Powered by Deep Web Technologies
Note: This page contains sample records for the topic "integrated solid waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Integrated solid waste management of Minneapolis, Minnesota  

SciTech Connect (OSTI)

The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Minneapolis, Minnesota (Hennepin County) integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM system.

NONE

1995-11-01T23:59:59.000Z

2

Integrated solid waste management of Springfield, Massachusetts  

SciTech Connect (OSTI)

The subject document reports the results of an in-depth investigation of the fiscal year 1993 cost of the city of Springfield, Massachusetts, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. The document reports actual data from records kept by participants. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for Municipal Solid Waste management professionals who are interested in the actual costs and energy consumption, for a 1-year period, of an operating IMSWM system. The report is organized into two main parts. The first part is the executive summary and case study portion of the report. The executive summary provides a basic description of the study area and selected economic and energy information. Within the case study are detailed descriptions of each component operating during the study period; the quantities of solid waste collected, processed, and marketed within the study boundaries; the cost of managing MSW in Springfield; an energy usage analysis; a review of federal, state, and local environmental requirement compliance; a reference section; and a glossary of terms. The second part of the report focuses on a more detailed discourse on the above topics. In addition, the methodology used to determine the economic costs and energy consumption of the system components is found in the second portion of this report. The methodology created for this project will be helpful for those professionals who wish to break out the costs of their own integrated systems.

NONE

1995-11-01T23:59:59.000Z

3

Integrated solid waste management of Seattle, Washington  

SciTech Connect (OSTI)

The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Seattle, Washington, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for MSW management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM systems.

NONE

1995-11-01T23:59:59.000Z

4

Integrated Solid Waste Management Act (Nebraska) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Integrated Solid Waste Management Act (Nebraska) Integrated Solid Waste Management Act (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Environmental Quality This act affirms the state's support for alternative waste management practices, including waste reduction and resource recovery. Each county and

5

Integrated municipal solid waste scenario model using advanced pretreatment and waste to energy processes  

Science Journals Connector (OSTI)

Abstract In this paper an Integrated Municipal Solid Waste scenario model (IMSW-SM) with a potential practical application in the waste management sector is analyzed. The model takes into account quantification and characterization of Municipal Solid Waste (MSW) streams from different sources, selective collection (SC), advanced mechanical sorting, material recovery and advanced thermal treatment. The paper provides a unique chain of advanced waste pretreatment stages of fully commingled waste streams, leading to an original set of suggestions and future contributions to a sustainable IMSWS, taking into account real data and EU principles. The selection of the input data was made on MSW management real case studies from two European regions. Four scenarios were developed varying mainly SC strategies and thermal treatment options. The results offer useful directions for decision makers in order to calibrate modern strategies in different realities.

Gabriela Ionescu; Elena Cristina Rada; Marco Ragazzi; Cosmin M?rculescu; Adrian Badea; Tiberiu Apostol

2013-01-01T23:59:59.000Z

6

Systems approaches to integrated solid waste management in developing countries  

Science Journals Connector (OSTI)

Solid waste management (SWM) has become an issue of increasing global concern as urban populations continue to rise and consumption patterns change. The health and environmental implications associated with SWM are mounting in urgency, particularly in the context of developing countries. While systems analyses largely targeting well-defined, engineered systems have been used to help SWM agencies in industrialized countries since the 1960s, collection and removal dominate the SWM sector in developing countries. This review contrasts the history and current paradigms of SWM practices and policies in industrialized countries with the current challenges and complexities faced in developing country SWM. In industrialized countries, public health, environment, resource scarcity, climate change, and public awareness and participation have acted as SWM drivers towards the current paradigm of integrated SWM. However, urbanization, inequality, and economic growth; cultural and socio-economic aspects; policy, governance, and institutional issues; and international influences have complicated SWM in developing countries. This has limited the applicability of approaches that were successful along the SWM development trajectories of industrialized countries. This review demonstrates the importance of founding new SWM approaches for developing country contexts in post-normal science and complex, adaptive systems thinking.

Rachael E. Marshall; Khosrow Farahbakhsh

2013-01-01T23:59:59.000Z

7

FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2  

SciTech Connect (OSTI)

For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters. The range is primarily due to uncertainties associated with the Tank Waste Remediation System (TWRS) program, including uncertainties regarding retrieval of long-length equipment, scheduling, and tank retrieval technologies.

Templeton, K.J.

1996-05-23T23:59:59.000Z

8

FY 1996 solid waste integrated life-cycle forecast container summary volume 1 and 2  

SciTech Connect (OSTI)

For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the containers expected to be used for these waste shipments from 1996 through the remaining life cycle of the Hanford Site. In previous years, forecast data have been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to the more detailed report on waste volumes: WHC-EP0900, FY 1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary. Both of these documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on the types of containers that will be used for packaging low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major waste generators for each waste category and container type are also discussed. Containers used for low-level waste (LLW) are described in Appendix A, since LLW requires minimal treatment and storage prior to onsite disposal in the LLW burial grounds. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste are expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters.

Valero, O.J.

1996-04-23T23:59:59.000Z

9

Integration of the informal sector into municipal solid waste management in the Philippines - What does it need?  

SciTech Connect (OSTI)

The integration of the informal sector into municipal solid waste management is a challenge many developing countries face. In Iloilo City, Philippines around 220 tons of municipal solid waste are collected every day and disposed at a 10 ha large dumpsite. In order to improve the local waste management system the Local Government decided to develop a new Waste Management Center with integrated landfill. However, the proposed area is adjacent to the presently used dumpsite where more than 300 waste pickers dwell and depend on waste picking as their source of livelihood. The Local Government recognized the hidden threat imposed by the waste picker's presence for this development project and proposed various measures to integrate the informal sector into the municipal solid waste management (MSWM) program. As a key intervention a Waste Workers Association, called USWAG Calahunan Livelihood Association Inc. (UCLA) was initiated and registered as a formal business enterprise in May 2009. Up to date, UCLA counts 240 members who commit to follow certain rules and to work within a team that jointly recovers wasted materials. As a cooperative they are empowered to explore new livelihood options such as the recovery of Alternative Fuels for commercial (cement industry) and household use, production of compost and making of handicrafts out of used packages. These activities do not only provide alternative livelihood for them but also lessen the generation of leachate and Greenhouse Gases (GHG) emissions from waste disposal, whereby the life time of the proposed new sanitary landfill can be extended likewise.

Paul, Johannes G., E-mail: jp.aht.p3@gmail.com [GIZ-AHT Project Office SWM4LGUs, c/o DENR, Iloilo City (Philippines); Arce-Jaque, Joan [GIZ-AHT Project Office SWM4LGUs, c/o DENR, Iloilo City (Philippines); Ravena, Neil; Villamor, Salome P. [General Service Office, City Government, Iloilo City (Philippines)

2012-11-15T23:59:59.000Z

10

Solid waste integrated forecast technical (SWIFT) report: FY1997 to FY 2070, Revision 1  

SciTech Connect (OSTI)

This web site provides an up-to-date report on the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons with previous forecasts and with other national data sources. This web site does not include: liquid waste (current or future generation); waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); or waste that has been received by the WM Project to date (i.e., inventory waste). The focus of this web site is on low-level mixed waste (LLMW), and transuranic waste (both non-mixed and mixed) (TRU(M)). Some details on low-level waste and hazardous waste are also provided. Currently, this web site is reporting data th at was requested on 10/14/96 and submitted on 10/25/96. The data represent a life cycle forecast covering all reported activities from FY97 through the end of each program's life cycle. Therefore, these data represent revisions from the previous FY97.0 Data Version, due primarily to revised estimates from PNNL. There is some useful information about the structure of this report in the SWIFT Report Web Site Overview.

Valero, O.J.; Templeton, K.J.; Morgan, J.

1997-01-07T23:59:59.000Z

11

Integrated facility for municipal solid waste disposal, electrical generation, and desalination. Master`s thesis  

SciTech Connect (OSTI)

A preliminary design was completed for a facility that uses municipal solid waste as fuel for generating electricity and cogeneration steam for a seawater desalination unit. An average city of 100,000 population is the basis of the design. The design showed that heat from the combustion of municipal solid waste will provide nearly 2% of per capita electrical power needs and 7% of fresh water requirements. This thesis proposes a new arrangement of known technologies for use in Public Works.

Hanby, G.F.

1995-12-31T23:59:59.000Z

12

An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste  

SciTech Connect (OSTI)

This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found to be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly ({approx}2500 g CO{sub 2} eqvt./kg DS SRF in co-fired cement kilns and {approx}1500 g CO{sub 2} eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( Pounds 95/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues.

Garg, A.; Smith, R. [Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Hill, D. [DPH Environment and Energy Ltd., c/o Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Longhurst, P.J.; Pollard, S.J.T. [Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Simms, N.J. [Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom)], E-mail: n.j.simms@cranfield.ac.uk

2009-08-15T23:59:59.000Z

13

Management approaches to integrated solid waste in industrialized zones in Jordan: A case of Zarqa City  

SciTech Connect (OSTI)

There is a need to recognize the difficulties experienced in managing waste and to understand the reasons for those difficulties, especially in developing countries such as Jordan. Zarqa is a Governorate located in central Jordan, which has 2874 registered industries, making up more than 52% of the total industries in the country. Zarqa Governorate suffers from serious solid waste problems. These problems arise from an absence of adequate policies, facilitating legislation, and an environmentally enthused public, which therefore have a negative impact on the environment and health. Solid waste generation in Zarqa Governorate has increased exponentially and has polluted natural resources and the environment. A significant change in municipal solid waste generation was evident between the years 1994 and 2000. The Zarqa Governorate generated 482 tons/day in 2002 with a per capita rate of 0.44 kg/cap-day [Consulting Engineers, 2002, Feasibility study for the treatment of industrial wastewater in Zarqa Governorate. A project funded by METAP and Zarqa Chamber of Industry. Unpublished report]. This manuscript assesses the current operational and management practices of solid waste in the Zarqa Governorate; and evaluates the associated issues of solid waste collection, storage, transport, disposal and recycling in developing countries. The lack of techniques, financial funds and awareness among public and private sectors form an obstacle for achieving a successful environmental program. Several options are proposed to address management goals. Although Jordan became the first country in the Middle East to adopt a national environmental strategy; waste disposal is still largely uncontrolled and large quantities of waste go uncollected. Ensuring proper management of solid wastes, enforcing regulations, and implementing proper environmental awareness programs that will enhance the public understanding and achieve greater efficiency, are the findings of this study.

Mrayyan, Bassam [Faculty of Natural Resources and Environment, Hashemite University, P.O. Box 150459, 13115 Zarqa (Jordan); Hamdi, Moshrik R. [Faculty of Natural Resources and Environment, Hashemite University, P.O. Box 150459, 13115 Zarqa (Jordan)]. E-mail: moshrik@hu.edu.jo

2006-07-01T23:59:59.000Z

14

Solid Waste Rules (New Hampshire)  

Broader source: Energy.gov [DOE]

The solid waste statute applies to construction and demolition debris, appliances, recyclables, and the facilities that collect, process, and dispose of solid waste. DES oversees the management of...

15

Solid Waste Management (North Carolina)  

Broader source: Energy.gov [DOE]

The Solid Waste Program regulates safe management of solid waste through guidance, technical assistance, regulations, permitting, environmental monitoring, compliance evaluation and enforcement....

16

Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities  

Broader source: Energy.gov (indexed) [DOE]

0: Solid Waste Management 0: Solid Waste Management Facilities (New York) Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities (New York) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Institutional Investor-Owned Utility Multi-Family Residential Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State New York Program Type Environmental Regulations Provider NY Department of Environmental Conservation These regulations apply to all solid wastes with the exception of hazardous or radioactive waste. Proposed solid waste processing facilities are required to obtain permits prior to construction, and the regulations provide details about permitting, construction, registration, and operation requirements. The regulations contain specific guidance for land

17

Delaware Solid Waste Authority (Delaware)  

Broader source: Energy.gov [DOE]

The Delaware Solid Waste Authority (DSWA) runs three landfills, all of which recover methane and generate electricity with a total capacity of 24 MWs. The DSWA Solid Waste Plan includes goals,...

18

Municipal Solid Waste:  

U.S. Energy Information Administration (EIA) Indexed Site

Methodology for Allocating Municipal Solid Waste Methodology for Allocating Municipal Solid Waste to Biogenic and Non-Biogenic Energy May 2007 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy of the Department of Energy or any other organization. Contact This report was prepared by staff of the Renewable Information Team, Coal, Nuclear, and Renewables Division, Office of Coal, Nuclear, Electric and Alternate Fuels.

19

Solid Waste Management Plan. Revision 4  

SciTech Connect (OSTI)

The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

NONE

1995-04-26T23:59:59.000Z

20

Municipal Solid Waste | Open Energy Information  

Open Energy Info (EERE)

Waste Jump to: navigation, search TODO: Add description List of Municipal Solid Waste Incentives Retrieved from "http:en.openei.orgwindex.php?titleMunicipalSolidWaste&oldid...

Note: This page contains sample records for the topic "integrated solid waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage  

Broader source: Energy.gov (indexed) [DOE]

Disposal, Hazardous Waste Management Act, Underground Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Tribal Government Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Solid Waste Disposal Laws and Regulations are found in Tenn. Code 68-211. These rules are enforced and subject to change by the Public Waste Board (PWB), which is established by the Division of Solid and Hazardous

22

Solid Waste Regulation No. 8 - Solid Waste Composting Facilities (Rhode  

Broader source: Energy.gov (indexed) [DOE]

Regulation No. 8 - Solid Waste Composting Facilities Regulation No. 8 - Solid Waste Composting Facilities (Rhode Island) Solid Waste Regulation No. 8 - Solid Waste Composting Facilities (Rhode Island) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management Facilities which compost putrescible waste and/or leaf and yard waste are subject to these regulations. The regulations establish permitting, registration, and operational requirements for composting facilities. Operational requirements for putrescible waste facilities include siting, distance, and buffer requirements, as well as standards for avoiding harm to endangered species and contamination of air and water sources. Specific

23

Chapter 47 Solid Waste Facilities (Kentucky) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Chapter 47 Solid Waste Facilities (Kentucky) Chapter 47 Solid Waste Facilities (Kentucky) Chapter 47 Solid Waste Facilities (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Kentucky Program Type Environmental Regulations Fees Siting and Permitting Provider Kentucky Division of Waste Management This chapter establishes the permitting standards for solid waste sites or facilities, the standards applicable to all solid waste sites or

24

Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste  

E-Print Network [OSTI]

waste (i.e, mixture of biohazardous and chemical or radioactive waste), call Environment, Health2/2009 Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 200 West Arbor Dr. San Diego, CA 92103 (619

Tsien, Roger Y.

25

Solid Waste Management Rules (Vermont)  

Broader source: Energy.gov [DOE]

These rules establish procedures and standards to protect public health and the environment by ensuring the safe, proper, and sustainable management of solid waste in Vermont. The rules apply to...

26

Nuclear waste solids  

Science Journals Connector (OSTI)

Glass and polycrystalline materials for high-level radioactive waste immobilization are discussed. Borosilicate glass has been selected as the waste form for defence high-level radwaste in the US. Since releas...

L. L. Hench; D. E. Clark; A. B. Harker

1986-05-01T23:59:59.000Z

27

Solid Waste Facilities Regulations (Massachusetts) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solid Waste Facilities Regulations (Massachusetts) Solid Waste Facilities Regulations (Massachusetts) Solid Waste Facilities Regulations (Massachusetts) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Massachusetts Program Type Environmental Regulations Provider Department of Environmental Protection This chapter of the Massachusetts General Laws governs the operation of solid waste facilities. It seeks to encourage sustainable waste management

28

Solid Waste Management (Indiana) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solid Waste Management (Indiana) Solid Waste Management (Indiana) Solid Waste Management (Indiana) < Back Eligibility Agricultural Commercial Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Program Info State Indiana Program Type Environmental Regulations Provider Association of Indiana Solid Wastes Districts Inc. The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Indiana Department of Environmental Management and the Indiana Solid Waste Management Board are tasked with planning and adopting rules and regulations governing solid waste management practices. Provisions pertaining to landfill management and expansion, permitting,

29

Solid Waste Management (Michigan) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Michigan) Michigan) Solid Waste Management (Michigan) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Michigan Program Type Siting and Permitting Provider Department of Environmental Quality This Act encourages the Department of Environmental Quality and Health Department representatives to develop and encourage methods for disposing solid waste that are environmentally sound, that maximize the utilization

30

Solid Waste Management (Connecticut) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Connecticut) Connecticut) Solid Waste Management (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection Solid waste facilities operating in Connecticut must abide by these regulations, which describe requirements and procedures for issuing construction and operating permits; environmental considerations;

31

1993 baseline solid waste management system description  

SciTech Connect (OSTI)

Pacific Northwest Laboratory has prepared this report under the direction of Westinghouse Hanford Company. The report provides an integrated description of the system planned for managing Hanford`s solid low-level waste, low-level mixed waste, transuranic waste, and transuranic mixed waste. The primary purpose of this document is to illustrate a collective view of the key functions planned at the Hanford Site to handle existing waste inventories, as well as solid wastes that will be generated in the future. By viewing this system as a whole rather than as individual projects, key facility interactions and requirements are identified and a better understanding of the overall system may be gained. The system is described so as to form a basis for modeling the system at various levels of detail. Model results provide insight into issues such as facility capacity requirements, alternative system operating strategies, and impacts of system changes (ie., startup dates). This description of the planned Hanford solid waste processing system: defines a baseline system configuration; identifies the entering waste streams to be managed within the system; identifies basic system functions and waste flows; and highlights system constraints. This system description will evolve and be revised as issues are resolved, planning decisions are made, additional data are collected, and assumptions are tested and changed. Out of necessity, this document will also be revised and updated so that a documented system description, which reflects current system planning, is always available for use by engineers and managers. It does not provide any results generated from the many alternatives that will be modeled in the course of analyzing solid waste disposal options; such results will be provided in separate documents.

Armacost, L.L.; Fowler, R.A.; Konynenbelt, H.S.

1994-02-01T23:59:59.000Z

32

Municipal Solid Waste Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of municipal solid waste energy resources and technologies supplemented by specific information to apply waste to energy within the Federal sector.

33

Characterization of urban solid waste in Chihuahua, Mexico  

Science Journals Connector (OSTI)

The characterization of urban solid waste generation is fundamental for adequate decision making in the management strategy of urban solid waste in a city. The objective of this study is to characterize the waste generated in the households of Chihuahua city, and to compare the results obtained in areas of the city with three different socioeconomic levels. In order to identify the different socioeconomic trends in waste generation and characterization, 560 samples of solid waste were collected during 1 week from 80 households in Chihuahua and were hand sorted and classified into 15 weighted fractions. The average waste generation in Chihuahua calculated in this study was 0.676kg per capita per day in April 2006. The main fractions were: organic (48%), paper (16%) and plastic (12%). Results show an increased waste generation associated with the socioeconomic level. The characterization in amount and composition of urban waste is the first step needed for the successful implementation of an integral waste management system.

Guadalupe Gomez; Montserrat Meneses; Lourdes Ballinas; Francesc Castells

2008-01-01T23:59:59.000Z

34

Solid waste integrated forecast technical (SWEFT) report: FY1997 to FY 2070 - Document number changed to HNF-0918 at revision 1 - 1/7/97  

SciTech Connect (OSTI)

This web site provides an up-to-date report on the radioactive solid waste expected to be managed at Hanford`s Solid Waste (SW) Program from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the SW Program; program- level and waste class-specific estimates; background information on waste sources; and Li comparisons with previous forecasts and with other national data sources. The focus of this web site is on low- level mixed waste (LLMW), and transuranic waste (both non-mixed and mixed) (TRU(M)). Some details on low-level waste and hazardous waste are also provided. Currently, this site is reporting data current as of 9/96. The data represent a life cycle forecast covering all reported activities from FY97 through the end of each program`s life cycle.

Valero, O.J.

1996-10-03T23:59:59.000Z

35

Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste  

Science Journals Connector (OSTI)

Biomass and municipal solid waste offer sustainable sources ... form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil ... an integrated, sustainable waste managemen...

Ren Laryea-Goldsmith; John Oakey; Nigel J Simms

2011-02-01T23:59:59.000Z

36

Energy and solid/hazardous waste  

SciTech Connect (OSTI)

This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

None

1981-12-01T23:59:59.000Z

37

1993 Solid Waste Reference Forecast Summary  

SciTech Connect (OSTI)

This report, which updates WHC-EP-0567, 1992 Solid Waste Reference Forecast Summary, (WHC 1992) forecasts the volumes of solid wastes to be generated or received at the US Department of Energy Hanford Site during the 30-year period from FY 1993 through FY 2022. The data used in this document were collected from Westinghouse Hanford Company forecasts as well as from surveys of waste generators at other US Department of Energy sites who are now shipping or plan to ship solid wastes to the Hanford Site for disposal. These wastes include low-level and low-level mixed waste, transuranic and transuranic mixed waste, and nonradioactive hazardous waste.

Valero, O.J.; Blackburn, C.L. [Westinghouse Hanford Co., Richland, WA (United States); Kaae, P.S.; Armacost, L.L.; Garrett, S.M.K. [Pacific Northwest Lab., Richland, WA (United States)

1993-08-01T23:59:59.000Z

38

Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill  

E-Print Network [OSTI]

Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill Timothy D. Stark, F.ASCE1 landfills may contain aluminum from residential and commercial solid waste, industrial waste, and aluminum, may react with liquid in a landfill and cause uncontrolled temperature increases, significant changes

39

Solid Waste Management (Kansas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solid Waste Management (Kansas) Solid Waste Management (Kansas) Solid Waste Management (Kansas) < Back Eligibility Commercial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Kansas Program Type Environmental Regulations Provider Health and Environment This act aims to establish and maintain a cooperative state and local program of planning and technical and financial assistance for comprehensive solid waste management. No person shall construct, alter or operate a solid waste processing facility or a solid waste disposal area of a solid waste management system, except for clean rubble disposal sites, without first obtaining a permit from the secretary. Every person desiring to obtain a permit shall make application for such a permit on forms

40

Georgia Comprehensive Solid Waste Management Act of 1990 (Georgia) |  

Broader source: Energy.gov (indexed) [DOE]

Georgia Comprehensive Solid Waste Management Act of 1990 (Georgia) Georgia Comprehensive Solid Waste Management Act of 1990 (Georgia) Georgia Comprehensive Solid Waste Management Act of 1990 (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Comprehensive Solid Waste Management Act (SWMA) of 1990 was implemented in order to improve solid waste management procedures,

Note: This page contains sample records for the topic "integrated solid waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Solid Waste Assessment Fee Exemptions (West Virginia) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Solid Waste Assessment Fee Exemptions (West Virginia) Solid Waste Assessment Fee Exemptions (West Virginia) Solid Waste Assessment Fee Exemptions (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Rebate Program A person who owns, operates, or leases an approved solid waste disposal facility is exempt from the payment of solid waste assessment fees, upon the receipt of a Certificate of Exemption from the director, if that

42

Nonhazardous Solid Waste Management Regulations and Criteria (Mississippi)  

Broader source: Energy.gov (indexed) [DOE]

Nonhazardous Solid Waste Management Regulations and Criteria Nonhazardous Solid Waste Management Regulations and Criteria (Mississippi) Nonhazardous Solid Waste Management Regulations and Criteria (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Mississippi Program Type Environmental Regulations

43

Solid Waste Management Act (West Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Act (West Virginia) Act (West Virginia) Solid Waste Management Act (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection In addition to establishing a comprehensive program of controlling all phases of solid waste management and assigning responsibilities for solid waste management to the Secretary of Department of Environmental

44

Hazardous and Nonhazardous Solid Waste Applicant Disclosure Regulations  

Broader source: Energy.gov (indexed) [DOE]

Hazardous and Nonhazardous Solid Waste Applicant Disclosure Hazardous and Nonhazardous Solid Waste Applicant Disclosure Regulations (Mississippi) Hazardous and Nonhazardous Solid Waste Applicant Disclosure Regulations (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Mississippi Program Type

45

A legislator`s guide to municipal solid waste management  

SciTech Connect (OSTI)

The purpose of this guide is to allow individual state legislators to gain a better understanding of municipal solid waste (MSW) management issues in general, and examine the applicability of these concerns to their state. This guide incorporates a discussion of MSW management issues and a comprehensive overview of the components of an integrated solid waste management system. Major MSW topics discussed include current management issues affecting states, federal activities, and state laws and local activities. Solid waste characteristics and management approaches are also detailed.

Starkey, D.; Hill, K.

1996-08-01T23:59:59.000Z

46

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

electrolytic cell, designed to integrate waste heat recovery (i.e a microbial heat recovery cell or MHRC), can operate as a fuel cell and convert effluent streams into...

47

Solid Waste Program Website | Open Energy Information  

Open Energy Info (EERE)

Program Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Solid Waste Program Website Author Alaska Division of Environmental Health Published...

48

Idaho Solid Waste Webpage | Open Energy Information  

Open Energy Info (EERE)

Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Idaho Solid Waste Webpage Abstract This webpage provides an overview of regulation of solid...

49

Solid Waste and Infectious Waste Regulations (Ohio) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and Infectious Waste Regulations (Ohio) and Infectious Waste Regulations (Ohio) Solid Waste and Infectious Waste Regulations (Ohio) < Back Eligibility Utility Agricultural Investor-Owned Utility Industrial Municipal/Public Utility Local Government Rural Electric Cooperative Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter of the law that establishes the Ohio Environmental Protection Agency establishes the rules and regulations regarding solid waste. The chapter establishes specific regulations for biomass facilities, which includes permitting, siting, operation, safety guidelines, and closing requirements. Siting regulations include setbacks from waste handling areas for state facilities (1000 feet from jails, schools), requirements for not siting

50

Managing America`s solid waste  

SciTech Connect (OSTI)

This report presents an historical overview of the federal role in municipal solid waste management from 1965 to approximately 1995. Attention is focuses on the federal role in safeguarding public health, protecting the environment, and wisely using material and energy resources. It is hoped that this report will provide important background for future municipal solid waste research and development initiatives.

Not Available

1998-03-02T23:59:59.000Z

51

Solid Waste Management (South Dakota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

South Dakota) South Dakota) Solid Waste Management (South Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State South Dakota Program Type Siting and Permitting Provider South Dakota Department of Environment and Natural Resources This statute contains provisions for solid waste management systems, groundwater monitoring, liability for pollution, permitting, inspections, and provisions for waste reduction and recycling programs

52

Solid waste management: a public policy study  

E-Print Network [OSTI]

not be discharged into surface water in violation of the National Pollutant Discharge Elimination System of the Clean Water Act; and no facility may contaminate an underground drinking waste source beyond the plant boundary. 2. Air: No open burning... of residential, commercial, institutional, or industrial solid waste may take place. Certain periodic burning activities are exempt. 3. Farmland: No solid waste facility border may lie within one meter (three feet) of land used for crop. If polychlorinated...

Jayawant, Mandar Prabhatkumar

2012-06-07T23:59:59.000Z

53

Management of Solid Waste (Oklahoma) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Management of Solid Waste (Oklahoma) Management of Solid Waste (Oklahoma) Management of Solid Waste (Oklahoma) < Back Eligibility Utility Agricultural Investor-Owned Utility Industrial Municipal/Public Utility Rural Electric Cooperative Program Info State Oklahoma Program Type Environmental Regulations Provider Oklahoma Department of Environmental Quality The Solid Waste Management Division of the Department of Environmental Quality regulates solid waste disposal or any person who generates, collects, transports, processes, and/or disposes of solid waste and/or waste tires. The following solid waste disposal facilities require a solid waste permit prior to construction and/or operation: land disposal facilities; solid waste processing facilities, including: transfer stations; solid waste incinerators receiving waste from off-site sources; regulated medical waste

54

Hawaii Permit Application for Solid Waste Management Facility...  

Open Energy Info (EERE)

to receive a permit for a solid waste management facility. Form Type CertificateForm of Completion Form Topic Permit Application for Solid Waste Management Facility Organization...

55

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...  

Office of Environmental Management (EM)

1: Availability of Feedstock and Technology Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology Municipal solid waste (MSW) is...

56

Solid Waste Program (Alabama) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Program (Alabama) Program (Alabama) Solid Waste Program (Alabama) < Back Eligibility Commercial Construction Developer General Public/Consumer Industrial Residential Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations This article states the authority of the department, regulations for the control of unauthorized dumping, disposal fees, violations and penalties. Solid waste refers to any garbage, rubbish, construction or demolition debris, ash, or sludge from a waste treatment facility, water supply plant, or air pollution control facility, and any other discarded materials, including solid, liquid, semisolid, or contained gaseous material resulting

57

Solid Waste Policies (Iowa) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Policies (Iowa) Policies (Iowa) Solid Waste Policies (Iowa) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department of Natural Resources This statute establishes the support of the state for alternative waste management practices that reduce the reliance upon land disposal and incorporate resource recovery. Cities and counties are required to establish and operate a comprehensive solid waste reduction program. These regulations discuss land application of processed wastes as well as requirements for sanitary landfills and for groundwater monitoring near land disposal sites

58

Hanford Site Solid Waste Acceptance Criteria  

SciTech Connect (OSTI)

This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.

Not Available

1993-11-17T23:59:59.000Z

59

Fuel-Slurry Integrated Gasifier/Gas Turbine (FSIG/GT) Alternative for Power Generation Applied to Municipal Solid Waste (MSW)  

Science Journals Connector (OSTI)

The gas is cleaned to bring the particle content and size as well alkaline concentration within the acceptable limits for injections into standard gas turbines. ... The proper disposal and use of Municipal Solid Wastes (MSW) for power generation remains among the most pressing problems of medium to large cities. ... Bubble sizes and raising velocities through the gasifier bed (Configuration A). ...

Marcio L. de Souza-Santos; Kevin B. Ceribeli

2013-11-22T23:59:59.000Z

60

Geothermal Direct-Use Minimizing Solid Waste  

Broader source: Energy.gov [DOE]

Aquaculture and horticulture businesses, and other industries that use geothermal direct-use systems typically don't generate any more solid waste than those that use other energy resources.

Note: This page contains sample records for the topic "integrated solid waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Experimental analysis of municipal solid waste samples  

E-Print Network [OSTI]

In the analysis of municipal solid waste consolidation, large-scale devices are usually used to measure the compression and hydraulic conductivity parameters. The use of those devices is justified due to difficulties in probing undisturbed samples...

Mendoza Sanchez, Itza

2012-06-07T23:59:59.000Z

62

County Solid Waste Control Act (Texas)  

Broader source: Energy.gov [DOE]

The purpose of this chapter is to authorize a cooperative effort by counties, public agencies, and other persons for the safe and economical collection, transportation, and disposal of solid waste...

63

Solid waste disposal options: an optimum disposal model for the management of municipal solid waste  

E-Print Network [OSTI]

and compostable material was generally burned in backyards. In 1970, the Clean Air Act was passed restricting the burning of leaves and other yard waste. ' These wastes were then disposed in landfills. As landfills reached capacity, commu- nities composted... separation pro- grams because of their "throw-away" mentality. " ~ln in r ttgtt Incineration is the controlled burning of the combustible fraction of solid waste. The first electrical generating station in the United States that was fueled by solid waste...

Haney, Brenda Ann

2012-06-07T23:59:59.000Z

64

Phase 2, Solid waste retrieval strategy  

SciTech Connect (OSTI)

Solid TRU retrieval, Phase 1 is scheduled to commence operation in 1998 at 218W-4C-T01 and complete recovery of the waste containers in 2001. Phase 2 Retrieval will recover the remaining buried TRU waste to be retrieved and provide the preliminary characterization by non-destructive means to allow interim storage until processing for disposal. This document reports on researching the characterization documents to determine the types of wastes to be retrieved and where located, waste configurations, conditions, and required methods for retrieval. Also included are discussions of wastes encompassed by Phase 2 for which there are valid reasons to not retrieve.

Johnson, D.M.

1994-09-29T23:59:59.000Z

65

Solid Waste Management Policy and Programs (Minnesota) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Policy and Programs (Minnesota) Policy and Programs (Minnesota) Solid Waste Management Policy and Programs (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting These statutes encourage the State and local governments to develop waste management strategies to achieve the maximum possible reduction in waste generation, eliminate or reduce adverse environmental impacts, encourage

66

Energy aspects of solid waste management: Proceedings  

SciTech Connect (OSTI)

The Eighteenth Annual Illinois Energy Conference entitled ``Energy Aspects of Solid Waste Management`` was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois` and the Midwest`s solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

Not Available

1990-12-31T23:59:59.000Z

67

An approach for sampling solid heterogeneous waste at the Hanford Site waste receiving and processing and solid waste projects  

SciTech Connect (OSTI)

This paper addresses the problem of obtaining meaningful data from samples of solid heterogeneous waste while maintaining sample rates as low as practical. The Waste Receiving and Processing Facility, Module 1, at the Hanford Site in south-central Washington State will process mostly heterogeneous solid wastes. The presence of hazardous materials is documented for some packages and unknown for others. Waste characterization is needed to segregate the waste, meet waste acceptance and shipping requirements, and meet facility permitting requirements. Sampling and analysis are expensive, and no amount of sampling will produce absolute certainty of waste contents. A sampling strategy is proposed that provides acceptable confidence with achievable sampling rates.

Sexton, R.A.

1993-03-01T23:59:59.000Z

68

Municipal Solid WasteMunicipal Solid Waste Landfills In CitiesLandfills In Cities  

E-Print Network [OSTI]

Municipal Solid WasteMunicipal Solid Waste Landfills In CitiesLandfills In Cities ArunArun PurandarePurandare Eco Designs India Pvt. Ltd.Eco Designs India Pvt. Ltd. #12;What is a Landfill? A sanitary landfill refers to an engineered facility for the disposal of MSW designed and operated

Columbia University

69

Hanford Site waste management and environmental restoration integration plan  

SciTech Connect (OSTI)

The Hanford Site Waste Management and Environmental Restoration Integration Plan'' describes major actions leading to waste disposal and site remediation. The primary purpose of this document is to provide a management tool for use by executives who need to quickly comprehend the waste management and environmental restoration programs. The Waste Management and Environmental Restoration Programs have been divided into missions. Waste Management consists of five missions: double-shell tank (DST) wastes; single-shell tank (SST) wastes (surveillance and interim storage, stabilization, and isolation); encapsulated cesium and strontium; solid wastes; and liquid effluents. Environmental Restoration consists of two missions: past practice units (PPU) (including characterization and assessment of SST wastes) and surplus facilities. For convenience, both aspects of SST wastes are discussed in one place. A general category of supporting activities is also included. 20 refs., 14 figs., 7 tabs.

Merrick, D.L.

1990-04-30T23:59:59.000Z

70

Montana Integrated Waste Management Act (Montana) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Montana Integrated Waste Management Act (Montana) Montana Integrated Waste Management Act (Montana) Montana Integrated Waste Management Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Municipal/Public Utility Local Government Residential Rural Electric Cooperative Tribal Government Low-Income Residential Schools Institutional Multi-Family Residential Nonprofit General Public/Consumer Program Info State Montana Program Type Industry Recruitment/Support Provider Montana Department of Environmental Quality This legislation sets goals for the reduction of solid waste generated by households, businesses, and governments, through source reduction, reuse, recycling, and composting. The state aims to achieve recycling and composting rates of: (a) 17% of the state's solid waste by 2008;

71

Buried waste integrated demonstration technology integration process  

SciTech Connect (OSTI)

A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE`s Office of Technology Development (OTD).

Ferguson, J.S.; Ferguson, J.E.

1992-04-01T23:59:59.000Z

72

Buried waste integrated demonstration technology integration process  

SciTech Connect (OSTI)

A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD).

Ferguson, J.S.; Ferguson, J.E.

