corrective Action Site 27-41-01 consists of the following four structures: (1) Building 5400A, Reactor High Bay; (2) Building 5400, Reactor Building and access tunnel; (3) Building 5410, Mechanical Building; and (4) Wooden Shed, a.k.a. ''Brock House''. This plan provides the methodology for field activities needed to gather the necessary information for closing the CAS. There is sufficient information and process knowledge from historical documentation and site confirmation data collected in 2005 and 2006 to recommend closure of CAU 118 using the SAFER process. The Data Quality Objective process developed for this CAU identified the following expected closure option: closure in place with use restrictions. This expected closure option was selected based on available information including contaminants of potential concern, future land use, and assumed risks. There are two decisions that need to be answered for closure. Decision I is to determine the nature of contaminants of concern in environmental media or potential source material that could impact human health or the environment. Decision II is to determine whether or not sufficient information has been obtained to confirm that closure objectives were met. This decision includes determining whether the extent of any contamination remaining on site has been defined, and whether actions have been taken to eliminate exposure pathways.

  17. Tests of innovative photon detectors and integrated electronics for the large-area CLAS12 ring-imaging Cherenkov detector

    SciTech Connect (OSTI)

    Contalbrigo, Marco

    2015-07-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab. Its aim is to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and a densely packed and highly segmented photon detector. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). Extensive tests have been performed on Hamamatsu H8500 and novel flat multi-anode photomultipliers under development and on various types of silicon photomultipliers. A large scale prototype based on 28 H8500 MA-PMTs has been realized and tested with few GeV/c hadron beams at the T9 test-beam facility of CERN. In addition a small prototype was used to study the response of customized SiPM matrices within a temperature interval ranging from 25 down to –25 °C. The preliminary results of the individual photon detector tests and of the prototype performance at the test-beams are here reported.

  18. Field-to-Fuel Performance Testing of Lignocellulosic Feedstocks: An Integrated Study of the Fast Pyrolysis/Hydrotreating Pathway

    SciTech Connect (OSTI)

    Howe, Daniel T.; Westover, Tyler; Carpenter, Daniel; Santosa, Daniel M.; Emerson, Rachel; Deutch, Steve; Starace, Anne; Kutnyakov, Igor V.; Lukins, Craig D.

    2015-05-21

    Feedstock composition can affect final fuel yields and quality for the fast pyrolysis and hydrotreatment upgrading pathway. However, previous studies have focused on individual unit operations rather than the integrated system. In this study, a suite of six pure lignocellulosic feedstocks (clean pine, whole pine, tulip poplar, hybrid poplar, switchgrass, and corn stover) and two blends (equal weight percentages whole pine/tulip poplar/switchgrass and whole pine/clean pine/hybrid poplar) were prepared and characterized at Idaho National Laboratory. These blends then underwent fast pyrolysis at the National Renewable Energy Laboratory and hydrotreatment at Pacific Northwest National Laboratory. Although some feedstocks showed a high fast pyrolysis bio-oil yield such as tulip poplar at 57%, high yields in the hydrotreater were not always observed. Results showed overall fuel yields of 15% (switchgrass), 18% (corn stover), 23% (tulip poplar, Blend 1, Blend 2), 24% (whole pine, hybrid poplar) and 27% (clean pine). Simulated distillation of the upgraded oils indicated that the gasoline fraction varied from 39% (clean pine) to 51% (corn stover), while the diesel fraction ranged from 40% (corn stover) to 46% (tulip poplar). Little variation was seen in the jet fuel fraction at 11 to 12%. Hydrogen consumption during hydrotreating, a major factor in the economic feasibility of the integrated process, ranged from 0.051 g/g dry feed (tulip poplar) to 0.070 g/g dry feed (clean pine).

  19. Medical Plans

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Medical Plans Medical Plans A comprehensive benefits package with plan options for health care and retirement to take care of our employees today and tomorrow. Contact Benefits Office (505) 667-1806 Email Medical Plans The Lab offers employees the choice between two medical plans through Blue Cross Blue Shield of New Mexico (BCBS). Both medical plans offer free preventive care and in and out of network coverage from the same network of BCBS providers. High Deductible Health Plan (HDHP) - A more

  20. Integrated dry NO{sub x}/SO{sub 2} emissions control system calcium-based dry sorbent injection. Test report, April 30--November 2, 1993

    SciTech Connect (OSTI)

    Shiomoto, G.H.; Smith, R.A.; Muzio, L.J.; Hunt, T.

    1994-12-01

    The DOE sponsored Integrated Dry NO{sub x}SO{sub 2} Emissions Control System program, which is a Clean Coal Technology III demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low sulfur Western coal. The project goal is to demonstrate up to 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high-sulfur coal will also be investigated. This report documents the fifth phase of the test program, where the performance of the dry sorbent injection of calcium was evaluated as an SO{sub 2} removal technique. Dry sorbent injection with humidification was performed downstream of the air heater (in-duct). Calcium injection before the economizer was also investigated. The in-duct calcium sorbent and humidification retrofit resulted in SO{sub 2} reductions of 28 to 40 percent, with a Ca/S of 2, and a 25 to 30{degrees}F approach to adiabatic saturation temperature. The results of the economizer calcium injection tests were disappointing with less than 10 percent SO{sub 2} removal at a Ca/S of 2. Poor sorbent distribution due to limited access into the injection cavity was partially responsible for the low overall removals. However, even in areas of high sorbent concentration (local Ca/S ratios of approximately 6), SO{sub 2} removals were limited to 30 percent. It is suspected that other factors (sorbent properties and limited residence times) also contributed to the poor performance.

  1. Corrective Action Investigation Plan for Corrective Action Unit 34: Area 3 Contaminated Waste Site, Nevada Test Site, Nevada (Rev. 0, March 2001)

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office

    2001-03-27

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 34 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 34 consists of four Corrective Action Sites (CASs). The CAU is located within the Area 3 Compound at the Nevada Test Site (NTS) in the vicinity of the Mud Plant Facility in Yucca Valley. Historically, CAS 03-09-07, Mud Pit, was used for disposal of excess mud from washing drilling equipment from 1968 to 1974, at which time it began to be used for excess mud disposal (currently inactive); CAS 03-44-01, Chromium Contamination Spill, was used to store additives used in the formulation of drilling mud from the early 1960s to the mid-1990s; CAS 03-47-02, Area 3 Mud Plant Pond, was used as a freshwater storage reservoir for the mud plant as well as supplied water for a number of activities including the mixing of mud, the rinsing and cleaning of tanks, and various washdowns from the 1960s through 1990s; and CAS 03-09-06, Mud Disposal Crater, was created in 1962 by an underground nuclear detonation (i.e., Chinchilla test) and was used to mix and store mud, dispose of receiving waste from the mud plant floor drains and excess drilling mud, and clean/flush mix tanks through the mid-1990s. Based on site history, the scope of this plan is to identify potentially contaminated ground soil at each of the four CASs and determine the quantity, nature, and extent of contaminants of potential concern (COPCs). The investigation will include systematic and biased surface and subsurface soil and mud sampling using hand-auguring and direct-push techniques; visual, video, and/or electromagnetic surveys of pipes; field screening for volatile organic compounds (VOCs) and alpha/beta-emitting radionuclides; and laboratory analysis to characterize any investigation-derived waste for disposal both on site at NTS and at off-site locations. Historical information provided by former NTS employees indicates that COPCs include VOCs, semivolatile organic compounds, Resource Conservation and Recovery Act metals, petroleum hydrocarbons, gamma-emitting radionuclides, isotopic plutonium, and strontium-90. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  2. Addendum to Revision 1 of the Corrective Action Investigation Plan for Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nevada (Addendum Revision No. 1)

