Powered by Deep Web Technologies
Note: This page contains sample records for the topic "integrated projects electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Tampa Electric Company Integrated Gasification Combined Cycle Project  

SciTech Connect

The proposed project will utilize commercially available gasification technology as provided by Texaco in their licensed oxygen-blown entrained-flow gasifier. In this arrangement, coal is ground to specification and slurried in water to the desired concentration (60--70% solids) in rod mills. This coal slurry and an oxidant (95 % pure oxygen) are then mixed in the gasifier burner where the coal partially combusts, in an oxygen deficient environment, to produce syngas with a heat content of about 250 BTU/SCF (LHV) at a temperature in excess of 2500{degrees}F. The oxygen will be produced from an Air Separation Unit (ASU). The gasifier is expected to achieve greater than 95% carbon conversion in a single pass. It is currently planned for the gasifier to be a single vessel feeding into one radiant syngas cooler where the temperature will be reduced from about 2500{degrees}F to about 1300{degrees}F. After the radiant cooler, the gas will then be split into two (2) parallel convective coolers, where the temperature will be cooled further to about 900{degrees}F. One stream will go to the 50% HGCU system and the other stream to the traditional CGCU system with 100% capacity. This flow arrangement was selected to provide assurance to Tampa Electric that the IGCC capability would not be restricted due to the demonstration of the HGCU system. A traditional amine scrubber type system with conventional sulfur recovery will be used. Sulfur from the HGCU and CGCU systems will be recovered in the form of H{sub 2}SO{sub 4} and elemental sulfur respectively.The key components of the combined cycle are the advanced combustion.turbine (CT), heat recovery steam generator (HRSG), and steam turbine (ST), and generators. The advanced CT will be a GE 7F operating with a firing temperature of about 2300{degrees}F.

Pless, D.E.; Black, C.R.

1992-11-01T23:59:59.000Z

2

Tampa Electric Company Integrated Gasification Combined Cycle Project  

SciTech Connect

The proposed project will utilize commercially available gasification technology as provided by Texaco in their licensed oxygen-blown entrained-flow gasifier. In this arrangement, coal is ground to specification and slurried in water to the desired concentration (60--70% solids) in rod mills. This coal slurry and an oxidant (95 % pure oxygen) are then mixed in the gasifier burner where the coal partially combusts, in an oxygen deficient environment, to produce syngas with a heat content of about 250 BTU/SCF (LHV) at a temperature in excess of 2500[degrees]F. The oxygen will be produced from an Air Separation Unit (ASU). The gasifier is expected to achieve greater than 95% carbon conversion in a single pass. It is currently planned for the gasifier to be a single vessel feeding into one radiant syngas cooler where the temperature will be reduced from about 2500[degrees]F to about 1300[degrees]F. After the radiant cooler, the gas will then be split into two (2) parallel convective coolers, where the temperature will be cooled further to about 900[degrees]F. One stream will go to the 50% HGCU system and the other stream to the traditional CGCU system with 100% capacity. This flow arrangement was selected to provide assurance to Tampa Electric that the IGCC capability would not be restricted due to the demonstration of the HGCU system. A traditional amine scrubber type system with conventional sulfur recovery will be used. Sulfur from the HGCU and CGCU systems will be recovered in the form of H[sub 2]SO[sub 4] and elemental sulfur respectively.The key components of the combined cycle are the advanced combustion.turbine (CT), heat recovery steam generator (HRSG), and steam turbine (ST), and generators. The advanced CT will be a GE 7F operating with a firing temperature of about 2300[degrees]F.

Pless, D.E.; Black, C.R.

1992-01-01T23:59:59.000Z

3

Salt Lake City Area Integrated Projects Electric Power Marketing Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary.html[6/24/2011 3:03:56 PM] Summary.html[6/24/2011 3:03:56 PM] SUMMARY S.1 DESCRIPTION OF THE PROPOSED ACTION The Western Area Power Administration (Western) proposes to establish the level of its commitment (sales) of long- term firm electrical capacity and energy from the Salt Lake City Area Integrated Projects (SLCA/IP) hydroelectric power plants. Power generated by the SLCA/IP facilities or purchased by Western from other sources is provided to Western's customers under contracts that establish the terms for how capacity (generation capacity) and energy (quantity of electrical energy) are to be sold. The contracts also specify amounts of capacity and energy that Western agrees to offer for long-term (greater than 12 months) sale to its customers. These amounts constitute Western's

4

Salt Lake City Area Integrated Projects Electric Power Marketing Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

01eis0150_cov.html[6/24/2011 2:58:48 PM] 01eis0150_cov.html[6/24/2011 2:58:48 PM] COVER SHEET Title: Salt Lake City Area Integrated Projects Electric Power Marketing Final Environmental Impact Statement, DOE/EIS-0150 Cooperating Agencies: U.S. Fish and Wildlife Service, the National Park Service, and the Bureau of Reclamation Lead Agency: Western Area Power Administration, U.S. Department of Energy Written comments on this environmental impact statement (EIS) should be addressed to: For general information on the U.S. Department of Energy EIS process, contact: Mr. David Sabo Western Area Power Administration Colorado River Storage Project Customer Service Office P.O. Box 11606 Salt Lake City, Utah 84147-0606 Telephone: (801) 524-5392 Ms. Carol Borgstrom, Director Office of NEPA Policy and Assistance (EH-42)

5

Project Integration Office for the electric and hybrid vehicle R and D program. Eighth progress report, March 1982  

DOE Green Energy (OSTI)

The Project Integration Office (PIO) was established to assist the US DOE with the direction and coordination of its multiple electric vehicle and hybrid electric vehicle research programs in order to get the maximum payoff from these research efforts. In addition, the PIO performs objective independent technical and economic studies, analyses and modeling, and maintains a technical information liaison service to facilitate information exchange between the program participants and industry. Progress in each of these activities is reported. (LCL)

Not Available

1982-04-19T23:59:59.000Z

6

NREL: Distributed Grid Integration - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects Projects Photo of two NREL engineers sitting in front of two computer monitors, discussing a project. NREL engineers work on data capture for micro-grid synchronization waveforms. Photo by Dennis Schroeder, NREL. NREL's distributed energy projects support the integration of new technologies into the electric power grid. This work involves industry, academia, other national laboratories, and various standards organizations. Learn more about our projects: Codes and standards Data collection and visualization Hawaii Clean Energy Initiative Microgrids Power systems modeling Solar Distributed Grid Integration (SunShot) Technology development Vehicle-to-Grid (V2G) Wind2Battery Printable Version Distributed Grid Integration Home Capabilities Projects Codes & Standards

7

FCT Technology Validation: Integrated Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Projects to Integrated Projects to someone by E-mail Share FCT Technology Validation: Integrated Projects on Facebook Tweet about FCT Technology Validation: Integrated Projects on Twitter Bookmark FCT Technology Validation: Integrated Projects on Google Bookmark FCT Technology Validation: Integrated Projects on Delicious Rank FCT Technology Validation: Integrated Projects on Digg Find More places to share FCT Technology Validation: Integrated Projects on AddThis.com... Home Transportation Projects Stationary/Distributed Generation Projects Integrated Projects DOE Projects Non-DOE Projects Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Manufacturing Codes & Standards Education Systems Analysis Contacts Integrated Projects To maximize overall system efficiencies, reduce costs, and optimize

8

NREL: Electricity Integration Research - Electricity, Resources...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity, Resources, and Building Systems Integration Center NREL's Electricity, Resources, and Building Systems Integration Center brings together diverse groups of experts...

9

Integrated Project Team RM  

Energy.gov (U.S. Department of Energy (DOE))

The Integrated Project Team (IPT) is an essential element of the Departments acquisition process and will be utilized during all phases of a project life cycle. The IPT is a team of professionals...

10

Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 4, Appendixes B-D  

SciTech Connect

The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams;) are influenced by Western power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Westerns firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.

Not Available

1994-02-01T23:59:59.000Z

11

Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 2, Sections 1-16  

SciTech Connect

The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams;) are influenced by Western power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Westerns firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.

Not Available

1994-02-01T23:59:59.000Z

12

Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 3, Appendix A  

Science Conference Proceedings (OSTI)

The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams;) are influenced by Western power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Westerns firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.

Not Available

1994-02-01T23:59:59.000Z

13

Hanford Tank Integrity Project  

Jordan Follett DST Project Plan and SST Use jordan_r_follet@rl.gov Rick Rast Structural Lead richard_s_rast@rl.gov Ted Venetz SST Integrity Lead theodore_j_venetz@rl.gov

14

Integrated Development Projects Ltd | Open Energy Information  

Open Energy Info (EERE)

Development Projects Ltd Development Projects Ltd Jump to: navigation, search Name Integrated Development Projects Ltd Place Devon, United Kingdom Zip EX18 7BL Sector Biomass Product The company's emphasis is placed on economic development in rural areas, and deplying biomass and municipal waste for electricity and CHP both in the UK and overseas. Their foundation project in North Devon includes a 40MWe biomass electricity plant. References Integrated Development Projects Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Integrated Development Projects Ltd is a company located in Devon, United Kingdom . References ↑ "Integrated Development Projects Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Integrated_Development_Projects_Ltd&oldid=347004"

15

Integrated Project Team RM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Project Team (IPT) Review Module Integrated Project Team (IPT) Review Module March 2010 CD-0 This R O 0 Review Modul OFFICE OF Inte C CD-1 le was piloted F ENVIRO Standard R grated P Rev Critical Decis CD-2 M at the OR U 23 incorporated ONMENTAL Review Plan Project Te view Module sion (CD) Ap CD March 2010 33 Disposition in the Review L MANAGE n (SRP) eam (IPT e pplicability D-3 Project in 200 Module. EMENT T) CD-4 09. Lessons lea Post Ope arned have been eration n Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the success of Office of Environmental Management (EM) projects are identified early and addressed proactively. The internal EM

16

NREL: Transmission Grid Integration - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Generation Integration Study Oahu Wind Integration and Transmission SIND Toolkit Electricity Market Design Energy Imbalance Markets Flexible Energy Scheduling Tool for...

17

Electrical Quantities Programs/Projects in Quantum Electrical ...  

Science Conference Proceedings (OSTI)

Electrical Quantities Programs/Projects in Quantum Electrical Metrology. Electric Power Metrology and the Smart Grid. Contact. ...

2011-10-03T23:59:59.000Z

18

MHD Integrated Topping Cycle Project  

DOE Green Energy (OSTI)

This seventeenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period August 1, 1991 to October 31, 1991. Manufacturing of the prototypical combustor pressure shell has been completed including leak, proof, and assembly fit checking. Manufacturing of forty-five cooling panels was also completed including leak, proof, and flow testing. All precombustor internal components (combustion can baffle and swirl box) were received and checked, and integration of the components was initiated. A decision was made regarding the primary and backup designs for the 1A4 channel. The assembly of the channel related prototypical hardware continued. The cathode wall electrical wiring is now complete. The mechanical design of the diffuser has been completed.

Not Available

1992-07-01T23:59:59.000Z

19

HLW System Integrated Project Team  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

l l W S Hi h l W S High Level Waste System High Level Waste System Integrated Project Team Integrated Project Team Integrated Project Team Integrated Project Team Steve Schneider Steve Schneider Office of Engineering and Technology High Level Waste Corporate Board March 5, 2009 This document is intended for planning and analysis purposes, assuming a continuing constrained budget environment. Every effort will be made to comply with all applicable environmental and legal obligations, while also assuring that essential functions necessary to protect human health, the environment and national security are maintained. 1 Introduction Introduction Introduction Introduction Challenges and Priorities High Level Waste Strategic Initiative Results High Level Waste System Integrated

20

Clean Cities: Electric Vehicle Community Readiness Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Opportunities Financial Opportunities Printable Version Share this resource Send a link to Clean Cities: Electric Vehicle Community Readiness Projects to someone by E-mail Share Clean Cities: Electric Vehicle Community Readiness Projects on Facebook Tweet about Clean Cities: Electric Vehicle Community Readiness Projects on Twitter Bookmark Clean Cities: Electric Vehicle Community Readiness Projects on Google Bookmark Clean Cities: Electric Vehicle Community Readiness Projects on Delicious Rank Clean Cities: Electric Vehicle Community Readiness Projects on Digg Find More places to share Clean Cities: Electric Vehicle Community Readiness Projects on AddThis.com... Current Opportunities Related Opportunities Funded Projects Recovery Act Projects Community Readiness Projects Alternative Fuel Market Projects

Note: This page contains sample records for the topic "integrated projects electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Electric Power Metrology Programs/Projects in Quantum ...  

Science Conference Proceedings (OSTI)

Electric Power Metrology Programs/Projects in Quantum Electrical Metrology. Electric Power Metrology Programs/Projects ...

2011-10-03T23:59:59.000Z

22

MHD Integrated Topping Cycle Project  

DOE Green Energy (OSTI)

The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois {number sign}6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.

Not Available

1992-01-01T23:59:59.000Z

23

NREL: Electricity Integration Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities NREL's electricity integration research is conducted in state-of-the-art facilities. These facilities assist industry in the development of power systems and address the operational challenges of full system integration. The Energy Systems Integration Facility can be used to design, test, and analyze components and systems to enable economic, reliable integration of renewable electricity, fuel production, storage, and building efficiency technologies with the U.S. electricity delivery infrastructure. New grid integration capabilities at the National Wind Technology Center will allow testing of many grid integration aspects of multi-megawatt, utility-scale variable renewable generation and storage technologies. The Distributed Energy Resources Test Facility can be used to characterize,

24

NREL: Vehicles and Fuels Research - Electric Vehicle Grid Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Grid Integration Project Electric Vehicle Grid Integration Project Plug-in electric vehicle charging at NREL. PEV charging in the VTIF. Photo by Dennis Schroeder, NREL/PIX 19758 The Electric Vehicle Grid Integration Project supports the development and implementation of electrified transportation systems, particularly those that integrate renewable-based vehicle charging systems. Plug-in electric vehicles (PEVs)-including all-electric vehicles and plug-in hybrid electric vehicles (PHEVs)-provide a new opportunity to reduce oil consumption by drawing on power from the electric grid. To maximize the benefits of PEVs, the emerging PEV infrastructure must provide access to clean electricity generated from renewable sources, satisfy driver expectations, and ensure safety. Value creation from systems

25

Electric Power Metrology Programs/Projects in ...  

Science Conference Proceedings (OSTI)

Electric Power Metrology Programs/Projects in Semiconductors. Power Device and Thermal Metrology. Contact. General ...

2011-10-03T23:59:59.000Z

26

Roxboro Integrated Automation Project  

Science Conference Proceedings (OSTI)

EPRI, Carolina Power & Light (CP&L), and ASEA Brown Boveri (ABB) formed an alliance to develop and demonstrate automation technologies at CP&LOs Roxboro Plant. This alliance is governed by a Memorandum of Understanding that allows all parties to share in the success of the products developed, and to contribute to their commercialization. This research project is intended to demonstrate the economic benefits of efficient and useful plant-wide automation technologies for the utility industry. Successful im...

1997-01-12T23:59:59.000Z

27

Status of Tampa Electric Company IGCC Project  

SciTech Connect

Tampa Electric Company will utilize Integrated Gasification Combined Cycle technology for its new Polk Power Station Unit [number sign]1. The project is partially funded under the Department of Energy Clean Coal Technology Program Round III. This paper describes the technology to be used, process details, demonstration of a new hot gas clean-up system, and the schedule, leading to commercial operation in July 1996.

Jenkins, S.D.

1992-01-01T23:59:59.000Z

28

Status of Tampa Electric Company IGCC Project  

SciTech Connect

Tampa Electric Company will utilize Integrated Gasification Combined Cycle technology for its new Polk Power Station Unit {number_sign}1. The project is partially funded under the Department of Energy Clean Coal Technology Program Round III. This paper describes the technology to be used, process details, demonstration of a new hot gas clean-up system, and the schedule, leading to commercial operation in July 1996.

Jenkins, S.D.

1992-10-01T23:59:59.000Z

29

MHD Integrated Topping Cycle Project  

DOE Green Energy (OSTI)

This fourteenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period November 1, 1990 to January 31, 1991. Testing of the High Pressure Cooling Subsystem electrical isolator was completed. The PEEK material successfully passed the high temperature, high pressure duration tests (50 hours). The Combustion Subsystem drawings were CADAM released. The procurement process is in progress. An equipment specification and RFP were prepared for the new Low Pressure Cooling System (LPCS) and released for quotation. Work has been conducted on confirmation tests leading to final gas-side designs and studies to assist in channel fabrication.The final cathode gas-side design and the proposed gas-side designs of the anode and sidewall are presented. Anode confirmation tests and related analyses of anode wear mechanisms used in the selection of the proposed anode design are presented. Sidewall confirmation tests, which were used to select the proposed gas-side design, were conducted. The design for the full scale CDIF system was completed. A test program was initiated to investigate the practicality of using Avco current controls for current consolidation in the power takeoff (PTO) regions and to determine the cause of past current consolidation failures. Another important activity was the installation of 1A4-style coupons in the 1A1 channel. A description of the coupons and their location with 1A1 channel is presented herein.

Not Available

1992-02-01T23:59:59.000Z

30

The Tampa Electric Integrated Gasification  

E-Print Network (OSTI)

A report on a project conducted jointly under a cooperative agreement between: The U.S. Department of Energy and Tampa Electric CompanyCover image: The Polk Power Plant site as seen from across the lake in early evening. Photography

An Update; Power Plant Description

2000-01-01T23:59:59.000Z

31

South Mississippi Electric Power Association Smart Grid Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mississippi Electric Power Association Smart Grid Project (Mississippi) South Mississippi Electric Power Association Smart Grid Project (Mississippi) Eligibility Rural Electric...

32

National Bioenergy Center Biochemical Platform Integration Project  

DOE Green Energy (OSTI)

April through June 2008 update on activities of the National Bioenergy Center's Biochemical Platform Integration Project.

Not Available

2008-07-01T23:59:59.000Z

33

NREL: Energy Systems Integration - Visualization of Electric...  

NLE Websites -- All DOE Office Websites (Extended Search)

Visualization of Electric Power System Information Workshop The Energy Systems Integration Facility workshop, Visualization of Electric Power System Information, was held September...

34

MHD Integrated Topping Cycle Project  

DOE Green Energy (OSTI)

The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

Not Available

1992-03-01T23:59:59.000Z

35

EA-1939: Reese Technology Center Wind and Battery Integration Project,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Reese Technology Center Wind and Battery Integration 9: Reese Technology Center Wind and Battery Integration Project, Lubbock County, TX EA-1939: Reese Technology Center Wind and Battery Integration Project, Lubbock County, TX SUMMARY This EA will evaluate the potential environmental impacts of a proposal by the Center for Commercialization of Electric Technologies to demonstrate battery technology integration with wind generated electricity by deploying and evaluating utility-scale lithium battery technology to improve grid performance and thereby aid in the integration of wind generation into the local electricity supply. Under the proposed action, DOE's Office of Electricity Delivery and Energy Reliability would provide cost shared funding for the project through American Reinvestment and Recovery Act

36

NREL: Electricity Integration Research - Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Webmaster Webmaster Please enter your name and email address in the boxes provided, then type your message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Electricity Integration Research Home Distributed Grid Integration Transmission Grid Integration Facilities Working with Us Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit We value your feedback. Thanks! We've received your feedback. Something went wrong. Please try again later. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

37

Major Risk Factors Integrated Facility Disposition Project -...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Oak Ridge Summary - Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN More Documents & Publications Major Risk Factors to the Integrated...

38

NREL: Energy Analysis: Electric Sector Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Sector Integration Electric Sector Integration Integrating higher levels of renewable resources into the U.S. electricity system could pose challenges to the operability of the nation's grid. NREL's electric sector integration analysis work investigates the potential impacts of expanding renewable technology deployment on grid operations and infrastructure expansion including: Feasibility of higher levels of renewable electricity generation. Options for increasing electric system flexibility to accommodate higher levels of variable renewable electricity. Impacts of renewable electricity generation on efficiency and emissions of conventional generators. Grid expansion and planning to allow large scale deployment of renewable generation. Graphic showing a high concept diagram of how a modern electricity system can be designed to include storage and incorporate large scale renewable generation. High Renewable Generation Electric System Flexibility and Storage Impacts on Conventional Generators Transmission Infrastructure

39

Hawaiian Electric Company (HECO) Smart Grid (SG) Demonstration Project Description  

Science Conference Proceedings (OSTI)

This report describes one smart grid demonstration host-site project. The Hawaiian Electric Company (HECO) host site is part of the Electric Power Research Institute's (EPRI's) seven-year Smart Grid Demonstration Initiative. The project is focused on integrating large-scale distributed energy resources (DER), including demand response, storage, distributed generation, and distributed renewable generation, into a "virtual power plant" to advance the widespread, efficient, and cost-effective deployment of ...

2012-08-13T23:59:59.000Z

40

Projected integrated farm in Nepal  

SciTech Connect

A proposed integrated crop-livestock agro-processing complex to be based at Janakpur, Nepal is described. This project was proposed by the Agricultural Development Bank and is a small effort towards creating a self-sufficient rural community similar to one reported in China. The plan of the farm aims to achieve the integration of several agricultural, aquacultural, solar energy and biogas energy components with complete recycling of waste. These include biogas plants with associated slurry and storage tanks for operating a 3-kW generator, a 3.7-kW pump, providing domestic cooking, as well as energy to operate a fruit-processing plant. Energy for water heating, crop drying and refrigeration will be supplied by solar energy. Fish, livestock, fruits and vegetables will be produced by the farm.

Dhital, K.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated projects electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

MHD Integrated Topping Cycle Project  

DOE Green Energy (OSTI)

This eighteenth quarterly technical progress report of the MHD Integrated Topping cycle Project presents the accomplishments during the period November 1, 1991 to January 31, 1992. The precombustor is fully assembled. Manufacturing of all slagging stage components has been completed. All cooling panels were welded in place and the panel/shell gap was filled with RTV. Final combustor assembly is in progress. The low pressure cooling subsystem (LPCS) was delivered to the CDIF. Second stage brazing issues were resolved. The construction of the two anode power cabinets was completed.

Not Available

1992-07-01T23:59:59.000Z

42

Argonne's Pilot Electric Vehicle Charging Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne's Pilot Electric Vehicle Charging Project solar array and charging station Solar array and charging station. View larger image. As part of Argonne's continuing efforts to...

43

NSLS-II Integrated Project Team (IPT)  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS-II Integrated Project Team NSLS-II Integrated Project Team DOE uses an integrated project teaming approach for managing the NSLS-II Project. This Integrated Project Team (IPT), organized and led by the NSLS-II Federal Project Director, is an essential element in DOE's acquisition process and is being used during all phases of the project's life cycle. This team consists of professionals representing diverse disciplines with the specific knowledge, skills, and abilities to support the Federal Project Director in successfully executing the project. The IPT for the NSLS-II Project will consist of members from both DOE and the contractor, Brookhaven Science Associates (BSA). The team membership will change as the project progresses from initiation to closeout to ensure the necessary skills are always represented to meet the project's needs.

44

Multi-Project Baselines for Evaluation of Industrial Energy-Efficiency and Electric Power Projects  

E-Print Network (OSTI)

Energy-Efficiency and Electric Power Projects JayantEnergy-Efficiency and Electric Power Projects Table ofEnergy-Efficiency And Electric Power Projects The Impact Of

2001-01-01T23:59:59.000Z

45

Multiproject baselines for evaluation of electric power projects  

E-Print Network (OSTI)

Mitigation Projects in the Electric Power Sector, OECD andfor the California Electric Power Sector. Berkeley, CA:Energy Efficiency and Electric Power Projects. LBNL-48242.

2003-01-01T23:59:59.000Z

46

All-Electric Wendy's Restaurant Demonstration Project  

Science Conference Proceedings (OSTI)

How well can the power needs of a small restaurant be met by an all-electric solution? This demonstration project at a fast-food restaurant investigated the energy and economic performance of a suite of high-efficiency electro-technologies including an all-electric cookline; high efficiency lighting; and heat pumps for water heating, space heating, and cooling. The all-electric concept proved to be competitive with the more conventional gas/electric model.

1999-09-16T23:59:59.000Z

47

Near Term Hydrogen and Electricity Infrastructure Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Denver, CO Denver, CO September 22, 2004 Abbas Akhil, DER and Energy Storage Sandia National Laboratories, Albuquerque, NM (505) 844-7308 aaakhil@sandia.gov Near-term Hydrogen and Electricity Infrastructure Integration Near-term Hydrogen and Electricity Infrastructure Integration Integration Scenarios and Issues Integration Scenarios and Issues ! How and where can electrolysis systems be integrated in the grid? " Siting/location " Operational issues " Investments " Benefits " Ownership ! Objectives are " Capture "grid" benefits " Seek to reduce emissions Siting and Location Siting and Location ! Electrolysis systems can be sited at " Existing generating stations " Transmission substations " Distribution substations ! Each locations has different

48

NREL: Electricity Integration Research Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Photo of power lines with sky and clouds in the background. Photo of power lines with sky and clouds in the background. Electricity integration at NREL enables renewable energy technologies to be fully integrated into the planning and operations of the grid-from ultra-high-voltage transmission systems to medium- and low-voltage distribution grids. The U.S. electric power system is undergoing significant changes in how electricity is produced and delivered to customers. Reduced costs and new requirements are increasing the amount of variable renewable energy that is being integrated into the power system. Smart Grid technologies that add communications and control to the grid are also changing the way the electric power system operates. Distributed Grid Integration Research Distributed grid integration R&D at NREL focuses on solar photovoltaic

49

Electric power projections | OpenEI  

Open Energy Info (EERE)

power projections power projections Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 88, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Carolina EIA Electric power projections Virginia Data application/vnd.ms-excel icon ASEO2011: Electric Power Projections for EMM Region - SERC Reliability Corporation / Virginia-Carolina- Reference Case (xls, 259.3 KiB)

50

Virtual Project Data Integration Testbed  

Science Conference Proceedings (OSTI)

... these findings to emphasize research and development ... and more productive project delivery. These include API, ASHRAE, ASME, buildingSMART ...

2010-02-19T23:59:59.000Z

51

Electricity - Analysis & Projections - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Electricity Prices in a Competitive Environment: Marginal Cost Pricing. ... production costs, and the financial integrity of electricity suppliers? ...

52

AEO2011: Electric Power Projections for EMM Region - Western Electricity  

Open Energy Info (EERE)

California California Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 92, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released August 10th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO California EIA Electric Power projections Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - Western Electricity Coordinating Council / California- Reference Case (xls, 259.5 KiB)

53

AEO2011: Electric Power Projections for EMM Region - Western Electricity  

Open Energy Info (EERE)

Southwest Southwest Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 91, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power projections Southwest WECC Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - Western Electricity Coordinating Council / Southwest- Reference Case (xls, 259.1 KiB)

54

AEO2011: Electric Power Projections for EMM Region - Western Electricity  

Open Energy Info (EERE)

Northwest Power Pool Area Northwest Power Pool Area Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 93, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power Northwest Power Pool Area projections Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - Western Electricity Coordinating Council / Northwest Power Pool Area (xls, 259.1 KiB)

55

AEO2011: Electric Power Projections for EMM Region - Western Electricity  

Open Energy Info (EERE)

Rockies Rockies Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 94, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power projections Rockies Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - Western Electricity Coordinating Council / Rockies- Reference Case (xls, 258.8 KiB)

56

Hawaiian Electric Company Demand Response Roadmap Project Final...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hawaiian Electric Company Demand Response Roadmap Project Final Report Title Hawaiian Electric Company Demand Response Roadmap Project Final Report Publication Type Report LBNL...

57

Hedging and Vertical Integration in Electricity Markets  

Science Conference Proceedings (OSTI)

This paper analyzes the interactions between competitive (wholesale) spot, retail, and forward markets and vertical integration in electricity markets. We develop an equilibrium model with producers, retailers, and traders to study and quantify the impact ... Keywords: asset pricing, corporate finance, electric--electronic, financial institutions, industries, markets

Ren Ad; Gilles Chemla; Arnaud Porchet; Nizar Touzi

2011-08-01T23:59:59.000Z

58

New Electric Grid Technologies for Renewable Integration  

E-Print Network (OSTI)

and changing electric loads that are becoming part of the "orchestra" · Dealing with economic and public policy & Intelligent Agent (temporal power flow control) · Solar and Wind Forecasting Tools · Generator and LoadNew Electric Grid Technologies for Renewable Integration - The Need for Being Smarter - Presented

Islam, M. Saif

59

An Economic Analysis of Used Electric Vehicle Batteries Integrated...  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Used Electric Vehicle Batteries Integrated into Commercial Building Microgrids Title An Economic Analysis of Used Electric Vehicle Batteries Integrated into...

60

Class 1 overview of cultural resources for the Western Area Power Administration Salt Lake City Area Integrated Projects electric power marketing environmental impact statement  

DOE Green Energy (OSTI)

Argonne National Laboratory conducted an inventory of known archaeological and historic sites in areas that could be affected by the hydropower operation alternatives under analysis in the power marketing environmental impact statement for the Western Area Power Administration`s Salt Lake City Area Integrated Projects. The study areas included portions of the Green River (Flaming Gorge Dam to Cub Creek) in Utah and Colorado and the Gunnison River (Blue Mesa Reservoir to Crystal Dam) in Colorado. All previous archaeological surveys and previously recorded prehistoric and historic sites, structures, and features were inventoried and plotted on maps (only survey area maps are included in this report). The surveys were classified by their level of intensity, and the sites were classified according to their age, type, and contents. These data (presented here in tabular form) permit a general assessment of the character and distribution of archaeological remains in the study areas, as well as an indication of the sampling basis for such an assessment. To provide an adequate context for the descriptions of the archaeological and historic sites, this report also presents overviews of the environmental setting and the regional prehistory, history, and ethnography for each study area.

Moeller, K.L.; Malinowski, L.M.; Hoffecker, J.F.; Walitschek, D.A.; Shogren, L.; Mathews, J.E.; Verhaaren, B.T.

1993-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated projects electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Living Labs of Electric Vehicle Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Living Labs of Electric Vehicle Integration Living Labs of Electric Vehicle Integration Speaker(s): Johan Driesen Date: May 11, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Chris Marnay Electric vehicles and plug-in hybrid vehicles are key to making transportation sustainable and climate change neutral. This talk will focus on the electricity grid integration aspects of wide-scale charging infrastructure: the impact on generation capacity, transmission and distribution are dealt with through measurements, modeling and scenario simulations. The advantages and problems of the possible business models to pay for the charging are discussed. Alternative charging and grid-coupling technology (e.g. wireless inductive charging) is considered. The relationship with the transition towards "smart cities" is discussed. In

62

Category:Smart Grid Projects - Electric Distributions Systems | Open Energy  

Open Energy Info (EERE)

Distributions Systems category. Distributions Systems category. Pages in category "Smart Grid Projects - Electric Distributions Systems" The following 13 pages are in this category, out of 13 total. A Atlantic City Electric Company Smart Grid Project Avista Utilities Smart Grid Project C Consolidated Edison Company of New York, Inc. Smart Grid Project E El Paso Electric Smart Grid Project H Hawaii Electric Co. Inc. Smart Grid Project M Memphis Light, Gas and Water Division Smart Grid Project Municipal Electric Authority of Georgia Smart Grid Project N Northern Virginia Electric Cooperative Smart Grid Project NSTAR Electric Company Smart Grid Project P Powder River Energy Corporation Smart Grid Project P cont. PPL Electric Utilities Corp. Smart Grid Project S Snohomish County Public Utilities District Smart Grid Project

63

Advanced Electric Motor Predictive Maintenance Project  

Science Conference Proceedings (OSTI)

EPRI sponsored the three-year Advanced Electric Motor Predictive Maintenance (AEMPM) project in 2000 to increase the effectiveness of motor maintenance at a time when utilities were in a state of declining motor knowledge due to downsizing and restructuring. The project identified areas for improvement that were common to most utilities and selected appropriate measures to address these concerns. Areas addressed include documenting motor knowledge, increasing utility confidence in newer technologies and ...

2003-05-28T23:59:59.000Z

64

Multiproject baselines for evaluation of electric power projects  

Science Conference Proceedings (OSTI)

Calculating greenhouse gas emissions reductions from climate change mitigation projects requires construction of a baseline that sets emissions levels that would have occurred without the project. This paper describes a standardized multiproject methodology for setting baselines, represented by the emissions rate (kg C/kWh), for electric power projects. A standardized methodology would reduce the transaction costs of projects. The most challenging aspect of setting multiproject emissions rates is determining the vintage and types of plants to include in the baseline and the stringency of the emissions rates to be considered, in order to balance the desire to encourage no- or low-carbon projects while maintaining environmental integrity. The criteria for selecting power plants to include in the baseline depend on characteristics of both the project and the electricity grid it serves. Two case studies illustrate the application of these concepts to the electric power grids in eastern India and South Africa. We use hypothetical, but realistic, climate change projects in each country to illustrate the use of the multiproject methodology, and note the further research required to fully understand the implications of the various choices in constructing and using these baselines.