1992-04-01T23:59:59.000Z

73

Solid Waste Processing Center Primary Opening Cells Systems, Equipment and Tools  

SciTech Connect (OSTI)

This document addresses the remote systems and design integration aspects of the development of the Solid Waste Processing Center (SWPC), a facility to remotely open, sort, size reduce, and repackage mixed low-level waste (MLLW) and transuranic (TRU)/TRU mixed waste that is either contact-handled (CH) waste in large containers or remote-handled (RH) waste in various-sized packages.

Bailey, Sharon A.; Baker, Carl P.; Mullen, O Dennis; Valdez, Patrick LJ

2006-04-17T23:59:59.000Z

74

Louisiana Solid Waste Management and Resource Recovery Law (Louisiana) |  

Broader source: Energy.gov (indexed) [DOE]

Louisiana Solid Waste Management and Resource Recovery Law Louisiana Solid Waste Management and Resource Recovery Law (Louisiana) Louisiana Solid Waste Management and Resource Recovery Law (Louisiana) < Back Eligibility Agricultural Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Louisiana Program Type Environmental Regulations Provider Louisiana Department of Environmental Quality The Louisiana Department of Environmental Quality manages solid waste for the state of Louisiana under the authority of the Solid Waste Management and Resource Recover Law. The Department makes rules and regulations that establish standards governing the storage, collection, processing, recovery and reuse, and disposal of solid waste; implement a management program that

75

EIS-0286: Hanford Solid (Radioactive and Hazardous) Waste Program  

Broader source: Energy.gov [DOE]

The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) analyzes the proposed waste management practices at the Hanford Site.

76

South Carolina Solid Waste Policy and Management Act (South Carolina)  

Broader source: Energy.gov [DOE]

The state of South Carolina supports a regional approach to solid waste management and encourages the development and implementation of alternative waste management practices and resource recovery....

77

Municipal Solid Waste Resources and Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Municipal Solid Waste Resources and Technologies Municipal Solid Waste Resources and Technologies Municipal Solid Waste Resources and Technologies October 7, 2013 - 9:28am Addthis Black and white photo of a bulldozer pushing a large mound of trash in a landfill. The National Renewable Energy Laboratory's high-solids digester converts wastes to biogas and compost for energy production. This page provides a brief overview of municipal solid waste energy resources and technologies supplemented by specific information to apply waste to energy within the Federal sector. Overview Municipal solid waste, also known as waste to energy, generates electricity by burning solid waste as fuel. This generates renewable electricity while also incinerating landfill and other municipal waste products such as trash, yard clippings and debris, furniture, food scraps, and other

78

Municipal Solid Waste Resources and Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Municipal Solid Waste Resources and Technologies Municipal Solid Waste Resources and Technologies Municipal Solid Waste Resources and Technologies October 7, 2013 - 9:28am Addthis Black and white photo of a bulldozer pushing a large mound of trash in a landfill. The National Renewable Energy Laboratory's high-solids digester converts wastes to biogas and compost for energy production. This page provides a brief overview of municipal solid waste energy resources and technologies supplemented by specific information to apply waste to energy within the Federal sector. Overview Municipal solid waste, also known as waste to energy, generates electricity by burning solid waste as fuel. This generates renewable electricity while also incinerating landfill and other municipal waste products such as trash, yard clippings and debris, furniture, food scraps, and other

79

Solid Waste Management and Land Protection (North Dakota) | Department of  

Broader source: Energy.gov (indexed) [DOE]

and Land Protection (North Dakota) and Land Protection (North Dakota) Solid Waste Management and Land Protection (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State North Dakota Program Type Siting and Permitting The policy of the State of North Dakota is to encourage and provide for environmentally acceptable and economical solid waste management practices, and the Department of Health may promulgate regulations related to waste

80

Solid waste recycling programs at Rocky Flats  

SciTech Connect (OSTI)

The Rocky Flats (RFP) recycling programs for solid waste materials have been in place for over ten years. Within the last three years, the programs were centralized under the direction of the Rocky Flats Waste Minimization department, with the assistance of various plant organizations (e.g., Trucking, Building Services, Regulated Waste Operations, property Utilization and Disposal and Security). Waste Minimization designs collection and transportation systems for recyclable materials and evaluates recycling markets for opportunities to add new commodities to the existing programs. The Waste Minimization department also promotes employee participation in the Rocky Flats Recycling Programs, and collects all recycling data for publication. A description of the program status as of January 1994 is given.

Millette, R.L.; Blackman, T.E.; Shepard, M.D. [EG and G Rocky Flats, Inc., Golden, CO (United States)

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "integrated solid waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Acceptability of Bettis Laboratories waste shipment to WHC solid waste  

SciTech Connect (OSTI)

The purpose of this document is to evaluate a potential discrepancy between the Solid Waste Management (SWM) Criticality Prevention Specifications and a proposed waste receipt from Bettis Laboratories. This analysis resolves an apparent discrepancy between two different requirements of the Central Waste Complex and 200 Area Low-Level Burial Grounds Criticality Prevention Specifications (CPS-SW-149-00002 and CPS-SW-149-00003 respectively). The analysis is being performed to enable Solid Waste Management to accept a specific package from Bettis Laboratories. This package meets the requirements of section 2.1.1 in that the total fissile content of the drum is less than 200g and the waste occupies greater than 20% of the container volume. The package may not appear, however, to meet the requirements of section 2.1.5 for maximum enrichment of uranium bearing waste, as will be described below. Based on this analysis for this specific package, the waste is shown to be critically safe under all conditions for which the 55-gallon drums (17C, 17H, or UN1A2) specification applies. This package can be accepted under the 55-gallon drum limitations on fissile quantity. No change to the CPS is required.

McDonald, K.M.

1995-04-20T23:59:59.000Z

82

Geothermal Power Plants Minimizing Solid Waste and Recovering Minerals  

Broader source: Energy.gov [DOE]

Although many geothermal power plants generate no appreciable solid waste, the unique characteristics of some geothermal fluids require special attention to handle entrained solid byproducts.

83

Fluid-bed combustion of solid wastes  

SciTech Connect (OSTI)

For over ten years combustion Power Company has been conducting experimental programs and developing fluid bed systems for agencies of the federal government and for private industry and institutions. Many of these activities have involved systems for the combustion of solid waste materials. Discussed here will be three categories of programs, development of Municipal Solid Waste (MSW) fired fluid beds, development of wood waste fired fluid beds, and industrial installations. Research and development work on wood wastes has led to the design and construction of two large industrial fluid bed combustors. In one of these, a fluid bed is used for the generation of steam with a fuel that was previously suited only for landfill. Rocks and inerts are continuously removed from this combustor using a patented system. The second FBC is designed to use a variety of fuels as the source of energy to dry hog fuel for use in a high performance power boiler. Here the FBC burns green hog fuel, log yard debris, fly ash (char) from the boiler, and dried wood fines to produce a hot gas system for the wood dryer. A significant advantage of the fluidized bed reactor over conventional incinerators is its ability to reduce noxious gas emission and, finally, the fluidized bed is unique in its ability to efficiently consume low quality fuels. The relatively high inerts and moisture content of solid wastes pose no serious problem and require no associated additional devices for their removal.

Vander Molen, R.H.

1980-01-01T23:59:59.000Z

84

Municipal solid waste disposal in Portugal  

SciTech Connect (OSTI)

In recent years municipal solid waste (MSW) disposal has been one of the most important environmental problems for all of the Portuguese regions. The basic principles of MSW management in Portugal are: (1) prevention or reduction, (2) reuse, (3) recovery (e.g., recycling, incineration with heat recovery), and (4) polluter-pay principle. A brief history of legislative trends in waste management is provided herein as background for current waste management and recycling activities. The paper also presents and discusses the municipal solid waste management in Portugal and is based primarily on a national inquiry carried out in 2003 and directed to the MSW management entities. Additionally, the MSW responsibility and management structure in Portugal is presented, together with the present situation of production, collection, recycling, treatment and elimination of MSW. Results showed that 96% of MSW was collected mixed (4% was separately collected) and that 68% was disposed of in landfill, 21% was incinerated at waste-to-energy plants, 8% was treated at organic waste recovery plants and 3% was delivered to sorting. The average generation rate of MSW was 1.32 kg/capita/day.

Magrinho, Alexandre [Mechanical Engineering Department, Escola Superior de Tecnologia de Setubal, Campus IPS, Estefanilha, Setubal (Portugal); Didelet, Filipe [Mechanical Engineering Department, Escola Superior de Tecnologia de Setubal, Campus IPS, Estefanilha, Setubal (Portugal); Semiao, Viriato [Mechanical Engineering Department, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)]. E-mail: ViriatoSemiao@ist.utl.pt

2006-07-01T23:59:59.000Z

85

Overview of Integrated Waste Treatment Unit  

Broader source: Energy.gov (indexed) [DOE]

Integrated Waste Treatment Unit Overview Integrated Waste Treatment Unit Overview Overview for the DOE High Level Waste Corporate Board March 5, 2009 safety  performance  cleanup  closure M E Environmental Management Environmental Management 2 2 Integrated Waste Treatment Unit Mission * Mission - Project mission is to provide treatment of approximately 900,000 gallons of tank farm waste - referred to as sodium bearing waste (SBW) - stored at the Idaho Tank Farm Facility to a stable waste form suitable for disposition at the Waste Isolation Pilot Plant (WIPP). - Per the Idaho Cleanup Project contract, the resident Integrated Waste Treatment Unit (IWTU) facility, shall have the capability for future packaging and shipping of the existing high level waste (HLW) calcine to the geologic

86

LOW ACTIVITY WASTE FEED SOLIDS CARACTERIZATION AND FILTERABILITY TESTS  

SciTech Connect (OSTI)

The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant (WTP) that is currently under construction. The baseline plan for the WTP Pretreatment facility is to treat the waste, splitting it into High Level Waste (HLW) feed and Low Activity Waste (LAW) feed. Both waste streams are then separately vitrified as glass and sealed in canisters. The LAW glass will be disposed onsite in the Integrated Disposal Facility (IDF). There are currently no plans to treat the waste to remove technetium in the WTP Pretreatment facility, so its disposition path is the LAW glass. Options are being explored to immobilize the LAW portion of the tank waste, i.e., the LAW feed from the WTP Pretreatment facility. Removal of {sup 99}Tc from the LAW Feed, followed by off-site disposal of the {sup 99}Tc, would eliminate a key risk contributor for the IDF Performance Assessment (PA) for supplemental waste forms, and has potential to reduce treatment and disposal costs. Washington River Protection Solutions (WRPS) is developing some conceptual flow sheets for LAW treatment and disposal that could benefit from technetium removal. One of these flowsheets will specifically examine removing {sup 99}Tc from the LAW feed stream to supplemental immobilization. The conceptual flow sheet of the {sup 99}Tc removal process includes a filter to remove insoluble solids prior to processing the stream in an ion exchange column, but the characteristics and behavior of the liquid and solid phases has not previously been investigated. This report contains results of testing of a simulant that represents the projected composition of the feed to the Supplemental LAW process. This feed composition is not identical to the aqueous tank waste fed to the Waste Treatment Plant because it has been processed through WTP Pretreatment facility and therefore contains internal changes and recycle streams that will be generated within the WTP process. Although a Supplemental LAW feed simulant has previously been prepared, this feed composition differs from that simulant because those tests examined only the fully soluble aqueous solution at room temperature, not the composition formed after evaporation, including the insoluble solids that precipitate after it cools. The conceptual flow sheet for Supplemental LAW immobilization has an option for removal of {sup 99}Tc from the feed stream, if needed. Elutable ion exchange has been selected for that process. If implemented, the stream would need filtration to remove the insoluble solids prior to processing in an ion exchange column. The characteristics, chemical speciation, physical properties, and filterability of the solids are important to judge the feasibility of the concept, and to estimate the size and cost of a facility. The insoluble solids formed during these tests were primarily natrophosphate, natroxalate, and a sodium aluminosilicate compound. At the elevated temperature and 8 M [Na+], appreciable insoluble solids (1.39 wt%) were present. Cooling to room temperature and dilution of the slurry from 8 M to 5 M [Na+] resulted in a slurry containing 0.8 wt% insoluble solids. The solids (natrophosphate, natroxalate, sodium aluminum silicate, and a hydrated sodium phosphate) were relatively stable and settled quickly. Filtration rates were in the range of those observed with iron-based simulated Hanford tank sludge simulants, e.g., 6 M [Na+] Hanford tank 241-AN-102, even though their chemical speciation is considerably different. Chemical cleaning of the crossflow filter was readily accomplished with acid. As this simulant formulation was based on an average composition of a wide range of feeds using an integrated computer model, this exact composition may never be observed. But the test conditions were selected to enable comparison to the model to enable improving its chemical prediction capability.

McCabe, D.; Crawford, C.; Duignan, M.; Williams, M.; Burket, P.

2014-04-03T23:59:59.000Z

87

Solid Waste Reduction, Recovery, and Recycling | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reduction, Recovery, and Recycling Reduction, Recovery, and Recycling Solid Waste Reduction, Recovery, and Recycling < Back Eligibility Investor-Owned Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Wisconsin Program Type Environmental Regulations Provider Department of Natural Resources This statute expresses the strong support of the State of Wisconsin for the reduction of the amount of solid waste generated, the reuse, recycling and composting of solid waste, and resource recovery from solid waste. The statute also notes that research, development and innovation in the design, management and operation of solid waste reduction, reuse, recycling,

88

System for chemically digesting low level radioactive, solid waste material  

DOE Patents [OSTI]

An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

Cowan, Richard G. (Kennewick, WA); Blasewitz, Albert G. (Richland, WA)

1982-01-01T23:59:59.000Z

89

Microsoft Word - Solid Waste at Hanford  

Broader source: Energy.gov (indexed) [DOE]

Use of American Recovery and Use of American Recovery and Reinvestment Act of 2009 Funds on Solid Waste Project Activities at the Department of Energy's Hanford Site OAS-RA-L-11-08 May 2011 DOE F 1325.8 (08-93) United States Government Department of Energy Memorandum DATE: May19, 2011 Audit Report Number: OAS-RA-L-11-08 REPLY TO ATTN OF: IG-34 (A10RA041) SUBJECT: Report on "Use of American Recovery and Reinvestment Act of 2009 Funds on Solid Waste Project Activities at the Department of Energy's Hanford Site" TO: Assistant Secretary for Environmental Management INTRODUCTION AND OBJECTIVE The Department of Energy's (Department), Richland Operations Office (Richland), awarded a contract, effective October 1, 2008, to CH2M HILL Plateau Remediation Company (CHPRC) to

90

Assessment of LANL solid low-level waste management documentation  

SciTech Connect (OSTI)

DOE Order 5820.2A requires that a system performance assessment be conducted to assure efficient and compliant management of all radioactive waste. The objective of this report is to determine the present status of the Radioactive Waste Operations Section's capabilities regarding preparation and maintenance of appropriate criteria, plans and procedures and identify particular areas where these documents are not presently in existence or being fully implemented. DOE Order 5820.2A, Radioactive Waste Management, Chapter III sets forth the requirements and guidelines for preparation and implementation of criteria, plans and procedures to be utilized in the management of solid low-level waste. The documents being assessed in this report are: Solid Low-Level Waste Acceptance Criteria, Solid Low-Level Waste Characterization Plan, Solid Low-Level Waste Certification Plan, Solid Low-Level Waste Acceptance Procedures, Solid Low-Level Waste Characterization Procedures, Solid Low-Level Waste Certification Procedures, Solid Low-Level Waste Training Procedures, and Solid Low-Level Waste Recordkeeping Procedures. Suggested outlines for these documents are presented as Appendix A.

Klein, R.B.; Jennrich, E.A.; Lund, D.M.; Danna, J.G. (Rogers and Associates Engineering Corp., Salt Lake City, UT (United States)); Davis, K.D.; Rutz, A.C. (Wastren, Inc., Idaho Falls, ID (United States))

1991-04-01T23:59:59.000Z

91

Assessment of LANL solid low-level waste management documentation  

SciTech Connect (OSTI)

DOE Order 5820.2A requires that a system performance assessment be conducted to assure efficient and compliant management of all radioactive waste. The objective of this report is to determine the present status of the Radioactive Waste Operations Section`s capabilities regarding preparation and maintenance of appropriate criteria, plans and procedures and identify particular areas where these documents are not presently in existence or being fully implemented. DOE Order 5820.2A, Radioactive Waste Management, Chapter III sets forth the requirements and guidelines for preparation and implementation of criteria, plans and procedures to be utilized in the management of solid low-level waste. The documents being assessed in this report are: Solid Low-Level Waste Acceptance Criteria, Solid Low-Level Waste Characterization Plan, Solid Low-Level Waste Certification Plan, Solid Low-Level Waste Acceptance Procedures, Solid Low-Level Waste Characterization Procedures, Solid Low-Level Waste Certification Procedures, Solid Low-Level Waste Training Procedures, and Solid Low-Level Waste Recordkeeping Procedures. Suggested outlines for these documents are presented as Appendix A.

Klein, R.B.; Jennrich, E.A.; Lund, D.M.; Danna, J.G. [Rogers and Associates Engineering Corp., Salt Lake City, UT (United States); Davis, K.D.; Rutz, A.C. [Wastren, Inc., Idaho Falls, ID (United States)

1991-04-01T23:59:59.000Z

92

Illinois Solid Waste Management Act (Illinois) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Illinois Solid Waste Management Act (Illinois) Illinois Solid Waste Management Act (Illinois) Illinois Solid Waste Management Act (Illinois) < Back Eligibility Agricultural Commercial Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Illinois Program Type Environmental Regulations Provider Illinois EPA It is the purpose of this Act to reduce reliance on land disposal of solid waste, to encourage and promote alternative means of managing solid waste, and to assist local governments with solid waste planning and management. In furtherance of those aims, while recognizing that landfills will continue to be necessary, this Act establishes the following waste management hierarchy, in descending order of preference, as State policy: volume reduction at the source; recycling and reuse; combustion

93

Gaines County Solid Waste Management Act (Texas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gaines County Solid Waste Management Act (Texas) Gaines County Solid Waste Management Act (Texas) Gaines County Solid Waste Management Act (Texas) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Program Info State Texas Program Type Environmental Regulations Provider Gaines County Solid Waste Management District This Act establishes the Gaines County Solid Waste Management District, a governmental body to develop and carry out a regional water quality protection program through solid waste management and regulation of waste disposal. The District has the power to prepare, adopt plans for, purchase, obtain permits for, construct, acquire, own, operate, maintain, repair, improve, and extend inside and outside the boundaries of the district any works,

94

Municipal solid waste effective stress analysis  

SciTech Connect (OSTI)

The mechanical behavior of municipal solid waste (MSW) has attracted the attention of many researchers in the field of geo-environmental engineering in recent years and several aspects of waste mechanical response under loading have been elucidated. However, the mechanical response of MSW materials under undrained conditions has not been described in detail to date. The knowledge of this aspect of the MSW mechanical response is very important in cases involving MSW with high water contents, seismic ground motion and in regions where landfills are built with poor operation conditions. This paper presents the results obtained from 26 large triaxial tests performed both in drained and undrained conditions. The results were analyzed taking into account the waste particles compressibility and the deformation anisotropy of the waste samples. The waste particles compressibility was used to modify the Terzaghi effective stress equation, using the Skempton (1961) proposition. It is shown that the use of the modified effective stress equation led to much more compatible shear strength values when comparing Consolidated-Drained (CD) and Consolidated-Undrained (CU), results, explaining the high shear strength values obtained in CU triaxial tests, even when the pore pressure is almost equal to the confining stress.

Shariatmadari, Nader, E-mail: shariatmadari@iust.ac.i [Dept. of Civil Engineering, Iran University of Science and Technology, Narmak, 16846-13114 Teharn (Iran, Islamic Republic of); Machado, Sandro Lemos, E-mail: smachado@ufba.b [Dept. of Materials Science and Technology, Federal University of Bahia, 02 Aristides Novis St., 40210-630 Salvador-BA (Brazil); Noorzad, Ali, E-mail: noorzad@pwut.ac.i [Faculty of Water Engineering, Power and Water University of Technology, Tehranpars, 1719-16765 Tehran (Iran, Islamic Republic of); Karimpour-Fard, Mehran, E-mail: karimpour_mehran@iust.ac.i [Dept. of Civil Engineering, Iran University of Science and Technology, Narmak, 16846-13114 Teharn (Iran, Islamic Republic of)

2009-12-15T23:59:59.000Z

95

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Broader source: Energy.gov (indexed) [DOE]

and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes Air Products and Chemicals, Inc. - Allentown, PA A microbial reverse electrodialysis...

96

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Broader source: Energy.gov (indexed) [DOE]

(ex: organic Rankine cycle) High installed KW capital Low temperature waste heat (<100C) is not practicable Further efficiency loss in electrolytic conversion to...

97

Feasibility Study on Solid Waste to Energy Technological Aspects  

E-Print Network [OSTI]

Feasibility Study on Solid Waste to Energy Technological Aspects Yuzhong Tan College of Engineering://www.funginstitute.berkeley.edu/sites/default/ les/SolidWasteToEnergy.pdf April 15, 2013 130 Blum Hall #5580 Berkeley, CA 94720-5580 | (510) 664 seeks to compare and evaluate each technology by reviewing waste to energy reports and seeking

Sekhon, Jasjeet S.

98

Nonlinear Model Predictive Control of Municipal Solid Waste Combustion Plants  

E-Print Network [OSTI]

. Also, the energy that results from waste combustion is often used to produce heat and/or electricityNonlinear Model Predictive Control of Municipal Solid Waste Combustion Plants M. Leskens , R.h.Bosgra@tudelft.nl, p.m.j.vandenhof@tudelft.nl Keywords : nonlinear model predictive control, municipal solid waste

Van den Hof, Paul

99

Capacity-to-Act in India's Solid Waste Management and Waste-to-  

E-Print Network [OSTI]

, for example, Oppili, P., "Waste Burning, A Health Hazard at Pallikaranai," The Hindu, Sept. 9, 2003; "MPPCB1 Capacity-to-Act in India's Solid Waste Management and Waste-to- Energy Industries Perinaz Bhada and disposal of garbage, or municipal solid waste, compounded by increasing consumption levels. Another serious

Columbia University

100

Integrated test schedule for buried waste integrated demonstration  

SciTech Connect (OSTI)

The Integrated Test Schedule incorporates the various schedules the Buried Waste Integrated Demonstration (BWID) supports into one document. This document contains the Federal Facilities Agreement and Consent Order schedules for the Idaho National Engineering Laboratory, Hanford Reservation, Oak Ridge Reservation, and Fernald Environmental Materials Center. Included in the Integrated Test Schedule is the Buried Waste Integrated Demonstration ``windows of opportunity`` schedule. The ``windows of opportunity`` schedule shows periods of time in which Buried Waste Integrated Demonstration Program-sponsored technology demonstrations could support key decisions in the Federal Facilities Agreement and Consent Order. Schedules for the Buried Waste Integrated Demonstration-sponsored technology task plans are categorized by technology area and divided by current fiscal year and out-year. Total estimated costs for Buried Waste Integrated Demonstration-sponsored Technology Task Plans for FY-92 through FY-97 are $74.756M.

Brown, J.T.; McDonald, J.K.

1992-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated solid waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Integrated test schedule for buried waste integrated demonstration  

SciTech Connect (OSTI)

The Integrated Test Schedule incorporates the various schedules the Buried Waste Integrated Demonstration (BWID) supports into one document. This document contains the Federal Facilities Agreement and Consent Order schedules for the Idaho National Engineering Laboratory, Hanford Reservation, Oak Ridge Reservation, and Fernald Environmental Materials Center. Included in the Integrated Test Schedule is the Buried Waste Integrated Demonstration windows of opportunity'' schedule. The windows of opportunity'' schedule shows periods of time in which Buried Waste Integrated Demonstration Program-sponsored technology demonstrations could support key decisions in the Federal Facilities Agreement and Consent Order. Schedules for the Buried Waste Integrated Demonstration-sponsored technology task plans are categorized by technology area and divided by current fiscal year and out-year. Total estimated costs for Buried Waste Integrated Demonstration-sponsored Technology Task Plans for FY-92 through FY-97 are $74.756M.

Brown, J.T.; McDonald, J.K.

1992-05-01T23:59:59.000Z

102

Identification of solid wastes in geothermal operations  

SciTech Connect (OSTI)

Regulations governing the disposal of hazardous wastes led to an assessment for geothermal solid wastes for potentially hazardous characteristics. Samples were collected from three active geothermal sites in the western United States: The Geysers, Imperial Valley, and northwestern Nevada. Approximately 20 samples were analyzed for corrosivity, EP toxicity, radioactivity, and bioaccumulation potential. The samples were further characterized by analysis for cations, anions, moisture content, priority pollutants, and additional trace metals in the leachate. In addition, an aqueous extraction was conducted at ambient pH. None of the samples collected at The Geysers or northwestern Nevada could be classified as hazardous as defined by the RCRA regulations published May 19, 1980 in the Federal Register. However, several samples from the Imperial Valley could be classified as hazardous. These hazardous characteristics appear to be related to the high salinity of geothermal fluids in that order. This study characterized samples from a limited geographical area and results cannot be extrapolated to other geothermal resource areas.

Hagmann, E.L.; Minicucci, D.D.; Wolbach, C.D.

1981-01-01T23:59:59.000Z

103

Solid Waste Management Rule (West Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rule (West Virginia) Rule (West Virginia) Solid Waste Management Rule (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting This rule establishes requirements for the siting, financial assurance, installation, establishment, construction, design, groundwater monitoring, modification, operation, permitting, closure and post-closure care of any

104

Buried Waste Integrated Demonstration Plan  

SciTech Connect (OSTI)

This document presents the plan of activities for the Buried Waste Integrated Demonstration (BWID) program which supports the environmental restoration (ER) objectives of the Department of Energy (DOE) Complex. Discussed in this plan are the objectives, organization, roles and responsibilities, and the process for implementing and managing BWID. BWID is hosted at the Idaho National Engineering Laboratory (INEL), but involves participants from throughout the DOE Complex, private industry, universities, and the international community. These participants will support, demonstrate, and evaluate a suite of advanced technologies representing a comprehensive remediation system for the effective and efficient remediation of buried waste. The processes for identifying technological needs, screening candidate technologies for applicability and maturity, selecting appropriate technologies for demonstration, field demonstrating, evaluation of results and transferring technologies to environmental restoration programs are also presented. This document further describes the elements of project planning and control that apply to BWID. It addresses the management processes, operating procedures, programmatic and technical objectives, and schedules. Key functions in support of each demonstration such as regulatory coordination, safety analyses, risk evaluations, facility requirements, and data management are presented.

Kostelnik, K.M.

1991-12-01T23:59:59.000Z

105

Solid Waste Management Act (Oklahoma) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Solid Waste Management Act (Oklahoma) Solid Waste Management Act (Oklahoma) < Back Eligibility Agricultural Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Oklahoma Program Type Environmental Regulations Provider Oklahoma Department of Environmental Quality This Act establishes rules for the permitting, posting of security, construction, operation, closure, maintenance and remediation of solid waste disposal sites; disposal of solid waste in ways that are environmentally safe and sanitary, as well as economically feasible; submission of laboratory reports or analyses performed by certified laboratories for the purposes of compliance monitoring and testing and for

106

Hanford Site Solid Waste Acceptance Program - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About Us > Hanford Site Wide Programs > Hanford Site Solid Waste Acceptance Program About Us Hanford Overview and History Hanford Cleanup Hanford Site Wide Programs Hanford Site...

107

Wilders Grove Solid Waste Services Center | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Grove Solid Waste Services Center Project objective: Provide demonstration of Geothermal Heat Pumps viability on energy usage for future Service Centers planned by the City of...

108

Energy Secretary Bodman Statement on Hanford Solid Waste Settlement...  

Energy Savers [EERE]

will lead to a final order and the dismissal of the challenge to Hanford's Solid Waste Environmental Impact Statement (EIS) in the lawsuit Washington v. Bodman. DOE, with...

109

Solid Waste Disposal Facilities (Massachusetts) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solid Waste Disposal Facilities (Massachusetts) Solid Waste Disposal Facilities (Massachusetts) Solid Waste Disposal Facilities (Massachusetts) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Transportation Tribal Government Utility Program Info State Massachusetts Program Type Siting and Permitting Provider Department of Environmental Protection These sections articulate rules for the maintenance and operation of solid waste disposal facilities, as well as site assignment procedures. Applications for site assignment will be reviewed by the Massachusetts Department of Environmental Protection as well as the Department of Public

110

Anaerobic digestion of organic solid waste for energy production.  

E-Print Network [OSTI]

??This study was carried out in order to evaluate the performance of anaerobic reactors treating OFMSW (organic fraction of municipal solid waste), especially in terms (more)

Nayono, Satoto Endar

2009-01-01T23:59:59.000Z

111

List of Municipal Solid Waste Incentives | Open Energy Information  

Open Energy Info (EERE)

Waste Incentives Waste Incentives Jump to: navigation, search The following contains the list of 172 Municipal Solid Waste Incentives. CSV (rows 1 - 172) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Clean Energy Project Grants (Texas) State Grant Program Texas Commercial Industrial Utility Biomass Municipal Solid Waste No Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes Alternative Energy Law (AEL) (Iowa) Renewables Portfolio Standard Iowa Investor-Owned Utility Anaerobic Digestion

112

Title 18 Alaska Administrative Code Chapter 60 Solid Waste Management...  

Open Energy Info (EERE)

Solid Waste Management Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 18 Alaska Administrative Code Chapter 60 Solid...

113

EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste  

Broader source: Energy.gov (indexed) [DOE]

07: Closure of Nonradioactive Dangerous Waste Landfill and 07: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington Summary This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA. Public Comment Opportunities None available at this time. Documents Available for Download August 26, 2011 EA-1707: Revised Draft Environmental Assessment Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington May 13, 2010 EA-1707: Draft Environmental Assessment

114

Solid Waste at Williams College A Luce Foundation Report  

E-Print Network [OSTI]

's environmental sustainability. As a step toward understanding Williams College's environmental impact, I spentSolid Waste at Williams College A Luce Foundation Report Katherine S. White September 2007 Inside a Williams trash can SUMMARY Solid waste at Williams College can be separated into three general categories

Aalberts, Daniel P.

115

Aluminum Reactions and Problems in Municipal Solid Waste Landfills  

E-Print Network [OSTI]

Aluminum Reactions and Problems in Municipal Solid Waste Landfills G. Vincent Calder, Ph.D.1 ; and Timothy D. Stark, Ph.D., P.E., F.ASCE2 Abstract: Aluminum enters municipal solid waste MSW landfills from problematic for landfill operations by generating undesirable heat, liquid leachate, and gases

116

IGES GHG Calculator For Solid Waste | Open Energy Information  

Open Energy Info (EERE)

IGES GHG Calculator For Solid Waste IGES GHG Calculator For Solid Waste Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary Name: IGES GHG Calculator For Solid Waste Agency/Company /Organization: Institute for Global Environmental Strategies (IGES) Sector: Climate, Energy Complexity/Ease of Use: Simple Cost: Free Related Tools Energy Development Index (EDI) Harmonized Emissions Analysis Tool (HEAT) Electricity Markets Analysis (EMA) Model ... further results A simple spreadsheet model for calculating greenhouse gas emissions from existing waste management practices (transportation, composting, anaerobic digestion, mechanical biological treatment, recycling, landfilling) in

117

Industrial Solid Waste Landfill Facilities (Ohio) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industrial Solid Waste Landfill Facilities (Ohio) Industrial Solid Waste Landfill Facilities (Ohio) Industrial Solid Waste Landfill Facilities (Ohio) < Back Eligibility Agricultural Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter of the law establishes that the Ohio Environmental Protection Agency provides rules and guidelines for landfills, including those that treat waste to generate electricity. The law provides information for permitting, installing, maintaining, monitoring, and closing landfills. There are no special provisions or exemptions for landfills used to generate electricity. However, the law does apply to landfills that do

118

Aqueous alteration of municipal solid waste ash  

SciTech Connect (OSTI)

Municipal solid waste (MSW) ash is composed largely of amorphous oxides and approximately 20% minerals including halite, magnetite, hematite, quartz, gypsum, calcite, and rutile. It is also enriched in toxic trace metals by up to three orders of magnitude over average soil. The thermodynamic stabilities and rates of dissolution of the minerals and glasses in MSW ash will determine whether the ash is an environmental problem. The authors have used batch reactors at 20, 40, and 60 C over time periods up to 60 days to simulate longer reaction times for ash under cooler landfill conditions. Soluble salts are most quickly dissolved, giving solutions dominated by Ca[sup 2+], Na[sup +], K[sup +], SO[sub 2][sup 2[minus

Kirby, C.S.; Rimstidt, J.D. (Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States))

1992-01-01T23:59:59.000Z

119

Delivery system for molten salt oxidation of solid waste  

DOE Patents [OSTI]

The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a temperature below incineration temperature while entering the molten salt reactor.

Brummond, William A. (Livermore, CA); Squire, Dwight V. (Livermore, CA); Robinson, Jeffrey A. (Manteca, CA); House, Palmer A. (Walnut Creek, CA)

2002-01-01T23:59:59.000Z

120

EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA.

Note: This page contains sample records for the topic "integrated solid waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Seasonal characterization of municipal solid waste (MSW) in the city of Chihuahua, Mexico  

Science Journals Connector (OSTI)

Management of municipal solid waste (MSW) has become a significant environmental problem, especially in fast-growing cities. The amount of waste generated increases each year and this makes it difficult to create solutions which due to the increase in waste generation year after year and having to identify a solution that will have minimum impact on the environment. To determine the most sustainable waste management strategy for Chihuahua, it is first necessary to identify the nature and composition of the citys urban waste. The MSW composition varied considerably depending on many factors, the time of year is one of them. Therefore, as part of our attempt to implement an integral waste management system in the city of Chihuahua, we conducted a study of the characteristics of MSW composition for the different seasons. This paper analyzes and compares the findings of the study of the characterization and the generation of solid waste from households at three different socio-economic levels in the city over three periods (April and August, 2006 and January, 2007). The average weight of waste generated in Chihuahua, taking into account all three seasons, was 0.592kgcapita?1day?1. Our results show that the lowest income groups generated the least amount of waste. We also found that less waste was generated during the winter season. The breakdown for the composition of the waste shows that organic waste accounts for the largest proportion (45%), followed by paper (17%) and others (16%).

Guadalupe Gmez; Montserrat Meneses; Lourdes Ballinas; Francesc Castells

2009-01-01T23:59:59.000Z

122

Seasonal characterization of municipal solid waste (MSW) in the city of Chihuahua, Mexico  

SciTech Connect (OSTI)

Management of municipal solid waste (MSW) has become a significant environmental problem, especially in fast-growing cities. The amount of waste generated increases each year and this makes it difficult to create solutions which due to the increase in waste generation year after year and having to identify a solution that will have minimum impact on the environment. To determine the most sustainable waste management strategy for Chihuahua, it is first necessary to identify the nature and composition of the city's urban waste. The MSW composition varied considerably depending on many factors, the time of year is one of them. Therefore, as part of our attempt to implement an integral waste management system in the city of Chihuahua, we conducted a study of the characteristics of MSW composition for the different seasons. This paper analyzes and compares the findings of the study of the characterization and the generation of solid waste from households at three different socio-economic levels in the city over three periods (April and August, 2006 and January, 2007). The average weight of waste generated in Chihuahua, taking into account all three seasons, was 0.592 kg capita{sup -1} day{sup -1}. Our results show that the lowest income groups generated the least amount of waste. We also found that less waste was generated during the winter season. The breakdown for the composition of the waste shows that organic waste accounts for the largest proportion (45%), followed by paper (17%) and others (16%)

Gomez, Guadalupe [Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, 43007 Tarragona (Spain); Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua, 31310 (Mexico); Meneses, Montserrat [Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, 43007 Tarragona (Spain); Ballinas, Lourdes [Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua, 31310 (Mexico); Castells, Francesc [Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, 43007 Tarragona (Spain)], E-mail: francesc.castells@urv.cat

2009-07-15T23:59:59.000Z

123

E-Print Network 3.0 - asme solid waste Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: -21, 2008, Philadelphia, Pennsylvania, USA NAWTEC16-1901 PLASMA ARC GASIFICATION FOR SOLID WASTE DISPOSAL... in municipal solid waste destruction since 1999 in...

