Powered by Deep Web Technologies
Note: This page contains sample records for the topic "integrated optical sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Integrated optical sensor  

DOE Patents [OSTI]

An integrated optical sensor for arc welding having multifunction feedback control is described. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties. 6 figures.

Watkins, A.D.; Smartt, H.B.; Taylor, P.L.

1994-01-04T23:59:59.000Z

2

Integrated optical sensor  

DOE Patents [OSTI]

An integrated optical sensor for arc welding having multifunction feedback control. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties.

Watkins, Arthur D. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); Taylor, Paul L. (Idaho Falls, ID)

1994-01-01T23:59:59.000Z

3

Abstract--A low noise optical sensor and biocompatible microscale optical filters for integrated fluorescence sensors  

E-Print Network [OSTI]

Abstract--A low noise optical sensor and biocompatible microscale optical filters for integrated fluorescence sensors were developed and tested. The sensor was fabricated in a 0.5 µm CMOS process. The measured reset noise of the sensor is reduced by a factor of 10 compared to conventional active pixel

Maryland at College Park, University of

4

Lightweight Integrated Optical Sensor for Atmospheric Measurements on Mobile Platforms  

SciTech Connect (OSTI)

The goal of the Phase I program was to develop a novel open path sensor platform technology based on integration of semiconductor waveguides with efficient optoelectronic components on a monolithic platform. The successful Phase I effort resulted in demonstration of a novel optical resonator structure based on semiconductor high contrast gratings (HCGs) that will enable implementation of an ultra-compact, low-power gas sensor suitable for use on mobile platforms. Extensive numerical modeling was performed to design a device optimized for measuring CO2 at a wavelength for which a laser was available for proof of concept. Devices were fabricated and tested to match the target wavelength, angle, and operating temperature. This demonstration is the first implementation of HCGs at the wavelengths of interest and shows the flexibility of the proposed architecture for gas sensing applications. The measured cavity Q was lower than anticipated due to fabrication process challenges. The PSI and UC Berkeley team has identified solutions to these challenges and will produce optimized devices in a Phase II program where a prototype sensor will be fabricated and tested.

Parameswaran, Krishnan R. [Physical Sciences Inc.

2013-12-02T23:59:59.000Z

5

FEASIBILITY OF A STACK INTEGRATED SOFC OPTICAL CHEMICAL SENSOR  

SciTech Connect (OSTI)

The work performed during the UCR Innovative Concepts phase I program was designed to demonstrate the chemical sensing capabilities of nano-cermet SPR bands at solid oxide fuel cell operating conditions. Key to this proposal is that the materials choice used a YSZ ceramic matrix which upon successful demonstration of this concept, will allow integration directly onto the SOFC stack. Under the Innovative Concepts Program the University at Albany Institute for Materials (UAIM)/UAlbany School of NanoSciences and NanoEngineering synthesized, analyzed and tested Pa, and Au doped YSZ nano-cermets as a function of operating temperature and target gas exposure (hydrogen, carbon monoxide and 1-dodecanethiol). During the aforementioned testing procedure the optical characteristics of the nano-cermets were monitored to determine the sensor selectivity and sensitivity.

Michael A. Carpenter

2004-03-30T23:59:59.000Z

6

Fiber optic sensor and method for making  

DOE Patents [OSTI]

A fiber optic sensor including a fiber having a modified surface integral with the fiber wherein the modified surface includes an open pore network with optical agents dispersed within the open pores of the open pore network. Methods for preparing the fiber optic sensor are also provided. The fiber optic sensors can withstand high temperatures and harsh environments.

Vartuli, James Scott; Bousman, Kenneth Sherwood; Deng, Kung-Li; McEvoy, Kevin Paul; Xia, Hua

2010-05-18T23:59:59.000Z

7

Fiber optic geophysical sensors  

DOE Patents [OSTI]

A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

Homuth, Emil F. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

8

Fiber optic coupled optical sensor  

DOE Patents [OSTI]

A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.

Fleming, Kevin J. (Albuquerque, NM)

2001-01-01T23:59:59.000Z

9

Fiber optic vibration sensor  

DOE Patents [OSTI]

A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity.

Dooley, Joseph B. (Harriman, TN); Muhs, Jeffrey D. (Lenoir City, TN); Tobin, Kenneth W. (Harriman, TN)

1995-01-01T23:59:59.000Z

10

Fiber optic vibration sensor  

DOE Patents [OSTI]

A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity. 2 figures.

Dooley, J.B.; Muhs, J.D.; Tobin, K.W.

1995-01-10T23:59:59.000Z

11

DEVELOPMENT OF NOVEL CERAMIC NANOFILM-FIBER INTEGRATED OPTICAL SENSORS FOR RAPID DETECTION OF COAL DERIVED SYNTHESIS GAS  

SciTech Connect (OSTI)

The overall goal of this project is to conduct fundamental studies on advanced ceramic materials and fiber optic devices for developing new types of high temperature (>500{degree}C) fiber optic chemical sensors (FOCS) for monitoring fossil (mainly coal) and biomass derived gases in power plants. The primary technical objective is to investigate and demonstrate the nanocrystalline doped-ceramic thin film enabled FOCS that possess desired stability, sensitivity and selectivity for in-situ, rapid gas detection in the syngas streams from gasification and combustion flue gases. This report summarizes research works of two integrated parts: (1) development of metal oxide solid thin films as sensing materials for detection and measurement of important gas components relevant to the coal- and biomass-derived syngas and combustion gas streams at high temperatures; and (2) development of fiber optic devices that are potentially useful for constructing FOCS in combination with the solid oxide thin films identified in this program.

Junhang Dong; Hai Xiao; Xiling Tang; Hongmin Jiang; Kurtis Remmel; Amardeep Kaur

2012-09-30T23:59:59.000Z

12

Fiber optic geophysical sensors  

DOE Patents [OSTI]

A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.

Homuth, E.F.

1991-03-19T23:59:59.000Z

13

Optical displacement sensor  

DOE Patents [OSTI]

An optical displacement sensor is disclosed which uses a vertical-cavity surface-emitting laser (VCSEL) coupled to an optical cavity formed by a moveable membrane and an output mirror of the VCSEL. This arrangement renders the lasing characteristics of the VCSEL sensitive to any movement of the membrane produced by sound, vibrations, pressure changes, acceleration, etc. Some embodiments of the optical displacement sensor can further include a light-reflective diffractive lens located on the membrane or adjacent to the VCSEL to control the amount of lasing light coupled back into the VCSEL. A photodetector detects a portion of the lasing light from the VCSEL to provide an electrical output signal for the optical displacement sensor which varies with the movement of the membrane.

Carr, Dustin W. (Albuquerque, NM)

2008-04-08T23:59:59.000Z

14

Silicon fiber optic sensors  

DOE Patents [OSTI]

A Fabry-Perot cavity is formed by a partially or wholly reflective surface on the free end of an integrated elongate channel or an integrated bounding wall of a chip of a wafer and a partially reflective surface on the end of the optical fiber. Such a constructed device can be utilized to detect one or more physical parameters, such as, for example, strain, through the optical fiber using an optical detection system to provide measuring accuracies of less than aboutb0.1%.

Pocha, Michael D. (Livermore, CA); Swierkowski, Steve P. (Livermore, CA); Wood, Billy E. (Livermore, CA)

2007-10-02T23:59:59.000Z

15

Fiber optic hydrogen sensor  

DOE Patents [OSTI]

An apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer.

Buchanan, Bruce R. (1985 Willis, Batesburg, SC 29006); Prather, William S. (2419 Dickey Rd., Augusta, GA 30906)

1992-01-01T23:59:59.000Z

16

Fiber optic hydrogen sensor  

DOE Patents [OSTI]

Apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading, by a single spectrophotometer.

Buchanan, B.R.; Prather, W.S.

1991-01-01T23:59:59.000Z

17

Fiber optic hydrogen sensor  

DOE Patents [OSTI]

An apparatus and method are described for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer. 4 figs.

Buchanan, B.R.; Prather, W.S.

1992-10-06T23:59:59.000Z

18

Fiber optic temperature sensor  

SciTech Connect (OSTI)

Our fiber optic temperature measurement sensor and system is a major improvement over methods currently in use in most industrial processes, and it delivers all of the attributes required simplicity, accuracy, and cost efficiency-to help improve all of these processes. Because temperature is a basic physical attribute of nearly every industrial and commercial process, our system can eventually result in significant improvements in nearly every industrial and commercial process. Many finished goods, and the materials that go into them, are critically dependent on the temperature. The better the temperature measurement, the better quality the goods will be and the more economically they can be produced. The production and transmission of energy requires the monitoring of temperature in motors, circuit breakers, power generating plants, and transmission line equipment. The more reliable and robust the methods for measuring these temperature, the more available, stable, and affordable the supply of energy will become. The world is increasingly realizing the threats to health and safety of toxic or otherwise undesirable by products of the industrial economy in the environment. Cleanup of such contamination often depends on techniques that require the constant monitoring of temperature in extremely hazardous environments, which can damage most conventional temperature sensors and which are dangerous for operating personnel. Our system makes such monitoring safer and more economical.

Rabold, D.

1995-12-01T23:59:59.000Z

19

Sensors and Actuators A xxx (2004) xxxxxx Micromachined silicon force sensor based on diffractive optical  

E-Print Network [OSTI]

Sensors and Actuators A xxx (2004) xxx­xxx Micromachined silicon force sensor based on diffractive-based force sensor integrated with a surface micromachined silicon-nitride probe for penetration and injection that is designed to only be sensitive to axial deflections of the probe. The optical-encoder force sensor exhibits

Quake, Stephen R.

20

Electro-optic voltage sensor head  

DOE Patents [OSTI]

The invention is an electro-optic voltage sensor head designed for integration with existing types of high voltage transmission and distribution apparatus. The sensor head contains a transducer, which comprises a transducing material in which the Pockels electro-optic effect is observed. In the practice of the invention at least one beam of electromagnetic radiation is routed into the transducing material of the transducer in the sensor head. The beam undergoes an electro-optic effect in the sensor head when the transducing material is subjected to an E-field. The electro-optic effect is observed as a differential phase a shift, also called differential phase modulation, of the beam components in orthogonal planes of the electromagnetic radiation. In the preferred embodiment the beam is routed through the transducer along an initial axis and then reflected by a retro-reflector back substantially parallel to the initial axis, making a double pass through the transducer for increased measurement sensitivity. The preferred embodiment of the sensor head also includes a polarization state rotator and at least one beam splitter for orienting the beam along major and minor axes and for splitting the beam components into two signals which are independent converse amplitude-modulated signals carrying E-field magnitude and hence voltage information from the sensor head by way of optic fibers.

Crawford, Thomas M. (Idaho Falls, ID); Davidson, James R. (Idaho Falls, ID); Woods, Gregory K. (Cornelius, OR)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated optical sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Electro-optic voltage sensor head  

DOE Patents [OSTI]

The invention is an electro-optic voltage sensor head designed for integration with existing types of high voltage transmission and distribution apparatus. The sensor head contains a transducer, which comprises a transducing material in which the Pockels electro-optic effect is observed. In the practice of the invention at least one beam of electromagnetic radiation is routed into the transducing material of the transducer in the sensor head. The beam undergoes an electro-optic effect in the sensor head when the transducing material is subjected to an E-field. The electro-optic effect is observed as a differential phase a shift, also called differential phase modulation, of the beam components in orthogonal planes of the electromagnetic radiation. In the preferred embodiment the beam is routed through the transducer along an initial axis and then reflected by a retro-reflector back substantially parallel to the initial axis, making a double pass through the transducer for increased measurement sensitivity. The preferred embodiment of the sensor head also includes a polarization state rotator and at least one beam splitter for orienting the beam along major and minor axes and for splitting the beam components into two signals which are independent converse amplitude-modulated signals carrying E-field magnitude and hence voltage information from the sensor head by way of optic fibers. 6 figs.

Crawford, T.M.; Davidson, J.R.; Woods, G.K.

1999-08-17T23:59:59.000Z

22

Low noise optical position sensor  

DOE Patents [OSTI]

A novel optical position sensor is described that uses two component photodiodes electrically connected in parallel, with opposing polarities. A lens provides optical gain and restricts the acceptance angle of the detector. The response of the device to displacements of an optical spot is similar to that of a conventional bi-cell type position sensitive detector. However, the component photodiode design enables simpler electronic amplification with inherently less electrical noise than the bi-cell. Measurements by the sensor of the pointing noise of a focused helium-neon laser as a function of frequency demonstrate high sensitivity and suitability for optical probe beam deflection experiments.

Spear, Jonathan David (Berkeley, CA)

1999-01-01T23:59:59.000Z

23

Low noise optical position sensor  

DOE Patents [OSTI]

A novel optical position sensor is described that uses two component photodiodes electrically connected in parallel, with opposing polarities. A lens provides optical gain and restricts the acceptance angle of the detector. The response of the device to displacements of an optical spot is similar to that of a conventional bi-cell type position sensitive detector. However, the component photodiode design enables simpler electronic amplification with inherently less electrical noise than the bi-cell. Measurements by the sensor of the pointing noise of a focused helium-neon laser as a function of frequency demonstrate high sensitivity and suitability for optical probe beam deflection experiments. 14 figs.

Spear, J.D.

1999-03-09T23:59:59.000Z

24

Buried fiber optic intrusion sensor  

E-Print Network [OSTI]

to the buried sensor induces a phase shift in light propagating along the fiber which allows for the detection and localization of intrusions. Through the use of an ultra-stable erbium-doped fiber laser and phase sensitive optical time domain reflectometry...

Maier, Eric William

2004-09-30T23:59:59.000Z

25

High pressure fiber optic sensor system  

DOE Patents [OSTI]

The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

2013-11-26T23:59:59.000Z

26

Optical high acidity sensor  

DOE Patents [OSTI]

An apparatus and method for determining acid concentrations in solutions having acid concentrations of from about 0.1 Molar to about 16 Molar is disclosed. The apparatus includes a chamber for interrogation of the sample solution, a fiber optic light source for passing light transversely through the chamber, a fiber optic collector for receiving the collimated light after transmission through the chamber, a coating of an acid resistant polymeric composition upon at least one fiber end or lens, the polymeric composition in contact with the sample solution within the chamber and having a detectable response to acid concentrations within the range of from about 0.1 Molar to about 16 Molar, a measurer for the response of the polymeric composition in contact with the sample solution, and, a comparer of the measured response to predetermined standards whereby the acid molarity of the sample solution within the chamber can be determined. Preferably, a first lens is attached to the end of the fiber optic light source, the first lens adapted to collimate light from the fiber optic light source, and a second lens is attached to the end of the fiber optic collector for focusing the collimated light after transmission through the chamber.

Jorgensen, Betty S. (Jemez Springs, NM); Nekimken, Howard L. (Los Alamos, NM); Carey, W. Patrick (Lynnwood, WA); O'Rourke, Patrick E. (Martinez, GA)

1997-01-01T23:59:59.000Z

27

Integrating fiber optic radiation dosimeter  

SciTech Connect (OSTI)

The purpose of this research effort was to determine the feasibility of forming a radiation sensor coupled to an optical fiber capable of measuring gamma photon, x-ray, and beta particle dose rates and integrated dose, and to construct a prototype dosimeter read-out system utilizing the fiber optic sensor. The key component of the prototype dosimeter system is a newly developed radiation sensitive storage phosphor. When this phosphor is excited by energetic radiation, a proportionate population of electron-hole pairs are created which become trapped at specific impurities within the phosphor. Trapped electrons can subsequently be stimulated optically with near-infrared at approximately 1 micrometer wavelength; the electrons can recombine with holes at luminescent centers to produce a luminescence which is directly proportional to the trapped electron population, and thus to the radiation exposure. By attaching the phosphor to the end of an optical fiber, it is possible to transmit both the IR optical stimulation and the characteristic phosphor luminescence through the fiber to and from the read-out instrument, which can be located far (e.g., kilometers) from the radiation field. This document reports on the specific design of the prototype system and its operating characteristics, including its sensitivity to various radiation dose rates and energies, its dynamic range, signal-to-noise ratio at various radiation intensities, and other system characteristics. Additionally, the radiation hardness of the phosphor and fiber are evaluated. 17 refs., 29 figs., 5 tabs.

Soltani, P.K.; Wrigley, C.Y.; Storti, G.M.; Creager, R.E.

1989-03-01T23:59:59.000Z

28

Development of an Integrated Raman and Turbidity Fiber Optic Sensor for the In-Situ Analysis of High Level Nuclear Waste - 13532  

SciTech Connect (OSTI)

Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fiber optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source. (authors)

Gasbarro, Christina; Bello, Job [EIC Laboratories, Inc., 111 Downey St., Norwood, MA, 02062 (United States)] [EIC Laboratories, Inc., 111 Downey St., Norwood, MA, 02062 (United States); Bryan, Samuel; Lines, Amanda; Levitskaia, Tatiana [Pacific Northwest National Laboratory, PO Box 999, Richland, WA, 99352 (United States)] [Pacific Northwest National Laboratory, PO Box 999, Richland, WA, 99352 (United States)

2013-07-01T23:59:59.000Z

29

Fiber-optic liquid level sensor  

DOE Patents [OSTI]

A fiber-optic liquid level sensor measures the height of a column of liquid through the hydrostatic pressure it produces. The sensor employs a fiber-optic displacement sensor to detect the pressure-induced displacement of the center of a corrugated diaphragm.

Weiss, Jonathan D. (Albuquerque, NM)

1991-01-01T23:59:59.000Z

30

Design guidelines for optical resonator biochemical sensors  

E-Print Network [OSTI]

In this paper, we propose a design tool for dielectric optical resonator-based biochemical refractometry sensors. Analogous to the widely accepted photodetector figure of merit, the detectivity D*, we introduce a new sensor ...

Kimerling, Lionel C.

31

Optical sensor of magnetic fields  

DOE Patents [OSTI]

An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

Butler, M.A.; Martin, S.J.

1986-03-25T23:59:59.000Z

32

Chemical preconcentrator with integral thermal flow sensor  

DOE Patents [OSTI]

A chemical preconcentrator with integral thermal flow sensor can be used to accurately measure fluid flow rate in a microanalytical system. The thermal flow sensor can be operated in either constant temperature or constant power mode and variants thereof. The chemical preconcentrator with integral thermal flow sensor can be fabricated with the same MEMS technology as the rest of the microanlaytical system. Because of its low heat capacity, low-loss, and small size, the chemical preconcentrator with integral thermal flow sensor is fast and efficient enough to be used in battery-powered, portable microanalytical systems.

Manginell, Ronald P. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM)

2003-01-01T23:59:59.000Z

33

Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines 2005 Diesel Engine Emissions...

34

Low-Cost Fiber Optic Pressure Sensor  

DOE Patents [OSTI]

The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.

Sheem, Sang K. (Pleasanton, CA)

2003-07-22T23:59:59.000Z

35

Low-Cost Fiber Optic Pressure Sensor  

DOE Patents [OSTI]

The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.

Sheem, Sang K. (Pleasanton, CA)

2004-05-18T23:59:59.000Z

36

Reactive Grasping Using Optical Proximity Sensors  

E-Print Network [OSTI]

We propose a system for improving grasping using fingertip optical proximity sensors that allows us to perform online grasp adjustments to an initial grasp point without requiring premature object contact or regrasping ...

Nangeroni, Paul

37

Integrated NEMS and optoelectronics for sensor applications.  

SciTech Connect (OSTI)

This work utilized advanced engineering in several fields to find solutions to the challenges presented by the integration of MEMS/NEMS with optoelectronics to realize a compact sensor system, comprised of a microfabricated sensor, VCSEL, and photodiode. By utilizing microfabrication techniques in the realization of the MEMS/NEMS component, the VCSEL and the photodiode, the system would be small in size and require less power than a macro-sized component. The work focused on two technologies, accelerometers and microphones, leveraged from other LDRD programs. The first technology was the nano-g accelerometer using a nanophotonic motion detection system (67023). This accelerometer had measured sensitivity of approximately 10 nano-g. The Integrated NEMS and optoelectronics LDRD supported the nano-g accelerometer LDRD by providing advanced designs for the accelerometers, packaging, and a detection scheme to encapsulate the accelerometer, furthering the testing capabilities beyond bench-top tests. A fully packaged and tested die was never realized, but significant packaging issues were addressed and many resolved. The second technology supported by this work was the ultrasensitive directional microphone arrays for military operations in urban terrain and future combat systems (93518). This application utilized a diffraction-based sensing technique with different optical component placement and a different detection scheme from the nano-g accelerometer. The Integrated NEMS LDRD supported the microphone array LDRD by providing custom designs, VCSELs, and measurement techniques to accelerometers that were fabricated from the same operational principles as the microphones, but contain proof masses for acceleration transduction. These devices were packaged at the end of the work.

Czaplewski, David A.; Serkland, Darwin Keith; Olsson, Roy H., III; Bogart, Gregory R. (Symphony Acoustics, Rio Rancho, NM); Krishnamoorthy, Uma; Warren, Mial E.; Carr, Dustin Wade (Symphony Acoustics, Rio Rancho, NM); Okandan, Murat; Peterson, Kenneth Allen

2008-01-01T23:59:59.000Z

38

Mechanical and optical behavior of a novel optical fiber crack sensor and an interferometric strain sensor  

E-Print Network [OSTI]

The proper interpretation of measurements from an optical fiber sensor requires a full understanding of its mechanical response to external action and the corresponding change in optical output. To quantify the mechanical ...

Olson, Noah Gale, 1969-

2002-01-01T23:59:59.000Z

39

Dynamic temperature measurements with embedded optical sensors.  

SciTech Connect (OSTI)

This report summarizes LDRD project number 151365, %5CDynamic Temperature Measurements with Embedded Optical Sensors%22. The purpose of this project was to develop an optical sensor capable of detecting modest temperature states (<1000 K) with nanosecond time resolution, a recurring diagnostic need in dynamic compression experiments at the Sandia Z machine. Gold sensors were selected because the visible re ectance spectrum of gold varies strongly with temperature. A variety of static and dynamic measurements were performed to assess re ectance changes at di erent temperatures and pressures. Using a minimal optical model for gold, a plausible connection between static calibrations and dynamic measurements was found. With re nements to the model and diagnostic upgrades, embedded gold sensors seem capable of detecting minor (<50 K) temperature changes under dynamic compression.

Dolan, Daniel H.,; Seagle, Christopher T; Ao, Tommy

2013-10-01T23:59:59.000Z

40

Microbend fiber-optic chemical sensor  

DOE Patents [OSTI]

A microbend fiber-optic chemical sensor for detecting chemicals in a sample, and a method for its use, is disclosed. The sensor comprises at least one optical fiber having a microbend section (a section of small undulations in its axis), for transmitting and receiving light. In transmission, light guided through the microbend section scatters out of the fiber core and interacts, either directly or indirectly, with the chemical in the sample, inducing fluorescence radiation. Fluorescence radiation is scattered back into the microbend section and returned to an optical detector for determining characteristics of the fluorescence radiation quantifying the presence of a specific chemical.

Weiss, Jonathan D. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated optical sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Lensless magneto-optic speed sensor  

DOE Patents [OSTI]

Lensless magneto-optic speed sensor is disclosed. The construction of a viable Faraday sensor has been achieved. Multimode fiber bundles are used to collect the light. If coupled directly into a 100 or 200 {micro}m core fiber, light from a light emitting diode (LED) is sufficient to operate the sensor. In addition, LEDs ensure that no birefringence effects in the input fiber are possible, as the output from such light sources have random polarization. No lens is required since the large diameter optical fibers and thin crystals of materials having high Verdet constants (such as iron garnets) employed permit the collection of a substantial quantity of light. No coupler is required. The maximum amount of light which could reach a detector using a coupler is 25%, while the measured throughput of the fiber-optic bundle without a coupler is about 42%. All of the elements employed in the present sensor are planar, and no particular orientation of these elements is required. The present sensor operates over a wide range of distances from magnetic field sources, and observed signals are large. When a tone wheel is utilized, the signals are independent of wheel speed, and the modulation is observed to be about 75%. No sensitivity to bends in the input or output optical fiber leads was observed. Reliable operation was achieved down to zero frequency, or no wheel rotation. 5 figs.

Veeser, L.R.; Forman, P.R.; Rodriguez, P.J.