Sathaye, Jayant; Murtishaw, Scott; Price, Lynn; Lefranc, Maurice; Roy, Joyashree; Winkler, Harald; Spalding-Fecher, Randall

2003-03-12T23:59:59.000Z

65

PARS II - Integrated Project Team Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Project Team Meeting Integrated Project Team Meeting John Makepeace (OECM) Ken Henderson (EES), Norm Ayers (EES) November 19, 2009 2 2 Agenda * Brief Review Last Meeting * List of Action Items * Project Milestones * Communications Channels for Deployment * Requesting Contacts for EM Group 1 & 2 Projects * Information Package to Contractor * Letter of Introduction * CPP Upload Document * Project Data Template * New Action Items * List of EM Group 1 & 2 Projects 3 Action Items Item Action Item Status 1 EES will write the marketing cover letter for the Information Package. C 2 EES will deliver the Preliminary Information Package to OECM by Monday Nov 16, close of business, for review. C 3 A placeholder of COB Tuesday Nov 17 was established for EES to give OECM the Information Package. C 4 Distribution of the package will commence after review by OECM.

66

Wind electric generator project. Final report  

Science Conference Proceedings (OSTI)

The wind generator is installed and connected at Iowa Western Community College. It is heating water through four hot water tanks and has proven to be an excellent demonstration project for the community. The college gets frequent inquiries about the wind mill and has been very cooperative in informing the public about the success. The windmill generates more electricity than is needed to heat four hot water heaters and future plans are to hook up more. The project requires very little maintenance. Attached is a date sheet on the project.

Not Available

1983-09-23T23:59:59.000Z

67

PRECISION INTEGRATOR FOR MINUTE ELECTRIC CURRENTS  

DOE Patents (OSTI)

An integrator is described for measuring the value of integrated minute electrical currents. The device consists of a source capacitor connected in series with the source of such electrical currents, a second capacitor of accurately known capacitance and a source of accurately known and constant potential, means responsive to the potentials developed across the source capacitor for reversibly connecting the second capacitor in series with the source of known potential and with the source capacitor and at a rate proportional to the potential across the source capacitor to maintain the magnitude of the potential across the source capacitor at approximately zero. (AEC)

Hemmendinger, A.; Helmer, R.J.

1961-10-24T23:59:59.000Z

68

Grid-Based Renewable Electricity and Hydrogen Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Electricity Renewable Electricity and Hydrogen Integration Carolyn Elam Senior Project Leader - Hydrogen Production Electric & Hydrogen Technologies & Systems Center National Renewable Energy Laboratory Goals for Electrolysis in Hydrogen Fuel Supply * Goal is to supply hydrogen fuel for 20% of the light- duty vehicle fleet - 12 million short tons of hydrogen annually - 450 TWh per year * Must be competitive - With gasoline, assuming FCV will have twice the efficiency of an ICE - With other hydrogen production methods * Net zero impact or reduction in GHG emissions - Compared to Gasoline ICE - 31% reduction in carbon emissions from the current electricity mix - Compared to Natural Gas-Derived Hydrogen - 65% reduction in carbon emissions from the current electricity mix Goals for Electrolysis (cont.)

69

Integrated Predictive Demand Response Controller Research Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Predictive Demand Response Predictive Demand Response Controller Research Project Integrated Predictive Demand Response Controller Research Project The U.S. Department of Energy (DOE) is currently conducting research into integrated predictive demand response (IPDR) controllers. The project team will attempt to design an IPDR controller so that it can be used in new or existing buildings or in collections of buildings. In the case of collections of buildings, they may be colocated on a single campus or remotely located as long as they are served by a single utility or independent service operator. Project Description This project seeks to perform the necessary applied research, development, and testing to provide a communications interface using industry standard open protocols and emerging National Institute of Standards and Technology

70

Salt Repository Project schedule integration  

SciTech Connect

The Nuclear Waste Policy Act of 1982 defined the process and schedule leading to construction of a nuclear repository available to accept commercial nuclear waste by 1998. The significance of the efforts reported in this paper are that technical staff become equally convinced of the merit of scheduling when time permits, or magnitude requires, that they be intimately involved in the scheduling process. This particular project was also unique in the variety of technical disciplines forced to interact in order to determine schedule constraints between groups. This required a strong and experienced task force to bring the groups together, promulgate the technical principles of the scheduling methodology, and distill the proper logic. Finally, it was a necessity to be end-date constrained, and this required that management mandate realistic scopes of work as well as aggressive assumptions regarding durations of certain critical path activities.

Kopp, H.D.; LaFountain, L.J. (Battelle Memorial Institute, Amarillo, TX (USA))

1988-01-01T23:59:59.000Z

71

MHD Integrated Topping Cycle Project  

DOE Green Energy (OSTI)

A summary of the work is excerpted here. Final design of an MHD channel for the ITC program POC test has been completed. The channel was designed to be capable of 1.5 MW {sub e} power output and a lifetime of 2000 hours. Emphasis was placed upon durability and reliability. Hence, specific measures were taken to design against channel damage due to electric faults. The life-limiting issues associated with electrochemical corrosion and erosion of gas-side surfaces were addressed by the use of various materials with proven wear characteristics in a coal-fired MHD channel environment. Pitting of prototypical sidewall coupons was observed in the CDIF workhorse testing. The most likely cause of the observed pitting, water leaks resulting from cooling water tube braze failures, has been remedied. New brazing procedures and isolation of the sidebar gas-side material from water contact will prevent sidebar pitting in the prototypical channel. Water-side corrosion tests reported in this quarterly report include the latest results of tungsten-copper elements at controlled pH, heat flux and voltage levels. In the combustion subsystem, efforts continued to focus on understanding and improving the current levels of slag recovery and seed utilization achieved by the combustor. Analytical support was also provided in the areas of slag rejection system operation, precombustor operation, and oil burner design modification. Channel data analysis activities continued in support of prototypical coupon testing at the CDIF. Analyses are presented on channel wall slagging behavior and sidewall voltage distributions.

Not Available

1992-02-01T23:59:59.000Z

72

Electricity - Analysis & Projections - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook - Electricity Section. Released: October 8, 2013. Short-term electricity supply, demand, and price projections. Modeling Distributed ...

73

EIA - Reference Case Projections for Electricity Capacity and...  

Gasoline and Diesel Fuel Update (EIA)

for Electricity Capacity and Generation by Fuel (2003-2030) International Energy Outlook 2006 Reference Case Projections for Electricity Capacity and Generation by Fuel Data Tables...

74

Oilfield Flare Gas Electricity Systems (OFFGASES Project)  

Science Conference Proceedings (OSTI)

The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas that is only 4% the strength of natural gas. The cost of producing oil is to a large extent the cost of electric power used to extract and deliver the oil. Researchers have identified stranded and flared gas in California that could generate 400 megawatts of power, and believe that there is at least an additional 2,000 megawatts that have not been identified. Since California accounts for about 14.5% of the total domestic oil production, it is reasonable to assume that about 16,500 megawatts could be generated throughout the United States. This power could restore the cost-effectiveness of thousands of oil wells, increasing oil production by millions of barrels a year, while reducing emissions and greenhouse gas emissions by burning the gas in clean distributed generators rather than flaring or venting the stranded gases. Most turbines and engines are designed for standardized, high-quality gas. However, emerging technologies such as microturbines have increased the options for a broader range of fuels. By demonstrating practical means to consume the four gas streams, the project showed that any gases whose properties are between the extreme conditions also could be utilized. The economics of doing so depends on factors such as the value of additional oil recovered, the price of electricity produced, and the alternate costs to dispose of stranded gas.

Rachel Henderson; Robert Fickes

2007-12-31T23:59:59.000Z

75

NREL: Electricity Integration Research - Working With Us  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Systems Engineering Center Power Systems Engineering Center The Power Systems Engineering Center supports the science and technology goals of the U.S. Department of Energy and NREL toward a sustainable energy future. The center works with the electricity industry to optimize strategies for effectively interconnecting renewable resources and emerging energy efficiency technologies in the existing electric power system. The center focuses on resolving grid integration barriers and providing improved control and management strategies for increased grid flexibility, consumer empowerment, and transportation electrification. Organization Photo of Dr. Santiago Grijalva Dr. Santiago Grijalva is the director of the Power Systems Engineering Center. Dr. Grijalva is a leading researcher on ultra-reliable

76

Table 14a. Average Electricity Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Average Electricity Prices, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars, cents per kilowatt-hour in ""dollar year"" specific to each AEO)"...

77

Guide to Integrating Renewable Energy in Federal Construction: Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Construction to someone by E-mail Project Construction to someone by E-mail Share Guide to Integrating Renewable Energy in Federal Construction: Project Construction on Facebook Tweet about Guide to Integrating Renewable Energy in Federal Construction: Project Construction on Twitter Bookmark Guide to Integrating Renewable Energy in Federal Construction: Project Construction on Google Bookmark Guide to Integrating Renewable Energy in Federal Construction: Project Construction on Delicious Rank Guide to Integrating Renewable Energy in Federal Construction: Project Construction on Digg Find More places to share Guide to Integrating Renewable Energy in Federal Construction: Project Construction on AddThis.com... Home Introduction Assessing Renewable Energy Options Planning, Programming, & Budgeting

78

Nuclear electric propulsion : assessing the design of Project Prometheus.  

E-Print Network (OSTI)

The high fuel efficiency of electric propulsion makes it a viable alternative for long-distance space travel. Project Prometheus was a NASA-led project that sought to demonstrate that distant electric propulsion missions ...

Goycoolea, Martin

2013-01-01T23:59:59.000Z

79

American Electric Power (AEP) Smart Grid Demonstration Host-Site Project Description  

Science Conference Proceedings (OSTI)

This report provides a description of the American Electric Power (AEP) Smart Grid Demonstration Host-Site Project as part of the Electric Power Research Institute's (EPRI's) five-year smart grid demonstration initiative. The EPRI initiative includes core smart grid research and a number of large-scale smart grid projects with 19 funding utility members. The project is focused on integrating large-scale distributed energy resources (DER), including demand response, storage, distributed generation, and di...

2009-09-16T23:59:59.000Z

80

Final report for %22High performance computing for advanced national electric power grid modeling and integration of solar generation resources%22, LDRD Project No. 149016.  

Science Conference Proceedings (OSTI)

Design and operation of the electric power grid (EPG) relies heavily on computational models. High-fidelity, full-order models are used to study transient phenomena on only a small part of the network. Reduced-order dynamic and power flow models are used when analysis involving thousands of nodes are required due to the computational demands when simulating large numbers of nodes. The level of complexity of the future EPG will dramatically increase due to large-scale deployment of variable renewable generation, active load and distributed generation resources, adaptive protection and control systems, and price-responsive demand. High-fidelity modeling of this future grid will require significant advances in coupled, multi-scale tools and their use on high performance computing (HPC) platforms. This LDRD report demonstrates SNL's capability to apply HPC resources to these 3 tasks: (1) High-fidelity, large-scale modeling of power system dynamics; (2) Statistical assessment of grid security via Monte-Carlo simulations of cyber attacks; and (3) Development of models to predict variability of solar resources at locations where little or no ground-based measurements are available.

Reno, Matthew J.; Riehm, Andrew Charles; Hoekstra, Robert John; Munoz-Ramirez, Karina; Stamp, Jason Edwin; Phillips, Laurence R.; Adams, Brian M.; Russo, Thomas V.; Oldfield, Ron A.; McLendon, William Clarence, III; Nelson, Jeffrey Scott; Hansen, Clifford W.; Richardson, Bryan T.; Stein, Joshua S.; Schoenwald, David Alan; Wolfenbarger, Paul R.

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated projects electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Landfill Gas-to-Electricity Demonstration Project  

DOE Green Energy (OSTI)

Medium Btu methane gas is a naturally occurring byproduct of anaerobic digestion of landfilled municipal solid waste. The energy potential of landfill gas in New York State is estimated to be 61 trillion Btu's per year or the equivalent of 10% of the natural gas used annually in the state. The 18-month Landfill Gas-to-Electricity Demonstration Project conducted at the Fresh Kills Landfill in Staten Island, New York conclusively demonstrated that landfill gas is an acceptable fuel for producing electricity using an internal combustion engine/generator set. Landfill gas proved to be a reliable and consistent fuel source during a six-month field test program. Engine exhaust emissions were determined to be comparable to that of natural gas and no unusually high corrosion rates on standard pipeline material were found.

Not Available

1982-10-01T23:59:59.000Z

82

Alternative Energy Projects by Rural Electric Membership Corporations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Energy Projects by Rural Electric Membership Alternative Energy Projects by Rural Electric Membership Corporations (Indiana) Alternative Energy Projects by Rural Electric Membership Corporations (Indiana) < Back Eligibility Agricultural Local Government Rural Electric Cooperative Savings Category Buying & Making Electricity Solar Wind Program Info State Indiana Program Type Corporate Tax Incentive Grant Program Industry Recruitment/Support Performance-Based Incentive Personal Tax Incentives Property Tax Incentive Rebate Program Provider Office of Energy Development This legislation encourages the development of alternative energy projects using clean or renewable resources by rural electric membership corporations. The section establishes the Office of Alternative Energy Incentives within the Office of Energy Development, as well as an

83

Workforce Training for the Electric Power Sector: Map of Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Map of Projects Workforce Training for the Electric Power Sector: Map of Projects Map showing the number of projects awarded in each State through the Workforce Training for the...

84

Tank Waste System Integrated Project Team  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decisional Draft Decisional Draft 1 This document is intended for planning and analysis purposes, assuming a continuing constrained budget environment. Every effort will be made to comply with all applicable environmental and legal obligations, while also assuring that essential functions necessary to protect human health, the environment and national security are maintained. Tank Waste System Tank Waste System Integrated Project Team Integrated Project Team Steve Schneider Office of Engineering and Technology Tank Waste Corporate Board July 29, 2009 2 This document is intended for planning and analysis purposes, assuming a continuing constrained budget environment. Every effort will be made to comply with all applicable environmental and legal obligations, while also assuring that essential functions necessary

85

Update on DOE Integrated Energy Systems Projects  

E-Print Network (OSTI)

The Integrated Energy Systems Program, Office of Industrial Programs U. S. Department of Energy has responsibilities in diverse areas of Industrial Energy Conservation. These activities include Energy Analysis and Diagnostic Centers (EADC) providing energy audit support to small and medium sized manufacturing plants, technology transfer support in conjunction with industrial sector companies and trade associations, funding and direction of the Energy Integrated Farm program, administration of the Industrial Energy Efficiency Improvement Program, and the Industrial Sector Technology Use Model (ISTUM). Recent technology transfer activity with the major industrial trade associations and manufacturing firms has been for the development of industrial energy conservation guides, publication of association conservation seminar proceedings, and cooperative assistance in selected projects designed to enhance conservation in industrial manufacturing activities. This paper briefly describes specific federal industrial conservation program achievements and current and planned technology transfer and industrial conservation projects extending into 1986.

Williams, T. E., Jr.

1984-01-01T23:59:59.000Z

86

TMI-2 Vessel Investigation Project integration report  

Science Conference Proceedings (OSTI)

The Three Mile Island Unit 2 (TMI-2) Vessel Investigation Project (VIP) was an international effort that was sponsored by the Nuclear Energy Agency of the Organization for Economic Cooperation and Development. The primary objectives of the VIP were to extract and examine samples from the lower head and to evaluate the potential modes of failure and the margin of structural integrity that remained in the TMI-2 reactor vessel during the accident. This report presents a summary of the major findings and conclusions that were developed from research during the VIP. Results from the various elements of the project are integrated to form a cohesive understanding of the vessel`s condition after the accident.

Wolf, J. R.; Rempe, J. L.; Stickler, L. A.; Korth, G. E.; Diercks, D. R.; Neimark, L. A.; Akers, D W; Schuetz, B. K.; Shearer, T L; Chavez, S. A.; Thinnes, G. L.; Witt, R. J.; Corradini, M L; Kos, J. A. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1994-03-01T23:59:59.000Z

87

Electricity - Analysis & Projections - U.S. Energy Information  

Gasoline and Diesel Fuel Update (EIA)

Most Requested Most Requested Change category... Most Requested Capacity and Generation Costs, Revenue and Expense Demand Environment Fuel Use/Stocks Policies/Programs Power Plants and Characteristics Projections Sales, Revenue & Prices Trade and Reliability All Reports Filter by: All Data Analysis Projections Weekly Reports Today in Energy - Electricity Short, timely articles with graphs about recent electricity issues and trends Monthly Reports Short-Term Energy Outlook - Electricity Section Released: December 10, 2013 Short-term electricity supply, demand, and price projections. Monthly Energy Review - Electricity Section Released: November 25, 2013 Recent statistics on electricity generation, fuel use and stocks, and end-use. Electricity Monthly Update

88

Category:Smart Grid Projects - Integrated and Crosscutting Systems | Open  

Open Energy Info (EERE)

Smart Grid Projects - Integrated and Crosscutting Systems Smart Grid Projects - Integrated and Crosscutting Systems Jump to: navigation, search Smart Grid Projects - Integrated and Crosscutting Systems Pages in category "Smart Grid Projects - Integrated and Crosscutting Systems" The following 37 pages are in this category, out of 37 total. B Burbank Water and Power Smart Grid Project C Central Lincoln People's Utility District Smart Grid Project City of Anaheim Smart Grid Project City of Auburn, IN Smart Grid Project City of Fort Collins Utilities Smart Grid Project City of Leesburg, Florida Smart Grid Project City of Naperville, Illinois Smart Grid Project City of Wadsworth, OH Smart Grid Project Cuming County Public Power District Smart Grid Project D Detroit Edison Company Smart Grid Project Duke Energy Business Services LLC Smart Grid Project

89

Major Risk Factors to the Integrated Facility Disposition Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Disposition Project The scope of the Integrated Facility Disposition Project (IFDP) needs to comprehensively address a wide range of environmental management risks at the...

90

Electricity - Analysis & Projections - U.S. Energy Information  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity Electricity Glossary › FAQS › Overview Data Electricty Data Browser (interactive query tool with charting & mapping) Summary Sales (consumption), revenue, prices & customers Generation and thermal output Electric power plants generating capacity Consumption of fuels used to generate electricity Receipts of fossil-fuels for electricity generation Average cost of fossil-fuels for electricity generation Fossil-fuel stocks for electricity generation Revenue and expense statistics for... Electricity purchases, sales for resale, imports/exports, reliability Demand, capacity resources, and capacity margins Electricity and the environment All Electricity Data Reports Analysis & Projections Most Requested Capacity and Generation Costs, Revenue and Expense Demand

91

Electricity - Analysis & Projections - U.S. Energy Information  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity Glossary › FAQS › Overview Data Electricty Data Browser (interactive query tool with charting & mapping) Summary Sales (consumption), revenue, prices & customers Generation and thermal output Electric power plants generating capacity Consumption of fuels used to generate electricity Receipts of fossil-fuels for electricity generation Average cost of fossil-fuels for electricity generation Fossil-fuel stocks for electricity generation Revenue and expense statistics for... Electricity purchases, sales for resale, imports/exports, reliability Demand, capacity resources, and capacity margins Electricity and the environment All Electricity Data Reports Analysis & Projections Most Requested Capacity and Generation Costs, Revenue and Expense Demand

92

Category:Smart Grid Projects - Electric Transmission Systems | Open Energy  

Open Energy Info (EERE)

Transmission Systems category. Transmission Systems category. Pages in category "Smart Grid Projects - Electric Transmission Systems" The following 10 pages are in this category, out of 10 total. A American Transmission Company LLC II Smart Grid Project American Transmission Company LLC Smart Grid Project D Duke Energy Carolinas, LLC Smart Grid Project E Entergy Services, Inc. Smart Grid Project I ISO New England, Incorporated Smart Grid Project M Midwest Energy Inc. Smart Grid Project Midwest Independent Transmission System Operator Smart Grid Project N New York Independent System Operator, Inc. Smart Grid Project P PJM Interconnection, LLC Smart Grid Project W Western Electricity Coordinating Council Smart Grid Project Retrieved from "http://en.openei.org/w/index.php?title=Category:Smart_Grid_Projects_-_Electric_Transmission_Systems&oldid=214227

93

Transmission and Grid Integration: Electricity, Resources, & Building Systems Integration (Fact Sheet)  

SciTech Connect

Factsheet developed to describe the activites of the Transmission and Grid Integration Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

Not Available

2009-09-01T23:59:59.000Z

94

Projective metrizability problem and formal integrability  

E-Print Network (OSTI)

The projective metrizability problem can be formulated as follows: under what conditions the geodesics of a given spray coincide with the geodesics of some Finsler space, as oriented curves. In Theorem 3.8 we reformulate the projective metrizability problem for a spray in terms of a first order partial differential operator $P_1$ and a set of algebraic conditions on semi-basic 1-forms. We discuss the formal integrability of $P_1$ using two sufficient conditions provided by Cartan-K\\"ahler Theorem. We prove in Theorem 4.2 that the symbol of $P_1$ is involutive and hence one of the two conditions is always satisfied. In Theorem 4.3 we prove that there is only one obstruction to the second condition for the formal integrability of $P_1$, and this obstruction is due to the curvature tensor of the induced nonlinear connection. When the curvature obstruction is satisfied, the projective metrizability problem reduces to the discussion of the algebraic conditions, which as we show are always satisfied. Based on these...

Bucataru, Ioan

2011-01-01T23:59:59.000Z

95

Mongolia Renewable Energy and Rural Electricity Access Project | Open  

Open Energy Info (EERE)

Mongolia Renewable Energy and Rural Electricity Access Project Mongolia Renewable Energy and Rural Electricity Access Project Jump to: navigation, search Name of project Mongolia Renewable Energy and Rural Electricity Access Project Location of project Mongolia Energy Services Lighting, Cooking and water heating, Space heating, Cooling, Earning a living Year initiated 2006 Organization World Bank Website http://documents.worldbank.org Coordinates 46.862496°, 103.846656° References The World Bank[1] The objective of the Renewable Energy and Rural Electricity Access Project is to increase access to electricity and improve reliability of electricity service among the herder population and in off-grid soum centers by: (i) assisting the development of institutions and delivery mechanisms; (ii) facilitating herders' investments in Solar Home Systems (SHSs) and small

96

Project Brief: General Electric, GE Global Research  

Science Conference Proceedings (OSTI)

... for rapidly routing electrical energy to customers from diverse sources such as wind and solar powered devices. RECIPIENT: General Electric, GE ...

2010-10-05T23:59:59.000Z

97

South Mississippi Electric Power Association Smart Grid Project (Mississippi)  

Energy.gov (U.S. Department of Energy (DOE))

South Mississippi Electric Power Associations (SMEPA) smart grid project involves the deployment of advanced metering infrastructure (AMI) and covers the Generation & Transmission (G&T)...

98

ESS 2012 Peer Review - Wholesale Electricity Market Design Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

horizontal position with even amount of white space between photos and header Wholesale Electricity Market Design Project September 28, 2012 Jim Ellison, Verne Loose, Ray Byrne,...

99

Table 14b. Average Electricity Prices, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

b. Average Electricity Prices, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars, cents per kilowatt-hour) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002...

100

Table 14b. Average Electricity Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

b. Average Electricity Prices, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars, cents per kilowatt-hour)" ,1993,1994,1995,1996,1997,1998,1999,2000,200...

Note: This page contains sample records for the topic "integrated projects electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Table 11b. Coal Prices to Electric Generating Plants, Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

b. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars per million Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001...

102

Klondike III / Biglow Canyon Wind Integration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Proposed Action and Alternatives 2-3 Proposed Action and Alternatives 2-3 Figure 1 Proposed 230-kV Towers and Rights-of-Way Klondike III/Biglow Canyon Wind Integration Project Bonneville Power Administration Proposed Action and Alternatives 2-4 Figure 1, continued CUMULATIVE IMPACTS ANALYSIS, PROPOSED WIND PROJECTS, SHERMAN COUNTY, WASHINGTON March 2006 WEST, Inc. 32 Figure 1. Region map of wind projects proposed for Sherman County. D e s c h u t e s Ri ver C a n y o n C o l u m b ia R i v e r Hwy 19 H w y 2 0 6 H w y 9 7 I 8 4 Grass Valley Moro Wasco Biggs Arlington Condon Fourmile Canyon McDonald Ferry Biggs Junction Deschutes River Crossing The Dalles Complex RM 15.9-16.8 RM 40 Sherman Co Wasco Co G i l l i a m C o Gilliam Co Morrow Co Rowena Plateau Historic Columbia River Highway John D a y R i v e r C a n y o n P:\B\BPAX00000324\0600INFO\GS\arcmap\figures\visiblity_tech_report\fig2_visual_resources_or.mxd January 9, 2006

103

Integrated electric alternators/active filters  

E-Print Network (OSTI)

In response to energy crisis and power quality concerns, three different methodologies to integrate the concept of active filtering into the alternators are proposed. Wind energy, due to its free availability and its clean and renewable character, ranks as the most promising renewable energy resource that could play a key role in solving the worldwide energy crisis. An Integrated Doubly-fed Electric Alternator/Active filter (IDEA) for wind energy conversion systems is proposed. The proposed IDEA is capable of simultaneous capturing maximum power of wind energy and improving power quality, which are achieved by canceling the most significant and troublesome harmonics of the utility grid and power factor correction and reactive power compensation in the grid. The back-to-back current regulated power converters are employed to excite the rotor of IDEA. The control strategy of rotor-side power converter is based on position sensoreless field oriented control method with higher power density. Analysis and experimental results are presented to demonstrate the effectiveness of the proposed IDEA. In next step, an integrated synchronous machine/active filter is discussed. The proposed technology is essentially a rotating synchronous machine with suitable modification to its field excitation circuit to allow dc and ac excitations. It is shown that by controlling the ac excitation, the 5th and 7th harmonics currents of the utility are compensated. The proposed method is cost effective because it can be applied to existing standby generators in commercial and industrial plants with minimal modification to the excitation circuits. To boost the gain of harmonic compensatory, an advanced electric machine is proposed. An Asymmetric Airgap Concentrated Winding Synchronous Machine (AACWSM) with ac and dc excitation was designed and employed. It is shown that the AACWSM with its unique design, in addition to power generation capability, could be used to compensate the most dominant current harmonics of the utility. The proposed AACWSM can compensate for the 5th and 7th harmonics currents in the grid by controlling the ac field excitation. In addition, the 11th and 13th harmonics currents are also significantly reduced. This system can be used at medium and low voltages for generation or motoring mode of operation.

Abolhassani, Mehdi Towliat

2005-05-01T23:59:59.000Z

104

Electric Vehicle Grid Integration for Sustainable Military Installations (Presentation)  

DOE Green Energy (OSTI)

This presentation discusses electric vehicle grid integration for sustainable military installations. Fort Carson Military Reservation in Colorado Springs is used as a case study.

Simpson, M.

2011-05-05T23:59:59.000Z

105

NREL: Transmission Grid Integration - Electricity Market Design  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Market Design Researchers at NREL are studying electricity market designs to find ways to better accommodate variable renewable energy resources and maximize...

106

NSLS-II | NEXT Integrated Project Team | Home  

NLE Websites -- All DOE Office Websites (Extended Search)

NEXT Integrated Project Team NEXT Integrated Project Team NEXT stands for NSLS-II Experimental Tools, a set of six beamlines being developed for the National Synchrotron Light Source II (NSLS-II), with funding from the U.S. Department of Energy (DOE). DOE uses an integrated project teaming approach for managing the NEXT Project. This Integrated Project Team (IPT) is organized and led by the NSLS-II Federal Project Director. It is an essential element in DOE's acquisition process and is being used during all phases of the project's life cycle. This team consists of professionals representing diverse disciplines with the specific knowledge, skills, and abilities to support the Federal Project Director in successfully executing the project. The IPT for the NEXT Project will consist of members from both DOE and the

107

NSLS-II | ABBIX Integrated Project Team | Home  

NLE Websites -- All DOE Office Websites (Extended Search)

ABBIX Integrated Project Team ABBIX Integrated Project Team ABBIX stands for Advanced Beamlines for Biological Investigations with X-rays, a set of three beamlines being developed for the National Synchrotron Light Source II (NSLS-II), with funding from the National Institutes of Health. ABBIX uses DOE project management practices and systems, including an integrated project teaming management approach. This Integrated Project Team (IPT), organized and led by the ABBIX Project Manager, is being used during all phases of the project's life cycle. This team consists of professionals representing diverse disciplines with the specific knowledge, skills, and abilities to support the ABBIX Project Manager in successfully executing the project. The IPT for the ABBIX Project will consist of

108

Electricity - Analysis & Projections - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Analysis & Projections. Monthly and yearly energy forecasts, analysis of energy topics, financial analysis, Congressional reports. Markets & ...

109

Electric Power Metrology Programs and Projects  

Science Conference Proceedings (OSTI)

... Contact principal investigators more. Electric Power Metrology and the Smart Grid Last Updated Date: 10/03/2011 Our ...

2011-12-01T23:59:59.000Z

110

Secretarial Memorandum on Integrating Project Management with NEPA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretarial Memorandum on Integrating Project Management with NEPA Secretarial Memorandum on Integrating Project Management with NEPA Compliance to Improve Decision Making Secretarial Memorandum on Integrating Project Management with NEPA Compliance to Improve Decision Making June 12, 2012 - 4:14pm Addthis Declaring that "Compliance with [NEPA] is a pre-requisite to successful implementation of DOE programs and projects," the Secretary has signed a memorandum on "Improved Decision Making through the Integration of Program and Project Management with National Environmental Policy Act Compliance." The memo urges better use of existing tools and guidance, and highlights principles for strengthening NEPA compliance - for example, through Field and Headquarters teamwork, realistic schedules, and performance

111

ASEO2011: Electric Power Projections for EMM Region - SERC Reliability  

Open Energy Info (EERE)

ASEO2011: Electric Power Projections for EMM Region - SERC Reliability ASEO2011: Electric Power Projections for EMM Region - SERC Reliability Corporation / Virginia-Carolina Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 88, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Carolina EIA Electric power projections Virginia Data application/vnd.ms-excel icon ASEO2011: Electric Power Projections for EMM Region - SERC Reliability Corporation / Virginia-Carolina- Reference Case (xls, 259.3 KiB)

112

EIA - Appendix H - Reference Case Projections for Electricity Capacity and  

Gasoline and Diesel Fuel Update (EIA)

Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2005-2030) Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2005-2030) International Energy Outlook 2008 Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2005-2030) Formats Data Table Titles (1 to 12 complete) Reference Case Projections for Electricity Capacity and Generation by Fuel Data Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections for Electricity Capacity and Generation by Fuel Data Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table H1 World Total Installed Generating Capacity by Region and Country Table H1. World Total Installed Generating Capacity by Region and Country. Need help, contact the National Energy Information Center at 202-586-8800.

113

Request for Comments on the Electric Grid Integration Technical Workshops  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Comments on the Electric Grid Integration Technical for Comments on the Electric Grid Integration Technical Workshops Summaries: Federal Register Notice Volume 78, No. 35 - Feb. 21, 2013 Request for Comments on the Electric Grid Integration Technical Workshops Summaries: Federal Register Notice Volume 78, No. 35 - Feb. 21, 2013 Notice is hereby given that two documents are publicly available and the Department of Energy is requesting public comments. The documents are the Electricity Distribution System Workshop Discussion Summary and the Electricity Transmission System Workshop Discussion Summary. Written comments are to be received no later than March 25, 2013. For details on how to submit comments, please view the Federal Register Notice, below. Request for Comments on the Electric Grid Integration Technical Workshops

114

Request for Comments on the Electric Grid Integration Technical Workshops  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Request for Comments on the Electric Grid Integration Technical Request for Comments on the Electric Grid Integration Technical Workshops Summaries: Federal Register Notice Volume 78, No. 35 - Feb. 21, 2013 Request for Comments on the Electric Grid Integration Technical Workshops Summaries: Federal Register Notice Volume 78, No. 35 - Feb. 21, 2013 Notice is hereby given that two documents are publicly available and the Department of Energy is requesting public comments. The documents are the Electricity Distribution System Workshop Discussion Summary and the Electricity Transmission System Workshop Discussion Summary. Written comments are to be received no later than March 25, 2013. For details on how to submit comments, please view the Federal Register Notice, below. Request for Comments on the Electric Grid Integration Technical Workshops

115

Integration of fluctuating energy by electricity price control  

E-Print Network (OSTI)

Integration of fluctuating energy by electricity price control Master Thesis Olivier Corradi can be activated by means of a varying electricity price. We will focus on the appliances that offer results in a price that may be characterised as the market price of electricity in the Nordic countries

116

The Technology Integration Outreach Project: Developing "Best Practices" Curriculum Units  

Science Conference Proceedings (OSTI)

The Technology Integration Outreach Project (TIOP) is a joint project between the Southeast Interactive Long Distance Learning Consortium (SILDL), and University of South Dakota School of Education's Professional Development Center (PDC) and it's Learning ...

Mary Engstrom; Rosanne Yost; Ray Thompson; Don Versteeg

2002-12-01T23:59:59.000Z

117

Spent Nuclear Fuel project integrated safety management plan  

SciTech Connect

This document is being revised in its entirety and the document title is being revised to ``Spent Nuclear Fuel Project Integrated Safety Management Plan.

Daschke, K.D.