124

Thermal Utilization of Solid Recovered Fuels in Pulverized Coal Power Plants and Industrial Furnaces as Part of an Integrated Waste Management Concept  

Science Journals Connector (OSTI)

Solid Recovered Fuels (SRF) are highly heterogeneous mixtures generated...CEN/TC 343 2003...). They are composed of a variety of materials of which some although recyclable in theory, may have become in forms tha...

G. Dunnu; J. Maier; A. Gerhardt

2009-01-01T23:59:59.000Z

125

Quality Services: Solid Wastes, Part 361: Siting of Industrial Hazardous  

Broader source: Energy.gov (indexed) [DOE]

1: Siting of Industrial 1: Siting of Industrial Hazardous Waste Facilities (New York) Quality Services: Solid Wastes, Part 361: Siting of Industrial Hazardous Waste Facilities (New York) < Back Eligibility Commercial Fed. Government Industrial Investor-Owned Utility Local Government Municipal/Public Utility State/Provincial Govt Tribal Government Utility Program Info State New York Program Type Siting and Permitting Provider NY Department of Environmental Conservation These regulations describe the siting of new industrial hazardous waste facilities located wholly or partially within the State. Industrial hazardous waste facilities are defined as facilities used for the purpose of treating, storing, compacting, recycling, exchanging or disposing of industrial hazardous waste materials, including treatment, compacting,

126

Comprehensive Municipal Solid Waste Management, Resource Recovery, and Conservation Act (Texas)  

Broader source: Energy.gov [DOE]

This Act encourages the establishment of regional waste management facilities and the cooperation of local waste management entities in order to streamline the management of municipal solid waste...

127

Conversion of municipal solid waste to hydrogen  

SciTech Connect (OSTI)

LLNL and Texaco are cooperatively developing a physical and chemical treatment method for the conversion of municipal solid waste (MSW) to hydrogen via the steps of hydrothermal pretreatment, gasification and purification. LLNL`s focus has been on hydrothermal pretreatment of MSW in order to prepare a slurry of suitable viscosity and heating value to allow efficient and economical gasification and hydrogen production. The project has evolved along 3 parallel paths: laboratory scale experiments, pilot scale processing, and process modeling. Initial laboratory-scale MSW treatment results (e.g., viscosity, slurry solids content) over a range of temperatures and times with newspaper and plastics will be presented. Viscosity measurements have been correlated with results obtained at MRL. A hydrothermal treatment pilot facility has been rented from Texaco and is being reconfigured at LLNL; the status of that facility and plans for initial runs will be described. Several different operational scenarios have been modeled. Steady state processes have been modeled with ASPEN PLUS; consideration of steam injection in a batch mode was handled using continuous process modules. A transient model derived from a general purpose packed bed model is being developed which can examine the aspects of steam heating inside the hydrothermal reactor vessel. These models have been applied to pilot and commercial scale scenarios as a function of MSW input parameters and have been used to outline initial overall economic trends. Part of the modeling, an overview of the MSW gasification process and the modeling of the MSW as a process material, was completed by a DOE SERS (Science and Engineering Research Semester) student. The ultimate programmatic goal is the technical demonstration of the gasification of MSW to hydrogen at the laboratory and pilot scale and the economic analysis of the commercial feasibility of such a process.

Richardson, J.H.; Rogers, R.S.; Thorsness, C.B. [and others

1995-04-01T23:59:59.000Z

128

Solid waste retrieval. Phase 1, Operational basis  

SciTech Connect (OSTI)

This Document describes the operational requirements, procedures, and options for execution of the retrieval of the waste containers placed in buried storage in Burial Ground 218W-4C, Trench 04 as TRU waste or suspect TRU waste under the activity levels defining this waste in effect at the time of placement. Trench 04 in Burial Ground 218W-4C is totally dedicated to storage of retrievable TRU waste containers or retrievable suspect TRU waste containers and has not been used for any other purpose.

Johnson, D.M.

1994-09-30T23:59:59.000Z

129

Energy Secretary Bodman Statement on Hanford Solid Waste Settlement  

Broader source: Energy.gov (indexed) [DOE]

Energy Secretary Bodman Statement on Hanford Solid Waste Settlement Energy Secretary Bodman Statement on Hanford Solid Waste Settlement Agreement Energy Secretary Bodman Statement on Hanford Solid Waste Settlement Agreement January 9, 2006 - 9:43am Addthis Richland, WA - U.S. Secretary of Energy Samuel Bodman today announced that the Department of Energy (DOE) and the State of Washington have entered into a settlement agreement that will lead to a final order and the dismissal of the challenge to Hanford's Solid Waste Environmental Impact Statement (EIS) in the lawsuit Washington v. Bodman. DOE, with Washington State as a cooperating agency, will prepare a new EIS that will include updated, site-wide groundwater analysis. "With this agreement, both parties will be able to shift their focus and resources away from litigation and toward partnership and our shared

130

Energy Secretary Bodman Statement on Hanford Solid Waste Settlement  

Broader source: Energy.gov (indexed) [DOE]

Statement on Hanford Solid Waste Settlement Statement on Hanford Solid Waste Settlement Agreement Energy Secretary Bodman Statement on Hanford Solid Waste Settlement Agreement January 9, 2006 - 9:43am Addthis Richland, WA - U.S. Secretary of Energy Samuel Bodman today announced that the Department of Energy (DOE) and the State of Washington have entered into a settlement agreement that will lead to a final order and the dismissal of the challenge to Hanford's Solid Waste Environmental Impact Statement (EIS) in the lawsuit Washington v. Bodman. DOE, with Washington State as a cooperating agency, will prepare a new EIS that will include updated, site-wide groundwater analysis. "With this agreement, both parties will be able to shift their focus and resources away from litigation and toward partnership and our shared

131

Proof of Proper Solid Waste Disposal (West Virginia)  

Broader source: Energy.gov [DOE]

This rule provides guidance to persons occupying a residence or operating a business establishment in this state regarding the approved method of providing proof of proper solid waste disposal to...

132

State Solid Waste Management and Resource Recovery Plan (Montana)  

Broader source: Energy.gov [DOE]

The State supports the "good management of solid waste and the conservation of natural resources through the promotion or development of systems to collect, separate, reclaim, recycle, and dispose...

133

Hawaii DOH Solid Waste Section Webpage | Open Energy Information  

Open Energy Info (EERE)

Section Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii DOH Solid Waste Section Webpage Abstract This webpage provides an overview of...

134

Solid Waste Planning and Recycling Act (Illinois)  

Broader source: Energy.gov [DOE]

It is the purpose of this Act to provide incentives for decreased generation of municipal waste, to require certain counties to develop comprehensive waste management plans that place substantial...

135

Hanford Site solid waste acceptance criteria  

SciTech Connect (OSTI)

Order 5820.2A requires that each treatment, storage, and/or disposal facility (referred to in this document as TSD unit) that manages low-level or transuranic waste (including mixed waste and TSCA PCB waste) maintain waste acceptance criteria. These criteria must address the various requirements to operate the TSD unit in compliance with applicable safety and environmental requirements. This document sets forth the baseline criteria for acceptance of radioactive waste at TSD units operated by WMH. The criteria for each TSD unit have been established to ensure that waste accepted can be managed in a manner that is within the operating requirements of the unit, including environmental regulations, DOE Orders, permits, technical safety requirements, waste analysis plans, performance assessments, and other applicable requirements. Acceptance criteria apply to the following TSD units: the Low-Level Burial Grounds (LLBG) including both the nonregulated portions of the LLBG and trenches 31 and 34 of the 218-W-5 Burial Ground for mixed waste disposal; Central Waste Complex (CWC); Waste Receiving and Processing Facility (WRAP); and T Plant Complex. Waste from all generators, both from the Hanford Site and from offsite facilities, must comply with these criteria. Exceptions can be granted as provided in Section 1.6. Specific waste streams could have additional requirements based on the 1901 identified TSD pathway. These requirements are communicated in the Waste Specification Records (WSRds). The Hanford Site manages nonradioactive waste through direct shipments to offsite contractors. The waste acceptance requirements of the offsite TSD facility must be met for these nonradioactive wastes. This document does not address the acceptance requirements of these offsite facilities.

Ellefson, M.D.

1998-07-01T23:59:59.000Z

136

Effects of biodrying process on municipal solid waste properties  

Science Journals Connector (OSTI)

In this paper, the effect of biodrying process on municipal solid waste (MSW) properties was studied. The results obtained indicated that after 14d, biodrying reduced the water content of waste, allowing the production of biodried waste with a net heating value (NHV) of 16,7792,074kJkg?1 wet weight, i.e. 41% higher than that of untreated waste. The low moisture content of the biodried material reduced, also, the potential impacts of the waste, i.e. potential self-ignition and potential odors production. Low waste impacts suggest to landfill the biodried material obtaining energy via biogas production by waste re-moistening, i.e. bioreactor. Nevertheless, results of this work indicate that biodrying process because of the partial degradation of the organic fraction contained in the waste (losses of 290gkg?1 VS), reduced of about 28% the total producible biogas.

F. Tambone; B. Scaglia; S. Scotti; F. Adani

2011-01-01T23:59:59.000Z

137

Implementation of the buried waste integrated demonstration  

SciTech Connect (OSTI)

The Department of Energy (DOE), Office of Technology Development (OTD) has initiated the Buried Waste Integrated Demonstration (BWID) to resolve technological deficiencies associated with the remediation of radioactive and hazardous buried waste. The BWID mission is to identify, demonstrate, and transfer innovative technologies for the remediation of DOE buried waste. To accomplish the mission, BWID is using a systems approach which supports the development of a suite of advanced and innovative technologies for the effective and efficient remediation of buried waste. This systems approach includes technologies for theentire remediation cycle. Specifically, BWID sponsors technology development in the following technology categories: site and waste characterization, retrieval, preprocessing, ex situ treatment, packaging, transportation, storage, disposal, and post-disposal monitoring.

Kostelnik, K.M.; Merrill, S.K.

1992-09-01T23:59:59.000Z

138

Implementation of the buried waste integrated demonstration  

SciTech Connect (OSTI)

The Department of Energy (DOE), Office of Technology Development (OTD) has initiated the Buried Waste Integrated Demonstration (BWID) to resolve technological deficiencies associated with the remediation of radioactive and hazardous buried waste. The BWID mission is to identify, demonstrate, and transfer innovative technologies for the remediation of DOE buried waste. To accomplish the mission, BWID is using a systems approach which supports the development of a suite of advanced and innovative technologies for the effective and efficient remediation of buried waste. This systems approach includes technologies for theentire remediation cycle. Specifically, BWID sponsors technology development in the following technology categories: site and waste characterization, retrieval, preprocessing, ex situ treatment, packaging, transportation, storage, disposal, and post-disposal monitoring.

Kostelnik, K.M.; Merrill, S.K.

1992-01-01T23:59:59.000Z

139

Integrated Data Base: Status and waste projections  

SciTech Connect (OSTI)

The Integrated Data Base (IDB) is the official US Department of Energy (DOE) data base for spent fuel and radioactive waste inventories and projections. DOE low-level waste (LLW) is just one of the many waste types that are documented with the IDB. Summary-level tables and figures are presented illustrating historical and projected volume changes of DOE LLW. This information is readily available through the annual IDB publication. Other presentation formats are also available to the DOE community through a request to the IDB Program. 4 refs., 6 figs., 5 tabs.

Klein, J.A.

1990-01-01T23:59:59.000Z

140

Mercury emissions from municipal solid waste combustors  

SciTech Connect (OSTI)

This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

Not Available

1993-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated solid waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Event:World Solid Waste Congress 2012 | Open Energy Information  

Open Energy Info (EERE)

Solid Waste Congress 2012 Solid Waste Congress 2012 Jump to: navigation, search Calendar.png World Solid Waste Congress 2012: on 2012/09/17 During the three days of this Congress you can meet academics presenting cutting edge research; scientists, government administrators and decision makers, representatives of the world's largest companies in the waste sector, and many other practitioners too from small and medium enterprises. Florence 2012: where else in the world can you network with these people in such a short time The Congress location is at the Palazzo dei Congressi adjacent to the Santa Maria Novella mainline railway station in the City center. ATIA-ISWA ITALIA is also organising a series of events in Italy leading to the main Congress this year. This beautiful city will also host

142

Household solid waste characteristics and management in Chittagong, Bangladesh  

SciTech Connect (OSTI)

Solid waste management (SWM) is a multidimensional challenge faced by urban authorities, especially in developing countries like Bangladesh. We investigated per capita waste generation by residents, its composition, and the households' attitudes towards waste management at Rahman Nagar Residential Area, Chittagong, Bangladesh. The study involved a structured questionnaire and encompassed 75 households from five different socioeconomic groups (SEGs): low (LSEG), lower middle (LMSEG), middle (MSEG), upper middle (UMSEG) and high (HSEG). Wastes, collected from all of the groups of households, were segregated and weighed. Waste generation was 1.3 kg/household/day and 0.25 kg/person/day. Household solid waste (HSW) was comprised of nine categories of wastes with vegetable/food waste being the largest component (62%). Vegetable/food waste generation increased from the HSEG (47%) to the LSEG (88%). By weight, 66% of the waste was compostable in nature. The generation of HSW was positively correlated with family size (r{sub xy} = 0.236, p < 0.05), education level (r{sub xy} = 0.244, p < 0.05) and monthly income (r{sub xy} = 0.671, p < 0.01) of the households. Municipal authorities are usually the responsible agencies for solid waste collection and disposal, but the magnitude of the problem is well beyond the ability of any municipal government to tackle. Hence dwellers were found to take the service from the local waste management initiative. Of the respondents, an impressive 44% were willing to pay US$0.3 to US$0.4 per month to waste collectors and it is recommended that service charge be based on the volume of waste generated by households. Almost a quarter (22.7%) of the respondents preferred 12-1 pm as the time period for their waste to be collected. This study adequately shows that household solid waste can be converted from burden to resource through segregation at the source, since people are aware of their role in this direction provided a mechanism to assist them in this pursuit exists and the burden is distributed according to the amount of waste generated.

Sujauddin, Mohammad [Institute of Forestry and Environmental Sciences, Chittagong University, Chittagong-4331 (Bangladesh)], E-mail: mohammad.sujauddin@gmail.com; Huda, S.M.S. [Institute of Forestry and Environmental Sciences, Chittagong University, Chittagong-4331 (Bangladesh); Hoque, A.T.M. Rafiqul [Institute of Forestry and Environmental Sciences, Chittagong University, Chittagong-4331 (Bangladesh); Laboratory of Ecology and Systematics (Plant Ecophysiology Section), Faculty of Science, Biology Division, University of the Ryukyus, Okinawa 903-0213 (Japan)

2008-07-01T23:59:59.000Z

143

Solid waste education in children's museums  

E-Print Network [OSTI]

before it is generated. The concept behind this strategy is that if we can eliminate the waste, we can decrease disposal problems, Similarly, recycling and composting are solutions to extending the life of resources by reusing them instead of throwing... waste management. This strategy involves a hierarchy of solutions, with source reduction as the best solution, followed by recycling, to include composting, as the second best option, and waste combustion and landfllling as the last two means...

King, Jennifer Campbell

1997-01-01T23:59:59.000Z

144

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology  

Broader source: Energy.gov [DOE]

Municipal solid waste (MSW) is a domestic energy resource with the potential to provide a significant amount of energy to meet US liquid fuel requirements. MSW is defined as household waste, commercial solid waste, nonhazardous sludge, conditionally exempt, small quantity hazardous waste, and industrial solid waste. It includes food waste, residential rubbish, commercial and industrial wastes, and construction and demolition debris. It has an average higher heating value (HHV) of approximately 5100 btu/lb (as arrived basis).

145

Solid Waste Regulations (Nova Scotia, Canada)  

Broader source: Energy.gov [DOE]

Nova Scotia Environment administers waste management for the province. Regulations include specific rules and standards for landfills, establish a Resource Recovery Fund, and guidelines for...

146

Tank Waste System Integrated Project Team  

Broader source: Energy.gov (indexed) [DOE]

Decisional Draft Decisional Draft 1 This document is intended for planning and analysis purposes, assuming a continuing constrained budget environment. Every effort will be made to comply with all applicable environmental and legal obligations, while also assuring that essential functions necessary to protect human health, the environment and national security are maintained. Tank Waste System Tank Waste System Integrated Project Team Integrated Project Team Steve Schneider Office of Engineering and Technology Tank Waste Corporate Board July 29, 2009 2 This document is intended for planning and analysis purposes, assuming a continuing constrained budget environment. Every effort will be made to comply with all applicable environmental and legal obligations, while also assuring that essential functions necessary

147

International Solid Waste Association (ISWA) | Open Energy Information  

Open Energy Info (EERE)

Waste Association (ISWA) Waste Association (ISWA) Jump to: navigation, search Name International Solid Waste Association (ISWA) Address ISWA - International Solid Waste Association General Secretariat Auerspergstrasse 15, Top 41 1080 Vienna Austria Place Vienna Austria Website http://www.iswa.org/ Coordinates 48.2088365°, 16.3546602° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.2088365,"lon":16.3546602,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

148

CSER 95-007 Acceptability of Bettis Lab Waste Shipment to WHC Solid Waste  

SciTech Connect (OSTI)

The purpose of this document is to evaluate a potential discrepancy between the Solid Waste Management (SWM) criticality prevention specifications and a proposed receipt from Bettis Laboratories. The analysis has been performed to determine the acceptability of the Bettis Laboratories waste container with respect to SWM criticality requirements.

MILLER, E.M.

1999-12-03T23:59:59.000Z

149

SYNERGIA Forum Integrated Municipal Solid Waste Management  

E-Print Network [OSTI]

ERT Germany "Biogas utilization: Comparison between sanitary landfills and anaerobic digestionERT Germany, WTE Plants in Germany" Michael Jakuttis, Dipl.Ing. Wt

Columbia University

150

Apply process integration to waste minimization  

SciTech Connect (OSTI)

This article presents a systematic method for identifying process modifications to minimize waste generation. It is based on the hierarchical decision procedure, which provides a framework for identifying process improvement options and evaluating heat and mass integration opportunities. The article deals specifically with an adaptation of the hierarchical decision approach for use in pollution abatement applications. The article also illustrates the use of the technique by applying it to the fluid catalytic cracking unit at Amoco Oil Co.'s Yorktown, VA, refinery.

Rossiter, A.P.; Spriggs, H.D. (Linnhoff March, Inc., Leesburg, VA (United States)); Klee, H. Jr. (Amoco Corp., Chicago, IL (United States))

1993-01-01T23:59:59.000Z

151

Solid waste drum array fire performance  

SciTech Connect (OSTI)

Fire hazards associated with drum storage of radioactively contaminated waste are a major concern in DOE waste storage facilities. This report is the second of two reports on fire testing designed to provide data relative to the propagation of a fire among storage drum arrays. The first report covers testing of individual drums subjected to an initiating fire and the development of the analytical methodology to predict fire propagation among storage drum arrays. This report is the second report, which documents the results of drum array fire tests. The purpose of the array tests was to confirm the analytical methodology developed by Phase I fire testing. These tests provide conclusive evidence that fire will not propagate from drum to drum unless an continuous fuel source other than drum contents is provided.

Louie, R.L. [Westinghouse Hanford Co., Richland, WA (United States); Haecker, C.F. [Los Alamos Technical Associates, Inc., Kennewick, WA (United States); Beitel, J.J.; Gottuck, D.T.; Rhodes, B.T.; Bayier, C.L. [Hughes Associates, Inc., Baltimore, MD (United States)

1995-09-01T23:59:59.000Z

152

Municipal solid waste characteristics and management in Allahabad, India  

E-Print Network [OSTI]

by political, legal, socio-cultural, environmental and economic factors, as well as available resources on a suitable management plan (Shimura et al., 2001). More than 90% of MSW in India is directly disposedMunicipal solid waste characteristics and management in Allahabad, India Mufeed Sharholy a , Kafeel

Columbia University

153

Data summary of municipal solid waste management alternatives  

SciTech Connect (OSTI)

This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

Not Available

1992-10-01T23:59:59.000Z

154

Recycling Realities: ASU's Quest for Zero Solid Waste  

E-Print Network [OSTI]

Recycling Realities: ASU's Quest for Zero Solid Waste Dawn RatcliffePast Recycling Coordinator Alana LevineRecycling Program Manager For the last 16 years, Dawn Ratcliffe has worked and volunteered in the sustainability and animal-advocacy fields. She has organized several Earth Day events, recycling events

Zhang, Junshan

155

Seismic Response Analysis of Municipal Solid Waste Landfill  

Science Journals Connector (OSTI)

According to the engineering practice of municipal solid waste landfill, the dynamic response of landfill based on the finite element method is implemented. The equivalent linearization method is used to consider the non-linear dynamic response characteristics. ... Keywords: Dynamic response, Ground motion input, Finite element method

Zhang Guodong; Li Yong; Jin Xing; Li Rongbin; Chen Fei

2009-10-01T23:59:59.000Z

156

Data summary of municipal solid waste management alternatives  

SciTech Connect (OSTI)

This appendix contains background information, technical descriptions, economic data, mass and energy balances, and information on environmental releases for the refuse derived fuels (RDF) option in municipal solid waste management alternatives. Demonstration programs at St. Louis, Missouri; Franklin, Ohio; and Delaware are discussed. Information on pellet production and cofiring with coal is also presented.

Not Available

1992-10-01T23:59:59.000Z

157

IDAPA 58.01.06 - Solid Waste Management Rules and Standards ...  

Open Energy Info (EERE)

Solid Waste Management Rules and Standards Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: IDAPA 58.01.06 - Solid Waste...

158

Solid waste energy recovery for brackish water desalination  

SciTech Connect (OSTI)

Introduced is the concept of combining solid-waste energy recovery with brackish water desalination for water supply improvement. The history of such plants is briefly detailed, and performance and operating cost data of several existing desalination plants is given. It is concluded that the combination of solid waste energy recovery utilizing modular combustion units and brackish water desalination using the reverse osmosis process can cancel out the energy-related negative aspects of both technologies. Furthermore, with innovative planning and adequate political, financial and technical leadership, communities that meet criteria outlined in the report can convert a waste disposal problem into a resource for the betterment of the community and its surrounding neighbors.

Bailie, R.E.

1982-07-01T23:59:59.000Z

159

Method of draining water through a solid waste site without leaching  

DOE Patents [OSTI]

The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

Treat, R.L.; Gee, G.W.; Whyatt, G.A.

1993-02-02T23:59:59.000Z

160

Solid Waste as an Energy Source  

E-Print Network [OSTI]

. PROCESS The solLd waste energy conversion system bullt by Kelley Company consists of a combustion unit and an energy recovery boLler. The combustion unit uses a two stage process; the refuse is fLrst converted to gases by a pyrolysis process... wlll be conslderably lower than the temperature that woulq be achleved If stoichiometrlc air to fuel ratlo was malntained. The resulting temperatures In the pyrolysis chamber ranges from 1200 0 to 1500 o P. The low a lr lnput, as compared wlth...

Erlandsson, K. I.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated solid waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Municipal Solid Waste Landfill as a Source of Montreal Protocol-restricted Halocarbons in the  

E-Print Network [OSTI]

The Municipal Solid Waste Landfill as a Source of Montreal Protocol-restricted Halocarbons of Geophysics #12;2 #12;The Municipal Solid Waste Landfill as a Source of Montreal Protocol municipal solid waste (MSW) landfills. With several hundred MSW landfills in both the US and UK, estimating

162

Field study of disposed solid wastes from advanced coal processes  

SciTech Connect (OSTI)

Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid waste produced by advanced coal processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites have been selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's site using waste from Midwest Grain's FBC unit in central Illinois. A fourth site is under consideration at the Dakota Gasification Company in North Dakota. The first two tasks of this project involved the development of test plans and obtaining site access.

Not Available

1990-01-01T23:59:59.000Z

163

Quality Services: Solid Wastes, Parts 370-376: Hazardous Waste Management  

Broader source: Energy.gov (indexed) [DOE]

Parts 370-376: Hazardous Waste Parts 370-376: Hazardous Waste Management System (New York) Quality Services: Solid Wastes, Parts 370-376: Hazardous Waste Management System (New York) < Back Eligibility Commercial Fed. Government Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Schools State/Provincial Govt Tribal Government Utility Program Info State New York Program Type Safety and Operational Guidelines Provider NY Department of Environmental Conservation These regulations prescribe the management of hazardous waste facilities in New York State. They identify and list different types of hazardous wastes and describe standards for generators, transporters, as well as treatment, storage and disposal facilities. The regulations also define specific types

164

High-Level Liquid Waste Tank Integrity Workshop - 2008  

Broader source: Energy.gov (indexed) [DOE]

Liquid Waste Tank Integrity Liquid Waste Tank Integrity Workshop - 2008 Karthik Subramanian Bruce Wiersma November 2008 High Level Waste Corporate Board Meeting karthik.subramanian@srnl.doe.gov bruce.wiersma@srnl.doe.gov 2 Acknowledgements * Bruce Wiersma (SRNL) * Kayle Boomer (Hanford) * Michael T. Terry (Facilitator) * SRS - Liquid Waste Organization * Hanford Tank Farms * DOE-EM 3 Background * High level radioactive waste (HLW) tanks provide critical interim confinement for waste prior to processing and permanent disposal * Maintaining structural integrity (SI) of the tanks is a critical component of operations 4 Tank Integrity Workshop - 2008 * Discuss the HLW tank integrity technology needs based upon the evolving waste processing and tank closure requirements along with its continued storage mission

165

Thermal conversion of municipal solid waste via hydrothermal carbonization: Comparison of carbonization products to products from current waste management techniques  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Hydrothermal carbonization (HTC) is a novel thermal conversion process. Black-Right-Pointing-Pointer HTC converts wastes into value-added resources. Black-Right-Pointing-Pointer Carbonization integrates majority of carbon into solid-phase. Black-Right-Pointing-Pointer Carbonization results in a hydrochar with high energy density. Black-Right-Pointing-Pointer Using hydrochar as an energy source may be beneficial. - Abstract: Hydrothermal carbonization (HTC) is a novel thermal conversion process that may be a viable means for managing solid waste streams while minimizing greenhouse gas production and producing residual material with intrinsic value. HTC is a wet, relatively low temperature (180-350 Degree-Sign C) thermal conversion process that has been shown to convert biomass to a carbonaceous residue referred to as hydrochar. Results from batch experiments indicate HTC of representative waste materials is feasible, and results in the majority of carbon (45-75% of the initially present carbon) remaining within the hydrochar. Gas production during the batch experiments suggests that longer reaction periods may be desirable to maximize the production of energy-favorable products. If using the hydrochar for applications in which the carbon will remain stored, results suggest that the gaseous products from HTC result in fewer g CO{sub 2}-equivalent emissions than the gases associated with landfilling, composting, and incineration. When considering the use of hydrochar as a solid fuel, more energy can be derived from the hydrochar than from the gases resulting from waste degradation during landfilling and anaerobic digestion, and from incineration of food waste. Carbon emissions resulting from the use of the hydrochar as a fuel source are smaller than those associated with incineration, suggesting HTC may serve as an environmentally beneficial alternative to incineration. The type and extent of environmental benefits derived from HTC will be dependent on hydrochar use/the purpose for HTC (e.g., energy generation or carbon storage).

Lu Xiaowei; Jordan, Beth [Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States); Berge, Nicole D., E-mail: berge@cec.sc.edu [Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States)

2012-07-15T23:59:59.000Z

166

Waste Form Degradation Model Integration for Engineered Materials Performance  

Broader source: Energy.gov [DOE]

The collaborative approach to the glass and metallic waste form degradation modeling activities includes process model development (including first-principles approaches) and model integrationboth...

167

Summary of radioactive solid waste received in the 200 Areas during calendar year 1992  

SciTech Connect (OSTI)

Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Field Office, under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1991. This report does not include solid radioactive wastes in storage or disposed of in other areas or facilities such as the underground tank farms, or backlog wastes. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria, (WHC 1988), liquid waste data are not included in this document.

Anderson, J.D.; Hagel, D.L.

1992-05-01T23:59:59.000Z

168

Summary of radioactive solid waste received in the 200 Areas during calendar year 1994  

SciTech Connect (OSTI)

Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Field Office, under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive material that has been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities from startup in 1944 through calendar year 1994. This report does not include backlog waste: solid radioactive wastes in storage or disposed of in other areas or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria (WHC 1988), liquid waste data are not included in this document.

Anderson, J.D.; Hagel, D.L.

1995-08-01T23:59:59.000Z

169

Summary of radioactive solid waste received in the 200 Areas during calendar year 1993  

SciTech Connect (OSTI)

Westinghouse Hanford Company manages and operates the Hanford Site 200 Areas radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Operations Office. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Areas radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1993. This report does not include backlog waste, solid radioactive waste in storage or disposed of in other areas, or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, ``Hanford Site Solid Waste Acceptance Criteria,`` (WHC 1988), liquid waste data are not included in this document.

Anderson, J.D.; Hagel, D.L.

1994-09-01T23:59:59.000Z

170

Soil stabilization using oil-shale solid waste  

SciTech Connect (OSTI)

Oil-shale solid wastes are evaluated for use as soil stabilizers. A laboratory study consisted of the following tests on compacted samples of soil treated with water and spent oil shale: unconfined compressive strength, moisture-density relationships, wet-dry and freeze-thaw durability, and resilient modulus. Significant increases in strength, durability, and resilient modulus were obtained by treating a silty sand with combusted western oil shale. Moderate increases in durability and resilient modulus were obtained by treating a highly plastic clay with combusted western oil shale. Solid waste from eastern oil shale appears to be feasible for soil stabilization only if limestone is added during combustion. Testing methods, results, and recommendations for mix design of spent shale-stabilized pavement subgrades are presented and the mechanisms of spent-shale cementation are discussed.

Turner, J.P. (Univ. of Wyoming, Laramie, WY (United States). Dept. of Civil and Archeological Engineering)

1994-04-01T23:59:59.000Z

171

Gamma monitor for assay of radioactive solid-waste shipments  

SciTech Connect (OSTI)

A gamma waste monitor has been developed and evaluated at the Savannah River Plant (SRP). The purpose of the monitor is to improve estimates of the radionuclides in solid wastes arriving at the plant's burial ground. This monitor, a computer-based spectrometer, quantitatively measures many radionuclides in SRP waste, including waste in heavily shielded shipping casks. Radionuclides emitting gamma rays of sufficient energy to penetrate the shipping container walls can be measured directly. Other radionuclides that are beta emitters or which emit gamma photons too weak to penetrate the walls of the waste containers can often be estimated by their association with measurable gamma photons. Development of the monitor was initiated to find a more accurate method of estimating the quantities of radioactive materials accumulated in the burial ground and to ensure compliance with burial limits imposed by SRP technical standards. Another benefit from the monitor is that it provides specific radionuclide data which are essential to environmental impact evaluations and decommissioning planning. The gamma waste monitor is described. (WHK)

Crawford, J H

1982-06-01T23:59:59.000Z

172

Supplemental design requirements document solid waste operations complex  

SciTech Connect (OSTI)

This document provides additional and supplemental information to the WHC-SD-W112-FDC-001, WHC-SD-W113-FDC-001, and WHC-SD-W100-FDC-001. It provides additional requirements for the design and summarizes Westinghouse Hanford Company key design guidance and establishes the technical baseline agreements to be used for definitive design common to the Solid Waste Operations Complex (SWOC) Facilities (Project W-112, Project W-113, and WRAP 2A).

Ocampo, V.P.; Boothe, G.F.; Broz, D.R.; Eaton, H.E.; Greager, T.M.; Huckfeldt, R.A.; Kooiker, S.L.; Lamberd, D.L.; Lang, L.L.; Myers, J.B. [and others

1994-11-01T23:59:59.000Z

173

In-line ultrasonic monitoring of waste slurry suspended solids  

SciTech Connect (OSTI)

During the transport of tank waste, it is very important to quantitatively measure the percent solids concentration (PSC) of the waste, which indicates the flow conditions and the extent of solids settling. At Argonne National Laboratory, an in-line, real-time, a nonintrusive ultrasonic monitoring system has been developed to measure the PSC and flow density of tank waste by measuring sound velocity and attenuation in the flow. This system consists of a pair of longitudinal transducers bonded to waveguides on the opposite sides of the pipe and operating at IMHz simultaneously in pulse-and-echo and pitch-and-catch modes. The PSC measurement is provided by attenuation, while the density measurement is calculated by impedance and sound velocity. A thermocouple is attached to one of the waveguides for automatic temperature correction of the measurements. This system was one of four evaluated for in-line measurement of slurry at Oak Ridge National Laboratory in 1998. The results indicate that the measurements are in good agreement with a Coriolis meter and that the system can be used to monitor PSC up to 40 wt.%. However, the system is greatly affected by entrained air bubbles within the solid flow during Puisair mixing. A different mixing mechanism will solve this problem.

Chien, H.-T.; Sheen, S.-H.; Raptis, A. C.

2000-05-25T23:59:59.000Z

174

Processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents [OSTI]

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

1998-05-12T23:59:59.000Z

175

Solid Waste Program Fiscal Year 1996 Multi-Year Program Plan WBS 1.2.1, Revision 1  

SciTech Connect (OSTI)

This document contains the Fiscal Year 1996 Multi-Year Program Plan for the Solid Waste Program at the Hanford Reservation in Richland, Washington. The Solid Waste Program treats, stores, and disposes of a wide variety of solid wastes consisting of radioactive, nonradioactive and hazardous material types. Solid waste types are typically classified as transuranic waste, low-level radioactive waste, low-level mixed waste, and non-radioactive hazardous waste. This report describes the mission, goals and program strategies for the Solid Waste Program for fiscal year 1996 and beyond.

NONE

1995-09-01T23:59:59.000Z

176

Buried Waste Integrated Demonstration Plan. Revision 1  

SciTech Connect (OSTI)

This document presents the plan of activities for the Buried Waste Integrated Demonstration (BWID) program which supports the environmental restoration (ER) objectives of the Department of Energy (DOE) Complex. Discussed in this plan are the objectives, organization, roles and responsibilities, and the process for implementing and managing BWID. BWID is hosted at the Idaho National Engineering Laboratory (INEL), but involves participants from throughout the DOE Complex, private industry, universities, and the international community. These participants will support, demonstrate, and evaluate a suite of advanced technologies representing a comprehensive remediation system for the effective and efficient remediation of buried waste. The processes for identifying technological needs, screening candidate technologies for applicability and maturity, selecting appropriate technologies for demonstration, field demonstrating, evaluation of results and transferring technologies to environmental restoration programs are also presented. This document further describes the elements of project planning and control that apply to BWID. It addresses the management processes, operating procedures, programmatic and technical objectives, and schedules. Key functions in support of each demonstration such as regulatory coordination, safety analyses, risk evaluations, facility requirements, and data management are presented.

Kostelnik, K.M.

1991-12-01T23:59:59.000Z

177

Field study of disposed solid wastes from advanced coal processes  

SciTech Connect (OSTI)

Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

Not Available

1992-01-01T23:59:59.000Z

178

PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS  

SciTech Connect (OSTI)

CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in existing boilers, evaluation of these composite fuels to determine their applicability to the major combustor types, development of preliminary designs and economic projections for commercial facilities producing up to 200,000 tons per year of biomass/waste-containing fuels, and the development of dewatering technologies to reduce the moisture content of high-moisture biomass and waste materials during the pelletization process.