1998-02-17T23:59:59.000Z

42

Lensless Magneto-optic speed sensor  

DOE Patents [OSTI]

Lensless magneto-optic speed sensor. The construction of a viable Faraday sensor has been achieved. Multimode fiber bundles are used to collect the light. If coupled directly into a 100 or 200 .mu.m core fiber, light from a light emitting diode (LED) is sufficient to operate the sensor. In addition, LEDs ensure that no birefringence effects in the input fiber are possible, as the output from such light sources have random polarization. No lens is required since the large diameter optical fibers and thin crystals of materials having high Verdet constants (such as iron garnets) employed permit the collection of a substantial quantity of light. No coupler is required. The maximum amount of light which could reach a detector using a coupler is 25%, while the measured throughput of the fiber-optic bundle without a coupler is about 42%. All of the elements employed in the present sensor are planar, and no particular orientation of these elements is required. The present sensor operates over a wide range of distances from magnetic field sources, and observed signals are large. When a tone wheel is utilized, the signals are independent of wheel speed, and the modulation is observed to be about 75%. No sensitivity to bends in the input or output optical fiber leads was observed. Reliable operation was achieved down to zero frequency, or no wheel rotation.

Veeser, Lynn R. (Los Alamos, NM); Forman, Peter R. (Los Alamos, NM); Rodriguez, Patrick J. (Santa Fe, NM)

1998-01-01T23:59:59.000Z

43

Integrated Lateral Flow Test Strip with Electrochemical Sensor...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lateral Flow Test Strip with Electrochemical Sensor for Quantification of Phosphorylated Cholinesterase: Biomarker of Integrated Lateral Flow Test Strip with Electrochemical Sensor...

44

Fiber optics spectrochemical emission sensors  

DOE Patents [OSTI]

A method is described of in situ monitoring of a body of a fluid stored in a tank or groundwater or vadose zone gases in a well for the presence of selected chemical species. The method uses a probe insertable into the well or tank via a cable and having an electrical apparatus for exciting selected chemical species in the body of fluid. The probe can have a pair of electrodes for initiating a spark or a plasma cell for maintaining a plasma to excite the selected chemical species. The probe also has an optical apparatus for receiving optical emissions emitted by the excited species and optically transmitting the emissions via the cable to an analysis location outside the well. The analysis includes detecting a selected wavelength in the emissions indicative of the presence of the selected chemical species. A plurality of probes can be suspended at an end of a respective cable, with the transmitting and analyzing steps for each probe being synchronized sequentially for one set of support equipment and instrumentation to monitor at multiple test points. The optical apparatus is arranged about the light guide axis so that the selected chemical species are excited in the fluid in alignment with the light guide axis. Optical emissions are received from the excited chemical species along such axis. 18 figs.

Griffin, J.W.; Olsen, K.B.

1992-02-04T23:59:59.000Z

45

Optical fiber sensors for harsh environments  

DOE Patents [OSTI]

A diaphragm optic sensor comprises a ferrule including a bore having an optical fiber disposed therein and a diaphragm attached to the ferrule, the diaphragm being spaced apart from the ferrule to form a Fabry-Perot cavity. The cavity is formed by creating a pit in the ferrule or in the diaphragm. The components of the sensor are preferably welded together, preferably by laser welding. In some embodiments, the entire ferrule is bonded to the fiber along the entire length of the fiber within the ferrule; in other embodiments, only a portion of the ferrule is welded to the fiber. A partial vacuum is preferably formed in the pit. A small piece of optical fiber with a coefficient of thermal expansion chosen to compensate for mismatches between the main fiber and ferrule may be spliced to the end of the fiber.

Xu, Juncheng; Wang, Anbo

2007-02-06T23:59:59.000Z

46

Electro-optical voltage sensor head  

DOE Patents [OSTI]

A miniature electro-optic voltage sensor system capable of accurate operation at high voltages. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

Woods, Gregory K. (Idaho Falls, ID)

1998-01-01T23:59:59.000Z

47

Phase sensor for solar adaptive-optics  

E-Print Network [OSTI]

Wavefront sensing in solar adaptive-optics is currently done with correlating Shack-Hartmann sensors, although the spatial- and temporal-resolutions of the phase measurements are then limited by the extremely fast computing required to correlate the sensor signals at the frequencies of daytime atmospheric-fluctuations. To avoid this limitation, a new wavefront-sensing technique is presented, that makes use of the solar brightness and is applicable to extended sources. The wavefront is sent through a modified Mach-Zehnder interferometer. A small, central part of the wavefront is used as reference and is made to interfere with the rest of the wavefront. The contrast of two simultaneously measured interference-patterns provides a direct estimate of the wavefront phase, no additional computation being required. The proposed optical layout shows precise initial alignment to be the critical point in implementing the new wavefront-sensing scheme.

Kellerer, Aglae

2011-01-01T23:59:59.000Z

48

INTRODUCTION Optical sensors have long been used in the Great  

E-Print Network [OSTI]

INTRODUCTION Optical sensors have long been used in the Great Lakes to track changes and Haw- ley 1998, Hawley and Lee 1999, for example), but the use of acoustic sensors for this purpose Concentrations Measured by Acoustic and Optical Sensors Nathan Hawley* Great Lakes Environmental Research

49

Fiber Optic Sensors for PEM Fuel Cells Nigel David  

E-Print Network [OSTI]

Fiber Optic Sensors for PEM Fuel Cells by Nigel David B.Sc., Simon Fraser University, 2004 M or other means, without the permission of the author. #12;ii Fiber Optic Sensors for PEM Fuel Cells Fyles, Outside Member (Department of Chemistry) ABSTRACT Fibre-optic sensing techniques for application

Victoria, University of

50

Scanner position sensor for an integrated laser/film rangefiner  

SciTech Connect (OSTI)

In an integrated laser/FLIR rangefinder a scanner position sensor comprising an LED of the array of LEDs of a forward looking infrared (FLIR) system, a reticle grating located at the image plane of LED optical path and a silicon detector positioned to receive the light passing through the reticle grating for producing a plurality of signals in response to light passing through each grating slot. One of the signals is selected for the synchronization logic for controlling the charging and firing of the laser. If there is no range return a second signal is selected for adjusting the position of the timing pulse.

Berdanier, B. N.

1985-09-24T23:59:59.000Z

51

Intelligent Software Agents: Sensor Integration and Response  

SciTech Connect (OSTI)

Abstract In a post Macondo world the buzzwords are Integrity Management and Incident Response Management. The twin processes are not new but the opportunity to link the two is novel. Intelligent software agents can be used with sensor networks in distributed and centralized computing systems to enhance real-time monitoring of system integrity as well as manage the follow-on incident response to changing, and potentially hazardous, environmental conditions. The software components are embedded at the sensor network nodes in surveillance systems used for monitoring unusual events. When an event occurs, the software agents establish a new concept of operation at the sensing node, post the event status to a blackboard for software agents at other nodes to see , and then react quickly and efficiently to monitor the scale of the event. The technology addresses a current challenge in sensor networks that prevents a rapid and efficient response when a sensor measurement indicates that an event has occurred. By using intelligent software agents - which can be stationary or mobile, interact socially, and adapt to changing situations - the technology offers features that are particularly important when systems need to adapt to active circumstances. For example, when a release is detected, the local software agent collaborates with other agents at the node to exercise the appropriate operation, such as: targeted detection, increased detection frequency, decreased detection frequency for other non-alarming sensors, and determination of environmental conditions so that adjacent nodes can be informed that an event is occurring and when it will arrive. The software agents at the nodes can also post the data in a targeted manner, so that agents at other nodes and the command center can exercise appropriate operations to recalibrate the overall sensor network and associated intelligence systems. The paper describes the concepts and provides examples of real-world implementations including the Threat Detection and Analysis System (TDAS) at the International Port of Memphis and the Biological Warning and Incident Characterization System (BWIC) Environmental Monitoring (EM) Component. Technologies developed for these 24/7 operational systems have applications for improved real-time system integrity awareness as well as provide incident response (as needed) for production and field applications.

Kulesz, James J [ORNL; Lee, Ronald W [ORNL

2013-01-01T23:59:59.000Z

52

Electro-optic high voltage sensor  

DOE Patents [OSTI]

A small sized electro-optic voltage sensor capable of accurate measurement of high voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation. A polarization beam displacer separates the input beam into two beams with orthogonal linear polarizations and causes one linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels effect elliptically polarizes the beam as it travels through the crystal. A reflector redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization. The system may include a detector for converting the output beams into electrical signals and a signal processor for determining the voltage based on an analysis of the output beams.

Davidson, James R.; Seifert, Gary D.

2003-09-16T23:59:59.000Z

53

Integration of wireless sensor networks in environmental monitoring cyber infrastructure  

E-Print Network [OSTI]

Integration of wireless sensor networks in environmental monitoring cyber infrastructure Jue Yang ? to revolutionize many science and engineering domains. We present a novel environmental monitoring system collection, management, visualization, dissemination, and exchange, conforming to the new Sensor Web

Huang, Yan

54

Signal processing for fiber optic acoustic sensor system  

E-Print Network [OSTI]

pulses from a single mode laser. Signals from multiple sensors in the array are separated and demultiplexed. The acoustic pressure information is determined by processing the returned optical pulses using a fiber Mach-Zehnder interferometer as an optical...

Zhu, Juhong

2000-01-01T23:59:59.000Z

55

Side-emitting fiber optic position sensor  

DOE Patents [OSTI]

A side-emitting fiber optic position sensor and method of determining an unknown position of an object by using the sensor. In one embodiment, a concentrated beam of light source illuminates the side of a side-emitting fiber optic at an unknown axial position along the fiber's length. Some of this side-illuminated light is in-scattered into the fiber and captured. As the captured light is guided down the fiber, its intensity decreases due to loss from side-emission away from the fiber and from bulk absorption within the fiber. By measuring the intensity of light emitted from one (or both) ends of the fiber with a photodetector(s), the axial position of the light source is determined by comparing the photodetector's signal to a calibrated response curve, look-up table, or by using a mathematical model. Alternatively, the side-emitting fiber is illuminated at one end, while a photodetector measures the intensity of light emitted from the side of the fiber, at an unknown position. As the photodetector moves further away from the illuminated end, the detector's signal strength decreases due to loss from side-emission and/or bulk absorption. As before, the detector's signal is correlated to a unique position along the fiber.

Weiss, Jonathan D. (Albuquerque, NM)

2008-02-12T23:59:59.000Z

56

Excess optical quantum noise in atomic sensors  

E-Print Network [OSTI]

Enhanced nonlinear optical response of a coherent atomic medium is the basis for many atomic sensors, and their performance is ultimately limited by the quantum fluctuations of the optical read-out. Here we demonstrate that off-resonant interactions can significantly modify the quantum noise of the optical field, even when their effect on the mean signal is negligible. We illustrate this concept by using an atomic magnetometer based on the nonlinear Faraday effect: the rotation of the light polarization is mainly determined by the resonant light-induced spin alignment, which alone does not change the photon statistics of the optical probe. Yet, we found that the minimum noise of output polarization rotation measurements is above the expected shot noise limit. This excess quantum noise is due to off-resonant coupling and grows with atomic density. We also show that the detection scheme can be modified to reduce the measured quantum noise (even below the shot-noise limit) but only at the expense of the reduced rotational sensitivity. These results show the existence of previously unnoticed factors in fundamental limitations in atomic magnetometry and could have impacts in many other atom-light based precision measurements.

Irina Novikova; Eugeniy E. Mikhailov; Yanhong Xiao

2014-10-14T23:59:59.000Z

57

Electro-optic high voltage sensor  

DOE Patents [OSTI]

A small sized electro-optic voltage sensor capable of accurate measurement of high levels of voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation into the sensor. A polarization beam displacer serves as a filter to separate the input beam into two beams with orthogonal linear polarizations. The beam displacer is oriented in such a way as to rotate the linearly polarized beams such that they enter a Pockels crystal having at a preferred angle of 45 degrees. The beam displacer is therefore capable of causing a linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels electro-optic effect induces a differential phase shift on the major and minor axes of the input beam as it travels through the Pockels crystal, which causes the input beam to be elliptically polarized. A reflecting prism redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization representing the major and minor axes. The system may include a detector for converting the output beams into electrical signals, and a signal processor for determining the voltage based on an analysis of the output beams. The output beams are amplitude modulated by the frequency of the electric field and the amplitude of the output beams is proportional to the magnitude of the electric field, which is related to the voltage being measured.

Davidson, James R. (Idaho Falls, ID); Seifert, Gary D. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

58

Integrating optics and micro-fluidic channels using femtosecond laser irradiation  

E-Print Network [OSTI]

The ability to integrate micro-channels for fluid transport with optical elements is attractive for the development of compact and portable chip-based sensors. Femtosecond Laser Direct Writing (FLDW) in transparent materials ...

Agarwal, Anuradha Murthy

59

Channel Routing for Integrated Optics Christopher Condrat  

E-Print Network [OSTI]

Channel Routing for Integrated Optics Christopher Condrat (chris@g6net.com) Priyank Kalla (kalla, Salt Lake City, UT, USA Abstract--Increasing scope and applications of integrated optics necessitates the development of automated techniques for physical design of optical systems. This paper presents an automated

Kalla, Priyank

60

Proceedings: 3rd EPRI Optical Sensor Systems Workshop  

SciTech Connect (OSTI)

These are the proceedings of the third Optical Sensor System Workshop, part of an ongoing effort by EPRI to support development of optical sensor technology, to identify benefits for utility users, and to position EPRI members as more ''informed buyers'' and users.

None

2002-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated optical sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fiber-optic oxygen sensor using molybdenum chloride cluster luminescence  

E-Print Network [OSTI]

Fiber-optic oxygen sensor using molybdenum chloride cluster luminescence Ruby N. Ghosh,a) Gregory L on a reflection-mode fiber-optic oxygen sensor based on the 3 O2 quenching of the red emission from hexanuclear molybdenum chloride clusters. Measurements of the probe operating in a 0%­21% gaseous oxygen environment have

Ghosh, Ruby N.

62

Fiber-Optic Long-Line Position Sensor  

Energy Innovation Portal (Marketing Summaries) [EERE]

Sandia National Laboratories has developed a side-emitting fiber optic position sensor and method of determining an unknown position of an object by using the sensor. Non-electrical position sensors like the one developed by Sandia are desirable for use in hazardous environment, e.g., for measuring the liquid level in gasoline or jet fuel tanks. This sensor is an attractive option because it does notintroduce electrical energy, is insensitive to electromagnetic interference,...

2013-03-12T23:59:59.000Z

63

Photonic integrated circuits for optical logic applications  

E-Print Network [OSTI]

The optical logic unit cell is the photonic analog to transistor-transistor logic in electronic devices. Active devices such as InP-based semiconductor optical amplifiers (SOA) emitting at 1550 nm are vertically integrated ...

Williams, Ryan Daniel

2007-01-01T23:59:59.000Z

64

Evaluations of fiber optic sensors for interior applications  

SciTech Connect (OSTI)

This report addresses the testing and evaluation of commercial fiber optic intrusion detection systems in interior applications. The applications include laying optical fiber cable above suspended ceilings to detect removal of ceiling tiles, embedding optical fibers inside a tamper or item monitoring blanket that could be placed over an asset, and installing optical fibers on a door to detect movement or penetration. Detection capability of the fiber optic sensors as well as nuisance and false alarm information were focused on during the evaluation. Fiber optic sensor processing, system components, and system setup are described.

Sandoval, M.W.; Malone, T.P.

1996-02-01T23:59:59.000Z

65

Structural and environmental monitoring of tracker and vertex systems using Fiber Optic Sensors  

E-Print Network [OSTI]

Fibre optic sensors (FOS) are an established technique for environmental and deformation monitoring in several areas like civil engineering, aerospace, and energy. Their immunity to electromagnetic and magnetic fields and nuclear environments, its small size, multiplexing capability and the possibility to be embedded make them an attractive technology for the structural and environmental monitoring of collider particle physics experiments. Between all the possible Fibre Optic sensors FBGs (Fiber Bragg Grating) seems to be the best solution for HEP applications. The first step was to characterize FBG sensors for it use in High Energy Physics environment. During last two years we have checked the resistance of the Fibre Bragg Grating sensors to radiation. Two irradiation campaigns with protons have been done at CNA (Centro Nacional de Aceleradores). In the near future these sensors are being planned to be used in detectors (the closest one Belle II.). Several work on integration issues in Belle II PXD-SVD, and ...

Moya, David

2012-01-01T23:59:59.000Z

66

Semiconductor sensor for optically measuring polarization rotation of optical wavefronts using rare earth iron garnets  

DOE Patents [OSTI]

Described are the design of a rare earth iron garnet sensor element, optical methods of interrogating the sensor element, methods of coupling the optical sensor element to a waveguide, and an optical and electrical processing system for monitoring the polarization rotation of a linearly polarized wavefront undergoing external modulation due to magnetic field or electrical current fluctuation. The sensor element uses the Faraday effect, an intrinsic property of certain rare-earth iron garnet materials, to rotate the polarization state of light in the presence of a magnetic field. The sensor element may be coated with a thin-film mirror to effectively double the optical path length, providing twice the sensitivity for a given field strength or temperature change. A semiconductor sensor system using a rare earth iron garnet sensor element is described.

Duncan, Paul G. (8544 Electric Ave., Vienna, VA 22182)

2002-01-01T23:59:59.000Z

67

Logic Synthesis for Integrated Optics Christopher Condrat  

E-Print Network [OSTI]

Logic Synthesis for Integrated Optics Christopher Condrat chris@g6net.com Priyank Kalla kalla, Salt Lake City, UT, USA ABSTRACT As silicon photonics technology matures, optical devices methods for synthesizing optical devices for large-scale designs. We present design and synthesis method

Kalla, Priyank

68

New Optical Sensor Suite for Ultrahigh Temperature Fossil Fuel Application  

SciTech Connect (OSTI)

Accomplishments of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants and solid oxide fuel cells are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring.

John Coggin; Tom Flynn; Jonas Ivasauskas; Daniel Kominsky; Carrie Kozikowski; Russell May; Michael Miller; Tony Peng; Gary Pickrell; Raymond Rumpf; Kelly Stinson-Bagby; Dan Thorsen; Rena Wilson

2007-12-31T23:59:59.000Z

69

Distributed fiber optic intrusion sensor system for monitoring long perimeters  

E-Print Network [OSTI]

A distributed sensor using an optical fiber for detecting and locating intruders over long perimeters (>10 km) is described. Phase changes resulting from either the pressure of the intruder on the ground immediately above the buried fiber or from...

Juarez, Juan C.

2009-06-02T23:59:59.000Z

70

Fiber Optic Temperature Sensor for PEM Fuel Cells  

E-Print Network [OSTI]

Fiber Optic Temperature Sensor for PEM Fuel Cells S.W. Allison, T.J. McIntyre, L.C. Maxey, M Objectives · Develop a low cost, robust temperature sensor for monitoring fuel cell condition and performance Hydrogren and Fuel Cells Merit Review Meeting May 19-22, 2003, Berkeley, California #12;Program Goals

71

Optical sensors and multisensor arrays containing thin film electroluminescent devices  

DOE Patents [OSTI]

Optical sensor, probe and array devices for detecting chemical biological, and physical analytes. The devices include an analyte-sensitive layer optically coupled to a thin film electroluminescent layer which activates the analyte-sensitive layer to provide an optical response. The optical response varies depending upon the presence of an analyte and is detected by a photodetector and analyzed to determine the properties of the analyte.

Aylott, Jonathan W. (Ann Arbor, MI); Chen-Esterlit, Zoe (Ann Arbor, MI); Friedl, Jon H. (Ames, IA); Kopelman, Raoul (Ann Arbor, MI); Savvateev, Vadim N. (Ames, IA); Shinar, Joseph (Ames, IA)

2001-12-18T23:59:59.000Z

72

Package for integrated optic circuit and method  

DOE Patents [OSTI]

A structure and method for packaging an integrated optic circuit. The package comprises a first wall having a plurality of microlenses formed therein to establish channels of optical communication with an integrated optic circuit within the package. A first registration pattern is provided on an inside surface of one of the walls of the package for alignment and attachment of the integrated optic circuit. The package in one embodiment may further comprise a fiber holder for aligning and attaching a plurality of optical fibers to the package and extending the channels of optical communication to the fibers outside the package. In another embodiment, a fiber holder may be used to hold the fibers and align the fibers to the package. The fiber holder may be detachably connected to the package.

Kravitz, Stanley H. (26 Aspen Rd., Placitas, NM 87043); Hadley, G. Ronald (6012 Annapolis NE., Albuquerque, NM 87111); Warren, Mial E. (3825 Mary Ellen NE., Albuquerque, NM 87111); Carson, Richard F. (1036 Jewel Pl. NE., Albuquerque, NM 87123); Armendariz, Marcelino G. (1023 Oro Real NE., Albuquerque, NM 87123)

1998-01-01T23:59:59.000Z

73

Self-compensating fiber optic flow sensor having an end of a fiber optics element and a reflective surface within a tube  

DOE Patents [OSTI]

A flow rate fiber optic transducer is made self-compensating for both temperature and pressure by using preferably well-matched integral Fabry-Perot sensors symmetrically located around a cantilever-like structure. Common mode rejection signal processing of the outputs allows substantially all effects of both temperature and pressure to be compensated. Additionally, the integral sensors can individually be made insensitive to temperature.

Peng, Wei; Qi, Bing; Wang, Anbo

2006-05-16T23:59:59.000Z

74

Cloaking a sensor for three-dimensional Maxwell's equations: transformation optics approach  

E-Print Network [OSTI]

P. Sheng, Transformation optics and metamaterials, Nat.sensor via transformation optics, Phys. Rev. E 83, 016603 (October 2011 / Vol. 19, No. 21 / OPTICS EXPRESS 20518 13. G.

Chen, Xudong; Uhlmann, Gunther

2011-01-01T23:59:59.000Z

75

Sensors for ecology Towards integrated knowledge of ecosystems  

E-Print Network [OSTI]

Sensors for ecology Towards integrated knowledge of ecosystems CNRS Institut ?cologie et scales. This book provides an overview of current sensors for ecology and makes a strong case of practical ecological applications, this text is meant to be an invaluable resource for students, researchers

van Tiggelen, Bart

76

Extrinsic fiber optic displacement sensors and displacement sensing systems  

DOE Patents [OSTI]

An extrinsic Fizeau fiber optic sensor comprises a single-mode fiber, used as an input/output fiber, and a multimode fiber, used purely as a reflector, to form an air gap within a silica tube that acts as a Fizeau cavity. The Fresnel reflection from the glass/air interface at the front of the air gap (reference reflection) and the reflection from the air/glass interface at the far end of the air gap (sensing reflection) interfere in the input/output fiber. The two fibers are allowed to move in the silica tube, and changes in the air gap length cause changes in the phase difference between the reference reflection and the sensing reflection. This phase difference is observed as changes in intensity of the light monitored at the output arm of a fused biconical tapered coupler. The extrinsic Fizeau fiber optic sensor behaves identically whether it is surface mounted or embedded, which is unique to the extrinsic sensor in contrast to intrinsic Fabry-Perot sensors. The sensor may be modified to provide a quadrature phase shift extrinsic Fizeau fiber optic sensor for the detection of both the amplitude and the relative polarity of dynamically varying strain. The quadrature light signals may be generated by either mechanical or optical means. A plurality of the extrinsic sensors may connected in cascade and multiplexed to allow monitoring by a single analyzer.

Murphy, Kent A. (Roanoke, VA); Gunther, Michael F. (Blacksburg, VA); Vengsarkar, Ashish M. (Scotch Plains, NJ); Claus, Richard O. (Christiansburg, VA)

1994-01-01T23:59:59.000Z

77

Passive Ammonia Sensor: RFID Tag Integrating Carbon Nanotubes  

E-Print Network [OSTI]

Passive Ammonia Sensor: RFID Tag Integrating Carbon Nanotubes C. Occhiuzzi (1), A.Rida(2), G. Marrocco(3) , M. M. Tentzeris(4) (1)occhiuzzi@disp.uniroma2.it (2)arida@gatech.edu (3)marrocco

Tentzeris, Manos

78

Embedded Sensor Array Development for Composite Structure Integrity Monitoring  

SciTech Connect (OSTI)

The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC (the "Contractor") and Accellent Technologies, Inc. (the "Participant") was for the development of an embedded ultrasonic sensor system for composite structure integrity monitoring.

Kumar, A.; Bryan, W. L.; Clonts, L. G.; Franks, S.

2007-06-26T23:59:59.000Z

79

Intrinsic Fabry-Perot optical fiber sensors and their multiplexing  

DOE Patents [OSTI]

An intrinsic Fabry-Perot optical sensor includes a thin film sandwiched between two fiber ends. When light is launched into the fiber, two reflections are generated at the two fiber/thin film interfaces due to a difference in refractive indices between the fibers and the film, giving rise to the sensor output. In another embodiment, a portion of the cladding of a fiber is removed, creating two parallel surfaces. Part of the evanescent fields of light propagating in the fiber is reflected at each of the surfaces, giving rise to the sensor output. In a third embodiment, the refractive index of a small portion of a fiber is changed through exposure to a laser beam or other radiation. Interference between reflections at the ends of the small portion give rise to the sensor output. Multiple sensors along a single fiber are multiplexed using an optical time domain reflectometry method.