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office

    2001-06-06

    This document is submitted as an addendum to the Corrective Action Investigation Plan (CAIP) for Corrective Action Unit (CAU) 98: Frenchman Flat, Nevada Test Site (NTS), Nevada. The addendum was prepared to propose work activities in response to comments resulting from the U.S. Department of Energy's (DOE's) review of the draft Frenchman Flat CAU model of groundwater flow and contaminant transport completed in April 1999. The reviewers included an external panel of experts and the Nevada Division of Environmental Protection. As a result of the review, additional work scope, including new data-collection and modeling activities, has been identified for the Frenchman Flat CAU. The proposed work scope described in this addendum will be conducted in accordance with the revised Underground Test Area strategy contained in the December 2000 amendment to the Federal Facility Agreement and Consent Order. The Frenchman Flat CAU model is a group of interdependent models designed to predict the extent of contamination in groundwater due to the underground nuclear tests conducted within this CAU. At the time of the DOE review, the CAU model consisted of a CAU groundwater flow and transport model comprised of two major components: a groundwater flow model and a recharge model. The CAU groundwater flow model is supported by a hydrostratigraphic model and a recharge model, whereas the CAU transport model is supported by a source-term model. As part of the modeling activities proposed in this addendum, two new major components may be added to the Frenchman Flat CAU model: a total-system model and two local groundwater flow and transport models. The reviewers identified several issues relating to insufficiency of data and inadequacy of the modeling process that should be addressed to provide additional confidence in the modeling results with respect to the potential for contaminant migration to the Lower Carbonate Aquifer. The proposed additional work scope includes new data-collection activities, development and use of local-scale models of the two underground nuclear testing areas, and potential revisions of draft CAU groundwater flow and transport models. Upon completion of this work, an evaluation will be made by DOE to ensure that all issues have been resolved.

  3. Integrity Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Integrity Biofuels Place: Grammer, Indiana Product: Planning a 38m litre (10m gallon) per year biodiesel plant in Indiana. Coordinates:...

  4. Research and development of a phosphoric acid fuel cell/battery power source integrated in a test-bed bus. Final report

    SciTech Connect (OSTI)

    1996-05-30

    This project, the research and development of a phosphoric acid fuel cell/battery power source integrated into test-bed buses, began as a multi-phase U.S. Department of Energy (DOE) project in 1989. Phase I had a goal of developing two competing half-scale (25 kW) brassboard phosphoric acid fuel cell systems. An air-cooled and a liquid-cooled fuel cell system were developed and tested to verify the concept of using a fuel cell and a battery in a hybrid configuration wherein the fuel cell supplies the average power required for operating the vehicle and a battery supplies the `surge` or excess power required for acceleration and hill-climbing. Work done in Phase I determined that the liquid-cooled system offered higher efficiency.

  5. System Plan Revision 5 + 6

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plan Revision 7 General Overview DaBrisha Smith (DOE/ORP) April 10, 2013 System Plan 101 * What is System Planning - A process used by organizations to design, analyze and define future operations possible outcomes. * What is the RRP System Plan - A summary-level document that describes how the technical, cost, and schedule operating scenario (Baseline Case) is integrated to meet the mission demands. - Describes how the RPP mission could be achieved based on a set of assumptions for each

  6. Corrective Action Investigation Plan for Corrective Action Unit 552: Area 12 Muckpile and Ponds, Nevada Test Site, Nevada, Rev. No.: 1 with ROTC 1 and 2

    SciTech Connect (OSTI)

    David A. Strand

    2005-01-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 552: Area 12 Muckpile and Ponds, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 552 is comprised of the one Corrective Action Site which is 12-23-05, Ponds. One additional CAS, 12-06-04, Muckpile (G-Tunnel Muckpile), was removed from this CAU when it was determined that the muckpile is an active site. A modification to the FFACO to remove CAS 12-06-04 was approved by the Nevada Division of Environmental Protection (NDEP) on December 16, 2004. The G-Tunnel ponds were first identified in the 1991 Reynolds Electrical & Engineering Co., Inc. document entitled, ''Nevada Test Site Inventory of Inactive and Abandoned Facilities and Waste Sites'' (REECo, 1991). Corrective Action Unit 552 is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Therefore, additional information will be obtained by conducting a corrective action investigation (CAI) prior to evaluating and selecting the corrective action alternatives for the site. The CAI will include field inspections, radiological surveys, and sampling of appropriate media. Data will also be obtained to support investigation-derived waste (IDW) disposal and potential future waste management decisions.

  7. The Department of Energy Hydrogen and Fuel Cells Program Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cells Program Plan An Integrated Strategic Plan for the Research, Development, and Demonstration of Hydrogen and Fuel Cell Technologies September 2011 The...

  8. New Pump and Treat Facility Remedial Action Work Plan for Test Area North (TAN) Final Groundwater Remediation, Operable Unit 1-07B

    SciTech Connect (OSTI)

    L. O. Nelson

    2003-09-01

    This operations and maintenance plan supports the New Pump and Treat Facility (NPTF) remedial action work plan and identifies the approach and requirements for the operations and maintenance activities specific to the final medical zone treatment remedy. The NPTF provides the treatment system necessary to remediate the medical zone portion of the OU 1-07B contaminated groundwater plume. Design and construction of the New Pump and Treat Facility is addressed in the NPTF remedial action work plan. The scope of this operation and maintenance plan includes facility operations and maintenance, remedy five-year reviews, and the final operations and maintenance report for the NPTF.

  9. Strategic Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Plan » Strategic Plan Strategic Plan The Lab's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Communications & Government Affairs (505) 667-7000 strategic plan 2014 Strategic Plan (pdf) Our plan for fulfilling our mission to solve national security challenges through scientific excellence

  10. Disability Plans

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disability Plans Disability Plans A comprehensive benefits package with plan options for health care and retirement to take care of our employees today and tomorrow. Contact Benefits Office (505) 667-1806 Email Disability Plans The Lab offers employees both Short-term and Supplemental Disability plans through The Hartford. These income protection plans will pay a percentage of your salary when you are unable to work due to illness or injury. Resources Defined Benefit Eligibility Disability

  11. Strategic Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Plan Strategic Plan Print ALS Strategic Plan Update: September 2015 The Advanced Light Source Strategic Plan, originally published in 2009, has been revised to reflect completed projects, new scientific directions, and changing priorities. This most recent revision, Advanced Light Source Strategic Plan: 2015-19 (1.2 MB), was completed in September 2015. The plan encompasses the needs of the scientific community as well as our responses to meeting those needs through development of our

  12. Strategic Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Plan Strategic Plan Print ALS Strategic Plan Update: September 2015 The Advanced Light Source Strategic Plan, originally published in 2009, has been revised to reflect completed projects, new scientific directions, and changing priorities. This most recent revision, Advanced Light Source Strategic Plan: 2015-19 (1.2 MB), was completed in September 2015. The plan encompasses the needs of the scientific community as well as our responses to meeting those needs through development of our

  13. Corrective Action Investigation Plan for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    David Strand

    2006-06-01

    Corrective Action Unit 166 is located in Areas 2, 3, 5, and 18 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit (CAU) 166 is comprised of the seven Corrective Action Sites (CASs) listed below: (1) 02-42-01, Cond. Release Storage Yd - North; (2) 02-42-02, Cond. Release Storage Yd - South; (3) 02-99-10, D-38 Storage Area; (4) 03-42-01, Conditional Release Storage Yard; (5) 05-19-02, Contaminated Soil and Drum; (6) 18-01-01, Aboveground Storage Tank; and (7) 18-99-03, Wax Piles/Oil Stain. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on February 28, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 166. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the CAI for CAU 166 includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling. (2) Conduct radiological surveys. (3) Perform field screening. (4) Collect and submit environmental samples for laboratory analysis to determine if contaminants of concern are present. (5) If contaminants of concern are present, collect additional step-out samples to define the extent of the contamination. (6) Collect samples of investigation-derived waste, as needed, for waste management and minimization purposes. This Corrective Action Investigation Plan has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the ''Federal Facility Agreement and Consent Order'', this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection, and field work will commence following approval.