David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

2001-04-20T23:59:59.000Z

179

Cleanup Verification Package for the 118-C-1, 105-C Solid Waste Burial Ground  

SciTech Connect (OSTI)

This cleanup verification package documents completion of remedial action for the 118-C-1, 105-C Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-C Reactor and received process tubes, aluminum fuel spacers, control rods, reactor hardware, spent nuclear fuel and soft wastes.

M. J. Appel and J. M. Capron

2007-07-25T23:59:59.000Z

180

WIPP Facility Work Plan for Solid Waste Management Units  

SciTech Connect (OSTI)

This 2001 Facility Work Plan (FWP) has been prepared as required by Module VII, Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a), and incorporates comments from the New Mexico Environment Department (NMED) received on December 6, 2000 (NMED, 2000a). This February 2001 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. The permittees are evaluating data from previous investigations of the SWMUs and AOCs against the newest guidance proposed by the NMED. Based on these data, the permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facilitys Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit.

Washington TRU Solutions LLC

2001-02-25T23:59:59.000Z

Note: This page contains sample records for the topic "integrated solid waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

WIPP Doubles Solid Waste Reduction Rate in Fiscal Year 2013 | Department of  

Broader source: Energy.gov (indexed) [DOE]

Doubles Solid Waste Reduction Rate in Fiscal Year 2013 Doubles Solid Waste Reduction Rate in Fiscal Year 2013 WIPP Doubles Solid Waste Reduction Rate in Fiscal Year 2013 December 5, 2013 - 12:00pm Addthis WIPP environmental and operations personnel gather next to pallets that will be provided to the local community as part of WIPP’s wood waste diversion program. WIPP environmental and operations personnel gather next to pallets that will be provided to the local community as part of WIPP's wood waste diversion program. CARLSBAD, N.M. - EM's Waste Isolation Pilot Plant (WIPP) almost doubled its solid waste reduction rate from 15.5 percent in fiscal year 2012 to 33 percent in fiscal year 2013 through programs that diverted WIPP's wood waste from the municipal landfill by reusing, repurposing or recycling.

182

WIPP Doubles Solid Waste Reduction Rate in Fiscal Year 2013 | Department of  

Broader source: Energy.gov (indexed) [DOE]

WIPP Doubles Solid Waste Reduction Rate in Fiscal Year 2013 WIPP Doubles Solid Waste Reduction Rate in Fiscal Year 2013 WIPP Doubles Solid Waste Reduction Rate in Fiscal Year 2013 December 5, 2013 - 12:00pm Addthis WIPP environmental and operations personnel gather next to pallets that will be provided to the local community as part of WIPP’s wood waste diversion program. WIPP environmental and operations personnel gather next to pallets that will be provided to the local community as part of WIPP's wood waste diversion program. CARLSBAD, N.M. - EM's Waste Isolation Pilot Plant (WIPP) almost doubled its solid waste reduction rate from 15.5 percent in fiscal year 2012 to 33 percent in fiscal year 2013 through programs that diverted WIPP's wood waste from the municipal landfill by reusing, repurposing or recycling.

183

Solid Oxide Fuel Cell Balance of Plant and Stack Component Integration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solid Oxide Fuel Cell Balance of Plant and Stack Component Integration Solid Oxide Fuel Cell Balance of Plant and Stack Component Integration Presentation by Acumentrics...

184

An overview of the sustainability of solid waste management at military installations  

E-Print Network [OSTI]

Arc Gasification. Sustainability of Solid Waste Management.and gasification technologies for energy efficient and environmentally sound MSW disposal." Wastewaste to energy (Provence 2008). Plasma Arc Gasification

Borglin, S.

2010-01-01T23:59:59.000Z

185

DOE/LX/07-0175&D1 Secondary Document DMSA OS-10 Solid Waste Management...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Secondary Document DMSA OS-10 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 221 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509 REGULATORY...

186

DOE/LX/07-0170&D1 Secondary Document DMSA OS-02 Solid Waste Management...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Secondary Document DMSA OS-02 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 213 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509 REGULATORY...

187

DOE/LX/07-0172&D1 Secondary Document DMSA OS-05 Solid Waste Management...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Secondary Document DMSA OS-05 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 216 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509 REGULATORY...

188

DOE/LX/07-0177&D1 Secondary Document DMSA OS-12 Solid Waste Management...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Secondary Document DMSA OS-12 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 223 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509 REGULATORY...

189

DOE/LX/07-0300&D1 Secondary Document DMSA OS-09 Solid Waste Management...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Secondary Document DMSA OS-09 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 220 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 70202, 030105,...

190

DOE/LX/07-0063&D1 Secondary Document DMSA-333-11 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Secondary Document DMSA-333-11 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 266 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISION: 031509 REGULATORY...

191

DOE/LX/07-0178&D1 Secondary Document DMSA OS-13 Solid Waste Management...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Secondary Document DMSA OS-13 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 224 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509 REGULATORY...

192

DOE/LX/07-0302&D1 Secondary Document DMSA OS-15 Solid Waste Management...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Secondary Document DMSA OS-15 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 226 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 011511 REGULATORY...

193

DOE/LX/07-0079&D1 Secondary Document DMSA OS-07 Solid Waste Management...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Secondary Document DMSA OS-07 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 218 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 032404; 030105;...

194

DOE/LX/07-0061&D1 Secondary Document DMSA-333-19 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Secondary Document DMSA-333-19 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 275 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 112502; 031509...

195

DOE/LX/07-0062&D1 Secondary Document DMSA-331-24 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Secondary Document DMSA-331-24 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 255 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISION: 031509 REGULATORY...

196

DOE/LX/07-0299&D1 Secondary Document DMSA OS-06 Solid Waste Management...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Secondary Document DMSA OS-06 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 217 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 100703, 011511...

197

DOE/LX/07-0095 Secondary Document DMSA C-337-44 Solid Waste Management...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-337-44 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 347 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 33106; 031509...

198

DOE/LX/07-0176&D1 Secondary Document DMSA OS-11 Solid Waste Management...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Secondary Document DMSA OS-11 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 222 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 070202, 030105,...

199

DOE/LX/07-0301&D1 Secondary Document DMSA OS-14 Solid Waste Management...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Secondary Document DMSA OS-14 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 225 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509, 011511...

200

DOE/LX/07-0298&D1 Secondary Document DMSA OS-04 Solid Waste Management...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Secondary Document DMSA OS-04 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 215 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 011511 REGULATORY...

Note: This page contains sample records for the topic "integrated solid waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

C-340 ST-90 Boxes Solid Waste Management Unit (SWMU) Assessment...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

40 ST-90 Boxes Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 568 DATE OF ORIGINAL SAR: 112210 DATE OF SAR REVISIONS: NA REGULATORY STATUS: SWMU LOCATION:...

202

DOE/LX/07-0183&D1 Secondary Document DMSA OS-18 Solid Waste Management...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Secondary Document DMSA OS-18 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 229 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 52803, 031509...

203

DOE/LX/07-0181&D1 Secondary Document DMSA OS-16 Solid Waste Management...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Secondary Document DMSA OS-16 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 227 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 022704, 030205,...

204

DOE/LX/07-0182&D1 Secondary Document DMSA OS-17 Solid Waste Management...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Secondary Document DMSA OS-17 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 228 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509 REGULATORY...

205

DOE/LX/07-0295 Secondary Document Rubble Area KY-19 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document Rubble Area KY-19 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 565 DATE OF ORIGINAL SAR: 091309 DATE OF SAR REVISIONS: NA REGULATORY STATUS:...

206

PPPO-02-225-07 Revised Solid Waste Management Unit Assessment...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nitrogen Generating Facilities Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 483 DATE OF ORIGINAL SAR: 061501 DATE OF SAR REVISION: 061807 REGULATORY...

207

PPPO-02-340-07 Revised Solid Waste Management Unit Assessment...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Yard and C-748-B Burial Area Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 4 DATE OF ORIGINAL SAR: 8241987 DATE OF SAR REVISION: 06182007 REGULATORY...

208

Methane Production Quantification and Energy Estimation for Bangalore Municipal Solid Waste  

Science Journals Connector (OSTI)

Landfills are considered as cornerstone of solid waste management. Landfill gas (LFG) and leachate are principal outputs ... from landfills. Methane, occupying significant volume of landfill gas, has considerable...

A. Kumar; R. Dand; P. Lakshmikanthan

2014-01-01T23:59:59.000Z

209

Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics  

Science Journals Connector (OSTI)

Abstract Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette sample composition was similar to biomass fuels but had significant advantages due to addition of waste plastics that have high energy content compared to other waste types. Addition of PP and HDPE presented better benefits than addition of PET due to lower softening temperature and lower oxygen content. It should be noted that while harmful emissions such as dioxins, furans and mercury can result from burning plastics, WTE facilities have been able to control these emissions to meet US EPA standards. This research provides a drop-in coal replacement that reduces demand on landfill space and replaces a significant fraction of fossil-derived fuel with a renewable alternative.

JeongIn Gug; David Cacciola; Margaret J. Sobkowicz

2014-01-01T23:59:59.000Z

210

Data summary of municipal solid waste management alternatives  

SciTech Connect (OSTI)

This appendix provides information on fluidized-bed combustion (FBC) technology as it has been applied to municipal waste combustion (MWC). A review of the literature was conducted to determine: (1) to what extent FBC technology has been applied to MWC, in terms of number and size of units was well as technology configuration; (2) the operating history of facilities employing FBC technology; and (3) the cost of these facilities as compared to conventional MSW installations. Where available in the literature, data on operating and performance characteristics are presented. Tabular comparisons of facility operating/cost data and emissions data have been complied and are presented. The literature review shows that FBC technology shows considerable promise in terms of providing improvements over conventional technology in areas such as NOx and acid gas control, and ash leachability. In addition, the most likely configuration to be applied to the first large scale FBC dedicated to municipal solid waste (MSW) will employ circulating bed (CFB) technology. Projected capital costs for the Robbins, Illinois 1600 ton per day CFB-based waste-to-energy facility are competitive with conventional systems, in the range of $125,000 per ton per day of MSW receiving capacity.

Not Available

1992-10-01T23:59:59.000Z

211

Energy recovery from solid waste fuels using advanced gasification technology  

SciTech Connect (OSTI)

Since the mid-1980s, TPS Termiska Processer AB has been working on the development of an atmospheric-pressure gasification process. A major aim at the start of this work was the generation of fuel gas from indigenous fuels to Sweden (i.e. biomass). As the economic climate changed and awareness of the damage to the environment caused by the use of fossil fuels in power generation equipment increased, the aim of the development work at TPS was changed to applying the process to heat and power generation from feedstocks such as biomass and solid wastes. Compared with modern waste incineration with heat recovery, the gasification process will permit an increase in electricity output of up to 50%. The gasification process being developed is based on an atmospheric-pressure circulating fluidized bed gasifier coupled to a tar-cracking vessel. The gas produced from this process is then cooled and cleaned in conventional equipment. The energy-rich gas produced is clean enough to be fired in a gas boiler without requiring extensive flue gas cleaning, as is normally required in conventional waste incineration plants. Producing clean fuel gas in this manner, which facilitates the use of efficient gas-fired boilers, means that overall plant electrical efficiencies of close to 30% can be achieved. TPS has performed a considerable amount of pilot plant testing on waste fuels in their gasification/gas cleaning pilot plant in Sweden. Two gasifiers of TPS design have been in operation in Greve-in-Chianti, italy since 1992. This plant processes 200 tonnes of RDF (refuse-derived fuel) per day.

Morris, M.; Waldheim, L. [TPS Termiska Processer AB, Nykoeping (Sweden)] [TPS Termiska Processer AB, Nykoeping (Sweden)

1998-12-31T23:59:59.000Z

212

WIPP Facility Work Plan for Solid Waste Management Units  

SciTech Connect (OSTI)

This 2002 Facility Work Plan (FWP) has been prepared as required by Module VII, Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received on December 6, 2000 (NMED, 2000a). This February 2002 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the most recent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA processcan be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The NMED accepted that the Permittees are using the ACAA in a letter dated April 20, 2000.

Washington TRU Solutions LLC

2002-02-14T23:59:59.000Z

213

WIPP Facility Work Plan for Solid Waste Management Units  

SciTech Connect (OSTI)

This Facility Work Plan (FWP) has been prepared as required by Module VII,Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a). This work plan describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current New Mexico Environment Department (NMED) guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facilitys Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to NMEDs guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The scope of work for the RFI Work Plan or SAP is being developed by the Permittees. The final content of the RFI Work Plan or SAP will be coordinated with the NMED for submittal on May 24, 2000. Specific project-related planning information will be included in the RFI Work Plan or SAP. The SWMU program at WIPP began in 1994 under U.S. Environmental Protection Agency (EPA) regulatory authority. NMED subsequently received regulatory authority from EPA. A Phase I RFI was completed at WIPP as part of a Voluntary Release Assessment (VRA). The risk-based decision criteria recommended by EPA for the VRA were contained in a proposed Corrective Action rule for SWMUs (EPA, 1990). EPA Region VI has issued new risk-based screening criteria applicable to the WIPP SWMUs and AOCs.

Washington TRU Solutions LLC

2000-02-25T23:59:59.000Z

214

Sepiolite as an Alternative Liner Material in Municipal Solid Waste Landfills  

E-Print Network [OSTI]

Sepiolite as an Alternative Liner Material in Municipal Solid Waste Landfills Yucel Guney1 ; Savas in municipal solid waste landfills. However, natural clays may not always provide good contaminant sorption necessitates addition of kaolinite before being used as a landfill material. The valence of the salt solutions

Aydilek, Ahmet

215

GRR/Section 18-ID-d - Solid Waste Management Facilities | Open Energy  

Open Energy Info (EERE)

8-ID-d - Solid Waste Management Facilities 8-ID-d - Solid Waste Management Facilities < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-ID-d - Solid Waste Management Facilities 18IDDSolidWasteManagementFacilities (2).pdf Click to View Fullscreen Contact Agencies Idaho Department of Environmental Quality Regulations & Policies IDAPA 58.01.06 Triggers None specified Click "Edit With Form" above to add content 18IDDSolidWasteManagementFacilities (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Idaho considers transfer stations, composting operations, incinerators and landfills solid waste management facilities. The state does not require a

216

EA-0767: Construction and Experiment of an Industrial Solid Waste Landfill  

Broader source: Energy.gov (indexed) [DOE]

767: Construction and Experiment of an Industrial Solid Waste 767: Construction and Experiment of an Industrial Solid Waste Landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio EA-0767: Construction and Experiment of an Industrial Solid Waste Landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio SUMMARY This EA evaluates the environmental impacts of a proposal to construct and operate a solid waste landfill within the boundary at the U.S. Department of Energy's Portsmouth Gaseous Diffusion plant in Piketon, Ohio. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD October 25, 1995 EA-0767: Finding of No Significant Impact Construction and Experiment of an Industrial Solid Waste Landfill at Portsmouth Gaseous Diffusion Plant October 25, 1995 EA-0767: Final Environmental Assessment

217

Process modeling of hydrogen production from municipal solid waste  

SciTech Connect (OSTI)

The ASPEN PLUS commercial simulation software has been used to develop a process model for a conceptual process to convert municipal solid waste (MSW) to hydrogen. The process consists of hydrothermal treatment of the MSW in water to create a slurry suitable as feedstock for an oxygen blown Texaco gasifier. A method of reducing the complicated MSW feed material to a manageable set of components is outlined along with a framework for modeling the stoichiometric changes associated with the hydrothermal treatment process. Model results indicate that 0.672 kmol/s of hydrogen can be produced from the processing of 30 kg/s (2600 tonne/day) of raw MSW. A number of variations on the basic processing parameters are explored and indicate that there is a clear incentive to reduce the inert fraction in the processed slurry feed and that cofeeding a low value heavy oil may be economically attractive.

Thorsness, C.B.

1995-01-01T23:59:59.000Z

218

Long-term behavior of municipal solid waste landfills  

Science Journals Connector (OSTI)

A method is presented to predict the long-term behavior of element concentrations (non-metals and metals) in the leachate of a municipal solid waste (MSW) landfill. It is based on water flux and concentration measurements in leachates over one year, analysis of drilled cores from MSW landfills and leaching experiments with these samples. A mathematical model is developed to predict the further evolution of annual flux-weighted mean element concentrations in leachates after the intensive reactor phase, i.e. after the gas production has dropped to a very low level. The results show that the organic components are the most important substances to control until the leachate is compatible with the environment. This state of low emissions, the so-called final storage quality, will take many centuries to be achieved in a moderate climate.

H. Belevi; P. Baccini

1989-01-01T23:59:59.000Z

219

Evaluation of Technologies to Remove Suspended Solids from Waste Water  

SciTech Connect (OSTI)

The Effluent Treatment Facility (ETF) at the Savannah River Site utilizes pH adjustment, submicron filtration, Hg removal resin, activated carbon, reverse osmosis, cationic exchange, and evaporation to remove contaminants from radioactive waste water. After startup, the ETF had difficulty achieving design capacity. The primary problem was fouling of the ceramic microfilters. Typical filter flow rates were only 20 percent of design capacity.A research program was conducted to identify and evaluate technologies for improving suspended solids removal from radioactive wastewater at the Savannah River Site. Technolgies investigated were a ceramic microfilter, a tubular polymeric ultrafilter, two porous metal filters, a polymeric centrifugal ultrafilter, a deep bed filter, a backwashable cartridge filter, a fabric filter, and a centriguge.

Poirier, M.R.

1999-03-15T23:59:59.000Z

220

Composition of Municipal Solid Waste-Need for Thermal Treatment in the present Indian context  

E-Print Network [OSTI]

Composition of Municipal Solid Waste- Need for Thermal Treatment in the present Indian context of estimating heat value of municipal wastes, from the view point of assessing the waste's amenability for thermal treatment in the Indian context at the present juncture. The paper also seeks to reason out

Columbia University

Note: This page contains sample records for the topic "integrated solid waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Production of New Biomass/Waste-Containing Solid Fuels  

SciTech Connect (OSTI)

CQ Inc. and its industry partners--PBS Coals, Inc. (Friedens, Pennsylvania), American Fiber Resources (Fairmont, West Virginia), Allegheny Energy Supply (Williamsport, Maryland), and the Heritage Research Group (Indianapolis, Indiana)--addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that is applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provides environmental benefits compared with coal. During Phase I of this project (January 1999 to July 2000), several biomass/waste materials were evaluated for potential use in a composite fuel. As a result of that work and the team's commercial experience in composite fuels for energy production, paper mill sludge and coal were selected for further evaluation and demonstration in Phase II. In Phase II (June 2001 to December 2004), the project team demonstrated the GranuFlow technology as part of a process to combine paper sludge and coal to produce a composite fuel with combustion and handling characteristics acceptable to existing boilers and fuel handling systems. Bench-scale studies were performed at DOE-NETL, followed by full-scale commercial demonstrations to produce the composite fuel in a 400-tph coal cleaning plant and combustion tests at a 90-MW power plant boiler to evaluate impacts on fuel handling, boiler operations and performance, and emissions. A circuit was successfully installed to re-pulp and inject paper sludge into the fine coal dewatering circuit of a commercial coal-cleaning plant to produce 5,000 tons of a ''composite'' fuel containing about 5% paper sludge. Subsequent combustion tests showed that boiler efficiency and stability were not compromised when the composite fuel was blended with the boiler's normal coal supply. Firing of the composite fuel blend did not have any significant impact on emissions as compared to the normal coal supply, and it did not cause any excursions beyond Title V regulatory limits; all emissions were well within regulatory limits. SO{sub 2} emissions decreased during the composite fuel blend tests as a result of its higher heat content and slightly lower sulfur content as compared to the normal coal supply. The composite fuel contained an extremely high proportion of fines because the parent coal (feedstock to the coal-cleaning plant) is a ''soft'' coal (HGI > 90) and contained a high proportion of fines. The composite fuel was produced and combustion-tested under record wet conditions for the local area. In spite of these conditions, full load was obtained by the boiler when firing the composite fuel blend, and testing was completed without any handling or combustion problems beyond those typically associated with wet coal. Fuel handling and pulverizer performance (mill capacity and outlet temperatures) could become greater concerns when firing composite fuels which contain higher percent

Glenn A. Shirey; David J. Akers

2005-09-23T23:59:59.000Z

222

Energy recovery from municipal solid waste and sewage sludge using multi-solid fluidized bed combustion technology  

SciTech Connect (OSTI)

This study was initiated to investigate the recovery of energy from municipal solid waste (MSW) and domestic sewage sludge (DSS) simultaneously by using Battelle's multi-solid fluidized-bed combustion (MS-FBC) technology. The concept was to recover energy as high and low pressure steam, simultaneously. High pressure steam would be generated from flue gas using a conventional tubular boiler. Low pressure steam would be generated by direct contact drying of DSS (as 4% solids) with hot sand in a fluidized bed that is an integral part of the MS-FBC process. It was proposed that high pressure steam could be used for district heating or electricity generation. The low pressure steam could be used for close proximity building heat. Alternatively, low pressure steam could be used to heat wastewater in a sewage treatment plant to enhance sedimentation and biological activity that would provide a captive market for this part of the recovered energy. The direct contact drying or tubeless steam generation eliminates fouling problems that are common during heat exchange with DSS. The MS-FBC process was originally developed for coal and was chosen for this investigation because its combustion rate is about three times that of conventional fluidized beds and it was projected to have the flexibility needed for accomplishing tubeless steam generation. The results of the investigation show that the MS-FBC process concept for the co-utilization of MSW and DSS is technically feasible and that the thermal efficiency of the process is 76 to 82% based on experiments conducted in a 70 to 85 lb/h pilot plant and calculations on three conceptual cases.

Not Available

1981-07-01T23:59:59.000Z

223

Advanced thermal processing alternatives for solid waste management  

SciTech Connect (OSTI)

The 1990`s have seen a resurgence of interest in the development of new thermal processing alternatives for municipal solid waste (MSW). Sparked by increasingly stringent environmental regulations, much of this creative energy has been applied to technologies for the gasification of MSW: converting the solid, hard to handle material into a clean, medium to high-Btu fuel gas. Other developers have focussed on full combustion technology but with a {open_quotes}twist{close_quotes} that lowers emissions or reduces cost. A comprehensive study of these new technologies was recently completed under the sponsorship of the National Renewable Energy Laboratory of the U.S. Department of Energy. The study characterized the state-of-the-art among emerging MSW thermal processing technologies that have reached the point of `incipient commercialization.` More than 45 technologies now under development were screened to develop a short list of seven processes that have passed through the idea stage, laboratory and benchscale testing, and have been prototyped at an MSW feed rate of at least several tons per hour. In-depth review of these seven included inspections of operating pilot or prototype units and a detailed analysis of technical, environmental and economic feasibility issues. No attempt was made to select `the best` technology since best can only be defined in the context of the constraints, aspirations and circumstances of a specific, local situation. The basic flowsheet, heat and material balances and available environmental data were summarized to help the reader grasp the underlying technical concepts and their embodiment in hardware. Remaining development needs, as seen by the study team are presented. Economic analysis shows the general balance of capital and operating costs.

Niessen, W.R. [Camp Dresser & McKee Inc., Cambridge, MA (United States)

1997-12-01T23:59:59.000Z

224

Buried Waste Integrated Demonstration commercialization actions plans. Volume 1  

SciTech Connect (OSTI)

The Buried Waste Integrated Demonstration (BWID) is sponsored by US Department of Energy (DOE) Office of Technology Development. BWID supports the development and demonstration of a suite of technologies that when integrated with commercially available baseline technologies form a comprehensive system for the effective and efficient remediation of buried waste throughout the DOE complex. BWID evaluates, validates, and demonstrates technologies and transfers this information throughout DOE and private industry to support DOE. remediation planning and implementation activities. This report documents commercialization action plans for five technologies with near-term commercialization/ implementation potential as well as provides a status of commercial and academic partners for each technology.

Kaupanger, R.M. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Glore, D. [Advanced Sciences, Inc. (United States)

1994-04-01T23:59:59.000Z

225

Hydrogen production by gasification of municipal solid waste  

SciTech Connect (OSTI)

As fossil fuel reserves run lower and lower, and as their continued widespread use leads toward numerous environmental problems, the need for clean and sustainable energy alternatives becomes ever clearer. Hydrogen fuel holds promise as such as energy source, as it burns cleanly and can be extracted from a number of renewable materials such as municipal solid waste (MSW), which can be considered largely renewable because of its high content of paper and biomass-derived products. A computer model is being developed using ASPEN Plus flow sheeting software to simulate a process which produces hydrogen gas from MSW; the model will later be used in studying the economics of this process and is based on an actual Texaco coal gasification plant design. This paper gives an overview of the complete MSW gasification process, and describes in detail the way in which MSW is modeled by the computer as a process material. In addition, details of the gasifier unit model are described; in this unit modified MSW reacts under pressure with oxygen and steam to form a mixture of gases which include hydrogen.

Rogers, R. III

1994-05-20T23:59:59.000Z

226

Composite analysis for solid waste storage area 6  

SciTech Connect (OSTI)

The composite analysis (CA) provides an estimate of the potential cumulative impacts to a hypothetical future member of the public from the Solid Waste Storage Area 6 (SWSA 6) disposal operations and all of the other sources of radioactive material in the ground on the ORR that may interact with contamination originating in SWSA 6.The projected annual dose to hypothetical future member of the public from all contributing sources is compared to the primary dose limit of 100 mrem per year and a dose constraint of 30 mrem per year. Consistent with the CA guidance, dose estimates for the first 1000 years after disposal are emphasized for comparison with the primary dose limit and dose constraint.The current land use plan for the ORR is being revised, and may include a reduction in the land currently controlled by DOE on the ORR. The possibility of changes in the land use boundary is considered in the CA as part of the sensitivity and uncertainty analysis of the results, the interpretation of results, and the conclusions.

Lee, D.W.

1997-09-01T23:59:59.000Z

227

Solid Waste Information and Tracking System (SWITS) data change request log  

SciTech Connect (OSTI)

The Data Change Request (DCR) log is designed to promote data integrity within the Solid Waste Information and Tracking System (SWITS). It achieves this function by providing a record of all data changes performed on the database. This document contains records of those data changes from March 91 through June 94. The DCR log is also a supplement to an electronic database -- the DCR Tracking System, which provides an electronic record of all data changes preformed on the SWITS database. The records found in this document are Data Change Request forms. These forms are required for SWITS users who wish to request data changes in the database. The procedure formalizing this policy did not go into effect until September 1, 1994; therefore, some records created before that date may be incomplete.

McKay, R.B.

1994-08-18T23:59:59.000Z

228

Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies  

SciTech Connect (OSTI)

The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

none,

1992-10-01T23:59:59.000Z

229

Methods of reducing emissions of nitrogen oxides at thermal power plants burning solid domestic waste  

Science Journals Connector (OSTI)

Essentially all the major methods of reducing the emissions of nitrogen oxides from flue gases employed in power generation have been tested on plants in Moscow which burn solid domestic waste for production of h...

A. N. Tugov; V. F. Moskvichev

2009-01-01T23:59:59.000Z

230

EA-1097: Solid waste Disposal- Nevada Test Site, Nye County, Nevada  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal to continue the on-site disposal of solid waste at the Area 9 and Area 23 landfills at the U.S. Department of Energy Nevada Test Site...

231

After the flood : crisis, voice and innovation in Maputo's solid waste management sector  

E-Print Network [OSTI]

This thesis explores responses to the problem of solid waste management (SWM) in two neighborhoods of Maputo, Mozambique in the wake of catastrophic flooding in 2000. In these neighborhoods, small-scale service providers ...

Kruks-Wisner, Gabrielle (Gabrielle K.)

2006-01-01T23:59:59.000Z

232

DOE/LX/07-0125&D1 Secondary Document DMSA-337-24 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

shipping the drums to Envirocare in Utah for disposal. As source material within the meaning of the Atomic Energy Act, UF 4 is not a solid waste; however, during the processing...

233

DOE/LX/07-0127&D1 Secondary Document DMSA-337-28 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

shipping the drums to Envirocare in Utah for disposal. As source material within the meaning of the Atomic Energy Act, UF 4 is not a solid waste; however, during the processing...

234

DOE/LX/07-0126&D1 Secondary Document DMSA-337-26 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

shipping the drums to Envirocare in Utah for disposal. As source material within the meaning of the Atomic Energy Act, UF 4 is not a solid waste; however, during the processing...

235

DOE/LX/07-0124&D1 Secondary Document DMSA-337-22 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

shipping the drums to Envirocare in Utah for disposal. As source material within the meaning of the Atomic Energy Act, UF 4 is not a solid waste; however, during the processing...

236

Pyrolysis of Municipal Solid Waste for Syngas Production by Microwave Irradiation  

Science Journals Connector (OSTI)

In the present study, we discuss the application of microwave-irradiated pyrolysis of municipal solid waste (MSW) for total recovery of useful gases and energy. The MSW pyrolysis under microwave irradiation hi...

Vidyadhar V. Gedam; Iyyaswami Regupathi

2012-03-01T23:59:59.000Z

237

One?dimensional Seismic Analysis of a Solid?Waste Landfill  

Science Journals Connector (OSTI)

Analysis of the seismic performance of solid waste landfill follows generally the same procedures for the design of embankment dams even if the methods and safety requirements should be different. The characterization of waste properties for seismic design is difficult due the heterogeneity of the material requiring the procurement of large samples. The dynamic characteristics of solid waste materials play an important role on the seismic response of landfill and it also is important to assess the dynamic shear strengths of liner materials due the effect of inertial forces in the refuse mass. In the paper the numerical results of a dynamic analysis are reported and analysed to determine the reliability of the common practice of using 1D analysis to evaluate the seismic response of a municipal solid?waste landfill. Numerical results indicate that the seismic response of a landfill can vary significantly due to reasonable variations of waste properties fill heights site conditions and design rock motions.

Francesco Castelli; Valentina Lentini; Michele Maugeri

2008-01-01T23:59:59.000Z

238

Thermal treatment of historical radioactive solid and liquid waste into the CILVA incinerator  

SciTech Connect (OSTI)

Since the very beginning of the nuclear activities in Belgium, the incineration of radioactive waste was chosen as a suitable technique for achieving an optimal volume reduction of the produced waste quantities. Based on the 35 years experience gained by the operation of the old incinerator, a new industrial incineration plant started nuclear operation in May 1995, as a part of the Belgian Centralized Treatment/Conditioning Facility named CILVA. Up to the end of 2006, the CILVA incinerator has burnt 1660 tonne of solid waste and 419 tonne of liquid waste. This paper describes the type and allowable radioactivity of the waste, the incineration process, heat recovery and the air pollution control devices. Special attention is given to the treatment of several hundreds of tonne historical waste from former reprocessing activities such as alpha suspected solid waste, aqueous and organic liquid waste and spent ion exchange resins. The capacity, volume reduction, chemical and radiological emissions are also evaluated. BELGOPROCESS, a company set up in 1984 at Dessel (Belgium) where a number of nuclear facilities were already installed is specialized in the processing of radioactive waste. It is a subsidiary of ONDRAF/NIRAS, the Belgian Nuclear Waste Management Agency. According to its mission statement, the activities of BELGOPROCESS focus on three areas: treatment, conditioning and interim storage of radioactive waste; decommissioning of shut-down nuclear facilities and cleaning of contaminated buildings and land; operating of storage sites for conditioned radioactive waste. (authors)

Deckers, Jan; Mols, Ludo [Belgoprocess NV, Operations Department, Gravenstraat 73, B-2480 Dessel (Belgium)

2007-07-01T23:59:59.000Z

239

Stabilization of high and low solids Consolidated Incinerator Facility (CIF) waste with super cement  

SciTech Connect (OSTI)

This report details solidification activities using selected Mixed Waste Focus Area technologies with the High and Low Solid waste streams. Ceramicrete and Super Cement technologies were chosen as the best possible replacement solidification candidates for the waste streams generated by the SRS incinerator from a list of several suggested Mixed Waste Focus Area technologies. These technologies were tested, evaluated, and compared to the current Portland cement technology being employed. Recommendation of a technology for replacement depends on waste form performance, process flexibility, process complexity, and cost of equipment and/or raw materials.

Walker, B.W.

2000-01-11T23:59:59.000Z

240

Ground-water monitoring compliance plan for the Hanford Site Solid Waste Landfill  

SciTech Connect (OSTI)

Washington state regulations required that solid waste landfill facilities have ground-water monitoring programs in place by May 27, 1987. This document describes the well locations, installation, characterization studies and sampling and analysis plan to be followed in implementing the ground-water monitoring program at the Hanford Site Solid Waste Landfill (SWL). It is based on Washington Administrative Code WAC 173-304-490. 11 refs., 19 figs., 4 tabs.

Fruland, R.M.

1986-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated solid waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Characterization of Landfill Gas Composition at the Fresh Kills Municipal Solid-Waste Landfill  

Science Journals Connector (OSTI)

Characterization of Landfill Gas Composition at the Fresh Kills Municipal Solid-Waste Landfill ... The most common disposal method in the United States for municipal solid waste (MSW) is burial in landfills. ... Under the New Source Performance Standards and Emission Guidelines for MSW landfills, MSW operators are required to determine the nonmethane organic gas generation rate of their landfill through modeling and/or measurements. ...

Bart Eklund; Eric P. Anderson; Barry L. Walker; Don B. Burrows

1998-06-18T23:59:59.000Z

242

A new technique to monitor ground-water quality at municipal solid waste landfills  

E-Print Network [OSTI]

A NEW TECHNIQUE TO MONITOR GROUND-WATER EQUALITY AT MUNICIPAL SOLID WASTE LANDFILLS A Thesis by STEVEN CHARLES HART Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE May 1989 Major Subject: Geology A NEW TECHNIIIUE TO MONITOR GROUND-WATER IIUALITY AT MUNICIPAL SOLID WASTE LANDFILLS A Thesis by STEVEN CHARLES HART Approved as to style and content by: Christo her C. Mathewson (Chair...

Hart, Steven Charles

2012-06-07T23:59:59.000Z

243

SORPTION OF URANIUM, PLUTONIUM AND NEPTUNIUM ONTO SOLIDS PRESENT IN HIGH CAUSTIC NUCLEAR WASTE STORAGE TANKS  

SciTech Connect (OSTI)

Solids such as granular activated carbon, hematite and sodium phosphates, if present as sludge components in nuclear waste storage tanks, have been found to be capable of precipitating/sorbing actinides like plutonium, neptunium and uranium from nuclear waste storage tank supernatant liqueur. Thus, the potential may exists for the accumulation of fissile materials in such nuclear waste storage tanks during lengthy nuclear waste storage and processing. To evaluate the nuclear criticality safety in a typical nuclear waste storage tank, a study was initiated to measure the affinity of granular activated carbon, hematite and anhydrous sodium phosphate to sorb plutonium, neptunium and uranium from alkaline salt solutions. Tests with simulated and actual nuclear waste solutions established the affinity of the solids for plutonium, neptunium and uranium upon contact of the solutions with each of the solids. The removal of plutonium and neptunium from the synthetic salt solution by nuclear waste storage tank solids may be due largely to the presence of the granular activated carbon and transition metal oxides in these storage tank solids or sludge. Granular activated carbon and hematite also showed measurable affinity for both plutonium and neptunium. Sodium phosphate, used here as a reference sorbent for uranium, as expected, exhibited high affinity for uranium and neptunium, but did not show any measurable affinity for plutonium.

Oji, L; Bill Wilmarth, B; David Hobbs, D

2008-05-30T23:59:59.000Z

244

Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer A new eco-efficient recycling route for post-consumer waste glass was implemented. Black-Right-Pointing-Pointer Integrated waste management and industrial production are crucial to green products. Black-Right-Pointing-Pointer Most of the waste glass rejects are sent back to the glass industry. Black-Right-Pointing-Pointer Recovered co-products give more environmental gains than does avoided landfill. Black-Right-Pointing-Pointer Energy intensive recycling must be limited to waste that cannot be closed-loop recycled. - Abstract: As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.