Wang, Anbo (Blacksburg, VA)

2007-12-11T23:59:59.000Z

80

Real-time MRI-Guided Needle Placement Robot with Integrated Fiber Optic Force Sensing  

E-Print Network [OSTI]

the robot mechanism, controller design, optical modeling and opto-mechanical design of the force sensor. MRI Control Box Needle Driver Module Cartesian Stage Module Piezoelectric Actuators Robot Fig. 1. (LeftReal-time MRI-Guided Needle Placement Robot with Integrated Fiber Optic Force Sensing Hao Su

Camesano, Terri

Note: This page contains sample records for the topic "integrated optical sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Optics-less Sensors for Localization of Radiation Sources  

E-Print Network [OSTI]

A new family of radiation sensors is introduced which do not require any optics. The sensors consist of arrays of elementary sub-sensors with natural cosine-law or similar angular sensitivity supplemented with a signal processing unit that computes optimal statistical estimations of source parameters. We show, both theoretically and by computer simulation, that such sensors are capable of accurate localization and intensity estimation of a given number of radiation sources and of imaging of a given number of sources in known positions. The accuracy is found to be dependent only on the sub-sensors noise level, on the number of sub-sensors and on the spacing between radiation sources.

H. J. Caulfield; L. P. Yaroslavsky; Ch. Goerzen; S. Umansky

2008-08-08T23:59:59.000Z

82

RAY AND WAVE OPTICS OF INTEGRABLE AND STOCHASTIC SYSTEMS  

E-Print Network [OSTI]

18-22, 1979 RAY AND WAVE OPTICS OF INTEGRABLE AND STOCHASTICof the geometrical optics (ray Hamiltonian) system derivedthe classical (geometrical optics) system (1) and the state6

McDonald, S.W.

2010-01-01T23:59:59.000Z

83

Planar Integrated Optics and astronomical interferometry  

E-Print Network [OSTI]

Integrated optics (IO) is an optical technology that allows to reproduce optical circuits on a planar substrate. Since 1996, we have investigated the potentiality of IO in the framework of astronomical single mode interferometry. We review in this paper the principles of IO, the requirements for interferometry and the corresponding solutions offered by IO, the results of component characterization and the possible fields of application.

Pierre Kern; Jean-Philippe Berger; Pierre Haguenauer; Fabien Malbet; Karine Perraut

2005-08-01T23:59:59.000Z

84

OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY  

SciTech Connect (OSTI)

Efficient recovery of petroleum reserves from existing oil wells has been proven to be difficult due to the lack of robust instrumentation that can accurately and reliably monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multilateral wells. This is the final report for the four-year program ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'', funded by the National Petroleum Technology Office of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech from October 1, 1999 to March 31, 2003. The main objective of this research program was to develop cost-effective, reliable optical fiber sensor instrumentation for real-time monitoring of various key parameters crucial to efficient and economical oil production. During the program, optical fiber sensors were demonstrated for the measurement of temperature, pressure, flow, and acoustic waves, including three successful field tests in the Chevron/Texaco oil fields in Coalinga, California, and at the world-class oil flow simulation facilities in Tulsa, Oklahoma. Research efforts included the design and fabrication of sensor probes, development of signal processing algorithms, construction of test systems, development and testing of strategies for the protection of optical fibers and sensors in the downhole environment, development of remote monitoring capabilities allowing real-time monitoring of the field test data from virtually anywhere in the world, and development of novel data processing techniques. Comprehensive testing was performed to systematically evaluate the performance of the fiber optic sensor systems in both lab and field environments.

Anbo Wang; Kristie L. Cooper; Gary R. Pickrell

2003-06-01T23:59:59.000Z

85

NEW OPTICAL SENSOR SUITE FOR ULTRAHIGH TEMPERATURE FOSSIL FUEL APPLICATIONS  

SciTech Connect (OSTI)

Accomplishments during the Phase I of a program to develop and demonstrate technology for the instrumentation of advanced powerplants are described. Engineers from Prime Research, LC and Babcock and Wilcox Research Center collaborated to generate a list of potential applications for robust photonic sensors in existing and future boiler plants. From that list, three applications were identified as primary candidates for initial development and demonstration of high-temperature sensors in an ultrasupercritical power plant. A matrix of potential fiber optic sensor approaches was derived, and a data set of specifications for high-temperature optical fiber was produced. Several fiber optic sensor configurations, including interferometric (extrinsic and intrinsic Fabry-Perot interferometer), gratings (fiber Bragg gratings and long period gratings), and microbend sensors, were evaluated in the laboratory. In addition, progress was made in the development of materials and methods to apply high-temperature optical claddings to sapphire fibers, in order to improve their optical waveguiding properties so that they can be used in the design and fabrication of high-temperature sensors. Through refinements in the processing steps, the quality of the interface between core and cladding of the fibers was improved, which is expected to reduce scattering and attenuation in the fibers. Numerical aperture measurements of both clad and unclad sapphire fibers were obtained and used to estimate the reduction in mode volume afforded by the cladding. High-temperature sensors based on sapphire fibers were also investigated. The fabrication of an intrinsic Fabry-Perot cavity within sapphire fibers was attempted by the bulk diffusion of magnesium oxide into short localized segments of longer sapphire fibers. Fourier analysis of the fringes that resulted when the treated fiber was interrogated by a swept laser spectrometer suggested that an intrinsic cavity had been formed in the fiber. Also, an unclad sapphire fiber was tested as a temperature sensor at moderate temperatures (up to 775 C).

Russell G. May; Tony Peng; Tom Flynn

2004-12-01T23:59:59.000Z

86

Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery  

SciTech Connect (OSTI)

The overall goal of this project was to develop reliable cost effective sensors for application in the down-hole environment. The physical parameters measured by these sensors were temperature, pressure, flow and acoustic signals. Sensor head configurations for each of the physical measurands were optimized to increase the sensitivity to the particular measurand of interest while decreasing the cross-sensitivity to the other physical measurands and to environmental influences. In addition, the optical signal demodulation electronics was designed to be insensitive to environmental influences while maintaining the required resolution, precision and accuracy of the parameter being sensed. The influence of potentially detrimental agents such as water in the down-hole environment was investigated as well as methods to protect both the optical fiber and the sensor from these detrimental effects.

Wang, a.; Pickrell, G.; Xiao, H.; May, r.

2003-02-27T23:59:59.000Z

87

Optical waveguides for microfluidic integration  

E-Print Network [OSTI]

A scalable polymer backplane for dense integration of photonics with lab-on-a-chip systems is presented. A high-throughput cell culture chip employing waveguides for monitoring and control of culture conditions is used to ...

Ram, Rajeev J.

88

Integrated optical biosensor system (IOBS)  

DOE Patents [OSTI]

An optical biosensor has a first enclosure with a pathogen recognition surface, including a planar optical waveguide and grating located in the first enclosure. An aperture is in the first enclosure for insertion of sample to be investigated to a position in close proximity to the pathogen recognition surface. A laser in the first enclosure includes means for aligning and means for modulating the laser, the laser having its light output directed toward said grating. Detection means are located in the first enclosure and in optical communication with the pathogen recognition surface for detecting pathogens after interrogation by the laser light and outputting the detection. Electronic means is located in the first enclosure and receives the detection for processing the detection and outputting information on the detection, and an electrical power supply is located in the first enclosure for supplying power to the laser, the detection means and the electronic means.

Grace, Karen M. (Los Alamos, NM); Sweet, Martin R. (Los Alamos, NM); Goeller, Roy M. (Los Alamos, NM); Morrison, Leland Jean (White Rock, NM); Grace, Wynne Kevin (Los Alamos, NM); Kolar, Jerome D. (Los Alamos, NM)

2007-10-30T23:59:59.000Z

89

Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries  

SciTech Connect (OSTI)

This report summarizes technical progress during the program Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700C and a frequency response up to 150 kHz, the worlds smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 ?m) with 700C capability, UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, a single crystal sapphire fiber-based sensor with a temperature capability up to 1600C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

2006-11-14T23:59:59.000Z

90

Optical temperature sensor using thermochromic semiconductors  

DOE Patents [OSTI]

Optical thermometry is a growing technological field which exploits the ability of certain materials to change their optical properties with temperature. A subclass of such materials are those which change their color as a reversible and reproducible function of temperature. These materials are thermochromic. This invention is a composition to measure temperature utilizing thermochromic semiconductors.

Kronberg, J.W.

1994-01-01T23:59:59.000Z

91

Fabry-Perot fiber optic sensor using multimode laser diode  

E-Print Network [OSTI]

heating and cooling cycles. Also, a sporadic waveform on top of the periodic waveform is observed. This is due to mechanical drift in the feedback loop between the thermoelectric cooler and the temperature controller as previously mentioned. Fig. 11... fiber and later reaches a transducer, which takes the form of an integrated optics device, bulk optical components or a fiber optic device, placed within the sensing environment. The optical signal is modulated within the sensing region...

Chu, Siu Yi Andrew

1993-01-01T23:59:59.000Z

92

Ammonia Sensors Based on Doped-Sol-Gel-Tipped Optical Fibers...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sensors Based on Doped-Sol-Gel-Tipped Optical Fibers for Catalyst System Diagnostics Ammonia Sensors Based on Doped-Sol-Gel-Tipped Optical Fibers for Catalyst System Diagnostics...

93

Electro-optic voltage sensor with Multiple Beam Splitting  

DOE Patents [OSTI]

A miniature electro-optic voltage sensor system capable of accurate operation at high voltages without use of the dedicated voltage dividing hardware. The invention achieves voltage measurement without significant error contributions from neighboring conductors or environmental perturbations. The invention employs a transmitter, a sensor, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor. Within the sensor the beam undergoes the Pockels electro-optic effect. The electro-optic effect produces a modulation of the beam's polarization, which is in turn converted to a pair of independent conversely-amplitude-modulated signals, from which the voltage of the E-field is determined by the signal processor. The use of converse AM signals enables the signal processor to better distinguish signal from noise. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

Woods, Gregory K. (Cornelius, OR); Renak, Todd W. (Idaho Falls, ID); Crawford, Thomas M. (Idaho Falls, ID); Davidson, James R. (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

94

Electro-optic voltage sensor with beam splitting  

DOE Patents [OSTI]

The invention is a miniature electro-optic voltage sensor system capable of accurate operation at high voltages without use of the dedicated voltage dividing hardware typically found in the prior art. The invention achieves voltage measurement without significant error contributions from neighboring conductors or environmental perturbations. The invention employs a transmitter, a sensor, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor. Within the sensor the beam undergoes the Pockels electro-optic effect. The electro-optic effect produces a modulation of the beam's polarization, which is in turn converted to a pair of independent conversely-amplitude-modulated signals, from which the voltage of the E-field is determined by the signal processor. The use of converse AM signals enables the signal processor to better distinguish signal from noise. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

Woods, Gregory K. (Cornelius, OR); Renak, Todd W. (Idaho Falls, ID); Davidson, James R. (Idaho Falls, ID); Crawford, Thomas M. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

95

Optical fiber sensors for smart materials characterization  

SciTech Connect (OSTI)

Optical and optical fiber methods may be used to characterize materials and structures. Their advantages for such applications include their immunity to electromagnetic interference, high sensitivity, resolution and dynamic range, and ability to operate in harsh environmental conditions. This paper describes the application of such methods to the characterization of smart materials and structures during their fabrication, in-service lifetime, and damage and degradation.

Claus, R.O. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Electrical Engineering Dept.

1994-12-31T23:59:59.000Z

96

NEW OPTICAL SENSOR SUITE FOR ULTRAHIGH TEMPERATURE FOSSIL FUEL APPLICATIONS  

SciTech Connect (OSTI)

Accomplishments during the first six months of a program to develop and demonstrate technology for the instrumentation of advanced powerplants are described. Engineers from Prime Research, LC and Babcock and Wilcox Research Center collaborated to generate a list of potential applications for robust photonic sensors in existing and future boiler plants. From that list, three applications were identified as primary candidates for initial development and demonstration of high-temperature sensors in an ultrasupercritical power plant. In addition, progress was made in the development of materials and methods to apply high-temperature optical claddings to sapphire fibers, in order to improve their optical waveguiding properties so that they can be used in the design and fabrication of high-temperature sensors. Through refinements in the processing steps, the quality of the interface between core and cladding of the fibers was improved, which is expected to reduce scattering and attenuation in the fibers.

Russell G. May; Tony Peng; Tom Flynn

2004-04-01T23:59:59.000Z

97

On-Road Vehicle Detection Using Optical Sensors: A Review  

E-Print Network [OSTI]

1 On-Road Vehicle Detection Using Optical Sensors: A Review Zehang Sun1 , George Bebis2 and Ronald are expected to add up to 1%-3% of the world's gross domestic product [1]. With the aim of reducing injury

Bebis, George

98

An Environmental Monitoring System with Integrated Wired and Wireless Sensors  

E-Print Network [OSTI]

environmental monitoring cyber infrastruc- ture that features (1) soil moisture monitoring with flexible spatial Environmental Observatory (TEO) infrastructure [9] for long-term operation. The new WSN-based soil moistureAn Environmental Monitoring System with Integrated Wired and Wireless Sensors Jue Yang, Chengyang

Huang, Yan

99

Dynamic Fiber Optic Sensors Under Intense Radioactive Environments  

SciTech Connect (OSTI)

A liquid mercury target will be used as the neutron source for the proposed Spallation Neutron Source facility. This target is subjected to bombardment by short-pulse, high-energy proton beams. The intense thermal loads caused by interaction of the pulsed proton beam with the mercury create an enormous rate of temperature rise ({approximately}10{sup 7} K/s) during a very brief beam pulse ({approximately } 0.5 {micro}s). The resulting pressure waves in the mercury will interact with the walls of the mercury target and may lead to large stresses. To gain confidence in the mercury target design concept and to benchmark the computer design codes, we tested various electrical and optical sensors for measuring the transient strains on the walls of a mercury container and the pressures in the mercury. The sensors were attached on several sample mercury targets that were tested at various beam facilities: Oak Ridge Electron Linear Accelerator, Los Alamos Neutron Science Center-Weapons Neutron Research, and Brookhaven National Laboratory's Alternating Gradient Synchrotron. The effects of intense background radiation on measured signals for each sensor are described and discussed. Preliminary results of limited tests at these facilities indicate that the fiber optic sensors function well in this intense radiation environment, whereas conventional electrical sensors are dysfunctional.

Allison, S.W.; Earl, D.D.; Haines, J.R.; Tsai, C.C.

1998-10-15T23:59:59.000Z

100

Structural and environmental monitoring of tracker and vertex systems using Fiber Optic Sensors  

E-Print Network [OSTI]

Fibre optic sensors (FOS) are an established technique for environmental and deformation monitoring in several areas like civil engineering, aerospace, and energy. Their immunity to electromagnetic and magnetic fields and nuclear environments, its small size, multiplexing capability and the possibility to be embedded make them an attractive technology for the structural and environmental monitoring of collider particle physics experiments. Between all the possible Fibre Optic sensors FBGs (Fiber Bragg Grating) seems to be the best solution for HEP applications. The first step was to characterize FBG sensors for it use in High Energy Physics environment. During last two years we have checked the resistance of the Fibre Bragg Grating sensors to radiation. Two irradiation campaigns with protons have been done at CNA (Centro Nacional de Aceleradores). In the near future these sensors are being planned to be used in detectors (the closest one Belle II.). Several work on integration issues in Belle II PXD-SVD, and checking for environmental and deformation monitoring in the detectors inner part has been done.

David Moya; Ivn Vila

2012-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated optical sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Sandia National Laboratories: sensors and optical diagnostics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-active perovskiteremovingsensors and optical diagnostics

102

A 16 mm3 autonomous solar-powered sensor node with bi-directional optical communication for distributed sensor net-  

E-Print Network [OSTI]

Abstract A 16 mm3 autonomous solar-powered sensor node with bi- directional optical communication for distributed sensor net- works has been demonstrated. The device digitizes inte- grated sensor signals, a 2.6 mm2 SOI solar cell array, and a micromachined four-quadrant corner-cube retroreflector (CCR

Kahn, Joseph M.

103

Modular initiator with integrated optical diagnostic  

DOE Patents [OSTI]

A slapper detonator which integrally incorporates an optical wavequide structure for determining whether there has been degradation of the explosive in the explosive device that is to be initiated by the detonator. Embodiments of this invention take advantage of the barrel-like character of a typical slapper detonator design. The barrel assembly, being in direct contact with the energetic material, incorporates an optical diagnostic device into the barrel assembly whereby one can monitor the state of the explosive material. Such monitoring can be beneficial because the chemical degradation of the explosive plays an important in achieving proper functioning of a detonator/initiator device.

Alam, M. Kathleen (Cedar Crest, NM); Schmitt, Randal L. (Tijeras, NM); Welle, Eric J. (Niceville, FL); Madden, Sean P. (Arlington, MA)

2011-05-17T23:59:59.000Z

104

Integrated optical switching using titanium nitride micro electromechanical systems  

E-Print Network [OSTI]

This thesis reports an integrated optical wavelength specific switching device for applications in optical integrated circuits (OICs) based on micro electromechanical systems (MEMS). The device consists of a ring resonator ...

Takahashi, Satoshi, Ph. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

105

Optical penetration sensor for pulsed laser welding  

DOE Patents [OSTI]

An apparatus and method for determining the penetration of the weld pool created from pulsed laser welding and more particularly to an apparatus and method of utilizing an optical technique to monitor the weld vaporization plume velocity to determine the depth of penetration. A light source directs a beam through a vaporization plume above a weld pool, wherein the plume changes the intensity of the beam, allowing determination of the velocity of the plume. From the velocity of the plume, the depth of the weld is determined.

Essien, Marcelino (Albuquerque, NM); Keicher, David M. (Albuquerque, NM); Schlienger, M. Eric (Albuquerque, NM); Jellison, James L. (Albuquerque, NM)

2000-01-01T23:59:59.000Z

106

Fluorescent Optical Position Sensor - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" |

107

Optical fiber-based fluorescent viscosity sensor Mark A. Haidekker and Walter J. Akers  

E-Print Network [OSTI]

Optical fiber-based fluorescent viscosity sensor Mark A. Haidekker and Walter J. Akers Department bound to a fiber-optic tip without loss of viscosity sensi- tivity. The optical fiber itself may be used to molecular rotors in solution. An optical fiber-based fluorescent vis- cosity sensor may be used in real

Theodorakis, Emmanuel

108

A Novel Thermal Position Sensor Integrated On A Plastic Substrate  

E-Print Network [OSTI]

A thermal position sensor was fabricated and evaluated. The device consists of an array of temperature sensing elements, fabricated entirely on a plastic substrate. A novel fabrication technology was implemented which allows direct integration with read out electronics and communication to the macro-world without the use of wire bonding. The fabricated sensing elements are temperature sensitive Pt resistors with an average TCR of 0.0024/C. The device realizes the detection of the position and the motion of a heating source by monitoring the resistance variation of the thermistor array. The application field of such a cost-effective position sensor is considered quite extensive.

A. Petropoulos; G. Kaltsas; D. Goustouridis; A. G. Nassiopoulou

2008-01-07T23:59:59.000Z

109

Integrated optical interrogation of micro-structures  

DOE Patents [OSTI]

The invention is an integrated optical sensing element for detecting and measuring changes in position or deflection. A deflectable member, such as a microcantilever, is configured to receive a light beam. A waveguide, such as an optical waveguide or an optical fiber, is positioned to redirect light towards the deflectable member. The waveguide can be incorporated into the deflectable member or disposed adjacent to the deflectable member. Means for measuring the extent of position change or deflection of the deflectable member by receiving the light beam from the deflectable member, such as a photodetector or interferometer, receives the reflected light beam from the deflectable member. Changes in the light beam are correlated to the changes in position or deflection of the deflectable member. A plurality of deflectable members can be arranged in a matrix or an array to provide one or two-dimensional imaging or sensing capabilities.

Evans, III, Boyd M. (Oak Ridge, TN); Datskos, Panagiotis G. (Knoxville, TN); Rajic, Slobodan (Knoxville, TN)

2003-01-01T23:59:59.000Z

110

Fiber-optic Fabry-Perot ultrasound sensor  

E-Print Network [OSTI]

modulates the power of the light reflected from it. An avalanche photodiode finally converts this optical signal into a voltage V(t) proportional to the acoustic pressure P(t). CHAPTER II BACKGROUND Over a decade ago external effects over optical... splitting ratio of 50/50 was used to direct the reflected light from the sensor to the detector. The unused forth fiber was terminated in matching liquid. The detection was performed by an avalanche photodiode, taking advantage of its high gain. The DG...

Alcoz, Jorge Jose

2012-06-07T23:59:59.000Z

111

Performance characterization of an internsity-modulated fiber optic displacement sensor  

SciTech Connect (OSTI)

A testbed simulating an intensity-modulated fiber optic displacement sensor is experimentally characterized, and the implications regarding sensor design are discussed. Of interest are the intensity distribution of the transmitted optical signal and the relationships between sensor architecture and performance. Particularly, an intensity-modulated sensor's sensitivity, linearity, displacement range, and resolution are functions of the relative positioning of its transmitting and receiving fibers. In this paper, sensor architectures with various combinations of these performance metrics are discussed. A sensor capable of micrometer resolution is reported, and it is concluded that this work could lead to an improved methodology for sensor design.

Moro, Erik Allan [Los Alamos National Laboratory; Todd, Michael D [Los Alamos National Laboratory; Puckett, Santhony D [Los Alamos National Laboratory

2010-09-30T23:59:59.000Z

112

Fiber optic sensor system for detecting movement or position of a rotating wheel bearing  

DOE Patents [OSTI]

An improved fiber optic sensor system and integrated sensor bearing assembly for detecting movement or position of a rotating wheel bearing having a multi-pole tone ring which produces an alternating magnetic field indicative of movement and position of the rotating member. A magneto-optical material, such as a bismuth garnet iron (B.I.G.) crystal, having discrete magnetic domains is positioned in the vicinity of the tone ring so that the domains align themselves to the magnetic field generated by the tone ring. A single fiber optic cable, preferably single mode fiber, carries light generated by a source of light to the B.I.G. crystal. The light passes through the B.I.G. crystal and is refracted at domain boundaries in the crystal. The intensity of the refracted light is indicative of the amount of alignment of the domains and therefore the strength of the magnetic field. The refracted light is carried by the fiber optic cable to an optic receiver where the intensity is measured and an electrical signal is generated and sent to a controller indicating the frequency of the changes in light intensity and therefore the rotational speed of the rotating wheel bearing.

Veeser, Lynn R. (Los Alamos, NM); Rodriguez, Patrick J. (Santa Fe, NM); Forman, Peter R. (Los Alamos, NM); Monahan, Russell E. (Ann Arbor, MI); Adler, Jonathan M. (Ypsilanti, MI)

1997-01-01T23:59:59.000Z

113

Map Matching and Real World Integrated Sensor Data Warehousing (Presentation)  

SciTech Connect (OSTI)

The inclusion of interlinked temporal and spatial elements within integrated sensor data enables a tremendous degree of flexibility when analyzing multi-component datasets. The presentation illustrates how to warehouse, process, and analyze high-resolution integrated sensor datasets to support complex system analysis at the entity and system levels. The example cases presented utilizes in-vehicle sensor system data to assess vehicle performance, while integrating a map matching algorithm to link vehicle data to roads to demonstrate the enhanced analysis possible via interlinking data elements. Furthermore, in addition to the flexibility provided, the examples presented illustrate concepts of maintaining proprietary operational information (Fleet DNA) and privacy of study participants (Transportation Secure Data Center) while producing widely distributed data products. Should real-time operational data be logged at high resolution across multiple infrastructure types, map matched to their associated infrastructure, and distributed employing a similar approach; dependencies between urban environment infrastructures components could be better understood. This understanding is especially crucial for the cities of the future where transportation will rely more on grid infrastructure to support its energy demands.

Burton, E.