  14. Building-Integrated Heat & Moisture Exchange

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building-Integrated Heat & Moisture Exchange 2014 Building Technologies Office Peer Review John E. Breshears jbreshears@architecturalapplications.com Architectural Applications Project Summary Timeline: Start date: October, 2012 Planned end date: August, 2014 Key Milestones Mid- & Full-scale Lab Tests; June, 2013 Full-scale Demo; January, 2014 System Documentation; July, 2014 Budget: Total DOE $ to date: $1,037,812 Total future DOE $: $0 (committed to date) Target Market/Audience:

  15. PEP Run Report for Integrated Test A, Caustic Leaching in UFP-VSL-T01A, Oxidative Leaching in UFP-VSL-T02A

    SciTech Connect (OSTI)

    Guzman-Leong, Consuelo E.; Bredt, Ofelia P.; Burns, Carolyn A.; Daniel, Richard C.; Su, Yin-Fong; Geeting, John GH; Golovich, Elizabeth C.; Josephson, Gary B.; Kurath, Dean E.; Sevigny, Gary J.; Smith, Dennese M.; Valdez, Patrick LJ; Yokuda, Satoru T.; Young, Joan K.

    2009-12-04

    Pacific Northwest National Laboratory (PNNL) was tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed and constructed and operated as part of a plan to respond to issue M12, Undemonstrated Leaching Processes.(a) The PEP, located in the Process Engineering Laboratory-West (PDLW) located in Richland, Washington, is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing.

  16. IT Capital Planning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IT Capital Planning IT Capital Planning IT7 (003).jpg What is Capital Planning? The Office of Management and Budget (OMB) Circular A-11, defines capital planning as "a decision-making process for ensuring IT investments integrate strategic planning, budgeting, procurement, and IT management in support of agency missions and business needs." Who's Responsible for DOE Capital Planning? The Office of the Chief Information Officer (OCIO) oversees the DOE IT portfolio, while the Information

  17. Integrated dry NO{sub x}/SO{sub 2} emissions control system low-NO{sub x} combustion system retrofit test report. Test report, August 6--October 29, 1992

    SciTech Connect (OSTI)

    Smith, R.A.; Muzio, L.J.; Hunt, T.

    1993-06-01

    The DOE sponsored Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System program, which is a Clean Coal Technology M demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low-sulfur Western coal. The project goal is to demonstrate up to 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) Selective NonCatalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high-sulfur coal will also be investigated. This report documents the third phase of the test program, where the performance of the retrofit low-NO{sub x} combustion system is compared to that of the original combustion system. This third test phase was comprised of an optimization of the operating conditions and settings for the burners and overfire air ports, followed by an investigation of the performance of the low-NO{sub x} combustion system as a function of various operating parameters. These parameters included boiler load, excess air level, overfire air flow rate and number of mills in service. In addition, emissions under normal load following operation were compared to those collected during the optimization and parametric performance tests under baseloaded conditions. The low-NO{sub x} combustion system retrofit resulted in NO{sub x} reductions of 63 to 69 percent, depending on boiler load. The majority of the NO{sub x} reduction was obtained with the low-NO{sub x} burners, as it was shown that the overfire air system provided little additional NO{sub x} reduction for a fixed excess air level. CO emissions and flyash carbon levels did not increase as a result of the retrofit.

  18. Treatment Planning Constraints to Avoid Xerostomia in Head-and-Neck Radiotherapy: An Independent Test of QUANTEC Criteria Using a Prospectively Collected Dataset

    SciTech Connect (OSTI)

    Moiseenko, Vitali, E-mail: vmoiseenko@bccancer.bc.ca [Department of Medical Physics, Vancouver Cancer Centre, British Columbia Cancer Agency, Vancouver, BC (Canada); Wu, Jonn [Department of Radiation Oncology, Vancouver Cancer Centre, British Columbia Cancer Agency, Vancouver, BC (Canada); Hovan, Allan [Department of Oral Oncology, Vancouver Cancer Centre, British Columbia Cancer Agency, Vancouver, BC (Canada); Saleh, Ziad; Apte, Aditya; Deasy, Joseph O. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Harrow, Stephen [Department of Radiation Oncology, Vancouver Cancer Centre, British Columbia Cancer Agency, Vancouver, BC (Canada); Rabuka, Carman; Muggli, Adam [Department of Oral Oncology, Vancouver Cancer Centre, British Columbia Cancer Agency, Vancouver, BC (Canada); Thompson, Anna [Department of Radiation Oncology, Vancouver Cancer Centre, British Columbia Cancer Agency, Vancouver, BC (Canada)

    2012-03-01

    Purpose: The severe reduction of salivary function (xerostomia) is a common complication after radiation therapy for head-and-neck cancer. Consequently, guidelines to ensure adequate function based on parotid gland tolerance dose-volume parameters have been suggested by the QUANTEC group and by Ortholan et al. We perform a validation test of these guidelines against a prospectively collected dataset and compared with a previously published dataset. Methods and Materials: Whole-mouth stimulated salivary flow data from 66 head-and-neck cancer patients treated with radiotherapy at the British Columbia Cancer Agency (BCCA) were measured, and treatment planning data were abstracted. Flow measurements were collected from 50 patients at 3 months, and 60 patients at 12-month follow-up. Previously published data from a second institution, Washington University in St. Louis (WUSTL), were used for comparison. A logistic model was used to describe the incidence of Grade 4 xerostomia as a function of the mean dose of the spared parotid gland. The rate of correctly predicting the lack of xerostomia (negative predictive value [NPV]) was computed for both the QUANTEC constraints and Ortholan et al. recommendation to constrain the total volume of both glands receiving more than 40 Gy to less than 33%. Results: Both datasets showed a rate of xerostomia of less than 20% when the mean dose to the least-irradiated parotid gland is kept to less than 20 Gy. Logistic model parameters for the incidence of xerostomia at 12 months after therapy, based on the least-irradiated gland, were D{sub 50} = 32.4 Gy and and {gamma} = 0.97. NPVs for QUANTEC guideline were 94% (BCCA data), and 90% (WUSTL data). For Ortholan et al. guideline NPVs were 85% (BCCA) and 86% (WUSTL). Conclusion: These data confirm that the QUANTEC guideline effectively avoids xerostomia, and this is somewhat more effective than constraints on the volume receiving more than 40 Gy.