Blengini, Gian Andrea, E-mail: blengini@polito.it [DISPEA - Department of Production Systems and Business Economics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); CNR-IGAG, Institute of Environmental Geology and Geo-Engineering, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Busto, Mirko, E-mail: mirko.busto@polito.it [DISPEA - Department of Production Systems and Business Economics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Fantoni, Moris, E-mail: moris.fantoni@polito.it [DITAG - Department of Land, Environment and Geo-Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Fino, Debora, E-mail: debora.fino@polito.it [DISMIC - Department of Materials Science and Chemical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy)

2012-05-15T23:59:59.000Z

245

Reconsidering Municipal Solid Waste as a Renewable Energy Feedstock For many years, opposition to the use of municipal solid waste (MSW) as an energy resource has been nearly universal among  

E-Print Network [OSTI]

Reconsidering Municipal Solid Waste as a Renewable Energy Feedstock July 2009 For many years, opposition to the use of municipal solid waste (MSW) as an energy resource has been nearly universal among of technologies can be used to create energy from MSW: · Landfill Gas Capture -- Waste in landfills naturally

Columbia University

246

The role of waste-to-energy in integrated waste management: A life cycle assessment perspective  

SciTech Connect (OSTI)

Municipal Solid Waste (MSW) management has become a major issue in terms of environmental impacts. It has become the focus of local, state and federal regulations, which generally tend to promote the reduce/re-use/recycle/incinerate/landfill environmental hierarchy. At the same time, the Waste Industry capital requirements have increased in order of magnitude since the beginning of the 80`s. The driving forces of further capital requirements for the Waste Management Industry will be the impact of public policies set today and goals set by politicians. Therefore, it appears extremely important for the Waste Industry to correctly analyze and forecast the real environmental and financial costs of waste management practices in order to: discuss with the local, state and federal agencies on more rational grounds; forecast the right investments in new technologies (recycling networks and plants, incinerators with heat recovery, modern landfill). The aim of this paper is to provide an example of a Life Cycle Assessment (LCA) project in the waste management field that raised surprising issues on otherwise unchallenged waste management practices.

Besnainou, J. [Ecobalance, Rockville, MD (United States)

1996-12-31T23:59:59.000Z

247

On the effect of demographic characteristics on the formulation of solid waste charging policy  

E-Print Network [OSTI]

On the effect of demographic characteristics on the formulation of solid waste charging policy A. Karagiannidis *, A. Xirogiannopoulou, N. Moussiopoulos Laboratory of Heat Transfer and Environmental Engineering of municipal charges in Greece, as the fees paid by municipal waste producers to the municipal authorities

Columbia University

248

Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Hydrothermal treatment using subcritical water was studied to recover solid fuel from MSW. Black-Right-Pointing-Pointer More than 75% of carbon in MSW was recovered as char. Black-Right-Pointing-Pointer Heating value of char was comparable to that of brown coal and lignite. Black-Right-Pointing-Pointer Polyvinyl chloride was decomposed at 295 Degree-Sign C and 8 MPa and was removed by washing. - Abstract: Hydrothermal treatments using subcritical water (HTSW) such as that at 234 Degree-Sign C and 3 MPa (LT condition) and 295 Degree-Sign C and 8 MPa (HT condition) were investigated to recover solid fuel from municipal solid waste (MSW). Printing paper, dog food (DF), wooden chopsticks, and mixed plastic film and sheets of polyethylene, polypropylene, and polystyrene were prepared as model MSW components, in which polyvinylchloride (PVC) powder and sodium chloride were used to simulate Cl sources. While more than 75% of carbon in paper, DF, and wood was recovered as char under both LT and HT conditions, plastics did not degrade under either LT or HT conditions. The heating value (HV) of obtained char was 13,886-27,544 kJ/kg and was comparable to that of brown coal and lignite. Higher formation of fixed carbon and greater oxygen dissociation during HTSW were thought to improve the HV of char. Cl atoms added as PVC powder and sodium chloride to raw material remained in char after HTSW. However, most Cl originating from PVC was found to converse into soluble Cl compounds during HTSW under the HT condition and could be removed by washing. From these results, the merit of HTSW as a method of recovering solid fuel from MSW is considered to produce char with minimal carbon loss without a drying process prior to HTSW. In addition, Cl originating from PVC decomposes into soluble Cl compound under the HT condition. The combination of HTSW under the HT condition and char washing might improve the quality of char as alternative fuel.

Hwang, In-Hee, E-mail: hwang@eng.hokudai.ac.jp [Laboratory of Solid Waste Disposal Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060 8628 (Japan); Aoyama, Hiroya; Matsuto, Toshihiko; Nakagishi, Tatsuhiro; Matsuo, Takayuki [Laboratory of Solid Waste Disposal Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060 8628 (Japan)

2012-03-15T23:59:59.000Z

249

Fire protection guide for solid waste metal drum storage  

SciTech Connect (OSTI)

This guide provides a method to assess potential fire development in drum storage facilities. The mechanism of fire propagation/spread through stored drum arrays is a complex process. It involves flame heat transfer, transient conduction,convection, and radiation between drums (stored in an array configuration). There are several phenomena which may occur when drums are exposed to fire. The most dramatic is violent lid failure which results in total lid removal. When a drum loses its lid due to fire exposure, some or all of the contents may be ejected from the drum, and both the ejected combustible material and the combustible contents remaining within the container will burn. The scope of this guide is limited to storage arrays of steel drums containing combustible (primarily Class A) and noncombustible contents. Class B combustibles may be included in small amounts as free liquid within the solid waste contents.Storage arrays, which are anticipated in this guide, include single or multi-tier palletized (steel or wood pallets) drums,high rack storage of drums, and stacked arrays of drums where plywood sheets are used between tiers. The purpose of this guide is to describe a simple methodology that estimates the consequences of a fire in drum storage arrays. The extent of fire development and the resulting heat release rates can be estimated. Release fractions applicable to this type of storage are not addressed, and the transport of contaminants away from the source is not addressed. However, such assessments require the amount of combustible material consumed and the surface area of this burning material. The methods included in this guide do provide this information.

Bucci, H.M.

1996-09-16T23:59:59.000Z

250

Solid Oxide Fuel Cell Balance of Plant and Stack Component Integration  

Broader source: Energy.gov [DOE]

Presentation by Acumentrics Corporation for Solid Oxide Fuel Cell Balance of Plant and Stack Component Integration March 16, 2010

251

Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW)!in!the!United!States!A!National!Survey!  

E-Print Network [OSTI]

! 1! ! Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW on Municipal Solid Waste (MSW) Generation and Disposition in the U.S., in collaboration with Ms. Nora Goldstein was not carried out in 2012 and in 2013 EEC and BioCycle agreed that the 2013 Survey of Waste Generation

Columbia University

252

Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).  

SciTech Connect (OSTI)

The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

Schultz, Peter Andrew

2011-12-01T23:59:59.000Z

253

Report of the Review of the Hanford Solid Waste Environmental Impact  

Broader source: Energy.gov (indexed) [DOE]

of the Review of the Hanford Solid Waste Environmental of the Review of the Hanford Solid Waste Environmental Impact Statement regarding Data Quality Control and Management Issues Report of the Review of the Hanford Solid Waste Environmental Impact Statement regarding Data Quality Control and Management Issues As part of the litigation involving receipt of offsite waste and the HSW EIS, the Court allowed the State of Washington a limited amount of discovery pertaining to iodine-129, technetium-99, and groundwater analyses. While compiling information to respond to the State discovery request, Battelle discovered three data quality issues within the data sets used for the cumulative groundwater impact analysis: As a result of these data quality issues, a team was commissioned to review the HSW EIS for additional data quality issues as well as any programmatic problems which

254

Operating limit study for the proposed solid waste landfill at Paducah Gaseous Diffusion Plant  

SciTech Connect (OSTI)

A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) would accept wastes generated during normal operations that are identified as non-radioactive. These wastes may include small amounts of radioactive material from incidental contamination during plant operations. A site-specific analysis of the new solid waste landfill is presented to determine a proposed operating limit that will allow for waste disposal operations to occur such that protection of public health and the environment from the presence of incidentally contaminated waste materials can be assured. Performance objectives for disposal were defined from existing regulatory guidance to establish reasonable dose limits for protection of public health and the environment. Waste concentration limits were determined consistent with these performance objectives for the protection of off-site individuals and inadvertent intruders who might be directly exposed to disposed wastes. Exposures of off-site individuals were estimated using a conservative, site-specific model of the groundwater transport of contamination from the wastes. Direct intrusion was analyzed using an agricultural homesteader scenario. The most limiting concentrations from direct intrusion or groundwater transport were used to establish the concentration limits for radionuclides likely to be present in PGDP wastes.

Lee, D.W.; Wang, J.C.; Kocher, D.C.

1995-06-01T23:59:59.000Z

255

Scalable, Efficient Solid Waste Burner System - Energy Innovation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

combustion experts at CSU, the device is superior to other systems and achieves improved gasification and combustion of biomass and waste through novel chassis design and process....

256

Haraldrud Municipal Solid Waste Combustion Plant in Oslo.  

E-Print Network [OSTI]

??This thesis has studied Haraldrud MSW combustion process. Haraldrud is a realcombustion plant burning waste for citizens of Oslo. A thoroughly description ofthe combustion process (more)

Gudim, Simen Johan

2011-01-01T23:59:59.000Z

257

Westinghouse Cementation Facility of Solid Waste Treatment System - 13503  

SciTech Connect (OSTI)

During NPP operation, several waste streams are generated, caused by different technical and physical processes. Besides others, liquid waste represents one of the major types of waste. Depending on national regulation for storage and disposal of radioactive waste, solidification can be one specific requirement. To accommodate the global request for waste treatment systems Westinghouse developed several specific treatment processes for the different types of waste. In the period of 2006 to 2008 Westinghouse awarded several contracts for the design and delivery of waste treatment systems related to the latest CPR-1000 nuclear power plants. One of these contracts contains the delivery of four Cementation Facilities for waste treatment, s.c. 'Follow on Cementations' dedicated to three locations, HongYanHe, NingDe and YangJiang, of new CPR-1000 nuclear power stations in the People's Republic of China. Previously, Westinghouse delivered a similar cementation facility to the CPR-1000 plant LingAo II, in Daya Bay, PR China. This plant already passed the hot functioning tests successfully in June 2012 and is now ready and released for regular operation. The 'Follow on plants' are designed to package three 'typical' kind of radioactive waste: evaporator concentrates, spent resins and filter cartridges. The purpose of this paper is to provide an overview on the Westinghouse experience to design and execution of cementation facilities. (authors)

Jacobs, Torsten; Aign, Joerg [Westinghouse Electric Germany GmbH, Global Waste Management, Tarpenring 6, D- 22419 Hamburg (Germany)] [Westinghouse Electric Germany GmbH, Global Waste Management, Tarpenring 6, D- 22419 Hamburg (Germany)

2013-07-01T23:59:59.000Z

258

Waste to energy: The case of the Bolzano solid urban waste incineration plant  

SciTech Connect (OSTI)

One of the most demanding problems of waste management was that of finding the means and the technology for converting, neutralizing and disposing of the refuse, without disturbing the delicate ecological equilibrium of the soil, water and air. Today, this problem is handled with the latest refuse incineration and Snamprogetti's combustion residue purification technologies, which in addition to substantial energy returns, also provide sufficient assurance of efficiency as well as health and environmental safety. In the present state of the art, these technologies make it possible to cut down on the use of dumps and landfills. In fact, such technologies permit to obtain an extremely small volume of inert residues, as well as very low dust and hydrochloric acid levels, and an infinitesimal concentration of micropollutants in the atmospheric emissions. Experience has shown that non-polluting incineration of unrecoverable wastes is feasible and the electricity obtained from the combustion heat is more than enough to run the plant and can be sold making the operation advantageous in economic terms. On the basis of this philosophy Snamprogetti designed and built an incineration at Bolzano on 1994, which was expanded in 1996 with a second line, for a total operating potential of 400 t/d of wastes. The plant included a heat recovery line with a steam boiler and a turbogenerator for the production of electricity. The steam turbine driving the generator could operate partly in the condensation mode, and partly in the bleeding mode to produce both electricity and steam. Implementation of the integrated program made provision for employment of the bled off steam to produce superheated water to feed the city's district heating network. A detailed assessment of the characteristics of the plant and its environmental efficiency is presented.

Nicolai, H.G.

1998-07-01T23:59:59.000Z

259

Waste management health risk assessment: A case study of a solid waste landfill in South Italy  

SciTech Connect (OSTI)

An integrated risk assessment study has been performed in an area within 5 km from a landfill that accepts non hazardous waste. The risk assessment was based on measured emissions and maximum chronic population exposure, for both children and adults, to contaminated air, some foods and soil. The toxic effects assessed were limited to the main known carcinogenic compounds emitted from landfills coming both from landfill gas torch combustion (e.g., dioxins, furans and polycyclic aromatic hydrocarbons, PAHs) and from diffusive emissions (vinyl chloride monomer, VCM). Risk assessment has been performed both for carcinogenic and non-carcinogenic effects. Results indicate that cancer and non-cancer effects risk (hazard index, HI) are largely below the values accepted from the main international agencies (e.g., WHO, US EPA) and national legislation ( and ).

Davoli, E., E-mail: enrico.davoli@marionegri.i [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy); Fattore, E.; Paiano, V.; Colombo, A.; Palmiotto, M. [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy); Rossi, A.N.; Il Grande, M. [Progress S.r.l., Via Nicola A. Porpora 147, 20131 Milano (Italy); Fanelli, R. [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy)

2010-08-15T23:59:59.000Z

260

NEW SOLID FUELS FROM COAL AND BIOMASS WASTE  

SciTech Connect (OSTI)

Under DOE sponsorship, McDermott Technology, Inc. (MTI), Babcock and Wilcox Company (B and W), and Minergy Corporation developed and evaluated a sludge derived fuel (SDF) made from sewage sludge. Our approach is to dry and agglomerate the sludge, combine it with a fluxing agent, if necessary, and co-fire the resulting fuel with coal in a cyclone boiler to recover the energy and to vitrify mineral matter into a non-leachable product. This product can then be used in the construction industry. A literature search showed that there is significant variability of the sludge fuel properties from a given wastewater plant (seasonal and/or day-to-day changes) or from different wastewater plants. A large sewage sludge sample (30 tons) from a municipal wastewater treatment facility was collected, dried, pelletized and successfully co-fired with coal in a cyclone-equipped pilot. Several sludge particle size distributions were tested. Finer sludge particle size distributions, similar to the standard B and W size distribution for sub-bituminous coal, showed the best combustion and slagging performance. Up to 74.6% and 78.9% sludge was successfully co-fired with pulverized coal and with natural gas, respectively. An economic evaluation on a 25-MW power plant showed the viability of co-firing the optimum SDF in a power generation application. The return on equity was 22 to 31%, adequate to attract investors and allow a full-scale project to proceed. Additional market research and engineering will be required to verify the economic assumptions. Areas to focus on are: plant detail design and detail capital cost estimates, market research into possible project locations, sludge availability at the proposed project locations, market research into electric energy sales and renewable energy sales opportunities at the proposed project location. As a result of this program, wastes that are currently not being used and considered an environmental problem will be processed into a renewable fuel. These fuels will be converted to energy while reducing CO{sub 2} emissions from power generating boilers and mitigating global warming concerns. This report describes the sludge analysis, solid fuel preparation and production, combustion performance, environmental emissions and required equipment.

Hamid Farzan

2001-09-24T23:59:59.000Z

Note: This page contains sample records for the topic "integrated solid waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

CONCEPTUAL DATA MODELING OF THE INTEGRATED DATABASE FOR THE RADIOACTIVE WASTE MANAGEMENT  

SciTech Connect (OSTI)

A study of a database system that can manage radioactive waste collectively on a network has been carried out. A conceptual data modeling that is based on the theory of information engineering (IE), which is the first step of the whole database development, has been studied to manage effectively information and data related to radioactive waste. In order to establish the scope of the database, user requirements and system configuration for radioactive waste management were analyzed. The major information extracted from user requirements are solid waste, liquid waste, gaseous waste, and waste related to spent fuel. The radioactive waste management system is planning to share information with associated companies.

Park, H.S; Shon, J.S; Kim, K.J; Park, J.H; Hong, K.P; Park, S.H

2003-02-27T23:59:59.000Z

262

The Integrated Waste Tracking Systems (IWTS) - A Comprehensive Waste Management Tool  

SciTech Connect (OSTI)

The US Department of Energy (DOE) Idaho National Laboratory (INL) site located near Idaho Falls, ID USA, has developed a comprehensive waste management and tracking tool that integrates multiple operational activities with characterization data from waste declaration through final waste disposition. The Integrated Waste Tracking System (IWTS) provides information necessary to help facility personnel properly manage their waste and demonstrate a wide range of legal and regulatory compliance. As a client?server database system, the IWTS is a proven tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of flexibility. This paper describes some of the history involved with the development and current use of IWTS as a comprehensive waste management tool as well as a discussion of IWTS deployments performed by the INL for outside clients. Waste management spans a wide range of activities including: work group interactions, regulatory compliance management, reporting, procedure management, and similar activities. The IWTS documents these activities and performs tasks in a computer-automated environment. Waste characterization data, container characterization data, shipments, waste processing, disposals, reporting, and limit compliance checks are just a few of the items that IWTS documents and performs to help waste management personnel perform their jobs. Throughout most hazardous and radioactive waste generating, storage and disposal sites, waste management is performed by many different groups of people in many facilities. Several organizations administer their areas of waste management using their own procedures and documentation independent of other organizations. Files are kept, some of which are treated as quality records, others not as stringent. Quality records maintain a history of: changes performed after approval, the reason for the change(s), and a record of whom and when the changes were made. As regulations and permits change, and as the proliferation of personal computers flourish, procedures and data files begin to be stored in electronic databases. With many different organizations, contractors, and unique procedures, several dozen databases are used to track and maintain aspects of waste management. As one can see, the logistics of collecting and certifying data from all organizations to provide comprehensive information would not only take weeks to perform, but usually presents a variety of answers that require an immediate unified resolution. A lot of personnel time is spent scrubbing the data in order to determine the correct information. The issue of disparate data is a concern in itself, and is coupled with the costs associated with maintaining several separate databases. In order to gain waste management efficiencies across an entire facility or site, several waste management databases located among several organizations would need to be consolidated. The IWTS is a system to do just that, namely store and track containerized waste information for an entire site. The IWTS has proven itself at the INL since 1995 as an efficient, successful, time saving management tool to help meet the needs of both operations and management for hazardous and radiological containerized waste. Other sites have also benefited from IWTS as it has been deployed at West Valley Nuclear Services Company DOE site as well as Ontario Power Ge

Robert S. Anderson

2005-09-01T23:59:59.000Z

263

Process and technological aspects of municipal solid waste gasification. A review  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Critical assessment of the main commercially available MSW gasifiers. Black-Right-Pointing-Pointer Detailed discussion of the basic features of gasification process. Black-Right-Pointing-Pointer Description of configurations of gasification-based waste-to-energy units. Black-Right-Pointing-Pointer Environmental performance analysis, on the basis of independent sources data. - Abstract: The paper proposes a critical assessment of municipal solid waste gasification today, starting from basic aspects of the process (process types and steps, operating and performance parameters) and arriving to a comparative analysis of the reactors (fixed bed, fluidized bed, entrained bed, vertical shaft, moving grate furnace, rotary kiln, plasma reactor) as well as of the possible plant configurations (heat gasifier and power gasifier) and the environmental performances of the main commercially available gasifiers for municipal solid wastes. The analysis indicates that gasification is a technically viable option for the solid waste conversion, including residual waste from separate collection of municipal solid waste. It is able to meet existing emission limits and can have a remarkable effect on reduction of landfill disposal option.

Arena, Umberto, E-mail: umberto.arena@unina2.it [Department of Environmental Sciences, Second University of Naples, Via A. Vivaldi, 43, 81100 Caserta (Italy)

2012-04-15T23:59:59.000Z

264

Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment  

Science Journals Connector (OSTI)

Abstract Our society currently faces three challenges, including resource depletion, waste accumulation and environmental degradation, leading to rapidly escalating raw material costs and increasingly expensive and restrictive waste disposal legislation. This work aims to produce clean solid biofuel from high moisture content waste biomass (bio-waste) with high nitrogen (N)/chlorine (Cl) content by mild hydrothermal (HT) conversion processes. The newest results are summarized and discussed in terms of the mechanical dewatering and upgrading, dechlorination, denitrification and coalification resulting from the HT pretreatment. Moreover, both the mono-combustion and co-combustion characteristics of the solid fuel are reviewed by concentrating on the pollutants emission control, especially the NO emission properties. In addition, the feasibility of this HT solid biofuel production process is also discussed in terms of Energy Balance and economic viability. As an alternative to dry combustion/dry pyrolysis/co-combustion, the HT process, combining the dehydration and decarboxylation of a biomass to raise its carbon content aiming to achieve a higher calorific value, opens up the field of potential feedstock for lignite-like solid biofuel production from a wide range of nontraditional renewable and plentiful wet agricultural residues, sludge and municipal wastes. It would contribute to a wider application of HT pretreatment bio-wastes for safe disposal and energy recycling.

Peitao Zhao; Yafei Shen; Shifu Ge; Zhenqian Chen; Kunio Yoshikawa

2014-01-01T23:59:59.000Z

265

Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Final report  

SciTech Connect (OSTI)

The problem addressed by our invention is that of municipal solid waste utilization. The dimensions of the problem can be visualized by the common comparison that the average individual in America creates in five years time an amount of solid waste equivalent in weight to the Statue of Liberty. The combustible portion of the more than 11 billion tons of solid waste (including municipal solid waste) produced in the United States each year, if converted into useful energy, could provide 32 quads per year of badly needed domestic energy, or more than one-third of our annual energy consumption. Conversion efficiency and many other factors make such a production level unrealistic, but it is clear that we are dealing with a very significant potential resource. This report describes research pertaining to the co-combustion of oil shale with solid municipal wastes in a circulating fluidized bed. The oil shale adds significant fuel content and also constituents that can possible produce a useful cementitious ash.

NONE

1996-06-30T23:59:59.000Z

266

DOE/LX/07-0324&D1 Secondary Document DMSA C-333-35 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-333-35 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 289 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509, 030110...

267

DOE/LX/07-0149&D1 Secondary Document DMSA C-337-08 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-337-08 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 315 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031909 REGULATORY...

268

DOE/LX/07-0315&D1 Secondary Document DMSA C-333-14 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 269 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509, 030110 REGULATORY STATUS: SWMU...

269

DOE/LX/07-0289&D1 Secondary Document DMSA C-335-05 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-335-05 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 301 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 122107; 061410...

270

DOE/LX/07-0264&D1 Secondary Document DMSA C-337-03 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-337-03 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 310 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISION: 061410 REGULATORY...

271

DOE/LX/07-0276&D1 Secondary Document DMSA C-333-09 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-333-09 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 264 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 061410 REGULATORY...

272

DOE/LX/07-0281&D1 Secondary Document DMSA C-333-28 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-333-28 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 284 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 061410 REGULATORY...

273

DOE/LX/07-0313&D1 Secondary Document DMSA C-333-07 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-333-07 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 262 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509, 030110...

274

DOE/LX/07-0087&D1 Secondary Document DMSA C-333-41 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-333-41 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 294 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 033106; 031509...

275

DOE/LX/07-0090&D1 Secondary Document DMSA C-335-03 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-335-03 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 299 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 33106; 031509...

276

DOE/LX/07-0191&D1 Secondary Document DMSA C-331-14 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-331-14 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 248 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 072502, 031509...

277

DOE/LX/07-0309&D1 Secondary Document DMSA C-333-03 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-333-03 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 258 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509, 030110...

278

DOE/LX/07-0213&D1 Secondary Document DMSA C-337-06 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-337-06 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 313 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 030109 REGULATORY...

279

DOE/LX/07-0045&D1 Secondary Document DMSA C-331-01 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-331-01 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 235 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISION: 031509 REGULATORY...

280

DOE/LX/07-0314&D1 Secondary Document DMSA C-333-12 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-333-12 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 267 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509, 030110...

Note: This page contains sample records for the topic "integrated solid waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

DOE/LX/07-0056&D1 Secondary Document DMSA C-331-15 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-331-15 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 249 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 121101; 7202; 3...

282

DOE/LX/07-0058&D1 Secondary Document DMSA C-331-19 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-331-19 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 251 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 32103; 031509...

283

DOE/LX/07-0084&D1 Secondary Document DMSA C-331-12 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-331-12 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 246 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 012403; 030904;...

284

DOE/LX/07-0315&D1 Secondary Document DMSA C-333-13 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 268 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 82102, 031509, 030110 REGULATORY STATUS:...

285

DOE/LX/07-0154&D1 Secondary Document DMSA C-337-17 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-337-17 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 324 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031909 REGULATORY...

286

DOE/LX/07-0322&D1 Secondary Document DMSA C-333-30 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-333-30 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 286 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 030110 REGULATORY...

287

DOE/LX/07-0211&D1 Secondary Document DMSA C-337-02 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-337-02 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 309 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509 REGULATORY...

288

DOE/LX/07-0280&D1 Secondary Document DMSA C-333-25 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-333-25 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 281 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 061410 REGULATORY...

289

DOE/LX/07-0088&D1 Secondary Document DMSA C-333-43 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-333-43 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 296 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 32103, 30904, 02...

290

DOE/LX/07-0236&D1 Secondary Document DMSA C-337-12 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-337-12 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 319 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 030110 REGULATORY...

291

DOE/LX/07-0342&D1 Secondary Document DMSA C-333-34 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-333-34 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 288 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509, 061410...

292

DOE/LX/07-0153&D1 Secondary Document DMSA C-337-15 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-337-15 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 322 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031909 REGULATORY...

293

DOE/LX/07-0151&D1 Secondary Document DMSA C-337-10 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-337-10 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 317 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031909 REGULATORY...

294

DOE/LX/07-0274&D1 Secondary Document DMSA C-335-08 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-335-08 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 304 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 122107, 061410...

295

DOE/LX/07-0319&D1 Secondary Document DMSA C-333-24 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-333-24 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 280 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509, 030110...

296

DOE/LX/07-0326&D1 Secondary Document DMSA C-337-04 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-337-04 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 311 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 030110 REGULATORY...

297

DOE/LX/07-0189&D1 Secondary Document DMSA C-310-03 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-310-03 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 232 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509 REGULATORY...

298

DOE/LX/07-0308&D1 Secondary Document DMSA C-333-02 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-333-02 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 257 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509, 030110...

299

DOE/LX/07-0085&D1 Secondary Document DMSA C-331-16 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-331-16 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 250 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 030303; 033106;...

300

DOE/LX/07-0080&D1 Secondary Document DMSA C-331-04 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-331-04 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 238 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509 REGULATORY...

Note: This page contains sample records for the topic "integrated solid waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

DOE/LX/07-0067&D1 Secondary Document DMSA C-333-40 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-333-40 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 293 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISION: 031509 REGULATORY...

302

DOE/LX/07-0288&D1 Secondary Document DMSA C-310-02 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-310-02 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 231 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 011003; 122107;...

303

DOE/LX/07-0148&D1 Secondary Document DMSA C-337-07 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-337-07 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 314 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509 REGULATORY...

304

DOE/LX/07-0209&D1 Secondary Document DMSA C-335-06 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-335-06 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 302 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509 REGULATORY...

305

DOE/LX/07-0066&D1 Secondary Document DMSA C-333-39 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-333-39 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 292 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISION: 031509 REGULATORY...

306

DOE/LX/07-0152&D1 Secondary Document DMSA C-337-14 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-337-14 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 321 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031909 REGULATORY...

307

DOE/LX/07-0044&D1 Secondary Document DMSA C-310-05 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-310-05 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 234 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISION: 031509 REGULATORY...

308

DOE/LX/07-0065&D1 Secondary Document DMSA C-333-37 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-333-37 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 290 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509 REGULATORY...

309

DOE/LX/07-0190&D1 Secondary Document DMSA C-331-11 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-331-11 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 245 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509 REGULATORY...

310

DOE/LX/07-0048&D1 Secondary Document DMSA C-331-03 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-331-03 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 237 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISION: 031509 REGULATORY...

311

DOE/LX/07-0311&D1 Secondary Document DMSA C-333-05 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-333-05 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 260 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509, 30110...

312

DOE/LX/07-0068&D1 Secondary Document DMSA C-335-01 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-335-01 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 297 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISION: 031509 REGULATORY...

313

DOE/LX/07-0327&D1 Secondary Document DMSA C-337-13 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-337-13 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 320 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 030110 REGULATORY...

314

DOE/LX/07-0310&D1 Secondary Document DMSA C-333-04 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-333-04 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 259 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509, 030110...

315

DOE/LX/07-0155&D1 Secondary Document DMSA C-337-18 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-337-18 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 325 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031909 REGULATORY...

316

DOE/LX/07-0216&D1 Secondary Document DMSA C-337-16 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-337-16 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 323 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509 REGULATORY...

317

DOE/LX/07-0321&D1 Secondary Document DMSA C-333-29 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-333-29 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 285 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 030110 REGULATORY...

318

DOE/LX/07-0320&D1 Secondary Document DMSA C-333-27 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-333-27 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 283 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509, 030110...

319

DOE/LX/07-0208&D1 Secondary Document DMSA C-335-02 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-335-02 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 298 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509 REGULATORY...

320

DOE/LX/07-0150&D1 Secondary Document DMSA C-337-09 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-337-09 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 316 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031909 REGULATORY...

Note: This page contains sample records for the topic "integrated solid waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DOE/LX/07-0210&D1 Secondary Document DMSA C-337-01 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-337-01 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 308 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509 REGULATORY...

322

DOE/LX/07-0312&D1 Secondary Document DMSA C-333-06 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-333-06 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 261 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509, 030110...

323

DOE/LX/07-0091&D1 Secondary Document DMSA C-335-12 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-335-12 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 307 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISION: 11105; 031509...

324

DOE/LX/07-0214&D1 Secondary Document DMSA C-337-11 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-337-11 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 318 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 030109 REGULATORY...

325

DOE/LX/07-0283&D1 Secondary Document DMSA C-337-20 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-337-20 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 327 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 061410 REGULATORY...

326

DOE/LX/07-0089&D1 Secondary Document DMSA C-333-01 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-333-01 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 256 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 033106; 031509...

327

DOE/LX/07-0158&D1 Secondary Document DMSA C-337-32 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-337-32 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 335 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 52908, 031509...

328

DOE/LX/07-0164&D1 Secondary Document DMSA C-337-39 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-337-39 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 342 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 020205, 031509...

329

DOE/LX/07-0094&D1 Secondary Document DMSA C-337-43 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-337-43 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 346 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISION: 33106; 031509...

330

DOE/LX/07-0284&D1 Secondary Document DMSA C-337-36 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-337-36 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 339 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 061410 REGULATORY...

331

DOE/LX/07-0331&D1 Secondary Document DMSA C-409-02 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-409-02 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 355 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 083002, 122107,...

332

DOE/LX/07-0328&D1 Secondary Document DMSA C-337-19 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-337-19 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 326 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 030110 REGULATORY...

333

DOE/LX/07-0167&D1 Secondary Document DMSA C-720-02 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-720-02 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 357 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509 REGULATORY...

334

DOE/LX/07-0157&D1 Secondary Document DMSA C-337-30 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-337-30 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 333 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509 REGULATORY...

335

DOE/LX/07-0238&D1 Secondary Document DMSA C-337-21 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-337-21 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 328 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 030110 REGULATORY...

336

DOE/LX/07-0285&D1 Secondary Document DMSA C-337-37 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-337-37 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 340 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 012403; 061410...

337

DOE/LX/07-0159&D1 Secondary Document DMSA C-337-33 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-337-33 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 336 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509 REGULATORY...

338

DOE/LX/07-0242&D1 Secondary Document DMSA C-400-05 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-400-05 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 351 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 080502, 122002,...

339

DOE/LX/07-0218&D1 Secondary Document DMSA C-337-31 Solid Waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document DMSA C-337-31 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 334 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509 REGULATORY...

340

'Incineration: A burning issue or a load of rubbish? Examining public attitudes to municipal solid waste incineration.  

E-Print Network [OSTI]

??The author set out to investigate public attitudes to municipal solid waste (MSW) incineration. The area chosen for the study was Carlow town, a regional (more)

Dillon, Rachel

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated solid waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Plasmatron gasification of biomass lignocellulosic waste materials derived from municipal solid waste  

Science Journals Connector (OSTI)

Abstract The aim of this work is to study the feasibility and operational performance of plasmatron (plasma torch) gasification of municipal solid waste mixed with raw wood (MSW/RW) derived from the pretreatment of Steam Mechanical Heat Treatment (SMHT), as the target material (MRM). A 10kW plasmatron reactor is used for gasification of the MRM. The production of syngas (CO and H2) is the major component, and almost 90% of the gaseous products appear in 2min of reaction time, with relatively high reaction rates. The syngas yield is between 88.59 and 91.84vol%, and the recovery mass ratio of syngas from MRM is 45.19 down to 27.18wt% with and without steam with the energy yields of 59.07111.89%. The concentrations of gaseous products from the continuous feeding of 200g/h are stable and higher than the average concentrations of the batch feeding of 10g. The residue from the plasmatron gasification with steam is between 0 and 4.52wt%, with the inorganic components converted into non-leachable vitrified lava, which is non-hazardous. The steam methane reforming reaction, hydrogasification reaction and Boudouard reaction all contribute to the increase in the syngas yield. It is proved that MSW can be completely converted into bioenergy using SMHT, followed by plasmatron gasification.

Je-Lueng Shie; Li-Xun Chen; Kae-Long Lin; Ching-Yuan Chang

2014-01-01T23:59:59.000Z

342

Solid Waste Operations Complex (SWOC) Facilities Sprinkler System Hydraulic Calculations  

SciTech Connect (OSTI)

The attached calculations demonstrate sprinkler system operational water requirements as determined by hydraulic analysis. Hydraulic calculations for the waste storage buildings of the Central Waste Complex (CWC), T Plant, and Waste Receiving and Packaging (WRAP) facility are based upon flow testing performed by Fire Protection Engineers from the Hanford Fire Marshal's office. The calculations received peer review and approval prior to release. The hydraulic analysis program HASS Computer Program' (under license number 1609051210) is used to perform all analyses contained in this document. Hydraulic calculations demonstrate sprinkler system operability based upon each individual system design and available water supply under the most restrictive conditions.

KERSTEN, J.K.

2003-07-11T23:59:59.000Z

343

Processing and utilizing high heat value, low ash alternative fuels from urban solid waste  

SciTech Connect (OSTI)

The history of technologies in the US that recover energy from urban solid waste is relatively short. Most of the technology as we know it evolved over the past 25 years. This evolution led to the development of about 100 modern mass burn and RDF type waste-to-energy plants and numerous small modular combustion systems, which collectively are handling about 20%, or about 40 million tons per year, of the nations municipal solid waste. Technologies also evolved during this period to co-fire urban waste materials with other fuels or selectively burn specific waste streams as primary fuels. A growing number of second or third generation urban waste fuels projects are being developed. This presentation discusses new direction in the power generating industry aimed at recovery and utilization of clean, high heat value, low ash alternative fuels from municipal and industrial solid waste. It reviews a spectrum of alternative fuels for feasible recovery and reuse, with new opportunities emerging for urban fuels processors providing fuels in the 6,000--15,000 BTU/LB range for off premises use.

Smith, M.L. [M.L. Smith Environmental and Associates, Tinley Park, IL (United States)

1995-10-01T23:59:59.000Z

344

Solid low-level radioactive waste radiation stability studies  

E-Print Network [OSTI]

properties and condition; on the other, on the specific features of thermal and radiation influences on it (Spitsyn et al. 1983). For the average composition of the fission products going to wastes repositories, the mean energy of irradiation may vary from... to the container determines, in part, the life of the container. Cormsion studies of containers by solidified wastes has indicated no problem areas in limited measurements to date; however very long-term effects have not been evaluated. The useful life...