2014-02-01T23:59:59.000Z

114

SINGLE-CRYSTAL SAPPHIRE OPTICAL FIBER SENSOR INSTRUMENTATION  

SciTech Connect (OSTI)

Accurate measurement of temperature is essential for the safe and efficient operation and control of a wide range of industrial processes. Appropriate techniques and instrumentation are needed depending on the temperature measurement requirements in different industrial processes and working environments. Harsh environments are common in many industrial applications. These harsh environments may involve extreme physical conditions, such as high-temperature, high-pressure, corrosive agents, toxicity, strong electromagnetic interference, and high-energy radiation exposure. Due to these severe environmental conditions, conventional temperature sensors are often difficult to apply. This situation has opened a new but challenging opportunity for the sensor society to provide robust, high-performance, and cost-effective temperature sensors capable of operating in those harsh environments. The focus of this research program has been to develop a temperature measurement system for temperature measurements in the primary and secondary stages of slagging gasifiers. For this application the temperature measurement system must be able to withstand the extremely harsh environment posed by the high temperatures and corrosive agents present in these systems. Real-time, accurate and reliable monitoring of temperature for the coal gasification process is important to realize the full economic potential of these gasification systems. Long life and stability of operation in the high temperature environment is essential for the temperature measurement system to ensure the continuous running of the coal gasification system over the long term. In this high temperature and chemically corrosive environment, rather limited high temperature measurement techniques such as high temperature thermocouples and optical/acoustic pyrometers are available, each with their own limitations. In this research program, five different temperature sensing schemes based on the single crystal sapphire material were thoroughly investigated to determine an optimal approach for on-line, real-time, reliable, long-term monitoring of temperatures inside the coal gasification environment. Among these were a sapphire fiber extrinsic Fabry-Perot interferometric (EFPI) sensor; an intensity-measurement based polarimetric sapphire sensor and a broadband polarimetric differential interferometric (BPDI) sapphire sensor. Based on the current evaluation and analysis of the experimental results, the broadband polarimetric differential interferometric (BPDI) sensor system was chosen for further prototype instrumentation development because of it's superior performance compared to the other systems. This approach is based on the self-calibrating measurement of the optical path length differences in a single-crystal sapphire disk, which is a function of both the temperature dependent birefringence and the temperature dependent dimensional changes.

A. Wang; G. Pickrell; R. May

2002-09-10T23:59:59.000Z

115

SINGLE-CRYSTAL SAPPHIRE OPTICAL FIBER SENSOR INSTRUMENTATION  

SciTech Connect (OSTI)

Accurate measurement of temperature is essential for the safe and efficient operation and control of a wide range of industrial processes. Appropriate techniques and instrumentation are needed depending on the temperature measurement requirements in different industrial processes and working environments. Harsh environments are common in many industrial applications. These harsh environments may involve extreme physical conditions, such as high-temperature, high-pressure, corrosive agents, toxicity, strong electromagnetic interference, and high-energy radiation exposure. Due to these severe environmental conditions, conventional temperature sensors are often difficult to apply. This situation has opened a new but challenging opportunity for the sensor society to provide robust, high-performance, and cost-effective temperature sensors capable of operating in those harsh environments. The focus of this research program has been to develop a temperature measurement system for temperature measurements in the primary and secondary stages of slagging gasifiers. For this application the temperature measurement system must be able to withstand the extremely harsh environment posed by the high temperatures and corrosive agents present in these systems. Real-time, accurate and reliable monitoring of temperature for the coal gasification process is important to realize the full economic potential of these gasification systems. Long life and stability of operation in the high temperature environment is essential for the temperature measurement system to ensure the continuous running of the coal gasification system over the long term. In this high temperature and chemically corrosive environment, rather limited high temperature measurement techniques such as high temperature thermocouples and optical/acoustic pyrometers are available, each with their own limitations. In this research program, five different temperature sensing schemes based on the single crystal sapphire material were thoroughly investigated to determine an optimal approach for on-line, real-time, reliable, long-term monitoring of temperatures inside the coal gasification environment. Among these were a sapphire fiber extrinsic Fabry-Perot interferometric (EFPI) sensor; an intensity-measurement based polarimetric sapphire sensor and a broadband polarimetric differential interferometric (BPDI) sapphire sensor. Based on the current evaluation and analysis of the experimental results, the BPDI sensor system was chosen for further prototype instrumentation development because of it's superior performance compared to the other systems. This approach is based on the self-calibrating measurement of the optical path length differences in a single-crystal sapphire disk, which is a function of both the temperature dependent birefringence and the temperature dependent dimensional changes.

A. Wang; G. Pickrell; R. May

2002-10-18T23:59:59.000Z

116

MEMS CHIP CO2 SENSOR FOR BUILDING SYSTEMS INTEGRATION  

SciTech Connect (OSTI)

The objective of this research was to develop an affordable, reliable sensor to enable demand controlled ventilation (DCV). A significant portion of total energy consumption in the United States is used for heating or air conditioning (HVAC) buildings. To assure occupant safety and fresh air levels in large buildings, and especially those with sealed windows, HVAC systems are frequently run in excess of true requirements as automated systems cannot now tell the occupancy level of interior spaces. If such a sensor (e.g. thermostat sized device) were available, it would reduce energy use between 10 and 20% in such buildings. A quantitative measure of ''fresh air'' is the concentration of carbon dioxide (CO{sub 2}) present. An inert gas, CO{sub 2} is not easily detected by chemical sensors and is usually measured by infrared spectroscopy. Ion Optics research developed a complete infrared sensor package on a single MEMS chip. It contains the infrared (IR) source, IR detector and IR filter. The device resulting from this DOE sponsored research has sufficient sensitivity, lifetime, and drift rate to meet the specifications of commercial instrument manufacturers who are now testing the device for use in their building systems.

Anton Carl Greenwald

2005-09-14T23:59:59.000Z

117

Development of Metal Oxide Nanostructure-based Optical Sensors for Fossil Fuel Derived Gases Measurement at High Temperature  

SciTech Connect (OSTI)

This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers, rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100oC have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800oC. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest operation temperature up to 750oC, first distributed chemical measurements at the record high temperature up to 700oC, first distributed pressure measurement at the record high temperature up to 800oC, and the fiber laser sensors with the record high operation temperature up to 700oC. The research performed by this program dramatically expand the functionality, adaptability, and applicability of distributed fiber optical sensors with potential applications in a number of high-temperature energy systems such as fossil-fuel power generation, high-temperature fuel cell applications, and potential for nuclear energy systems.

Chen, Kevin

2014-08-31T23:59:59.000Z

118

An optical water vapor sensor for unmanned aerial vehicles  

SciTech Connect (OSTI)

The water vapor sensor developed by Aerodyne Research, based on the optical absorption of light at {approximately}935 nm, has been successfully demonstrated on board the Pacific Northwest National Laboratory's Gulfstream-1 research aircraft during the Department of Energy's ARM Intensive Operations Period in August 1998. Data taken during this field campaign show excellent agreement with a chilled mirror and Lyman-alpha hygrometers and measurements confirm the ability to measure rapid, absolute water vapor fluctuations with a high degree of instrument stability and accuracy, with a noise level as low 10 ppmv (1 Hz measurement bandwidth). The construction of this small, lightweight sensor contains several unique elements which result in several significant advantages when compared to other techniques. First, the low power consumption Argon discharge lamp provides an optical beam at a fixed wavelength without a need for temperature or precision current control. The multi-pass absorption cell developed for this instrument provides a compact, low cost method that can survive deployment in the field. Fiber-optic cables, which are used to convey to light between the absorption cell, light source, and detection modules enable remote placement of the absorption cell from the opto-electronics module. Finally, the sensor does not use any moving parts which removes a significant source of potential malfunction. The result is an instrument which maintained its calibration throughout the field measurement campaign, and was not affected by high vibration and large uncontrolled temperature excursions. We believe that the development of an accurate, fast response water vapor monitor described in this report will open up new avenues of aerial-vehicle-based atmospheric research which have been relatively unexplored due to the lack of suitable low-cost, light-weight instrumentation.

Timothy A. Berkoff; Paul L. Kebabian; Robert A. McClatchy; Charles E. Kolb; Andrew Freedman

1998-12-01T23:59:59.000Z

119

Optical Fiber Sensor Instrumentation for Slagging Coal Gasifiers  

SciTech Connect (OSTI)

Coal gasifier is one of the most promising solutions for clean fossil energy. Refractory thickness monitoring and online real-time temperature measurement is needed for improved reliability and advanced process control for current and future generation power plants. The objective of this program is to design and implement an optical fiber based sensing system that could potentially be used to monitor refractory wall thickness and temperature inside a coal gasifier. For the thickness monitoring, the system should be able to operate at temperatures up to 1000 C. For this temperature range, silica fiber can still work so it is chosen for the sensor design. The measurement is based on a photon counting optical time domain reflectometer. A narrow light pulse is launched into a silica fiber which could be embedded into the gasifier refractory wall, and is partially reflected by the far end of the fiber. The time of flight of the light pulse in the fiber then gives an indication of the position of the fiber end, which is a function of the wall thickness when the fiber is embedded. Results obtained show a measurement accuracy of {+-}2cm in environment of 1000 C with a saw cut fiber end. When the fiber end is corroded by sodium carbide at 900 C, the accuracy is {+-}3cm. For the temperature measurement, a single crystal sapphire fiber sensor is designed. The sapphire fiber guides the broadband light from a light emitting diode to a sapphire wafer functioning as a Fabry-Perot interferometer and the wafer optical thickness is a function of temperature. The returned optical signal is then demodulated by multimode fiber based whitelight interferometry. The system was tested up to 1500 C with a measurement accuracy of {+-}10 C for the entire measurement range.

Anbo Wang; Kristie Cooper

2008-07-19T23:59:59.000Z

120

Holovideo on a stick : integrated optics for holographic video displays  

E-Print Network [OSTI]

In this dissertation I describe the development of a new integrated-optics platform for holographic video consisting of arrays guided-wave acousto-optic devices. This platform serves as the foundation for a new family of ...

Smalley, Daniel E

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated optical sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Dynamic Phase Filtering with Integrated Optical Ring Resonators  

E-Print Network [OSTI]

can then help extract complex spectral information. Broadband photonic RF phase shifting for beam steering of a phased array antenna is also shown using dynamically tunable integrated optical ring resonators. Finally all-optical pulse compression...

Adams, Donald Benjamin

2011-10-21T23:59:59.000Z

122

An optical fiber Faraday effect current sensor for power system applications  

E-Print Network [OSTI]

Optical fiber sensors have many inherent properties which make them ideal for applications within electric power systems. The dielectric isolation achieved in using optical fiber has fostered research in the areas of communication and sensing...

Short, Shayne Xavier

1995-01-01T23:59:59.000Z

123

SYNTACTIC AND COMPOSITE FOAMS Whispering gallery mode-based micro-optical sensors  

E-Print Network [OSTI]

SYNTACTIC AND COMPOSITE FOAMS Whispering gallery mode-based micro-optical sensors for structural and filament wound pipes has been studied, where one of the glass fibers is replaced by an optical fiber

?tügen, Volkan

124

A Readout Integrated Circuit (ROIC) with Hybrid Source/Sensor Array  

E-Print Network [OSTI]

A Readout Integrated Circuit (ROIC) with Hybrid Source/Sensor Array Jiawei Friedrich Xu, Glauco light emitting LED and photo detector array, with on-chip control, driver electronics and improved performance. Keywords- Readout Integrated Circuit; Integrated circuit testing; CMOS image sensors; smart

Krishna, Sanjay

125

Ultra-High Temperature Sensors Based on Optical Property  

SciTech Connect (OSTI)

In this program, Nuonics, Inc. has studied the fundamentals of a new Silicon Carbide (SiC) materials-based optical sensor technology suited for extreme environments of coal-fired engines in power production. The program explored how SiC could be used for sensing temperature, pressure, and potential gas species in a gas turbine environment. The program successfully demonstrated the optical designs, signal processing and experimental data for enabling both temperature and pressure sensing using SiC materials. The program via its sub-contractors also explored gas species sensing using SiC, in this case, no clear commercially deployable method was proven. Extensive temperature and pressure measurement data using the proposed SiC sensors was acquired to 1000 deg-C and 40 atms, respectively. Importantly, a first time packaged all-SiC probe design was successfully operated in a Siemens industrial turbine rig facility with the probe surviving the harsh chemical, pressure, and temperature environment during 28 days of test operations. The probe also survived a 1600 deg-C thermal shock test using an industrial flame.

Nabeel Riza

2008-09-30T23:59:59.000Z

126

Integrated optic/nanofluidic detection device with plasmonic readout  

E-Print Network [OSTI]

Integrated lab-on-a-chip devices provide the promise of many benefits in many application areas. A low noise, high resolution, high sensitivity integrated optical microfluidic device would not only improve the capabilities ...

Varsanik, Jonathan S

2011-01-01T23:59:59.000Z

127

Integrated optic vector-matrix multiplier  

DOE Patents [OSTI]

A vector-matrix multiplier is disclosed which uses N different wavelengths of light that are modulated with amplitudes representing elements of an N.times.1 vector and combined to form an input wavelength-division multiplexed (WDM) light stream. The input WDM light stream is split into N streamlets from which each wavelength of the light is individually coupled out and modulated for a second time using an input signal representing elements of an M.times.N matrix, and is then coupled into an output waveguide for each streamlet to form an output WDM light stream which is detected to generate a product of the vector and matrix. The vector-matrix multiplier can be formed as an integrated optical circuit using either waveguide amplitude modulators or ring resonator amplitude modulators.

Watts, Michael R. (Albuquerque, NM)

2011-09-27T23:59:59.000Z

128

Sensors and Actuators B 123 (2007) 594605 Fiber optic sensing of liquid refractive index  

E-Print Network [OSTI]

Sensors and Actuators B 123 (2007) 594­605 Fiber optic sensing of liquid refractive index Argha is immersed, to a high degree of precision and over a wide range of refractive index. The slope of sensor of the fiber. The sensitivity of the sensor to refractive index change is dependent on cladding thickness

129

adaptive multi-sensor integration: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

inadequate and unacceptable by the troubleshooter perform- ing Mizoguchi, Riichiro 31 Vehicle Automation System Based On Multi-Sensor Integration CiteSeer Summary: this...

130

IDENTIFICATION OF DAMAGE TYPES IN CARBON FIBER REINFORCED PLASTIC LAMINATES BY A NOVEL OPTICAL FIBER ACOUSTIC EMISSION SENSOR  

E-Print Network [OSTI]

IDENTIFICATION OF DAMAGE TYPES IN CARBON FIBER REINFORCED PLASTIC LAMINATES BY A NOVEL OPTICAL technology. PZT sensors have been being used as AE sensors. However, because this kind of sensor has bulk

Boyer, Edmond

131

Downhole geothermal well sensors comprising a hydrogen-resistant optical fiber  

DOE Patents [OSTI]

A new class of optical fiber based thermal sensors has been invented. The new sensors comprise hydrogen-resistant optical fibers which are able to withstand a hot, hydrogen-containing environment as is often found in the downhole well environment.

Weiss, Jonathan D.

2005-02-08T23:59:59.000Z

132

Development of a Three-Dimensional Ball Rotation Sensing System using Optical Mouse Sensors  

E-Print Network [OSTI]

to the case of a ball wheel. The system measures surface speed by using two or more optical mouse sensorsDevelopment of a Three-Dimensional Ball Rotation Sensing System using Optical Mouse Sensors Masaaki Kumagai and Ralph L. Hollis Abstract-- Robots using ball(s) as spherical wheels have the advantage

133

Polymeric Electro-optic Modulators: From Chromophore Design to Integration with Semiconductor Very Large Scale Integration  

E-Print Network [OSTI]

Polymeric Electro-optic Modulators: From Chromophore Design to Integration with Semiconductor Very Large Scale Integration Electronics and Silica Fiber Optics L. Dalton, A. Harper, A. Ren, F. Wang, G California, Los Angeles, California 90089-1661 Chromophores with optimized second-order optical nonlinearity

134

Polyhedral integrated and free space optical interconnection  

DOE Patents [OSTI]

An optical communication system uses holographic optical elements to provide guided wave and non-guided communication, resulting in high bandwidth, high connectivity optical communications. Holograms within holographic optical elements route optical signals between elements and between nodes connected to elements. Angular and wavelength multiplexing allow the elements to provide high connectivity. The combination of guided and non-guided communication allows compact polyhedral system geometries. Guided wave communications provided by multiplexed substrate-mode holographic optical elements eases system alignment. 7 figs.

Erteza, I.A.

1998-01-06T23:59:59.000Z

135

OPTI 626-Integrated Optics and Optoelectronics Course Description  

E-Print Network [OSTI]

OPTI 626- Integrated Optics and Optoelectronics Course Description: This course aims to give a broad understanding of the physics and technology of discrete and integrated optical and optoelectronic componenents. The main focus is on important optoelectronic components such as waveguides, lasers, detectors

Arizona, University of

136

The integration of ad hoc sensor and cellular networks for multi-class data transmission  

E-Print Network [OSTI]

The integration of ad hoc sensor and cellular networks for multi-class data transmission Fei Hu a. On the other hand, large-scale Ad hoc Sensor Networks (ASN), when deployed among mobile patients who may carry different kinds of micro-sensors to measure ECG, blood pressure, basal temperature or other physiological

Kumar, Sunil

137

Integrated resonant micro-optical gyroscope and method of fabrication  

DOE Patents [OSTI]

An integrated optic gyroscope is disclosed which is based on a photonic integrated circuit (PIC) having a bidirectional laser source, a pair of optical waveguide phase modulators and a pair of waveguide photodetectors. The PIC can be connected to a passive ring resonator formed either as a coil of optical fiber or as a coiled optical waveguide. The lasing output from each end of the bidirectional laser source is phase modulated and directed around the passive ring resonator in two counterpropagating directions, with a portion of the lasing output then being detected to determine a rotation rate for the integrated optical gyroscope. The coiled optical waveguide can be formed on a silicon, glass or quartz substrate with a silicon nitride core and a silica cladding, while the PIC includes a plurality of III V compound semiconductor layers including one or more quantum well layers which are disordered in the phase modulators and to form passive optical waveguides.

Vawter, G. Allen (Albuquerque, NM); Zubrzycki, Walter J. (Sandia Park, NM); Guo, Junpeng (Albuquerque, NM); Sullivan, Charles T. (Albuquerque, NM)

2006-09-12T23:59:59.000Z

138

An Integral Flow-Based Energy-Efficient Routing Algorithm for Wireless Sensor Networks  

E-Print Network [OSTI]

An Integral Flow-Based Energy-Efficient Routing Algorithm for Wireless Sensor Networks Shashidhar. As sensor nodes are energy-constrained, energy-efficient routing is essential for increasing the lifetime. In this paper, we consider static base stations and propose an algorithmic approach to obtain integral energy-efficient

Prakash, Ravi

139

Magnetization and EPR studies of the single molecule magnet Ni4 with integrated sensors  

E-Print Network [OSTI]

Magnetization and EPR studies of the single molecule magnet Ni4 with integrated sensors G. de 2007 Integrated magnetic sensors that allow simultaneous EPR and magnetization measurements have been with a micro-Hall effect magnetometer. EPR spectroscopy is used to determine the energy splitting between

del Barco, Enrique

140

Guest-host crosslinked polyimides for integrated optics  

SciTech Connect (OSTI)

We report on the optical and electrical characterization of aromatic, fluorinated, fully imidized, organic soluble, thermally and photochemically, crosslinkable, guest-host polyimides for integrated optics. Refractive indices and optical losses were measured to evaluate the performance of these materials for passive applications. Materials were doped with two high temperature nonlinear optical chromophores, and poled during crosslinking to produce nonlinear optical materials. Measurements of electro-optic coefficient, macroscopic second order susceptibility, and conductivity were performed to assess these materials as potential candidates for active devices.

Kowalczyk, T.C.; Kosc, T.Z.; Singer, K.D. [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Physics; Beuhler, A.J.; Wargowski, D.A. [Amoco Chemical Co., Naperville, IL (United States). Amoco Research Center; Cahill, P.A.; Seager, C.H.; Meinhardt, M.B. [Sandia National Labs., Albuquerque, NM (United States)

1995-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated optical sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Optics-less smart sensors and a possible mechanism of cutaneous vision in nature  

E-Print Network [OSTI]

Optics-less cutaneous (skin) vision is not rare among living organisms, though its mechanisms and capabilities have not been thoroughly investigated. This paper demonstrates, using methods from statistical parameter estimation theory and numerical simulations, that an array of bare sensors with a natural cosine-law angular sensitivity arranged on a flat or curved surface has the ability to perform imaging tasks without any optics at all. The working principle of this type of optics-less sensor and the model developed here for determining sensor performance may be used to shed light upon possible mechanisms and capabilities of cutaneous vision in nature.

Leonid Yaroslavsky; Chad Goerzen; Stanislav Umansky; H. John Caulfield

2008-08-08T23:59:59.000Z

142

High performance CMOS integrated circuits for optical receivers  

E-Print Network [OSTI]

Prasad Enjeti Head of Department, Costas Georghiades December 2006 Major Subject: Electrical Engineering iii ABSTRACT High Performance CMOS Integrated Circuits for Optical Receivers. (December 2006) MohammadReza SamadiBoroujeni, B...

SamadiBoroujeni, MohammadReza

2009-05-15T23:59:59.000Z

143

Electro-optical Modulation in Graphene Integrated Photonic Crystal Nanocavities  

E-Print Network [OSTI]

We demonstrate high-contrast electro-optic modulation in a graphene integrated photonic crystal nanocavity, providing a modulation depth of more than 10 dB at telecom wavelengths. This work shows the feasibility of ...

Gan, Xuetao

144

Spatially distributed temperatures at the base of two mountain snowpacks measured with fiber-optic sensors  

E-Print Network [OSTI]

-optic sensors Scott W. TYLER,1 Susan A. BURAK,2 James P. MCNAMARA,3 Aurele LAMONTAGNE,3 John S. SELKER,4 Jeff melting patterns and the effects of solar heating on southwest-facing slopes. These proof

Selker, John

145

An experimental investigation of the sensitivity of a buried fiber optic intrusion sensor  

E-Print Network [OSTI]

A distributed fiber optic sensor with the ability of detecting and locating intruders on foot and vehicles over long perimeters (>10 km) was studied. The response of the sensor to people walking over or near it and to vehicles driving nearby...

Kuppuswamy, Harini

2006-04-12T23:59:59.000Z

146

506 IEEE SENSORS JOURNAL, VOL. 7, NO. 4, APRIL 2007 Neuromorphic Processing for Optical Microbead  

E-Print Network [OSTI]

in the olfactory bulb. The sensor array contains hundreds of microbeads coated with solvatochromic dyes adsorbed in with corresponding intensity changes, spectral shifts, and time-dependent variations associated with the fluorescent--Lateral inhibition, machine olfaction, neuromor- phic computation, olfactory bulb, optical microbead sensors, sen

Gutierrez-Osuna, Ricardo

147

Lakes as sensors in the landscape: Optical metrics as scalable sentinel responses to climate change  

E-Print Network [OSTI]

Lakes as sensors in the landscape: Optical metrics as scalable sentinel responses to climate change, Edgewater, Maryland Abstract As the lowest point in the surrounding landscape, lakes act as sensors to respond to changes in air temperature, precipitation, and solar radiation at timescales ranging from

Williamson, Craig E.

148

NRA-00-OES-08 A one-year pilot study for the inclusion of active optical sensors into PALACE  

E-Print Network [OSTI]

NRA-00-OES-08 1 A one-year pilot study for the inclusion of active optical sensors into PALACE, newly-developed solid-state, active optical sensors that measure chlorophyll a fluorescence of ancillary sensors as part of the ARGO program. The ARGO program, if funded at the level of effort proposed

Boss, Emmanuel S.

149

Compact, low-cost, and high-resolution interrogation unit for optical sensors  

SciTech Connect (OSTI)

Compact wavelength detectors that resolve wavelength changes in the subpicometer range over a broad spectral range are presented. A photodiode array or position sensor device is coated with a linear variable filter that converts the wavelength of the incident light into a spatial intensity distribution. The centroid of the spatial distribution is determined by a differential readout of the two elements of the photodiode array or the position sensor device. The device can interrogate any optical sensor that produces a wavelength shift in response to a stimulus. The potential of this device was tested by interrogating fiber-Bragg-grating sensors.

Kiesel, Peter; Schmidt, Oliver; Mohta, Setu; Johnson, Noble; Malzer, Stefan [Palo Alto Research Center Inc., 3333 Coyote Hill Road, Palo Alto, California 94304 (United States); Max Planck Research Group, Institute of Optics, Information and Photonics, Guenther-Scharowsky-Strasse 1, 91058 Erlangen (Germany)

2006-11-13T23:59:59.000Z

150

Sensor integration for implementation of obstacle avoidance in an autonomous helicopter system  

E-Print Network [OSTI]

Autonomous Flight Control System (AFCS), was developed as a platform to support the development of the obstacle avoidance system through integration of sensors and onboard processing capabilities. The system has proven in various flight tests that it has...

Mentzer, Christopher Isaac

2006-08-16T23:59:59.000Z

151

Broadband energy-efficient optical modulation by hybrid integration of silicon nanophotonics and organic electro-optic polymer  

E-Print Network [OSTI]

Silicon-organic hybrid integrated devices have emerging applications ranging from high-speed optical interconnects to photonic electromagnetic-field sensors. Silicon slot photonic crystal waveguides (PCWs) filled with electro-optic (EO) polymers combine the slow-light effect in PCWs with the high polarizability of EO polymers, which promises the realization of high-performance optical modulators. In this paper, a broadband, power-efficient, low-dispersion, and compact optical modulator based on an EO polymer filled silicon slot PCW is presented. A small voltage-length product of V{\\pi}*L=0.282Vmm is achieved, corresponding to an unprecedented record-high effective in-device EO coefficient (r33) of 1230pm/V. Assisted by a backside gate voltage, the modulation response up to 50GHz is observed, with a 3-dB bandwidth of 15GHz, and the estimated energy consumption is 94.4fJ/bit at 10Gbit/s. Furthermore, lattice-shifted PCWs are utilized to enhance the optical bandwidth by a factor of ~10X over other modulators bas...