  19. Corrective Action Investigation Plan for Corrective Action Unit 543: Liquid Disposal Units Nevada Test Site, Nevada, Rev. No.: 0 with ROTC 1 and 2

    SciTech Connect (OSTI)

    David A. Strand

    2004-05-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 543: Liquid Disposal Units, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S Department of Defense (DoD). Corrective Action Unit 543 is located in Area 6 and Area 15 of the NTS, which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Seven corrective action sites (CASs) comprise CAU 543 and are listed below: (1) 06-07-01, Decon Pad; (2) 15-01-03, Aboveground Storage Tank; (3) 15-04-01, Septic Tank; (4) 15-05-01, Leachfield; (5) 15-08-01, Liquid Manure Tank; (6) 15-23-01, Underground Radioactive Material Area; and (7) 15-23-03, Contaminated Sump, Piping. Corrective Action Site 06-07-01, Decon Pad, is located in Area 6 and consists of the Area 6 Decontamination Facility and its components that are associated with decontamination of equipment, vehicles, and materials related to nuclear testing. The six CASs in Area 15 are located at the U.S. Environmental Protection Agency (EPA) Farm and are related to waste disposal activities at the EPA Farm. The EPA Farm was a fully-functional dairy associated with animal experiments conducted at the on-site laboratory. The corrective action investigation (CAI) will include field inspections, video-mole surveys, and sampling of media, where appropriate. Data will also be obtained to support waste management decisions. The CASs within CAU 543 are being investigated because hazardous and/or radioactive constituents may be present at concentrations that could potentially pose a threat to human health and the environment. The seven CASs in CAU 543 primarily consist of sanitary and process waste collection, storage, and distribution systems (e.g., storage tanks, sumps, and piping). Existing information on the nature and extent of potential contamination at these sites is insufficient to evaluate and recommend corrective action alternatives for the CASs. Therefore, additional information will be obtained by conducting a CAI prior to evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS.

  20. Strategic Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Plan Print ALS Strategic Plan Update: September 2015 The Advanced Light Source Strategic Plan, originally published in 2009, has been revised to reflect completed projects, new scientific directions, and changing priorities. This most recent revision, Advanced Light Source Strategic Plan: 2015-19 (1.2 MB), was completed in September 2015. The plan encompasses the needs of the scientific community as well as our responses to meeting those needs through development of our synchrotron,

  1. Dental Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dental Plan Dental Plan A comprehensive benefits package with plan options for health care and retirement to take care of our employees today and tomorrow. Contact Benefits Office (505) 667-1806 Email Dental Plan Proper dental care plays an important role in your overall health. That's why the Lab offers employees and their eligible dependents free dental coverage through Delta Dental of California. In addition to free preventive care, the plan offers both in and out of network coverage. The

  2. Legal Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Legal Plan Legal Plan A comprehensive benefits package with plan options for health care and retirement to take care of our employees today and tomorrow. Contact Benefits Office (505) 667-1806 Email Legal Plan Most people need legal advice at one time or another but high legal fees may prevent you from getting the necessary assistance. For a small monthly premium, employees can enroll in legal coverage through ARAG. The plan provides assistance with routine preventive or defensive matters and

  3. Integrated dry NO{sub x}/SO{sub 2} emissions control system sodium-based dry sorbent injection test report. Test period: August 4, 1993--July 29, 1995

    SciTech Connect (OSTI)

    Smith, R.A.; Shimoto, G.H.; Muzio, L.J.; Hunt, T.

    1997-04-01

    The project goal is to demonstrate up to 70% reductions in NOx and SO{sub 2} emissions through the integration of: (1) down-fired low-NOx burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NOx removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. This report documents the sixth phase of the test program, where the performance of dry sorbent injection with sodium compounds was evaluated as a SO{sub 2} removal technique. Dry sorbent injection was performed in-duct downstream of the air heater (ahead of the fabric filter), as well as at a higher temperature location between the economizer and air heater. Two sodium compounds were evaluated during this phase of testing: sodium sesquicarbonate and sodium bicarbonate. In-duct sodium injection with low levels of humidification was also investigated. This sixth test phase was primarily focused on a parametric investigation of sorbent type and feed rate, although boiler load and sorbent preparation parameters were also varied.

  4. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 114: Area 25 EMAD Facility Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Mark Burmeister

    2009-08-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 114, Area 25 EMAD Facility, identified in the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 114 comprises the following corrective action sites (CASs) located in Area 25 of the Nevada Test Site: 25-41-03, EMAD Facility 25-99-20, EMAD Facility Exterior Releases This plan provides the methodology for field activities needed to gather the necessary information for closing each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 114 using the SAFER process. Additional information will be obtained by conducting a field investigation before selecting the appropriate corrective action for each CAS. It is anticipated that the results of the field investigation and implementation of a corrective action of clean closure will support a defensible recommendation that no further corrective action is necessary. If it is determined that complete clean closure cannot be accomplished during the SAFER, then a hold point will have been reached and the Nevada Division of Environmental Protection (NDEP) will be consulted to determine whether the remaining contamination will be closed under the alternative corrective action of closure in place. This will be presented in a closure report that will be prepared and submitted to NDEP for review and approval. The sites will be investigated based on the data quality objectives (DQOs) developed on April 30, 2009, by representatives of NDEP; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for each CAS in CAU 114. The following text summarizes the SAFER activities that will support the closure of CAU 114: Perform site preparation activities (e.g., utilities clearances, radiological surveys). Collect environmental samples from designated target populations (e.g., stained soil) to confirm or disprove the presence of contaminants of concern (COCs) as necessary to supplement existing information. Collect samples of materials to determine whether potential source material (PSM) is present that may cause the future release of a COC to environmental media. If no COCs or PSMs are present at a CAS, establish no further action as the corrective action. If COCs exist, collect environmental samples from designated target populations (e.g., clean soil adjacent to contaminated soil) and submit for laboratory analyses to define the extent of COC contamination. If a COC or PSM is present at a CAS, either: - Establish clean closure as the corrective action. The material to be remediated will be removed, disposed of as waste, and verification samples will be collected from remaining soil, or - Establish closure in place as the corrective action and implement the appropriate use restrictions. Confirm the selected closure option is sufficient to protect human health and the environment.

  5. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 539: Area 25 and Area 26 Railroad Tracks, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Mark Krauss

    2010-06-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 539, Areas 25 and 26 Railroad Tracks, as identified in the Federal Facility Agreement and Consent Order (FFACO). A modification to the FFACOwas approved in May 2010 to transfer the two Railroad Tracks corrective action sites (CASs) from CAU 114 into CAU539. The two CASs are located in Areas 25 and 26 of the Nevada Test Site: 25-99-21, Area 25 Railroad Tracks 26-99-05, Area 26 Railroad Tracks This plan provides the methodology for field activities needed to gather the necessary information for closing the two CASs. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of the CAU 539 Railroad Tracks CASs using the SAFER process. Additional information will be obtained by conducting a field investigation before selecting the appropriate corrective action for each CAS. The results of the field investigation should support a defensible recommendation that no further corrective action is necessary. If it is determined that complete clean closure cannot be accomplished during the SAFER, then a hold point will have been reached and the Nevada Division of Environmental Protection (NDEP) will be consulted to determine whether the remaining contamination will be closed under the alternative corrective action of closure in place with use restrictions. This will be presented in a closure report that will be prepared and submitted to the NDEP for review and approval. The sites will be investigated based on the data quality objectives (DQOs) developed on December 14, 2009, by representatives of U.S.Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Navarro Nevada Environmental Services, LLC (NNES); and National Security Technologies, LLC. The DQO process has been used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for each Railroad Tracks CAS in CAU 539. The following text summarizes the SAFER activities that will support the closure of CAU 539: Perform site preparation activities (e.g., utilities clearances, radiological surveys). Collect in situ dose measurements. Collect environmental samples from designated target populations (e.g., lead bricks) to confirm or disprove the presence of contaminants of concern (COCs) as necessary to supplement existing information. If no COCs are present at a CAS, establish no further action as the corrective action. If COCs exist, collect environmental samples from designated target populations (e.g., clean soil adjacent to contaminated soil) and submit for laboratory analyses to define the extent of COC contamination. If a COC is present at a CAS, NNES will consult NDEP to determine the path forward, then either: Establish clean closure as the corrective action. The material to be remediated will be removed, disposed of as waste, and verification samples will be collected from remaining soil, or Establish closure in place as the corrective action and implement the appropriate use restrictions.