Williams, Arnold Andre?

1989-01-01T23:59:59.000Z

345

Application of different levels of simulation to solid waste management systems  

SciTech Connect (OSTI)

Simulation techniques can be effectively applied to solid waste management systems, as an aid to understanding and analyzing existing systems or as part of the planning and design of new systems. Analysis of these systems using simulations can proceed at various levels of detail, depending on particular needs of the analysis (i.e., the questions for which answers are sought). This paper discusses the major system dimension variables for simulation of solid waste management systems, and how they can be related to each other to plan or understand a solid waste management system. Examples of the simulations at different levels of detail are included. In addition, the selection of appropriate simulation tools is addressed.

Holter, G.M.; Shaver, S.R.; Armacost, L.L.; Ross, T.L.

1993-11-01T23:59:59.000Z

346

Experimental Methods to Estimate Accumulated Solids in Nuclear Waste Tanks - 13313  

SciTech Connect (OSTI)

The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: - Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream. - Magnetic wand used to manually remove stainless steel solids from samples and the tank heel. - Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas. - Laser range finders to determine the volume and shape of the solids mounds. - Core sampler to determine the stainless steel solids distribution within the solids mounds. - Computer driven positioner that placed the laser range finders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities were low. These devices and techniques were very effective to estimate the movement, location, and concentrations of the solids representing plutonium and are expected to perform well at a larger scale. The operation of the techniques and their measurement accuracies will be discussed as well as the overall results of the accumulated solids test. (authors)

Duignan, Mark R.; Steeper, Timothy J.; Steimke, John L. [Savannah River Nuclear Solutions, Savannah River National Laboratory, Aiken, SC 29808 (United States)] [Savannah River Nuclear Solutions, Savannah River National Laboratory, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

347

Technology Evaluation for Conditioning of Hanford Tank Waste Using Solids Segregation and Size Reduction  

SciTech Connect (OSTI)

The Savannah River National Laboratory and the Pacific Northwest National Laboratory team performed a literature search on current and proposed technologies for solids segregation and size reduction of particles in the slurry feed from the Hanford Tank Farm. The team also investigated technology research performed on waste tank slurries, both real and simulated, and reviewed academic theory applicable to solids segregation and size reduction. This review included text book applications and theory, commercial applications suitable for a nuclear environment, research of commercial technologies suitable for a nuclear environment, and those technologies installed in a nuclear environment, including technologies implemented at Department of Energy facilities. Information on each technology is provided in this report along with the advantages and disadvantages of the technologies for this application. Any technology selected would require testing to verify the ability to meet the High-Level Waste Feed Waste Acceptance Criteria to the Hanford Tank Waste Treatment and Immobilization Plant Pretreatment Facility.

Restivo, Michael L.; Stone, M. E.; Herman, D. T.; Lambert, Daniel P.; Duignan, Mark R.; Smith, Gary L.; Wells, Beric E.; Lumetta, Gregg J.; Enderlin, Carl W.; Adkins, Harold E.

2014-04-24T23:59:59.000Z

348

Low-level radioactive waste source terms for the 1992 integrated data base  

SciTech Connect (OSTI)

This technical manual presents updated generic source terms (i.e., unitized amounts and radionuclide compositions) which have been developed for use in the Integrated Data Base (IDB) Program of the U.S. Department of Energy (DOE). These source terms were used in the IDB annual report, Integrated Data Base for 1992: Spent Fuel and Radioactive Waste Inventories, Projections, and Characteristics, DOE/RW-0006, Rev. 8, October 1992. They are useful as a basis for projecting future amounts (volume and radioactivity) of low-level radioactive waste (LLW) shipped for disposal at commercial burial grounds or sent for storage at DOE solid-waste sites. Commercial fuel cycle LLW categories include boiling-water reactor, pressurized-water reactor, fuel fabrication, and uranium hexafluoride (UF{sub 6}) conversion. Commercial nonfuel cycle LLW includes institutional/industrial (I/I) waste. The LLW from DOE operations is category as uranium/thorium fission product, induced activity, tritium, alpha, and {open_quotes}other{close_quotes}. Fuel cycle commercial LLW source terms are normalized on the basis of net electrical output [MW(e)-year], except for UF{sub 6} conversion, which is normalized on the basis of heavy metal requirement [metric tons of initial heavy metal ]. The nonfuel cycle commercial LLW source term is normalized on the basis of volume (cubic meters) and radioactivity (curies) for each subclass within the I/I category. The DOE LLW is normalized in a manner similar to that for commercial I/I waste. The revised source terms are based on the best available historical data through 1992.

Loghry, S L; Kibbey, A H; Godbee, H W; Icenhour, A S; DePaoli, S M

1995-01-01T23:59:59.000Z

349

Mercury emissions from chlorine-production solid waste deposits  

Science Journals Connector (OSTI)

... 1976. Solid and aqueous samples for Hg determination were handled and analysed according to standard flameless A AS methods8. Air samples for particulate and vapour Hg were collected using standard ...

S. E. LINDBERG; R. R. TURNER

1977-07-14T23:59:59.000Z

350

Solid waste projection model: Database version 1. 0 technical reference manual  

SciTech Connect (OSTI)

The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software and data structures utilized in developing the SWPM Version 1.0 Database. This document is intended for use by experienced database specialists and supports database maintenance, utility development, and database enhancement. Those interested in using the SWPM database should refer to the SWPM Database User's Guide. 14 figs., 6 tabs.

Carr, F.; Bowman, A.

1990-11-01T23:59:59.000Z

351

A Study of Gasification of Municipal Solid Waste Using a Double Inverse Diffusion Flame Burner  

Science Journals Connector (OSTI)

A Study of Gasification of Municipal Solid Waste Using a Double Inverse Diffusion Flame Burner ... Furthermore, the experiences of the waste incineration industry driven in the past by regulatory as well as technical issues may facilitate their commercial potentials outside the common market, especially in highly populated developing countries such as Korea with scarce landfill sites. ... Recently, several new technologies that involve gasification or combinations of pyrolysis, combustion, and gasification processes are currently being brought into the market for energy-efficient, environmentally friendly and economically sound methods of thermal processing of wastes. ...

Tae-Heon Kwak; Seungmoon Lee; Sanjeev Maken; Ho-Chul Shin; Jin-Won Park; Young Done Yoo

2005-08-24T23:59:59.000Z

352

Data summary of municipal solid waste management alternatives  

SciTech Connect (OSTI)

This appendix contains the alphabetically indexed bibliography for the complete group of reports on municipal waste management alternatives. The references are listed for each of the following topics: mass burn technologies, RDF technologies, fluidized-bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting, and anaerobic digestion of MSW.

Not Available

1992-10-01T23:59:59.000Z

353

Characterization of past and present solid waste streams from the plutonium finishing plant  

SciTech Connect (OSTI)

During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing (WRAP) Facility, and shipped to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico for final disposal. Over 50% of the TRU waste to be retrieved for shipment to the WIPP has been generated at the Plutonium Finishing Plant (PFP), also known as the Plutonium Processing and Storage Facility and Z Plant. The purpose of this report is to characterize the radioactive solid wastes generated by the PFP since its construction in 1947 using process knowledge, existing records, and history-obtained from interviews. The PFP is currently operated by Westinghouse Hanford Company (WHC) for the US Department of Energy (DOE).

Duncan, D R; Mayancsik, B A [Westinghouse Hanford Co., Richland, WA (United States)] [Westinghouse Hanford Co., Richland, WA (United States); Pottmeyer, J A; Vejvoda, E J; Reddick, J A; Sheldon, K M; Weyns, M I [Los Alamos Technical Associates, Kennewick, WA (United States)] [Los Alamos Technical Associates, Kennewick, WA (United States)

1993-02-01T23:59:59.000Z

354

Report of the Review of the Hanford Solid Waste Environmental Impact Statement regarding Data Quality Control and Management Issues  

Broader source: Energy.gov (indexed) [DOE]

Review of the Hanford Review of the Hanford Solid Waste Environmental Impact Statement (EIS) Data Quality, Control and Management Issues January 2006 Hanford Solid Waste Environment Impact Statement (EIS) Data Quality, Control and Management Issues Review Report ii Contents EXECUTIVE SUMMARY .................................................................................. IV 1.0 BACKGROUND ................................................................................................................ 1 2.0 REVIEW APPROACH....................................................................................................... 1 3.0 SUMMARY........................................................................................................................ 2 4.0 REVIEW RESULTS........................................................................................................... 4

355

Production of methane gas from organic fraction municipal solid waste (OFMSW) via anaerobic process: application methodology for the Malaysian condition  

Science Journals Connector (OSTI)

Solid waste management in Malaysia is confronted with many problems, including low collection coverage, irregular collection services, inadequate equipment used for waste collection, crude open dumping and burning without air and water pollution control systems, inadequate legal provisions and resource constraints. These problems have various effects on the development of the solid waste management system in Malaysia. Anaerobic digestion has been suggested as an alternative method for removing high concentrations of organic waste. In this study, two types of anaerobic digesters which are Simulated Landfill Bioreactor (SLBR) and Anaerobic Solid-Liquid (ASL) reactor were proposed. The reactors were operated at a temperature 60C, analysed for biogas production and volatile fatty acid.

Irnis Azura Zakarya; Ismail Abustan; Norli Ismail; Mohd Suffian Yusoff

2013-01-01T23:59:59.000Z

356

The potential of GHG emission savings for programmatic CDM by municipal solid waste composting in the Western Province - Sri Lanka  

Science Journals Connector (OSTI)

The Western Province (WP) of Sri Lanka, as the most populated province in the country is burdened with a high level of municipal solid waste generation. Out of the 48 administrative local authorities within the WP, only 16 local authorities are practicing municipal solid waste composting. All other local authorities are practicing the most common method of MSW disposal; open dumping. The study was aimed at finding the potential of green house gas emission savings by municipal solid waste composting according to Programmatic Clean Development Mechanism in 32 local authorities of the WP which are not currently practicing MSW composting in order to quantify the certified emission reduction. The daily collection rate of municipal solid waste in the entire WP is around 2,000 tons per day. Biodegradable portion dominates the bulk of municipal solid waste in WP as about 76.30%. There is potential of claiming 231 certified emission reductions annually with regard to MSW composting within the WP.

V.K.D.H. Kariyakarawana; N.J.G.J. Bandara; S. Leelarathne

2014-01-01T23:59:59.000Z

357

Comment on Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste  

Science Journals Connector (OSTI)

Comment on Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste ... Validated material flow models of waste treatment systems form a sound basis to evaluate system performance in view of environmental pollution as well as with respect to resource recovery. ... characteristics of refuse-derived fuels (RDF) that are processed from residual household waste by mech. ...

David Laner; Oliver Cencic

2013-12-05T23:59:59.000Z

358

Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW)!in!the!United!States!A!National!Survey!  

E-Print Network [OSTI]

! 1! ! Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW Waste (MSW) Generation and Disposition in the U.S., in collaboration with Ms. Nora Goldstein of Bio in 2012 and in 2013 EEC and BioCycle agreed that the 2013 Survey of Waste Generation and Disposition

359

Asit Nema\\Foundation Green-Ensys 1 RISK FACTORS ASSOCIATED WITH SOLID WASTE TREATMENT  

E-Print Network [OSTI]

Asit Nema\\Foundation Green-Ensys 1 RISK FACTORS ASSOCIATED WITH SOLID WASTE TREATMENT TECHNOLOGY OPTIONS IN THE INDIAN CONTEXT Asit Nema Foundation for Greentech Environmental Systems G-178, Sarita Vihar of the two RDF plants, only one plant at Vijayawada could be visited whereas the operator at #12;Asit Nema\\Foundation

Columbia University

360

Data summary of municipal solid waste management alternatives. Volume 12, Numerically indexed bibliography  

SciTech Connect (OSTI)

This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

none,

1992-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated solid waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

2014 ENERGY AND ECONOMIC VALUE OF MUNICIPAL SOLID WASTE (MSW), INCLUDING NON-RECYCLED PLASTICS (NRP),  

E-Print Network [OSTI]

-to-energy (WTE) plants, 0.27 million tons (0.7%) were used as alternative fuel in cement production, and 32 Earth Engineering Center (EEC) Report to the American Chemistry Council (ACC) which was based on U.S. 2008 data and quantified the energy and economic value of municipal solid wastes (MSW) and non

Columbia University

362

Prompt gamma ray neutron activation analysis of cadmium in municipal solid waste  

E-Print Network [OSTI]

EXPERIMENTAL. . 26 PGNAA Assembly. Detection System Background Determination of Detector Shielding. Self-Shielding. Optimal Bag Size and Orientation. . . . . . . . . . . . . . . Detection Limit and Sensitivity. . . . . . . . . . . . . . . . Neutron Flux... solid waste. This study modified a previous setup that was in a shadow- shield arrangement using Pu-Be neutron sources by: more elaborate detector shielding to reduce background levels; and, irradiating the target bilaterally. The system background...

Dendahl, Katherine Hoge

2012-06-07T23:59:59.000Z

363

Data summary of municipal solid waste management alternatives. Volume 4, Appendix B: RDF technologies  

SciTech Connect (OSTI)

This appendix contains background information, technical descriptions, economic data, mass and energy balances, and information on environmental releases for the refuse derived fuels (RDF) option in municipal solid waste management alternatives. Demonstration programs at St. Louis, Missouri; Franklin, Ohio; and Delaware are discussed. Information on pellet production and cofiring with coal is also presented.

none,

1992-10-01T23:59:59.000Z

364

Integrated Plant for the Municipal Solid Waste of Madrid  

E-Print Network [OSTI]

such as steam- boiler water treatment, compressed-air, control and instrumentation, etc. The incinerator of the project was to recover the energy content of RDF generated by the recycling plant of the city of Madrid and Composting Plant The MSW is brought by the collecting trucks which unload in the storage area with a two

Columbia University

365

Soil stabilization using oil shale solid wastes: Laboratory evaluation of engineering properties  

SciTech Connect (OSTI)

Oil shale solid wastes were evaluated for possible use as soil stabilizers. A laboratory study was conducted and consisted of the following tests on compacted samples of soil treated with water and spent oil shale: unconfined compressive strength, moisture-density relationships, wet-dry and freeze-thaw durability, and resilient modulus. Significant increases in strength, durability, and resilient modulus were obtained by treating a silty sand with combusted western oil shale. Moderate increases in strength, durability, and resilient modulus were obtained by treating a highly plastic clay with combusted western oil shale. Solid waste from eastern shale can be used for soil stabilization if limestone is added during combustion. Without limestone, eastern oil shale waste exhibits little or no cementation. The testing methods, results, and recommendations for mix design of spent shale-stabilized pavement subgrades are presented. 11 refs., 3 figs., 10 tabs.

Turner, J.P.

1991-01-01T23:59:59.000Z

366

Municipal solid waste energy conversion study on Guam and American Samoa  

SciTech Connect (OSTI)

In the Pacific Islands of Guam and Tutuila in American Samoa, conversion of municipal solid waste to useable energy forms - principally electricity but possibly steam - may hold promise for reducing economic dependence on imported petroleum. A secondary benefit may be derived from reduction of solid waste landfill requirements. At the preliminary planning stage, waste-to-energy facilities producing electricity appear technically and environmentally feasible. Economically, the projects appear marginal but could be viable under specific conditions related to capital costs, revenue from garbage collection and revenue from the sale of the energy generated. Grant funding for the projects would considerably enhance the economic viability of the proposed facilities. The projects appear sufficiently viable to proceed to the detailed planning stage. Such projects are not viable for the islands now emerging from the US Trust Territory of the Pacific Islands.

Not Available

1984-03-31T23:59:59.000Z

367

Geologic Aspects of Waste Solids and Marine Waste Deposits, New York Metropolitan Region  

Science Journals Connector (OSTI)

...power generation Duck farm wastes Pharmaceutical...the influence of local winds and river discharge...for bottom- associated fishes.) Refuse was also found...percent) in sediment offshore from Long Island and...that waste deposits near offshore disposal areas are generally...

368

Emissions of unintentional persistent organic pollutants from open burning of municipal solid waste from developing countries  

Science Journals Connector (OSTI)

Open burning of waste is the most significant source of polychlorinated dibenzo-para-dioxins and dibenzofurans (PCDD/PCDF) in many national inventories prepared pursuant to the Stockholm Convention on Persistent Organic Pollutants. This is particularly true for developing countries. Emission factors for \\{POPs\\} such as PCDD/PCDF, dioxin-like polychlorinated biphenyls (dl-PCB) and penta- and hexachlorobenzenes (PeCBz/HCB) from open burning of municipal solid waste in China and Mexico are reported herein. Six different waste sources were studied varying from urban-industrial to semi-urban to rural. For PCDD/PCDF, the emission factors to air ranged from 3.0 to 650ngTEQkg?1waste and for dl-PCB from 0.092 to 54ngTEQkg?1waste. Emission factors for PeCBz (171200ngkg?1waste) and HCB (241300ngkg?1waste) spanned a wide but similar range. Within the datasets there is no indication of significant waste composition effect on emission factor with the exception of significantly higher Mexico rural samples.

Tingting Zhang; Heidelore Fiedler; Gang Yu; Gustavo Solorzano Ochoa; William F. Carroll Jr.; Brian K. Gullett; Stellan Marklund; Abderrahmane Touati

2011-01-01T23:59:59.000Z

369

Integrated Waste Treatment Unit GFSI Risk Management Plan  

SciTech Connect (OSTI)

This GFSI Risk Management Plan (RMP) describes the strategy for assessing and managing project risks for the Integrated Waste Treatment Unit (IWTU) that are specifically within the control and purview of the U.S. Department of Energy (DOE), and identifies the risks that formed the basis for the DOE contingency included in the performance baseline. DOE-held contingency is required to cover cost and schedule impacts of DOE activities. Prior to approval of the performance baseline (Critical Decision-2) project cost contingency was evaluated during a joint meeting of the Contractor Management Team and the Integrated Project Team for both contractor and DOE risks to schedule and cost. At that time, the contractor cost and schedule risk value was $41.3M and the DOE cost and schedule risk contingency value is $39.0M. The contractor cost and schedule risk value of $41.3M was retained in the performance baseline as the contractor's management reserve for risk contingency. The DOE cost and schedule risk value of $39.0M has been retained in the performance baseline as the DOE Contingency. The performance baseline for the project was approved in December 2006 (Garman 2006). The project will continue to manage to the performance baseline and change control thresholds identified in PLN-1963, ''Idaho Cleanup Project Sodium-Bearing Waste Treatment Project Execution Plan'' (PEP).

W. A. Owca

2007-06-21T23:59:59.000Z

370

Data summary of municipal solid waste management alternatives. Volume 3, Appendix A: Mass burn technologies  

SciTech Connect (OSTI)

This appendix on Mass Burn Technologies is the first in a series designed to identify, describe and assess the suitability of several currently or potentially available generic technologies for the management of municipal solid waste (MSW). These appendices, which cover eight core thermoconversion, bioconversion and recycling technologies, reflect public domain information gathered from many sources. Representative sources include: professional journal articles, conference proceedings, selected municipality solid waste management plans and subscription technology data bases. The information presented is intended to serve as background information that will facilitate the preparation of the technoeconomic and life cycle mass, energy and environmental analyses that are being developed for each of the technologies. Mass burn has been and continues to be the predominant technology in Europe for the management of MSW. In the United States, the majority of the existing waste-to-energy projects utilize this technology and nearly 90 percent of all currently planned facilities have selected mass burn systems. Mass burning generally refers to the direct feeding and combustion of municipal solid waste in a furnace without any significant waste preprocessing. The only materials typically removed from the waste stream prior to combustion are large bulky objects and potentially hazardous or undesirable wastes. The technology has evolved over the last 100 or so years from simple incineration to the most highly developed and commercially proven process available for both reducing the volume of MSW and for recovering energy in the forms of steam and electricity. In general, mass burn plants are considered to operate reliably with high availability.

none,

1992-10-01T23:59:59.000Z

371

Integrated testing of the SRL-165 glass waste form  

SciTech Connect (OSTI)

Integrated testing of the important components of a glass waste form waste package has been performed in order to gain a better understanding of the processes of radionuclide release and transport in the near field environment. Based upon an interpretation of the depth of penetration of hydrogen in reacted SRL-165 glass we have modeled the radionuclide release from the glass as a combined process of (1) the diffusive exchange of alkalis and boron in the glass for hydrogen species in the solution (D = 10{sup -16} cm{sup 2}/s) and (2) surface dissolution. Surface dissolution controls the release of components not exchanged by diffusion and takes place at a rate of 1.5 to 3.0 {mu}m/yr. Subsequent to release the radionuclides may remain in the leach solution, diffuse into the tuff, or precipitate as secondary phases. Precipitation is particularly important for plutonium and americium. Diffusive transport of radionuclides through the tuff takes place at an extremely slow rate, D = 10{sup -16} cm{sup 2}/s. As such, the mass of radionuclides incorporated in the tuff by diffusion during the tests is inconsequential relative to that in the leach solution (with the exception of plutonium) and can be ignored in mass balance calculations. Mass balance calculations based upon the release of radionuclides by surface dissolution of the glass waste form are in good agreement with observed solution chemistry when allowances are made for a pulse of dissolution early in the tests. This pulse may be due to either the rapid dissolution of high-energy surface features early in the integrated tests, or an initially high surface dissolution rate that decreases with time as silica saturation is approached, or a combination of the two.

Phinney, D.L.; Ryerson, F.J.; Oversby, V.M.; Lanford, W.A.; Aines, R.D.; Bates, J.K.

1986-12-01T23:59:59.000Z

372

New source performance standards for industrial boilers. Volume 5. Analysis of solid waste impacts  

SciTech Connect (OSTI)

This study provides an analysis of the impacts of emission controls on disposal of solid wastes from coal-fired industrial boilers. Examination is made of boiler systems, coal types, emission control alternatives, waste streams, waste disposal and utilization alternatives, and pertinent Federal regulations. Twenty-four representative model case scenarios are studied in detail. Expected disposal/utilization alternatives and disposal costs are developed. Comparison of the systems studied indicates that the most cost-effective SO/sub 2/ control technologies from the perspective of waste disposal cost per unit SO/sub 2/ control are, in decreasing order: physically cleaned coal/double alkali combination; double alkali; lime/limestone; spray drying; fluidized-bed combustion; and sodium throwaway.

Boldt, K.; Davis, H.; Delaney, B.; Grundahl, N.; Hyde, R.; Malloch, R.; Tusa, W.

1980-09-01T23:59:59.000Z

373

Multiple regression analysis for the estimation of energy content of municipal solid waste  

Science Journals Connector (OSTI)

A regression equation is proposed to predict the Higher Heating Value (HHV) of Municipal Solid Waste (MSW) from the waste data of 86 cities of 35 countries. A mathematical model is developed, by using Statistical Package for Social Sciences (SPSS-10.0), to correlate the energy content of waste with the variables derived from its physical composition. Performance of the proposed multiple regression model is superior to available models. For validation, the proposed model is applied to the waste data of Jaipur City (India), nine cities of EEC countries and also to the MSW of USA. Energy content values obtained by proposed regression model and Modified Dulong's Equation (MDE) are closer to the measured mean energy content values for EEC countries compared to the values obtained by Khan's method. Objective of the paper is to propose a simple model, which can replace the lengthy MDE and which has universal applicability for the predication of HHVs.

G.D. Agrawal; A.P.S. Rathore; A.B. Gupta

2007-01-01T23:59:59.000Z

374

Short mechanical biological treatment of municipal solid waste allows landfill impact reduction saving waste energy content  

Science Journals Connector (OSTI)

Abstract The aim of this work was to evaluate the effects of full scale MBT process (28 d) in removing inhibition condition for successive biogas (ABP) production in landfill and in reducing total waste impact. For this purpose the organic fraction of MSW was treated in a full-scale MBT plant and successively incubated vs. untreated waste, in simulated landfills for one year. Results showed that untreated landfilled-waste gave a total ABP reduction that was null. On the contrary MBT process reduced ABP of 44%, but successive incubation for one year in landfill gave a total ABP reduction of 86%. This ABP reduction corresponded to a MBT process of 22weeks length, according to the predictive regression developed for ABP reduction vs. MBT-time. Therefore short MBT allowed reducing landfill impact, preserving energy content (ABP) to be produced successively by bioreactor technology since pre-treatment avoided process inhibition because of partial waste biostabilization.

Barbara Scaglia; Silvia Salati; Alessandra Di Gregorio; Alberto Carrera; Fulvia Tambone; Fabrizio Adani

2013-01-01T23:59:59.000Z

375

Generation, storage, collection and transportation of municipal solid waste - A case study in the city of Kathmandu, capital of Nepal  

SciTech Connect (OSTI)

Solid waste management (SWM) services have consistently failed to keep up with the vast amount of solid waste produced in urban areas. There is not currently an efficient system in place for the management, storage, collection, and transportation of solid waste. Kathmandu City, an important urban center of South Asia, is no exception. In Kathmandu Metropolitan City, solid waste generation is predicted to be 1091 m{sup 3}/d (245 tons/day) and 1155 m{sup 3}/d (260 tons/day) for the years 2005 and 2006, respectively. The majority (89%) of households in Kathmandu Metropolitan City are willing to segregate the organic and non-organic portions of their waste. Overall collection efficiency was 94% in 2003. An increase in waste collection occurred due to private sector involvement, the shutdown of the second transfer station near the airport due to local protest, a lack of funding to maintain trucks/equipment, a huge increase in plastic waste, and the willingness of people to separate their waste into separate bins. Despite a substantial increase in total expenditure, no additional investments were made to the existing development plan to introduce a modern disposal system due to insufficient funding. Due to the lack of a proper lining, raw solid waste from the existing dumping site comes in contact with river water directly, causing severe river contamination and deteriorating the quality of the water.

Alam, R. [Shahjalal University of Science and Technology, Department of Civil and Environmental Engineering, Sylhet 3114 (Bangladesh)], E-mail: rakib_env@yahoo.com; Chowdhury, M.A.I.; Hasan, G.M.J.; Karanjit, B.; Shrestha, L.R. [Shahjalal University of Science and Technology, Department of Civil and Environmental Engineering, Sylhet 3114 (Bangladesh)

2008-07-01T23:59:59.000Z

376

A framework for fast 3D solid model exchange in integrated design environment  

Science Journals Connector (OSTI)

Exchanging 3D solid models across engineering applications has become increasingly important to integrated design environments (IDEs). However, transferring models among distributed locations via computer networks usually consumes large amounts of network ... Keywords: Incremental editing, Integrated design environment, Progressive streaming, Solid model

Di Wu; Radha Sarma

2005-04-01T23:59:59.000Z

377

Integrated mixed waste storage program for spent solvent and laboratory waste  

SciTech Connect (OSTI)

A new tank project was initiated to provide a facility capable of providing the necessary storage capacity while meeting the South Carolina Hazardous Waste Management Regulations. The new project was initiated as a Category 11, General Plant Project. This project funding strategy would have allowed SRS access to project funding without Congressional approval as a Line Item, permitting the use of an expedited schedule for design and construction. The project team and Department of Energy -- Savannah River were successful in obtaining FY94 Line Item funding for the new tank project. However, the operational date for the new tank project was extended to October 1996. The revised facility operational date did not support the date submitted to South Carolina Department of Heath and Environmental Control as part of the existing facility closure plan. A plan to alleviate the South Carolina Department of Heath and Environmental Control concerns with the SRS existing tanks system had to be developed prior to notifying the state that the operational date was extended to October 1996. The remainder of this paper presents the plan that was developed and presented to the South Carolina Department of Heath and Environmental Control. The SRS integrated mixed waste storage program is divided into three separate phase: (1) interim waste storage for the period between facility closure and operation of the new tank facility, (2) closure of the existing facility and (3) the new solvent storage facility.

Walker, C.M.

1994-03-01T23:59:59.000Z

378

Integrating catalytic coal gasifiers with solid oxide fuel cells  

SciTech Connect (OSTI)

A review was conducted for coal gasification technologies that integrate with solid oxide fuel cells (SOFC) to achieve system efficiencies near 60% while capturing and sequestering >90% of the carbon dioxide [1-2]. The overall system efficiency can reach 60% when a) the coal gasifier produces a syngas with a methane composition of roughly 25% on a dry volume basis, b) the carbon dioxide is separated from the methane-rich synthesis gas, c) the methane-rich syngas is sent to a SOFC, and d) the off-gases from the SOFC are recycled back to coal gasifier. The thermodynamics of this process will be reviewed and compared to conventional processes in order to highlight where available work (i.e. exergy) is lost in entrained-flow, high-temperature gasification, and where exergy is lost in hydrogen oxidation within the SOFC. The main advantage of steam gasification of coal to methane and carbon dioxide is that the amount of exergy consumed in the gasifier is small compared to conventional, high temperature, oxygen-blown gasifiers. However, the goal of limiting the amount of exergy destruction in the gasifier has the effect of limiting the rates of chemical reactions. Thus, one of the main advantages of steam gasification leads to one of its main problems: slow reaction kinetics. While conventional entrained-flow, high-temperature gasifiers consume a sizable portion of the available work in the coal oxidation, the consumed exergy speeds up the rates of reactions. And while the rates of steam gasification reactions can be increased through the use of catalysts, only a few catalysts can meet cost requirements because there is often significant deactivation due to chemical reactions between the inorganic species in the coal and the catalyst. Previous research into increasing the kinetics of steam gasification will be reviewed. The goal of this paper is to highlight both the challenges and advantages of integrating catalytic coal gasifiers with SOFCs.

Siefert, N.; Shamsi, A.; Shekhawat, D.; Berry, D.

2010-01-01T23:59:59.000Z

379

Program integration on the Civilian Radioactive Waste Management System  

SciTech Connect (OSTI)

The recent development and implementation of a revised Program Approach for the Civilian Radioactive Waste Management System (CRWMS) was accomplished in response to significant changes in the environment in which the program was being executed. The lack of an interim storage site, growing costs and schedule delays to accomplish the full Yucca Mountain site characterization plan, and the development and incorporation of a multi-purpose (storage, transport, and disposal) canister (MPC) into the CRWMS required a reexamination of Program plans and priorities. Dr. Daniel A. Dreyfus, the Director of the Office of Civilian Radioactive Waste Management (OCRWM), established top-level schedule, targets and cost goals and commissioned a Program-wide task force of DOE and contractor personnel to identify and evaluate alternatives to meet them. The evaluation of the suitability of Yucca Mountain site by 1998 and the repository license application data of 2001 were maintained and a target date of January 1998 for MPC availability was established. An increased multi-year funding profile was baselined and agreed to by Congress. A $1.3 billion reduction in Yucca Mountain site characterization costs was mandated to hold the cost to $5 billion. The replanning process superseded all previous budget allocations and focused on program requirements and their relative priorities within the cost profiles. This paper discusses the process for defining alternative scenarios to achieve the top-level program goals in an integrated fashion.

Trebules, V.B. [USDOE Office of Civilian Radioactive Waste Management, Washington, DC (United States). Program Management Div.; King, M.H. [TRW Environmental Safety Systems Inc., Vienna, VA (United States)

1995-09-01T23:59:59.000Z

380

The integrated tank waste management plan at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

DOE`s Environmental Management Program at Oak Ridge has developed an integrated tank waste management plan that combines the accelerated deployment of innovative technologies with an aggressive waste transfer schedule. Oak Ridge is cleaning out waste from aging underground storage tanks in preparation of waste processing, packaging and final safe disposal. During remediation this plan will reduce the risk of environmental, worker, and civilian exposure, save millions of dollars, and cut years off of tank remediation schedules at Oak Ridge.

Billingsley, K. [STEP, Inc., Oak Ridge, TN (United States); Mims, C. [Dept. of Energy, Oak Ridge, TN (United States). Oak Ridge Operations Office; Robinson, S. [Oak Ridge National Lab., TN (United States)

1998-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated solid waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Solid Waste Forecast Database: User`s guide (Version 1.5)  

SciTech Connect (OSTI)

The Solid Waste Forecast Database (SWFD) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC) specifically to address Hanford solid waste management issues. This document is one of a set of documents supporting the SWFD system and providing instructions in the use and maintenance of SWFD components. This manual contains instructions for using Version 1.5 of the SWFD, including system requirements and preparation, entering and maintaining data, and performing routine database functions. This document supports only those operations that are specific to SWFD menus and functions and does not provide instruction in the use of Paradox, the database management system in which the SWFD is established.

Bierschbach, M.C.

1994-05-01T23:59:59.000Z

382

Solid Phase Characterization of Tank 241-C-108 Residual Waste Solids Samples  

SciTech Connect (OSTI)

This report presents the results for solid phase characterization (SPC) of solid samples removed from tank 241-C-108 (C-108) on August 12-13,2012, using the off-riser sampler. Samples were received at the 222-S Laboratory on August 13 and were described and photographed. The SPC analyses that were performed include scanning electron microscopy (SEM) using the ASPEX(R)l scanning electron microscope, X-ray diffraction (XRD) using the Rigaku(R) 2 MiniFlex X-ray diffractometer, and polarized light microscopy (PLM) using the Nikon(R) 3 Eclipse Pol optical microscope. The SEM is equipped with an energy dispersive X-ray spectrometer (EDS) to provide chemical information. Gary A. Cooke conducted the SEM analysis, John A. Pestovich performed the XRD analysis, and Dr. Heinz J. Huber performed the PLM examination. The results of these analyses are presented here.

Cooke, Gary A.; Pestovich, John A.; Huber, Heinz J.

2013-05-29T23:59:59.000Z

383

Stabilisation of biodried municipal solid waste fine fraction in landfill bioreactor  

Science Journals Connector (OSTI)

The biodrying process of solid waste is a pre-treatment for the bio-stabilisation of the municipal solid waste. This study aims to investigate the fate of the municipal solid waste fine fraction (MSWFF) resulting from a biodrying treatment when disposed in landfills that are operated as bioreactors. Biodried MSWFF was apparently stable due to its low moisture content that slows down the microbial activity. The lab-scale anaerobic bioreactors demonstrated that a proper moisture content leads to a complete biodegradation of the organic matter contained in the biodried MSWFF. Using a pilot-scale landfill bioreactor (LBR), MSWFF stabilisation was achieved, suggesting that the leachate recirculation could be an effective approach to accomplish the anaerobic biodegradation and biostabilisation of biodried MSWFF after landfilling. The biostabilisation of the material resulting from the LBR treatment was confirmed using anaerobic and aerobic stability indices. All anaerobic and aerobic indices showed a stability increase of approximately 80% of the MSWFF after treatment in the LBR. The similar values of OD7 and BMP stability indices well agree with the relationship between the aerobic and anaerobic indices reported in literature.

Selene Grilli; Andrea Giordano; Alessandro Spagni

2012-01-01T23:59:59.000Z

384

A study of the pyrolysis behaviors of pelletized recovered municipal solid waste fuels  

Science Journals Connector (OSTI)

Pelletized recovered solid waste fuel is often applied in gasification systems to provide feedstock with a stabilized quality and high heating value and to avoid the bridging behavior caused by high moisture content, low particle density, and irregular particle size. However, the swelling properties and the sticky material generated from pyrolysis of the plastic group components also tend to trigger bridging in the retorting zone. It is well known that the plastic group materials, which occupy a considerable proportion of municipal solid waste, can melt together easily even under low temperature. This study investigates the pyrolysis behaviors of typical recovered solid waste pellets, including the devolatilization rate, heat transfer properties, char properties, and swelling/shrinkage properties, in a small fixed-bed facility over a wide temperature range, from 900C to 450C. The results are also compared with those from wheat straw pellets, a typical cellulosic fuel. Moreover, the SEM images and BET analysis of the char structure are further analyzed to provide additional explanation for the mechanisms of swelling/shrinkage phenomena observed during heating.