1996-09-17T23:59:59.000Z

118

Oklahoma Gas and Electric Company Smart Grid Project | Open Energy  

Open Energy Info (EERE)

and Electric Company Smart Grid Project and Electric Company Smart Grid Project Jump to: navigation, search Project Lead Oklahoma Gas and Electric Company Country United States Headquarters Location Oklahoma City, Oklahoma Additional Benefit Places Arkansas Recovery Act Funding $130,000,000.00 Total Project Value $357376037 Coverage Area Coverage Map: Oklahoma Gas and Electric Company Smart Grid Project Coordinates 35.4675602°, -97.5164276° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

119

Sioux Valley Southwestern Electric Cooperative, Inc. Smart Grid Project |  

Open Energy Info (EERE)

Sioux Valley Southwestern Electric Cooperative, Inc. Smart Grid Project Sioux Valley Southwestern Electric Cooperative, Inc. Smart Grid Project Jump to: navigation, search Project Lead Sioux Valley Southwestern Electric Cooperative, Inc. Country United States Headquarters Location Colman, South Dakota Additional Benefit Places Minnesota Recovery Act Funding $4,016,368.00 Total Project Value $8,032,736.00 Coverage Area Coverage Map: Sioux Valley Southwestern Electric Cooperative, Inc. Smart Grid Project Coordinates 43.9824719°, -96.8144973° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

120

New Hampshire Electric Cooperative Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Hampshire Electric Cooperative Smart Grid Project Hampshire Electric Cooperative Smart Grid Project Jump to: navigation, search Project Lead New Hampshire Electric Cooperative Country United States Headquarters Location Plymouth, New Hampshire Recovery Act Funding $15,815,225.00 Total Project Value $35,144,946.00 Coverage Area Coverage Map: New Hampshire Electric Cooperative Smart Grid Project Coordinates 43.7570166°, -71.6881337° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "integrated projects electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Tri State Electric Membership Corporation Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Electric Membership Corporation Smart Grid Project Electric Membership Corporation Smart Grid Project Jump to: navigation, search Project Lead Tri State Electric Membership Corporation Country United States Headquarters Location McCaysville, Georgia Additional Benefit Places Tennessee Recovery Act Funding $1,138,060.00 Total Project Value $2,421,405.00 Coverage Area Coverage Map: Tri State Electric Membership Corporation Smart Grid Project Coordinates 34.9861914°, -84.3713117° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

122

Lakeland Electric Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Lakeland Electric Smart Grid Project Lakeland Electric Smart Grid Project Jump to: navigation, search Project Lead Lakeland Electric Country United States Headquarters Location Lakeland, Florida Recovery Act Funding $14850000 Total Project Value $35078152 Coverage Area Coverage Map: Lakeland Electric Smart Grid Project Coordinates 28.0394654°, -81.9498042° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

123

Hawaii Electric Co. Inc. Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Electric Co. Inc. Smart Grid Project Electric Co. Inc. Smart Grid Project Jump to: navigation, search Project Lead Hawaii Electric Co. Inc. Country United States Headquarters Location Oahu, Hawaii Recovery Act Funding $5,347,598.00 Total Project Value $10,695,195.00 Coverage Area Coverage Map: Hawaii Electric Co. Inc. Smart Grid Project Coordinates 21.4389123°, -158.0000565° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

124

Quantum Electrical Measurements Programs and Projects  

Science Conference Proceedings (OSTI)

... This project provides the basis for a new definition of mass, based on ... Energy Determination of X-Ray Transition Energies Using the NIST TES ...

2010-05-24T23:59:59.000Z

125

Integrated Inverter Control for Multiple Electric Machines  

engine volume to house them all. To improve options for motor design, ORNL researchers invented an integrated

126

Annual Energy Outlook with Projections to 2025 - Market Trends- Electricity  

Gasoline and Diesel Fuel Update (EIA)

Electricity Demand and Supply Electricity Demand and Supply Annual Energy Outlook 2005 Market Trends - Electricity Demand and Supply Continued Growth in Electricity Use Is Expected in All Sectors Figure 66. Annual electricity sales by sector, 1970-2025 (billion kilowatthours). Having problems, call our National Energy Information Center at 202-586-8800 for help. Figure data Total electricity sales are projected to increase at an average annual rate of 1.9 percent in the AEO2005 reference case, from 3,481 billion kilowatthours in 2003 to 5,220 billion kilowatthours in 2025 (Figure 66). From 2003 to 2025, annual growth in electricity sales is projected to average 1.6 percent in the residential sector, 2.5 percent in the commercial sector, and 1.3 percent in the industrial sector.

127

Integration of electric vehicles into distribution networks.  

E-Print Network (OSTI)

??The objectives of this research were to investigate the impact of electric vehicle battery charging on grid demand at a national level and on the (more)

Papadopoulos, Panagiotis

2012-01-01T23:59:59.000Z

128

Multiproject baselines for evaluation of electric power projects  

E-Print Network (OSTI)

the coal and natural gas power plants. The coal plant coulda new natural gas plant and imported hydroelectric power (natural gas power project may claim that it offsets electricity from a coal power plant

2003-01-01T23:59:59.000Z

129

Think City Electric Vehicle Democstration Program Final Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

7182005 AWARD DE-FG26-O1ID14048 THNK city ELECTRIC VEHICLE DEMONSTRATION PROGRAM FINAL PROJECT REPORT June 2005 Ford Motor Company Sustainable Mobility Technologies 2 7182005...

130

An analysis of battery electric vehicle production projections  

E-Print Network (OSTI)

In mid 2008 and early 2009 Deutsche Bank and The Boston Consulting Group each released separate reports detailing projected Battery Electric Vehicle production through 2020. These reports both outlined scenarios in which ...

Cunningham, John Shamus

2009-01-01T23:59:59.000Z

131

World Energy Projection System Plus Model Documentation: World Electricity Model  

Reports and Publications (EIA)

This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS+) World Electricity Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

2011-09-29T23:59:59.000Z

132

EIA - Appendix H - Reference Case Projections for Electricity Capacity and  

Gasoline and Diesel Fuel Update (EIA)

for Electricity Capacity and Generation by Fuel Tables (2006-2030) for Electricity Capacity and Generation by Fuel Tables (2006-2030) International Energy Outlook 2009 Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2006-2030) Formats Data Table Titles (1 to 18 complete) Reference Case Projections for Electricity Capacity and Generation by Fuel Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections for Electricity Capacity and Generation by Fuel Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table H1 World Total Installed Generating Capacity by Region and Country Table H1. World Total Installed Generating Capacity by Region and Country. Need help, contact the National Energy Information Center at 202-586-8800.

133

EIA - Appendix H - Reference Case Projections for Electricity Capacity and  

Gasoline and Diesel Fuel Update (EIA)

for Electricity Capacity and Generation by Fuel Tables (2007-2035) for Electricity Capacity and Generation by Fuel Tables (2007-2035) International Energy Outlook 2010 Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2007-2035) Formats Data Table Titles (1 to 18 complete) Reference Case Projections for Electricity Capacity and Generation by Fuel Tables. Need help, contact the National Energy Information Center at 202-586-8800. Appendix H. Reference Case Projections for Electricity Capacity and Generation by Fuel Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table H1 World Total Installed Generating Capacity by Region and Country Table H1. World Total Installed Generating Capacity by Region and Country. Need help, contact the National Energy Information Center at 202-586-8800.

134

The Virtual Project Data Integration Testbed  

Science Conference Proceedings (OSTI)

... computer integrated construction, operations and maintenance) and supporting databases and documentation for a power plant or water treatment ...

2010-10-05T23:59:59.000Z

135

Choquet integrals as projection operators for quantified tomographic reconstruction  

Science Conference Proceedings (OSTI)

In this paper, we propose to investigate and analyze a new method for performing quantified projection and back-projection in emission tomography. This method is based on using non-summative kernels, capacities and asymmetric Choquet integral to obtain ... Keywords: Capacity, Choquet integral, Hough transform, Quantification, Radon transform, Single photon emission computed tomography

Agns Rico; Olivier Strauss; Denis Mariano-Goulart

2009-01-01T23:59:59.000Z

136

An Experiment to Improve Cost Estimation and Project Tracking for Software and Systems Integration Projects  

E-Print Network (OSTI)

An Experiment to Improve Cost Estimation and Project Tracking for Software and Systems Integration to improve cost estimation and project tracking. 1. Introduction In order to remain competitive, ICL (as well for integration projects, to reduce time to market and to reduce costs without detriment to the quality

Henderson, Peter

137

Record of Decision - Klondike III/ Biglow Canyon Wind Integration Project - 10-25-06  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Klondike III/Biglow Canyon Wind Integration Project Klondike III/Biglow Canyon Wind Integration Project DECISION The Bonneville Power Administration (BPA) has decided to implement the Proposed Action identified in the Klondike III/Biglow Canyon Wind Integration Project Final Environmental Impact Statement (FEIS) (DOE/EIS-0374, September 2006). Under the Proposed Action, BPA will offer PPM Energy, Inc. (PPM) contract terms for interconnection of the proposed Klondike III Wind Project, located in Sherman County, Oregon, with the Federal Columbia River Transmission System (FCRTS). BPA will also offer Portland General Electric (PGE) 1 contract terms for interconnection of its proposed Biglow Canyon Wind Farm, also located in Sherman County, Oregon, with the FCRTS, as proposed in the FEIS. To interconnect these wind projects,

138

Integrating Ecological Data: Notes from the Grasslands ANPP Data Integration Project  

E-Print Network (OSTI)

Integrating Ecological Data: Notes from the Grasslands ANPP Data Integration Project Judith B, Kansas State University, Manhattan, KS 66506, 7 South African National Parks, Scientific Services across sites. The Grasslands ANPP Data Integration (GDI) project has brought together experts in ecology

139

Integrated Inverter For Driving Multiple Electric Machines  

DOE Patents (OSTI)

An electric machine drive (50) has a plurality of inverters (50a, 50b) for controlling respective electric machines (57, 62), which may include a three-phase main traction machine (57) and two-phase accessory machines (62) in a hybrid or electric vehicle. The drive (50) has a common control section (53, 54) for controlling the plurality of inverters (50a, 50b) with only one microelectronic processor (54) for controlling the plurality of inverters (50a, 50b), only one gate driver circuit (53) for controlling conduction of semiconductor switches (S1-S10) in the plurality of inverters (50a, 50b), and also includes a common dc bus (70), a common dc bus filtering capacitor (C1) and a common dc bus voltage sensor (67). The electric machines (57, 62) may be synchronous machines, induction machines, or PM machines and may be operated in a motoring mode or a generating mode.

Su, Gui-Jia [Knoxville, TN; Hsu, John S [Oak Ridge, TN

2006-04-04T23:59:59.000Z

140

Second-order accurate projective integrators for multiscale problems  

Science Conference Proceedings (OSTI)

We introduce new projective versions of second-order accurate Runge-Kutta and Adams-Bashforth methods, and demonstrate their use as outer integrators in solving stiff differential systems. An important outcome is that the new outer integrators, when ... Keywords: Explicit, Multiscale, Parabolic, Stability, Stiff, Teleprojective integration

Steven L. Lee; C. William Gear

2007-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated projects electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

A design of an integrated document system for project management  

Science Conference Proceedings (OSTI)

The paper describes a design model for an integrated document system for project management, which takes into account the key requirement of ensuring consistent and high-quality project management documentation. The model is based on structured documents ... Keywords: document system, model, project management

Iulian Intorsureanu; Rodica Mihalca; Adina Uta; Anca Andreescu

2009-06-01T23:59:59.000Z

142

Spent nuclear fuel project integrated schedule plan  

SciTech Connect

The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel.

Squires, K.G.

1995-03-06T23:59:59.000Z

143

Updated projections of air quality impacts for electric cars  

DOE Green Energy (OSTI)

Future air pollution emissions and resulting air quality are projected for the five primary air pollutants: total suspended particulates (TSP), sulfur oxides (SO/sub x/), nitrogen oxides (NO/sub x), total hydrocarbons (THC), and carbon monoxide (CO). Separate projections are made for three future years - 1980, 1990, and 2000 - and for three assumed levels of electric car use - zero, 10%, and 100%. Emissions and air quality are analyzed for each of the 24 Air Quality Control Regions (AQCRs) having the largest populations in 1975. Emission projections are made using an improved version of the Regional Emissions Projection System which uses the 1975 National Emissions Data System, 1977 state OBERS growth projections, recent state implementation plans and new source performance standards, and electric utility fuel forecasts from the Recharge Capacity Projection System.

Collins, M.M.

1979-07-01T23:59:59.000Z

144

Methodological and Practical Considerations for Developing Multiproject Baselines for Electric Power and Cement Industry Projects in Central America  

E-Print Network (OSTI)

energy-ef?ciency and electric power projects, Berkeley, CA,for evaluation of electric power projects, Energy PolicyCentral America, electric power, mitigation projects,

Murtishaw, Scott; Sathaye, Jayant; Galitsky, Christina; Dorion, Kristel

2008-01-01T23:59:59.000Z

145

Integration and electrical characterization of carbon nanotube via interconnects  

Science Conference Proceedings (OSTI)

Carbon nanotubes (CNTs) are considered a promising material for interconnects in the future generations of microchips because of their low electrical resistance and excellent mechanical stability. In particular, CNT-based contacts appear advantageous ... Keywords: CNT, Carbon nanotubes, Contact, Electrical characterization, Integration, Interconnect

Nicolo' Chiodarelli; Yunlong Li; Daire J. Cott; Sofie Mertens; Nick Peys; Marc Heyns; Stefan De Gendt; Guido Groeseneken; Philippe M. Vereecken

2011-05-01T23:59:59.000Z

146

Waukesha Electric Systems Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

Electric Systems Smart Grid Demonstration Project Electric Systems Smart Grid Demonstration Project Jump to: navigation, search Project Lead Waukesha Electric Systems Country United States Headquarters Location Waukesha, Wisconsin Recovery Act Funding $10,744,409.00 Total Project Value $21,548,821.00 Coordinates 43.0116784°, -88.2314813° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

147

Klondike III / Biglow Canyon Wind Integration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cumulative Impacts Analysis For Avian Cumulative Impacts Analysis For Avian Resources From Proposed Wind Projects In Sherman County, Washington CUMULATIVE IMPACTS ANALYSIS FOR AVIAN RESOURCES FROM PROPOSED WIND PROJECTS IN SHERMAN COUNTY, WASHINGTON FINAL REPORT March 2006 Prepared For: Bonneville Power Administration 905 NE 11th Avenue Portland, Oregon, 97232 Prepared By: David Young, Kimberly Bay, & Victoria Poulton Western EcoSystems Technology, Inc. 2003 Central Avenue Cheyenne, Wyoming 82001 CUMULATIVE IMPACTS ANALYSIS, PROPOSED WIND PROJECTS, SHERMAN COUNTY, WASHINGTON March 2006 WEST, Inc. i TABLE OF CONTENTS 1.0 INTRODUCTION AND BACKGROUND ............................................................................. 1 2.0 METHODS ...............................................................................................................................

148

Electric Power Board of Chattanooga Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Chattanooga Smart Grid Project Chattanooga Smart Grid Project Jump to: navigation, search Project Lead Electric Power Board of Chattanooga Country United States Headquarters Location Chattanooga, Tennessee Additional Benefit Places Georgia Recovery Act Funding $111,567,606.00 Total Project Value $226,707,562.00 Coverage Area Coverage Map: Electric Power Board of Chattanooga Smart Grid Project Coordinates 35.0456297°, -85.3096801° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

149

Municipal Electric Authority of Georgia Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Georgia Smart Grid Project Georgia Smart Grid Project Jump to: navigation, search Project Lead Municipal Electric Authority of Georgia Country United States Headquarters Location Atlanta, Georgia Recovery Act Funding $12,267,350.00 Total Project Value $24,534,700.00 Coverage Area Coverage Map: Municipal Electric Authority of Georgia Smart Grid Project Coordinates 33.7489954°, -84.3879824° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

150

Atlantic City Electric Company Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Smart Grid Project Smart Grid Project Jump to: navigation, search Project Lead Atlantic City Electric Company Country United States Headquarters Location Mays Landing, New Jersey Additional Benefit Places Maryland, District of Columbia Recovery Act Funding $18,700,000.00 Total Project Value $37,400,000.00 Coverage Area Coverage Map: Atlantic City Electric Company Smart Grid Project Coordinates 39.4523385°, -74.7276626° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

151

NSTAR Electric Company Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Company Smart Grid Project Company Smart Grid Project Jump to: navigation, search Project Lead NSTAR Electric Company Country United States Headquarters Location Norfolk, Massachusetts Recovery Act Funding $10,061,883.00 Total Project Value $20,123,766.00 Coverage Area Coverage Map: NSTAR Electric Company Smart Grid Project Coordinates 42.1195426°, -71.3250563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

152

Connecticut Municipal Electric Energy Cooperative Smart Grid Project | Open  

Open Energy Info (EERE)

Smart Grid Project Smart Grid Project Jump to: navigation, search Project Lead Connecticut Municipal Electric Energy Cooperative Country United States Headquarters Location Norwich, Connecticut Recovery Act Funding $9,188,050.00 Total Project Value $18,376,100.00 Coverage Area Coverage Map: Connecticut Municipal Electric Energy Cooperative Smart Grid Project Coordinates 41.5242649°, -72.0759105° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

153

PPL Electric Utilities Corp. Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Corp. Smart Grid Project Corp. Smart Grid Project Jump to: navigation, search Project Lead PPL Electric Utilities Corp. Country United States Headquarters Location Allentown, Pennsylvania Recovery Act Funding $19,054,516.00 Total Project Value $38,109,032.00 Coverage Area Coverage Map: PPL Electric Utilities Corp. Smart Grid Project Coordinates 40.6084305°, -75.4901833° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

154

Northern Virginia Electric Cooperative Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Cooperative Smart Grid Project Cooperative Smart Grid Project Jump to: navigation, search Project Lead Northern Virginia Electric Cooperative Country United States Headquarters Location Manassas, Virginia Recovery Act Funding $5,000,000.00 Total Project Value $10,000,000.00 Coverage Area Coverage Map: Northern Virginia Electric Cooperative Smart Grid Project Coordinates 38.7509488°, -77.4752667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

155

Potomac Electric Power Company (PEPCO) Smart Grid Project (Maryland) | Open  

Open Energy Info (EERE)

Smart Grid Project (Maryland) Smart Grid Project (Maryland) Jump to: navigation, search Project Lead Potomac Electric Power Company (PEPCO) Country United States Headquarters Location Washington, District of Columbia Recovery Act Funding $104780549 Total Project Value $209561098 Coverage Area Coverage Map: Potomac Electric Power Company (PEPCO) Smart Grid Project (Maryland) Coordinates 38.8951118°, -77.0363658° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

156

Western Electricity Coordinating Council Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Council Smart Grid Project Council Smart Grid Project Jump to: navigation, search Project Lead Western Electricity Coordinating Council Country United States Headquarters Location Salt Lake City, Utah Additional Benefit Places Arizona, California, Colorado, Idaho, Montana, New Mexico, Nevada, Oregon, South Dakota, Texas, Washington Recovery Act Funding $53,890,000.00 Total Project Value $107,780,000.00 Coverage Area Coverage Map: Western Electricity Coordinating Council Smart Grid Project Coordinates 40.7607793°, -111.8910474° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

157

South Mississippi Electric Power Association (SMEPA) Smart Grid Project |  

Open Energy Info (EERE)

Association (SMEPA) Smart Grid Project Association (SMEPA) Smart Grid Project Jump to: navigation, search Project Lead South Mississippi Electric Power Association (SMEPA) Country United States Headquarters Location Hattiesburg, Mississippi Recovery Act Funding $30,563,967.00 Total Project Value $61,127,935.00 Coverage Area Coverage Map: South Mississippi Electric Power Association (SMEPA) Smart Grid Project Coordinates 31.3271189°, -89.2903392° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

158

South Kentucky Rural Electric Cooperative Corporation Smart Grid Project |  

Open Energy Info (EERE)

Corporation Smart Grid Project Corporation Smart Grid Project Jump to: navigation, search Project Lead South Kentucky Rural Electric Cooperative Corporation Country United States Headquarters Location Somerset, Kentucky Recovery Act Funding $9538234 Total Project Value $19636295 Coverage Area Coverage Map: South Kentucky Rural Electric Cooperative Corporation Smart Grid Project Coordinates 37.0920222°, -84.6041084° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

159

Wellsboro Electric Company Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Company Smart Grid Project Company Smart Grid Project Jump to: navigation, search Project Lead Wellsboro Electric Company Country United States Headquarters Location Wellsboro, Pennsylvania Recovery Act Funding $431,625.00 Total Project Value $961,195.00 Coverage Area Coverage Map: Wellsboro Electric Company Smart Grid Project Coordinates 41.7486838°, -77.3005304° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

160

Photovoltaic concentrator technology development project. Sixth project integration meeting  

DOE Green Energy (OSTI)

Thirty-three abstracts and short papers are presented which describe the current status of research, development, and demonstration of concentrator solar cell technology. Solar concentrators discussed include the parabolic trough, linear focus Fresnel lens, point focus Fresnel lens, and the parabolic dish. Solar cells studied include silicon, GaAs, and AlGaAs. Research on multiple junction cells, combined photovoltaic/thermal collectors, back contact solar cells, and beam splitter modules is described. Concentrator solar cell demonstration programs are reported. Contractor status summaries are given for 33 US DOE concentrator solar cell contracts; a description of the project, project status, and key results to date is included. (WHK)

None

1980-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated projects electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

PARS II - Integrated Project Team Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

John Makepeace (OECM) Kai Mong (EES), Ken Henderson (EES), Norm Ayers (EES) October 29, 2009 2 2 Agenda * PARS II OA & CPP Software * PARS II Deployment Timeline * Deployment Overview * Organizational Roles & Responsibilities * Project List and Schedule * Next Steps 3 PARS II OA & CPP Software * Oversight & Assessment (OA) * Web interface collects summary-level project data: status assessments, forecasts, PB, KPPs * Used by FPD, Program and OECM each month * Contractor Project Performance (CPP) * Web interface for uploading contractor's project files: earned value, schedule, variance, MR, risk * Used by contractor each month 4 PARS II Deployment Timeline 4 11/1/2009 12/1/2009 1/1/2010 2/1/2010 3/1/2010 4/1/2010 5/1/2010 6/1/2010 7/1/2010 8/1/2010 9/1/2010 10/1/2010 11/1/2010

162

Project Fever - Fostering Electric Vehicle Expansion in the Rockies  

DOE Green Energy (OSTI)

Project FEVER (Fostering Electric Vehicle Expansion in the Rockies) is a part of the Clean Cities Community Readiness and Planning for Plug-in Electric Vehicles and Charging Infrastructure Funding Opportunity funded by the U.S. Department of Energy (DOE) for the state of Colorado. Tasks undertaken in this project include: Electric Vehicle Grid Impact Assessment; Assessment of Electrical Permitting and Inspection for EV/EVSE (electric vehicle/electric vehicle supply equipment); Assessment of Local Ordinances Pertaining to Installation of Publicly Available EVSE;Assessment of Building Codes for EVSE; EV Demand and Energy/Air Quality Impacts Assessment; State and Local Policy Assessment; EV Grid Impact Minimization Efforts; Unification and Streamlining of Electrical Permitting and Inspection for EV/EVSE; Development of BMP for Local EVSE Ordinances; Development of BMP for Building Codes Pertaining to EVSE; Development of Colorado-Specific Assessment for EV/EVSE Energy/Air Quality Impacts; Development of State and Local Policy Best Practices; Create Final EV/EVSE Readiness Plan; Develop Project Marketing and Communications Elements; Plan and Schedule In-person Education and Outreach Opportunities.

Swalnick, Natalia

2013-06-30T23:59:59.000Z

163

Water Integration Project Science Strategies White Paper  

SciTech Connect

This white paper has been prepared to document the approach to develop strategies to address Idaho National Engineering and Environmental Laboratory (INEEL) science and technology needs/uncertainties to support completion of INEEL Idaho Completion Project (Environmental Management [EM]) projects against the 2012 plan. Important Idaho Completion Project remediation and clean-up projects include the 2008 OU 10-08 Record of Decision, completion of EM by 2012, Idaho Nuclear Technology and Engineering Center Tanks, INEEL CERCLA Disposal Facility, and the Radioactive Waste Management Complex. The objective of this effort was to develop prioritized operational needs and uncertainties that would assist Operations in remediation and clean-up efforts at the INEEL and develop a proposed path forward for the development of science strategies to address these prioritized needs. Fifteen needs/uncertainties were selected to develop an initial approach to science strategies. For each of the 15 needs/uncertainties, a detailed definition was developed. This included extracting information from the past interviews with Operations personnel to provide a detailed description of the need/uncertainty. For each of the 15 prioritized research and development needs, a search was performed to identify the state of the associated knowledge. The knowledge search was performed primarily evaluating ongoing research. The ongoing research reviewed included Environmental Systems Research Analysis, Environmental Management Science Program, Laboratory Directed Research and Development, Inland Northwest Research Alliance, United States Geological Survey, and ongoing Operations supported projects. Results of the knowledge search are documented as part of this document.

Alan K. Yonk

2003-09-01T23:59:59.000Z

164

Assessment of the Integrated Facility Disposition Project at Oak Ridge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of the Integrated Facility Disposition Project at Oak Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM In December 2007, the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program Secretarial Offices (PSOs) of Nuclear Energy (NE), Science (SC), and the National Nuclear Security Administration (NNSA) to propose facilities and legacy waste for transfer to Environmental Management (EM) for final disposition or deactivation and decommissioning (D&D). Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM

165

The CASA Integrated Project 1 Networked Radar System  

Science Conference Proceedings (OSTI)

This paper describes the Collaborative Adaptive Sensing of the Atmosphere (CASA) Integrated Project 1 (IP1) weather radar network, the first distributed collaborative adaptive sensing test bed of the Engineering Research Center for Collaborative ...

Francesc Junyent; V. Chandrasekar; D. McLaughlin; E. Insanic; N. Bharadwaj

2010-01-01T23:59:59.000Z

166

Assessment of the Integrated Facility Disposition Project at Oak Ridge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Integrated Facility Disposition Project at Oak the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM In December 2007, the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program Secretarial Offices (PSOs) of Nuclear Energy (NE), Science (SC), and the National Nuclear Security Administration (NNSA) to propose facilities and legacy waste for transfer to Environmental Management (EM) for final disposition or deactivation and decommissioning (D&D). Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM

167

Charging Infrastructure for Electric Vehicles (Smart Grid Project) | Open  

Open Energy Info (EERE)

Charging Infrastructure for Electric Vehicles (Smart Grid Project) Charging Infrastructure for Electric Vehicles (Smart Grid Project) Jump to: navigation, search Project Name Charging Infrastructure for Electric Vehicles Country Sweden Headquarters Location Gothenburg, Sweden Coordinates 57.696995°, 11.9865° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.696995,"lon":11.9865,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

168

NREL: Biomass Research - Projects in Integrated Biorefinery Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects in Integrated Biorefinery Processes Projects in Integrated Biorefinery Processes A photo of a control room with four large computer screens. A man and a woman are looking at the screens. The Thermochemical Process Development Unit is equipped with sophisticated process monitoring and operation control systems. NREL is focused on integrating all the biomass conversion unit operations. With extensive knowledge of the individual unit operations, NREL is well-positioned to link these operations together at the mini-pilot and pilot scales. Among the integrated biorefinery projects are: Sorghum to Ethanol Research Initiative Sorghum shows promising characteristics as a feedstock for biofuel production. However, little basic research data exists. NREL is performing integrated research on sorghum by studying it at every step along the

169

AEO2011: Electric Power Projections for EMM Region - Northeast Power  

Open Energy Info (EERE)

NYC-Westchester NYC-Westchester Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 78, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power Northeast projections Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - Northeast Power Coordinating Council / NYC-Westchester - Reference Case (xls, 259.2 KiB)

170

AEO2011: Electric Power Projections for EMM Region - Florida Reliability  

Open Energy Info (EERE)

Florida Reliability Florida Reliability Coordinating Council Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 74, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power Florida projections Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - Florida Reliability Coordinating Council- Reference Case (xls, 259.3 KiB)

171

AEO2011: Electric Power Projections for EMM Region - Reliability First  

Open Energy Info (EERE)

Reliability First Reliability First Corporation / West Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 83, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power projections Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - Reliability First Corporation / West- Reference Case (xls, 259.5 KiB)

172

AEO2011: Electric Power Projections for EMM Region - SERC Reliability  

Open Energy Info (EERE)

Gateway Gateway Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 85, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power projection Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - SERC Reliability Corporation / Gateway - Reference Case (xls, 259 KiB)

173

AEO2011: Electric Power Projections for EMM Region - Midwest Reliability  

Open Energy Info (EERE)

West West Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 76, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power midwest projections Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - Midwest Reliability Council / West- Reference Case (xls, 259.1 KiB)

174

AEO2011: Electric Power Projections for EMM Region - Midwest Reliability  

Open Energy Info (EERE)

East East Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 75, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEIO EIA Electric Power projections Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - Midwest Reliability Council / East - Reference Case (xls, 258.6 KiB) Quality Metrics

175

AEO2011: Electric Power Projections for EMM Region - Reliability First  

Open Energy Info (EERE)

9643 9643 Varnish cache server AEO2011: Electric Power Projections for EMM Region - Reliability First Corporation / Michigan Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 82, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power Michigan projections Data Quality Metrics Level of Review Peer Reviewed

176

AEO2011: Electric Power Projections for EMM Region - SERC Reliability  

Open Energy Info (EERE)

Southeastern Southeastern Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 86, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power projections Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - SERC Reliability Corporation / Southeastern- Reference Case (xls, 259.3 KiB)

177

AEO2011: Electric Power Projections for EMM Region - SERC Reliability  

Open Energy Info (EERE)

Central Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 87, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO central EIA Electric power projections Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - SERC Reliability Corporation / Central- Reference Case (xls, 259.1 KiB)

178

AEO2011: Electric Power Projections for EMM Region - Northeast Power  

Open Energy Info (EERE)

Northeast Northeast Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 77, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power Northeast projections Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - Northeast Power Coordinating Council / Northeast- Reference Case (xls, 259.2 KiB)

179

U.S. Fuel Cell Electric Vehicle Demonstration Project 2010 Status Update (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes U.S. Fuel Cell Electric Vehicle Demonstration Project 2010 Status Update.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

2010-10-21T23:59:59.000Z

180

Solar electric thermal hydronic (SETH) product development project  

DOE Green Energy (OSTI)

Positive Energy, Inc. received a second Technology Maturation and Commercialization Project Subcontract during the 1999 round of awards. This Subcontract is for the purpose of further aiding Positive Energy, Inc. in preparing its Solar Electric Thermal Hydronic (SETH) control and distribution package for market introduction. All items of this subcontracted project have been successfully completed. This Project Report contains a summary of the progress made during the SETH Development Project (the Project) over the duration of the 1999 Subcontract. It includes a description of the effort performed and the results obtained in the pursuit of intellectual property protection and development of product documentation for the end users. This report also summarizes additional efforts taken by and for the SETH project outside of the Subcontract. It presents a chronology of activities over the duration of the Subcontract, and includes a few selected sample copies of documents offered as evidence of their success.

Stickney, B.L.; Sindelar, A.

2000-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated projects electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Analysis of recent projections of electric power demand  

Science Conference Proceedings (OSTI)

This report reviews the changes and potential changes in the outlook for electric power demand since the publication of Review and Analysis of Electricity Supply Market Projections (B. Swezey, SERI/MR-360-3322, National Renewable Energy Laboratory). Forecasts of the following organizations were reviewed: DOE/Energy Information Administration, DOE/Policy Office, DRI/McGraw-Hill, North American Electric Reliability Council, and Gas Research Institute. Supply uncertainty was briefly reviewed to place the uncertainties of the demand outlook in perspective. Also discussed were opportunities for modular technologies, such as renewable energy technologies, to fill a potential gap in energy demand and supply.

Hudson, D.V. Jr.

1993-08-01T23:59:59.000Z

182

Electric Energy Conservation and Production project: (Volume 2)  

Science Conference Proceedings (OSTI)

A final report has been prepared under the Electric Energy Conservation and Production Project, conducted by the Blackfeet Indian Tribe and its consultants, Black Hawk Associates, Inc. The report addresses two major issues - the heavy reliance on electricity by residents of the Blackfeet Reservation, and the opportunities for electricity production from wind energy resources on the Reservation. The findings of this report help provide a basis for comprehensive energy management planning on the Reservation, analyze the potential for minimizing electricity demand and maximizing the efficiency of electrical end-uses through appropriate conservation measures, assess the potential of wind energy resources located on the Reservation, and identify and assess the technical, financial, legal, institutional, and regulatory issues involved in wind energy development within the Blackfeet Reservation.