  6. Guide to Resource Planning with Energy Efficiency

    SciTech Connect (OSTI)

    none,

    2007-11-01

    Describes the key issues, best practices, and main process steps for integrating energy efficiency into resource planning on an equal basis with other resources.

  7. Corrective Action Investigation Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada (with Record of Technical Change No.1)

    SciTech Connect (OSTI)

    U.S. Department of Energy, Nevada Operations Office

    2000-06-09

    This Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 490 under the Federal Facility Agreement and Consent Order. Corrective Active Unit 490 consists of four Corrective Action Sites (CASs): 03-56-001-03BA, Fire Training Area (FTA); RG-56-001-RGBA, Station 44 Burn Area; 03-58-001-03FN, Sandia Service Yard; and 09-54-001-09L2, Gun Propellant Burn Area. These CASs are located at the Tonopah Test Range near Areas 3 and 9. Historically, the FTA was used for training exercises where tires and wood were ignited with diesel fuel. Records indicate that water and carbon dioxide were the only extinguishing agents used during these training exercises. The Station 44 Burn Area was used for fire training exercises and consisted of two wooden structures. The two burn areas (ignition of tires, wood, and wooden structures with diesel fuel and water) were limited to the building footprints (10 ft by 10 ft each). The Sandia Service Yard was used for storage (i.e., wood, tires, metal, electronic and office equipment, construction debris, and drums of oil/grease) from approximately 1979 to 1993. The Gun Propellant Burn Area was used from the 1960s to 1980s to burn excess artillery gun propellant, solid-fuel rocket motors, black powder, and deteriorated explosives; additionally, the area was used for the disposal of experimental explosive items. Based on site history, the focus of the field investigation activities will be to: (1) determine the presence of contaminants of potential concern (COPCs) at each CAS, (2) determine if any COPCs exceed field-screening levels and/or preliminary action levels, and (3) determine the nature and extent of contamination with enough certainty to support selection of corrective action alternatives for each CAS. The scope of this CAIP is to resolve the question of whether or not potentially hazardous wastes were generated at three of the four CASs within CAU 490, and whether or not potentially hazardous and radioactive wastes were generated at the fourth CAS in CAU 490 (CAS 09-54-001-09L2). Suspected CAS-specific COPCs include volatile organic compounds, semivolatile organic compounds, total petroleum hydrocarbons, polychlorinated biphenyls, pesticides, explosives, and uranium and plutonium isotopes. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  8. Guidelines for strategic planning

    SciTech Connect (OSTI)

    Not Available

    1991-07-01

    Strategic planning needs to be done as one of the integral steps in fulfilling our overall Departmental mission. The role of strategic planning is to assure that the longer term destinations, goals, and objectives which the programs and activities of the Department are striving towards are the best we can envision today so that our courses can then be set to move in those directions. Strategic planning will assist the Secretary, Deputy Secretary, and Under Secretary in setting the long-term directions and policies for the Department and in making final decisions on near-term priorities and resource allocations. It will assist program developers and implementors by providing the necessary guidance for multi-year program plans and budgets. It is one of the essential steps in the secretary's Strategic Planning Initiative. The operational planning most of us are so familiar with deals with how to get things done and with the resources needed (people, money, facilities, time) to carry out tasks. Operating plans like budgets, capital line item projects, R D budgets, project proposals, etc., are vital to the mission of the Department. They deal, however, with how to carry out programs to achieve some objective or budget assumption. Strategic planning deals with the prior question of what it is that should be attempted. It deals with what objectives the many programs and activities of the Department of Department should be striving toward. The purpose of this document is to provide guidance to those organizations and personnel starting the process for the first time as well as those who have prepared strategic plans in the past and now wish to review and update them. This guideline should not be constructed as a rigid, restrictive or confining rulebook. Each organization is encouraged to develop such enhancements as they think may be useful in their planning. The steps outlined in this document represent a very simplified approach to strategic planning. 9 refs.

  9. Final closure plan for the high-explosives open burn treatment facility at Lawrence Livermore National Laboratory Experimental Test Site 300

    SciTech Connect (OSTI)

    Mathews, S.

    1997-04-01

    This document addresses the interim status closure of the HE Open Bum Treatment Facility, as detailed by Title 22, Division 4.5, Chapter 15, Article 7 of the Califonia Code of Regulations (CCR) and by Title 40, Code of Federal Regulations (CFR) Part 265, Subpart G, ``Closure and Post Closure.`` The Closure Plan (Chapter 1) and the Post- Closure Plan (Chapter 2) address the concept of long-term hazard elimination. The Closure Plan provides for capping and grading the HE Open Bum Treatment Facility and revegetating the immediate area in accordance with applicable requirements. The Closure Plan also reflects careful consideration of site location and topography, geologic and hydrologic factors, climate, cover characteristics, type and amount of wastes, and the potential for contaminant migration. The Post-Closure Plan is designed to allow LLNL to monitor the movement, if any, of pollutants from the treatment area. In addition, quarterly inspections will ensure that all surfaces of the closed facility, including the cover and diversion ditches, remain in good repair, thus precluding the potential for contaminant migration.

  10. Retirement Plans

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Lab offers employees a 401(k) retirement plan. This plan allows you to save and invest a piece of your paycheck before taxes are taken out. Taxes are not paid until the...

  11. Work Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work Plan NSSAB Members Vote on Work Plan Tasks; The Nevada Site Specific Advisory Board operates on a fiscal year basis and conducts work according to a NSSAB generated and U.S....

  12. Plans, Procedures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plans, Procedures Plans, Procedures The following plans and procedures are cited in environmental reports prepared by the Laboratory. Contact Environmental Communication & Public Involvement Email Environmental Plans & Procedures DISCLAIMER: The following is a list of procedures (titles and numbers) cited in reports that have been prepared by the Laboratory's Associate Directorate for Environmental Management (ADEM). To view each procedure, visit the Electronic Public Reading Room (EPRR)

  13. Strategic Plans | Department of Energy

    Energy Savers [EERE]

    Residential Buildings » Building America » Strategic Plans Strategic Plans The strategic planning process charts the course for the U.S. Department of Energy (DOE) Building America program's efforts to widely deploy new integrated packages of energy-saving measures in new and existing homes. These living documents give an overview of Building America's research approach to evaluate specific building system options for reliability, cost-effectiveness, and marketability. Here you can learn more

  14. Strategix Planning and the Tribal Energy Guide

    Energy Savers [EERE]

    Planning & The Tribal Energy Guide DOE Tribal Energy Program Review November 20, 2003 Golden, Colorado Importance of Strategic Energy Planning Defining where you want to go, and developing a roadmap to get there. Jumping into action, without a plan, can lead to mistakes, oversights, false starts, and additional costs. Strategic Energy Planning Basic Steps Vision & Champion Energy Fundamentals Culture & Environment Integrated Resource Planning Demand-Side Options Efficiency:

  15. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 544: Cellars, Mud Pits, and Oil Spills, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Mark Krauss

    2010-07-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 544, Cellars, Mud Pits, and Oil Spills, identified in the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 544 comprises the following 20 corrective action sites (CASs) located in Areas 2, 7, 9, 10, 12, 19, and 20 of the Nevada Test Site (NTS): 02-37-08, Cellar & Mud Pit 02-37-09, Cellar & Mud Pit 07-09-01, Mud Pit 09-09-46, U-9itsx20 PS #1A Mud Pit 10-09-01, Mud Pit 12-09-03, Mud Pit 19-09-01, Mud Pits (2) 19-09-03, Mud Pit 19-09-04, Mud Pit 19-25-01, Oil Spill 19-99-06, Waste Spill 20-09-01, Mud Pits (2) 20-09-02, Mud Pit 20-09-03, Mud Pit 20-09-04, Mud Pits (2) 20-09-06, Mud Pit 20-09-07, Mud Pit 20-09-10, Mud Pit 20-25-04, Oil Spills 20-25-05, Oil Spills This plan provides the methodology for field activities needed to gather the necessary information for closing each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 544 using the SAFER process. Using the approach approved for previous mud pit investigations (CAUs 530535), 14 mud pits have been identified that are either a single mud pit or a system of mud pits, are not located in a radiologically posted area, and have no evident biasing factors based on visual inspections. These 14 mud pits are recommended for no further action (NFA), and further field investigations will not be conducted. For the sites that do not meet the previously approved closure criteria, additional information will be obtained by conducting a field investigation before selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible recommendation for closure of the remaining CASs in CAU 544. This will be presented in a closure report (CR) that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval. The sites will be investigated based on the data quality objectives (DQOs) developed on April 27, 2010, by representatives of NDEP and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for each CAS in CAU 544. The DQO process developed for this CAU identified the following expected closure options: (1) investigation and confirmation that no contamination exists above the final action levels (FALs) leading to an NFA declaration, (2) characterization of the nature and extent of contamination leading to closure in place with use restrictions, (3) clean closure by remediation and verification, (4) closure in place with use restrictions with no investigation if CASs are in crater areas that have been determined to be unsafe to enter, or (5) NFA if the mud pit CAS meets the criteria established during the CAUs 530535 SAFER investigation. The following summarizes the SAFER activities that will support the closure of CAU 544: Perform visual inspection of all CASs. Perform site preparation activities (e.g., utilities clearances, construction of temporary site exclusion zones). Removal of easily managed, nonhazardous, and nonradioactive debris, including vegetation (e.g., tumbleweeds), at various CASs that interfere with sampling, if required to inspect soil surface or collect soil sample. Collect environmental samples from designated target populations (e.g., mud pits, cellars, stained soil) to confirm or disprove the presence of contaminants of concern (COCs) as necessary to supplement existing information. If no COCs are present at a CAS, establish NFA as the corrective action. If COCs exist, collect environmental samples f

  16. Corrective Action Investigation Plan for Corrective Action Unit 263: Area 25 Building 4839 Leachfields, Nevada Test Site, Revision 0, DOE/NV--535 UPDATED WITH RECORD OF TECHNICAL CHANGE No.1

    SciTech Connect (OSTI)

    US DOE Nevada Operations Office

    1999-04-12

    The Corrective Action Investigation Plan for Corrective Action Unit 263, the Area 25 Building 4839 Leachfield, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the US Department of Energy, Nevada Operations Office; the Nevada Division of Environmental Protection; and the US Department of Defense. Corrective Action Unit 263 is comprised of the Corrective Action Site 25-05-04 sanitary leachfield and associated collection system. This Corrective Action Investigation Plan is used in combination with the Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada (DOE/NV, 1998d). The Leachfield Work Plan was developed to streamline investigations at Leachfield Corrective Action Units by incorporating management, technical, quality assurance, health and safety, public involvement, field sampling, and waste management information common to a set of Corrective Action Units with similar site histories and characteristics into a single document that can be referenced. This Corrective Action Investigation Plan provides investigative details specific to Corrective Action Unit 263. Corrective Action Unit 263 is located southwest of Building 4839, in the Central Propellant Storage Area. Operations in Building 4839 from 1968 to 1996 resulted in effluent releases to the leachfield and associated collection system. In general, effluent released to the leachfield consisted of sanitary wastewater from a toilet, urinal, lavatory, and drinking fountain located within Building 4839. The subsurface soils in the vicinity of the collection system and leachfield may have been impacted by effluent containing contaminants of potential concern generated by support activities associated with the Building 4839 operations.

  17. NIF Title III engineering plan

    SciTech Connect (OSTI)

    Deis, G

    1998-06-01

    The purpose of this document is to define the work that must be accomplished by the NIF Project during Title III Engineering. This definition is intended to be sufficiently detailed to provide a framework for yearly planning, to clearly identify the specific deliverables so that the Project teams can focus on them, and to provide a common set of objectives and processes across the Project. This plan has been preceded by similar documents for Title I and Title II design and complements the Site Management Plan, the Project Control Manual, the Quality Assurance Program Plan, the RM Parsons NIF Title III Configuration Control Plan, the Integrated Project Schedule, the Preliminary Safety Analysis Report, the Configuration Management Plan, and the Transition Plan.

  18. How to Integrate Climate Change Adaptation into National-Level...

    Open Energy Info (EERE)

    Integrate Climate Change Adaptation into National-Level Policy and Planning in the Water Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: How to Integrate Climate...

  19. EPA-Integrated Environmental Strategies | Open Energy Information

    Open Energy Info (EERE)

    2004. The Integrated Environmental Strategies Handbook. EPA430-B-04-006. Washington, DC. Office of Air and Radiation.2 "The IES program promotes integrated planning to...

  20. V5 AND V10 CONTACTOR TESTING WITH THE NEXT GENERATION (CSSX) SOLVENT FOR THE SAVANNAH RIVER SITE INTEGRATED SALT DISPOSITION PROCESS

    SciTech Connect (OSTI)

    Restivo, M.; Peters, T.; Pierce, R.; Fondeur, F.; Steeper, T.; Williams, M.; Giddings, B.; Hickman, B.; Fink, S.