Chunguang Zhou; Qinglin Zhang; Leonie Arnold; Weihong Yang; Wlodzimierz Blasiak

2013-01-01T23:59:59.000Z

385

Hawaii Department of Health Solid and Hazardous Waste Branch | Open Energy  

Open Energy Info (EERE)

and Hazardous Waste Branch and Hazardous Waste Branch Jump to: navigation, search Name Hawaii Department of Health Solid and Hazardous Waste Branch Address 919 Ala Moana Boulevard #212 Place Honolulu, Hawaii Zip 96814 Website http://hawaii.gov/health/envir Coordinates 21.294755°, -157.858979° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.294755,"lon":-157.858979,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

386

Methods for reducing emissions of dioxins and furans in flue gases at plants burning solid domestic waste  

Science Journals Connector (OSTI)

Methods are discussed for reducing emissions of toxic chlorinated dibenzo-dioxins and dibenzo-furans in flue gases at plants which burn solid domestic waste. Results are presented from a study of ... number of th...

A. N. Tugov; V. F. Moskvichev; L. G. Fedorov

2009-01-01T23:59:59.000Z

387

Cellulosic materials recovered from steam classified municipal solid wastes as feedstocks for conversion to fuels and chemicals  

Science Journals Connector (OSTI)

A process has been developed for the treatment of municipal solid waste to separate and recover the cellulosic biomass from the nonbiomass components. ... highly suitable as a feedstock for conversion to fuel, fe...

Michael H. Eley; Gerald R. Guinn; Joyita Bagchi

1995-09-01T23:59:59.000Z

388

Municipal solid waste degradation and landfill gas resources characteristics in self-recirculating sequencing batch bioreactor landfill  

Science Journals Connector (OSTI)

Based on the degradation characteristics of municipal solid waste (MSW) in China, the traditional anaerobic sequencing batch bioreactor landfill (ASBRL) was optimized, and an improved anaerobic sequencing batch b...

Xiao-zhi Zhou ???; Shu-xun Sang ???; Li-wen Cao ???

2012-12-01T23:59:59.000Z

389

Micro-scale anaerobic digestion of point source components of organic fraction of municipal solid waste  

SciTech Connect (OSTI)

The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their composition was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2-5%). Teak and bamboo leaves and newsprint decomposed only to 25-50% in 30 d. These results confirm the potential for volatile fatty acids accumulation in a PFBR's inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks.

Chanakya, H.N. [Centre for Sustainable Technologies, (formerly ASTRA), Indian Institute of Science, Bangalore 560 012 (India)], E-mail: chanakya@astra.iisc.ernet.in; Sharma, Isha [Centre for Sustainable Technologies, (formerly ASTRA), Indian Institute of Science, Bangalore 560 012 (India); Ramachandra, T.V. [Centre for Sustainable Technologies, (formerly ASTRA), Indian Institute of Science, Bangalore 560 012 (India); Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012 (India)

2009-04-15T23:59:59.000Z

390

WIPP Sampling and Analysis Plan for Solid Waste Management Units and Areas of Concern.  

SciTech Connect (OSTI)

This Sampling and Analysis Plan (SAP) has been prepared to fulfill requirements of Module VII, Section VII.M.2 and Table VII.1, requirement 4 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED [New Mexico Environment Department], 1999a). This SAP describes the approach for investigation of the Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. This SAP addresses the current Permit requirements for a RCRA Facility Investigation(RFI) investigation of SWMUs and AOCs. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the RFI specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI work plan and report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can beentered either before or after a RFI work plan. According to NMED's guidance, a facility can prepare a RFI work plan or SAP for any SWMU or AOC (NMED, 1998).

Washington TRU Solutions LLC

2000-05-23T23:59:59.000Z

391

Proposal of an environmental performance index to assess solid waste treatment technologies  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Proposal of a new concept in waste management: Cleaner Treatment. Black-Right-Pointing-Pointer Development of an index to assess quantitatively waste treatment technologies. Black-Right-Pointing-Pointer Delphi Method was carried out so as to define environmental indicators. Black-Right-Pointing-Pointer Environmental performance evaluation of waste-to-energy plants. - Abstract: Although the concern with sustainable development and environment protection has considerably grown in the last years it is noted that the majority of decision making models and tools are still either excessively tied to economic aspects or geared to the production process. Moreover, existing models focus on the priority steps of solid waste management, beyond waste energy recovery and disposal. So, in order to help the lack of models and tools aiming at the waste treatment and final disposal, a new concept is proposed: the Cleaner Treatment, which is based on the Cleaner Production principles. This paper focuses on the development and validation of the Cleaner Treatment Index (CTI), to assess environmental performance of waste treatment technologies based on the Cleaner Treatment concept. The index is formed by aggregation (summation or product) of several indicators that consists in operational parameters. The weights of the indicator were established by Delphi Method and Brazilian Environmental Laws. In addition, sensitivity analyses were carried out comparing both aggregation methods. Finally, index validation was carried out by applying the CTI to 10 waste-to-energy plants data. From sensitivity analysis and validation results it is possible to infer that summation model is the most suitable aggregation method. For summation method, CTI results were superior to 0.5 (in a scale from 0 to 1) for most facilities evaluated. So, this study demonstrates that CTI is a simple and robust tool to assess and compare the environmental performance of different treatment plants being an excellent quantitative tool to support Cleaner Treatment implementation.

Goulart Coelho, Hosmanny Mauro, E-mail: hosmanny@hotmail.com [Federal University of Minas Gerais, School of Engineering, Department of Sanitary and Environmental Engineering, Bloco 2, Sala 4628, Av. Antonio Carlos, 6627 Pampulha, Belo Horizonte, Minas Gerais, CEP 30.270-901 (Brazil); Lange, Lisete Celina [Federal University of Minas Gerais, School of Engineering, Department of Sanitary and Environmental Engineering, Bloco 2, Sala 4628, Av. Antonio Carlos, 6627 Pampulha, Belo Horizonte, Minas Gerais, CEP 30.270-901 (Brazil); Coelho, Lineker Max Goulart [Ecole des Ponts ParisTech 6 et 8 avenue Blaise-Pascal, Cite Descartes Champs-sur-Marne, 77455, Marne-la-Vallee (France)

2012-07-15T23:59:59.000Z

392

Ageing of integrated-planar solid Oxide Fuel Cells.  

E-Print Network [OSTI]

??The ageing of Solid Oxide Fuel Cells (SOFCs) is a key problem because of the requirement of 50,000 hours to their lifetime in many applications. (more)

Almutairi, Ghzzai

2013-01-01T23:59:59.000Z

393

C-106 High-Level Waste Solids: Washing/Leaching and Solubility Versus Temperature Studies  

SciTech Connect (OSTI)

This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing and caustic leaching on the composition of the Hanford tank C-106 high-level waste (HLW) solids. The objective of this work was to determine the composition of the C-106 solids remaining after washing with 0.01M NaOH or leaching with 3M NaOH. Another objective of this test was to determine the solubility of various C-106 components as a function of temperature. The work was conducted according to test plan BNFL-TP-29953-8,Rev. 0, Determination of the Solubility of HLW Sludge Solids. The test went according to plan, with only minor deviations from the test plan. The deviations from the test plan are discussed in the experimental section.

GJ Lumetta; DJ Bates; PK Berry; JP Bramson; LP Darnell; OT Farmer III; LR Greenwood; FV Hoopes; RC Lettau; GF Piepel; CZ Soderquist; MJ Steele; RT Steele; MW Urie; JJ Wagner

2000-01-26T23:59:59.000Z

394

Eco-efficiency for greenhouse gas emissions mitigation of municipal solid waste management: A case study of Tianjin, China  

SciTech Connect (OSTI)

The issue of municipal solid waste (MSW) management has been highlighted in China due to the continually increasing MSW volumes being generated and the limited capacity of waste treatment facilities. This article presents a quantitative eco-efficiency (E/E) analysis on MSW management in terms of greenhouse gas (GHG) mitigation. A methodology for E/E analysis has been proposed, with an emphasis on the consistent integration of life cycle assessment (LCA) and life cycle costing (LCC). The environmental and economic impacts derived from LCA and LCC have been normalized and defined as a quantitative E/E indicator. The proposed method was applied in a case study of Tianjin, China. The study assessed the current MSW management system, as well as a set of alternative scenarios, to investigate trade-offs between economy and GHG emissions mitigation. Additionally, contribution analysis was conducted on both LCA and LCC to identify key issues driving environmental and economic impacts. The results show that the current Tianjin's MSW management system emits the highest GHG and costs the least, whereas the situation reverses in the integrated scenario. The key issues identified by the contribution analysis show no linear relationship between the global warming impact and the cost impact in MSW management system. The landfill gas utilization scenario is indicated as a potential optimum scenario by the proposed E/E analysis, given the characteristics of MSW, technology levels, and chosen methodologies. The E/E analysis provides an attractive direction towards sustainable waste management, though some questions with respect to uncertainty need to be discussed further.

Zhao Wei, E-mail: zhaowei.tju@gmail.com [College of Civil Engineering and Architecture, Liaoning University of Technology, 121000 Jinzhou (China); Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300RA Leiden (Netherlands); Huppes, Gjalt, E-mail: huppes@cml.leidenuniv.nl [Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300RA Leiden (Netherlands); Voet, Ester van der, E-mail: Voet@cml.leidenuniv.nl [Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300RA Leiden (Netherlands)

2011-06-15T23:59:59.000Z

395

Off-design performance of integrated waste-to-energy, combined cycle plants  

Science Journals Connector (OSTI)

This paper focuses on the off-design operation of plants where a waste-to-energy (WTE) system fed with municipal solid waste (MSW) is integrated with a natural gas-fired combined cycle (CC). Integration is accomplished by sharing the steam cycle: saturated steam generated in a MSW grate combustor is exported to the heat recovery steam generator (HRSG) of the combined cycle, where it is superheated and then fed to a steam turbine serving both the CC and the WTE plant. Most likely, the WTE section and the natural gas-fired CC section are subject to different operation and maintenance schedules, so that the integrated plant operates in conditions different from those giving full power output. In this paper we discuss and give performance estimates for the two situations that delimit the range of operating conditions: (a) WTE plant at full power and gas turbine down; (b) WTE plant down and gas turbine at full power. This is done for two integrated plants having the same WTE section, i.e. grate combustors with an overall MSW combustion power of 180MWLHV, coupled with Combined Cycles based on two different heavy-duty gas turbines: a medium-size, 70MW class turbine and a large-size, 250MW class turbine. For each situation we discuss the control strategy and the actions that can help to achieve safe and reliable off-design operation. Heat and mass balances and performances at off-design conditions are estimated by accounting for the constraints imposed by the available heat transfer areas in boilers, heaters and condenser, as well as the characteristic curve of the steam turbine. When the gas turbine is down the net electric efficiency of the WTE section is very close to the one of the stand-alone WTE plant; instead, when the WTE section is down, the efficiency of the CC is much below the one of a stand alone CC. These performances appear most congenial to what is likely to be the operational strategy of these plants, i.e. paramount priority to waste treatment and CC dispatched according to the requirements of the national grid.

Stefano Consonni; Paolo Silva

2007-01-01T23:59:59.000Z

396

Integrating Multiple Solid Oxide Fuel Cell Modules* Burak Ozpineci1  

E-Print Network [OSTI]

than traditional generators even though they still have an important level of greenhouse gas (CO2 for more than a century. Today, as conventional fossil energy supplies, such as oil, coal and natural gas of Energy's Solid-State Energy Conversion Alliance (SECA) program [3] is targeting solid oxide fuel cell

Tolbert, Leon M.

397

INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION  

SciTech Connect (OSTI)

An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogen from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM streams containing high levels of nitrogen, as is now the case at the Federal No.2 Mine. Even lacking the CPSA pipeline delivery demonstration, the project was successful in laying the groundwork for future commercial applications of the integrated system. This operation can still provide a guide for other coal mines which need options for utilization of their methane resources. The designed system can be used as a complete template, or individual components of the system can be segregated and utilized separately at other mines. The use of the CMM not only provides an energy fuel from an otherwise wasted resource, but it also yields an environmental benefit by reducing greenhouse gas emissions. The methane has twenty times the greenhouse effect as compared to carbon dioxide, which the combustion of the methane generates. The net greenhouse gas emission mitigation is substantial.

Peet M. Soot; Dale R. Jesse; Michael E. Smith

2005-08-01T23:59:59.000Z

398

Radiological and chemical source terms for Solid Waste Operations Complex. Revision 1  

SciTech Connect (OSTI)

The purpose of this document is to describe the radiological and chemical source terms for the major projects of the Solid Waste Operations Complex (SWOC), including Project W-112, Project W-133 and Project W-100 (WRAP 2A). For purposes of this document, the term ``source term`` means the design basis inventory. All of the SWOC source terms involve the estimation of the radiological and chemical contents of various waste packages from different waste streams, and the inventories of these packages within facilities or within a scope of operations. The composition of some of the waste is not known precisely; consequently, conservative assumptions were made to ensure that the source term represents a bounding case (i.e., it is expected that the source term would not be exceeded). As better information is obtained on the radiological and chemical contents of waste packages and more accurate facility specific models are developed, this document should be revised as appropriate. Radiological source terms are needed to perform shielding and external dose calculations, to estimate routine airborne releases, to perform release calculations and dose estimates for safety documentation, to calculate the maximum possible fire loss and specific source terms for individual fire areas, etc. Chemical source terms (i.e., inventories of combustible, flammable, explosive or hazardous chemicals) are used to determine combustible loading, fire protection requirements, personnel exposures to hazardous chemicals from routine and accident conditions, and a wide variety of other safety and environmental requirements.

Boothe, G.F.

1994-06-03T23:59:59.000Z

399

Integrated chemical/biological treatment of paint stripper mixed waste: Metals toxicity and separation  

SciTech Connect (OSTI)

The DOE complex has generated vast quantities of complex heterogeneous mixed wastes. Paint stripper waste (PSW) is a complex waste that arose from decontamination and decommissioning activities. It contains paint stripper, cheesecloth, cellulose-based paints with Pb and Cr, and suspect Pu. Los Alamos National Laboratory has 150--200 barrels of PSW and other national laboratories such as Rocky Flats Plant have many more barrels of heterogeneous waste. Few technologies exist that can treat this complex waste. Our approach to solving this problem is the integration of two established technologies: biodegradation and metals chelation.

Vanderberg-Twary, L.; Grumbine, R.K.; Foreman, T.; Hanners, J.L.; Brainard, J.R.; Sauer, N.N.; Unkefer, P.J.

1995-05-01T23:59:59.000Z

400

A direct steam heat option for hydrothermal treatment of municipal solid waste  

SciTech Connect (OSTI)

A conceptual process for producing a gasifiable slurry from raw municipal solid waste (MSW) using direct steam heating is outlined. The process is based on the hydrothermal decomposition of the organic matter in the MSW, which requires the MSW to be heated to 300-350{degrees}C in the presence of water. A process model is developed and it is shown, based on preliminary estimates of the hydrothermal reaction stoichiometry, that a process using multiple pressure vessels, which allows recovery of waste heat, results in a process capable of producing a product slurry having a 40 wt % solids content with no waste water emissions. Results for a variety of process options and process parameters are presented. It is shown that the addition of auxiliary feedstock to the gasifier, along with the MSW derived slurry, results in more efficient gasification. It is estimated that 2.6 kmol/s of hydrogen can be produced from 30 kg/s (2600 tonne/day) of MSW and 16 kg/s of heavy oil. Without the additional feedstock, heavy oil in this case, only 0.49 kmol/s of hydrogen would be produced.

Thorsness, C.B.

1995-04-12T23:59:59.000Z

Note: This page contains sample records for the topic "integrated solid waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Solid-state lamp with integral occupancy sensor  

E-Print Network [OSTI]

Previous work demonstrated a retrofit proximity detector for fluorescent lamps using the lamp's own stray electric fields. This paper extends the retrofit sensor system to a solid-state (LED) lamp. The design and implementation ...

Cooley, John J.

402

Characterization of solids in residual wastes from single-shell tanks at the Hanford site, Washington, USA.  

SciTech Connect (OSTI)

Solid phase physical and chemical characterization methods have been used in an ongoing study of residual wastes from several single-shell underground waste tanks at the U.S. Department of Energy's Hanford Site in southeastern Washington State. Because these wastes are highly-radioactive dispersible powders and are chemically-complex assemblages of crystalline and amorphous solids that contain contaminants as discrete phases and/or co-precipitated within oxide phases, their detailed characterization offers an extraordinary technical challenge. X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDS) are the two principal methods used, along with a limited series of analyses by synchrotron-based methods, to characterize solid phases and their contaminant associations in these wastes.

Krupka, K. M.; Cantrell, K. J.; Todd Schaef, H.; Arey, B. W.; Heald, S. M.; Deutsch, W. J.; Lindberg, M. J. (X-Ray Science Division); ( PSC-USR); (PNNL)

2010-03-01T23:59:59.000Z

403

Savannah River Site (SRS) high level waste (HLW) structural integrity program  

SciTech Connect (OSTI)

The Savannah River Site has fifty-one underground tanks for radioactive waste storage and processing with doubly-contained piping systems for waste transfer. The SRS High Level Waste structural Integrity Program provides a process for evaluation and documenting material aging issues for structures, systems and components (SSC) in these facilities to maintain their confinement function. SRS has been monitoring waste, waste storage tanks, testing transfer lines and controlling waste chemistry for many years. A successful structural integrity (SI) program requires the following: detailed understanding of applicable degradation mechanisms; controlled chemistries and additions, as necessary; regular chemistry sampling and monitoring; structural capacity considerations; and a combination of on-line and periodic inspection and testing programs to provide early detection of generic degradation and verify effectiveness of the management of degradation under aging conditions identified by the SI Program. The application of these elements in the HLW SI Program achieves confinement in the facilities throughout desired service life.

Marra, J.E.; Abodishish, H.A.; Barnes, D.M.; Sindelar, R.L.; Flanders, H.E.; Houston, T.W.; Wiersma, B.J.; McNatt, F.G. Sr.; Cowfer, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

1995-12-01T23:59:59.000Z

404

Estimation, characterisation and management of solid wastes in Bhimtal (a tourist destination) in Kumaun Central Himalaya, India  

Science Journals Connector (OSTI)

Solid waste is one of the major environmental problems, mostly around tourist spots, in Himalaya. This study was carried out at Bhimtal in June 2006. About 1319.70 kg/day solid waste is generated at Bhimtal encompassing 63.38% kitchen waste, 18.24% paper, 11.27% plastic, 5.18% glass and 1.93% metal. In the absence of proper scientific management approach, there is open dumping of wastes on roadsides or burning at collection points. The wastes/products directly or indirectly find their way into lake from nearby area or water bodies of Lake Catchment. This may adversely affect the environment including lake water quality and ultimately human health in the catchment area.

Rajesh Kumar Lohchab; Devendra K. Agrawal; C.P. Kaushik

2011-01-01T23:59:59.000Z

405

SOLIEX: A Novel Solid-Liquid Method of Radionuclides Extraction from Radioactive Waste Solutions - 13486  

SciTech Connect (OSTI)

This paper describes recent developments in new solid-liquid extraction method, called SOLIEX, to remove cesium from alkaline solutions. SOLIEX relies on the use of a reversible complexing system comprising a carbon felt bearing molecular traps (calixarenes). This complexing system exhibits a high selectivity for Cs, and is thus expected to be helpful for the treatment of highly diluted cesium wastes even with a high concentration of competing alkali metal cations. As additional advantage, this complexing system can be adapted by molecular engineering to capture other radionuclides, such as Sr, Eu, Am. Finally, this complexing system can be easily and efficiently regenerated by using a cost effective stripping procedure, which limits further generation of waste to meet 'zero liquid' discharge requirements for nuclear facilities. (authors)

Shilova, E.; Viel, P. [CEA Saclay, DSM/IRAMIS/SPCSI, 91191Gif sur Yvette (France)] [CEA Saclay, DSM/IRAMIS/SPCSI, 91191Gif sur Yvette (France); Fournel, B.; Barre, Y. [CEA Marcoule, DTCD, BP17171, 30207 Bagnols sur Ceze (France)] [CEA Marcoule, DTCD, BP17171, 30207 Bagnols sur Ceze (France); Huc, V. [ICMMO - UMR CNRS 8182 - Bat. 420 Universite Paris-Sud (France)] [ICMMO - UMR CNRS 8182 - Bat. 420 Universite Paris-Sud (France)

2013-07-01T23:59:59.000Z

406

Data Summary of Municipal Solid Waste Management Alternatives. Volume VIII: Appendix F - Landfills  

SciTech Connect (OSTI)

While the preceding appendices have focused on the thermochemical approaches to managing municipal solid waste (MSW), this appendix and those that follow on composting and anaerobic digestion address more of the bioconversion process technologies. Landfilling is the historical baseline MSW management option central to every community's solid waste management plan. It generally encompasses shredfills, balefills, landfill gas recovery, and landfill mining. While landfilling is virtually universal in use, it continues to undergo intense scrutiny by the public and regulators alike. Most recently, the US Environmental Protection Agency (EPA) issued its final rule on criteria for designing, operating, monitoring, and closing municipal solid waste landfills. While the Federal government has established nationwide standards and will assist the States in planning and developing their own practices, the States and local governments will carry out the actual planning and direct implementation. The States will also be authorized to devise programs to deal with their specific conditions and needs. While the main body of this appendix and corresponding research was originally prepared in July of 1991, references to the new RCRA Subtitle D, Part 258 EPA regulations have been included in this resubmission (908). By virtue of timing, this appendix is, necessarily, a transition'' document, combining basic landfill design and operation information as well as reference to new regulatory requirements. Given the speed with which landfill practices are and will be changing, the reader is encouraged to refer to Part 258 for additional details. As States set additional requirements and schedules and owners and operators of MSW landfills seek to comply, additional guidance and technical information, including case studies, will likely become available in the literature.

None

1992-10-01T23:59:59.000Z

407

Data summary of municipal solid waste management alternatives. Volume 8, Appendix F, Landfills  

SciTech Connect (OSTI)

While the preceding appendices have focused on the thermochemical approaches to managing municipal solid waste (MSW), this appendix and those that follow on composting and anaerobic digestion address more of the bioconversion process technologies. Landfilling is the historical baseline MSW management option central to every community`s solid waste management plan. It generally encompasses shredfills, balefills, landfill gas recovery, and landfill mining. While landfilling is virtually universal in use, it continues to undergo intense scrutiny by the public and regulators alike. Most recently, the US Environmental Protection Agency (EPA) issued its final rule on criteria for designing, operating, monitoring, and closing municipal solid waste landfills. While the Federal government has established nationwide standards and will assist the States in planning and developing their own practices, the States and local governments will carry out the actual planning and direct implementation. The States will also be authorized to devise programs to deal with their specific conditions and needs. While the main body of this appendix and corresponding research was originally prepared in July of 1991, references to the new RCRA Subtitle D, Part 258 EPA regulations have been included in this resubmission (908). By virtue of timing, this appendix is, necessarily, a ``transition`` document, combining basic landfill design and operation information as well as reference to new regulatory requirements. Given the speed with which landfill practices are and will be changing, the reader is encouraged to refer to Part 258 for additional details. As States set additional requirements and schedules and owners and operators of MSW landfills seek to comply, additional guidance and technical information, including case studies, will likely become available in the literature.

none,

1992-10-01T23:59:59.000Z

408

Strategies for continuous monitoring of hydrogen chloride emissions from municipal solid-waste incinerators  

SciTech Connect (OSTI)

The paper presents a discussion of sampling and analytical techniques for continuous monitoring of hydrogen chloride (HCl) emissions from incineration sources. The discussion focuses on commercially available systems for sample conditioning and measurement. Six HCl continuous-emission monitors were evaluated at a municipal facility for solid-waste incineration. Field-test results indicate that several techniques for continuous monitoring of HCl concentrations are available. Most of the analyzers tested, regardless of the detection or calibration techniques, indicated the same trend in the effluent HCl concentrations and produced data that was in good agreement with wet-chemistry results.

Jernigan, J.R.; Shanklin, S.; Rollins, R.; Logan, T.J.; Midgett, M.R.

1988-04-01T23:59:59.000Z

409

Evaluation of a sequential aerobic??anaerobic treatment of municipal solid waste in a bioreactor landfill  

Science Journals Connector (OSTI)

A sequential aerobic-anaerobic bioreactor landfill was operated and monitored over a period of 184 days. The bioreactor was filled with 120 kg of organic fraction of Municipal Solid Waste. Leachate recirculation was applied. The results showed rapid degradation of organic matter with rapid settlement during the aerobic period. The initial COD and BOD5 were reduced from 46,500 and 41,500 mg/L to 9000 and 6000 mg/L, respectively, within one month. The SO42? concentration, during the anaerobic period, was decreased from 1500 mg/L to 250 mg/L. The sequential treatment had positive effects on nitrification and denitrification efficiencies.

Aris Nikolaou; Apostolos Giannis; Evangelos Gidarakos

2011-01-01T23:59:59.000Z

410

Feasibility study for thermal treatment of solid tire wastes in Bangladesh by using pyrolysis technology  

SciTech Connect (OSTI)

In this study on the basis of lab data and available resources in Bangladesh, feasibility study has been carried out for pyrolysis process converting solid tire wastes into pyrolysis oils, solid char and gases. The process considered for detailed analysis was fixed-bed fire-tube heating pyrolysis reactor system. The comparative techno-economic assessment was carried out in US$ for three different sizes plants: medium commercial scale (144 tons/day), small commercial scale (36 tons/day), pilot scale (3.6 tons/day). The assessment showed that medium commercial scale plant was economically feasible, with the lowest unit production cost than small commercial and pilot scale plants for the production of crude pyrolysis oil that could be used as boiler fuel oil and for the production of upgraded liquid-products.

Islam, M.R., E-mail: mrislam1985@yahoo.com [Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204 (Bangladesh); Joardder, M.U.H.; Hasan, S.M. [Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204 (Bangladesh); Takai, K.; Haniu, H. [Department of Mechanical Engineering, National University Corporation Kitami Institute of Technology, 165 Koen-cho, Kitami City, Hokkaido 090-8507 (Japan)

2011-09-15T23:59:59.000Z

411

Solid Recovered Fuel: Influence of Waste Stream Composition and Processing on Chlorine Content and Fuel Quality  

Science Journals Connector (OSTI)

Solid recovered fuel (SRF) produced by mechanicalbiological treatment (MBT) of municipal waste can replace fossil fuels, being a CO2-neutral, affordable, and alternative energy source. ... (4) The concentration of chlorine in SRF is key to fuel quality due to concern that elevated concentrations could exacerbate ash deposition in the convective part of boilers;(8) cause high-temperature corrosion (>500 C) of boiler steel due to alkali chlorides and lower temperature melt deposits (300400 C) in the presence of zinc and lead;(9) generate high acid gases emissions (hydrogen chloride (HCl));(10) and contribute to the formation of polychlorinated dibenzodioxins (PCDDs) (for [Cl] above 0.3% w/wd)(11) during thermal recovery. ... The overall moisture content MT, reported as % w/wd (d: dry solids), was measured in two steps. ...

Costas Velis; Stuart Wagland; Phil Longhurst; Bryce Robson; Keith Sinfield; Stephen Wise; Simon Pollard

2011-12-21T23:59:59.000Z

412

TECHNOLOGY EVALUATION FOR CONDITIONING OF HANFORD TANK WASTE USING SOLIDS SEGREGATION AND SIZE REDUCTION  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) team performed a literature search on current and proposed technologies for solids segregation and size reduction of particles in the slurry feed from the Hanford Tank Farm (HTF). The team also investigated technology research performed on waste tank slurries, both real and simulated, and reviewed academic theory applicable to solids segregation and size reduction. This review included text book applications and theory, commercial applications suitable for a nuclear environment, research of commercial technologies suitable for a nuclear environment, and those technologies installed in a nuclear environment, including technologies implemented at Department of Energy (DOE) facilities. Information on each technology is provided in this report along with the advantages and disadvantages of the technologies for this application.

Restivo, M.; Stone, M.; Herman, D.; Lambert, D.; Duignan, M.; SMITH, G.; WELLS, B.; LUMETTA, G.; ENDRELIN, C.; ADKINS, H.

2014-04-15T23:59:59.000Z

413

An overview of the sustainability of solid waste management at military installations  

E-Print Network [OSTI]

in conventional incinerators. Burning waste substantiallycontrolled burning or combustion of various types of waste.

Borglin, S.

2010-01-01T23:59:59.000Z

414

EMSL - solids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

solids en Iodine Solubility in Low-Activity Waste Borosilicate Glass at 1000 C. http:www.emsl.pnl.govemslwebpublicationsiodine-solubility-low-activity-waste-borosilicate-...

415

Integrating Total Quality Management (TQM) and hazardous waste management  

SciTech Connect (OSTI)

The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

Kirk, N. [Colorado State Univ., Fort Collins, CO (United States)

1993-11-01T23:59:59.000Z

416

Combined Municipal Solid Waste and biomass system optimization for district energy applications  

SciTech Connect (OSTI)

Highlights: Combined energy conversion of MSW and agricultural residue biomass is examined. The model optimizes the financial yield of the investment. Several system specifications are optimally defined by the optimization model. The application to a case study in Greece shows positive financial yield. The investment is mostly sensitive on the interest rate, the investment cost and the heating oil price. - Abstract: Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers. Finally, the sensitivity analysis is enhanced by a stochastic analysis to determine the effect of the volatility of parameters on the robustness of the model and the solution obtained.

Rentizelas, Athanasios A., E-mail: arent@central.ntua.gr; Tolis, Athanasios I., E-mail: atol@central.ntua.gr; Tatsiopoulos, Ilias P., E-mail: itat@central.ntua.gr

2014-01-15T23:59:59.000Z

417

One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant  

SciTech Connect (OSTI)

The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank wastes and for building and operating the WTP. The tank wastes are the result of Hanford's nearly fifty (50) years of plutonium production. In the intervening years, waste characteristics have been increasingly better understood. However, waste characteristics that are uncertain and will remain as such represent a significant technical challenge in terms of retrieval, transport, and treatment, as well as for design and construction ofWTP. What also is clear is that the longer the waste remains in the tanks, the greater the risk to the environment and the people of the Pacific Northwest. The goal of both projects - tank operations and waste treatment - is to diminish the risks posed by the waste in the tanks at the earliest possible date. About two hundred (200) WTP and TOC employees comprise the IPT. Individual work groups within One System include Technical, Project Integration & Controls, Front-End Design & Project Definition, Commissioning, Nuclear Safety & Engineering Systems Integration, and Environmental Safety and Health and Quality Assurance (ESH&QA). Additional functions and team members will be added as the WTP approaches the operational phase. The team has undertaken several initiatives since its formation to collaborate on issues: (1) alternate scenarios for delivery of wastes from the tank farms to WTP; (2) improvements in managing Interface Control Documents; (3) coordination on various technical issues, including the Defense Nuclear Facilities Nuclear Safety Board's Recommendation 2010-2; (4) deployment of the SmartPlant? Foundation-configuration Management System; and (5) preparation of the joint contract deliverable of the Operational Readiness Support Plan.

Harp, Benton J. [Department of Energy, Office of River Protection, Richland, Washington (United States); Kacich, Richard M. [Bechtel National, Inc., Richland, WA (United States); Skwarek, Raymond J. [Washington River Protection Solutions LLC, Richland, WA (United States)

2012-12-20T23:59:59.000Z

418

Evaluation of existing Hanford buildings for the storage of solid wastes  

SciTech Connect (OSTI)

Existing storage space at the Hanford Site for solid low-level mixed waste (LLMW) will be filled up by 1997. Westinghouse Hanford Company (WHC) has initiated the project funding cycle for additional storage space to assure that new facilities are available when needed. In the course of considering the funding request, the US Department of Energy (DOE) has asked WHC to identify and review any existing Hanford Site facilities that could be modified and used as an alternative to constructing the proposed W-112 Project. This report documents the results of that review. In summary, no buildings exist at the Hanford Site that can be utilized for storage of solid LLMW on a cost-effective basis when compared to new construction. The nearest approach to an economically sensible conversion would involve upgrade of 100,000 ft{sup 2} of space in the 2101-M Building in the 200 East Area. Here, modified storage space is estimated to cost about $106 per ft{sup 2} while new construction will cost about $50 per ft{sup 2}. Construction costs for the waste storage portion of the W-112 Project are comparable with W-016 Project actual costs, with escalation considered. Details of the cost evaluation for this building and for other selected candidate facilities are presented in this report. All comparisons presented address the potential decontamination and decommissioning (D&D) cost avoidances realized by using existing facilities.

Carlson, M.C.; Hodgson, R.D.; Sabin, J.C.

1993-05-01T23:59:59.000Z

419

Development of thermoelectric power generation system utilizing heat of combustible solid waste  

SciTech Connect (OSTI)

The paper presents the development of thermoelectric power generation system utilizing heat of municipal solid waste. The systematic classification and design guideline are proposed in consideration of the characteristics of solid waste processing system. The conceptual design of thermoelectric power generation system is carried out for a typical middle scale incinerator system (200 ton/day) by the local model. Totally the recovered electricity is 926.5 kWe by 445 units (569,600 couples). In order to achieve detailed design, one dimensional steady state model taking account of temperature dependency of the heat transfer performance and thermoelectric properties is developed. Moreover, small scale on-site experiment on 60 W class module installed in the real incinerator is carried out to extract various levels of technological problems. In parallel with the system development, high temperature thermoelectric elements such as Mn-Si and so on are developed aiming the optimization of ternary compound and high performance due to controlled fine-grain boundary effect. The manganese silicide made by shrinking-rate controlled sintering method performs 5 ({mu}W/cm K{cflx 2}) in power factor at 800 K. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

Kajikawa, T.; Ito, M.; Katsube, I. [Shonan Institute of Technology, Fujisawa, Kanagawa, 251 (Japan); Shibuya, E. [NKK Corporation, Yokohama, Kanagawa, 230 (Japan)

1994-08-10T23:59:59.000Z

420

Fluid bed gasification Plasma converter process generating energy from solid waste: Experimental assessment of sulphur species  

SciTech Connect (OSTI)

Highlights: We investigate gaseous sulphur species whilst gasifying sulphur-enriched wood pellets. Experiments performed using a two stage fluid bed gasifier plasma converter process. Notable SO{sub 2} and relatively low COS levels were identified. Oxygen-rich regions of the bed are believed to facilitate SO{sub 2}, with a delayed release. Gas phase reducing regions above the bed would facilitate more prompt COS generation. - Abstract: Often perceived as a Cinderella material, there is growing appreciation for solid waste as a renewable content thermal process feed. Nonetheless, research on solid waste gasification and sulphur mechanisms in particular is lacking. This paper presents results from two related experiments on a novel two stage gasification process, at demonstration scale, using a sulphur-enriched wood pellet feed. Notable SO{sub 2} and relatively low COS levels (before gas cleaning) were interesting features of the trials, and not normally expected under reducing gasification conditions. Analysis suggests that localised oxygen rich regions within the fluid bed played a role in SO{sub 2}s generation. The response of COS to sulphur in the feed was quite prompt, whereas SO{sub 2} was more delayed. It is proposed that the bed material sequestered sulphur from the feed, later aiding SO{sub 2} generation. The more reducing gas phase regions above the bed would have facilitated COS hence its faster response. These results provide a useful insight, with further analysis on a suite of performed experiments underway, along with thermodynamic modelling.