Not Available

1984-02-01T23:59:59.000Z

183

Denton County Electric Cooperative d/b/a CoServ Electric Smart Grid Project  

Open Energy Info (EERE)

d/b/a CoServ Electric Smart Grid Project d/b/a CoServ Electric Smart Grid Project Jump to: navigation, search Project Lead Denton County Electric Cooperative d/b/a CoServ Electric Country United States Headquarters Location Corinth, Texas Recovery Act Funding $17,205,844.00 Total Project Value $40,966,296.00 Coverage Area Coverage Map: Denton County Electric Cooperative d/b/a CoServ Electric Smart Grid Project Coordinates 33.1540091°, -97.0647322° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

184

Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project: Preprint  

DOE Green Energy (OSTI)

The National Fuel Cell Electric Vehicle Learning Demonstration is a U.S. Department of Energy (DOE) project that started in 2004. The purpose of this project is to conduct an integrated field validation that simultaneously examines the performance of fuel cell vehicles and the supporting hydrogen infrastructure. The DOE's National Renewable Energy Laboratory (NREL) has now analyzed data from over five years of the seven-year project. During this time, over 144 fuel cell electric vehicles have been deployed, and 23 project refueling stations were placed in use.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

2010-10-01T23:59:59.000Z

185

Integrated framework for analysis: electric sector expansion in developing countries  

Science Conference Proceedings (OSTI)

The objective of this dissertation is the development of an analytical framework for the assessment of electric sector expansion strategies in developing countries, in the context of overall development planning, and with particular emphasis on macroeconomic and social implications. The framework will ensure that each electric capacity expansion alternative is linked quantitatively and consistently with a given economic development plan. The analytical model employs an integrated set of technological and economic models to explore the national energy and economy response to electric sector expansion planning for the Korean case. In this study, two integrated models were developed. The integrated model 1 is composed of a macroeconomic model, an energy input-output model, and an energy network flow model. This model accounts for the relationships of energy demand with overall economic development, and interfuel substitution, for the relationships between the investment capital required to meet astated levels of electric demand and overall investment planning and foreign exchange requirements, and economic impacts of the energy sector on gross national product (GNP) and balance of payments (BOP). The integrated model 2 is composed of an energy input-output model, and energy network flow model, and a GNP identify constraint,and calculates the macroeconomic-balanced level of comsumption, electric sector investments, industrial sector investments, and energy imports given policy-determined GNP and other GNP components. The two models were applied ot the Korean case by using a trial scenario and assumed input data. Computational results demonstrate and prove the workability of the models.

Lee, M.K.

1982-01-01T23:59:59.000Z

186

Woodruff Electric Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Woodruff Electric Woodruff Electric Country United States Headquarters Location Forrest City, Arkansas Recovery Act Funding $2,357,520.00 Total Project Value $5,016,000.00 Coverage Area Coverage Map: Woodruff Electric Smart Grid Project Coordinates 35.0081474°, -90.7898342° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

187

Talquin Electric Cooperative, Inc. Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Talquin Electric Cooperative, Inc. Talquin Electric Cooperative, Inc. Country United States Headquarters Location Quincy, Florida Recovery Act Funding $8,100,000.00 Total Project Value $16,200,000.00 Coverage Area Coverage Map: Talquin Electric Cooperative, Inc. Smart Grid Project Coordinates 30.5871392°, -84.5832453° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

188

Madison Gas and Electric Company Smart Grid Project | Open Energy  

Open Energy Info (EERE)

and Electric Company and Electric Company Country United States Headquarters Location Madison, Wisconsin Recovery Act Funding $5,550,941.00 Total Project Value $11,101,881.00 Coverage Area Coverage Map: Madison Gas and Electric Company Smart Grid Project Coordinates 43.0730517°, -89.4012302° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

189

El Paso Electric Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Electric Electric Country United States Headquarters Location El Paso, Texas Additional Benefit Places New Mexico Recovery Act Funding $1,014,414.00 Total Project Value $2,085,095.00 Coverage Area Coverage Map: El Paso Electric Smart Grid Project Coordinates 31.7587198°, -106.4869314° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

190

Golden Spread Electric Cooperative, Inc. Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Golden Spread Electric Cooperative, Inc. Golden Spread Electric Cooperative, Inc. Country United States Headquarters Location Amarillo, Texas Recovery Act Funding $19,995,000.00 Total Project Value $49,987,500.00 Coverage Area Coverage Map: Golden Spread Electric Cooperative, Inc. Smart Grid Project Coordinates 35.2219971°, -101.8312969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

191

Cobb Electric Membership Corporation Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Cobb Electric Membership Corporation Cobb Electric Membership Corporation Country United States Headquarters Location Marietta, Georgia Recovery Act Funding $16,893,836.00 Total Project Value $33,787,672.00 Coverage Area Coverage Map: Cobb Electric Membership Corporation Smart Grid Project Coordinates 33.952602°, -84.5499327° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

192

Electric Discharge Machining (EDM) Projects (4584), 4/11/2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Discharge Machining (EDM) Projects (4584) Electric Discharge Machining (EDM) Projects (4584) Program or Field Office: Y -12 Site Office Location(s) (Citv/Countv/State): Oak Ridge, Anderson County, Tennessee Proposed Action Description: Submit by E-mail The proposed action is to installation of oil submerged Electric Discharge Machining (EDM) for development and production use. Categorical Exclusion(s) Applied: 81.31 -Installation or relocation of machinery and equipment For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, including the full text of each categorical exclusion, see Subpart D of 10 CFR Part 1021. Regulatory Requirements in 10 CFR 1021.410(b): (See full text in regulation) [{Jrhe proposal fits within a class of actions that is listed in Appendix A orB to 10 CFR Part 1021, Subpart D.

193

Electricity, Resources, & Building Systems Integration Distributed Energy Publications  

E-Print Network (OSTI)

Consulting Services, LLC; Brett Oakleaf, Xcel Energy; Kenneth Wolf, Minnesota Public Utilities CommissionElectricity, Resources, & Building Systems Integration Center Distributed Energy Publications 2005 for a single phase high frequency AC microgrid, S. Chakraborty, M.D. Weiss and M.G. Simoes, IEEE Transaction

194

El Paso County Geothermal Electric Generation Project: Innovative Research  

Open Energy Info (EERE)

County Geothermal Electric Generation Project: Innovative Research County Geothermal Electric Generation Project: Innovative Research Technologies Applied to the Geothermal Resource Potential at Ft. Bliss Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title El Paso County Geothermal Electric Generation Project: Innovative Research Technologies Applied to the Geothermal Resource Potential at Ft. Bliss Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description A dynamic and technically capable project team has been assembled to evaluate the commercial viability of geothermal resources on the Ft. Bliss Military Reservation with a focus on the McGregor Test Range. Driving the desire of Ft. Bliss and El Paso County to assess the commercial viability of the geothermal resources are four factors that have converged in the last several years. The first is that Ft. Bliss will be expanding by nearly 30,000 additional troops, an expansion which will significantly increase utilization of energy resources on the facility. Second is the desire for both strategic and tactical reasons to identify and control a source of power than can directly provide the forward fire bases with "off grid" electricity in the event of a major power outage. In the worst case, this power can be sold to the grid and be used to reduce energy costs at the main Ft. Bliss installation in El Paso. Finally, Congress and the Department of Defense have mandated that Ft. Bliss and other military reservations obtain specified percentages of their power from renewable sources of production. The geothermal resource to be evaluated, if commercially viable, could provide Ft. Bliss with all the energy necessary to meet these goals now and in the future. To that end, the garrison commander has requested a target of 20 megawatts as an initial objective for geothermal resources on the installation. Finally, the County government has determined that it not only wishes to facility this effort by Ft. Bliss, but would like to reduce its own reliance on fossil based energy resources to provide power for current and future needs.

195

Oncor Electric Delivery Company, LLC Smart Grid Demonstration Project |  

Open Energy Info (EERE)

Company, LLC Smart Grid Demonstration Project Company, LLC Smart Grid Demonstration Project Jump to: navigation, search Project Lead Oncor Electric Delivery Company, LLC Country United States Headquarters Location Dallas, Texas Recovery Act Funding $3,471,681.00 Total Project Value $7,279,166.00 Coordinates 32.802955°, -96.769923° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

196

Southern California Edison 32MWh Wind Integration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, Southern California Edison , Southern California Edison Tehachapi Wind Energy Storage (TSP) Project Loïc Gaillac, Naum Pinsky Southern California Edison November 3, 2010 Funded in part by the Energy Storage Systems Program of the U.S. Department Of Energy through National Energy Technology Laboratory 2 © Copyright 2010, Southern California Edison Outline * Policy Challenges - The challenge/opportunity * Testing a Solution: Tehachapi Storage Project Overview - Description of the project & objectives - Operational uses - Conceptual layout 3 © Copyright 2010, Southern California Edison CA 2020: Energy Policy Initiatives Highlighting potential areas for storage applications: * High penetration of Solar and Wind generation - Executive order requiring 33% of generated electricity to come from

197

Major Risk Factors to the Integrated Facility Disposition Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge Reservation Tennessee Major Risk Factors to the Integrated Facility Disposition Project (IFDP) Challenge The scope of the Integrated Facility Disposition Project (IFDP) needs to comprehensively address a wide range of environmental management risks at the Oak Ridge Reservation (ORO). These include: environmental remediation, regulatory compliance, deactivation and decommissioning (D&D) activities, and disposition of legacy materials and waste, along with the ongoing modernization, reindustrialization, and reconfiguration initiatives at the Oak Ridge National Laboratory and at the Y-12 National Security Complex. The balancing of the broad nature of these activities and issues at ORO are a key challenge for the IFDP especially since their interrelationship is not always obvious.

198

Introduction Literature Review Integrated Electric Power Supply Chains Empirical Examples Conclusions An Integrated Electric Power Supply Chain and Fuel  

E-Print Network (OSTI)

primary energy (Energy Information Administration (2000, 2005)) Deregulation Wholesale market Bilateral Conclusions An Integrated Electric Power Supply Chain and Fuel Market Network Framework: Theoretical Modeling with Empirical Analysis for New England Zugang Liu and Anna Nagurney§ Penn State University Hazleton § John F

Nagurney, Anna

199

Introduction Literature Review Integrated Electric Power Supply Chains Empirical Examples Conclusions An Integrated Electric Power Supply Chain and Fuel  

E-Print Network (OSTI)

of net assets, $220 billion annual sales, 40% of domestic primary energy (Energy Information Conclusions An Integrated Electric Power Supply Chain and Fuel Market Network Framework: Theoretical Modeling with Empirical Analysis for New England Forthcoming in Naval Research Logistics Zugang Liu and Anna Nagurney

Nagurney, Anna

200

Introduction Literature Review Integrated Electric Power Supply Chains Empirical Examples Conclusions An Integrated Electric Power Supply Chain and Fuel  

E-Print Network (OSTI)

of net assets, $220 billion annual sales, 40% of domestic primary energy (Energy Information Conclusions An Integrated Electric Power Supply Chain and Fuel Market Network Framework: Theoretical Modeling with Empirical Analysis for New England Zugang Liu and Anna Nagurney§ Isenberg School of Management University

Nagurney, Anna

Note: This page contains sample records for the topic "integrated projects electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Hawaiian Electric Company's Wind Project Development Experience: 2003-2008  

Science Conference Proceedings (OSTI)

This report documents the extensive efforts conducted between 2003 and 2008 by Hawaiian Electric Company, Inc. (HECO) to stimulate wind-power development on the island of Oahu. The project addressed wind-monitoring and data-collecting activities, economic feasibility analyses, land-use and environmental permits and approvals, local community outreach, and studies of potentially threatened fauna and flora at two sites on Oahu: Kahe and Kahuku.

2009-08-04T23:59:59.000Z

202

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #20, July-September 2008  

SciTech Connect

July to September, 2008 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Schell, D. J.

2008-12-01T23:59:59.000Z

203

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #22, January - March 2009  

Science Conference Proceedings (OSTI)

January to March, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Not Available

2009-04-01T23:59:59.000Z

204

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #23, April-June 2009  

DOE Green Energy (OSTI)

April to June, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Schell, D.

2009-08-01T23:59:59.000Z

205

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #17, October-December 2007  

DOE Green Energy (OSTI)

October to December, 2007 edition of the newsletter of the Biochemical Platform Process Integration project.

Schell, D.

2008-01-01T23:59:59.000Z

206

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #24, July-September 2009  

DOE Green Energy (OSTI)

July to September, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Schell, D.

2009-10-01T23:59:59.000Z

207

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #25, October - December 2009  

DOE Green Energy (OSTI)

October to December, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Schell, D.

2010-01-01T23:59:59.000Z

208

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #15, April - June 2007  

DOE Green Energy (OSTI)

July quarterly update for the National Bioenergy Center's Biochemical Processing Platform Integration Project.

Schell, D.

2007-07-01T23:59:59.000Z

209

Electric G-Van demonstration and commercial assessment project  

DOE Green Energy (OSTI)

The Electric Power Research Institute was awarded this grant to continue the joint effort initiated by EPRI, and VE International to proceed beyond the prototype phase of the electric G-Van development. The goal of EPRI and VEHMA was to develop a market for the electric G-Van, and to distribute them to commercial fleet operators. The objective of this project was to produce G-Vans in a production facility that would be comparable to the GMC Truck internal combustion engine Vandura Van produced by General Motors in quality, reliability, durability and safety. An initial market assessment/demonstration phase of sixty (60) vehicles was to be undertaken, with the ability to expand production volume quickly to meet market demands. Brief description of each task of this grant is given and the actions taken by EPRI to complete them.

Braga, B.D. (Electric Power Research Inst., Palo Alto, CA (United States))

1992-12-01T23:59:59.000Z

210

Greater than the Sum of its Parts; Electricity, Resources, & Building Systems Integration (ERBSI) (Fact Sheet)  

Science Conference Proceedings (OSTI)

NREL's Electricity, Resources, and Building Systems Integration Center brings together a diverse group of experts performing grid integration and optimization R&D activities.

Not Available

2009-11-01T23:59:59.000Z

211

Project Startup: Evaluating Coca-Cola's Class 8 Hybrid-Electric Delivery Trucks (Fact Sheet)  

DOE Green Energy (OSTI)

Fact sheet describing the project startup for evaluating Coca-Cola's Class 8 hybrid-electric delivery trucks.

Not Available

2011-03-01T23:59:59.000Z

212

Klondike III/Biglow Canyon Wind Integration Project; Record of Decision, October 25, 2006.  

DOE Green Energy (OSTI)

The Bonneville Power Administration (BPA) has decided to implement the Proposed Action identified in the Klondike III/Biglow Canyon Wind Integration Project Final Environmental Impact Statement (FEIS) (DOE/EIS-0374, September 2006). Under the Proposed Action, BPA will offer PPM Energy, Inc. (PPM) contract terms for interconnection of the proposed Klondike III Wind Project, located in Sherman County, Oregon, with the Federal Columbia River Transmission System (FCRTS). BPA will also offer Portland General Electric (PGE)1 contract terms for interconnection of its proposed Biglow Canyon Wind Farm, also located in Sherman County, Oregon, with the FCRTS, as proposed in the FEIS. To interconnect these wind projects, BPA will build and operate a 12-mile long, 230-kilovolt (kV) double-circuit transmission line between the wind projects and BPA's new 230-kV John Day Substation in Sherman County, Oregon. BPA will also expand its existing 500-kV John Day Substation.

United States. Bonneville Power Administration

2006-10-25T23:59:59.000Z

213

Integration and system tests of the Ford/General Electric ac electric drive system  

SciTech Connect

An advanced alternating current electric drive system is being developed by the General Electric Company for Ford Motor Company's ''Advanced Electric Vehicle Powertrain Effort,'' which is a major element of DOE's Single Shaft Electric Propulsion System Program. The integrated transaxle consists of an oil-cooled 50 hp ac induction motor mounted within a 2-speed transaxle. Direct current from the nominal 204 V battery pack is converted to variable frequency, variable voltage 3-phase ac current by a liquid-cooled transistor inverter. A custom-designed inverter motor controller, containing two 8751 microcomputers plus analog and digital circuitry, translates torque commands from the controller to the inverter transistor base drivers that turn on/off power Darlington transistors at appropriate times. After a review of the electric drive system ratings, details of the transistor inverter are presented. Control strategy and controller design are summarized. Electric drive integration and system test results are given.

King, R.D.; Park, J.N.

1985-01-01T23:59:59.000Z

214

Table 14a. Average Electricity Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Average Electricity Prices, Projected vs. Actual a. Average Electricity Prices, Projected vs. Actual Projected Price in Constant Dollars (constant dollars, cents per kilowatt-hour in "dollar year" specific to each AEO) AEO Dollar Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1995 1993 6.80 6.80 6.70 6.70 6.70 6.70 6.70 6.80 6.80 6.90 6.90 6.90 7.00 7.00 7.10 7.10 7.20 AEO 1996 1994 7.09 6.99 6.94 6.93 6.96 6.96 6.96 6.97 6.98 6.97 6.98 6.95 6.95 6.94 6.96 6.95 6.91 AEO 1997 1995 6.94 6.89 6.90 6.91 6.86 6.84 6.78 6.73 6.66 6.60 6.58 6.54 6.49 6.48 6.45 6.36

215

Advanced Residential Buildings Research; Electricity, Resources, & Building Systems Integration (Fact Sheet)  

SciTech Connect

Factsheet describing the Advanced Residential Buildings Research group within NREL's Electricity, Resources, and Buildings Systems Integration Center.

Not Available

2009-09-01T23:59:59.000Z

216

Advanced Commercial Buildings Research; Electricity, Resources, & Building Systems Integration (Fact Sheet)  

SciTech Connect

Factsheet describing the Advanced Commercial Buildings Research group within NREL's Electricity, Resources, and Buildings Systems Integration Center.

Not Available

2009-09-01T23:59:59.000Z

217

Advanced Commercial Buildings Research; Electricity, Resources, & Building Systems Integration (Fact Sheet)  

SciTech Connect

Factsheet describing the Advanced Commercial Buildings Research group within NREL's Electricity, Resources, and Buildings Systems Integration Center.

2009-09-01T23:59:59.000Z

218

Advanced Residential Buildings Research; Electricity, Resources, & Building Systems Integration (Fact Sheet)  

SciTech Connect

Factsheet describing the Advanced Residential Buildings Research group within NREL's Electricity, Resources, and Buildings Systems Integration Center.

2009-09-01T23:59:59.000Z

219

Creating Incentives for Electricity Providers to Integrate Distributed Energy Resources  

Science Conference Proceedings (OSTI)

Most distributed energy resources (DER) are customer owned in the United States, and, largely because of the lack of scaleable business models and/or regulatory drivers, utility interest in DER remains limited. This project created customer- as well as utility-owned business models and regulatory approaches to encourage DER integration, along with a set of economic calculators to test these models with various technologies.

2007-11-30T23:59:59.000Z

220

NSTAR Electric & Gas Corporation Smart Grid Demonstration Project | Open  

Open Energy Info (EERE)

NSTAR Electric & Gas Corporation NSTAR Electric & Gas Corporation Country United States Headquarters Location Westwood, Massachusetts Recovery Act Funding $2,362,000.00 Total Project Value $4,724,000.00 Coordinates 42.2139873°, -71.2244987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "integrated projects electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Pacific Gas & Electric Company Smart Grid Demonstration Project | Open  

Open Energy Info (EERE)

Pacific Gas & Electric Company Pacific Gas & Electric Company Country United States Headquarters Location San Francisco, California Recovery Act Funding $25,000,000.00 Total Project Value $355,938,600.00 Coordinates 37.7749295°, -122.4194155° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

222

NSTAR Electric & Gas Corporation Smart Grid Demonstration Project (2) |  

Open Energy Info (EERE)

Lead NSTAR Electric & Gas Corporation Lead NSTAR Electric & Gas Corporation Country United States Headquarters Location Westwood, Massachusetts Recovery Act Funding $5,267,592.00 Total Project Value $10,535,184.00 Coordinates 42.2139873°, -71.2244987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

223

Value of electrical heat boilers and heat pumps for wind power integration  

E-Print Network (OSTI)

Value of electrical heat boilers and heat pumps for wind power integration Peter Meibom Juha of using electrical heat boilers and heat pumps as wind power integration measures relieving the link\\ZRUGV wind power, integration, heat pumps, electric heat boilers ,QWURGXFWLRQ 3UREOHP RYHUYLHZ The Danish

224

Rappahannock Electric Cooperative Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Cooperative Cooperative Country United States Headquarters Location Fredericksburg, Virginia Recovery Act Funding $15,694,097.00 Total Project Value $31,388,194.00 Coverage Area Coverage Map: Rappahannock Electric Cooperative Smart Grid Project Coordinates 38.3031837°, -77.4605399° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

225

Baltimore Gas and Electric Company Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Company Company Country United States Headquarters Location Baltimore, Maryland Recovery Act Funding $200,000,000.00 Total Project Value $451,814,234.00 Coverage Area Coverage Map: Baltimore Gas and Electric Company Smart Grid Project Coordinates 39.2903848°, -76.6121893° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

226

Potomac Electric Power Company (PEPCO) Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Country United States Headquarters Location Washington, District of Columbia Additional Benefit Places Maryland Recovery Act Funding $44580549 Total Project Value $89161098 Coverage Area Coverage Map: Potomac Electric Power Company (PEPCO) Smart Grid Project Coordinates 38.8951118°, -77.0363658° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

227

Renewable Resource Integration Project - Scoping Study of Strategic Transmission, Operations, and Reliability Issues  

E-Print Network (OSTI)

AnalysisofCaliforniasElectricitySystem: PreliminaryResultsforthe2007IntegratedEnergyPolicy

Budhraja, Vikram

2008-01-01T23:59:59.000Z

228

Role of Electricity Markets and Market Design in Integrating Solar Generation: Solar Integration Series. 2 of 3 (Brochure)  

DOE Green Energy (OSTI)

The second out of a series of three fact sheets describing the role of electricity markets and market design in integrating solar generation.

Not Available

2001-05-01T23:59:59.000Z

229

[Tampa Electric Company IGCC project]. Final public design report; Technical progress report  

SciTech Connect

This final Public Design Report (PDR) provides completed design information about Tampa Electric Company`s Polk Power Station Unit No. 1, which will demonstrate in a commercial 250 MW unit the operating parameters and benefits of the integration of oxygen-blown, entrained-flow coal gasification with advanced combined cycle technology. Pending development of technically and commercially viable sorbent for the Hot Gas Cleanup System, the HGCU also is demonstrated. The report is organized under the following sections: design basis description; plant descriptions; plant systems; project costs and schedule; heat and material balances; general arrangement drawings; equipment list; and miscellaneous drawings.

NONE

1996-07-01T23:59:59.000Z

230

Tools for Closure Project and Contract Management: Development of the Rocky Flats Integrated Closure Project Baseline  

Science Conference Proceedings (OSTI)

This paper details the development of the Rocky Flats Integrated Closure Project Baseline - an innovative project management effort undertaken to ensure proactive management of the Rocky Flats Closure Contract in support of the Department's goal for achieving the safe closure of the Rocky Flats Environmental Technology Site (RFETS) in December 2006. The accelerated closure of RFETS is one of the most prominent projects within the Department of Energy (DOE) Environmental Management program. As the first major former weapons plant to be remediated and closed, it is a first-of-kind effort requiring the resolution of multiple complex technical and institutional challenges. Most significantly, the closure of RFETS is dependent upon the shipment of all special nuclear material and wastes to other DOE sites. The Department is actively working to strengthen project management across programs, and there is increasing external interest in this progress. The development of the Rocky Flats Integrated Closure Project Baseline represents a groundbreaking and cooperative effort to formalize the management of such a complex project across multiple sites and organizations. It is original in both scope and process, however it provides a useful precedent for the other ongoing project management efforts within the Environmental Management program.

Gelles, C. M.; Sheppard, F. R.

2002-02-26T23:59:59.000Z

231

EWIS European wind integration study (Smart Grid Project) (Czech Republic)  

Open Energy Info (EERE)

study (Smart Grid Project) (Czech Republic) study (Smart Grid Project) (Czech Republic) Jump to: navigation, search Project Name EWIS European wind integration study Country Czech Republic Coordinates 49.817493°, 15.472962° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.817493,"lon":15.472962,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

232

Grid Integration of Offshore Windparks (Smart Grid Project) | Open Energy  

Open Energy Info (EERE)

of Offshore Windparks (Smart Grid Project) of Offshore Windparks (Smart Grid Project) Jump to: navigation, search Project Name Grid Integration of Offshore Windparks Country Germany Coordinates 51.165691°, 10.451526° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.165691,"lon":10.451526,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

233

Integrated monitoring and surveillance system demonstration project: Phase I accomplishments  

Science Conference Proceedings (OSTI)

The authors present the results of the Integrated Monitoring and Surveillance System (IMSS) demonstration project Phase I efforts. The rationale behind IMSS development is reviewed and progress in each of the 5 basic tasks is detailed. Significant results include decisions to use Echelon LonWorks networking protocol and Microsoft Access for the data system needs, a preliminary design for the plutonium canning system glovebox, identification of facilities and materials available for the demonstration, determination of possibly affected facility documentation, and a preliminary list of available sensor technologies. Recently imposed changes in the overall project schedule and scope are also discussed and budgetary requirements for competition of Phase II presented. The results show that the IMSS demonstration project team has met and in many cases exceeded the commitments made for Phase I deliverables.

Aumeier, S.E.; Walters, B.G.; Crawford, D.C. [and others

1997-01-15T23:59:59.000Z

234

Table 16. Total Electricity Sales, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Electricity Sales, Projected vs. Actual Electricity Sales, Projected vs. Actual (billion kilowatt-hours) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 2364 2454 2534 2626 2708 2811 AEO 1983 2318 2395 2476 2565 2650 2739 3153 AEO 1984 2321 2376 2461 2551 2637 2738 3182 AEO 1985 2317 2360 2427 2491 2570 2651 2730 2808 2879 2949 3026 AEO 1986 2363 2416 2479 2533 2608 2706 2798 2883 2966 3048 3116 3185 3255 3324 3397 AEO 1987 2460 2494 2555 2622 2683 2748 2823 2902 2977 3363 AEO 1989* 2556 2619 2689 2760 2835 2917 2994 3072 3156 3236 3313 3394 3473 AEO 1990 2612 2689 3083 3488.0 3870.0 AEO 1991 2700 2762 2806 2855 2904 2959 3022 3088 3151 3214 3282 3355 3427 3496 3563 3632 3704 3776 3846 3916 AEO 1992 2746 2845 2858 2913 2975 3030 3087 3146 3209 3276 3345 3415 3483 3552 3625 3699 3774 3847 3921 AEO 1993 2803 2840 2893 2946 2998 3052 3104 3157 3214 3271 3327

235

Externalities and electric power: an integrated assessment approach  

Science Conference Proceedings (OSTI)

This paper describes an integrated assessment approach for considering the options that electric utilities have to meet the anticipated demand for their power. The objective that this paper considers is one of meeting the demand for power, with an acceptable degree of reliability, at minimum cost. The total cost is the sum of the private cost of producing the electric power plus the external costs that result from its production. These external costs, or externalities, are effects on the well-being of third parties that producers and consumers of electric power do not take into account in their decisions. The external costs include many different types of effects such as illness, ecosystem damage, and road damage. The solution to the problem of minimizing total cost is addressed in two steps. The first step uses damage function methods to establish a common metric for the weights of the different objectives (i.e., external costs). The damage function analysis also reduces the dimensionality of the analysis in the second step, and identifies criteria to include in that analysis. The second step uses multi-criteria decision methods. This analysis includes the most important externalities that the damage function analysis identifies and, in addition, potentially important factors that can not be quantified reliably using damage function methods. An example of the latter are the damages from global climate change. The two-step method that this paper describes addresses many of the limitations of the damage function method and multi-criteria methods, that arise when they are used separately. This linked method can be used by electric utilities for their integrated resource planning. It can also be adapted to other applications.

Lee, R.

1995-12-31T23:59:59.000Z

236

DOE G 413.3-18A, Integrated Project Team Guide for Formation and Implementation  

Directives, Delegations, and Requirements

The guide provides detailed guidance of the preferred processes to form and implement an Integrated Project Team (IPT) in support of proper project execution ...

2012-02-03T23:59:59.000Z

237

NOMINATION FOR THE PROJECT MANAGEMENT INSTITUTE (PMI) PROJECT OF THE YEAR AWARD INTEGRATED DISPOSAL FACILITY (IDF)  

Science Conference Proceedings (OSTI)

CH2M HILL Hanford Group, Inc. (CH2M HILL) is pleased to nominate the Integrated Disposal Facility (IDF) project for the Project Management Institute's consideration as 2007 Project of the Year, Built for the U.S, Department of Energy's (DOE) Office of River Protection (ORP) at the Hanford Site, the IDF is the site's first Resource Conservation and Recovery Act (RCRA)-compliant disposal facility. The IDF is important to DOE's waste management strategy for the site. Effective management of the IDF project contributed to the project's success. The project was carefully managed to meet three Tri-Party Agreement (TPA) milestones. The completed facility fully satisfied the needs and expectations of the client, regulators and stakeholders. Ultimately, the project, initially estimated to require 48 months and $33.9 million to build, was completed four months ahead of schedule and $11.1 million under budget. DOE directed construction of the IDF to provide additional capacity for disposing of low-level radioactive and mixed (i.e., radioactive and hazardous) solid waste. The facility needed to comply with federal and Washington State environmental laws and meet TPA milestones. The facility had to accommodate over one million cubic yards of the waste material, including immobilized low-activity waste packages from the Waste Treatment Plant (WTP), low-level and mixed low-level waste from WTP failed melters, and alternative immobilized low-activity waste forms, such as bulk-vitrified waste. CH2M HILL designed and constructed a disposal facility with a redundant system of containment barriers and a sophisticated leak-detection system. Built on a 168-area, the facility's construction met all regulatory requirements. The facility's containment system actually exceeds the state's environmental requirements for a hazardous waste landfill. Effective management of the IDF construction project required working through highly political and legal issues as well as challenges with permitting, scheduling, costs, stakeholders and technical issues. To meet the customer's needs and deadlines, the project was managed with conscientious discipline and application of sound project management principles in the Project Management Institute's Project Management Body of Knowledge. Several factors contributed to project success. Extensive planning and preparation were conducted, which was instrumental to contract and procurement management. Anticipating issues and risks, CH2M HILL prepared well defined scope and expectations, particularly for safety. To ensure worker safety, the project management team incorporated CH2M HILL's Integrated Safety Management System (ISMS) into the project and included safety requirements in contracting documents and baseline planning. The construction contractor DelHur Industries, Inc. adopted CH2M HILL's safety program to meet the procurement requirement for a comparable ISMS safety program. This project management approach contributed to an excellent safety record for a project with heavy equipment in constant motion and 63,555 man-hours worked. The project manager worked closely with ORP and Ecology to keep them involved in project decisions and head off any stakeholder or regulatory concerns. As issues emerged, the project manager addressed them expeditiously to maintain a rigorous schedule. Subcontractors and project contributors were held to contract commitments for performance of the work scope and requirements for quality, budget and schedule. Another element of project success extended to early and continual involvement of all interested in the project scope. Due to the public sensitivity of constructing a landfill planned for radioactive waste as well as offsite waste, there were many stakeholders and it was important to secure their agreement on scope and time frames. The project had multiple participants involved in quality assurance surveillances, audits and inspections, including the construction contractor, CH2M HILL, ORP, the Washington State Department of Ecology, and independent certified quality assurance an

MCLELLAN, G.W.

2007-02-07T23:59:59.000Z

238

Determination of the potential market size and opportunities for biomass to electricity projects in China  

DOE Green Energy (OSTI)

Efforts are currently underway to assess the market potential and prospects for the US private sector in biomass energy development in Yunnan Province. Among the specific objectives of the study are to: estimate the likely market size and competitiveness of biomass energy, assess the viability of US private sector ventures; assess non-economic factors (e.g., resource, environmental, social, political, institutional) that could affect the viability of biomass energy; and recommend appropriate actions to help stimulate biomass initiatives. Feasibility studies show that biomass projects in Yunnan Province are financially and technically viable. Biomass can be grown and converted to electricity at costs lower than other alternatives. These projects if implemented can ease power shortages and help to sustain the region`s economic growth. The external environmental benefits of integrated biomass projects are also potentially significant. This paper summarizes a two-step screening and rank-ordering process that is being used to identify the best candidate projects for possible US private sector investment. The process uses a set of initial screens to eliminate projects that are not technically feasible to develop. The remaining projects are then rank-ordered using a multicriteria technique.

Perlack, R.D.

1995-08-01T23:59:59.000Z

239

Integrated safety assessment of an oxygen reduction project at Connecticut Yankee Atomic Power's Haddam Neck plant  

SciTech Connect

Connecticut Yankee Atomic Power Company (CYAPCo) has implemented an Integrated Safety Assessment Program (ISAP) for the integrated evaluation and prioritization of plant-specific licensing issues, regulatory policy issues, and plant improvement projects. As part of the ISAP process, probabilistic risk assessment (PRA) is utilized to evaluate the net safety impact of plant modification projects. On a few occasions, implementation of this approach has resulted in the identification of projects with negative safety impacts that could not be quantified via the normal design review and 10CFR50.59 safety evaluation process. An example is a plant modification that was proposed to reduce the oxygen in the Haddam Neck plant's demineralized water storage tank (DWST). The project involved the design and installation of a nitrogen blanketing system on the DWST. The purpose of the project was to reduce the oxygen content on the secondary side, consistent with recommendations from the Electric Power Research Institute Steam Generator Owners Group. Oxygen is one of the contributors to the corrosion process in systems in contact with the feedwater and can cause damage to associated components if not controlled.

Aubrey, J.E.

1987-01-01T23:59:59.000Z

240

Quantum Electrical Measurements Programs/Projects in PML  

Science Conference Proceedings (OSTI)

... and manufacturers use NIST electrical standards and calibrations for all kinds of measurements from home electricity usage to electrocardiograms ...