    2012-01-17

    A solvent extraction system for removal of cesium (Cs) from alkaline solutions was developed utilizing a novel solvent invented at the Oak Ridge National Laboratory (ORNL). This solvent consists of a calix[4]arene-crown-6 extractant dissolved in an inert hydrocarbon matrix. A Modifier is added to the solvent to enhance the extraction power of the calixarene and to prevent the formation of a third phase. An additional additive, called a suppressor, is used to improve stripping performance. The process that deploys this solvent system is known as Caustic Side Solvent Extraction (CSSX). The solvent system has been deployed at the Savannah River Site (SRS) in the Modular CSSX Unit (MCU) since 2008. Subsequent development efforts by ORNL identified an improved solvent system that can raise the expected decontamination factor (DF) in MCU from {approx}200 to more than 40,000. The improved DF is attributed to an improved distribution ratio for cesium [D(Cs)] in extraction from {approx}15 to {approx}60, an increased solubility of the calixarene in the solvent from 0.007 M to >0.050 M, and use of boric acid (H{sub 3}BO{sub 3}) stripping that also yields improved D(Cs) values. Additionally, the changes incorporated into the Next Generation CSSX Solvent (NGS) are intended to reduce solvent entrainment by virtue of more favorable physical properties. The MCU and Salt Waste Processing Facility (SWPF) facilities are actively pursuing the changeover from the current CSSX solvent to the NGS solvent. To support this integration of the NGS into the MCU and SWPF facilities, the Savannah River Remediation (SRR)/ARP/MCU Life Extension Project requested that the Savannah River National Laboratory (SRNL) perform testing of the new solvent for the removal of Cs from the liquid salt waste stream. Additionally, SRNL was tasked with characterizing both strip (20-in long, 10 micron pore size) and extraction (40-in long, 20 micron pore size) coalescers. SRNL designed a pilot-scale experimental program to test the full size strip (V5) and extraction (V10) centrifugal contactors and the associated strip and extraction effluent coalescers to determine the hydraulic and mass transfer characteristics with the NGS. The test program evaluated the amount of organic carryover and the droplet size of the carryover phases using several analytical methods. Provisions were also made to enable an evaluation of coalescer performance. Stage efficiency and mass distribution ratios were determined using Cs mass transfer measurements. Using 20 millimolar (mM) extractant (instead of 50 mM), the nominal D(Cs) measured was 16.0-17.5. The data indicate that equilibrium is achieved rapidly and maintained throughout sampling. The data showed good stage efficiency for extraction (Tests 1A-1D), ranging from 98.2% for Test 1A to 90.5% for Test 1D. No statistically-significant differences were noted for operations at 12 gpm aqueous flow when compared with either 4 gpm or 8 gpm of aqueous flow. The stage efficiencies equal or exceed those previously measured using the baseline CSSX solvent system. The nominal target for scrub Cs distribution values are {approx}1.0-2.5. The first scrub test yielded an average scrub value of 1.21 and the second scrub test produced an average value of 0.78. Both values are considered acceptable. Stage efficiency was not calculated for the scrub tests. For stripping behavior, six tests were completed in a manner to represent the first strip stage. For three tests at the baseline flow ratios (O:A of 3.75:1) but at different total flow rates, the D(Cs) values were all similar at {approx}0.052. Similar behavior was observed for two tests performed at an O:A ratio of 7:1 instead of 3.75:1. The data for the baseline strip tests exhibited acceptable stage efficiency, ranging from 82.0% for low flow to 89-90% for medium and high flow. The difference in efficiency may be attributable to the low volume in the contactor housing at lower flow rates. The concentrations of Isopar L{reg_sign} and Modifier were measured using semi-volatile organic analysis (SVOA

  1. Summary report of the drilling technologies tested at the Integrated Demonstration Project for cleanup of organic contaminants in soils and groundwater at non-arid sites

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The Department of Energy`s Office of Technology Development initiated an integrated demonstration of innovative technologies and systems for cleanup of volatile organic compounds in soil and groundwater at SRS. The overall goal of the program is the demonstration of multiple technologies and systems in the fields of drilling, characterization, monitoring, and remediation at a single test bed. Horizontal environmental well installation technology was one of the remediation technologies that was demonstrated at SRS. Four distinctly different systems of directional drilling and horizontal well installations were successfully demonstrated and evaluated. The four systems were developed in the petroleum industry, the river crossing industry, and the utility industry. The transfer of information concerning the horizontal environmental well installations has been facilitated by publishing a series of reports describing each individual demonstration. This is the final report in the series and provides a comprehensive evaluation of all four systems. The objectives of this report are to summarize the strengths and weaknesses of each drilling technology, describe and compare the problems encountered by each drilling technology, compare the compatibility of each technology with varying logistical and geological conditions, and discuss the expense of using each technology. This report is designed to be a horizontal environmental well reference document for the environmental remediation industry. An environmental problem holder may use this report to evaluate a directional drilling technology for use at his/her site.

  2. Operational Area Monitoring Plan

    Office of Legacy Management (LM)

    ' SECTION 11.7B Operational Area Monitoring Plan for the Long -Term H yd rol og ical M o n i to ri ng - Program Off The Nevada Test Site S . C. Black Reynolds Electrical & Engineering, Co. and W. G. Phillips, G. G. Martin, D. J. Chaloud, C. A. Fontana, and 0. G. Easterly Environmental Monitoring Systems Laboratory U. S. Environmental Protection Agency October 23, 1991 FOREWORD This is one of a series of Operational Area Monitoring Plans that comprise the overall Environmental Monitoring Plan

  3. Institutional Plan FY 2003 - 2007

    SciTech Connect (OSTI)

    Chartock, Michael; Hansen, Todd

    2003-01-27

    The Fiscal Year (FY) 2003-2007 Institutional Plan describes the strategic directions and key issues that Lawrence Berkeley National Laboratory management must address with the Department of Energy (DOE) in charting its future as a multiprogram national laboratory. The Plan provides an overview of the Laboratory's mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Plan facilitates the Department of Energy's ongoing efforts to strengthen the Integrated Laboratory System. Preparation and review of the Institutional Plan is one element of the Department of Energy's strategic management planning activities, implemented through an annual planning process. The Plan supports the President's Management Agenda and the Government Performance and Results Act of 1993. The Plan complements the current performance-based contract between the Department of Energy and the Regents of the University of California, and summarizes Best Management Practices for a potential future results-based contract as a basis for achieving DOE goals and the Laboratory's scientific and operations objectives. It identifies technical and administrative directions in the context of national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the Plan is coordinated by the Planning and Strategic Development Office from information contributed by Berkeley Lab's scientific and support divisions and DOE comments on prior years' plans. The Laboratory Mission section identifies the specific strengths of Berkeley Lab that contribute to the mission in general and the Integrated Laboratory System in particular. The Laboratory Strategic Plan section identifies the existing activities in support of DOE Office of Science and other sponsors; support for DOE goals; and the Laboratory Scientific Vision and operations goals. The Initiatives section describes some of the specific new research programs representing major long-term opportunities for the Department of Energy and Berkeley Lab. The Operations Strategic Planning section describes our strategic thinking in the areas of human resources; site and cyber security; workforce diversity; communications and trust; integrated safety management; and technology transfer activities. The Infrastructure Strategic Planning section describes Berkeley Lab's facilities planning process and our site and facility needs. The Summary of Major Issues section provides context for discussions at the Institutional Planning On-Site Review. The Resource Projections are estimates of required budgetary authority for Berkeley Lab's research programs.

  4. Plan Outline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    end-use customers for measure installation or project implementation. BPA Action Plan for Energy Efficiency vi EXECUTIVE SUMMARY The Bonneville Power Administration is a leader in...

  5. Advanced variable speed air-source integrated heat pump (AS-IHP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced variable speed air-source integrated heat pump (AS-IHP) 2014 Building Technologies Office Peer Review Field test system IHP concept - all HVAC/WH integrated into one highly efficient system Van D. Baxter, vdb@ornl.gov Oak Ridge National Laboratory Project Summary Timeline: Advanced variable speed air-source integrated heat pump (AS-IHP) - CRADA Start date: 01-Oct-2011 Planned end date: 31-Dec-2015 Key Milestones 1.Complete system lab tests for model calibration; 31-July-2013 2.Complete

  6. MHD Technology Transfer, Integration and Review Committee. Seventh semi-annual status report, April 1991--September 1991

    SciTech Connect (OSTI)

    Not Available

    1993-02-01

    This seventh semi-annual status report of the MHD Technology Transfer, Integration and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1991 through September 1991. It includes a summary and minutes of the General Committee meeting, progress summaries of ongoing POC contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months. The meeting included test plan with Western coal, seed regeneration economics, power management for the integrated topping cycle and status of the Clean Coal Technology Proposal activities. Appendices cover CDIF operations HRSR development, CFFF operations etc.