Zhang, Xingyu; Subbaraman, Harish; Luo, Jingdong; Jen, Alex K -Y; Chung, Chi-jui; Yan, Hai; Pan, Zeyu; Nelson, Robert L; Chen, Ray T

2015-01-01T23:59:59.000Z

152

High-temperature fiber optic cubic-zirconia pressure sensor - article no. 124402  

SciTech Connect (OSTI)

There is a critical need for pressure sensors that can operate reliably at high temperatures in many industrial segments such as in the combustion section of gas turbine engines for both transportation and power generation, coal gasifiers, coal fired boilers, etc. Optical-based sensors are particularly attractive for the measurement of a wide variety of physical and chemical parameters in high-temperature and high-pressure industrial environments due to their small size and immunity to electromagnetic interference. A fiber optic pressure sensor utilizing single-crystal cubic zirconia as the sensing element is reported. The pressure response of this sensor has been measured at temperatures up to 1000{sup o}C. Additional experimental results show that cubic zirconia could be used for pressure sensing at temperatures over 1000{sup o}C. This study demonstrates the feasibility of using a novel cubic-zirconia sensor for pressure measurement at high temperatures.

Peng, W.; Pickrell, G.R.; Wang, A.B. [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States)

2005-12-15T23:59:59.000Z

153

Separation of CO2 Using Ultra-Thin Multi-Layer Polymeric Membranes for Compartmentalized Fiber Optic Sensor Applications  

E-Print Network [OSTI]

Optic Sensor Applications by Benjamin Davies B.Eng., University of Guelph, 2011 A Thesis Submitted for Compartmentalized Fiber Optic Sensor Applications by Benjamin Davies B. Eng., University of Guelph, 2011 Supervisory trapping occurring through mineralization within the first 20-50 years. A fiber optic based monitoring

Victoria, University of

154

Micro optical fiber light source and sensor and method of fabrication thereof  

DOE Patents [OSTI]

This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor (50). An optical fiber micro-light source (50) is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors (22) in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material (60). This process allows significant control of the size of the micro light source (50). Furthermore, photo-chemically attaching an optically active material (60) enables the implementation of the micro-light source in a variety of sensor applications.

Kopelman, Raoul (Ann Arbor, MI); Tan, Weihong (Ames, IA); Shi, Zhong-You (Ann Arbor, MI)

1997-01-01T23:59:59.000Z

155

Micro optical fiber light source and sensor and method of fabrication thereof  

DOE Patents [OSTI]

This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 10 figs.

Kopelman, R.; Tan, W.; Shi, Z.Y.

1997-05-06T23:59:59.000Z

156

High throughput optical sensor arrays for drug screening  

E-Print Network [OSTI]

In the world of drug discovery, high throughput whole cell assays are a critical step in discovering therapeutically relevant drug compounds [1]. This report details the development of several novel sensor systems capable ...

Harjes, Daniel I

2006-01-01T23:59:59.000Z

157

Microscale autonomous sensor and communications module  

DOE Patents [OSTI]

Various technologies pertaining to a microscale autonomous sensor and communications module are described herein. Such a module includes a sensor that generates a sensor signal that is indicative of an environmental parameter. An integrated circuit receives the sensor signal and generates an output signal based at least in part upon the sensor signal. An optical emitter receives the output signal and generates an optical signal as a function of the output signal. An energy storage device is configured to provide power to at least the integrated circuit and the optical emitter, and wherein the module has a relatively small diameter and thickness.

Okandan, Murat; Nielson, Gregory N

2014-03-25T23:59:59.000Z

158

Optical position sensor for determining the interface between a clear and an opaque fluid  

DOE Patents [OSTI]

An inexpensive, optical position sensor for measuring a position or length, x, along a one-dimensional curvilinear, coordinate system. The sensor can be used, for example, to determine the position of an interface between a clear and an opaque fluid (such as crude oil and water). In one embodiment, the sensor utilizes the principle of dual-fluorescence, where a primary fiber emits primary fluorescent light and a parallel secondary fiber collects a portion of the primary fluorescent light that is not blocked by the opaque fluid. This, in turn, excites secondary fluorescence in the secondary fiber at a longer wavelength. A light detector measures the intensity of secondary fluorescence emitted from an end of the secondary fiber, which is used to calculate the unknown position or length, x. Side-emitting fibers can be used in place of, or in addition to, fluorescent fibers. The all-optical sensor is attractive for applications involving flammable liquids.

Weiss, Jonathan D. (Albuquerque, NM)

2006-05-23T23:59:59.000Z

159

A study of semiconductor laser noise and its effect on fiber optic sensor performance  

E-Print Network [OSTI]

and its Effect on Fiber Optic Sensor Performance. (August 1994) Wanku Lee, B. S. , Hanyang University, S. Korea; Chair of Advisory Committee Dr. Henry F, Taylor A general description of laser diode noise is presented. Intensity and frequency noise in a... 1. 3 pm multimode laser diode are measured using a Michelson interferometer. The methodology in choosing the length of Fiber Fabry-Perot Interferometric (FFPQ sensors which reduces the effect of laser noise is presented. The reduction in relative...

Lee, Wanku

2012-06-07T23:59:59.000Z

160

Method and apparatus for packaging optical fiber sensors for harsh environments  

DOE Patents [OSTI]

A package for an optical fiber sensor having a metal jacket surrounding the sensor, and heat-shrink tubing surrounding the metal jacket. The metal jacket is made of a low melting point metal (e.g. lead, tin). The sensor can be disposed in a rigid tube (e.g. stainless steel or glass) that is surrounded by the metal jacket. The metal jacket provides a hermetic, or nearly hermetic seal for the sensor. The package is made by melting the metal jacket and heating the heat shrink tubing at the same time. As the heat-shrink tubing shrinks, it presses the low melting point metal against the sensor, and squeezes out the excess metal.

Pickrell, Gary; Duan, Yuhong; Wang, Anbo

2005-08-09T23:59:59.000Z

Note: This page contains sample records for the topic "integrated optical sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Extreme Environment Silicon Carbide Hybrid Temperature & Pressure Optical Sensors  

SciTech Connect (OSTI)

This final report contains the main results from a 3-year program to further investigate the merits of SiC-based hybrid sensor designs for extreme environment measurements in gas turbines. The study is divided in three parts. Part 1 studies the material properties of SiC such as temporal response, refractive index change with temperature, and material thermal response reversibility. Sensor data from a combustion rig-test using this SiC sensor technology is analyzed and a robust distributed sensor network design is proposed. Part 2 of the study focuses on introducing redundancy in the sensor signal processing to provide improved temperature measurement robustness. In this regard, two distinct measurement methods emerge. A first method uses laser wavelength sensitivity of the SiC refractive index behavior and a second method that engages the Black-Body (BB) radiation of the SiC package. Part 3 of the program investigates a new way to measure pressure via a distance measurement technique that applies to hot objects including corrosive fluids.

Nabeel Riza

2010-09-01T23:59:59.000Z

162

Novel, fiber optic, hybrid pressure and temperature sensor designed for high-temperature gen-IV reactor applications  

SciTech Connect (OSTI)

A novel, fiber optic, hybrid pressure-temperature sensor is presented. The sensor is designed for reliable operation up to 1050 C, and is based on the high-temperature fiber optic sensors already demonstrated during previous work. The novelty of the sensors presented here lies in the fact that pressure and temperature are measured simultaneously with a single fiber and a single transducer. This hybrid approach will enable highly accurate active temperature compensation and sensor self-diagnostics not possible with other platforms. Hybrid pressure and temperature sensors were calibrated by varying both pressure and temperature. Implementing active temperature compensation resulted in a ten-fold reduction in the temperature-dependence of the pressure measurement. Sensors were also tested for operability in a relatively high neutron radiation environment up to 6.9x10{sup 17} n/cm{sup 2}. In addition to harsh environment survivability, fiber optic sensors offer a number of intrinsic advantages for nuclear power applications including small size, immunity to electromagnetic interference, self diagnostics / prognostics, and smart sensor capability. Deploying fiber optic sensors on future nuclear power plant designs would provide a substantial improvement in system health monitoring and safety instrumentation. Additional development is needed, however, before these advantages can be realized. This paper will highlight recent demonstrations of fiber optic sensors in environments relevant to emerging nuclear power plants. Successes and lessons learned will be highlighted. (authors)

Palmer, M. E.; Fielder, R. S.; Davis, M. A. [Luna Innovations, Incorporated, 2851 Commerce St., Blacksburg, VA 24060 (United States)

2006-07-01T23:59:59.000Z

163

Forty-Four Pass Fibre Optic Loop for Improving the Sensitivity of Surface Plasmon Resonance Sensors  

E-Print Network [OSTI]

A forty-four pass fibre optic surface plasmon resonance sensor that enhances detection sensitivity according to the number of passes is demonstrated for the first time. The technique employs a fibre optic recirculation loop that passes the detection spot forty- four times, thus enhancing sensitivity by a factor of forty-four. Presently, the total number of passes is limited by the onset of lasing action of the recirculation loop. This technique offers a significant sensitivity improvement for various types of plasmon resonance sensors that may be used in chemical and biomolecule detections.

Chin B Su; Jun Kameoka

2007-09-21T23:59:59.000Z

164

Evaluation of White Light Sources For an Absolute Fiber Optic Sensor Readout System  

SciTech Connect (OSTI)

This report summarizes work done in pursuit of an absolute readout system for Fabry-Perot optics sensors such as those built both by FISO and LLNL. The use of white light results in a short coherence length reducing the ambiguity of the Fabry-Perot gap measurement which is required to readout the sensor. The light source coherence length is the critical parameter in determining the ability to build a relative or an absolute system. Optical sources such as lasers and LEDs are rather narrow in optical spectral bandwidth and have long coherence length. Thus, when used in interferometric sensor measurements, one fringe looks much like another and it is difficult to make an absolute measurement. In contrast, white light sources are much broader in spectral bandwidth and have very short coherence lengths making interferometry possible only over the coherence length, which can be 1 or 2 microns. The small number of fringes in the interferogram make it easier to calculate the centroid and to unambiguously determine the sensor gap. However, unlike LEDs and Lasers, white light sources have very low optical power when coupled into optical fibers. Although, the overall light output of a white light source can be hundreds of milliwatts to watts, it is difficult to couple more than microwatts into a 50-micron core optical fiber. In addition, white light sources have a large amount of optical power in spectrum that is not necessarily useful in terms of sensor measurements. The reflectivity of a quarter wave of Titanium Oxide is depicted in Figure 2. This coating of Titanium Oxide is used in the fabrication of the sensor. This figure shows that any light emitted at wavelengths shorter than 600 nm is not too useful for the readout system. A white light LED spectrum is depicted in Figure 3 and shows much of the spectrum below 600 nm. In addition Silicon photodiodes are usually used in the readout system limiting the longest wavelength to about 1100 nm. Tungsten filament sources may have much of their optical power at wavelengths longer than 1100 nm, which is outside the wavelength range of interest. An incandescent spectrum from a tungsten filament is depicted in Figure 4. None of this is to say that other types of readout systems couldn't be built with IR detectors and broadband coatings for the sensors. However, without reengineering the sensors, the wavelength restrictions must be tolerated.

McConaghy, C F

2003-10-10T23:59:59.000Z

165

A loss-based, magnetic field sensor implemented in a ferrofluid infiltrated microstructured polymer optical fiber  

SciTech Connect (OSTI)

We report an in-fiber magnetic field sensor based on magneto-driven optical loss effects, while being implemented in a ferrofluid infiltrated microstructured polymer optical fiber. We demonstrate that magnetic field flux changes up to 2000 gauss can be detected when the magnetic field is applied perpendicular to the fiber axis. In addition, the sensor exhibits high polarization sensitivity for the interrogated wavelengths, providing the possibility of both field flux and direction measurements. The underlying physical and guidance mechanisms of this sensing transduction are further investigated using spectrophotometric, light scattering measurements, and numerical simulations, suggesting photonic Hall effect as the dominant physical, transducing mechanism.

Candiani, A. [Foundation for Research and Technology-Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), Heraklion 70013 Greece (Greece); Department of Information Engineering (DII), University of Parma, Parma 43124 (Italy); Argyros, A.; Leon-Saval, S. G.; Lwin, R. [Institute of Photonics and Optical Science (IPOS), School of Physics, The University of Sydney, Sydney (Australia); Selleri, S. [Department of Information Engineering (DII), University of Parma, Parma 43124 (Italy); Pissadakis, S., E-mail: pissas@iesl.forth.gr [Foundation for Research and Technology-Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), Heraklion 70013 Greece (Greece)

2014-03-17T23:59:59.000Z

166

Micro optical fiber light source and sensor and method of fabrication thereof  

DOE Patents [OSTI]

This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications.

Kopelman, Raoul (Ann Arbor, MI); Tan, Weihong (Ann Arbor, MI); Shi, Zhong-You (Ann Arbor, MI)

1994-01-01T23:59:59.000Z

167

Micro optical fiber light source and sensor and method of fabrication thereof  

DOE Patents [OSTI]

This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 4 figs.

Kopelman, R.; Tan, W.; Shi, Z.Y.

1994-11-01T23:59:59.000Z

168

Chromatic and Dispersive Effects in Nonlinear Integrable Optics  

E-Print Network [OSTI]

Proton accumulator rings and other circular hadron accelerators are susceptible to intensity-driven parametric instabilities because the zero-current charged particle dynamics are characterized by a single tune. Landau damping can suppress these instabilities, which requires energy spread in the beam or introducing nonlinear magnets such as octupoles. However, this approach reduces dynamic aperture. Nonlinear integrable optics can suppress parametric instabilities independent of energy spread in the distribution, while preserving the dynamic aperture. This novel approach promises to reduce particle losses and enable order-of-magnitude increases in beam intensity. In this paper we present results, obtained using the Lie operator formalism, on how chromaticity and dispersion affect particle orbits in integrable optics. We conclude that chromaticity in general breaks the integrability, unless the vertical and horizontal chromaticities are equal. Because of this, the chromaticity correcting magnets can be weaker ...

Webb, Stephen D; Valishev, Alexander; Nagaitsev, Sergei N; Danilov, Viatcheslav V

2015-01-01T23:59:59.000Z

169

ULTRA-HIGH TEMPERATURE SENSORS BASED ON OPTICAL PROPERTY MODULATION AND VIBRATION-TOLERANT INTERFEROMETRY  

SciTech Connect (OSTI)

The goals of the first six months of this project were to begin laying the foundations for both the SiC front-end optical chip fabrication techniques for high pressure gas species sensing as well as the design, assembly, and test of a portable high pressure high temperature calibration test cell chamber for introducing gas species. This calibration cell will be used in the remaining months for proposed first stage high pressure high temperature gas species sensor experimentation and data processing. All these goals have been achieved and are described in detail in the report. Both design process and diagrams for the mechanical elements as well as the optical systems are provided. Photographs of the fabricated calibration test chamber cell, the optical sensor setup with the calibration cell, the SiC sample chip holder, and relevant signal processing mathematics are provided. Initial experimental data from both the optical sensor and fabricated test gas species SiC chips is provided. The design and experimentation results are summarized to give positive conclusions on the proposed novel high temperature high pressure gas species detection optical sensor technology.

Nabeel A. Riza

2005-07-22T23:59:59.000Z

170

Riboswitch-based sensor in low optical background Svetlana V. Harbaugh, Molly E. Davidson, Yaroslav G. Chushak*  

E-Print Network [OSTI]

Riboswitch-based sensor in low optical background Svetlana V. Harbaugh, Molly E. Davidson, Yaroslav in the presence of theophylline. However, the BFP-eGFP FRET pair posses significant optical background-4 These RNA-based sensors bind to a ligand and alter the gene expression of downstream genes. Riboswitches

171

Fiber-optic sensor for detection of hydrogen peroxide in PEM fuel cells Juan F. Botero-Cadavid  

E-Print Network [OSTI]

Fiber-optic sensor for detection of hydrogen peroxide in PEM fuel cells by Juan F. Botero-optic sensor for detection of hydrogen peroxide in PEM fuel cells by Juan F. Botero-Cadavid Mech electrolyte membrane fuel cells (PEMFCs), and the presence and formation of this peroxide has been associated

Victoria, University of

172

Multiplexed Optical Fiber Sensors for Coal Fired Advanced Fossil Energy Systems  

SciTech Connect (OSTI)

This report summarizes technical progress on the program ??Multiplexed Optical Fiber Sensors for Coal Fired Advanced Fossil Energy Systems? funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed jointly by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering and the Department of Materials Science and Engineering at Virginia Tech. This three-year project started on October 1, 2008. In the project, a fiber optical sensing system based on intrinsic Fabry-Perot Interferometer (IFPI) was developed for strain and temperature measurements for Ultra Supercritical boiler condition assessment. Investigations were focused on sensor design, fabrication, attachment techniques and novel materials for high temperature and strain measurements. At the start of the project, the technical requirements for the sensing technology were determined together with our industrial partner Alstom Power. As is demonstrated in Chapter 4, all the technical requirements are successfully met. The success of the technology extended beyond laboratory test; its capability was further validated through the field test at DOE NETL, in which the sensors yielded distributed temperature mapping of a testing coupon installed in the turbine test rig. The measurement results agreed well with prior results generated with thermocouples. In this project, significant improvements were made to the IFPI sensor technology by splicing condition optimization, transmission loss reduction, sensor signal demodulation and sensor system design.

Anbo Wang; Gary Pickrell

2011-12-31T23:59:59.000Z

173

FLUORESCENCE AND FIBER-OPTICS BASED REAL-TIME THICKNESS SENSOR FOR DYNAMIC LIQUID FILMS  

E-Print Network [OSTI]

/analyzed the incident reflected waves to identify and measure the total transit time of the sound wave (of known wave-speed1 FLUORESCENCE AND FIBER-OPTICS BASED REAL-TIME THICKNESS SENSOR FOR DYNAMIC LIQUID FILMS T. W. Ng/disadvantages of many known liquid film thickness sensing devices (viz. conductivity probes, reflectance based fiber

Narain, Amitabh

174

Micro-opto-mechanical switching and tuning for integrated optical systems  

E-Print Network [OSTI]

Integrated optical circuits have the potential to lower manufacturing and operating costs and enhance the functionality of optical systems in a manner similar to what has been achieved by integrating electronic circuits. ...

Nielson, Gregory Nolan, 1974-

2004-01-01T23:59:59.000Z

175

Manufacturing challenges of optical current and voltage sensors for utility applications  

SciTech Connect (OSTI)

Measurement of voltages and currents in power transmission and distribution systems are critical to the electric utility industry for both revenue metering and reliability. Nonconventional instrument transformers based on intensity modulation of optical signals have been reported in the literature for more than 20 years. Recently described devices using passive bulk optical sensor elements include the Electro-Optic Voltage Transducer (EOVT) and Magneto-Optic Current Transducer (MOCT). These technologies offer substantial advantages over conventional instrument transformers in accuracy, optical isolation bandwidth, environmental compatibility, weight and size. This paper describes design and manufacturing issues associated with the EOVT and the Optical Metering Unit (OMU) recently introduced by ABB with field installation results presented for prototype units in the 345 kV and 420 kV voltage classes. The OMU incorporates an EOVT and MOCT to monitor the voltage and current on power transmission lines using a single free-standing device.

Yakymyshyn, C.P. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Brubaker, M.A. [Los Alamos National Lab., NM (United States); Johnston, P.M. [Johnston (Paul M.), Raleigh, NC (United States); Reinbold, C. [ABB High Voltage Switchgear, Greensburg, PA (United States)

1997-12-01T23:59:59.000Z

176

Fiber optic laser-induced breakdown spectroscopy sensor for molten material analysis  

DOE Patents [OSTI]

A fiber optic laser-induced breakdown spectroscopy (LIBS) sensor, including a laser light source, a harmonic separator for directing the laser light, a dichroic mirror for reflecting the laser light, a coupling lens for coupling the laser light at an input of a multimode optical fiber, a connector for coupling the laser light from an output of the multimode optical fiber to an input of a high temperature holder, such as a holder made of stainless steel, and a detector portion for receiving emission signal and analyzing LIBS intensities. In one variation, the multimode optical fiber has silica core and silica cladding. The holder includes optical lenses for collimating and focusing the laser light in a molten alloy to produce a plasma, and for collecting and transmitting an emission signal to the multimode optical fiber.

Zhang, Hansheng; Rai, Awadesh K.; Singh, Jagdish P.; Yueh, Fang-Yu

2004-07-13T23:59:59.000Z

177

Path integral formulation of retardation effects in nonlinear optics Vladimir Chernyaka) and Shaul Mukamel  

E-Print Network [OSTI]

Path integral formulation of retardation effects in nonlinear optics Vladimir Chernyaka) and Shaul;accepted4 October 1993) The signaturesof retardation in nonlinear optical susceptibilitiesare studiedby optical signalsare usually'calculatedby first calculating a nonlinear susceptibility definedby expanding

Mukamel, Shaul

178

Terahertz bandwidth integrated radio frequency spectrum analyzer via nonlinear optics  

E-Print Network [OSTI]

We report an integrated all-optical radio frequency spectrum analyzer based on a ~ 4cm long doped silica glass waveguide, with a bandwidth greater than 2.5 THz. We use this device to characterize the intensity power spectrum of ultrahigh repetition rate mode-locked lasers at repetition rates up to 400 GHz, and observe dynamic noise related behavior not observable with other techniques.

Ferrera, Marcello; Pasquazi, Alessia; Peccianti, Marco; Clerici, Matteo; Caspani, Lucia; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Moss, David J

2014-01-01T23:59:59.000Z

179

Fiber optic sensors for nuclear power plant applications  

SciTech Connect (OSTI)

Studies have been carried out for application of Raman Distributed Temperature Sensor (RDTS) in Nuclear Power Plants (NPP). The high temperature monitoring in sodium circuits of Fast Breeder Reactor (FBR) is important. It is demonstrated that RDTS can be usefully employed in monitoring sodium circuits and in tracking the percolating sodium in the surrounding insulation in case of any leak. Aluminum Conductor Steel Reinforced (ACSR) cable is commonly used as overhead power transmission cable in power grid. The suitability of RDTS for detecting defects in ACSR overhead power cable, is also demonstrated.

Kasinathan, Murugesan; Sosamma, Samuel; BabuRao, Chelamchala; Murali, Nagarajan; Jayakumar, Tammana [Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu-603102 (India)

2012-05-17T23:59:59.000Z

180

A Mechanically Stable, Low Profile, Omni-Directional Solar-Cell Integrated Antenna for Outdoor Wireless Sensor Nodes  

E-Print Network [OSTI]

sensor network standard is proposed by integrating a circular array of slot antennas with solar cells. IIA Mechanically Stable, Low Profile, Omni-Directional Solar-Cell Integrated Antenna for Outdoor Wireless Sensor Nodes T. Wu, R.L. Li, and M. M. Tentzeris School of Electrical and Computer Engineering

Tentzeris, Manos

Note: This page contains sample records for the topic "integrated optical sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Thin film optical waveguide and optoelectronic device integration for fully embedded board level optical interconnects  

E-Print Network [OSTI]

Thin film optical waveguide and optoelectronic device integration for fully embedded board level on to the waveguide film. Measured propagation loss of the waveguide was 0.3dB/cm at 850nm. Keywords: optoelectronic between electronic and optoelectronic components as conventional approaches do, and additionally, real

Chen, Ray

182

Electro-optic voltage sensor for sensing voltage in an E-field  

DOE Patents [OSTI]

A miniature electro-optic voltage sensor system capable of accurate operation at high voltages. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

Woods, Gregory K. (Idaho Falls, ID); Renak, Todd W. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

183

Electro-optic voltage sensor for sensing voltage in an E-field  

DOE Patents [OSTI]

A miniature electro-optic voltage sensor system capable of accurate operation at high voltages is disclosed. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam`s polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured. 18 figs.

Woods, G.K.; Renak, T.W.