2010-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "integrated projects electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Major Risk Factors Integrated Facility Disposition Project - Oak Ridge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

O O O f f f f i i c c e e o o f f E E n n v v i i r r o o n n m m e e n n t t a a l l M M a a n n a a g g e e m m e e n n t t ( ( E E M M ) ) E E n n g g i i n n e e e e r r i i n n g g a a n n d d T T e e c c h h n n o o l l o o g g y y External Technical Review (ETR) Report Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN AUGUST 1, 2008 Acknowledgement The External Technical Review of the Integrated Facility Disposition Project was conducted simultaneous to other assessments and visits. The ETR Team wishes to note the outstanding support received from all parties involved in the review, including the DOE Oak Ridge Office, the National Nuclear Security Administration Y-12 Site Office, UT-Battelle, B&W Y-12, and the Professional Project Services, Inc. (Pro2Serve). The ETR Team feels compelled to note, and

242

Economic Realities and Energy Efficient Polyphase Integral Horsepower Electric Motors  

E-Print Network (OSTI)

Energy efficient polyphase integral horsepower electric motors are currently being vigorously promoted as a profitable method of conserving energy in many industrial and commercial applications. While the goal to be attained is indeed laudable, and must be tenaciously pursued, the economic realities of investment payback on increased efficiency versus cost of change out, power factor, etc. must have a meaningful review before decision making. Actual savings on a discount cash flow basis must be documented. and validity of the claims for the energy efficient motor must be verified. This paper develops the procedures used by the chemical manufacturing divisions of the Union Carbide Corporation in developing a long range plan for evolution from a motor population of standard efficiency units to one of higher efficiency and increased reliability. It notes statistics publicized by the U.S. Department of Energy, Union Carbide's overall electric equipment efficiency review, their own efficiency testing of sample small electric motors, and a pilot program to determine the number of lightly loaded motors in plant location. It further depicts an economic appraisal on the payback of replacing a standard efficiency motor with a higher efficiency unit and an action plan for purchasing energy efficient motors while simultaneously securing optimization of other parameters.

Whittington, B. W.

1980-01-01T23:59:59.000Z

243

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update No.5, October-December 2004  

DOE Green Energy (OSTI)

Fifth issue of a quarterly reporting to stakeholders on progress on the National Bioenergy Center Sugar Platform Integration Project.

Not Available

2005-02-01T23:59:59.000Z

244

National Bioenergy Center Sugar Platform Integration Project Quarterly Update: April/June 2004, No.3  

DOE Green Energy (OSTI)

Third issue of a quarterly reporting to stakeholders on progress on the National Bioenergy Center Sugar Platform Integration Project.

Not Available

2004-07-01T23:59:59.000Z

245

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update No.6, January-March 2005  

DOE Green Energy (OSTI)

Sixth issue of a quarterly reporting to stakeholders on progress on the National Bioenergy Center Sugar Platform Integration Project

Not Available

2005-04-01T23:59:59.000Z

246

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update, January/March 2004, No.2  

DOE Green Energy (OSTI)

Second issue of a quarterly reporting to stakeholders on progress on the National Bioenergy Center Sugar Platform Integration Project.

Not Available

2004-05-01T23:59:59.000Z

247

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #7, April-June 2005  

DOE Green Energy (OSTI)

Volume 7 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

Not Available

2005-07-01T23:59:59.000Z

248

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update, Issue No.1, October-December 2003  

DOE Green Energy (OSTI)

First issue of a quarterly reporting to stakeholders on progress on the National Bioenergy Center Sugar Platform Integration Project.

Not Available

2004-03-01T23:59:59.000Z

249

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update, July/September 2004, No.4  

DOE Green Energy (OSTI)

Fourth issue of a quarterly reporting to stakeholders on progress on the National Bioenergy Center Sugar Platform Integration Project

Not Available

2004-10-01T23:59:59.000Z

250

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #11, April-June 2006  

DOE Green Energy (OSTI)

Volume 11 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

Schell, D.

2006-07-01T23:59:59.000Z

251

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #8, July-September 2005  

Science Conference Proceedings (OSTI)

Volume 8 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

Schell, D.

2005-10-01T23:59:59.000Z

252

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #21, October - December 2008  

SciTech Connect

October to December, 2008 edition of the National Bioenergy Center?s Biochemical Platform Integration Project quarterly newsletter.

Schell, D.

2009-01-01T23:59:59.000Z

253

National Bioenergy Center Biochemical Platform Process Integration Project: Quarterly Update #18, January-March 2008  

DOE Green Energy (OSTI)

January-March, 2008 edition of the quarterly update for the National Bioenergy Center's Biochemical Platform Integration Project.

Schell, D.

2008-04-01T23:59:59.000Z

254

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #9, October-December 2005  

DOE Green Energy (OSTI)

Volume 9 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

Schell, D. J.

2006-01-01T23:59:59.000Z

255

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #10, January-March 2006  

DOE Green Energy (OSTI)

Volume 10 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

Not Available

2006-04-01T23:59:59.000Z

256

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #12, July-September 2006  

DOE Green Energy (OSTI)

Volume 12 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

Schell, D.

2006-10-01T23:59:59.000Z

257

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #24, July-September 2009  

SciTech Connect

July to September, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Schell, D.

2009-10-01T23:59:59.000Z

258

Annual Energy Outlook with Projections to 2025-Market Trends - Electricity  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity Index (click to jump links) Electricity Sales Electricity Generating Capacity Electricity Fuel Costs and Prices Nuclear Power Electricity from Renewable Sources Electricity Alternative Cases Electricity Sales Electricity Use Is Expected To Grow More Slowly Than GDP As generators and combined heat and power plants adjust to the evolving structure of the electricity market, they face slower growth in demand than in the past. Historically, demand for electricity has been related to economic growth; that positive relationship is expected to continue, but the ratio is uncertain. Figure 67. Population gross domestic product, and electricity sales, 1965-2025 (5-year moving average annual percent growth). Having problems, call our National Energy Information Center at 202-586-8800 for help.

259

The reduced basis method for the electric field integral equation  

Science Conference Proceedings (OSTI)

We introduce the reduced basis method (RBM) as an efficient tool for parametrized scattering problems in computational electromagnetics for problems where field solutions are computed using a standard Boundary Element Method (BEM) for the parametrized electric field integral equation (EFIE). This combination enables an algorithmic cooperation which results in a two step procedure. The first step consists of a computationally intense assembling of the reduced basis, that needs to be effected only once. In the second step, we compute output functionals of the solution, such as the Radar Cross Section (RCS), independently of the dimension of the discretization space, for many different parameter values in a many-query context at very little cost. Parameters include the wavenumber, the angle of the incident plane wave and its polarization.

Fares, M., E-mail: fares@cerfacs.f [2 Avenue Gaspard Coriolis, 31057 Toulouse Cedex 01 (France); Hesthaven, J.S., E-mail: Jan_Hesthaven@Brown.ed [Division of Applied Mathematics, Brown University, Box F, Providence, RI 02912 (United States); Maday, Y., E-mail: maday@ann.jussieu.f [Laboratoire Jacques-Louis Lions, Universite Pierre et Marie Curie, Boite courrier 18, 75252 Paris Cedex 05 (France); Stamm, B., E-mail: stamm@math.berkeley.ed [Department of Mathematics, University of California, Berkeley, CA 94720 (United States)

2011-06-20T23:59:59.000Z

260

Site wide integration of the Rocky Flats closure project  

Science Conference Proceedings (OSTI)

The prime contractor for the Rocky Flats Closure Project (RFCP), Kaiser-Hill, in concert with the Department of Energy--Rocky Flats Field Office (DOE-RFFO) has applied a fully integrated, life-cycle, critical path schedule and work planning system to manage the work that is required to close the Site. The closure of the Site is complex, in that it houses over 700 facilities, 19,600 kilograms of Special Nuclear Material (Plutonium and Uranium), and over 160,000 cubic meters of Transuranic, Low Level, and Hazardous Waste. The deactivation, decommissioning, decontaminating, and demolition of this large number of facilities, while at the same time accommodating difficult on-going activities, significantly increases the sophistication required in the planning process. The Rocky Flats team has overcome these difficulties by establishing a money oriented critical path process, to provide a least-cost avenue to supporting on-going activities and a line-of-balance process for production oriented activities. These processes, when integrated with a typical activity-based project planning system, guide the way to the shortest and most cost-effective course for the closure of the Rocky Flats Site.

Burdge, L.F.; Golan, P.

1998-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated projects electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Solid waste integrated cost analysis model: 1991 project year report  

SciTech Connect

The purpose of the City of Houston's 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA's Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

Not Available

1991-01-01T23:59:59.000Z

262

Salt Lake City Area Integrated Projects Power Sales Rate History  

NLE Websites -- All DOE Office Websites (Extended Search)

Salt Lake City Area Integrated Projects Power Sales Rate History Updated: 9/11/2013 Rate Schedule Effective Dates Energy (Mills/kWh) Capacity ($/kW-mo.) Combined (Mills/kWh) 1/ Composite (Mills/kWh) 2/ SLIP-F1 10/87-9/90 5.000 $2.09 9.92 - SLIP-F2 10/90-11/91 7.250 $3.08 14.5 - SLIP-F3 12/91-9/92 8.100 $3.44 16.2 - SLIP-F4 10/92-9/94 8.400 $3.54 16.72 - SLIP-F5 12/94-4/98 8.900 $3.83 - 20.17 SLIP-F6 4/98-9/02 8.100 $3.44 - 17.57 SLIP-F7 10/02-9/06 9.500 $4.04 - 20.72 SLIP-F8 10/06-9/08 10.430 $4.43 - 25.28 SLIP-F9 (First Step) 10/08-9/09 11.060 $4.70 - 26.80 SLIP-F9 (Second Step) 10/09-Present 12.190 $5.18 - 29.62 The Salt Lake City Area Integrated Projects is a combination of resources from the Collbran, CRSP, and Rio Grande Projects. 1/ Combined rates are calculated with a load factor which is assumed to be constant over a given period. In the SLCA/IP, the load factor is considered to be 58.2 percent.

263

Fuel used in electricity generation is projected to shift over the ...  

U.S. Energy Information Administration (EIA)

Projected fuel prices and economic growth are key factors influencing the future electricity generation mix. The price of natural gas, coal's chief competitor, ...

264

MHD Integrated Topping Cycle Project. Seventeenth quarterly technical progress report, August 1, 1991--October 31, 1991  

Science Conference Proceedings (OSTI)

This seventeenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period August 1, 1991 to October 31, 1991. Manufacturing of the prototypical combustor pressure shell has been completed including leak, proof, and assembly fit checking. Manufacturing of forty-five cooling panels was also completed including leak, proof, and flow testing. All precombustor internal components (combustion can baffle and swirl box) were received and checked, and integration of the components was initiated. A decision was made regarding the primary and backup designs for the 1A4 channel. The assembly of the channel related prototypical hardware continued. The cathode wall electrical wiring is now complete. The mechanical design of the diffuser has been completed.

Not Available

1992-07-01T23:59:59.000Z

265

Electricity market reform in the European Union : review of progress towards liberalisation and integration  

E-Print Network (OSTI)

The energy market liberalisation process in Europe is increasingly focused on electricity market integration and related cross border issues. This signals that the liberalisation of national electricity markets is now ...

Jamasb, Tooraj

2005-01-01T23:59:59.000Z

266

Record of Decision for the Electrical Interconnection of Goldendale Energy Project (DOE/EIS-0183) (03/20/01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Record of Decision for the Electrical Record of Decision for the Electrical Interconnection of Goldendale Energy Project SUMMARY Bonneville Power Administration (BPA) has decided to offer terms for integrating power from the Goldendale Energy Project (GEP) into the Federal Columbia River Transmission System (FCRTS). BPA will offer contracts integrating power from GEP into the FCRTS for delivery to the wholesale power market. In reaching this decision, I have considered the potential environmental impacts addressed in BPA's Business Plan Environmental Impact Statement (BP EIS, DOE/EIS-0183) and a Supplement Analysis (DOE/EIS-0183/SA-03). I have also considered input from the public process for the GEP. BPA will distribute this Record of Decision (ROD) to all known interested and affected persons, Tribes, and agencies and will publish a notice of its availability in the

267

Table 15. Average Electricity Prices, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Average Electricity Prices, Projected vs. Actual Average Electricity Prices, Projected vs. Actual (nominal cents per kilowatt-hour) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 6.38 6.96 7.63 8.23 8.83 9.49 AEO 1983 6.85 7.28 7.74 8.22 8.68 9.18 13.12 AEO 1984 6.67 7.05 7.48 7.89 8.25 8.65 11.53 AEO 1985 6.62 6.94 7.32 7.63 7.89 8.15 8.46 8.85 9.20 9.61 10.04 AEO 1986 6.67 6.88 7.05 7.18 7.35 7.52 7.65 7.87 8.31 8.83 9.41 10.01 10.61 11.33 12.02 AEO 1987 6.63 6.65 6.92 7.12 7.38 7.62 7.94 8.36 8.86 11.99 AEO 1989* 6.50 6.75 7.14 7.48 7.82 8.11 8.50 8.91 9.39 9.91 10.49 11.05 11.61 AEO 1990 6.49 6.72 8.40 10.99 14.5 AEO 1991 6.94 7.31 7.59 7.82 8.18 8.38 8.54 8.73 8.99 9.38 9.83 10.29 10.83 11.36 11.94 12.58 13.21 13.88 14.58 15.21 AEO 1992 6.97 7.16 7.32 7.56 7.78 8.04 8.29 8.57 8.93 9.38 9.82 10.26 10.73 11.25 11.83 12.37 12.96 13.58 14.23 AEO 1993

268

Revised Record of Decision for the Electrical Interconnection of the Summit/Westward Project  

Science Conference Proceedings (OSTI)

The Bonneville Power Administration (BPA) has decided to amend its July 25, 2003, Record of Decision (ROD) regarding the proposed Summit/Westward Project (Project) to offer contract terms for an optional interconnection of this Project into the Federal Columbia River Transmission System (FCRTS). Under this optional interconnection plan, BPA would integrate electric power from the Project into the FCRTS at a point adjacent to Clatskanie People's Utility District (CPUD) existing Wauna Substation. In order to deliver power to this location, CPUD would develop a new substation (Bradbury Substation) at a site near the Project and a new 230-kV transmission line from there to CPUD's Wauna Substation, which is already connected to the FCRTS. As part of this revised decision, BPA will facilitate CPUD development of the Bradbury-Wauna transmission line by allowing joint use of BPA right-of-way. This will involve reconstructing a section of BPA's 115-kV Allston-Astoria No. 1 transmission line from single-circuit H-frame wood-pole design to double-circuit single metal pole design. Terms of BPA participation in CPUD's development of the Bradbury-Wauna transmission line will be documented in a Construction Agreement. This optional interconnection plan is in addition to BPA's previous offer for interconnection of the Project at BPA's Allston Substation, as documented in the July 25, 2003, ROD. As with the initial interconnection plan, the decision to offer terms to interconnect the Project through the optional interconnection plan is consistent with BPA's Business Plan Final Environmental Impact Statement (BP EIS) (DOE/EIS-0183, June 1995), and the Business Plan Record of Decision (BP ROD, August 1995). This decision thus is similarly tiered to the Business Plan ROD.

N /A

2004-10-21T23:59:59.000Z

269

Tampa electric company - IGCC project. Quarterly report, January 1, 1996--March 31, 1996  

SciTech Connect

This quarterly report consists of materials presented at a recent review of the project. The project is an IGCC project being conducted by Tampa Electric Company. The report describes the status of the facility construction, components, operations staff training, and discusses aspects of the project which may impact the final scheduled completion.

1998-02-01T23:59:59.000Z

270

Low Wind Speed Technology Phase II: Integrated Wind Energy/Desalination System; General Electric Global Research  

SciTech Connect

This fact sheet describes a subcontract with General Electric Global Research to explore wind power as a desirable option for integration with desalination technologies.

Not Available

2006-03-01T23:59:59.000Z

271

Thermal Systems Group; Electricity, Resources, & Building Systems Integration (ERBSI) (Fact Sheet)  

SciTech Connect

Factsheet developed to describe the activites of the Thermal Systems Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

2009-11-01T23:59:59.000Z

272

Mechanical and Regenerative Braking Integration for a Hybrid Electric Vehicle.  

E-Print Network (OSTI)

??Hybrid electric vehicle technology has become a preferred method for the automotive industry to reduce environmental impact and fuel consumption of their vehicles. Hybrid electric (more)

DeMers, Steven Michael

2008-01-01T23:59:59.000Z

273

Request for Comments on the Electric Grid Integration Technical...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and the Department of Energy is requesting public comments. The documents are the Electricity Distribution System Workshop Discussion Summary and the Electricity...

274

EWIS European wind integration study (Smart Grid Project) (Denmark) | Open  

Open Energy Info (EERE)

Denmark) Denmark) Jump to: navigation, search Project Name EWIS European wind integration study Country Denmark Coordinates 56.26392°, 9.501785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.26392,"lon":9.501785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

275

EWIS European wind integration study (Smart Grid Project) (Portugal) | Open  

Open Energy Info (EERE)

Portugal) Portugal) Jump to: navigation, search Project Name EWIS European wind integration study Country Portugal Coordinates 39.095963°, -8.217773° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.095963,"lon":-8.217773,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

276

Uranium soils integrated demonstration: Soil characterization project report  

Science Conference Proceedings (OSTI)

An Integrated Demonstration Program, hosted by the Fernald Environmental Management Project (FEMP), has been established for investigating technologies applicable to the characterization and remediation of soils contaminated with uranium. Critical to the design of relevant treatment technologies is detailed information on the chemical and physical characteristics of the uranium waste-form. To address this need a soil sampling and characterization program was initiated which makes use of a variety of standard analytical techniques coupled with state-of-the-art microscopy and spectroscopy techniques. Sample representativeness is evaluated through the development of conceptual models in an effort to identify and understand those geochemical processes governing the behavior of uranium in FEMP soils. Many of the initial results have significant implications for the design of soil treatment technologies for application at the FEMP.

Cunnane, J.C. [Argonne National Lab., IL (United States); Gill, V.R. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Lee, S.Y. [Oak Ridge National Lab., TN (United States); Morris, D.E. [Los Alamos National Lab., NM (United States); Nickelson, M.D. [HAZWRAP, Oak Ridge, TN (United States); Perry, D.L. [Lawrence Berkeley Lab., CA (United States); Tidwell, V.C. [Sandia National Labs., Albuquerque, NM (United States)

1993-08-01T23:59:59.000Z

277

Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan  

SciTech Connect

The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).

Fix, N. J.

2008-02-20T23:59:59.000Z

278

Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development  

SciTech Connect

The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the worlds roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the worlds roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the worlds roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

National Energy Technology Laboratory

2002-07-31T23:59:59.000Z

279

Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories  

SciTech Connect

Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies] [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)] [Tech Reps, Inc., Albuquerque, NM (United States)

1996-08-01T23:59:59.000Z

280

Consortium for Electric Reliability Technology Solutions Integrated Assessment of  

E-Print Network (OSTI)

described in this paper coordinated by the Consortium of Electricity Reliability Technology Solutions

Note: This page contains sample records for the topic "integrated projects electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The CHPRC Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan  

SciTech Connect

The scope of the CH2M Hill Plateau Remediation Company, LLC (CHPRC) Groundwater and Technical Integration Support (Master Project) is for Pacific Northwest National Laboratory staff to provide technical and integration support to CHPRC. This work includes conducting investigations at the 300-FF-5 Operable Unit and other groundwater operable units, and providing strategic integration, technical integration and assessments, remediation decision support, and science and technology. The projects under this Master Project will be defined and included within the Master Project throughout the fiscal year, and will be incorporated into the Master Project Plan. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the CHPRC Groundwater and Technical Integration Support (Master Project) and all releases associated with the CHPRC Soil and Groundwater Remediation Project. The plan is designed to be used exclusively by project staff.

Fix, N. J.

2009-04-03T23:59:59.000Z

282

US Recovery Act Smart Grid Projects - Electric Transmission Systems | Open  

Open Energy Info (EERE)

American_Transmission_Company_LLC_II_Smart_Grid_Project\" American_Transmission_Company_LLC_II_Smart_Grid_Project\" title=\"American Transmission Company LLC II Smart Grid Project\">American Transmission Company LLC II Smart Grid Project","title":"American Transmission Company LLC II Smart Grid Project","link":null,"lat":43.0116784,"lon":-88.2314813,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""},{"text":"Project\" title=\"American Transmission Company LLC Smart Grid Project\">American

283

Electricity - Analysis & Projections - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Inventory of Nonutility Electric Power Plants in the United States. Released: January 1, 2003. Final issue of this report.

284

Electricity - Analysis & Projections - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... solar, wind, geothermal, ... Analysis of FERC's Final EIS for Electricity Open Access & Recovery of Stranded Costs.

285

An Application of Integrated Thermal and Electrical Energy Cogeneration Optimization  

E-Print Network (OSTI)

The savings associated with operations optimization of power generation and cogeneration facilities are large, and readily justify the hardware and software costs required for implementation of Energy Management Optimization Systems (EMOS). The objective of such systems is to minimize the total energy operating costs for specified power and steam load profiles, including the purchase of external power and/or steam, and the use of internal self-generation equipment. The EMOS may require online operation using current measurements (e.g. flow, powers, temperatures, etc.), and calculating optimum energy purchase and equipment dispatch within time periods consistent with changing ambients, loads and/or purchase energy price conditions. The automatic recognition of changes in equipment status and system operating configuration may be required. The EMOS may also consider the electrical distribution system to minimize losses, and to ensure that tbe optimum thermal power dispatch may be reliably delivered to the loads under tbe existing distribution configuration within electrical equipment operating limits. Automatic generation dispatch may also be required. A system which incorporates the requirements of the above specification and more, has been designed, installed and is operational at a large industrial cogeneration facility. A description of the specifics of this entire system is beyond tbe scope of this paper, however, a discussion of selected system features will be given. This application involves the simultaneous optimization of energy supply for in-plant power and process steam from many highly integrated system components. Cogeneration plants, as shown in Figure 1, are generally characterized by multiple sources of energy, various types of prime movers (e.g. boilers, waste heat recovery, steam and gas turbines, etc.), and varying requirements for process heat and electrical power, particularly if bulk power is being purchased, or dispatched to a utility grid as in the case of Independent Power Producers. In addition, the operating characteristics of tbe equipment and loads are continuously changing due to outage of equipment, changes in process steam and electrical demands, ambient conditions and performance deterioration. The ability to coordinate and optimize the simultaneous operation of the various components to meet all the energy requirements at minimum cost is a formidable task. In addition to the thermal optimization of boilers, gas turbines, and various types of condensing and autoextraction steam turbines, the system also considers the electrical distribution system, where changing bus configurations, power and voltage control impose additional constraints and limits which are solved in the optimum dispatch. The application incorporates automatic closed loop control of many process set points with a sophisticated system of permissives and automatic generation control features. Since a high on-line operating factor is essential, many design features are incorporated for signal validation and malfunction identification, and to make the system robust to instrument failure and drift. The system can be used as an on-line or off-line supervisory program. For on line implementation, closed loop response, fail safe operation and interfacing with process control systems are key closed loop implementation considerations. The system involves the interaction of several modules. The following will describe selected modules and how they interface to satisfy existing loads at minimum cost.

Ahner, D. J.; Mills, R. J.

1994-04-01T23:59:59.000Z

286

The challenges and policy options for integrating plug-in hybrid electric vehicle into the electric grid  

SciTech Connect

Plug-in hybrid electric vehicle may be prime candidates for the next generation of vehicles, but they offer several technological and economical challenges. This article assesses current progress in PHEV technology, market trends, research needs, challenges ahead and policy options for integrating PHEVs into the electric grid. (author)

Srivastava, Anurag K.; Annabathina, Bharath; Kamalasadan, Sukumar

2010-04-15T23:59:59.000Z

287

Tampa Electric Company IGCC Project. Quarterly report, April 1 - June 30, 1996  

SciTech Connect

Tampa Electric Company continued efforts to complete construction and start-up of the Polk Power Station, Unit {number_sign}1 which will use Integrated Gasification Combined Cycle (IGCC) technology for power generation. From an overall standpoint, the Project continues to track well. The completion of construction system turnovers to Start-up is encouraging. Start-up will accept responsibility of the plant until turnover to operations. The major focus continues to be on the production of first Syngas, scheduled for July 17. All construction, engineering, and start-up activities are in support of Syngas production. Key activities toward this goal include final checkout and startup of remaining gasification systems, completion of punch list items required for first syngas, finalization of operating procedures, preparation of site and area access control plans, site- wide safety training, and other Process Safety management (PSM) requirements.

1996-12-31T23:59:59.000Z

288

Integration of decentralized generators with the electric power grid  

E-Print Network (OSTI)

This report develops a new methodology for studying the economic interaction of customer-owned electrical generators with the central electric power grid. The purpose of the report is to study the reciprocal effects of the ...

Finger, Susan

1981-01-01T23:59:59.000Z

289

Sensors Programs/Projects in Quantum Electrical Metrology  

Science Conference Proceedings (OSTI)

Sensors Programs/Projects. Advanced Magnetic and Quantum Materials. Fiber Sources and Applications. High-Speed Measurements. ...

2011-10-24T23:59:59.000Z

290

2012 SG Peer Review - Integrated Smart Distribution RD&D Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2012 Smart Grid R&D Program Peer Review Meeting DOE - Integrated Smart Distribution RD&D Project S. S. (Mani) Venkata Alstom Grid June 7, 2012 December 2008 DOE Integrated Smart...

291

2001-01-1334 Integrated, Feed-Forward Hybrid Electric Vehicle  

E-Print Network (OSTI)

1 2001-01-1334 Integrated, Feed-Forward Hybrid Electric Vehicle Simulation in SIMULINK and its Use of Automotive Engineers, Inc. ABSTRACT A hybrid electric vehicle simulation tool (HE-VESIM) has been developed global crude oil supplies stimulate research aimed at new, fuel-efficient vehicle technologies. Hybrid-electric

Peng, Huei

292

Electrical Characterization Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory), Energy Systems Integration Facility (ESIF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Characterization Electrical Characterization Laboratory may include: * Equipment manufacturers * Universities * Other National laboratories Contact Us If you are interested in working with NREL's Energy Systems Integration Laboratory, please contact: ESIF Manager Carolyn Elam Carolyn.Elam@nrel.gov 303-275-4311 Electrical Characterization Laboratory Electrical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on the detailed electrical characterization of components and systems. This laboratory allows researchers to test the ability of equipment to withstand high voltage surges and high current faults, including equipment using

293

Systems and methods for an integrated electrical sub-system powered by wind energy  

DOE Patents (OSTI)

Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.

Liu, Yan (Ballston Lake, NY); Garces, Luis Jose (Niskayuna, NY)

2008-06-24T23:59:59.000Z

294

Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect

Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954; the Resource Conservation and Recovery Act of 1976; the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The U.S. Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/ frequency matrix for the entire site. The objectives of monitoring fall into three general categories: plume and trend tracking, treatment/ storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently.

MJ Hartman; PE Dresel; JW Lindberg; DR Newcomer; EC Thornton

2000-10-18T23:59:59.000Z

295

Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect

Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954 the Resource Conservation and Recovery Act of 1976 the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The US Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/frequency matrix for the entire site. The objectives of monitoring fall into three general categories plume and trend tracking, treatment/storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently.

Newcomer, D.R.; Thornton, E.C.; Hartman, M.J.; Dresel, P.E.

1999-10-06T23:59:59.000Z

296

EWIS European wind integration study (Smart Grid Project) (Netherlands...  

Open Energy Info (EERE)

Jun 2007 Oct 2009 References EU Smart Grid Projects Map1 Overview The project aims to work with all the relevant stakeholders especially representatives of wind generation...

297

EWIS European wind integration study (Smart Grid Project) (Germany...  

Open Energy Info (EERE)

Jun 2007 Oct 2009 References EU Smart Grid Projects Map1 Overview The project aims to work with all the relevant stakeholders especially representatives of wind generation...

298

EWIS European wind integration study (Smart Grid Project) (United...  

Open Energy Info (EERE)

Jun 2007 Oct 2009 References EU Smart Grid Projects Map1 Overview The project aims to work with all the relevant stakeholders especially representatives of wind generation...

299

EV Project Electric Vehicle Charging Infrastructure Summary Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

across all days Electricity demand on single calendar day with highest peak Max percentage of charging units connected across all days Min percentage of charging units...

300

NETL: News Release - Abraham Announces Projects to Bolster Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Supply With New Technologies for Nation's Coal-Fired Power Plants Power Plant Improvement Initiative" is Precursor To President's Clean Coal Technology Program...

Note: This page contains sample records for the topic "integrated projects electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Electricity - Analysis & Projections - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Generation and thermal output; Electric power plants generating capacity; ... Phase I mostly affects power plants that are the largest sources of SO2 and NOx .

302

AEO2011: Electric Power Projections for EMM Region - Southwest...  

Open Energy Info (EERE)

unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category.
...

303

AEO2011: Electric Power Projections for EMM Region - Reliability...  

Open Energy Info (EERE)

unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category.
...

304

AEO2011: Electric Power Projections for EMM Region - Western...  

Open Energy Info (EERE)

unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category.
...

305

AEO2011: Electric Power Projections for EMM Region - Northeast...  

Open Energy Info (EERE)

unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category.
...

306

AEO2011: Electric Power Projections for EMM Region - SERC Reliability  

Open Energy Info (EERE)

unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category.
...

307

AEO2011: Electric Power Projections for EMM Region - Midwest...  

Open Energy Info (EERE)

unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category.
...

308

AEO2011: Electric Power Projections for EMM Region - Florida...  

Open Energy Info (EERE)

unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category.
...

309

AEO2011: Electric Power Projections for EMM Region - United States...  

Open Energy Info (EERE)

unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category.
...

310

ASEO2011: Electric Power Projections for EMM Region - SERC Reliability  

Open Energy Info (EERE)

unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category.
...

311

Annual Energy Outlook with Projections to 2025-Electricity generation...  

Gasoline and Diesel Fuel Update (EIA)

4. Electricity generation by fuel, 1970-2025 (billion kilowatthours). For more detailed information, contact the National Energy Information Center at (202) 586-8800. Energy...

312

Electricity - Analysis & Projections - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

... fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per ...

313

Electricity Markets and Policy Group Energy Analysis Department Wind Project Financing Structures  

E-Print Network (OSTI)

characteristics of each: - Wind projects have higher capital costs but lower operating costs (e.g., no fuel costs project and finances all costs. No other investor or lender capital is involved. Corporate entity is ableElectricity Markets and Policy Group · Energy Analysis Department 1 Wind Project Financing

314

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #16, July-September 2007  

DOE Green Energy (OSTI)

This quarterly update contains information on the National Bioenergy Center Biochemical Platform Integration Project, R&D progress and related activities.

Schell, D.

2007-10-01T23:59:59.000Z

315

National Bioenergy Center Biochemical Platform Process Integration Project: Quarterly Update #18, January-March 2008  

SciTech Connect

January-March, 2008 edition of the quarterly update for the National Bioenergy Center's Biochemical Platform Integration Project.

Schell, D.

2008-04-01T23:59:59.000Z

316

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #12, July-September 2006  

SciTech Connect

Volume 12 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

Schell, D.

2006-10-01T23:59:59.000Z

317

A First Look at the Impact of Electric Vehicle Charging on the Electric Grid in the EV Project  

DOE Green Energy (OSTI)

ECOtality was awarded a grant from the U.S. Department of Energy to lead a large-scale electric vehicle charging infrastructure demonstration, called The EV Project. ECOtality has partnered with Nissan North America, General Motors, the Idaho National Laboratory, and others to deploy and collect data from over 5,000 Nissan LEAFsTM and Chevrolet Volts and over 10,000 charging systems in 18 regions across the United States. This paper summarizes usage of residential charging units in The EV Project, based on data collected through the end of 2011. This information is provided to help analysts assess the impact on the electric grid of early adopter charging of grid-connected electric drive vehicles. A method of data aggregation was developed to summarize charging unit usage by the means of two metrics: charging availability and charging demand. Charging availability is plotted to show the percentage of charging units connected to a vehicle over time. Charging demand is plotted to show charging demand on the electric gird over time. Charging availability for residential charging units is similar in each EV Project region. It is low during the day, steadily increases in evening, and remains high at night. Charging demand, however, varies by region. Two EV Project regions were examined to identify regional differences. In Nashville, where EV Project participants do not have time-of-use electricity rates, demand increases each evening as charging availability increases, starting at about 16:00. Demand peaks in the 20:00 hour on weekdays. In San Francisco, where the majority of EV Project participants have the option of choosing a time-of-use rate plan from their electric utility, demand spikes at 00:00. This coincides with the beginning of the off-peak electricity rate period. Demand peaks at 01:00.

Stephen L. Schey; John G. Smart; Don R. Scoffield

2012-05-01T23:59:59.000Z

318

EV Project Electric Vehicle Charging Infrastructure Summary Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

per charging event (hr) 2.3 1.9 2.2 Average electricity consumed per charging event (AC kWh) 8.3 6.9 7.9 Residential Level 2 Electric Vehicle Supply Equipment (EVSE) Region: ALL...