Morrin, Shane, E-mail: shane.morrin@ucl.ac.uk [Department of Chemical Engineering, University College London, London WC1E 7JE (United Kingdom); Advanced Plasma Power, Swindon, Wiltshire SN3 4DE (United Kingdom); Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk [Department of Chemical Engineering, University College London, London WC1E 7JE (United Kingdom); Chapman, Chris, E-mail: chris.chapman@app-uk.com [Advanced Plasma Power, Swindon, Wiltshire SN3 4DE (United Kingdom); Taylor, Richard, E-mail: richard.taylor@app-uk.com [Advanced Plasma Power, Swindon, Wiltshire SN3 4DE (United Kingdom)

2014-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "integrated solid waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Resouce recovery option in solid-waste management: a review guide for public officials  

SciTech Connect (OSTI)

The purposes of this document are to: serve as a guide for public-works directors and others interested in implementing resource-recovery systems; and (2) provide background material that can be used in presenting information on resource-recovery systems to city managers, mayors, legislative bodies, and citizen advisory groups. It raises some issues of which local communities must be aware before developing resource-recovery systems. Additionally, the document: (1) focuses on possible institutional problems that may arise in planning waste-to-energy systems and presents some solutions and alternatives, and (2) serve public-works officials as a reference for other publications on resource-recovery systems. It will aid public-works officials in the decision-making process concerning the implementation of waste-to-energy systems. Members of the public works profession who are fully aware of all the implementation procedures involved with resource-recovery systems can best decide if this is a feasible solid-waste-management option for their community.

Nemeth, D M

1981-04-01T23:59:59.000Z

422

Technology needs for remediation: Hanford and other DOE sites. Buried Waste Integrated Demonstration Program  

SciTech Connect (OSTI)

Technologies are being developed under the Buried Waste Integrated Demonstration (BWID) program to facilitate remediation of the US Department of Energy`s (DOE) buried and stored low-level radioactive, transuranic (TRU), and mixed radioactive and hazardous buried wastes. The BWID program is being coordinated by the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, a DOE site that has large volumes of buried radioactive wastes. The program is currently focusing its efforts on the problems at INEL`s Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC). As specific technologies are successfully demonstrated, they will be available for transfer to applications at other DOE buried waste sites. The purpose of this study is to present buried waste technology needs that have been identified for DOE sites other than INEL.

Stapp, D.C.

1993-01-01T23:59:59.000Z

423

Tunable, self-powered integrated arc plasma-melter vitrification system for waste treatment and resource recovery  

DOE Patents [OSTI]

The present invention provides a relatively compact self-powered, tunable waste conversion system and apparatus which has the advantage of highly robust operation which provides complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The system provides the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or by an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment of the invention, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced or without further use of the gases generated by the conversion process. The apparatus may be employed as a self-powered or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production.

Titus, Charles H. (Newtown Square, PA); Cohn, Daniel R. (Chestnuthill, MA); Surma, Jeffrey E. (Kennewick, WA)

1998-01-01T23:59:59.000Z

424

Integrated Waste Treatment Facility Fact Sheet | Department of...  

Office of Environmental Management (EM)

is designed to treat 900,000 gallons of radioactive liquid waste stored in underground tanks at a former Cold War spent nuclear fuel reprocessing facility located at DOE's Idaho...

425

IWater Processing and Waste Management SystemsIntegrated System Health Management 2007 Phase II  

E-Print Network [OSTI]

SBIR SBIR 44 45 IWater Processing and Waste Management SystemsIntegrated System Health Management valuable and, in some cases, critical features for Integrated System Health Management (ISHM) developersDE DP) to TRL 6 or higher. To facilitate Phase III NASA transition, the second program goal is deploying

426

Ranking municipal solid waste treatment alternatives considering sustainability criteria using the analytical hierarchical process tool  

Science Journals Connector (OSTI)

Abstract The establishment of an integrated rational waste management system is a complex issue, which has to be clearly investigated and a widespread variety of environmental, social and economic criteria should be taken into consideration. Each different waste treatment alternative provides a specific environmental, social and economic performance. Therefore, the crucial environmental, social and economic criteria need to be identified, estimated and thoroughly examined. In this manuscript, mechanical biological aerobic treatment without RDF energy recovery, mechanical biological anaerobic treatment and incineration with energy recovery are compared and finally ranked according to their environmental, social and economic performance. Analytical hierarchical process was used to rank the performance in three examined pillars in the capacity range of 7090kt. Incineration with energy recovery provides best performance due to the high amount of generated energy, whereas the other two options provide less capital costs. However, the performance of each treatment alternative is strongly dependent on the selection and weight of criteria.

I.-S. Antonopoulos; G. Perkoulidis; D. Logothetis; C. Karkanias

2014-01-01T23:59:59.000Z

427

Solid-waste leach characteristics and contaminant-sediment interactions. Volume 1, Batch leach and adsorption tests and sediment characterization  

SciTech Connect (OSTI)

The objectives of this report and subsequent volumes include describing progress on (1) development of conceptual-release models for Hanford Site defense solid-waste forms; (2) optimization of experimental methods to quantify the release from contaminants from solid wastes and their subsequent interactions with unsaturated sediments; and (3) creation of empirical data for use as provisional source term and retardation factors that become input parameters for performance assessment analyses for future Hanford disposal units and baseline risk assessments for inactive and existing disposal units.

Serne, R.J.; LeGore, V.L.; Cantrell, K.J.; Lindenmeier, C.W.; Campbell, J.A.; Amonette, J.E. [Pacific Northwest Lab., Richland, WA (United States); Conca, J.L. [Washington State Univ., Richland, WA (United States); Wood, M.I. [Westinghouse Hanford Co., Richland, WA (United States)

1993-10-01T23:59:59.000Z

428

Simulation of Syngas Production from Municipal Solid Waste Gasification in a Bubbling Fluidized Bed Using Aspen Plus  

Science Journals Connector (OSTI)

Simulation of Syngas Production from Municipal Solid Waste Gasification in a Bubbling Fluidized Bed Using Aspen Plus ... When the reaction kinetics is not known, a rigorous reactor and multiphase equilibrium based on the minimization of the total Gibbs free energy of the product mixture (an RGibbs block) is preferred to predict the equilibrium composition of the produced syngas. ... Catalytic steam gasification of municipal solid waste (MSW) to produce hydrogen-rich gas or syngas (H2 + CO) with calcined dolomite as a catalyst in a bench-scale downstream fixed bed reactor was investigated. ...

Miaomiao Niu; Yaji Huang; Baosheng Jin; Xinye Wang

2013-09-06T23:59:59.000Z

429

Comparing urban solid waste recycling from the viewpoint of urban metabolism based on physical input-output model: A case of Suzhou in China  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Impacts of solid waste recycling on Suzhou's urban metabolism in 2015 are analyzed. Black-Right-Pointing-Pointer Sludge recycling for biogas is regarded as an accepted method. Black-Right-Pointing-Pointer Technical levels of reusing scrap tires and food wastes should be improved. Black-Right-Pointing-Pointer Other fly ash utilization methods should be exploited. Black-Right-Pointing-Pointer Secondary wastes from reusing food wastes and sludge should be concerned. - Abstract: Investigating impacts of urban solid waste recycling on urban metabolism contributes to sustainable urban solid waste management and urban sustainability. Using a physical input-output model and scenario analysis, urban metabolism of Suzhou in 2015 is predicted and impacts of four categories of solid waste recycling on urban metabolism are illustrated: scrap tire recycling, food waste recycling, fly ash recycling and sludge recycling. Sludge recycling has positive effects on reducing all material flows. Thus, sludge recycling for biogas is regarded as an accepted method. Moreover, technical levels of scrap tire recycling and food waste recycling should be improved to produce positive effects on reducing more material flows. Fly ash recycling for cement production has negative effects on reducing all material flows except solid wastes. Thus, other fly ash utilization methods should be exploited. In addition, the utilization and treatment of secondary wastes from food waste recycling and sludge recycling should be concerned.

Liang Sai, E-mail: liangsai09@gmail.com [School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); Zhang Tianzhu, E-mail: zhangtz@mail.tsinghua.edu.cn [School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China)

2012-01-15T23:59:59.000Z

430

Monolithic Integration of Solid State Thermionic Coolers with Semiconductor Lasers  

E-Print Network [OSTI]

-893-8447 Fax. 805-893-7990 E-mail: bowers@ece.ucsb.edu ABSTRACT: We examine the cooling requirements the performance such as increasing the output power. Conventionally, thermoelectric (TE) coolers are used of a packaged laser module [3]. An alternative to traditional TE coolers is heterostructure integrated

431

Energy and materials savings from gases and solid waste recovery in the iron and steel industry in Brazil: An industrial ecology approach  

SciTech Connect (OSTI)

This paper attempts to investigate, from an entropic point of view, the role of selected technologies in the production, transformation, consumption and release of energy and materials in the Iron and Steel Industry in Brazil. In a quantitative analysis, the potential for energy and materials savings with recovery of heat, gases and tar are evaluated for the Iron and Steel Industry in Brazil. The technologies for heat recovery of gases include Coke Dry Quenching (CDQ), applied only in one of the five Brazilian coke integrated steel plants, Top Gas Pressure Recovery Turbines (TPRT), recovery of Coke Oven Gas (COG), recovery of Blast Furnace Gas (BFG), recovery of BOF gas, recovery of tar, and thermal plant. Results indicate that, in a technical scenario, some 5.1 TWh of electricity can be generated if these technologies are applied to recover these remaining secondary fuels in the Iron and Steel Industry in Brazil, which is equivalent to some 45% of current total electricity consumption in the integrated plants in the country. Finally, solid waste control technologies, including options available for collection and treatment, are discussed. Estimates using the best practice methodology show that solid waste generation in the Iron and Steel Industry in Brazil reached approximately 18 million metric tons in 1994, of which 28% can be recirculated if the best practice available in the country is applied thoroughly.

Costa, M.M.; Schaeffer, R.

1997-07-01T23:59:59.000Z

432

Review and Status of Solid Waste Management Practices in Multan, Pakistan  

E-Print Network [OSTI]

of throwing waste in water bodies, burning it as annearby residents. Burning of the waste at landfills and in

Shoaib, Muhammad; Mirza, Umar Karim; Sarwar, Muhammad Avais

2006-01-01T23:59:59.000Z

433

WIPP Facility Work Plan for Solid Waste Management Units and Areas of Concern  

SciTech Connect (OSTI)

This 2002 Facility Work Plan (FWP) has been prepared as required by Module VII, Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received on December 6, 2000 (NMED, 2000a). This February 2002 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the most recent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA processcan be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The NMED accepted that the Permittees are using the ACAA in a letter dated April 20, 2000.

Washington TRU Solutions LLC

2002-03-05T23:59:59.000Z

434

WIPP Facility Work Plan for Solid Waste Management Units and Areas of Concern  

SciTech Connect (OSTI)

his 2002 Facility Work Plan (FWP) has been prepared as required by Module VII,Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received onDecember 6, 2000 (NMED, 2000a). This February 2002 FWP describes the program-matic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the mostrecent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA)Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may beused for any SWMU or AOC (NMED, 1998). This accelerated approach is used toreplace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The NMED accepted that the Permittees are using the ACAA in a letter dated April 20, 2000.

Washington TRU Solutions LLC

2002-03-05T23:59:59.000Z

435

Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Import Statement, Richland, Washington  

Broader source: Energy.gov (indexed) [DOE]

COVER SHEET 1 COVER SHEET 1 U.S. Department of Energy, Richland Operations Office 2 3 TITLE: 4 Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact 5 Statement, Richland, Benton County, Washington (DOE/EIS-0286D2) 6 7 CONTACT: 8 For further information on this document, write or call: Mr. Michael S. Collins HSW EIS Document Manager Richland Operations Office U.S. Department of Energy, A6-38 P.O. Box 550 Richland, Washington 99352-0550 Telephone: (800) 426-4914 Fax: (509) 372-1926 Email: hsweis@rl.gov For further information on the Department's National Environmental Policy Act process, contact: Ms. Carol M. Borgstrom, Director Office of NEPA Policy and Compliance, EH-42 U.S. Department of Energy 1000 Independence Avenue, S.W.

436

Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement Richland, Washington  

Broader source: Energy.gov (indexed) [DOE]

COVER SHEET COVER SHEET U.S. Department of Energy, Richland Operations Office TITLE: Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement, Richland, Benton County, Washington (DOE/EIS-0286F) CONTACT: For further information on this document, write or call: Mr. Michael S. Collins HSW EIS Document Manager Richland Operations Office U.S. Department of Energy, A6-38 P.O. Box 550 Richland, Washington 99352-0550 Telephone: (509) 376-6536 Fax: (509) 372-1926 Email: hsweis@rl.gov For further information on the Department's National Environmental Policy Act (NEPA) process, contact: Ms. Carol M. Borgstrom, Director Office of NEPA Policy and Compliance, EH-42 U.S. Department of Energy 1000 Independence Avenue, S.W.

437

Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Import Statement, Richland, Washington - Summary  

Broader source: Energy.gov (indexed) [DOE]

Link to Main Report Link to Main Report RESPONSIBLE AGENCY: COVER SHEET 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 U.S. Department of Energy, Richland Operations Office TITLE: Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement, Richland, Benton County, Washington (DOE/EIS-0286D2) CONTACT: For further information on this document, write or call: Mr. Michael S. Collins HSW EIS Document Manager Richland Operations Office U.S. Department of Energy, A6-38 P.O. Box 550 Richland, Washington 99352-0550 Telephone: (800) 426-4914 Fax: (509) 372-1926 Email: hsweis@rl.gov For further information on the Department's National Environmental Policy Act process,

438

Effects of residues from municipal solid waste landfill on corn yield and heavy metal content  

SciTech Connect (OSTI)

The effects of residues from municipal solid waste landfill, Khon Kaen Municipality, Thailand, on corn (Zea mays L.) yield and heavy metal content were studied. Field experiments with randomized complete block design with five treatments (0, 20, 40, 60 and 80% v/v of residues and soil) and four replications were carried out. Corn yield and heavy metal contents in corn grain were analyzed. Corn yield increased by 50, 72, 85 and 71% at 20, 40, 60 and 80% treatments as compared to the control, respectively. All heavy metals content, except cadmium, nickel and zinc, in corn grain were not significantly different from the control. Arsenic, cadmium and zinc in corn grain were strongly positively correlated with concentrations in soil. The heavy metal content in corn grain was within regulated limits for human consumption.

Prabpai, S. [Suphan Buri Campus Establishment Project, Kasetsart University, 50 U Floor, Administrative Building, Paholyothin Road, Jatujak, Bangkok 10900 (Thailand)], E-mail: s.prabpai@hotmail.com; Charerntanyarak, L. [Department of Epidemiology, Faculty of Public Health, Khon Kaen University, Khon Kaen 40002 (Thailand)], E-mail: lertchai@kku.ac.th; Siri, B. [Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002 (Thailand)], E-mail: boonmee@kku.ac.th; Moore, M.R. [The University of Queensland, The National Research Center for Environmental Toxicology, 39 Kessels Road, Coopers Plans, Brisbane, Queensland 4108 (Australia)], E-mail: m.moore@uq.edu.au; Noller, Barry N. [The University of Queensland, Centre for Mined Land Rehabilitation, Brisbane, Queensland 4072 (Australia)], E-mail: b.noller@uq.edu.au

2009-08-15T23:59:59.000Z

439

Evaluation of gasification and novel thermal processes for the treatment of municipal solid waste  

SciTech Connect (OSTI)

This report identifies seven developers whose gasification technologies can be used to treat the organic constituents of municipal solid waste: Energy Products of Idaho; TPS Termiska Processor AB; Proler International Corporation; Thermoselect Inc.; Battelle; Pedco Incorporated; and ThermoChem, Incorporated. Their processes recover heat directly, produce a fuel product, or produce a feedstock for chemical processes. The technologies are on the brink of commercial availability. This report evaluates, for each technology, several kinds of issues. Technical considerations were material balance, energy balance, plant thermal efficiency, and effect of feedstock contaminants. Environmental considerations were the regulatory context, and such things as composition, mass rate, and treatability of pollutants. Business issues were related to likelihood of commercialization. Finally, cost and economic issues such as capital and operating costs, and the refuse-derived fuel preparation and energy conversion costs, were considered. The final section of the report reviews and summarizes the information gathered during the study.

Niessen, W.R.; Marks, C.H.; Sommerlad, R.E. [Camp Dresser and McKee, Inc., Cambridge, MA (United States)] [Camp Dresser and McKee, Inc., Cambridge, MA (United States)

1996-08-01T23:59:59.000Z

440

Risk assessment of gaseous emissions from municipal solid waste landfill: case study Rafah landfill, Palestine  

Science Journals Connector (OSTI)

This article describes the risk assessment of gaseous emissions from the municipal solid waste at Rafah landfill, Palestine. In this study, Gas-Sim model was used to quantify the gaseous emissions from the landfill and the Land-Gem model was used to verify the results. Risk assessment of both carcinogens and non-carcinogens were performed. Two scenarios were conducted namely with plant uptake and without plant uptake. The scenario with plant uptake revealed that the risk to residents is acceptable for non-carcinogens (risk value 0.45 > 1.0), while the risk to residents is not acceptable for carcinogens (risk value 2.69 10?6 risk to residents is acceptable for non-carcinogens (risk value 0.42 > 1.0), while the risk to residents is acceptable for carcinogens (risk value 2.855 10?7 > 10?6).

Ahmad A. Foul; Mazen Abualtayef; Basel Qrenawi

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated solid waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Municipal Solid Waste Landfills The following Oklahoma landfills currently accept dead livestock. As each facility has different guidelines and  

E-Print Network [OSTI]

Municipal Solid Waste Landfills The following Oklahoma landfills currently accept dead livestock Adair Cherokee Nation Landfill 918-696-5342 Canadian OEMA Landfill 405-262-0161 Call ahead Carter Southern Okla. Regional Disposal Landfill 580-226-1276 Comanche City of Lawton Landfill 580

Balasundaram, Balabhaskar "Baski"

442

Evaluation of dry-solids-blend material source for grouts containing 106-AN waste: September 1990 progress report  

SciTech Connect (OSTI)

Stabilization/solidification (S/S) is the most widely used technology for the treatment and ultimate disposal of both radioactive and chemically hazardous wastes. Such technology is being utilized in a Grout Treatment Facility (GTF) by the Westinghouse Hanford Company (WHC) for the disposal of various wastes, including 106-AN wastes, located on the Hanford Reservation. The WHC personnel have developed a grout formula for 106-AN disposal that is designed to meet stringent performance requirements. This formula consists of a dry-solids blend containing 40 wt % limestone, 28 wt % granulated blast furnace slag (BFS), 28 wt % ASTM Class F fly ash, and 4 wt % Type I-II-LA Portland cement. The blend is mixed with 106-AN waste at a ratio of 9 lb of dry-solids blend per gallon of waste. This report documents progress made to date on efforts at Oak Ridge National Laboratory (ORNL) in support of WHC`s Grout Technology Program to assess the effects of the source of the dry-solids-blend materials on the resulting grout formula.

Gilliam, T.M.; Osborne, S.C.; Francis, C.L.; Scott, T.C.

1993-09-01T23:59:59.000Z

443

Modeling and comparative assessment of municipal solid waste gasification for energy production  

SciTech Connect (OSTI)

Highlights: Study developed a methodology for the evaluation of gasification for MSW treatment. Study was conducted comparatively for USA, UAE, and Thailand. Study applies a thermodynamic model (Gibbs free energy minimization) using the Gasify software. The energy efficiency of the process and the compatibility with different waste streams was studied. - Abstract: Gasification is the thermochemical conversion of organic feedstocks mainly into combustible syngas (CO and H{sub 2}) along with other constituents. It has been widely used to convert coal into gaseous energy carriers but only has been recently looked at as a process for producing energy from biomass. This study explores the potential of gasification for energy production and treatment of municipal solid waste (MSW). It relies on adapting the theory governing the chemistry and kinetics of the gasification process to the use of MSW as a feedstock to the process. It also relies on an equilibrium kinetics and thermodynamics solver tool (Gasify) in the process of modeling gasification of MSW. The effect of process temperature variation on gasifying MSW was explored and the results were compared to incineration as an alternative to gasification of MSW. Also, the assessment was performed comparatively for gasification of MSW in the United Arab Emirates, USA, and Thailand, presenting a spectrum of socioeconomic settings with varying MSW compositions in order to explore the effect of MSW composition variance on the products of gasification. All in all, this study provides an insight into the potential of gasification for the treatment of MSW and as a waste to energy alternative to incineration.

Arafat, Hassan A., E-mail: harafat@masdar.ac.ae; Jijakli, Kenan

2013-08-15T23:59:59.000Z

444

Remaining Sites Verification Package for the 100-B-1 Surface Chemical and Solid Waste Dumping Area, Waste Site Reclassification Form 2006-003  

SciTech Connect (OSTI)

The 100-B-1 waste site was a dumping site that was divided into two areas. One area was used as a laydown area for construction materials, and the other area was used as a chemical dumping area. The 100-B-1 Surface Chemical and Solid Waste Dumping Area site meets the remedial action objectives specified in the Remaining Sites ROD. The results demonstrate that residual contaminant concentrations support future unrestricted land uses that can be represented by a rural-residential scenario. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

R. A. Carlson

2006-04-24T23:59:59.000Z

445

The composition, heating value and renewable share of the energy content of mixed municipal solid waste in Finland  

Science Journals Connector (OSTI)

Abstract For the estimation of greenhouse gas emissions from waste incineration it is essential to know the share of the renewable energy content of the combusted waste. The composition and heating value information is generally available, but the renewable energy share or heating values of different fractions of waste have rarely been determined. In this study, data from Finnish studies concerning the composition and energy content of mixed MSW were collected, new experimental data on the compositions, heating values and renewable share of energy were presented and the results were compared to the estimations concluded from earlier international studies. In the town of Lappeenranta in south-eastern Finland, the share of renewable energy ranged between 25% and 34% in the energy content tests implemented for two sample trucks. The heating values of the waste and fractions of plastic waste were high in the samples compared to the earlier studies in Finland. These high values were caused by good source separation and led to a low share of renewable energy content in the waste. The results showed that in mixed municipal solid waste the renewable share of the energy content can be significantly lower than the general assumptions (5060%) when the source separation of organic waste, paper and cardboard is carried out successfully. The number of samples was however small for making extensive conclusions on the results concerning the heating values and renewable share of energy and additional research is needed for this purpose.

M. Horttanainen; N. Teirasvuo; V. Kapustina; M. Hupponen; M. Luoranen

2013-01-01T23:59:59.000Z

446

Buried waste integrated demonstration fiscal year 1992 close-out report  

SciTech Connect (OSTI)

The mission of the Buried Waste Integrated Demonstration Program (BWID) is to support the development and demonstration of a suite of technologies that when integrated with commercially-available baseline technologies form a comprehensive remediation system for the effective and efficient remediation of buried waste disposed of throughout the US Department of Energy complex. To accomplish this mission of identifying technological solutions for remediation deficiencies, the Office of Technology Development initiated the BWID at the Idaho National Engineering Laboratory in fiscal year (FY)-91. This report summarizes the activities of the BWID Program during FY-92.

Cannon, P.G.; Kostelnik, K.M.; Owens, K.J.

1993-02-01T23:59:59.000Z

447

Integrated Data Base for 1989: Spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect (OSTI)

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1988. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected defense-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, commercial reactor and fuel cycle facility decommissioning waste, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous, highly radioactive materials that may require geologic disposal. 45 figs., 119 tabs.

Not Available

1989-11-01T23:59:59.000Z

448

Integrated data base for 1990: US spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect (OSTI)

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1989. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 22 refs., 48 figs., 109 tabs.

Not Available

1990-10-01T23:59:59.000Z

449

Integrity assessment plan for PNL 300 area radioactive hazardous waste tank system. Final report  

SciTech Connect (OSTI)

The Pacific Northwest Laboratory (PNL), operated by Battelle Memorial Institute under contract to the U.S. Department of Energy, operates tank systems for the U.S. Department of Energy, Richland Operations Office (DOE-RL), that contain dangerous waste constituents as defined by Washington State Department of Ecology (WDOE) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-040(18). Chapter 173-303-640(2) of the WAC requires the performance of integrity assessments for each existing tank system that treats or stores dangerous waste, except those operating under interim status with compliant secondary containment. This Integrity Assessment Plan (IAP) identifies all tasks that will be performed during the integrity assessment of the PNL-operated Radioactive Liquid Waste Systems (RLWS) associated with the 324 and 325 Buildings located in the 300 Area of the Hanford Site. It describes the inspections, tests, and analyses required to assess the integrity of the PNL RLWS (tanks, ancillary equipment, and secondary containment) and provides sufficient information for adequate budgeting and control of the assessment program. It also provides necessary information to permit the Independent, Qualified, Registered Professional Engineer (IQRPE) to approve the integrity assessment program.

NONE

1996-03-01T23:59:59.000Z

450

Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer This study evaluates the effects of co-gasification of MSW with MSW bottom ash. Black-Right-Pointing-Pointer No significant difference between MSW treatment with and without MSW bottom ash. Black-Right-Pointing-Pointer PCDD/DFs yields are significantly low because of the high carbon conversion ratio. Black-Right-Pointing-Pointer Slag quality is significantly stable and slag contains few hazardous heavy metals. Black-Right-Pointing-Pointer The final landfill amount is reduced and materials are recovered by DMS process. - Abstract: This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling.

Tanigaki, Nobuhiro, E-mail: tanigaki.nobuhiro@nsc-eng.co.jp [Nippon Steel Engineering Co., Ltd. (Head Office), Osaki Center Building 1-5-1, Osaki, Shinagawa-ku, Tokyo 141-8604 (Japan); Manako, Kazutaka [Nippon Steel Engineering Co., Ltd., 46-59, Nakabaru, Tobata-ku, Kitakyushu, Fukuoka 804-8505 (Japan); Osada, Morihiro [Nippon Steel Engineering Co., Ltd. (Head Office), Osaki Center Building 1-5-1, Osaki, Shinagawa-ku, Tokyo 141-8604 (Japan)

2012-04-15T23:59:59.000Z

451

Destruction behavior of hexabromocyclododecanes during incineration of solid waste containing expanded and extruded polystyrene insulation foams  

Science Journals Connector (OSTI)

Abstract Hexabromocyclododecanes (HBCDs) have been used for flame retardation mainly in expanded polystyrene (EPS) and extruded polystyrene (XPS) insulation foams. Controlled incineration experiments with solid wastes containing each of EPS and XPS were conducted using a pilot-scale incinerator to investigate the destruction behavior of \\{HBCDs\\} and their influence on the formation of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/DFs). EPS and XPS materials were respectively blended with refuse derived fuel (RDF) as input wastes for incineration. Concentrations of \\{HBCDs\\} contained in the EPS- and XPS-added RDFs, were 140 and 1100mgkg?1, respectively. In which ?-HBCD was dominant (68% of the total HBCD content) in EPS-added RDF and ?-HBCD accounted for 73% of the total \\{HBCDs\\} in XPS-added RDF. During the incineration experiments with EPS and XPS, primary and secondary combustion zones were maintained at temperatures of 840C and 900C. The residence times of waste in the primary combustion zone and flue gas in the secondary combustion zone was 30min and three seconds, respectively. \\{HBCDs\\} were steadily degraded in the combustion chambers and ?-, ?-, and ?-HBCD behaved similarly. Concentration levels of the total \\{HBCDs\\} in the bag filter exit gas for the two experiments with EPS and XPS were 0.7 and 0.6ng m N - 3 , respectively. \\{HBCDs\\} were also not detected (<0.2ngg?1) in the bottom and fly ash samples. From the obtained results, it was calculated that \\{HBCDs\\} were sufficiently destroyed in the whole incineration process with destruction efficiencies of more than 99.9999 for both of EPS and XPS cases. For PBDD/DFs, the levels detected in the bottom and fly ash samples were very low (0.028ngg?1 at maximum). In the case of XPS-added experiment, 2,3,7,8-TeBDD and 2,3,7,8-TeBDF were determined in the flue gas at levels (0.050.07ng m N - 3 ) slightly over the detection limits in the environmental emission gas samples, suggesting \\{HBCDs\\} in XPS are possibly a precursor of detected PBDD/DFs. Operational care should be taken when the ratio of HBCD-containing polystyrene is increased in the input wastes just to make sure of formation prevention and emission control of PBDD/DFs. The concentrations and congener patterns of PCDD/DFs and dl-PCBs in the samples during the three experiments were not affected by an addition of HBCDs.

Hidetaka Takigami; Mafumi Watanabe; Natsuko Kajiwara

2014-01-01T23:59:59.000Z

452

An overview of the sustainability of solid waste management at military installations  

E-Print Network [OSTI]

of chemical use), waste reduction, and energy savings by theA Changing Climate for Energy from Waste? Final Report forHowever, new waste-to-energy plants and composting have

Borglin, S.

2010-01-01T23:59:59.000Z

453

Review and Status of Solid Waste Management Practices in Multan, Pakistan  

E-Print Network [OSTI]

waste is also transported to landfill site near Shah Rukn-e-transportation of waste to landfill sites. For direct hauldispose off the waste at landfill site. Trolleys and dumpers

Shoaib, Muhammad; Mirza, Umar Karim; Sarwar, Muhammad Avais

2006-01-01T23:59:59.000Z

454

Field study of disposed solid wastes from advanced coal processes. Annual report, October 1, 1992--September 30, 1993  

SciTech Connect (OSTI)

Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute`s fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison`s limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United`s mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the three landfill test cases constructed in 1989 were completed. Monitoring continued at Test Case Four. Two cells for Test Case Five were constructed in Illinois.

Not Available

1993-10-01T23:59:59.000Z

455

Field study of disposed solid wastes from advanced coal processes. Annual technical progress report, October 1987--August 1988  

SciTech Connect (OSTI)

Radian Corporation and the North Dakota Mining and Mineral Resources Research Institute (MMRRI) are funded to develop information to be used by private industry and government agencies for managing solid waste produced by advanced coal processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. The first two tasks of this project involve the development of test plans. Through July of 1988 we have developed a generic test design manual, detailed test procedures manual, and test plans for three sites. Task three, field studies, will be initiated as soon as final site access is obtained and the facilities producing the waste are fully operational.

NONE

1988-08-01T23:59:59.000Z

456

Solid-state NMR characterisation of transition-metal bearing nuclear waste glasses.  

E-Print Network [OSTI]

??Alkali borosilicate glass is used to immobilise high-level radioactive waste generated from the reprocessing of spent nuclear fuel. However, poorly soluble waste products such as (more)

Greer, Brandon

2012-01-01T23:59:59.000Z

457

DOE/LX/07-0096 Secondary Document DMSA C-337-45 Solid Waste Management...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

aerosol can, a tube of gasket adhesive, container of roof cement, drum of gloves and boots, batteries, and waste oil. The Toxic Substances Control Act waste formerly stored...

458

Integrated demonstration of molten salt oxidation with salt recycle for mixed waste treatment  

SciTech Connect (OSTI)

Molten Salt Oxidation (MSO) is a thermal, nonflame process that has the inherent capability of completely destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility and constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are performed under carefully controlled (experimental) conditions. The system consists of a MSO processor with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. This integrated system was designed and engineered based on laboratory experience with a smaller engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. In this paper we present design and engineering details of the system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is identification of the most suitable waste streams and waste types for MSO treatment.

Hsu, P.C.

1997-11-01T23:59:59.000Z

459

Municipal solid waste combustion: Waste-to-energy technologies, regulations, and modern facilities in USEPA Region V  

SciTech Connect (OSTI)

Table of Contents: Incinerator operations (Waste preprocessing, combustion, emissions characterization and emission control, process monitoring, heat recovery, and residual ash management); Waste-to-energy regulations (Permitting requirements and operating regulations on both state and Federal levels); Case studies of EPA Region V waste-to-energy facilities (Polk County, Minnesota; Jackson County, Michigan; La Crosse, Wisconsin; Kent County, Michigan; Elk River, Minnesota; Indianapolis, Indiana); Evaluation; and Conclusions.

Sullivan, P.M.; Hallenbeck, W.H.; Brenniman, G.R.

1993-08-01T23:59:59.000Z

460

Investigation of chemical looping combustion by solid fuels. 2. redox reaction kinetics and product characterization with coal, biomass, and solid waste as solid fuels and CuO as an oxygen carrier  

SciTech Connect (OSTI)

This paper is the second in a series of two on the investigation of the chemical looping combustion (CLC) of solid fuels. The first paper put forward the concept of the CLC of solid fuels using a circulating fluidized bed as a reactor and Cu-CuO as the oxygen carrier, which was based on an analysis of oxygen transfer capability, reaction enthalpy, and chemical equilibrium. In this second paper, we report the results of the evaluation of the reduction of CuO reduced by solid fuels such as coal and some other 'opportunity' solid fuels. Tests on the reduction of CuO by the selected solid fuels were conducted using simultaneous differential scanning calorimetry and thermogravimetric analysis, which simulates a microreactor. An attached mass spectrometer (MS) was used for the characterization of evolved gaseous products. The X-ray diffractometer (XRD) and scanning electron microscope (SEM) were used for the characterization of the solid residues. Results strongly supported the feasibility of CuO reduction by selected solid fuels. CuO can be fully converted into Cu in a reduction process, either in a direct path by solid fuels, which was verified by MS analysis under a N{sub 2} atmosphere, or in an indirect path by pyrolysis and gasification products of solid fuels in the reducer. No Cu{sub 2}O exists in reducing atmospheres, which was characterized by an XRD analysis and mass balance calculations. No carbon deposit was found on the surface of the reduced Cu, which was characterized by SEM analysis. CuO reduction by solid fuels can start at temperatures as low as approximately 500 C. Tests indicated that the solid fuels with higher reactivity (higher volatile matter) would be desirable for the development of the chemical looping combustion process of solid fuels, such as sub-bituminous Powder River Basin coal and solid waste and biomass. 4 refs., 12 figs., 3 tabs.

Yan Cao; Bianca Casenas; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

2006-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "integrated solid waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Buried waste integrated demonstration Fiscal Year 1993 close-out report  

SciTech Connect (OSTI)

The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a multitude of advanced technologies. These technologies are being integrated to form a comprehensive remediation system for the effective and efficient remediation of buried waste. These efforts are identified and coordinated in support of the U.S. Department of Energy Environmental Restoration and Waste Management needs and objectives. BWID works with universities and private industry to develop these technologies, which are being transferred to the private sector for use nationally and internationally. A public participation policy has been established to provide stakeholders with timely and accurate information and meaningful opportunities for involvement in the technology development and demonstration process. To accomplish this mission of identifying technological solutions for remediation deficiencies, the Office of Technology Development initiated BWID at the Idaho National Engineering Laboratory. This report summarizes the activities of the BWID program during FY-93.

Owens, K.J.; Hyde, R.A.

1994-04-01T23:59:59.000Z

462

Heat Integration Strategy for Economic Production of Combined Heat and Power from Biomass Waste  

Science Journals Connector (OSTI)

Heat Integration Strategy for Economic Production of Combined Heat and Power from Biomass Waste ... Dilution of hydrogen rich fuels resulting from coal or heavy hydrocarbon gasification processes with nitrogen prior to the entrance of the gas turbines may be desirable in precombustion carbon capture and storage (CCS) routes, in order to ensure safe operations of gas turbines. ...

Jhuma Sadhukhan; Kok Siew Ng; Nilay Shah; Howard J. Simons

2009-09-15T23:59:59.000Z

463

Integrated data base for 1986: spent fuel and radioactive waste inventories, projections, and characteristics. Revision 2  

SciTech Connect (OSTI)

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US Department of Energy (DOE) radioactive wastes through December 31, 1985, based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. Current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the expected defense-related and private industrial and institutional activities and the latest DOE/Energy Information Administration (EIA) projections of US commercial nuclear power growth. The materials considered, on a chapter-by-chapter basis, are: spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or calculated isotopic compositions.

Not Available

1986-09-01T23:59:59.000Z

464

Integrated data base for 1988: Spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect (OSTI)

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1987. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected defense-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis are: spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reportd for miscellaneous, highly radioactive materials that may require geologic disposal. 89 refs., 46 figs., 104 tabs.