1999-04-06T23:59:59.000Z

184

Integrated Lateral Flow Test Strip with Electrochemical Sensor for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land Surface

185

Modeling and Validation of Performance Limitations for the Optimal Design of Interferometric and Intensity-Modulated Fiber Optic Displacement Sensors  

SciTech Connect (OSTI)

Optical fiber sensors offer advantages over traditional electromechanical sensors, making them particularly well-suited for certain measurement applications. Generally speaking, optical fiber sensors respond to a desired measurand through modulation of an optical signal's intensity, phase, or wavelength. Practically, non-contacting fiber optic displacement sensors are limited to intensity-modulated and interferometric (or phase-modulated) methodologies. Intensity-modulated fiber optic displacement sensors relate target displacement to a power measurement. The simplest intensity-modulated sensor architectures are not robust to environmental and hardware fluctuations, since such variability may cause changes in the measured power level that falsely indicate target displacement. Differential intensity-modulated sensors have been implemented, offering robustness to such intensity fluctuations, and the speed of these sensors is limited only by the combined speed of the photodetection hardware and the data acquisition system (kHz-MHz). The primary disadvantages of intensity-modulated sensing are the relatively low accuracy (?m-mm for low-power sensors) and the lack of robustness, which consequently must be designed, often with great difficulty, into the sensor's architecture. White light interferometric displacement sensors, on the other hand, offer increased accuracy and robustness. Unlike their monochromatic-interferometer counterparts, white light interferometric sensors offer absolute, unambiguous displacement measurements over large displacement ranges (cm for low-power, 5 mW, sources), necessitating no initial calibration, and requiring no environmental or feedback control. The primary disadvantage of white light interferometric displacement sensors is that their utility in dynamic testing scenarios is limited, both by hardware bandwidth and by their inherent high-sensitivity to Doppler-effects. The decision of whether to use either an intensity-modulated interferometric sensor depends on an appropriate performance function (e.g., desired displacement range, accuracy, robustness, etc.). In this dissertation, the performance limitations of a bundled differential intensity-modulated displacement sensor are analyzed, where the bundling configuration has been designed to optimize performance. The performance limitations of a white light Fabry-Perot displacement sensor are also analyzed. Both these sensors are non-contacting, but they have access to different regions of the performance-space. Further, both these sensors have different degrees of sensitivity to experimental uncertainty. Made in conjunction with careful analysis, the decision of which sensor to deploy need not be an uninformed one.

Moro, Erik A. [Los Alamos National Laboratory

2012-06-07T23:59:59.000Z

186

Detection of biological molecules using chemical amplification and optical sensors  

DOE Patents [OSTI]

Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

Van Antwerp, William Peter (Valencia, CA); Mastrototaro, John Joseph (Los Angeles, CA)

2000-01-01T23:59:59.000Z

187

Elastomeric optical fiber sensors and method for detecting and measuring events occurring in elastic materials  

DOE Patents [OSTI]

Fiber optic sensing means for the detection and measurement of events such as dynamic loadings imposed upon elastic materials including cementitious materials, elastomers, and animal body components and/or the attrition of such elastic materials are provided. One or more optical fibers each having a deformable core and cladding formed of an elastomeric material such as silicone rubber are embedded in the elastic material. Changes in light transmission through any of the optical fibers due the deformation of the optical fiber by the application of dynamic loads such as compression, tension, or bending loadings imposed on the elastic material or by the attrition of the elastic material such as by cracking, deterioration, aggregate break-up, and muscle, tendon, or organ atrophy provide a measurement of the dynamic loadings and attrition. The fiber optic sensors can be embedded in elastomers subject to dynamic loadings and attrition such as commonly used automobiles and in shoes for determining the amount and frequency of the dynamic loadings and the extent of attrition. The fiber optic sensors are also useable in cementitious material for determining the maturation thereof.

Muhs, Jeffrey D. (Lenoir City, TN); Capps, Gary J. (Knoxville, TN); Smith, David B. (Oak Ridge, TN); White, Clifford P. (Knoxville, TN)

1994-01-01T23:59:59.000Z

188

Detection of biological molecules using chemical amplification and optical sensors  

DOE Patents [OSTI]

Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal. Specifically, the analyte transducer immobilized in a polymeric matrix can be a boronic acid moiety.

Van Antwerp, William Peter (Valencia, CA); Mastrototaro, John Joseph (Los Angeles, CA)

2001-01-01T23:59:59.000Z

189

Sandia National Laboratories: Fiber-optic Bragg grating sensor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS Exhibit at Explora Museum OnFactFiber-optic Bragg grating

190

Fiber Optic Cryogenic Sensors for Superconducting Magnets and Superconducting Power Transmission lines at CERN  

E-Print Network [OSTI]

The design, fabrication and tests of a new generation of superconducting magnets for the upgrade of the LHC require the support of an adequate, robust and reliable sensing technology. The use of Fiber Optic Sensors is becoming particularly challenging for applications in extreme harsh environments such as ultra-low temperatures, high electromagnetic fields and strong mechanical stresses offering perspectives for the development of technological innovations in several applied disciplines.

Chiuchiolo, A; Cusano, A; Bajko, M; Perez, J C; Bajas, H; Giordano, M; Breglio, G; Palmieri, L

2014-01-01T23:59:59.000Z

191

Method of making an integral window hermetic fiber optic component  

DOE Patents [OSTI]

In the fabrication of igniters, actuators, detonators, and other pyrotechnic devices to be activated by a laser beam, an integral optical glass window is formed by placing a preform in the structural member of the device and then melting the glass and sealing it in place by heating at a temperature between the ceramming temperature of the glass and the melting point of the metal, followed by rapid furnace cooling to avoid devitrification. No other sealing material is needed to achieve hermeticity. A preferred embodiment of this type of device is fabricated by allowing the molten glass to flow further and form a plano-convex lens integral with and at the bottom of the window. The lens functions to decrease the beam divergence caused by refraction of the laser light passing through the window when the device is fired by means of a laser beam.

Dalton, Rick D. (Miamisburg, OH); Kramer, Daniel P. (Centerville, OH); Massey, Richard T. (Hamilton, OH); Waker, Damon A. (Bellbrook, OH)

1996-11-12T23:59:59.000Z

192

Method of making an integral window hermetic fiber optic component  

DOE Patents [OSTI]

In the fabrication of igniters, actuators, detonators, and other pyrotechnic devices to be activated by a laser beam, an integral optical glass window is formed by placing a preform in the structural member of the device and then melting the glass and sealing it in place by heating at a temperature between the ceramming temperature of the glass and the melting point of the metal, followed by rapid furnace cooling to avoid devitrification. No other sealing material is needed to achieve hermeticity. A preferred embodiment of this type of device is fabricated by allowing the molten glass to flow further and form a plano-convex lens integral with and at the bottom of the window. The lens functions to decrease the beam divergence caused by refraction of the laser light passing through the window when the device is fired by means of a laser beam. 9 figs.

Dalton, R.D.; Kramer, D.P.; Massey, R.T.; Waker, D.A.

1996-11-12T23:59:59.000Z

193

Fiber optic sensor employing successively destroyed coupled points or reflectors for detecting shock wave speed and damage location  

DOE Patents [OSTI]

A shock velocity and damage location sensor providing a means of measuring shock speed and damage location is disclosed. The sensor consists of a long series of time-of-arrival ``points`` constructed with fiber optics. The fiber optic sensor apparatus measures shock velocity as the fiber sensor is progressively crushed as a shock wave proceeds in a direction along the fiber. The light received by a receiving means changes as time-of-arrival points are destroyed as the sensor is disturbed by the shock. The sensor may comprise a transmitting fiber bent into a series of loops and fused to a receiving fiber at various places, time-of-arrival points, along the receiving fibers length. At the ``points`` of contact, where a portion of the light leaves the transmitting fiber and enters the receiving fiber, the loops would be required to allow the light to travel backwards through the receiving fiber toward a receiving means. The sensor may also comprise a single optical fiber wherein the time-of-arrival points are comprised of reflection planes distributed along the fibers length. In this configuration, as the shock front proceeds along the fiber it destroys one reflector after another. The output received by a receiving means from this sensor may be a series of downward steps produced as the shock wave destroys one time-of-arrival point after another, or a nonsequential pattern of steps in the event time-of-arrival points are destroyed at any point along the sensor. 6 figs.

Weiss, J.D.

1995-08-29T23:59:59.000Z

194

Integrated self-cleaning window assembly for optical transmission in combustion environments  

DOE Patents [OSTI]

An integrated window design for optical transmission in combustion environments is described. The invention consists of an integrated optical window design that prevents and removes the accumulation of carbon-based particulate matter and gaseous hydrocarbons through a combination of heat and catalysis. These windows will enable established optical technologies to be applied to combustion environments and their exhaust systems.

Kass, Michael D [Oak Ridge, TN

2007-07-24T23:59:59.000Z

195

Thermal and Optical Characterization of Photonic Integrated Circuits by Thermoreflectance Microscopy  

E-Print Network [OSTI]

We report high resolution, non-invasive, thermal and optical characterization of semiconductor optical amplifiers (SOAs) and SOA-based photonic integrated circuits (PICs) using thermoreflectance microscopy. Chip-scale ...

Hudgings, Janice A.

196

MICROFLUIDIC DETECTION AND ANALYSIS BY INTEGRATION OF EVANESCENT WAVE SENSING WITH THERMOCAPILLARY ACTUATION  

E-Print Network [OSTI]

. THEORETICAL BACKGROUND Integrated Optical Waveguide Sensors For the planar waveguide shown in Fig. 1, such sensors should be directly incorporated into the chip to minimize size requirements. Sensor integration method relies on miniaturized coplanar capacitive sensors responsive to changes in the dielectric

Troian, Sandra M.

197

Materials and devices for optical switching and modulation of photonic integrated circuits  

E-Print Network [OSTI]

The drive towards photonic integrated circuits (PIC) necessitates the development of new devices and materials capable of achieving miniaturization and integration on a CMOS compatible platform. Optical switching: fast ...

Seneviratne, Dilan Anuradha

2007-01-01T23:59:59.000Z

198

Fiber-optic voltage sensor with cladded fiber and evanescent wave variation detection  

DOE Patents [OSTI]

A fiber optic voltage sensor is described which includes a source of light, a reference fiber for receiving a known percentage of the light and an electrostrictive element having terminals across which is applied, a voltage to be measured. The electrostrictive element is responsive to the applied voltage to assume an altered physical state. A measuring fiber also receives a known percentage of light from the light source and is secured about the electrostrictive element. The measuring fiber is provided with a cladding and exhibits an evanescent wave in the cladding. The measuring fiber has a known length which is altered when the electrostrictive element assumes its altered physical state. A differential sensor is provided which senses the intensity of light in both the reference fiber and the measuring fiber and provides an output indicative of the difference between the intensities. 3 figs.

Wood, C.B.

1992-12-15T23:59:59.000Z

199

Development of a 1 x N Fiber Optic Sensor Array for Carbon Sequestration Site Monitoring  

SciTech Connect (OSTI)

A fiber sensor array for sub-surface CO{sub 2} concentrations measurements was developed for monitoring geologic carbon sequestration sites. The fiber sensor array uses a single temperature tunable distributed feedback (DFB) laser operating with a nominal wavelength of 2.004 􀁐m. Light from this DFB laser is direct to one of the 4 probes via an in-line 1 x 4 fiber optic switch. Each of the 4 probes are buried and allow the sub-surface CO{sub 2} to enter the probe through Millipore filters that allow the soil gas to enter the probe but keeps out the soil and water. Light from the DFB laser interacts with the CO{sub 2} before it is directed back through the in-line fiber optic switch. The DFB laser is tuned across two CO{sub 2} absorption features where a transmission measurement is made allowing the CO{sub 2} concentration to be retrieved. The fiber optic switch then directs the light to the next probe where this process is repeated allowing sub-surface CO{sub 2} concentration measurements at each of the probes to be made as a function of time. The fiber sensor array was deployed for fifty-eight days beginning June 19, 2012 at the Zero Emission Research Technology (ZERT) field site where sub-surface CO{sub 2} concentrations were monitored. Background measurements indicate the fiber sensor array can monitor background levels as low as 1,000 parts per million (ppm). A thirty four day sub-surface release of 0.15 tones CO{sub 2}/day began on July 10, 2012. The elevated subsurface CO{sub 2} concentration was easily detected by each of the four probes with values ranging to over 60,000 ppm, a factor of greater than 6 higher than background measurements. The fiber sensor array was also deploy at the Big Sky Carbon Sequestration Partnership (BSCSP) site in north-central Montana between July 9th and August 7th, 2013 where background measurements were made in a remote sequestration site with minimal infrastructure. The project provided opportunities for two graduate students to participate in research directly related to geologic carbon sequestration. Furthermore, commercialization of the technology developed is being pursued with five different companies via the Department of energy SBIR/STTR program

Repasky, Kevin

2013-09-30T23:59:59.000Z

200

Characterization, Monitoring, and Sensor Technology Integrated Program (CMST-IP). Technology summary  

SciTech Connect (OSTI)

The Characterization, Monitoring, and Sensor Technology Integrated Program seeks to deliver needed technologies, timely and cost-effectively, to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The scope of characterizations monitoring, and sensor technology needs that are required by those organizations encompass: (1) initial location and characterization of wastes and waste environments - prior to treatment; (2) monitoring of waste retrieval, remediation and treatment processes; (3) characterization of the co-position of final waste treatment forms to evaluate the performance of waste treatments processes; and (4) site closure and compliance monitoring. Wherever possible, the CMST-IP fosters technology transfer and commercialization of technologies that it sponsors.

Not Available

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated optical sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Accepted for publication in the 1998 IEEE ICRA Proceedings, Leuven, Belgium, May 16-21 Integrated Precision 3-DOF Position Sensor for Planar Linear Motors  

E-Print Network [OSTI]

levels of the sensor. Finally, we present results that demonstrate the reso- lution and accuracy: www.cs.cmu.edu msl Motor section Motor section Single 1-DOF sensor Air bearing orifice Integrated 3

Butler, Zack

202

Integrated Nanoplasmonic Optical Microfluidics for Label-free Bioassays  

E-Print Network [OSTI]

42) Bruus, H. Theoretical microfluidics 2008. C HAPTER 3: CNanoplasmonic Optical Microfluidics for Label-free BioassaysNanoplasmonic Optical Microfluidics for Label-free Bioassays

Wu, Yir-shyuan

2009-01-01T23:59:59.000Z

203

A Graphene Quantum Dot with a Single Electron Transistor as Integrated Charge Sensor  

E-Print Network [OSTI]

We have developed an etching process to fabricate a quantum dot and a nearby single electron transistor as a charge detector in a single layer graphene. The high charge sensitivity of the detector is used to probe Coulomb diamonds as well as excited spectrum in the dot, even in the regime where the current through the quantum dot is too small to be measured by conventional transport means. The graphene based quantum dot and integrated charge sensor serve as an essential building block to form a solid-state qubit in a nuclear-spin-free quantum world.

Ling-Jun Wang; Gang Cao; Tao Tu; Hai-Ou Li; Cheng Zhou; Xiao-Jie Hao; Zhan Su; Guang-Can Guo; Guo-Ping Guo; Hong-Wen Jiang

2010-08-28T23:59:59.000Z

204

Temporal integration of focus position signal during compensation for pursuit in optic flow  

E-Print Network [OSTI]

Temporal integration of focus position signal during compensation for pursuit in optic flow Center in optic flow that specifies heading. Concurrent smooth pursuit causes distortion of the retinal flow on optic flow perception has received little attention. Here we separated the effects of velocity and gaze

Krekelberg, Bart

205

An integrated thin-film thermo-optic waveguide beam deflector Suning Tang,a)  

E-Print Network [OSTI]

An integrated thin-film thermo-optic waveguide beam deflector Suning Tang,a) Bulang Li, and Xinghua for publication 16 February 2000 We have demonstrated the operation of a thin-film thermo-optical beam deflector in a three-layer optical planar waveguide. The fabricated waveguide beam deflector consists of a thin-film Si

Chen, Ray

206

Optical dispersion and nonlinearity in integrated silicon nanophotonic devices  

E-Print Network [OSTI]

decomposition of ultrafast pulses, Applied Optics, 47, A21-and Y.A. Vlasov, Ultrafast-pulse self-phase modulation andgrating, ultrafast compression of optical pulses may take

Tan, Dawn Tse Hui

2011-01-01T23:59:59.000Z

207

Spark-plug-mounted fiber optic sensor for measuring in-cylinder pressure in engines  

E-Print Network [OSTI]

-coated fiber sensor is electroplated with copper. Finally, the metal-protected fiber sensor is embedded in a groove cut in the spark plug casing. Spark-plug-embedded FFPI sensors were used to monitor pressure in internal combustion engines...

Bae, Taehan

2001-01-01T23:59:59.000Z

208

Detecting high-frequency gravitational waves with optically-levitated sensors  

E-Print Network [OSTI]

We propose a tunable resonant sensor to detect gravitational waves in the frequency range of 50-300 kHz using optically trapped and cooled dielectric microspheres or micro-discs. The technique we describe can exceed the sensitivity of laser-based gravitational wave observatories in this frequency range, using an instrument of only a few percent of their size. Such a device extends the search volume for gravitational wave sources above 100 kHz by 1 to 3 orders of magnitude, and could detect monochromatic gravitational radiation from the annihilation of QCD axions in the cloud they form around stellar mass black holes within our galaxy due to the superradiance effect.

Asimina Arvanitaki; Andrew A. Geraci

2013-01-02T23:59:59.000Z

209

Evaluation of on-chip integration of magneto-optic isolators  

E-Print Network [OSTI]

The recent development of on chip integration of magneto-optic isolators is reviewed. Two major categories of structural designs for waveguide isolator (nonreciprocal mode conversion and nonreciprocal phase shift) have ...

Chen, Xiaoyan, M. Eng. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

210

Theory and design of integrated optical isolators and broadband couplers using Fresnel zone plates  

E-Print Network [OSTI]

This thesis is divided into two main sections: the first containing the analysis of the broadband vertical coupler, and the second involving the theory and design of the integrated optical isolators. In the first part we ...

Cordova, Brad Gilbert

2013-01-01T23:59:59.000Z

211

Center for Nanostructured Biomimetic Interfaces Integrated Electrochemical and Optical Methods for Studying TRPV Channel Proteins  

E-Print Network [OSTI]

Center for Nanostructured Biomimetic Interfaces Integrated Electrochemical and Optical Methods Ofoli, Ilsoon Lee, Mark Worden and Donna Wang* Department of Chemical Engineering and Materials Science: Structural Biology of Membrane Proteins ·Measure protein activity in lipid bilayer -Electrochemical methods

212

Growth and characterization of bismuth perovskite thin films for integrated magneto-optical isolator applications  

E-Print Network [OSTI]

In this thesis, we discuss the motivation for integrated magneto-optical isolators and explain why the orthoferrite is such an attractive materials class for this purpose. We then derive from first physical principles the ...

Taussig, Alexander R

2007-01-01T23:59:59.000Z

213

Development, tests, and data acquisition of the integrated system of internal sensors for RFX  

SciTech Connect (OSTI)

The RFX reversed field pinch (RFP) has undergone major modifications of the load assembly and is now equipped with a large number of active external coils for magnetohydrodynamics mode control. The study of the effects on the plasma of both the new passive structure and the active coils is then of great importance, as well as the investigation of turbulence due to its influence on plasma transport. An integrated system of magnetic, electrostatic and calorimetric sensors has been realized, fulfilling very challenging requirements in terms of spatial and temporal resolution, which are characteristic features of RFP plasmas. A description of the whole diagnostic system is given, including the original solutions adopted to cope with the limited space available and the thermal and electrical requirements, particularly for the calorimetrical probes. The tests performed on the whole system during the installation are presented. Signal conditioning and data acquisition are described.

Serianni, G.; Bolzonella, T.; Cavazzana, R.; Marchiori, G.; Pomaro, N.; Lotto, L.; Monari, M.; Taliercio, C. [Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy)

2004-10-01T23:59:59.000Z

214

Integrated Process Monitoring based on Systems of Sensors for Enhanced Nuclear Safeguards Sensitivity and Robustness  

SciTech Connect (OSTI)

This paper illustrates safeguards benefits that process monitoring (PM) can have as a diversion deterrent and as a complementary safeguards measure to nuclear material accountancy (NMA). In order to infer the possible existence of proliferation-driven activities, the objective of NMA-based methods is often to statistically evaluate materials unaccounted for (MUF) computed by solving a given mass balance equation related to a material balance area (MBA) at every material balance period (MBP), a particular objective for a PM-based approach may be to statistically infer and evaluate anomalies unaccounted for (AUF) that may have occurred within a MBP. Although possibly being indicative of proliferation-driven activities, the detection and tracking of anomaly patterns is not trivial because some executed events may be unobservable or unreliably observed as others. The proposed similarity between NMA- and PM-based approaches is important as performance metrics utilized for evaluating NMA-based methods, such as detection probability (DP) and false alarm probability (FAP), can also be applied for assessing PM-based safeguards solutions. To this end, AUF count estimates can be translated into significant quantity (SQ) equivalents that may have been diverted within a given MBP. A diversion alarm is reported if this mass estimate is greater than or equal to the selected value for alarm level (AL), appropriately chosen to optimize DP and FAP based on the particular characteristics of the monitored MBA, the sensors utilized, and the data processing method employed for integrating and analyzing collected measurements. To illustrate the application of the proposed PM approach, a protracted diversion of Pu in a waste stream was selected based on incomplete fuel dissolution in a dissolver unit operation, as this diversion scenario is considered to be problematic for detection using NMA-based methods alone. Results demonstrate benefits of conducting PM under a system-centric strategy that utilizes data collected from a system of sensors and that effectively exploits known characterizations of sensors and facility operations in order to significantly improve anomaly detection, reduce false alarm, and enhance assessment robustness under unreliable partial sensor information.

Humberto E. Garcia

2014-07-01T23:59:59.000Z

215

Integrated Optoelectronics in an Optical Fiber J. V. Badding*a,d  

E-Print Network [OSTI]

Integrated Optoelectronics in an Optical Fiber J. V. Badding*a,d , P. J. Saziob , V. Gopalanc.d , A,d , a Department of Chemistry, Pennsylvania State University, University Park, PA, USA 16802; b Optoelectronics optoelectronic function with glass optical fibers is discussed. A chemical vapor deposition (CVD)-like process

Gopalan, Venkatraman

216

Integrated High-Quality Factor Optical Resonators in Diamond B. J. M. Hausmann,,  

E-Print Network [OSTI]

-performance devices places stringent requirements on the diamond film quality. For example, polycrystalline diamond associated with polycrystalline and ion-sliced single crystal diamond films. For example, low-loss opticalIntegrated High-Quality Factor Optical Resonators in Diamond B. J. M. Hausmann,, I. B. Bulu,, P. B

Loncar, Marko

217

Applying Retirement-Planning Strategy to Sensor Networks: An Integrated Approach to Energy-Aware Medium Access  

E-Print Network [OSTI]

lifetime, energy efficiency, cross-layer design. #12;TECHNICAL REPORT TR-06-01, UC DAVIS, MAY 2006. 2 I among #12;TECHNICAL REPORT TR-06-01, UC DAVIS, MAY 2006. 3 nodes. We show that protocols exploitingApplying Retirement-Planning Strategy to Sensor Networks: An Integrated Approach to Energy

Islam, M. Saif

218

Designing a 3-D optical multilayer due to merging the concepts of stacked and planar-integrated free-space optics  

E-Print Network [OSTI]

Designing a 3-D optical multilayer due to merging the concepts of stacked and planar-integrated free-space optics M. Jarczynski, J. Jahns Optical interconnects aim to overcome the communication dimension [1]. For the optical implementation of 3-D setups suitable microoptics approaches are re- quired

Jahns, Jürgen

219

1146 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 35, NO. 8, AUGUST 1999 Three-Dimensional Integrated Optics Using Polymers  

E-Print Network [OSTI]

Optics Using Polymers Sean M. Garner, Sang-Shin Lee, Vadim Chuyanov, Antao Chen, Araz Yacoubian, William-dimensional (3-D) optical integrated circuits possible using polymers. Fabrication techniques of shadow reactive integrated optic structures are demonstrated. Vertical waveguide bends exhibit excess losses of

220

An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique  

SciTech Connect (OSTI)

In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s (18.0 l/min) for the mono-directional sensor and a measurement range of {+-}3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s ({+-}18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the coefficient of determination r{sup 2} is equal to 0.997; for the bi-directional configuration, the coefficient of determination r{sup 2} is equal to 0.990 for positive flows (inspiration) and 0.988 for negative flows (expiration). Measurement uncertainty {delta}Q of air flow rate has been evaluated by means of the propagation of distributions and the percentage error in the arrangement of bi-directional sensor ranges from a minimum of about 0.5% at -18.0 l/min to a maximum of about 9% at -12.0 l/min.