319

EV Project Electric Vehicle Charging Infrastructure Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

per charging event (hr) 2.4 2.1 2.3 Average electricity consumed per charging event (AC kWh) 8.4 7.2 8.1 Residential Level 2 Electric Vehicle Supply Equipment (EVSE) Region: ALL...

320

EV Project Electric Vehicle Charging Infrastructure Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

per charging event (hr) 2.5 2.1 2.4 Average electricity consumed per charging event (AC kWh) 8.7 7.5 8.4 Residential Level 2 Electric Vehicle Supply Equipment (EVSE) Region: ALL...

Note: This page contains sample records for the topic "integrated projects electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

EV Project Electric Vehicle Charging Infrastructure Summary Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

per charging event (hr) 2.4 2.0 2.3 Average electricity consumed per charging event (AC kWh) 8.7 7.3 8.3 Residential Level 2 Electric Vehicle Supply Equipment (EVSE) Region: ALL...

322

EV Project Electric Vehicle Charging Infrastructure Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

per charging event (hr) 2.4 2.1 2.4 Average electricity consumed per charging event (AC kWh) 8.6 7.4 8.3 Residential Level 2 Electric Vehicle Supply Equipment (EVSE) Region: ALL...

323

Integrating plug-in electric vehicles into the electric power system.  

E-Print Network (OSTI)

??This dissertation contributes to our understanding of how plug-in hybrid electric vehicles (PHEVs) and plug-in battery-only electric vehicles (EVs)collectively termed plug-in electric vehicles (PEVs)could be (more)

Wu, Di

2012-01-01T23:59:59.000Z

324

Black Hills/Colorado Electric Utility Co. Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Hills/Colorado Electric Utility Co. Smart Grid Project Hills/Colorado Electric Utility Co. Smart Grid Project Jump to: navigation, search Project Lead Black Hills/Colorado Electric Utility Co. Country United States Headquarters Location Pueblo, Colorado Recovery Act Funding $6,142,854.00 Total Project Value $12,285,708.00 Coverage Area Coverage Map: Black Hills/Colorado Electric Utility Co. Smart Grid Project Coordinates 38.2544472°, -104.6091409° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

325

Kenya-Affecting Electricity Policy through a Community Micro Hydro Project  

Open Energy Info (EERE)

Affecting Electricity Policy through a Community Micro Hydro Project Affecting Electricity Policy through a Community Micro Hydro Project Jump to: navigation, search Name Kenya-Affecting Electricity Policy through a Community Micro Hydro Project Agency/Company /Organization United Nations Development Programme Sector Energy Focus Area Renewable Energy, Hydro Topics Policies/deployment programs, Background analysis, Technology characterizations Resource Type Publications Website http://sgp.undp.org/download/S Country Kenya UN Region Eastern Africa References Kenya Micro Hydro [1] Kenya-Affecting Electricity Policy through a Community Micro Hydro Project Screenshot Background "This project sought to remove the policy, technical and institutional barriers that limited the development and use of renewable energy sources

326

DOE Announces $30 Million for Plug-in Hybrid Electric Vehicle Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 Million for Plug-in Hybrid Electric Vehicle 0 Million for Plug-in Hybrid Electric Vehicle Projects DOE Announces $30 Million for Plug-in Hybrid Electric Vehicle Projects June 12, 2008 - 1:30pm Addthis Adds Plug-in Hybrid Vehicle to Department's Fleet WASHINGTON - U.S. Department of Energy (DOE) Assistant Secretary of Energy Efficiency and Renewable Energy Andy Karsner today announced up to $30 million in funding over three years for three cost-shared Plug-in Hybrid Electric Vehicles (PHEVs) demonstration and development projects. The selected projects will accelerate the development of PHEVs capable of traveling up to 40 miles without recharging, which includes most daily roundtrip commutes and satisfies 70 percent of the average daily travel in the U. S. The projects will also address critical barriers to achieving

327

Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)  

SciTech Connect

Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

Rugh, J. P.

2013-07-01T23:59:59.000Z

328

Estimating carbon emissions avoided by electricity generation and efficiency projects: A standardized method (MAGPWR)  

SciTech Connect

This paper describes a standardized method for establishing a multi-project baseline for a power system. The method provides an approximation of the generating sources that are expected to operate on the margin in the future for a given electricity system. It is most suitable for small-scale electricity generation and electricity efficiency improvement projects. It allows estimation of one or more carbon emissions factors that represent the emissions avoided by projects, striking a balance between simplicity of use and the desire for accuracy in granting carbon credits.

Meyers, S.; Marnay, C.; Schumacher, K.; Sathaye, J.

2000-07-01T23:59:59.000Z

329

Prospects for biomass-to-electricity projects in Yunnan Province, China  

DOE Green Energy (OSTI)

Efforts have been underway since 1989 to assess the prospects for biomass-to-electricity projects in Yunnan Province. Results of prefeasibility studies for specific projects suggest that they are both financially and technically viable. Because of low labor costs and favorable climate biomass can be grown on marginal and underutilized land and converted to electricity at costs lower than other alternatives. Bases on current plantation establishment rates, the potential size of the biomass resource can easily support over 1 GW of electric generating capacity in small-sized (up to 20-40 MW) cogeneration and stand-alone projects. These projects, if implemented, can ease power shortages, reduce unemployment, and help sustain the region`s economic growth. Moreover, the external environmental benefits of biomass energy are also potentially significant. This report briefly summarizes the history of biomass assessment efforts in Yunnan Province and discusses in more detail twelve projects that have been identified for U.S. private sector investment. This discussion includes a feasibility analysis of the projects (plantation-grown biomass and its conversion to electricity) and an estimate of the biomass resource base in the general vicinity of each project. This data as well as information on power needs and local capabilities to manage and operate a biomass-to-electricity project are then used to rank-order the twelve projects. One cogeneration and one stand-alone facility are recommended for additional study and possible investment.

Perlack, R.D.

1996-02-01T23:59:59.000Z

330

MHD Integrated Topping Cycle Project. Thirteenth quarterly technical progress report, August 1, 1990--October 31, 1990  

DOE Green Energy (OSTI)

The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois {number_sign}6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.

Not Available

1992-01-01T23:59:59.000Z

331

Record of Decision for the Electrical Interconnection of TransAlta Centralia Generation LLC Big Hanaford Project (DOE/EIS-0183)(10/19/01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for the for the Electrical Interconnection of TransAlta Centralia Generation LLC Big Hanaford Project INTRODUCTION The Bonneville Power Administration (BPA) has decided to offer contract terms for integrating power from the TransAlta Centralia Generation LLC Big Hanaford Project, a 248-megawatt (MW) gas-fired, combined-cycle combustion turbine (CCCT) power generation project (Project), into the Federal Columbia River Transmission System (FCRTS). The Project is located within an industrial area adjacent to TransAlta's existing Centralia Steam Plant in Lewis County, Washington. The West Coast is experiencing a shortfall in electric energy supply, as well as a volatile wholesale power market in which prices have reached record highs. The Project is one of

332

Revised Record of Decision for the Electrical Interconnection of the Summit/Westward Project (DOE/EIS-0183) (10/21/04)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bonneville Power Administration Bonneville Power Administration Revised Record of Decision for the Electrical Interconnection of the Summit/Westward Project INTRODUCTION The Bonneville Power Administration (BPA) has decided to amend its July 25, 2003, Record of Decision (ROD) regarding the proposed Summit/Westward Project (Project) to offer contract terms for an optional interconnection of this Project into the Federal Columbia River Transmission System (FCRTS). Under this optional interconnection plan, BPA would integrate electric power from the Project into the FCRTS at a point adjacent to Clatskanie People's Utility District (CPUD) existing Wauna Substation. In order to deliver power to this location, CPUD would develop a new substation (Bradbury Substation) at a site near the Project and a new

333

DOE: Integrating Southwest Power Pool Wind Energy into Southeast Electricity Markets  

DOE Green Energy (OSTI)

Wind power development in the United States is outpacing previous estimates for many regions, particularly those with good wind resources. The pace of wind power deployment may soon outstrip regional capabilities to provide transmission and integration services to achieve the most economic power system operation. Conversely, regions such as the Southeastern United States do not have good wind resources and will have difficulty meeting proposed federal Renewable Portfolio Standards with local supply. There is a growing need to explore innovative solutions for collaborating between regions to achieve the least cost solution for meeting such a renewable energy mandate. The DOE-funded project 'Integrating Southwest Power Pool Wind Energy into Southeast Electricity Markets' aims to evaluate the benefits of coordination of scheduling and balancing for Southwest Power Pool (SPP) wind transfers to Southeastern Electric Reliability Council (SERC) Balancing Authorities (BAs). The primary objective of this project is to analyze the benefits of different balancing approaches with increasing levels of inter-regional cooperation. Scenarios were defined, modeled and investigated to address production variability and uncertainty and the associated balancing of large quantities of wind power in SPP and delivery to energy markets in the southern regions of the SERC. The primary analysis of the project is based on unit commitment (UC) and economic dispatch (ED) simulations of the SPP-SERC regions as modeled for the year 2022. The UC/ED models utilized for the project were developed through extensive consultation with the project utility partners, to ensure the various regions and operational practices are represented as accurately as possible realizing that all such future scenario models are quite uncertain. SPP, Entergy, Oglethorpe Power Company (OPC), Southern Company, and the Tennessee Valley Authority (TVA) actively participated in the project providing input data for the models and review of simulation results and conclusions. While other SERC utility systems are modeled, the listed SERC utilities were explicitly included as active participants in the project due to the size of their load and relative proximity to SPP for importing wind energy. The analysis aspects of the project comprised 4 primary tasks: (1) Development of SCUC/SCED model of the SPP-SERC footprint for the year 2022 with only 7 GW of installed wind capacity in SPP for internal SPP consumption with no intended wind exports to SERC. This model is referred to as the 'Non-RES' model as it does not reflect the need for the SPP or SERC BAs to meet a federal Renewable Energy Standard (RES). (2) Analysis of hourly-resolution simulation results of the Non-RES model for the year 2022 to provide project stakeholders with confidence in the model and analytical framework for a scenario that is similar to the existing system and more easily evaluated than the high-wind transfer scenarios that are analyzed subsequently. (3) Development of SCUC/SCED model of the SPP-SERC footprint for the year 2022 with sufficient installed wind capacity in SPP (approximately 48 GW) for both SPP and the participating SERC BAs to meet an RES of 20% energy. This model is referred to as the 'High-Wind Transfer' model with several different scenarios represented. The development of the High-Wind Transfer model not only included identification and allocation of SPP wind to individual SERC BAs, but also included the evaluation of various methods to allow the model to export the SPP wind to SERC without developing an actual transmission plan to support the transfers. (4) Analysis of hourly-resolution simulation results of several different High-Wind Transfer model scenarios for the year 2022 to determine balancing costs and potential benefits of collaboration among SPP and SERC BAs to provide the required balancing.

Brooks, Daniel, EPRI; Tuohy, Aidan, EPRI; Deb, Sidart, LCG Consulting; Jampani, Srinivas, LCG Consulting; Kirby, Brendan, Consultant; King, Jack, Consultant

2011-11-29T23:59:59.000Z

334

The Commonwealth Electric Open Planning Project : final report  

E-Print Network (OSTI)

This report describes the development, application and results of an Open Planning Process performed by the M.I.T. Energy Laboratory's Analysis Group for Regional Electricity Alternatives (AGREA) for, and with the support ...

Andrews, Clinton J.

1991-01-01T23:59:59.000Z

335

Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

2010-11-08T23:59:59.000Z

336

[Tampa Electric Company IGCC project]. 1996 DOE annual technical report, January--December 1996  

SciTech Connect

Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project uses a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,000 tons per day of coal to syngas. The gasification plant is coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 BTUs/cf (HHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product. Approximately 10% of the raw, hot syngas at 900 F is designed to pass through an intermittently moving bed of metal-oxide sorbent which removes sulfur-bearing compounds from the syngas. PPS-1 will be the first unit in the world to demonstrate this advanced metal oxide hot gas desulfurization technology on a commercial unit. The emphasis during 1996 centered around start-up activities.

NONE

1997-12-31T23:59:59.000Z

337

Integrated Environment and Safety and Health Management System (ISMS) Implementation Project Plan  

SciTech Connect

The Integrated Environment, Safety and Health Management System (ISMS) Implementation Project Plan serves as the project document to guide the Fluor Hanford, Inc (FHI) and Major Subcontractor (MSC) participants through the steps necessary to complete the integration of environment, safety, and health into management and work practices at all levels.

MITCHELL, R.L.

2000-01-10T23:59:59.000Z

338

An integrated analytic approach for Six Sigma project selection  

Science Conference Proceedings (OSTI)

Six Sigma is regarded as a well-structured methodology for improving the quality of processes and products. It helps achieve the company's strategic goal through the effective use of project-driven approach. As Six Sigma is a project-driven methodology, ... Keywords: Analytic network process (ANP), Decision Making Trial And Evaluation Laboratory (DEMATEL), Logistics company, Six Sigma project selection

Glin Bykzkan; Demet ztrkcan

2010-08-01T23:59:59.000Z

339

INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION  

DOE Green Energy (OSTI)

With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.

FuelCell Energy

2005-05-16T23:59:59.000Z

340

The Cal Poly Sustainable Power for Electrical Resources (SuPER) Project  

NLE Websites -- All DOE Office Websites (Extended Search)

The Cal Poly Sustainable Power for Electrical Resources (SuPER) Project The Cal Poly Sustainable Power for Electrical Resources (SuPER) Project Speaker(s): James Harris Date: August 16, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Anita Estner The Cal Poly sustainable power for electrical resources (SuPER) project has completed two years of development for a low-cost source of electrical power for the 2 billion people who do not have access. The overall goal of the Cal Poly SuPER system is to provide sustainable electrical power for a household unit over a 20-year life cycle for a total cost of $500. A prototype has been developed, and consists of a solar photovoltaic module source with battery storage, a standard DC output voltage, and a computer/digital control and status subsystem. The design is documented

Note: This page contains sample records for the topic "integrated projects electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

TWENTIES Project: Improving the Integration of Renewable Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

widespread use of IT. This situation will lead, presumably, to a higher volatility in electricity generation and consumption, and as a consequence, transmission and...

342

Integrate Real-Time Weather with Thermostat Electrical Usage...  

NLE Websites -- All DOE Office Websites (Extended Search)

Xiufeng Pang Weather and its dynamics are big drivers of energy usage. Integration of key weather variables - solar, wind, and temperature - into home energy management and demand...

343

Multiproject baselines for evaluation of electric power projects  

E-Print Network (OSTI)

in S. Africa: Darling wind farm. Cape Town: Energy andon total generation. Even wind farms may be able to reliablyProject 3 is the Darling wind farm, a plan to install 5 MW

2003-01-01T23:59:59.000Z

344

Table 11a. Coal Prices to Electric Generating Plants, Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

Actual" "Projected Price in Constant Dollars" " (constant dollars per million Btu in ""dollar year"" specific to each AEO)" ,"AEO Dollar Year",1993,1994,1995,1996,1997,1998,1999,20...

345

Integrating The Non-Electrical Worker Into The Electrical Safety Program  

SciTech Connect

The intent of this paper is to demonstrate an electrical safety program that incorporates all workers into the program, not just the electrical workers. It is largely in response to a paper presented at the 2012 ESW by Lanny Floyd entitled "Facilitating Application of Electrical Safety Best Practices to "Other" Workers" which requested all attendees to review their electrical safety program to assure that non-electrical workers were protected as well as electrical workers. The referenced paper indicated that roughly 50% of electrical incidents involve workers whose primary function is not electrical in nature. It also encouraged all to "address electrical safety for all workers and not just workers whose job responsibilities involve working on or near energized electrical circuits." In this paper, a program which includes specific briefings to non-electrical workers as well as to workers who may need to perform their normal activities in proximity to energized electrical conductors is presented. The program uses a targeted approach to specific areas such as welding, excavating, rigging, chart reading, switching, cord and plug equipment and several other general areas to point out hazards that may exist and how to avoid them. NFPA 70E-2004 was incorporated into the program several years ago and with it the need to include the "other" workers became apparent. The site experience over the years supports the assertion that about half of the electrical incidents involve non-electrical workers and this prompted us to develop specific briefings to enhance the knowledge of the non-electrical worker regarding safe electrical practices. The promotion of "May is Electrical Safety Month" and the development of informative presentations which are delivered to the general site population as well as electrical workers have greatly improved the hazards awareness status of the general worker on site.

2012-08-17T23:59:59.000Z

346

Electric Energy Conservation and Production Project: Volume 1, Electricity use patterns  

Science Conference Proceedings (OSTI)

The report addresses two major issues: the heavy reliance on electricity by residents of the Blackfeet Reservation in Montana, and the opportunities for electricity production from wind energy resources on the Reservation. The findings of this report help provide a basis for comprehensive energy management planning on the Reservation, analyze the potential for minimizing electricity demand and maximizing the efficiency of electrical end-uses through appropriate conservation measures, assess the potential of wind energy resources located on the Reservation, and identify and assess the technical, financial, legal, institutional, and regulatory issues involved in wind energy development within the Blackfeet Reservation. This volume covers electricity use patterns.

Not Available

1984-02-01T23:59:59.000Z

347

Unalaska geothermal exploration project. Electrical power generation analysis. Final report  

DOE Green Energy (OSTI)

The objective of this study was to determine the most cost-effective power cycle for utilizing the Makushin Volcano geothermal resource to generate electricity for the towns of Unalaska and Dutch Harbor. It is anticipated that the geothermal power plant would be intertied with a planned conventional power plant consisting of four 2.5 MW diesel-generators whose commercial operation is due to begin in 1987. Upon its completion in late 1988, the geothermal power plant would primarily fulfill base-load electrical power demand while the diesel-generators would provide peak-load electrical power and emergency power at times when the geothermal power plant would be partially or completely unavailable. This study compares the technical, environmental, and economic adequacy of five state-of-the-art geothermal power conversion processes. Options considered are single- and double-flash steam cycles, binary cycle, hybrid cycle, and total flow cycle.

Not Available

1984-04-01T23:59:59.000Z

348

Progress Report 15, December 1979-April 1980, and proceedings of the fifteenth Project Integration Meeting  

DOE Green Energy (OSTI)

Progress made by the Low-Cost Solar Array Project during the period December 1979 to April 1980 is reported. Reports on project analysis and integration; technology development in silicon material, large-area silicon sheet and encapsulation; production process and equipment development; engineering; and operations are included. Also, a report on, and copies of visual presentations made at, the Project Integration Meeting held April 2 and 3, 1980, are included.

Not Available

1980-01-01T23:59:59.000Z

349

Integrating Expanded Wind into the Nation's Electrical Grid  

Wind Powering America (EERE)

on coal and natural gas and nuclear power and then on carbon reduction, emissions and water uses in the electric sector. So anybody who has kind of followed this space certainly...

350

Integrated Job Exposure Matrix for Electric Utility Workers  

Science Conference Proceedings (OSTI)

This report identifies and includes all exposure factors in a prototype job-exposure matrix (JEM) to inform utility professionals, exposure assessment experts, and epidemiologists about exposures other than electric and magnetic fields that should be considered when assessing health and safety issues related to work near electric facilities. The nature of exposures to these factors, the ordinal exposure ranking for most of the factors, and the methodology for establishing such determining ordinal exposur...

2009-07-14T23:59:59.000Z

351

Resource Information and Forecasting Group; Electricity, Resources, & Building Systems Integration (ERBSI) (Fact Sheet)  

SciTech Connect

Researchers in the Resource Information and Forecasting group at NREL provide scientific, engineering, and analytical expertise to help characterize renewable energy resources and facilitate the integration of these clean energy sources into the electricity grid.

2009-11-01T23:59:59.000Z

352

Advanced Variable Speed Air-Source Integrated Heat Pumps Research Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Variable Speed Air-Source Advanced Variable Speed Air-Source Integrated Heat Pumps Research Project Advanced Variable Speed Air-Source Integrated Heat Pumps Research Project The U.S. Department of Energy is currently conducting research into advanced variable speed air-source integrated heat pumps (AS-IHPs). Project Description This project seeks to develop AS-IHP products for the larger air-source system market. Development focuses on a fully variable capacity or variable speed AS-IHP option. Project Partners Research is being undertaken through a cooperative research and development agreement (CRADA) between the Department of Energy, Oak Ridge National Laboratory, and a CRADA partner. Project Goals The goal of this project is the development of a fully variable-speed version of an AS-IHP product that can provide heating, ventilation, and air

353

Methodology for combined Integration of electric vehicles and distributed resources into the electric grid  

E-Print Network (OSTI)

Plug-in electric vehicles and distributed generation are expected to appear in growing numbers over the next few decades. Large scale unregulated penetration of plug-in electric vehicles and distributed generation can each ...

Gunter, Samantha Joellyn

2011-01-01T23:59:59.000Z

354

AEO2011: Electric Power Projections for EMM Region - Texas Regional...  

Open Energy Info (EERE)

end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category.
2011-08-08T14:57:52Z 2011-08-16T23:43:11Z http:www.eia.gov...

355

EV Project Electric Vehicle Charging Infrastructure Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

251 2,675 87 9,154 Number of charging events 490,327 11,948 50,729 26,911 579,915 Electricity consumed (AC MWh) 3,808.41 143.89 437.69 222.52 4,612.51 Percent of time with a...

356

Review of the Sodium Bearing Waste Treatment Project - Integrated...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IWTU Integrated Waste Treatment Unit LCO Limiting Condition for Operation LSS Life Safety Systems MSA Management Self-Assessment OFI Opportunity for Improvement ORR Operational...

357

Review of the Sodium Bearing Waste Treatment Project - Integrated...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IWTU Integrated Waste Treatment Unit LCO Limiting Condition for Operation LSS Life Safety Systems MSA Management Self-Assessment OFI Opportunity for Improvement OGC Off-Gas...

358

ESS 2012 Peer Review - Painesville Municipal Electric Power Vanadium Redox Battery Demo Project - Jodi Startari, Ashlawn Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Power Electric Power Vanadium Redox Battery Demonstration Project Jodi Startari Ashlawn Energy LLC Briefing Overview * Painesville Municipal Electric Power Plant Project Synopsis * Vanadium Redox Flow Battery Technology * City of Painesville Municipal Electric Plant History * Project Multiple Objectives and Additional Detail * Project Risk Analysis presented at previous Peer Review * Project to date progress * Cost Distribution * Summary/Conclusions * Future Tasks * Questions US Produced Vanadium Redox Flow Battery for Bulk Storage, Peak Shaving * 8 MW Hour redox flow battery (1MW 8 hours) * To be installed at Painesville Municipal Electric Plant (PMEP), a 32 MW coal fired facility * Most efficient PMEP operation is steady state at 26 MW (lowest emissions, lowest operating cost)

359

Tampa Electric Company Polk Integrated Gasification Combined Cycle Plant Carbon Capture Retrofit Study  

Science Conference Proceedings (OSTI)

In support of the Industry Technology Demonstration Program on Integrated Gasification Combined Cycle (IGCC) with carbon capture and storage (CCS), an engineering study was conducted to evaluate the cost and performance impacts of various CCS schemes at the Tampa Electric Polk Power Station. The portion of the work presented here was funded by the Electric Power Research Institute (EPRI) IGCC with CCS demonstration program collaborative and focuses on novel CO2 capture and purification systems integrated...

2010-03-30T23:59:59.000Z

360

Multi-Project Baselines for Evaluation of Industrial Energy-Efficiency and Electric Power Projects  

E-Print Network (OSTI)

coal and oil. Although coal-fired plants use coal as primarycarbon-intensive than coal-fired plants. Project 2 is basedexample, the hypothetical coal-fired plant in India (Project

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated projects electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Outline Introduction Literature Review Electric Power Supply Chains Empirical Examples Conclusions An Integrated Electric Power Supply Chain and Fuel Market  

E-Print Network (OSTI)

billion annual sales, 40% of domestic primary energy (Energy Information Administration (2000, 2005 An Integrated Electric Power Supply Chain and Fuel Market Network Framework: Theoretical Modeling with Empirical Analysis for New England Zugang Liu and Anna Nagurney§ Isenberg School of Management University

Nagurney, Anna

362

Outline Introduction Literature Review Electric Power Supply Chains Empirical Examples Conclusions An Integrated Electric Power Supply Chain and Fuel  

E-Print Network (OSTI)

primary energy (Energy Information Administration (2000, 2005)) Deregulation Wholesale market Bilateral An Integrated Electric Power Supply Chain and Fuel Market Network Framework: Theoretical Modeling with Empirical Analysis for New England Zugang Liu Isenberg School of Management University of Massachusetts at Amherst

Nagurney, Anna

363

Integration of Distributed Resources in Electric Utility Systems: Functional Definition for Communication and Control Requirements  

Science Conference Proceedings (OSTI)

Accelerating commercialization of distributed resources (DR) has created the need for improved practices for integrating them with electric utility distribution systems. A functional definition of DR for defining communication and control requirements in electric utility distribution systems is provided. The report is a tool that readers can use in developing communication and control strategies for DR in specific distribution systems.

1998-12-11T23:59:59.000Z

364

Integrated system for control and monitoring in real time of efficient electrical and thermal energy production  

Science Conference Proceedings (OSTI)

The integrated monitoring and driving system is made of main distributed components: - first level:_one or two computers placed in the control room which monitors the thermal and electrical processes based on the datas provided by the second level via ... Keywords: cogenerative gas power plant, control of distributed parameter systems, distribution management system, electric power systems, optimization, process control, real time systems, simulation

Ion Miciu; Florin Hartescu

2008-08-01T23:59:59.000Z

365

Integrated knowledge management model and system for construction projects  

Science Conference Proceedings (OSTI)

In the past there has been no structured approach to learning from construction projects once they are completed. Now, however, the construction industry is adapting concepts of tacit and explicit knowledge management to improve the situation. Top managers ... Keywords: COPRAS method, Construction projects management, Knowledge management, Multiple criteria and multivariant analysis, Tacit and explicit knowledge

L. Kanapeckiene; A. Kaklauskas; E. K. Zavadskas; M. Seniut

2010-10-01T23:59:59.000Z

366

Development Water, Gas, and Electric Energy Use Projection  

E-Print Network (OSTI)

2. In addition to the sewage flow demand created by the building development, parking drainage and pool backwash may also create additional sanitary sewer flow. These additional flows are assumed to be negligible compared to the rest of the project. B. Sanitary Sewage Discharge 1. The daily sanitary sewer flow will be near the daily building cold water usage as detailed above.

unknown authors

2007-01-01T23:59:59.000Z

367

New York State Electric & Gas Corporation Smart Grid Demonstration Project  

Open Energy Info (EERE)

New York State Electric & Gas Corporation Smart Grid Demonstration Project New York State Electric & Gas Corporation Smart Grid Demonstration Project Jump to: navigation, search Project Lead New York State Electric & Gas Corporation Country United States Headquarters Location Binghamton, New York Recovery Act Funding $29,561,142.00 Total Project Value $125,006,103.00 Coordinates 42.0986867°, -75.9179738° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

368

Deploying power grid-integrated electric vehicles as a multi-agent system  

Science Conference Proceedings (OSTI)

Grid-Integrated Vehicles (GIVs) are plug-in Electric Drive Vehicles (EDVs) with power-management and other controls that allow them to respond to external commands sent by power-grid operators, or their affiliates, when parked and plugged-in to the grid. ... Keywords: coalition formation, grid-integrated-vehicle, power regulation, vehicle-to-grid

Sachin Kamboj; Willett Kempton; Keith S. Decker

2011-05-01T23:59:59.000Z

369

Integrating Distributed Resources into Electric Utility Distribution Systems: EPRI White Paper  

Science Conference Proceedings (OSTI)

This EPRI white paper is about understanding electric power engineering issues related to integrating distributed resources (DR) into utility distribution systems. It is an overview designed for all stakeholders rather than a rigorous technical engineering guide. A major goal of the paper is to move discussion of integration issues toward solutions.

2001-12-14T23:59:59.000Z

370

Follow-up Audit of the Department of Energy's Financial Assistance for Integrated Biorefinery Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department Department of Energy's Financial Assistance for Integrated Biorefinery Projects DOE/IG-0893 September 2013 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 September 9, 2013 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "Follow-up Audit of the Department of Energy's Financial Assistance for Integrated Biorefinery Projects" BACKGROUND The Department of Energy's Bioenergy Technologies Office (Program) supports the development of biomass resources into commercially viable biofuels, bioproducts and biopower. The Program provides financial assistance for integrated biorefinery projects to assist in building

371

Global Grid-Connected Hybrid-Electric Vehicle Project: Year-End Summary Report, November 2000  

Science Conference Proceedings (OSTI)

This interim report summarizes research conducted under the auspices of the Global Grid-Connected Hybrid Electric Vehicle Project, an EPRI initiative to promote the use of grid-connected electric technologies in heavy-duty applications. One study in the program evaluated the potential of converting a Ford E-350 or E-450 Super Duty chassis into a grid-connected hybrid electric vehicle airport shuttle bus and a Ford Explorer chassis into a dedicated electric vehicle delivery van. A second study analyzed ad...

2000-12-13T23:59:59.000Z

372

Incorporating uncertainty into electric utility projections and decisions  

Science Conference Proceedings (OSTI)

This paper focuses on how electric utility companies can respond in their decision making to uncertain variables. Here we take a mean- variance type of approach. The mean'' value is an expected cost, on a discounted value basis. We assume that management has risk preferences incorporating a tradeoff between the mean and variance in the utility's net income. Decisions that utilities are faced with can be classified into two types: ex ante and ex post. The ex ante decisions need to be made prior to the uncertainty being revealed and the ex post decision can be postponed until after the uncertainty is revealed. Intuitively, we can say that the ex ante decisions provide a hedge against the uncertainties and the ex post decisions allow the negative outcomes of uncertain variables to be partially mitigated, dampening the losses. An example of an ex post decision is how the system is operated i.e., unit dispatch, and in some cases switching among types of fuels, say with different sulfur contents. For example, if gas prices go up, natural gas combined cycle units are likely to be dispatched at lower capacity factors. If SO{sub 2} emission allowance prices go up, a utility may seek to switch into a lower sulfur coal. Here we assume that regulated electric utilities do have some incentive to lower revenue requirements and hence an incentive to lower the electric rates needed for the utility to break even, thereby earning a fair return on invested capital. This paper presents the general approach first, including applications to capacity expansion and system dispatch. Then a case study is presented focusing on the 1990 Clean Air Act Amendments including SO{sub 2} emissions abatement and banking of allowances under uncertainty. It is concluded that the emission banking decisions should not be made in isolation but rather all the uncertainties in demand, fuel prices, technology performance etc., should be included in the uncertainty analysis affecting emission banking.

Hanson, D.A.

1992-01-01T23:59:59.000Z

373

Incorporating uncertainty into electric utility projections and decisions  

Science Conference Proceedings (OSTI)

This paper focuses on how electric utility companies can respond in their decision making to uncertain variables. Here we take a mean- variance type of approach. The ``mean`` value is an expected cost, on a discounted value basis. We assume that management has risk preferences incorporating a tradeoff between the mean and variance in the utility`s net income. Decisions that utilities are faced with can be classified into two types: ex ante and ex post. The ex ante decisions need to be made prior to the uncertainty being revealed and the ex post decision can be postponed until after the uncertainty is revealed. Intuitively, we can say that the ex ante decisions provide a hedge against the uncertainties and the ex post decisions allow the negative outcomes of uncertain variables to be partially mitigated, dampening the losses. An example of an ex post decision is how the system is operated i.e., unit dispatch, and in some cases switching among types of fuels, say with different sulfur contents. For example, if gas prices go up, natural gas combined cycle units are likely to be dispatched at lower capacity factors. If SO{sub 2} emission allowance prices go up, a utility may seek to switch into a lower sulfur coal. Here we assume that regulated electric utilities do have some incentive to lower revenue requirements and hence an incentive to lower the electric rates needed for the utility to break even, thereby earning a fair return on invested capital. This paper presents the general approach first, including applications to capacity expansion and system dispatch. Then a case study is presented focusing on the 1990 Clean Air Act Amendments including SO{sub 2} emissions abatement and banking of allowances under uncertainty. It is concluded that the emission banking decisions should not be made in isolation but rather all the uncertainties in demand, fuel prices, technology performance etc., should be included in the uncertainty analysis affecting emission banking.

Hanson, D.A.

1992-07-01T23:59:59.000Z

374

NSLS-II | NEXT Integrated Project Team | Home  

NLE Websites -- All DOE Office Websites (Extended Search)

NEXT Project NEXT stands for NSLS-II Experimental Tools, a set of five or six beamlines being developed for the National Synchrotron Light Source II (NSLS-II), with funding from...

375

Integrated Economic and Climate Projections for Impact Assessment  

E-Print Network (OSTI)

We designed scenarios for impact assessment that explicitly address policy choices and uncertainty in climate response. Economic projections and the resulting greenhouse gas emissions for the no climate policy scenario ...