  7. Test Plan for Lockheed Idaho Technologies Company (LITCO), ARROW-PAK Packaging, Docket 95-40-7A, Type A Container

    SciTech Connect (OSTI)

    Kelly, D.L.

    1995-10-23

    This report documents the U.S. Department of Transportation Specification 7A Type A (DOT-7A) compliance testing to be followed for qualification of the Lockheed Idaho Technologies Company, ARROW-PAK, for use as a Type A Packaging. The packaging configuration being tested is intended for transportation of radioactive solids, Form No. 1, Form No. 2, and Form No. 3.

  8. Washington: Integrated Transportation Programs & Coordinated Regional

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Planning | Department of Energy Integrated Transportation Programs & Coordinated Regional Planning Washington: Integrated Transportation Programs & Coordinated Regional Planning November 6, 2013 - 5:42pm Addthis The Thurston Regional Planning Council (TRPC) developed the Thurston "Here to There" program as a project designed to reduce vehicle miles traveled. The program was a coordinated set of activities with one goal: to improve access to travel options for the people who

  9. PROJECT MANGEMENT PLAN EXAMPLES

    Office of Environmental Management (EM)

    Approach to Meeting Requirements Examples Example 26 9.2 HEALTH AND SAFETY STRATEGY B Plant has integrated safety into its management, planning and work practices in order to protect the public, the environment and facility workers against nuclear and non-nuclear hazards associated with facility transition. Based upon the principles of DNFSB Recommendation 95-2, the Plant's approach to safety management includes:  Applicable. standards and requirements specifically identified and implemented

  10. Memorandum, NNSA Activity Level Work Planning & Control Processes, January

    Office of Environmental Management (EM)

    2006 | Department of Energy NNSA Activity Level Work Planning & Control Processes, January 2006 Memorandum, NNSA Activity Level Work Planning & Control Processes, January 2006 January 23, 2006 Memorandum from Thomas P. D'Agostino, Assistant Deputy Administrator for Program Integration: Action: Revitalizing Integrated Safety Management; Site Office Action Plans for Improving Activity Level Work Planning and Control Processes. PDF icon Memorandum, NNSA Activity Level Work Planning

  11. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Albert Tsang

    2003-03-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over several years, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana.

  12. Corrective Action Investigation Plan for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2011-08-01

    CAU 104 comprises the 15 CASs listed below: (1) 07-23-03, Atmospheric Test Site T-7C; (2) 07-23-04, Atmospheric Test Site T7-1; (3) 07-23-05, Atmospheric Test Site; (4) 07-23-06, Atmospheric Test Site T7-5a; (5) 07-23-07, Atmospheric Test Site - Dog (T-S); (6) 07-23-08, Atmospheric Test Site - Baker (T-S); (7) 07-23-09, Atmospheric Test Site - Charlie (T-S); (8) 07-23-10, Atmospheric Test Site - Dixie; (9) 07-23-11, Atmospheric Test Site - Dixie; (10) 07-23-12, Atmospheric Test Site - Charlie (Bus); (11) 07-23-13, Atmospheric Test Site - Baker (Buster); (12) 07-23-14, Atmospheric Test Site - Ruth; (13) 07-23-15, Atmospheric Test Site T7-4; (14) 07-23-16, Atmospheric Test Site B7-b; (15) 07-23-17, Atmospheric Test Site - Climax These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 28, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 104. The releases at CAU 104 consist of surface-deposited radionuclides from 30 atmospheric nuclear tests. The presence and nature of contamination at CAU 104 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose (TED) to the dose-based final action level (FAL). The presence of TED exceeding the FAL is considered a radiological contaminant of concern (COC). Anything identified as a COC will require corrective action. The TED will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters will be used to measure external radiological dose. Based on process knowledge of the releases associated with the nuclear tests and radiological survey information about the location and shape of the resulting contamination plume, it was determined that the releases from the nuclear tests are co-located and will be investigated concurrently. A field investigation will be performed to define areas where TED exceeds the FAL and to determine whether other COCs are present at the site. The investigation will also collect information to determine the presence and nature of contamination associated with migration and excavation, as well as any potential releases discovered during the investigation. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.

  13. The Integrated Environmental Strategies Handbook: A Resource...

    Open Energy Info (EERE)

    Environmental Strategies Handbook: A Resource Guide for Air Quality Planning Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Integrated Environmental Strategies...

  14. Fermilab | Directorate | Office of Integrated Planning (OIP)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Password Protected Files Senior Management Password Protected Files The underlying EXCEL spreadsheet without names and some example pivot tables are located in:...

  15. Integrated Safety Management in QA Program Planning

    Broader source: Energy.gov [DOE]

    Presenter: Sonya Barnette, Office of Quality Assurance Policy and Assistance, Office of Nuclear Safety, Quality Assurance and Environment Track 9-8

  16. Integrating Pollution Prevention with NEPA Planning Activities

    Broader source: Energy.gov [DOE]

    The purpose of this memorandum is to advise you of the direction that the Environmental Protection Agency (EPA) and Council on Environmental Quality (CEQ) appear to be taking regarding pollution...

  17. Routine Radiological Environmental Monitoring Plan, Volume 2 Appendices

    SciTech Connect (OSTI)

    Bechtel Nevada

    1998-12-31

    Supporting material for the plan includes: QUALITY ASSURANCE, ANALYSIS, AND SAMPLING PLAN FOR NTS AIR; QUALITY ASSURANCE, ANALYSIS, AND SAMPLING PLAN FOR WATER ON AND OFF THE NEVADA TEST SITE; QUALITY ASSURANCE, ANALYSIS, AND SAMPLING PLAN FOR NTS BIOTA; QUALITY ASSURANCE, ANALYSIS, AND SAMPLING PLAN FOR DIRECT RADIATION MONITORING; DATA QUALITY OBJECTIVES PROCESS; VADOSE ZONE MONITORING PLAN CHECKLIST.

  18. The Integrated Airport: Building a Successful NextGen Testbed

    ScienceCinema (OSTI)

    Frederick-Recascino, Christina [Embry-Riddle Aeronautical University, Daytona Beach, Florida, United States]; Sweigard, Doug [Lockheed Martin Corporation]; Lester, Wade [ERAU

    2010-01-08

    This presentation will describe a unique public-private partnership - the Integrated Airport - that was created to engage in research and testing related to NextGen Technology deployment.  NextGen refers to the program that will be initiated to modernize the US National Airspace.  As with any major, multi-decade initiative, such as NextGen, integration of work efforts by multiple partners in the modernization is critical for success.  This talk will focus on the development of the consortium, how the consortium plans for NextGen initiatives, the series of technology demonstrations we have produced and plans for the future of NextGen testing and implementation. 

  19. Integrated Training Management (ITM) Timeline

    Broader source: Energy.gov [DOE]

    The TNA Timeline lists the completion dates when for the deliverables for the integrated training management components to include the TNA, the annual training plan and the annual training summary report.

  20. HLW System Integrated Project Team

    Office of Environmental Management (EM)

    l W S Hi h l W S High Level Waste System High Level Waste System Integrated Project Team ... and skilled kf Developing and deploying t h l i This document is intended for planning ...