Battista, L.; Sciuto, S. A.; Scorza, A. [Department of Engineering, ROMA TRE University, via della Vasca Navale 79/81, Rome (Italy)

2013-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "integrated optical sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Efficient Application Integration in IP-Based Sensor Networks Dogan Yazar, Adam Dunkels  

E-Print Network [OSTI]

fields of energy management for homes, offices, and the smart grid. Many existing sensor network deploy evaluation of our system and show that Web services are a viable mechanism for use in low-power sensor Protocols]: Applications General Terms Design, Experimentation, Measurement, Performance Keywords Sensor

222

Extreme temperature robust optical sensor designs and fault-tolerant signal processing  

DOE Patents [OSTI]

Silicon Carbide (SiC) probe designs for extreme temperature and pressure sensing uses a single crystal SiC optical chip encased in a sintered SiC material probe. The SiC chip may be protected for high temperature only use or exposed for both temperature and pressure sensing. Hybrid signal processing techniques allow fault-tolerant extreme temperature sensing. Wavelength peak-to-peak (or null-to-null) collective spectrum spread measurement to detect wavelength peak/null shift measurement forms a coarse-fine temperature measurement using broadband spectrum monitoring. The SiC probe frontend acts as a stable emissivity Black-body radiator and monitoring the shift in radiation spectrum enables a pyrometer. This application combines all-SiC pyrometry with thick SiC etalon laser interferometry within a free-spectral range to form a coarse-fine temperature measurement sensor. RF notch filtering techniques improve the sensitivity of the temperature measurement where fine spectral shift or spectrum measurements are needed to deduce temperature.

Riza, Nabeel Agha (Oviedo, FL); Perez, Frank (Tujunga, CA)

2012-01-17T23:59:59.000Z

223

Sensor Data Processing for Tracking Underwater Threats Using Terascale Optical Core Devices  

SciTech Connect (OSTI)

A critical aspect of littoral surveillance (including port protection) involves the localization and tracking of underwater threats such as manned or unmanned autonomous underwater vehicles. In this article, we present a methodology for locating underwater threat sources from uncertain sensor network data, and illustrate the threat tracking aspects using active sonars in a matched filter framework. The novelty of the latter paradigm lies in its implementation on a tera-scale optical core processor, EnLight , recently introduced by Lenslet Laboratories. This processor is optimized for array operations, which it performs in a fixed point arithmetic architecture at tera-scale throughput. Using the EnLight 64 prototype processor, our results (i) illustrate the ability to reach a robust tracking accuracy, and (ii) demonstrate that a considerable speed-up (a factor of over 13,000) can be achieved when compared to an Intel XeonTM processor in the computation of sets of 80K-sample complex Fourier transforms that are associated with our matched filter techniques.

Barhen, Jacob [ORNL; Imam, Neena [ORNL

2009-01-01T23:59:59.000Z

224

Journal of Materials Science, 2009. 44(6): p. 1560-1571 Whispering Gallery Mode-Based Micro-Optical Sensors for Structural Health Monitoring  

E-Print Network [OSTI]

experimental results. Keywords: Whispering gallery mode, micro sensors, syntactic foams, smart composites of the glass fibers is replaced by an optical fiber for sensing [9]. These sensing schemes are successful

Gupta, Nikhil

225

ISOGA: Integrated Services Optical Grid Architecture for Emerging E-Science Collaborative Applications  

SciTech Connect (OSTI)

This final report describes the accomplishments in the ISOGA (Integrated Services Optical Grid Architecture) project. ISOGA enables efficient deployment of existing and emerging collaborative grid applications with increasingly diverse multimedia communication requirements over a wide-area multi-domain optical network grid; and enables collaborative scientists with fast retrieval and seamless browsing of distributed scientific multimedia datasets over a wide-area optical network grid. The project focuses on research and development in the following areas: the polymorphic optical network control planes to enable multiple switching and communication services simultaneously; the intelligent optical grid user-network interface to enable user-centric network control and monitoring; and the seamless optical grid dataset browsing interface to enable fast retrieval of local/remote dataset for visualization and manipulation.

Oliver Yu

2008-11-28T23:59:59.000Z

226

Long-Term, Autonomous Measurement of Atmospheric Carbon Dioxide Using an Ormosil Nanocomposite-Based Optical Sensor  

SciTech Connect (OSTI)

The goal of this project is to construct a prototype carbon dioxide sensor that can be commercialized to offer a low-cost, autonomous instrument for long-term, unattended measurements. Currently, a cost-effective CO2 sensor system is not available that can perform cross-platform measurements (ground-based or airborne platforms such as balloon and unmanned aerial vehicle (UAV)) for understanding the carbon sequestration phenomenon. The CO2 sensor would support the research objectives of DOE-sponsored programs such as AmeriFlux and the North American Carbon Program (NACP). Global energy consumption is projected to rise 60% over the next 20 years and use of oil is projected to increase by approximately 40%. The combustion of coal, oil, and natural gas has increased carbon emissions globally from 1.6 billion tons in 1950 to 6.3 billion tons in 2000. This figure is expected to reach 10 billon tons by 2020. It is important to understand the fate of this excess CO2 in the global carbon cycle. The overall goal of the project is to develop an accurate and reliable optical sensor for monitoring carbon dioxide autonomously at least for one year at a point remote from the actual CO2 release site. In Phase I of this project, InnoSense LLC (ISL) demonstrated the feasibility of an ormosil-monolith based Autonomous Sensor for Atmospheric CO2 (ASAC) device. All of the Phase I objectives were successfully met.

Kisholoy Goswami

2005-10-11T23:59:59.000Z

227

Optical diagnostics integrated with laser spark delivery system  

DOE Patents [OSTI]

A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

Yalin, Azer (Fort Collins, CO); Willson, Bryan (Fort Collins, CO); Defoort, Morgan (Fort Collins, CO); Joshi, Sachin (Fort Collins, CO); Reynolds, Adam (Fort Collins, CO)

2008-09-02T23:59:59.000Z

228

Optical sensing elements for nitrogen dioxide (NO.sub.2) gas detection, a sol-gel method for making the sensing elements and fiber optic sensors incorporating nitrogen dioxide gas optical sensing elements  

DOE Patents [OSTI]

A sensing element, a method of making a sensing element, and a fiber optic sensor incorporating the sensing element are described. The sensor can be used for the quantitative detection of NO.sub.2 in a mixture of gases. The sensing element can be made by incorporating a diazotizing reagent which reacts with nitrous ions to produce a diazo compound and a coupling reagent which couples with the diazo compound to produce an azo dye into a sol and allowing the sol to form an optically transparent gel. The sensing element changes color in the presence of NO.sub.2 gas. The temporal response of the absorption spectrum at various NO.sub.2 concentrations has also been recorded and analyzed. Sensors having different design configurations are described. The sensing element can detect NO.sub.2 gas at levels of parts per billion.

Mechery, Shelly John (Mississippi State, MS); Singh, Jagdish P. (Starkville, MS)

2007-07-03T23:59:59.000Z

229

High-performance GaAs/AlGaAs optical phase modulators for microwave photonic integrated circuits  

SciTech Connect (OSTI)

A high-performance high-speed optical phase modulator for photonic integrated circuit (PIC) use is described. Integration of these optical phase modulators into a real system (compass) is also discussed. The optical phase modulators are based on depletion-edge translation and have experimentally provided optical phase shifts in excess of 60{degrees}/V{center_dot}mm with approximately 4 dB/cm loss while simultaneously demonstrating bandwidths in excess of 10 GHz.

Hietala, V.M.; Kravitz, S.H.; Armendariz, M.G.; Vawter, G.A.; Carson, R.F.

1994-03-01T23:59:59.000Z

230

Embedded Fiber Optic Sensors for Measuring Transient Detonation/Shock Behavior;Time-of-Arrival Detection and Waveform Determination.  

SciTech Connect (OSTI)

The miniaturization of explosive components has driven the need for a corresponding miniaturization of the current diagnostic techniques available to measure the explosive phenomena. Laser interferometry and the use of spectrally coated optical windows have proven to be an essential interrogation technique to acquire particle velocity time history data in one- dimensional gas gun and relatively large-scale explosive experiments. A new diagnostic technique described herein allows for experimental measurement of apparent particle velocity time histories in microscale explosive configurations and can be applied to shocks/non-shocks in inert materials. The diagnostic, Embedded Fiber Optic Sensors (EFOS), has been tested in challenging microscopic experimental configurations that give confidence in the technique's ability to measure the apparent particle velocity time histories of an explosive with pressure outputs in the tenths of kilobars to several kilobars. Embedded Fiber Optic Sensors also allow for several measurements to be acquired in a single experiment because they are microscopic, thus reducing the number of experiments necessary. The future of EFOS technology will focus on further miniaturization, material selection appropriate for the operating pressure regime, and extensive hydrocode and optical analysis to transform apparent particle velocity time histories into true particle velocity time histories as well as the more meaningful pressure time histories.

Chavez, Marcus Alexander; Willis, Michael David; Covert, Timothy T.

2014-09-01T23:59:59.000Z

231

1590 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 9, SEPTEMBER 2012 Time-Domain CMOS Temperature Sensors With  

E-Print Network [OSTI]

sensors that work by measuring temperature-dependent delays in CMOS inverters. Two new features, low-cost one-point calibration. Second, it uses delay-locked loops (DLLs) to convert inverter delays using integrated temperature sensors distributed across the microprocessor, and local power dissipations

Ham, Donhee

232

Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies  

E-Print Network [OSTI]

Light-sound interactions have long been exploited in various acousto-optic devices based on bulk crystalline materials. Conventionally these devices operate in megahertz frequency range where the acoustic wavelength is much longer than the optical wavelength and a long interaction length is required to attain significant coupling. With nanoscale transducers, acoustic waves with sub-optical wavelengths can now be excited to induce strong acousto-optic coupling in nanophotonic devices. Here we demonstrate microwave frequency surface acoustic wave transducers co-integrated with nanophotonic resonators on piezoelectric aluminum nitride substrates. Acousto-optic modulation of the resonance modes at above 10 GHz with the acoustic wavelength significantly below the optical wavelength is achieved. The phase and modal matching conditions in this scheme are investigated for efficient modulation. The new acousto-optic platform can lead to novel optical devices based on nonlinear Brillouin processes and provides a direct, wideband link between optical and microwave photons for microwave photonics and quantum optomechanics.

Semere Ayalew Tadesse; Mo Li

2014-10-04T23:59:59.000Z

233

Heralded quantum gates with integrated error detection in optical cavitites  

E-Print Network [OSTI]

We propose and analyze heralded quantum gates between qubits in optical cavities. They employ an auxiliary qubit to report if a successful gate occurred. In this manner, the errors, which would have corrupted a deterministic gate, are converted into a non-unity probability of success: once successful the gate has a much higher fidelity than a similar deterministic gate. Specifically, we describe that a heralded , near-deterministic controlled phase gate (CZ-gate) with the conditional error arbitrarily close to zero and the success probability that approaches unity as the cooperativity of the system, C, becomes large. Furthermore, we describe an extension to near-deterministic N- qubit Toffoli gate with a favorable error scaling. These gates can be directly employed in quantum repeater networks to facilitate near-ideal entanglement swapping, thus greatly speeding up the entanglement distribution.

J. Borregaard; P. Kmr; E. M. Kessler; A. S. Srensen; M. D. Lukin

2015-01-05T23:59:59.000Z

234

Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including early detection of cancers  

DOE Patents [OSTI]

An assay element is described including recognition ligands adapted for binding to carcinoembryonic antigen (CEA) bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of CEA is described including injecting a possible CEA-containing sample into a sensor cell including the assay element, maintaining the sample within the sensor cell for time sufficient for binding to occur between CEA present within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

Martinez, Jennifer S. (Santa Fe, NM); Swanson, Basil I. (Los Alamos, NM); Shively, John E. (Arcadia, CA); Li, Lin (Monrovia, CA)

2009-06-02T23:59:59.000Z

235

Compact Integrated Optical Directional Coupler with Large Cross Section Silicon Waveguides  

E-Print Network [OSTI]

towards the development of low-cost high performance integrated optical devices. In this paper, we have designed, fabricated and characterized. We have found that the directional couplers with asymmetrically], and wavelength (de-)multiplexers [6], and filters [7]. They can be fabricated easily with large cross

Das, Bijoy Krishna

236

Wavelength- and thickness-independent optical coatings for integrated circuit metallization layers  

SciTech Connect (OSTI)

Detailed measurements have been made of the optical properties of sputtered tantalum silicide films on aluminum layers used in integrated circuit fabrication. This new multicomponent conductor (TaSi/sub x/ on aluminum), which is currently in use because of its exceptional electrical, physical, and chemical properties, was also found to have superior optical properties compared to aluminum alone. The addition of the thin silicide layers reduces both the total hemispherical and diffuse reflectance properties by up to 45% over the 265--800-nm wavelength range with almost no dependence on film thickness. Unlike other optical coatings used on metal layers in integrated circuit manufacturing, the silicide films do not need to be removed after photolithography and pattern transfer processes are completed: aluminum wire bonding from the completed circuit (with silicide coating) to the package is highly reliable and reproducible.

Draper, B.L.; Mahoney, A.R.; Bailey, G.A.

1987-12-01T23:59:59.000Z

237

Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology  

SciTech Connect (OSTI)

The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fiber optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of fiber optic sensors uses sol-gel derived porous silica materials doped with nanometer particles of noble metals in the form of fiber or coating for sensing trace H{sub 2}, NH{sub 3} and HCl in gas samples at for applications ambient temperature. The third classes of fiber optic sensors use sol-gel derived semiconductor metal oxide coating on the surface of silica optical fiber as transducers for selectively sensing H{sub 2}, CH{sub 4} and CO at high temperature. In addition, optical fiber temperature sensors use the fluorescence signal of rare-earth metal ions doped porous silica optical fiber or the optical absorption signal of thermochromic metal oxide materials coated on the surface of silica optical fibers have also been developed for monitoring gas temperature of corrosive gas. Based on the results obtained from this project, the principle of fiber optic sensor techniques for monitoring matrix gas components as well as trace components of coal gasification derived syngas has been established. Prototype sensors for sensing trace ammonia and hydrogen sulfide in gasification derived syngas have been built up in our laboratory and have been tested using gas samples with matrix gas composition similar to that of gasification derived fuel gas. Test results illustrated the feasibility of these sensors for applications in IGCC processes.

Shiquan Tao

2006-12-31T23:59:59.000Z

238

Microcantilever heater-thermometer with integrated temperature-compensated strain sensor  

DOE Patents [OSTI]

The present invention provides microcantilever hotplate devices which incorporate temperature compensating strain sensors. The microcantilever hotplate devices of the present invention comprise microcantilevers having temperature compensating strain sensors and resistive heaters. The present invention also provides methods for using a microcantilever hotplate for temperature compensated surface stress measurements, chemical/biochemical sensing, measuring various properties of compounds adhered to the microcantilever hotplate surface, or for temperature compensated deflection measurements.

King, William P. (Champaign, IL); Lee, Jungchul (Champaign, IL); Goericke, Fabian T. (Wolfsburg, DE)

2011-04-19T23:59:59.000Z

239

Design and fabrication of an optical pressure micro sensor for skin mechanics studies  

E-Print Network [OSTI]

The mechanics of skin is as central to touch as optics is to vision and acoustics is to hearing. With the advent of novel imaging technologies such as the Optical Coherence Tomography (OCT), we are now able to view structures ...

Kumar, Siddarth

2006-01-01T23:59:59.000Z

240

Integration of optoelectronics and MEMS by free-space micro-optics  

SciTech Connect (OSTI)

This report represents the completion of a three-year Laboratory-Directed Research and Development (LDRD) program to investigate combining microelectromechanical systems (MEMS) with optoelectronic components as a means of realizing compact optomechanical subsystems. Some examples of possible applications are laser beam scanning, switching and routing and active focusing, spectral filtering or shattering of optical sources. The two technologies use dissimilar materials with significant compatibility problems for a common process line. This project emphasized a hybrid approach to integrating optoelectronics and MEMS. Significant progress was made in developing processing capabilities for adding optical function to MEMS components, such as metal mirror coatings and through-vias in the substrate. These processes were used to demonstrate two integration examples, a MEMS discriminator driven by laser illuminated photovoltaic cells and a MEMS shutter or chopper. Another major difficulty with direct integration is providing the optical path for the MEMS components to interact with the light. The authors explored using folded optical paths in a transparent substrate to provide the interconnection route between the components of the system. The components can be surface-mounted by flip-chip bonding to the substrate. Micro-optics can be fabricated into the substrate to reflect and refocus the light so that it can propagate from one device to another and them be directed out of the substrate into free space. The MEMS components do not require the development of transparent optics and can be completely compatible with the current 5-level polysilicon process. They report progress on a MEMS-based laser scanner using these concepts.

WARREN,MIAL E.; SPAHN,OLGA B.; SWEATT,WILLIAM C.; SHUL,RANDY J.; WENDT,JOEL R.; VAWTER,GREGORY A.; KRYGOWSKI,TOM W.; REYES,DAVID NMN; RODGERS,M. STEVEN; SNIEGOWSKI,JEFFRY J.

2000-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated optical sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Micromachined pressure sensors: Review and recent developments  

SciTech Connect (OSTI)

Since the discovery of piezoresistivity in silicon in the mid 1950s, silicon-based pressure sensors have been widely produced. Micromachining technology has greatly benefited from the success of the integrated circuits industry, burrowing materials, processes, and toolsets. Because of this, microelectromechanical systems (MEMS) are now poised to capture large segments of existing sensor markets and to catalyze the development of new markets. Given the emerging importance of MEMS, it is instructive to review the history of micromachined pressure sensors, and to examine new developments in the field. Pressure sensors will be the focus of this paper, starting from metal diaphragm sensors with bonded silicon strain gauges, and moving to present developments of surface-micromachined, optical, resonant, and smart pressure sensors. Considerations for diaphragm design will be discussed in detail, as well as additional considerations for capacitive and piezoresistive devices.

Eaton, W.P.; Smith, J.H. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Micromachines Dept.

1997-03-01T23:59:59.000Z

242

Optical Sensors for Post Combustion Control in Electric Arc Furnace Steelmaking (TRP 9851)  

SciTech Connect (OSTI)

Working in collaboration with Stantec Global Technologies, Process Metrix Corporation, and The Timken Company, Sandia National Laboratories constructed and evaluated a novel, laser-based off-gas sensor at the electric arc furnace facility of Timken's Faircrest Steel Plant (Canton, Ohio). The sensor is based on a mid-infrared tunable diode laser (TDL), and measures the concentration and temperature of specific gas species present in the off-gas emanating from the EAF. The laser beam is transmitted through the gas stream at the fourth hole of the EAF, and provides a real-time, in situ measurement that can be used for process optimization. Two sets of field tests were performed in parallel with Stantec's extractive probe off-gas system, and the tests confirm the TDL sensor's operation and applicability for electric steel making. The sensor measures real-time, in situ line-of-sight carbon monoxide (CO) concentrations between 5% and 35% CO, and measures off-gas temperature in the range of 1400 to 1900 K. In order to achieve commercial-ready status, future work is required to extend the sensor for simultaneous CO and CO{sub 2} concentration measurements. In addition, long-term endurance tests including process optimization must be completed.

Sarah W. Allendorf; David K. Ottesen; Robert W. Green; Donald R. Hardesty; Robert Kolarik; Howard Goodfellow; Euan Evenson; Marshall Khan; Ovidiu Negru; Michel Bonin; Soren Jensen

2003-12-31T23:59:59.000Z

243

Photonic crystal ring resonator based optical filters for photonic integrated circuits  

SciTech Connect (OSTI)

In this paper, a two Dimensional (2D) Photonic Crystal Ring Resonator (PCRR) based optical Filters namely Add Drop Filter, Bandpass Filter, and Bandstop Filter are designed for Photonic Integrated Circuits (PICs). The normalized output response of the filters is obtained using 2D Finite Difference Time Domain (FDTD) method and the band diagram of periodic and non-periodic structure is attained by Plane Wave Expansion (PWE) method. The size of the device is minimized from a scale of few tens of millimeters to the order of micrometers. The overall size of the filters is around 11.4 ?m 11.4 ?m which is highly suitable of photonic integrated circuits.

Robinson, S., E-mail: mail2robinson@gmail.com [Department of Electronics and Communication Engineering, Mount Zion College of Engineering and Technology, Pudukkottai-622507, Tamil Nadu (India)

2014-10-15T23:59:59.000Z

244

Correspondence between the NLS equation for optical fibers and a class of integrable NLS equations  

E-Print Network [OSTI]

The propagation of the optical field complex envelope in a single-mode fiber is governed by a one-dimensional cubic nonlinear Schr\\"odinger equation with a loss term. We present a result about $L^2$-closeness of the solutions of the above-mentioned equation and of a one-dimensional nonlinear Schr\\"odinger equation that is Painlev\\'e integrable.

Domenico Felice; Luigi Barletti

2014-02-05T23:59:59.000Z

245

Fiber optic spectroscopic digital imaging sensor and method for flame properties monitoring  

DOE Patents [OSTI]

A system for real-time monitoring of flame properties in combustors and gasifiers which includes an imaging fiber optic bundle having a light receiving end and a light output end and a spectroscopic imaging system operably connected with the light output end of the imaging fiber optic bundle. Focusing of the light received by the light receiving end of the imaging fiber optic bundle by a wall disposed between the light receiving end of the fiber optic bundle and a light source, which wall forms a pinhole opening aligned with the light receiving end.

Zelepouga, Serguei A. (Hoffman Estates, IL); Rue, David M. (Chicago, IL); Saveliev, Alexei V. (Chicago, IL)

2011-03-15T23:59:59.000Z

246

Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices  

E-Print Network [OSTI]

Achieving monolithic integration of nonreciprocal photonic devices on semiconductor substrates has been long sought by the photonics research society. One way to achieve this goal is to deposit high quality magneto-optical ...

Bi, Lei

247

Real time perfusion and oxygenation monitoring in an implantable optical sensor  

E-Print Network [OSTI]

in operating rooms. In the late 1970s Scott Wilbur of the Biox corporation designed an ear sensor that used light emitting diode and solid state photodetectors to develop a clinically accepted pulse oximeter. The fiberoptic cables of previous ear oximeters.... Traditional oximeters use two light emitting diodes that emit light at 660nm (red) and 940nm (infrared) wavelengths. At these wavelengths both oxyhemoglobin and reduced hemoglobin have different absorption spectra (Fig. 1). The ratio of absorbances...

Subramanian, Hariharan

2006-04-12T23:59:59.000Z

248

Integrated Microfluidics/Electrochemical Sensor System for Field-Monitoring of Toxic Metals  

SciTech Connect (OSTI)

Discusses a miniaturized analytical system based on a microfluidics/electrochemical detection scheme. Individual modules, such as microfabricated piezoelectrically actuated pumps, a micro-membrane separator and a microelectrochemical cell will be integrated onto a portable platform.

Lin, Yuehe; Matson, Dean W.; Bennett, Wendy D.; Thrall, K D.; Timchalk, Chuck; W. Ehrfeld

2000-01-01T23:59:59.000Z

249

Fiber optic temperature sensor using a grating on an angled fiber tip  

E-Print Network [OSTI]

by a DC current source. The sensor was spliced with some more single mode fiber and coupled to the photo detector. The photo detector circuit consisted of an InGaAs 1550nm photodiode along with a trans-impedance circuit to reduce the noise... and amplify the output signal. The output signal was received in a data file using an NI-DAQ interface and a C program (Appendix E). The receiver circuit used with the photodiode is shown in figure 21. 30 2K 2K DC Power Supply 9V Ph oto Dtode 10K OP27...

Varadarajan, Harini

2012-06-07T23:59:59.000Z

250

The monitoring and multiplexing of fiber optic sensors using chirped laser sources  

E-Print Network [OSTI]

photodiode through a fiber coupler. An optical isolator is connected in serial with the laser to block the destabilizing optical feedback. The reflected light from the FFPI is converted by another photodiode to an electrical current signal I r... , such that the reflectance is obtained as R FP = CI r /I i , with C a constant and I i the photocurrent measured by the laser power monitoring photodiode. The absolute value of R FP can be obtained through calibration, although it is often not necessary. Fig. 4...

Wan, Xiaoke

2004-09-30T23:59:59.000Z

251

Development of a Prototype Optical Hydrogen Gas Sensor Using a Getter-Doped Polymer Transducer for Monitoring Cumulative Exposure: Preliminary Results  

SciTech Connect (OSTI)

A novel prototype optical sensor for monitoring cumulative hydrogen gas exposure was fabricated and evaluated. Chemical-to-optical transduction was accomplished by detecting the intensity of 670 nm laser light transmitted through a hydrogen getter-doped polymer film mounted at the end of an optical fiber; the transmittance of the composite film increased with uptake of hydrogen by the embedded getter. The composite film consisted of the hydrogen getter 1,4-bis(phenylethynyl)benzene, also known as DEB, with carbon-supported palladium catalyst embedded in silicone elastomer. Because the change in transmittance was irreversible and occurred continuously as the getter captured hydrogen, the sensor behaved like a dosimeter, providing a unique indication of the cumulative gas exposure.