Paltsev, Sergey

376

National Bioenergy Center, Biochemical Platform Integration Project: Quarterly Update, Winter 2011-2012 (Newsletter)  

DOE Green Energy (OSTI)

Winter 2011-2012 issue of the National Bioenergy Center Biochemical Platform Integration Project quarterly update. Issue topics: 34th Symposium on Biotechnology for Fuels and Chemicals; feasibility of NIR spectroscopy-based rapid feedstock reactive screening; demonstrating integrated pilot-scale biomass conversion. The Biochemical Process Integration Task focuses on integrating the processing steps in enzyme-based lignocellulose conversion technology. This project supports the U.S. Department of Energy's efforts to foster development, demonstration, and deployment of 'biochemical platform' biorefineries that economically produce ethanol or other fuels, as well as commodity sugars and a variety of other chemical products, from renewable lignocellulosic biomass.

Not Available

2012-04-01T23:59:59.000Z

377

Economic impact of integrating photovoltaics with conventional electric utility operation  

SciTech Connect

The purpose of this study was to determine the parameters which impact the value of photovoltaics (PV) to the electric utility. We have, therefore, chosen the high, medium and low load days in winter (January) and summer (July). The daily peak load has varied from 5838 MW to 9712 MW. These six days are studied for reference (no PV), high, medium, low and intermittent PV output cases. Results from these 30 case studies are summarized in this paper. In order to study the impact of operating photovoltaic (PV) systems on the electric utility production cost (fuel and variable O and M) we have chosen the load profile of a southeastern utility and the PV output data from solar test facilities in Virginia and North Carolina. In order to incorporate the short-term variations we have used 10-minute resolution data for both load and PV output.

Rahman, S. (Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (USA). Dept. of Electrical Engineering)

1990-09-01T23:59:59.000Z

378

Market Integration, Efficiency, and Interconnectors: The Irish Single Electricity Market  

E-Print Network (OSTI)

). Interconnecting fossil dominated electricity systems such as SEM with hydro based systems could reduce price volatility and mitigate subsequent market uncertainties (Matsukawa and Mulder, 2004). A stable wholesale price, on the other hand, provides stability... as shown in Table 1. Only 1% of scheduled generation in SEM was obtained via the interconnector in 2008 (UREGNI, 2009). Figure one shows the scheduled generation mix for the first three quarters of 2009 (January-September). The fuel mix is dominated...

Nepal, Rabindra; Jamasb, Tooraj

379

Integration of plug-in electric vehicle charging and wind energy scheduling on electricity grid  

Science Conference Proceedings (OSTI)

Plug-in electric vehicles (PEVs) and wind energy are both key new energy technologies. However, they also bring challenges to the operation of the electricity grid. Charging a large number of PEVs requires a lot of grid energy, and scheduling wind energy ...

Chiao-Ting Li; Changsun Ahn; Huei Peng; Jing Sun

2012-01-01T23:59:59.000Z

380

Electricity - Analysis & Projections - U.S. Energy Information  

Gasoline and Diesel Fuel Update (EIA)

Discontinued Wholesale Market Data Discontinued Wholesale Market Data Intercontinental Exchange (ICE) data, republished with permission. Includes: daily volumes, high and low prices, and weighted average prices for five major electricity trading hubs around the country from 2001 forward. Data are updated by EIA biweekly. Wholesale Day Ahead Prices at Selected Hubs, Peak Trading Hub Region Cinergy1 Ohio AEP Dayton2 Ohio SP 153 California ERCOT PEAK4 Texas 2011 xls 2010 xls 2009 xls xls 2008 xls xls xls xls 2007 xls xls xls xls 2006 xls xls xls xls 2005 xls xls xls xls 2004 xls xls xls 2003 xls xls xls 2002 xls xls xls 2001 xls xls xls 1 The data series ended in 2008. 2 This data series is from the year 2005 through August 2011. 3 The data series ended March 2009.

Note: This page contains sample records for the topic "integrated projects electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Final technical report for DOE Computational Nanoscience Project: Integrated Multiscale Modeling of Molecular Computing Devices  

Science Conference Proceedings (OSTI)

This document reports the outcomes of the Computational Nanoscience Project, "Integrated Multiscale Modeling of Molecular Computing Devices". It includes a list of participants and publications arising from the research supported.

Cummings, P. T.

2010-02-08T23:59:59.000Z

382

Fiscal Year 2003 Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect

This document is an integrated monitoring plan for the Groundwater Monitoring Project. It documents well and constituent lists for the monitoring required by the Atomic Energy Act of 1954 and its implementing orders.

Hartman, Mary J.; Dresel, P. EVAN; Lindberg, Jon W.; McDonald, John P.; Newcomer, Darrell R.; Thornton, Edward C.

2002-11-01T23:59:59.000Z

383

National Bioenergy Center--Biochemical Platform Integration Project: Quarterly Update, Fall 2010  

DOE Green Energy (OSTI)

Fall 2010 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: rapid analysis models for compositional analysis of intermediate process streams; engineered arabinose-fermenting Zymomonas mobilis strain.

Schell, D.

2010-12-01T23:59:59.000Z

384

US Recovery Act Smart Grid Projects - Integrated and Crosscutting Systems |  

Open Energy Info (EERE)

- Integrated and Crosscutting Systems - Integrated and Crosscutting Systems Jump to: navigation, search CSV Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

385

Integrated Modeling of Electric Power System Operations and Electricity Market Risks with Applications .  

E-Print Network (OSTI)

??Through integrated modeling of power system operations and market risks, this thesis addresses a variety of important issues on market signals modeling, generation capacity scheduling, (more)

Sun, Haibin

2006-01-01T23:59:59.000Z

386

Annual Energy Outlook 2006 with Projections to 2030 - Electricity  

Gasoline and Diesel Fuel Update (EIA)

Oil and Natural Gas Oil and Natural Gas Annual Energy Outlook 2006 with Projections to 2030 Increases in Natural Gas Use Are Moderated by High Prices In the AEO2006 reference case, total natural gas consumption increases from 22.4 trillion cubic feet in 2004 to 26.9 trillion cubic feet in 2030. Most of the increase is seen before 2017, when total U.S. natural gas consumption reaches just under 26.5 trillion cubic feet. After 2017, high natural gas prices limit consumption to about 27 trillion cubic feet through 2030. Consequently, the natural gas share of total energy consumption drops from 23 percent in 2004 to 21 percent in 2030. Figure 71. Natural gas consumption by sector, 1990-2030 (trillion cubic feet). Having problems, call our National Energy Information Center at 202-586-8800 for help.

387

HTGR-GT and electrical load integrated control  

Science Conference Proceedings (OSTI)

A discussion of the control and operation of the HTGR-GT power plant is presented in terms of its closely coupled electrical load and core cooling functions. The system and its controls are briefly described and comparisons are made with more conventional plants. The results of analyses of selected transients are presented to illustrate the operation and control of the HTGR-GT. The events presented were specifically chosen to show the controllability of the plant and to highlight some of the unique characteristics inherent in this multiloop closed-cycle plant.

Chan, T.; Openshaw, F.; Pfremmer, D.

1980-05-01T23:59:59.000Z

388

Sorting-free pre-integrated projected tetrahedra  

Science Conference Proceedings (OSTI)

In this paper, we present a sorting-free technique for volume rendering of an irregular volume dataset. Although the importance of our particle-based volume rendering is widely recognized, its low image quality has been pointed out. Especially when the ... Keywords: irregular volume dataset, projected tetrahedral, sorting-free, volume rendering

Naohisa Sakamoto; Takuma Kawamura; Hiroshi Kuwano; Koji Koyamada

2009-11-01T23:59:59.000Z

389

AEO2011: Electric Power Projections for EMM Region - Southwest Power Pool /  

Open Energy Info (EERE)

South South Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 90, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power projections South Southwest Power Pool Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - Southwest Power Pool / South- Reference Case (xls, 259 KiB)

390

AEO2011: Electric Power Projections for EMM Region - Texas Regional Entity  

Open Energy Info (EERE)

Texas Regional Entity Texas Regional Entity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 73, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power projections Texas Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - Texas Regional Entity - Reference Case (xls, 259.4 KiB)

391

AEO2011: Electric Power Projections for EMM Region - United States | OpenEI  

Open Energy Info (EERE)

United States United States Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 95, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power projections United States Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - United States- Reference Case (xls, 260.9 KiB) Quality Metrics

392

The integration of renewable energy sources into electric power distribution systems. Volume 2, Utility case assessments  

Science Conference Proceedings (OSTI)

Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: (1) The local solar insolation and/or wind characteristics; (2) renewable energy source penetration level; (3) whether battery or other energy storage systems are applied; and (4) local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kw-scale applications may be connected to three-phase secondaries, and larger hundred-kW and MW-scale applications, such as MW-scale windfarms or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications.

Zaininger, H.W.; Ellis, P.R.; Schaefer, J.C. [Zaininger Engineering Co., San Jose, CA (United States)

1994-06-01T23:59:59.000Z

393

PhD Project Proposal PV-Aware Design for Reliable 3-D Integration  

E-Print Network (OSTI)

PhD Project Proposal PV-Aware Design for Reliable 3-D Integration The trend of moving from planar dimension, and of the constraints on the positions of the through-silicon-vias and their timing models - Development of (stress-aware) mobility variation timing models for 3-D interconnect integration to augment

Langendoen, Koen

394

EV Network integration (Smart Grid Project) | Open Energy Information  

Open Energy Info (EERE)

integration integration Country Ireland Headquarters Location Dublin, Ireland Coordinates 53.344105°, -6.267494° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.344105,"lon":-6.267494,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

395

EV Network integration (Smart Grid Project) (Ireland) | Open Energy  

Open Energy Info (EERE)

EV Network integration EV Network integration Country Ireland Coordinates 53.41291°, -8.24389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.41291,"lon":-8.24389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

396

Project title: The silent aircraft initiative (Knowledge Integration Community)  

E-Print Network (OSTI)

to very high loads on the fan blades that go beyond the limit of current designs. A New Type of Undercarriage is Needed It is hard to believe, but the airframe of a landing aircraft is now about as noisy as the engines. The steady reduction in engine... community, the Silent Aircraft Initiative seeks to produce a truly optimised concept design that is technically feasible, economically viable and contributes to the prosperity of the UK in an environmentally sustainable way. Knowledge Integration Communities...

2009-10-13T23:59:59.000Z

397

Molten-Caustic-Leaching (Gravimelt) System Integration Project, Phase 2  

SciTech Connect

The objective of the task (Task 6) covered in this document was to operate the refurbished/modified test circuit of the Gravimeh Process in a continuous integrated manner to obtain the engineering and operational data necessary to assess the technical performance and reliability of the circuit. This data is critical to the development of this technology as a feasible means of producing premium clean burning fuels that meet New Source Performance Standards (NSPS). Significant refurbishments and design modifications had been made to the facility (in particular to the vacuum filtration and evaporation units) during Tasks 1 and 2, followed by off-line testing (Task 3). Two weeks of continuous around-the-clock operation of the refurbished/modified MCL test circuit were performed. During the second week of testing, all sections of the plant were operated in an integrated fashion for an extended period of time, including a substantial number of hours of on-stream time for the vacuum filters and the caustic evaporation unit. A new process configuration was tested in which centrate from the acid wash train (without acid addition) was used as the water makeup for the water wash train, thus-eliminating the one remaining process waste water stream. A 9-inch centrifuge was tested at various solids loadings and at flow rates up to 400 lbs/hr of coal feed to obtain a twenty-fold scaleup factor over the MCL integrated test facility centrifuge performance data.

Not Available

1993-02-01T23:59:59.000Z

398

Distributed Energy Resources Integration in the Smart Grid Demonstration Project  

Science Conference Proceedings (OSTI)

In an effort to answer some of the basic system architecture questions posed by members, EPRI undertook a survey to find, among members that have smart grid demonstration projects, what the basic system architecture strategy was and basic concerns that may have architectural implications for their Distributed Energy Resource (DER) deployments. To that end, a longitudinal survey was designed to determine the basic demographics of the community, e.g. number of DER devices being deployed, the basic ...

2012-11-14T23:59:59.000Z

399

Integrated Gasification Combined Cycle (IGCC) demonstration project, Polk Power Station -- Unit No. 1. Annual report, October 1993--September 1994  

SciTech Connect

This describes the Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project which will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,300 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 Btu/scf (LHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product.

NONE

1995-05-01T23:59:59.000Z

400

Electric Vehicle Grid Integration for Sustainable Military Installations (Presentation), National Renewable Energy Laboratory (NREL)  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Grid Integration for Electric Vehicle Grid Integration for Sustainable Military Installations NDIA Joint Service Power Expo Mike Simpson Mike.Simpson@NREL.gov 5 May 2011 NREL/PR-5400-51519 NATIONAL RENEWABLE ENERGY LABORATORY Agenda 2 1. NREL Transportation Research 2. Net Zero Energy Installations (NZEI) 3. Fort Carson as a Case Study - Vehicles On-Site - Utility Operations - Vehicle Charge Management 4. Full Fleet Simulation 5. Continuing Work NATIONAL RENEWABLE ENERGY LABORATORY NREL is the only national laboratory solely dedicated to advancing renewable energy and energy efficiency. Our employees are committed to building a cleaner, sustainable world. Photo Credits: NREL 3 NATIONAL RENEWABLE ENERGY LABORATORY What is Electric Vehicle Grid Integration (EVGI)? 4 Cross Cutting Enablers Grid / Renewables

Note: This page contains sample records for the topic "integrated projects electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Electrical Energy Storage Activities 2011: Case Studies of U.S. Project Installations  

Science Conference Proceedings (OSTI)

Spurred by increased public and private sector investment as well as policy initiatives, electrical energy storage project activities are on the upswing worldwide. The growing number of operating and planned initiatives demands that they be rigorously documented and evaluated to promote information sharing and collective learning. This report represents the latest iteration of EPRI's ongoing effort, begun in 2010, to catalogue both commercial and demonstration energy storage projects. Building on the EPR...

2011-12-20T23:59:59.000Z

402

Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands Transmission Interconnection Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oahu Wind Integration and Oahu Wind Integration and Transmission Study (OWITS) Hawaiian Islands Transmission Interconnection Project Dennis Woodford Electranix Corporation Winnipeg, Manitoba Canada Subcontract Report NREL/SR-5500-50411 February 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Oahu Wind Integration and Transmission Study (OWITS) Hawaiian Islands Transmission Interconnection Project Dennis Woodford Electranix Corporation Winnipeg, Manitoba Canada NREL Technical Monitor: David Corbus

403

Integration of photovoltaic units into electric utility grids: experiment information requirements and selected issues  

DOE Green Energy (OSTI)

A number of investigations, including those conducted by The Aerospace Corporation and other contractors, have led to the recognition of technical, economic, and institutional issues relating to the interface between solar electric technologies and electric utility systems. These issues derive from three attributes of solar electric power concepts, including (1) the variability and unpredictability of the solar resources, (2) the dispersed nature of those resources which suggests the feasible deployment of small dispersed power units, and (3) a high initial capital cost coupled with relatively low operating costs. It is imperative that these integration issues be pursued in parallel with the development of each technology if the nation's electric utility systems are to effectively utilize these technologies in the near to intermediate term. Analyses of three of these issues are presented: utility information requirements, generation mix and production cost impacts, and rate structures in the context of photovoltaic units integrated into the utility system. (WHK)

Not Available

1980-09-01T23:59:59.000Z

404

Projects at the Component Development and Integration Facility. Quarterly technical progress report, July 1--September 30, 1993  

DOE Green Energy (OSTI)

This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the first quarter of FY94. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD Proof-of-Concept project; mine waste technology pilot program; plasma projects; resource recovery project; sodium sulfide/ferrous sulfate project; soil washing project; and spray casting project.

Not Available

1993-12-31T23:59:59.000Z

405

Projects at the Component Development and Integration Facility. Quarterly technical progress report, October 1--December 31, 1992  

DOE Green Energy (OSTI)

This quarterly technical progress report presents progress on the projects at the component Development and Integration Facility (CDIF) during the first quarter of FY93. The CDIF is a major US Department of Energy (DOE) test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD proof-of-concept project; mine waste pilot program; plasma projects; resource recovery project; sodium sulfide/ferrous sulfate project; soil washing project; and spray casting project.

Not Available

1992-12-31T23:59:59.000Z

406

Projects at the Component Development and Integration Facility. Quarterly technical progress report, April 1--June 30, 1993  

DOE Green Energy (OSTI)

This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the third quarter of FY93. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD Proof-of-Concept Project; Mine Waste Technology Program; Plasma Projects; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; Soil Washing Project; and Spray Casting Project.

Not Available

1993-12-01T23:59:59.000Z

407

Projects at the Component Development and Integration Facility. Quarterly technical progress report, January 1, 1994--March 31, 1994  

Science Conference Proceedings (OSTI)

This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the second quarter of FY94. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: Biomass Remediation Project; Heavy Metal-Contaminated Soil Project; MHD Shutdown; Mine Waste Technology Pilot Program; Plasma Projects; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; and Spray Casting Project.

Not Available

1994-08-01T23:59:59.000Z

408

Electric Energy Conservation and Production Project: Vpolume 3: Wind energy potential  

Science Conference Proceedings (OSTI)

A final report has been prepared under the Electric Energy Conservation and Production Project, conducted by the Blackfeet Indian Tribe and its consultants, Black Hawk Associates, Inc. The report addresses two major issues - the heavy reliance on electricity by residents of the Blackfeet Reservation, and the opportunities for electricity production from wind energy resources on the Reservation. The findings of this report (1) help provide a basis for comprehensive energy management planning on the Reservation, (2) analyze the potential for minimizing electricity demand and maximizing the efficiency of electrical end-uses through appropriate conservation measures, (3) assess the potential of wind energy resources located on the Reservation, and (4) identify and assess the technical, financial, legal, institutional, and regulatory issues involved in wind energy development within the Blackfeet Reservation.

Not Available

1984-02-01T23:59:59.000Z

409

MHD Integrated Topping Cycle Project. Fourteenth quarterly technical progress report, November 1, 1990-- January 31, 1991  

DOE Green Energy (OSTI)

This fourteenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period November 1, 1990 to January 31, 1991. Testing of the High Pressure Cooling Subsystem electrical isolator was completed. The PEEK material successfully passed the high temperature, high pressure duration tests (50 hours). The Combustion Subsystem drawings were CADAM released. The procurement process is in progress. An equipment specification and RFP were prepared for the new Low Pressure Cooling System (LPCS) and released for quotation. Work has been conducted on confirmation tests leading to final gas-side designs and studies to assist in channel fabrication.The final cathode gas-side design and the proposed gas-side designs of the anode and sidewall are presented. Anode confirmation tests and related analyses of anode wear mechanisms used in the selection of the proposed anode design are presented. Sidewall confirmation tests, which were used to select the proposed gas-side design, were conducted. The design for the full scale CDIF system was completed. A test program was initiated to investigate the practicality of using Avco current controls for current consolidation in the power takeoff (PTO) regions and to determine the cause of past current consolidation failures. Another important activity was the installation of 1A4-style coupons in the 1A1 channel. A description of the coupons and their location with 1A1 channel is presented herein.

Not Available

1992-02-01T23:59:59.000Z

410

Survey and analysis of selected jointly owned large-scale electric utility storage projects  

DOE Green Energy (OSTI)

The objective of this study was to examine and document the issues surrounding the curtailment in commercialization of large-scale electric storage projects. It was sensed that if these issues could be uncovered, then efforts might be directed toward clearing away these barriers and allowing these technologies to penetrate the market to their maximum potential. Joint-ownership of these projects was seen as a possible solution to overcoming the major barriers, particularly economic barriers, of commercializaton. Therefore, discussions with partners involved in four pumped storage projects took place to identify the difficulties and advantages of joint-ownership agreements. The four plants surveyed included Yards Creek (Public Service Electric and Gas and Jersey Central Power and Light); Seneca (Pennsylvania Electric and Cleveland Electric Illuminating Company); Ludington (Consumers Power and Detroit Edison, and Bath County (Virginia Electric Power Company and Allegheny Power System, Inc.). Also investigated were several pumped storage projects which were never completed. These included Blue Ridge (American Electric Power); Cornwall (Consolidated Edison); Davis (Allegheny Power System, Inc.) and Kttatiny Mountain (General Public Utilities). Institutional, regulatory, technical, environmental, economic, and special issues at each project were investgated, and the conclusions relative to each issue are presented. The major barriers preventing the growth of energy storage are the high cost of these systems in times of extremely high cost of capital, diminishing load growth and regulatory influences which will not allow the building of large-scale storage systems due to environmental objections or other reasons. However, the future for energy storage looks viable despite difficult economic times for the utility industry. Joint-ownership can ease some of the economic hardships for utilites which demonstrate a need for energy storage.

Not Available

1982-05-01T23:59:59.000Z

411

An examination of the costs and critical characteristics of electric utility distribution system capacity enhancement projects  

Science Conference Proceedings (OSTI)

This report classifies and analyzes the capital and total costs (e.g., income tax, property tax, depreciation, centralized power generation, insurance premiums, and capital financing) associated with 130 electricity distribution system capacity enhancement projects undertaken during 1995-2002 or planned in the 2003-2011 time period by three electric power utilities operating in the Pacific Northwest. The Pacific Northwest National Laboratory (PNNL), in cooperation with participating utilities, has developed a large database of over 3,000 distribution system projects. The database includes brief project descriptions, capital cost estimates, the stated need for each project, and engineering data. The database was augmented by additional technical (e.g., line loss, existing substation capacities, and forecast peak demand for power in the area served by each project), cost (e.g., operations, maintenance, and centralized power generation costs), and financial (e.g., cost of capital, insurance premiums, depreciations, and tax rates) data. Though there are roughly 3,000 projects in the database, the vast majority were not included in this analysis because they either did not clearly enhance capacity or more information was needed, and not available, to adequately conduct the cost analyses. For the 130 projects identified for this analysis, capital cost frequency distributions were constructed, and expressed in terms of dollars per kVA of additional capacity. The capital cost frequency distributions identify how the projects contained within the database are distributed across a broad cost spectrum. Furthermore, the PNNL Energy Cost Analysis Model (ECAM) was used to determine the full costs (e.g., capital, operations and maintenance, property tax, income tax, depreciation, centralized power generation costs, insurance premiums and capital financing) associated with delivering electricity to customers, once again expressed in terms of costs per kVA of additional capacity. The projects were sorted into eight categories (capacitors, load transfer, new feeder, new line, new substation, new transformer, reconductoring, and substation capacity increase) and descriptive statistics (e.g., mean, total cost, number of observations, and standard deviation) were constructed for each project type. Furthermore, statistical analysis has been performed using ordinary least squares regression analysis to identify how various project variables (e.g., project location, the primary customer served by the project, the type of project, the reason for the upgrade, size of the upgrade) impact the unit cost of the project.

Balducci, Patrick J.; Schienbein, Lawrence A.; Nguyen, Tony B.; Brown, Daryl R.; Fathelrahman, Eihab M.

2004-06-01T23:59:59.000Z

412

The Integration of Renewable Energy Sources into Electric Power Distribution Systems  

Science Conference Proceedings (OSTI)

Renewable energy technologies such as photovoltaic, solar thermal electricity, and wind turbine power are environmentally beneficial sources of electric power generation. The integration of renewable energy sources into electric power distribution systems can provide additional economic benefits because of a reduction in the losses associated with transmission and distribution lines. Benefits associated with the deferment of transmission and distribution investment may also be possible for cases where there is a high correlation between peak circuit load and renewable energy electric generation, such as photovoltaic systems in the Southwest. Case studies were conducted with actual power distribution system data for seven electric utilities with the participation of those utilities. Integrating renewable energy systems into electric power distribution systems increased the value of the benefits by about 20 to 55% above central station benefits in the national regional assessment. In the case studies presented in Vol. II, the range was larger: from a few percent to near 80% for a case where costly investments were deferred. In general, additional savings of at least 10 to 20% can be expected by integrating at the distribution level. Wind energy systems were found to be economical in good wind resource regions, whereas photovoltaic systems costs are presently a factor of 2.5 too expensive under the most favorable conditions.

Barnes, P.R.

1994-01-01T23:59:59.000Z

413

Low-Cost Solar Array Project. Progress report 14, August 1979-December 1979 and proceedings of the 14th Project Integration Meeting  

DOE Green Energy (OSTI)

Progress made by the Low-Cost Solar Array Project during the period August through November 1979, is described. Progress on project analysis and integration; technology development in silicon material, large-area sheet silicon, and encapsulation; production process and equipment development; engineering, and operations, and the steps taken to integrate these efforts are detailed. A report on the Project Integration Meeting held December 5-6, 1979, including copies of the visual materials used, is presented.

Not Available

1980-01-01T23:59:59.000Z

414

Low-Cost Solar Array Project. Progress report 12, January-April 1979 and proceedings of the 12th Project Integration Meeting  

DOE Green Energy (OSTI)

This report describes progress made by the Low-Cost Solar Array Project during the period January through April 1979. It includes reports on project analysis and integration; technology development in silicon material, large-area sheet silicon, and encapsulation; production process and equipment development; engineering and operations, and a discussion of the steps taken to integrate these efforts. It includes a report on, and copies of viewgraphs presented at the Project Integration Meeting held April 4-5, 1979.

Not Available

1979-01-01T23:59:59.000Z

415

Integration of electric drive vehicles with the electric power grida new value stream  

E-Print Network (OSTI)

Battery-electric vehicles and grid-connected hybrid vehicles rely on the power grid for energy-- they have to plug in to charge their batteries. With power alerts and blackouts a recent reality in California, it is easy to conclude that the energy requirements of grid-connected electric vehicles will make the energy crisis worse. Actually, quite the opposite may be true. With a bi-directional grid power interface, virtually any vehicle that can plug into the grid can potentially provide beneficial support to the grid. Battery electric vehicles can support the grid exceptionally well by providing any of a number of functions known collectively as ancillary services. These services are vital to the smooth and efficient operation of the power grid. A hybrid vehicle can provide ancillary services, and can also generate power. Fuel cells are already being commercialized for small stationary power sources, so a vehiclemounted fuel cell could also serve as a vehicle-to-grid power source. Sharing power assets between transportation and power generation functions can create a compelling new economics for electrically-propelled vehicles.

Alec Brooks; Tom Gage; Ac Propulsion

2001-01-01T23:59:59.000Z

416

NREL: Distributed Grid Integration - Solar Distributed Grid Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Distributed Grid Integration Projects Solar Distributed Grid Integration Projects NREL provides grid integration support, system-level testing, and systems analysis for DOE's Solar Distributed Grid Integration Projects supported by the SunShot Initiative. These projects address technical issues and develop solutions for high penetration grid integration of solar technologies into the electric power system to meet the following goals: Reduce cost: reduce interconnection costs by developing streamlined procedures including advanced integration models for utility interconnection of photovoltaics (PV) Reduce market barriers: work with utilities and system integrators to reduce market barriers by providing research on impacts of integration of high penetration of PV systems and developing solutions.

417

INTEGRAL BENCHMARKS AVAILABLE THROUGH THE INTERNATIONAL REACTOR PHYSICS EXPERIMENT EVALUATION PROJECT AND THE INTERNATIONAL CRITICALITY SAFETY BENCHMARK EVALUATION PROJECT  

SciTech Connect

Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. The International Reactor Physics Experiment Evaluation Project (IRPhEP) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) continue to expand their efforts and broaden their scope to identify, evaluate, and provide integral benchmark data for method and data validation. Benchmark model specifications provided by these two projects are used heavily by the international reactor physics, nuclear data, and criticality safety communities. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. The status of the IRPhEP and ICSBEP is discussed in this paper, and the future of the two projects is outlined and discussed. Selected benchmarks that have been added to the IRPhEP and ICSBEP handbooks since PHYSOR06 are highlighted, and the future of the two projects is discussed.

J. Blair Briggs; Lori Scott; Enrico Sartori; Yolanda Rugama

2008-09-01T23:59:59.000Z

418

Draft Environmental Impact Statement Klondike III/Biglow Canyon Wind Integration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary S-1 Summary S-1 Summary In this Summary: * Purpose and Need for Action * Alternatives * Affected Environment * Impacts This summary covers the major points of the draft Environmental Impact Statement (EIS) prepared for the Klondike III/Biglow Canyon Wind Integration Project proposed by the Bonneville Power Administration (BPA). The project includes constructing a new double-circuit 230-kilovolt (kV) transmission line in northern Sherman County, Oregon. The new line would connect the Klondike III Wind Project and the Biglow Canyon Wind Farm to BPA's existing John Day 500-kV Substation. The project would also require expansion of BPA's existing John Day 500-kV Substation and a new 230-kV substation to integrate the two wind projects. As a federal agency, BPA is required by the National Environmental Policy Act

419

Acceptance test report for project C-157 ``T-Plant electrical upgrade``  

Science Conference Proceedings (OSTI)

This Acceptance Test Report (ATR) documents for record purposes the field results, acceptance, and approvals of the completed acceptance test per WHC-SD-Cl57-ATP-001, Rev. 0, ``Acceptance Test Proceedure for Project C-157 `T Plant Electrical Upgrade``` The test was completed and approved without any problems or exceptions.

Jeppson, L.A.

1997-08-05T23:59:59.000Z

420

Using Compressed Air Efficiency Projects to Reduce Peak Industrial Electric Demands: Lessons Learned  

E-Print Network (OSTI)

"To help customers respond to the wildly fluctuating energy markets in California, Pacific Gas & Electric (PG&E) initiated an emergency electric demand reduction program in October 2000 to cut electric use during peak periods. One component of that wide-ranging program focused on industrial compressed air systems as the target for such electric use reductions. What stands out about the compressed air effort is that customer acceptance of the program was very high (8 out of 10 customer sites implemented at least some of the efficiency projects recommended in the program's air system audits) and overall savings levels were more than 3X the original program goal (550 kW vs. 1730 kW). XENERGY, Inc. designed and carried out the program on behalf of PG&E. Key features of the program included working with compressed air system distributors to identify and qualify good customer leads and post-audit technical assistance to help customer implement recommended projects. This paper reviews the project and outlines some of the lessons learned in completing the project."

Skelton, J.

2003-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated projects electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Integrated project management plan for the Plutonium Finishing Plant stabilization and deactivation project  

Science Conference Proceedings (OSTI)

This document sets forth the plans, organization, and control systems for managing the PFP Stabilization and Deactivation Project, and includes the top level cost and schedule baselines. The project includes the stabilization of Pu-bearing materials, storage, packaging, and transport of these and other nuclear materials, surveillance and maintenance of facilities and systems relied upon for storage of the materials, and transition of the facilities in the PFP Complex.

SINCLAIR, J.C.

1999-05-03T23:59:59.000Z

422

San Diego Gas and Electric Company Smart Grid Project | Open Energy  

Open Energy Info (EERE)

and Electric Company and Electric Company Country United States Headquarters Location San Diego, California Recovery Act Funding $28115052 Total Project Value $59427645 Coverage Area Coverage Map: San Diego Gas and Electric Company Smart Grid Project Coordinates 32.7153292°, -117.1572551° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

423

Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project  

DOE Green Energy (OSTI)

As concern about society's dependence on petroleum-based transportation fuels increases, many see plug-in electric vehicles (PEV) as enablers to diversifying transportation energy sources. These vehicles, which include plug-in hybrid electric vehicles (PHEV), range-extended electric vehicles (EREV), and battery electric vehicles (BEV), draw some or all of their power from electricity stored in batteries, which are charged by the electric grid. In order for PEVs to be accepted by the mass market, electric charging infrastructure must also be deployed. Charging infrastructure must be safe, convenient, and financially sustainable. Additionally, electric utilities must be able to manage PEV charging demand on the electric grid. In the Fall of 2009, a large scale PEV infrastructure demonstration was launched to deploy an unprecedented number of PEVs and charging infrastructure. This demonstration, called The EV Project, is led by Electric Transportation Engineering Corporation (eTec) and funded by the U.S. Department of Energy. eTec is partnering with Nissan North America to deploy up to 4,700 Nissan Leaf BEVs and 11,210 charging units in five market areas in Arizona, California, Oregon, Tennessee, and Washington. With the assistance of the Idaho National Laboratory, eTec will collect and analyze data to characterize vehicle consumer driving and charging behavior, evaluate the effectiveness of charging infrastructure, and understand the impact of PEV charging on the electric grid. Trials of various revenue systems for commercial and public charging infrastructure will also be conducted. The ultimate goal of The EV Project is to capture lessons learned to enable the mass deployment of PEVs. This paper is the first in a series of papers documenting the progress and findings of The EV Project. This paper describes key research objectives of The EV Project and establishes the project background, including lessons learned from previous infrastructure deployment and PEV demonstrations. One such previous study was a PHEV demonstration conducted by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA), led by the Idaho National Laboratory (INL). AVTA's PHEV demonstration involved over 250 vehicles in the United States, Canada, and Finland. This paper summarizes driving and charging behavior observed in that demonstration, including the distribution of distance driven between charging events, charging frequency, and resulting proportion of operation charge depleting mode. Charging demand relative to time of day and day of the week will also be shown. Conclusions from the PHEV demonstration will be given which highlight the need for expanded analysis in The EV Project. For example, the AVTA PHEV demonstration showed that in the absence of controlled charging by the vehicle owner or electric utility, the majority of vehicles were charged in the evening hours, coincident with typical utility peak demand. Given this baseline, The EV Project will demonstrate the effects of consumer charge control and grid-side charge management on electricity demand. This paper will outline further analyses which will be performed by eTec and INL to documenting driving and charging behavior of vehicles operated in a infrastructure-rich environment.

John Smart; Stephen Schey

2012-04-01T23:59:59.000Z

424

EIS-0431: Hydrogen Energy California's Integrated Gasification Combined Cycle and Carbon Capture and Sequestration Project, California  

Energy.gov (U.S. Department of Energy (DOE))

Draft Environmental Impact Statement: Public Comment Period Extended Until 10/01/13This EIS evaluates the potential environmental impacts of a proposal to provide financial assistance for the construction and operation of Hydrogen Energy California's LLC (HECA's) project, which would produce and sell electricity, carbon dioxide and fertilizer. DOE selected this project for an award of financial assistance through a competitive process under the Clean Coal Power Initiative program.

425

ESS 2012 Peer Review - DOE-OE FY12 Electrical Energy Storage Demonstration Projects - Dan Borneo, SNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-OE FY12 Electrical DOE-OE FY12 Electrical Energy Storage Demonstration Projects The Renaissance Hotel Washington, D.C. September 2012 Presented by Dan Borneo SAND Document 5312608 SAND2012-7453 C Acknowledgements I would like to thank the DOE's Office of Electricity and Dr. Imre Gyuk, Program Manager of the Electrical Energy Storage Program, for their support and funding of the Energy Storage Demonstration Projects. 2 EES Emerging Technology Demonstrations Presentation Outline  Project Overview  Problem Statement  Approach  Current Status  Path Forward - Next Steps  Geographical Representation of Projects  Summary Chart of Projects  Brief Descriptions of Individual Projects  Concluding Remarks 3 EES Demonstrations Project Overview  Problem Statement

426

An end-to-end simulator for the all-electric ship MVDC integrated power system  

Science Conference Proceedings (OSTI)

In this paper, a large scale Medium Voltage DC all-electric ship integrated power system is modeled from the prime mover (gas turbine) to the propulsion load. This system has a three-phase 21MW synchronous machine as a main generator and a three-phase ... Keywords: DDG51 destroyer, electromechanical system, feedback control

M. Miloevi? Marden; P. Prempraneerach; J. L. Kirtley; G. Karniadakis; C. Chryssostomidis

2010-07-01T23:59:59.000Z

427

AEO2011: Electric Power Projections for EMM Region - Southwest Power Pool /  

Open Energy Info (EERE)

North North Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 89, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power Southwest Power Pool Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - Southwest Power Pool / North- Reference Case (xls, 258.6 KiB)

428

ESTER, Enel integrated System for TEsts on stoRage (Smart Grid Project) |  

Open Energy Info (EERE)

ESTER, Enel integrated System for TEsts on stoRage (Smart Grid Project) ESTER, Enel integrated System for TEsts on stoRage (Smart Grid Project) Jump to: navigation, search Project Name ESTER, Enel integrated System for TEsts on stoRage Country Italy Headquarters Location Livorno, Italy Coordinates 43.551876°, 10.308011° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.551876,"lon":10.308011,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

429

An integrated assessment of global and regional water demands for electricity generation to 2095  

SciTech Connect

Electric power plants currently account for approximately one-half of the global industrial water withdrawal. While continued expansion of the electric sector seems likely into the future, the consequent water demands are quite uncertain, and will depend on highly variable water intensities by electricity technologies, at present and in the future. Using GCAM, an integrated assessment model of energy, agriculture, and climate change, we first establish lower-bound, median, and upper-bound estimates for present-day electric sector water withdrawals and consumption by individual electric generation technologies in each of 14 geopolitical regions, and compare them with available estimates of regional industrial or electric sector water use. We then explore the evolution of global and regional electric sector water use over the next century, focusing on uncertainties related to withdrawal and consumption intensities for a variety of electric generation technologies, rates of change of power plant cooling system types, and rates of adoption of a suite of water-saving technologies. Results reveal that the water withdrawal intensity of electricity generation is likely to decrease in the near term with capital stock turnover, as wet towers replace once-through flow cooling systems and advanced electricity generation technologies replace conventional ones. An increase in consumptive use accompanies the decrease in water withdrawal rates; however, a suite of water conservation technologies currently under development could compensate for this increase in consumption. Finally, at a regional scale, water use characteristics vary significantly based on characteristics of the existing capital stock and the selection of electricity generation technologies into the future.

Davies, Evan; Kyle, G. Page; Edmonds, James A.

2013-02-01T23:59:59.000Z

430

Wind-electric icemaking project: Analysis and dynamometer testing. Volume 1  

DOE Green Energy (OSTI)

The wind/hybrid systems group at the National Renewable Energy Laboratory has been researching the most practical and cost-effective methods for producing ice from off-grid wind-electric power systems. The first phase of the project, conducted in 1993--1994, included full-scale dynamometer and field testing of two different electric ice makers directly connected to a permanent magnet alternator. The results of that phase were encouraging and the second phase of the project was launched in which steady-state and dynamic numerical models of these systems were developed and experimentally validated. The third phase of the project was the dynamometer testing of the North Star ice maker, which is powered by a 12-kilowatt Bergey Windpower Company, Inc., alternator. This report describes both the second and third project phases. Also included are detailed economic analyses and a discussion of the future prospects of wind-electric ice-making systems. The main report is contained in Volume 1. Volume 2 consists of the report appendices, which include the actual computer programs used in the analysis and the detailed test results.

Holz, R.; Gervorgian, V.; Drouilhet, S.; Muljadi, E.

1998-07-01T23:59:59.000Z

431

Wind-electric icemaking project: Analysis and dynamometer testing. Volume 2  

DOE Green Energy (OSTI)

The wind/hybrid systems group at the National Renewable Energy Laboratory has been researching the most practical and cost-effective methods for producing ice from off-grid wind-electric power systems. The first phase of the project, conducted in 1993--1994, included full-scale dynamometer and field testing of two different electric ice makers directly connected to a permanent magnet alternator. The results of that phase were encouraging and the second phase of the project was launched in which steady-state and dynamic numerical models of these systems were developed and experimentally validated. The third phase of the project was the dynamometer testing of the North Star ice maker, which is powered by a 12-kilowatt Bergey Windpower Company, Inc., alternator. This report describes both the second and third project phases. Also included are detailed economic analyses and a discussion of the future prospects of wind-electric ice-making systems. The main report is contained in Volume 1. Volume 2 consists of the report appendices, which include the actual computer programs used in the analysis and the detailed test results.

Holz, R.; Gervorgian, V.; Drouilhet, S.; Muljadi, E.

1998-07-01T23:59:59.000Z

432

Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 U.S. Department of Energy Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project Final Environmental Impact Statement November 2002 U.S. Department of Energy National Energy Technology Laboratory COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: Kentucky Pioneer Integrated Gasification Combined Cycle (IGCC) Demonstration Project Final Environmental Impact Statement (EIS) (DOE/EIS-0318) Location: Clark County, Kentucky Contacts: For further information on this environmental For further information on the DOE National impact statement (EIS), call: Environmental Policy Act (NEPA) process, call: 1-800-432-8330 ext. 5460 1-800-472-2756 or contact: or contact: Mr. Roy Spears Ms. Carol Borgstrom

433

Monitoring Electricity Consumption in the Tertiary Sector- A Project within the Intelligent Energy Europe Program  

E-Print Network (OSTI)

The electricity consumption in the tertiary sector in the EU is still increasing and a further increase is expected of more than 2 % per year during the next 15 years. This sector includes companies and institutions of public and private services with heterogeneous economic and energy-related characteristics. Building managers and decision-makers are not enough informed about the electricity consumption structure and electricity-saving potentials. Within the EU Intelligent Energy project EL-TERTIARY an overview of existing studies showed that the availability of disaggregated data on electricity consumption and its use by purpose (lighting, office equipment, ventilation, air conditioning, etc.) is poor. The methods of determining the types of end-uses are weak; most studies are based on calculations and estimations, only a few on measurement. In addition, many of the results are not published. EL-TERTIARY developed an internet-based methodology for monitoring electricity consumption. It was applied in more than 120 case studies in 12 EU countries. They cover various types of buildings: offices, schools, universities, kindergartens, hotels, supermarkets, and hospitals evaluating more than 900 technical systems. On the background of ongoing activities on EU level, such as directives, research and implementation projects the paper illustrates the concept of EL-TERTIARY, the newly developed methodology for the documentation of building audits and monitoring as well as selected results.

Plesser, S.; Fisch, M. N.; Gruber, E.; Schlomann, B.

2008-10-01T23:59:59.000Z

434

Klondike III/Biglow Canyon Wind Integration Project; Final Environmental Impact Statement, September 2006.  

DOE Green Energy (OSTI)

BPA has been asked by PPM Energy, Inc. to interconnect 300 megawatts (MW) of electricity generated from the proposed Klondike III Wind Project to the Federal Columbia River Transmission System. Orion Energy LLC has also asked BPA to interconnect 400 MW of electricity from its proposed Biglow Canyon Wind Farm, located north and east of the proposed Klondike III Wind Project. (Portland General Electric recently bought the rights to develop the proposed Biglow Canyon Wind Farm from Orion Energy, LLC.) Both wind projects received Site Certificates from the Oregon Energy Facility Siting Council on June 30, 2006. To interconnect these projects, BPA would need to build and operate a 230-kV double-circuit transmission line about 12 miles long, expand one substation and build one new substation. The wind projects would require wind turbines, substation(s), access roads, and other facilities. Two routes for the transmission line are being considered. Both begin at PPM's Klondike Schoolhouse Substation then travel north (Proposed Action) or north and westerly (Middle Alternative) to a new BPA 230-kV substation next to BPA's existing John Day 500-kV Substation. BPA is also considering a No Action Alternative in which BPA would not build the transmission line and would not interconnect the wind projects. The proposed BPA and wind projects would be located on private land, mainly used for agriculture. If BPA decides to interconnect the wind projects, construction of the BPA transmission line and substation(s) could commence as early as the winter of 2006-07. Both wind projects would operate for much of each year for at least 20 years. The proposed projects would generally create no or low impacts. Wildlife resources and local visual resources are the only resources to receive an impact rating other than ''none'' or ''low''. The low to moderate impacts to wildlife are from the expected bird and bat mortality and the cumulative impact of this project on wildlife when combined with other proposed wind projects in the region. The low to high impacts to visual resources reflect the effect that the transmission line and the turbine strings from both wind projects would have on viewers in the local area, but this impact diminishes with distance from the project.

United States. Bonneville Power Administration

2006-09-01T23:59:59.000Z

435

Orion: A Software Project Search Engine with Integrated Diverse Software Artifacts  

E-Print Network (OSTI)

AbstractSoftware projects produce a wealth of data that is leveraged in different tasks and for different purposes: researchers collect project data for building experimental datasets; software programmers reuse code from projects; developers often explore the opportunities for getting involved in the development of a project to gain or offer expertise. Finding relevant projects that suit one needs is however currently challenging with the capabilities of existing search systems. We propose Orion, an integrated search engine architecture that combines information from different types of software repositories from multiple sources to facilitate the construction and execution of advanced search queries. Orion provides a declarative query language that gives to users access to a uniform interface where it transparently integrates different artifacts of project development and maintenance, such as source code information, version control systems metadata, bug tracking systems elements, and metadata on developer activities and interactions extracted from hosting platforms. We have built an extensible system with an initial capability of over 100,000 projects collected from the web, featuring several types of software repositories and software development artifacts. We conducted an experiment with 10 search scenarios to compare Orion with traditional search engines, and explore the need for our approach as well as the productivity of the proposed infrastructure. The results show with strong statistical significance that users find relevant projects faster and more accurately with Orion. I.

Tegawend F. Bissy; Ferdian Thung; David Lo; Lingxiao Jiang; Laurent Rveillre

2013-01-01T23:59:59.000Z

436

Self-scrubbing coal{sup TM}: An integrated approach to clean air. A proposed Clean Coal Technology Demonstration Project  

Science Conference Proceedings (OSTI)

This environmental assessment (EA) was prepared by the U.S.Department of Energy (DOE), with compliance with the National Environmental Policy Act (NEPA) of 1969, Council on Environmental Quality (CE) regulations for implementating NEPA (40 CFR 1500-1508) and DOE regulations for compliance with NEPA (10 CFR 1021), to evaluate the potential environmental impacts associated with a proposed demonstration project to be cost-shared by DOE and Custom Coals International (CCI) under the Clean Coal Technology (CCT) Demonstration Program of DOE`s Office of Fossil Energy. CCI is a Pennsylvania general partnership located in Pittsburgh, PA engaged in the commercialization of advanced coal cleaning technologies. The proposed federal action is for DOE to provide, through a cooperative agreement with CCI, cost-shared funding support for the land acquisition, design, construction and demonstration of an advanced coal cleaning technology project, {open_quotes}Self-Scrubbing Coal: An Integrated Approach to Clean Air.{close_quotes} The proposed demonstration project would take place on the site of the presently inactive Laurel Coal Preparation Plant in Shade Township, Somerset County, PA. A newly constructed, advanced design, coal preparation plant would replace the existing facility. The cleaned coal produced from this new facility would be fired in full-scale test burns at coal-fired electric utilities in Indiana, Ohio and PA as part of this project.

Not Available

1994-01-01T23:59:59.000Z

437

The Integration of Renewable Energy Sources into Electric Power Distribution Systems, Vol. II Utility Case Assessments  

SciTech Connect

Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: the local solar insolation and/or wind characteristics, renewable energy source penetration level, whether battery or other energy storage systems are applied, and local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kW-scale applications may be connected to three+phase secondaries, and larger hundred-kW and y-scale applications, such as MW-scale windfarms, or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. In any case, the installation of small, distributed renewable energy sources is expected to have a significant impact on local utility distribution primary and secondary system economics. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications. The following utility- and site-specific conditions that may affect the economic viability of distributed renewable energy sources were considered: distribution system characteristics, and design standards, and voltage levels; load density, reliability, and power quality; solar insolation and wind resource levels; utility generation characteristics and load profiles; and investor-owned and publicly owned utilities, size, and financial assumptions.

Zaininger, H.W.

1994-01-01T23:59:59.000Z

438

Usage of Electric Vehicle Supply Equipment Along the Corridors between the EV Project Major Cities  

DOE Green Energy (OSTI)

The report explains how the EVSE are being used along the corridors between the EV Project cities. The EV Project consists of a nationwide collaboration between Idaho National Laboratory (INL), ECOtality North America, Nissan, General Motors, and more than 40 other city, regional and state governments, and electric utilities. The purpose of the EV Project is to demonstrate the deployment and use of approximately 14,000 Level II (208-240V) electric vehicle supply equipment (EVSE) and 300 fast chargers in 16 major cities. This research investigates the usage of all currently installed EV Project commercial EVSE along major interstate corridors. ESRI ArcMap software products are utilized to create geographic EVSE data layers for analysis and visualization of commercial EVSE usage. This research locates the crucial interstate corridors lacking sufficient commercial EVSE and targets locations for future commercial EVSE placement. The results and methods introduced in this research will be used by INL for the duration of the EV Project.

Mindy Kirkpatrick

2012-05-01T23:59:59.000Z

439

Progress report 13 for April 1979-August 1979 and proceedings of the 13th project integration meeting  

DOE Green Energy (OSTI)

This report describes progress made by the Low-Cost Solar Array Project during the period April through August 1979. It includes reports on project analysis and integration; technology development in silicon material, large-area sheet silicon, and encapsulation; production process and equipment development; engineering and operations, and a discussion of the steps taken to integrate these efforts. It includes a report on, and copies of viewgraphs presented at the Project Integration Meeting held August 22-23, 1979.

Not Available

1979-01-01T23:59:59.000Z

440

NETL: PPII - Integration of Low-NOx Burners with an Optimization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion - Project Brief PDF-72KB Sunflower Electric Power Corp., Garden City, Finney County, KS PROJECT...

Note: This page contains sample records for the topic "integrated projects electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Property Damage Risk Assessment Scoping Study: for South Texas Project Electric Generating Station  

Science Conference Proceedings (OSTI)

At the request of the South Texas Project Electric Generating Station (STPEGS), EPRI assessed the financial risks of on-site property damage from component failures and accidents and the effectiveness of available insurance in mitigating such risks. This report quantifies the risks of nuclear and nonnuclear accidents and the resulting property damage incurred. The report is a companion document to EPRI's Nuclear Property Insurance Study (TR-108061), which discusses five options for alternate insurance co...

1997-08-12T23:59:59.000Z

442

FY 2002 Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect

This document is an integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders (''surveillance monitoring''); other, established monitoring plans by reference; and a master well/ constituent/frequency matrix for the entire Hanford Site.

Hartman, Mary J; Dresel, P Evan; Lindberg, Jon W; Newcomer, Darrell R; Thornton, Edward C

2001-10-31T23:59:59.000Z

443

FY 2002 Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect

This document is an integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders ("surveillance monitoring"); other, established monitoring plans by reference; and a master well/ constituent/frequency matrix for the entire Hanford Site.

Hartman, Mary J.; Dresel, P Evan; Lindberg, Jonathan W.; Newcomer, Darrell R.; Thornton, Edward C.

2001-10-31T23:59:59.000Z

444

National Bioenergy Center, Biochemical Platform Integration Project: Quarterly Update, Summer 2011 (Newsletter)  

Science Conference Proceedings (OSTI)

Summer 2011 issue of the National Bioenergy Center Biochemical Platform Integration Project quarterly update. Issue topics: evaluating new analytical techniques for measuring soluble sugars in the liquid portion of biomass hydrolysates, and measurement of the fraction of insoluble solids in biomass slurries.

Not Available

2011-09-01T23:59:59.000Z

445

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #28, Spring 2011  

DOE Green Energy (OSTI)

Spring 2011 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: 33rd Symposium on Biotechnology for Fuels and Chemicals program sessions and special topic sessions; assessment of waste water treatment needs; and an update on new arabinose-to-ethanol fermenting Zymomonas mobilis strains.

Schell, D. J.

2011-04-01T23:59:59.000Z

446

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #27, April - June 2010  

Science Conference Proceedings (OSTI)

April-June, 2010 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: understanding performance of alternative process configurations for producing ethanol from biomass; investigating Karl Fischer Titration for measuring water content of pretreated biomass slurries.

Schell, D.

2010-07-01T23:59:59.000Z

447

National Bioenergy Center - Biochemical Platform Integration Project: Quarterly Update, Winter 2010  

DOE Green Energy (OSTI)

Winter 2011 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: 33rd Symposium on Biotechnology for Fuels and Chemicals program topic areas; results from reactive membrane extraction of inhibitors from dilute-acid pretreated corn stover; list of 2010 task publications.

Schell, D.

2011-02-01T23:59:59.000Z

448

Electric G-Van demonstration and commercial assessment project. Final report  

DOE Green Energy (OSTI)

The Electric Power Research Institute was awarded this grant to continue the joint effort initiated by EPRI, and VE International to proceed beyond the prototype phase of the electric G-Van development. The goal of EPRI and VEHMA was to develop a market for the electric G-Van, and to distribute them to commercial fleet operators. The objective of this project was to produce G-Vans in a production facility that would be comparable to the GMC Truck internal combustion engine Vandura Van produced by General Motors in quality, reliability, durability and safety. An initial market assessment/demonstration phase of sixty (60) vehicles was to be undertaken, with the ability to expand production volume quickly to meet market demands. Brief description of each task of this grant is given and the actions taken by EPRI to complete them.

Braga, B.D. [Electric Power Research Inst., Palo Alto, CA (United States)] [Electric Power Research Inst., Palo Alto, CA (United States)

1992-12-01T23:59:59.000Z

449

MHD Integrated Topping Cycle Project. Sixteenth quarterly technical progress report, May 1991--July 1991  

DOE Green Energy (OSTI)

The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990`s, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

Not Available

1992-03-01T23:59:59.000Z

450

Develop Standard Method of Test for Integrated Heat Pumps Research Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Develop Standard Method of Test for Develop Standard Method of Test for Integrated Heat Pumps Research Project Develop Standard Method of Test for Integrated Heat Pumps Research Project The U.S. Department of Energy is currently conducting research into the development of standard Method of Test (MOT) for integrated heat pumps (IHPs). No active, recognized test procedure or rating standard exists for IHPs. Generating a rating standard with supporting test procedure that is approved by the American Society of Heating, Refrigerating, and Air Conditioning (ASHRAE) and the Air Conditioning, Heating, and Refrigeration Institute (AHRI) is necessary for these products to be viably marketed. The primary market segment for IHPs is residential buildings, both single-family and small, low-rise multifamily dwellings.

451

Integrated Biorefinery Project: Cooperative Research and Development Final Report, CRADA Number CRD-10-390  

Science Conference Proceedings (OSTI)

The Amyris-NREL CRADA is a sub-project of Amyris?s DOE-funded pilot-scale Integrated Biorefinery (IBR). The primary product of the Amyris IBR is Amyris Renewable Diesel. Secondary products will include lubricants, polymers and other petro-chemical substitutes. Amyris and its project partners will execute on a rapid project to integrate and leverage their collective expertise to enable the conversion of high-impact biomass feedstocks to these advanced, infrastructure-compatible products. The scope of the Amyris-NREL CRADA includes the laboratory development and pilot scale-up of bagasse pretreatment and enzymatic saccharification conditions by NREL for subsequent conversion of lignocellulosic sugar streams to Amyris Diesel and chemical products by Amyris. The CRADA scope also includes a techno-economic analysis of the overall production process of Amyris products from high-impact biomass feedstocks.

Chapeaux, A.; Schell, D.

2013-06-01T23:59:59.000Z

452

Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Interim Test Procedures for Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications S. Chakraborty, W. Kramer, B. Kroposki, G. Martin, P. McNutt, M. Kuss, T. Markel, and A. Hoke Technical Report NREL/TP-5500-51001 June 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications S. Chakraborty, W. Kramer, B. Kroposki, G. Martin, P. McNutt, M. Kuss, T. Markel,

453

Modeling hydro power plants in deregulated electricity markets : integration and application of EMCAS and VALORAGUA.  

Science Conference Proceedings (OSTI)

In this paper, we present details of integrating an agent-based model, Electricity Market Complex Adaptive System (EMCAS) with a hydro-thermal coordination model, VALORAGUA. EMCAS provides a framework for simulating deregulated markets with flexible regulatory structure along with bidding strategies for supply offers and demand bids. VALORAGUA provides longer-term operation plans by optimizing hydro and thermal power plant operation for the entire year. In addition, EMCAS uses the price forecasts and weekly hydro schedules from VALORAGUA to provide intra-week hydro plant optimization for hourly supply offers. The integrated model is then applied to the Iberian electricity market which includes about 111 thermal plants and 38 hydro power plants. We then analyze the impact of hydro plant supply offers on the market prices and ways to minimize the Gencospsila exposure to price risk.

Thimmapuram, P.; Veselka, T.; Koritarov, V.; Vilela, S.; Pereira, R.; Silva, R. (Decision and Information Sciences); (Rede Electrica Nacional, S.A.); (Energias de Portugal)

2008-01-01T23:59:59.000Z

454

Integration Issues of Cells into Battery Packs for Plug-in and Hybrid Electric Vehicles: Preprint  

DOE Green Energy (OSTI)

The main barriers to increased market share of hybrid electric vehicles (HEVs) and commercialization of plug-in HEVs are the cost, safety, and life of lithium ion batteries. Significant effort is being directed to address these issues for lithium ion cells. However, even the best cells may not perform as well when integrated into packs for vehicles because of the environment in which vehicles operate. This paper discusses mechanical, electrical, and thermal integration issues and vehicle interface issues that could impact the cost, life, and safety of the system. It also compares the advantages and disadvantages of using many small cells versus a few large cells and using prismatic cells versus cylindrical cells.

Pesaran, A. A.; Kim, G. H.; Keyser, M.

2009-05-01T23:59:59.000Z

455

Draft Environmental Impact Statement Klondike III/Biglow Canyon Wind Integration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

generated from the proposed Klondike III Wind Project to the Federal Columbia River Transmission System. Orion Energy LLC has also asked BPA to interconnect 400 MW of electricity from its proposed Biglow Canyon Wind Farm, located north and east of the proposed Klondike III Wind Project. To interconnect these projects, BPA would need to build and operate a 230-kV double-circuit transmission line about 12 miles long, expand one substation and build one new substation. The wind projects would require wind turbines, substation(s), access roads, and other facilities. Two routes for the transmission line are being considered. Both begin at PPM's Klondike Schoolhouse Substation then travel north (Proposed Action) or north and westerly (Middle Alternative) to a new BPA

456

Electrical vehicles impacts on the grids (Smart Grid Project) | Open Energy  

Open Energy Info (EERE)

vehicles impacts on the grids (Smart Grid Project) vehicles impacts on the grids (Smart Grid Project) Jump to: navigation, search Project Name Electrical vehicles impacts on the grids Country Belgium Coordinates 50.471493°, 3.988037° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.471493,"lon":3.988037,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

457

Empirical support for global integrated assessment modeling: Productivity trends and technological change in developing countries' agriculture and electric power sectors  

Science Conference Proceedings (OSTI)

Integrated assessment (IA) modeling of climate policy is increasingly global in nature, with models incorporating regional disaggregation. The existing empirical basis for IA modeling, however, largely arises from research on industrialized economies. Given the growing importance of developing countries in determining long-term global energy and carbon emissions trends, filling this gap with improved statistical information on developing countries' energy and carbon-emissions characteristics is an important priority for enhancing IA modeling. Earlier research at LBNL on this topic has focused on assembling and analyzing statistical data on productivity trends and technological change in the energy-intensive manufacturing sectors of five developing countries, India, Brazil, Mexico, Indonesia, and South Korea. The proposed work will extend this analysis to the agriculture and electric power sectors in India, South Korea, and two other developing countries. They will also examine the impact of alternative model specifications on estimates of productivity growth and technological change for each of the three sectors, and estimate the contribution of various capital inputs--imported vs. indigenous, rigid vs. malleable-- in contributing to productivity growth and technological change. The project has already produced a data resource on the manufacturing sector which is being shared with IA modelers. This will be extended to the agriculture and electric power sectors, which would also be made accessible to IA modeling groups seeking to enhance the empirical descriptions of developing country characteristics. The project will entail basic statistical and econometric analysis of productivity and energy trends in these developing country sectors, with parameter estimates also made available to modeling groups. The parameter estimates will be developed using alternative model specifications that could be directly utilized by the existing IAMs for the manufacturing, agriculture, and electric power sectors.

Sathaye, Jayant A.

2000-04-01T23:59:59.000Z

458

An Integrated Onboard Charger and Accessary Power Converter for Plug-in Electric Vehicles  

SciTech Connect

Abstract: In this paper, an integrated onboard battery charger and accessary dc-dc converter for plug-in electric vehicles (PEVs) is presented. The idea is to utilize the already available traction drive inverters and motors of a PEV as the frond converter of the charger circuit and the transformer of the 14 V accessary dc-dc converter to provide galvanic isolation. The topology was verified by modeling and experimental results on a 5 kW charger prototype

Su, Gui-Jia [ORNL; Tang, Lixin [ORNL

2013-01-01T23:59:59.000Z

459

Integrated Computing, Communication, and Distributed Control of Deregulated Electric Power Systems  

SciTech Connect

Restructuring of the electricity market has affected all aspects of the power industry from generation to transmission, distribution, and consumption. Transmission circuits, in particular, are stressed often exceeding their stability limits because of the difficulty in building new transmission lines due to environmental concerns and financial risk. Deregulation has resulted in the need for tighter control strategies to maintain reliability even in the event of considerable structural changes, such as loss of a large generating unit or a transmission line, and changes in loading conditions due to the continuously varying power consumption. Our research efforts under the DOE EPSCoR Grant focused on Integrated Computing, Communication and Distributed Control of Deregulated Electric Power Systems. This research is applicable to operating and controlling modern electric energy systems. The controls developed by APERC provide for a more efficient, economical, reliable, and secure operation of these systems. Under this program, we developed distributed control algorithms suitable for large-scale geographically dispersed power systems and also economic tools to evaluate their effectiveness and impact on power markets. Progress was made in the development of distributed intelligent control agents for reliable and automated operation of integrated electric power systems. The methodologies employed combine information technology, control and communication, agent technology, and power systems engineering in the development of intelligent control agents for reliable and automated operation of integrated electric power systems. In the event of scheduled load changes or unforeseen disturbances, the power system is expected to minimize the effects and costs of disturbances and to maintain critical infrastructure operational.

Bajura, Richard; Feliachi, Ali

2008-09-24T23:59:59.000Z

460

Environmental and Economical Evaluation of Integrating NGL Extraction and LNG Liquefaction Technology in Iran LNG Project  

E-Print Network (OSTI)

The combination of changing global markets for natural gas liquids (NGL) with the simultaneous increase in global demand for liquefied natural gas (LNG) has stimulated an interest in the integration of NGL recovery technology with LNG liquefaction technologies. Historically, the removal of heavy or high-freezing-point hydrocarbons from the feed to LNG plants has been characterized as gas conditioning and achieved using one or more distillation columns. While some attempts to provide reflux to the distillation columns marginally enhanced NGL recovery, little emphasis was placed on maximizing NGL recovery as a product from the LNG process. As such, the integration of the two processes was not a priority. Integrating state-of-the art NGL recovery technology within the CoP LNGSM Process1, formerly the Phillips Optimized Cascade LNG Process, results in a significant reduction in the specific power required to produce LNG, while maximizing NGL recovery. This corresponds to a production increase in both LNG and NGL for comparable compression schemes as compared to stand-alone LNG liquefaction and NGL extraction facilities. In addition, there are potential enhancements to the overall facility availability and project economics and environmental impacts using the integrated concept. This integrated concept has been applied to three ongoing international NGL/LNG projects using the CoP LNG Process in Iran LNG project. In this respect, simulation has been performed in THERMOFLEX software. Moreover, thermo economic analysis has been applied for economic and thermodynamic analysis of base and integrated cases through computer code has been provided here. Finally, the base and integrated case have been evaluated and comprised in view of thermodynamics, economics and environmental impacts.

Manesh, M. H. K.; Mazhari, V.

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated projects electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Griffiss Air Force Base integrated resource assessment. Volume 3, Electric resource assessment  

Science Conference Proceedings (OSTI)

The US Air Force Air Combat Command (ACC) has tasked the US Department of Energy (DOE) Federal Energy Management Program (FEMP) to identify, evaluate, and assist in acquiring all cost-effective energy projects at Griffiss Air Force Base (AFB). FEMP, with support from the Pacific Northwest Laboratory (PNL), is designing this model program for federal customers served by the Niagara Mohawk Power Company. The program with Griffiss AFB will (1) identify and evaluate all cost-effective electric energy projects; (2) develop a schedule for project acquisition considering project type, size, timing, capital requirements, as well as energy and dollar savings; and (3) secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have them procure the necessary contractors to perform detailed audits and install the technologies. This report provides the results of the electric energy resource opportunity (ERO) assessments performed by PNL at one of Niagara Mohawk`s primary federal facilities, the ACC Griffiss AFB facility located near Rome, New York. The results of the analyses of EROs are presented in seven common energy end-use categories. A narrative description of each ERO provides information on the initial cost, energy and dollar savings; impacts on operations and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. The evaluation methodology and technical and cost assumptions are also described for each ERO. Summary tables present the operational performance of energy end-use equipment before and after the implementation of each ERO and the results of the life-cycle cost analysis indicating the net present value (NPV) and savings-to-investment ratio (SIR) of each ERO.

Armstrong, P.R.; Shankle, S.A.; Elliott, D.B.; Stucky, D.J.; Keller, J.M.; Wahlstrom, R.R.; Dagle, J.E.; Gu, A.Y.

1993-09-01T23:59:59.000Z

462

Projects at the Component Development and Integration Facility. Quarterly technical progress report, January 1--March 31, 1993  

DOE Green Energy (OSTI)

This quarterly technical progress report presents progress on several different projects at the Component Development and Integration Facility (CDIF) during the second quarter of FY93. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD Proof-of-Concept Project; Mine Waste Technology Pilot Program; Plasma Furnace Projects for waste destruction; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; Soil Washing Project for removal of radioactive materials; and Spray Casting Project.

Not Available

1993-09-01T23:59:59.000Z

463

Integrity bases for covariants of tetrahedral XY4 molecules. Application to the electric dipole moment surface  

E-Print Network (OSTI)

Techniques of invariant theory such as Molien generating functions and integrity bases offer mathematical tools for the efficient construction of symmetry--adapted polynomials in the symmetrized coordinates of a molecular system. The present article is the prolongation of our previous work [P. Cassam-Chena\\"i and F. Patras, J. Math. Chem., 44(4), 938--966 (2008).] to the case of polynomials that transform as a non--totally symmetric irreducible representation of the symmetry group $G$ of the molecule. Such a covariant representation occurs with electric or magnetic properties, for example with the electric dipole moment surface. The symmetrized coordinates span an initial reducible representation from which polynomials transforming as an irreducible representation are built. The number of linearly independent polynomials of degree $k$ within this final representation is given by the coefficient of degree $k$ in the Taylor expansion of the associated Molien function. This generating function is built from combination of elementary generating functions where both the initial and final representations are irreducible. In parallel, Clebsch--Gordan coefficients of the symmetry group $G$ recursively couples the corresponding elementary integrity bases in order to build the integrity bases for the initial representation associated to symmetrized coordinates. The method is illustrated in detail on XY4 type of molecul