Small IV, W; Maitland, D J; Wilson, T S; Bearinger, J P; Letts, S A; Trebes, J E

2008-06-05T23:59:59.000Z

252

Modeling a Prototype Optical Collision Avoidance Sensor For Unmanned Aerial Vehicles  

E-Print Network [OSTI]

of direct solar illumination. We demonstrate a prototype system based on a network of independent camera emulator allows for realistic field tests with consumer components. Aspects of the design, implementation. Numerous versions of the SAA instrument based on radar, LIDAR and passive- optical, among other

Hornsey, Richard

253

High Efficiency Optical MEMS by the Integration of Photonic Lattices with Surface MEMS  

SciTech Connect (OSTI)

This report outlines our work on the integration of high efficiency photonic lattice structures with MEMS (MicroElectroMechanical Systems). The simplest of these structures were based on 1-D mirror structures. These were integrated into a variety of devices, movable mirrors, switchable cavities and finally into Bragg fiber structures which enable the control of light in at least 2 dimensions. Of these devices, the most complex were the Bragg fibers. Bragg fibers consist of hollow tubes in which light is guided in a low index media (air) and confined by surrounding Bragg mirror stacks. In this work, structures with internal diameters from 5 to 30 microns have been fabricated and much larger structures should also be possible. We have demonstrated the fabrication of these structures with short wavelength band edges ranging from 400 to 1600nm. There may be potential applications for such structures in the fields of integrated optics and BioMEMS. We have also looked at the possibility of waveguiding in 3 dimensions by integrating defects into 3-dimensional photonic lattice structures. Eventually it may be possible to tune such structures by mechanically modulating the defects.

FLEMING, JAMES G.; LIN, SHAWN-YU; MANI, SEETHAMBAL S.; RODGERS, M. STEVEN; DAGEL, DARYL J.

2002-11-01T23:59:59.000Z

254

Integration of angular rate sensors for line of sight stabilization systems  

E-Print Network [OSTI]

of integrating signals is provided. A comparison of the different methods applied to a particular system is also provided. It is shown that, in some cases, a simple parameter optimized filter can provide results almost as good as that of a filter. It is also...

Loe, Gregory Ross

2012-06-07T23:59:59.000Z

255

Detection of biological molecules using boronate-based chemical amplification and optical sensors  

DOE Patents [OSTI]

Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

Van Antwerp, William Peter (Valencia, CA); Mastrototaro, John Joseph (Los Angeles, CA); Lane, Stephen M. (Oakland, CA); Satcher, Jr., Joe H. (Modesto, CA); Darrow, Christopher B. (Pleasanton, CA); Peyser, Thomas A. (Menlo Park, CA); Harder, Jennifer (Livermore, CA)

1999-01-01T23:59:59.000Z

256

Invited Article: An integrated mid-infrared, far-infrared, and terahertz optical Hall effect instrument  

SciTech Connect (OSTI)

We report on the development of the first integrated mid-infrared, far-infrared, and terahertz optical Hall effect instrument, covering an ultra wide spectral range from 3 cm{sup ?1} to 7000 cm{sup ?1} (0.1210 THz or 0.4870 meV). The instrument comprises four sub-systems, where the magneto-cryostat-transfer sub-system enables the usage of the magneto-cryostat sub-system with the mid-infrared ellipsometer sub-system, and the far-infrared/terahertz ellipsometer sub-system. Both ellipsometer sub-systems can be used as variable angle-of-incidence spectroscopic ellipsometers in reflection or transmission mode, and are equipped with multiple light sources and detectors. The ellipsometer sub-systems are operated in polarizer-sample-rotating-analyzer configuration granting access to the upper left 3 3 block of the normalized 4 4 Mueller matrix. The closed cycle magneto-cryostat sub-system provides sample temperatures between room temperature and 1.4 K and magnetic fields up to 8 T, enabling the detection of transverse and longitudinal magnetic field-induced birefringence. We discuss theoretical background and practical realization of the integrated mid-infrared, far-infrared, and terahertz optical Hall effect instrument, as well as acquisition of optical Hall effect data and the corresponding model analysis procedures. Exemplarily, epitaxial graphene grown on 6H-SiC, a tellurium doped bulk GaAs sample and an AlGaN/GaN high electron mobility transistor structure are investigated. The selected experimental datasets display the full spectral, magnetic field and temperature range of the instrument and demonstrate data analysis strategies. Effects from free charge carriers in two dimensional confinement and in a volume material, as well as quantum mechanical effects (inter-Landau-level transitions) are observed and discussed exemplarily.

Khne, P., E-mail: kuehne@huskers.unl.edu; Schubert, M., E-mail: schubert@engr.unl.edu; Hofmann, T., E-mail: thofmann@engr.unl.edu [Department of Electrical Engineering and Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States); Herzinger, C. M., E-mail: cherzinger@jawoollam.com; Woollam, J. A., E-mail: jwoollam@jawoollam.com [J. A. Woollam Co., Inc., 645 M Street, Suite 102, Lincoln, Nebraska 68508-2243 (United States)

2014-07-15T23:59:59.000Z

257

Magneto-optical oxide thin films and integrated nonreciprocal photonic devices  

E-Print Network [OSTI]

Nonreciprocal photonic devices including optical isolators and optical circulators are indispensible components in present day optical communication systems. Although highly desired by the fast development of silicon ...

Bi, Lei, Ph.D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

258

In Vitro and In Vivo Comparison of Optics and Performance of a Distal Sensor Ureteroscope Versus a Standard Fiberoptic Ureteroscope  

E-Print Network [OSTI]

characteristics and optics of the X C with a stan- dardand In Vivo Comparison of Optics and Performance of a Distalperformance characteristics and optics of a new generation

2013-01-01T23:59:59.000Z

259

Map Matching and Real World Integrated Sensor Data Warehousing (Presentation), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministrationManufacturingvitality throughSimulation of

260

Fiber-Optic Long-Line Position Sensor - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000TechnologyTuneFewer FaultsIndustrial

Note: This page contains sample records for the topic "integrated optical sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Sensor and model integration for the rapid prediction of concurrent flow flame spread  

E-Print Network [OSTI]

Fire Safety Engineering is required at every stage in the life cycle of modern-day buildings. Fire safety design, detection and suppression, and emergency response are all vital components of Structural Fire Safety but are usually perceived...Issues of accuracy aside, these models demand heavy resources and computational time periods that are far greater than the time associated with the processes being simulated. To be of use to emergency responders, the output would need to be produced faster than the event itself with lead time to enable planning of an intervention strategy. Therefore in isolation, model output is not robust or fast enough to be implemented in an emergency response scenario. The concept of super-real time predictions steered by measurements is studied in the simple yet meaningful scenario of concurrent flow flame spread. Experiments have been conducted with PMMA slabs to feed sensor data into a simple analytical model. Numerous sensing techniques have been adapted to feed a simple algebraic expression from the literature linking flame spread, flame characteristics and pyrolysis evolution in order to model upward flame spread. The measurements are continuously fed to the computations so that projections of the flame spread velocity and flame characteristics can be established at each instant in time, ahead of the real flame. It was observed that as the input parameters in the analytical models were optimised to the scenario, rapid convergence between the evolving experiment and the predictions was attained....

Cowlard, Adam

262

Wavelength-tunable optical ring resonators  

DOE Patents [OSTI]

Optical ring resonator devices are disclosed that can be used for optical filtering, modulation or switching, or for use as photodetectors or sensors. These devices can be formed as microdisk ring resonators, or as open-ring resonators with an optical waveguide having a width that varies adiabatically. Electrical and mechanical connections to the open-ring resonators are made near a maximum width of the optical waveguide to minimize losses and thereby provide a high resonator Q. The ring resonators can be tuned using an integral electrical heater, or an integral semiconductor junction.

Watts, Michael R. (Albuquerque, NM); Trotter, Douglas C. (Albuquerque, NM); Young, Ralph W. (Albuquerque, NM); Nielson, Gregory N. (Albuquerque, NM)

2009-11-10T23:59:59.000Z

263

Wavelength-tunable optical ring resonators  

DOE Patents [OSTI]

Optical ring resonator devices are disclosed that can be used for optical filtering, modulation or switching, or for use as photodetectors or sensors. These devices can be formed as microdisk ring resonators, or as open-ring resonators with an optical waveguide having a width that varies adiabatically. Electrical and mechanical connections to the open-ring resonators are made near a maximum width of the optical waveguide to minimize losses and thereby provide a high resonator Q. The ring resonators can be tuned using an integral electrical heater, or an integral semiconductor junction.

Watts, Michael R. (Albuquerque, NM); Trotter, Douglas C. (Albuquerque, NM); Young, Ralph W. (Albuquerque, NM); Nielson, Gregory N. (Albuquerque, NM)

2011-07-19T23:59:59.000Z

264

AISI/DOE Advanced Process Control Program Vol. 1 of 6: Optical Sensors and Controls for Improved Basic Oxygen Furnace Operations  

SciTech Connect (OSTI)

The development of an optical sensor for basic oxygen furnace (BOF) off-gas composition and temperature in this Advanced Process Control project has been a laboratory spectroscopic method evolve into a pre-commercialization prototype sensor system. The sensor simultaneously detects an infrared tunable diode laser ITDL beam transmitted through the process off-gas directly above the furnace mouth, and the infrared greybody emission from the particulate-laden off-gas stream. Following developmental laboratory and field-testing, the sensor prototype was successfully tested in four long-term field trials at Bethlehem Steel's Sparrows Point plant in Baltimore, MD> The resulting optical data were analyzed and reveal correlations with four important process variables: (1) bath turndown temperature; (2) carbon monoxide post-combustion control; (2) bath carbon concentration; and (4) furnace slopping behavior. The optical sensor measurement of the off-gas temperature is modestly correlated with bath turndown temperature. A detailed regression analysis of over 200 heats suggests that a dynamic control level of +25 Degree F can be attained with a stand-alone laser-based optical sensor. The ability to track off-gas temperatures to control post-combustion lance practice is also demonstrated, and may be of great use in optimizing post-combustion efficiency in electric furnace steelmaking operations. In addition to the laser-based absorption spectroscopy data collected by this sensor, a concurrent signal generated by greybody emission from the particle-laden off-gas was collected and analyzed. A detailed regression analysis shows an excellent correlation of a single variable with final bath turndown carbon concentration. Extended field trials in 1998 and early 1999 show a response range from below 0.03% to a least 0.15% carbon concentration with a precision of +0.0007%. Finally, a strong correlation between prolonged drops in the off-gas emission signal and furnace slopping events was observed. A simple computer algorithm was written that successfully predicts furnace slopping for 90% of the heats observed; over 80% are predicted with at least a 30-second warning prior to the initial slopping events,

Sarah Allendorf; David Ottesen; Donald Hardesty

2002-01-31T23:59:59.000Z

265

Integrated optical MEMS using through-wafer vias and bump-bonding.  

SciTech Connect (OSTI)

This LDRD began as a three year program to integrate through-wafer vias, micro-mirrors and control electronics with high-voltage capability to yield a 64 by 64 array of individually controllable micro-mirrors on 125 or 250 micron pitch with piston, tip and tilt movement. The effort was a mix of R&D and application. Care was taken to create SUMMiT{trademark} (Sandia's ultraplanar, multilevel MEMS technology) compatible via and mirror processes, and the ultimate goal was to mate this MEMS fabrication product to a complementary metal-oxide semiconductor (CMOS) electronics substrate. Significant progress was made on the via and mirror fabrication and design, the attach process development as well as the electronics high voltage (30 volt) and control designs. After approximately 22 months, the program was ready to proceed with fabrication and integration of the electronics, final mirror array, and through wafer vias to create a high resolution OMEMS array with individual mirror electronic control. At this point, however, mission alignment and budget constraints reduced the last year program funding and redirected the program to help support the through-silicon via work in the Hyper-Temporal Sensors (HTS) Grand Challenge (GC) LDRD. Several months of investigation and discussion with the HTS team resulted in a revised plan for the remaining 10 months of the program. We planned to build a capability in finer-pitched via fabrication on thinned substrates along with metallization schemes and bonding techniques for very large arrays of high density interconnects (up to 2000 x 2000 vias). Through this program, Sandia was able to build capability in several different conductive through wafer via processes using internal and external resources, MEMS mirror design and fabrication, various bonding techniques for arrayed substrates, and arrayed electronics control design with high voltage capability.

McCormick, Frederick Bossert; Frederick, Scott K.

2008-01-01T23:59:59.000Z

266

How do A-train Sensors Intercompare in the Retrieval of Above-Cloud Aerosol Optical Depth? A Case Study-based Assessment  

SciTech Connect (OSTI)

We inter-compare the above-cloud aerosol optical depth (ACAOD) of biomass burning plumes retrieved from different A-train sensors, i.e., MODIS, CALIOP, POLDER, and OMI. These sensors have shown independent capabilities to detect and retrieve aerosol loading above marine boundary layer clouds--a kind of situation often found over the Southeast Atlantic Ocean during dry burning season. A systematic one-to-one comparison reveals that, in general, all passive sensors and CALIOP-based research methods derive comparable ACAOD with differences mostly within 0.2 over homogeneous cloud fields. The 532-nm ACAOD retrieved by CALIOP operational algorithm is largely underestimated; however, its 1064-nm AOD when converted to 500 nm shows closer agreement to the passive sensors. Given the different types of sensor measurements processed with different algorithms, the close agreement between them is encouraging. Due to lack of adequate direct measurements above cloud, the validation of satellite-based ACAOD retrievals remains an open challenge. The inter-satellite comparison, however, can be useful for the relative evaluation and consistency check.

Jethva, H. T.; Torres, O.; Waquet, F.; Chand, Duli; Hu, Yong X.

2014-01-16T23:59:59.000Z

267

High-Speed Electro-Optic Modulator Integrated with Graphene-Boron Nitride Heterostructure and Photonic Crystal Nanocavity  

E-Print Network [OSTI]

Nanoscale and power-efficient electro-optic (EO) modulators are essential components for optical interconnects that are beginning to replace electrical wiring for intra- and inter-chip communications. Silicon-based EO modulators show sufficient figures of merits regarding device footprint, speed, power consumption and modulation depth. However, the weak electro-optic effect of silicon still sets a technical bottleneck for these devices, motivating the development of modulators based on new materials. Graphene, a two-dimensional carbon allotrope, has emerged as an alternative active material for optoelectronic applications owing to its exceptional optical and electronic properties. Here, we demonstrate a high-speed graphene electro-optic modulator based on a graphene-boron nitride (BN) heterostructure integrated with a silicon photonic crystal nanocavity. Strongly enhanced light-matter interaction of graphene in a submicron cavity enables efficient electrical tuning of the cavity reflection. We observe a modul...

Gao, Yuanda; Gan, Xuetao; Li, Luozhou; Peng, Cheng; Meric, Inanc; Wang, Lei; Szep, Attila; Walker, Dennis; Hone, James; Englund, Dirk

2014-01-01T23:59:59.000Z

268

IEEE SENSORS JOURNAL, VOL. 4, NO. 4, AUGUST 2004 395 Sensor Technologies for Monitoring Metabolic  

E-Print Network [OSTI]

IEEE SENSORS JOURNAL, VOL. 4, NO. 4, AUGUST 2004 395 Sensor Technologies for Monitoring Metabolic Michelle Wilson, Member, IEEE Abstract--A review of optical, chemical, and biological sensors to detect-on-a-chip research instrumentation. The sensors reviewed include optical sensors, at both research and commercial

Wilson, Denise

269

Design and simulation for the fabrication of integrated semiconductor optical logic gates  

E-Print Network [OSTI]

Development of ultrafast all-optical logic requires accurate and efficient modeling of optical components and interfaces. In this research, we present an all-optical logic unit cell with complete Boolean functionality as ...

Markina, Aleksandra, 1977-

2006-01-01T23:59:59.000Z

270

Coherent signal from incoherently cw-pumped singly resonant Ti:LiNbO3 integrated optical parametric  

E-Print Network [OSTI]

properties of the parametric nondegenerate three-wave interaction driven from an incoherent pump and we look such as potassium phophate (KTP) [2, 3] and lithium niobate (LN) with di- rect laser diode pumping [4]. Waveguide the optical fields over long interaction lengths [5] - [7]. More specifically, singly resonant integrated OPOs

Boyer, Edmond

271

Introduction: Integrating pH sensors in microfluidic systems can provide in-situ measurement functionality for micro-scale fluidic processing and analyzing applications, especially for medicine synthesis, bioanalysis of drugs  

E-Print Network [OSTI]

Introduction: Integrating pH sensors in microfluidic systems can provide in-situ measurement to monitor pH levels inside microfluidic channels using pH responsive dyes or tag-based indicators possess dynamic responses. The use of miniaturized electrochemical pH sensors for microfluidic systems have been

Chiao, Jung-Chih

272

ION 2006, Fort Worth TX, 26-29 September 2006 1 GPS/INS/G Sensors/Yaw Rate Sensor/Wheel  

E-Print Network [OSTI]

of four integration strategies, namely a GPS/INS integrated system, a GPS/INS/G sensors/Yaw rate sensor/Wheel speed sensor system with two non- holonomic constraints, a GPS/INS/G sensors/Yaw rate sensor/Wheel speed/INS/G sensors/Yaw rate sensor/Wheel speed sensor system with the removal of the lateral constraint

Calgary, University of

273

Use of sensors in monitoring civil structures  

E-Print Network [OSTI]

This thesis surveys the use of sensors and sensor networks in monitoring civil structures, with particular emphasis on the monitoring of bridges and highways using fiber optic sensors. Following a brief review of the most ...

Daher, Bassam William, 1979-

2004-01-01T23:59:59.000Z

274

CHEMICAL SENSORS School of Chemistry and Biochemistry  

E-Print Network [OSTI]

CHEMICAL SENSORS CHEM 6282 School of Chemistry and Biochemistry Chemical sensors physics and electronics or a chemical instrumentation course. The topics covered will include general theory of chemical recognition, electrochemical, optical, mass sensors and data reduction. Text: J

Sherrill, David

275

Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including protein markers, pathogens and cellular debris  

DOE Patents [OSTI]

An assay element is described including recognition ligands bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of a biological target is described including injecting a biological target-containing sample into a sensor cell including the assay element, with the recognition ligands adapted for binding to selected biological targets, maintaining the sample within the sensor cell for time sufficient for binding to occur between selected biological targets within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting the fluorescent-label in any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

Martinez, Jennifer S. (Santa Fe, NM); Swanson, Basil I. (Los Alamos, NM); Grace, Karen M. (Los Alamos, NM); Grace, Wynne K. (Los Alamos, NM); Shreve, Andrew P. (Santa Fe, NM)

2009-06-02T23:59:59.000Z

276

Electromagnetic and nuclear radiation detector using micromechanical sensors  

DOE Patents [OSTI]

Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.

Thundat, Thomas G. (Knoxville, TN); Warmack, Robert J. (Knoxville, TN); Wachter, Eric A. (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

277

Buried fiber optic sensor  

E-Print Network [OSTI]

, and TMom modes. Otherwise vm gives the HEv hm and EHv-hm modest20] 18 Table I. Parameters of the laser source and the fused silica fiber which are used in this experiment. n=n1=1. 4527 n2= 1. 4483 D (core diameter )= 8 um Cladding Diameter = 125 um... Interferometer . B. Frequency Chirping of Laser Diode C. Pressure Sensitivity to Uniform Pressure . . . . . . . . . . D. Pressure Sensitivity to Transverse Pressure . . . . E. Pressure Sensitivity to Longitudinal Pressure . . . . . . . . . . I 3 . . . . 20...

Park, Jaehee

1992-01-01T23:59:59.000Z

278

Development of microwave and millimeter-wave integrated-circuit stepped-frequency radar sensors for surface and subsurface profiling  

E-Print Network [OSTI]

) for various surface and subsurface applications, such as profiling the surface and subsurface of pavements, detecting and localizing small buried Anti-Personnel (AP) mines and measuring the liquid level in a tank. These sensors meet the critical requirements...

Park, Joongsuk

2005-02-17T23:59:59.000Z

279

Fiber Optic Hydrogen Sensor Development: Cooperative Research and Development Final Report, CRADA number CRD-05-00158  

SciTech Connect (OSTI)

NREL and Nuclear Filter Technology collaborated to develop a prototype product for a hydrogen threshold sensor that was used to monitor hydrogen production in the transport of nuclear waste transport containers.

Ringer, M.

2010-07-01T23:59:59.000Z

280

An evaluation of an optically-based, cylinder pressure sensor in a single-cylinder, research, diesel engine  

E-Print Network [OSTI]

in head bolts were tested under a variety of operating conditions on a single cylinder, research, diesel engine. The sensors' pressure vs. crank angle output was compared with the output of a piezoelectric pressure transducer mounted, in the engine head...

Turner, Timothy Troy

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated optical sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Large-Scale Photonic Integration for Advanced All-Optical Routing Functions  

E-Print Network [OSTI]

's electronic routers. This translates into potential energy savings through reduced power consumption. As part than 200 functional elements and operates at 40 Gbps per port. ©2010 Optical Society of America OCIS-channel monolithic tunable optical router (MOTOR) chip operating at 40 Gbps per port. This multi

Coldren, Larry A.

282

Integration of an optical fiber taper with an optical microresonator fabricated in glass by femtosecond laser 3D micromachining  

E-Print Network [OSTI]

We report on fabrication of a microtoroid resonator of a high-quality factor (i. e., Q-factor of ~3.24x10^6 measured under the critical coupling condition) using femtosecond laser three-dimensional (3D) micromachining. Coupling of light into and out of the microresonator has been realized with a fiber taper that is reliably assembled with the microtoroid. The assembly of the fiber taper to the microtoroid is achieved by welding the fiber taper onto the sidewall of the microtoroid using CO2 laser irradiation. The integrated microresonator maintains a high Q-factor of 3.21x10^5 as measured in air.

Song, Jiangxin; Tang, Jialei; Qiao, Lingling; Cheng, Ya

2014-01-01T23:59:59.000Z

283

Silicon-integrated thin-film structure for electro-optic applications  

DOE Patents [OSTI]

A crystalline thin-film structure suited for use in any of an number of electro-optic applications, such as a phase modulator or a component of an interferometer, includes a semiconductor substrate of silicon and a ferroelectric, optically-clear thin film of the perovskite BaTiO.sub.3 overlying the surface of the silicon substrate. The BaTiO.sub.3 thin film is characterized in that substantially all of the dipole moments associated with the ferroelectric film are arranged substantially parallel to the surface of the substrate to enhance the electro-optic qualities of the film.

McKee, Rodney A. (Kingston, TN); Walker, Frederick Joseph (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

284

High-performance broadband optical coatings on InGaN/GaN solar cells for multijunction device integration  

SciTech Connect (OSTI)

We demonstrate InGaN/GaN multiple quantum well solar cells grown by metalorganic chemical vapor deposition on a bulk (0001) substrate with high-performance broadband optical coatings to improve light absorption. A front-side anti-reflective coating and a back-side dichroic mirror were designed to minimize front surface reflections across a broad spectral range and maximize rear surface reflections only in the spectral range absorbed by the InGaN, making the cells suitable for multijunction solar cell integration. Application of optical coatings increased the peak external quantum efficiency by 56% (relative) and conversion efficiency by 37.5% (relative) under 1 sun AM0 equivalent illumination.

Young, N. G., E-mail: ngyoung@engineering.ucsb.edu; Farrell, R. M.; Iza, M.; Speck, J. S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Perl, E. E.; Keller, S. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States); Bowers, J. E.; Nakamura, S.; DenBaars, S. P. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States)

2014-04-21T23:59:59.000Z

285

Sensor readout detector circuit  

DOE Patents [OSTI]

A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems. 6 figs.

Chu, D.D.; Thelen, D.C. Jr.

1998-08-11T23:59:59.000Z

286

Sensor readout detector circuit  

DOE Patents [OSTI]

A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems.

Chu, Dahlon D. (Albuquerque, NM); Thelen, Jr., Donald C. (Bozeman, MT)

1998-01-01T23:59:59.000Z

287

In-situ, Real-Time Monitoring of Mechanical and Chemical Structure Changes in a V2O5 Battery Electrode Using a MEMS Optical Sensor  

SciTech Connect (OSTI)

This work presents the first demonstration of a MEMS optical sensor for in-situ, real-time monitoring of both mechanical and chemical structure evolutions in a V2O5 lithium-ion battery (LIB) cathode during battery operation. A reflective membrane forms one side of a Fabry-Perot (FP) interferometer, while the other side is coated with V2O5 and exposed to electrolyte in a half-cell LIB. Using one microscope and two laser sources, both the induced membrane deflection and the corresponding Raman intensity changes are observed during lithium cycling. Results are in good agreement with the expected mechanical behavior and disorder change of the V2O5 layers, highlighting the significant potential of MEMS as enabling tools for advanced scientific investigations.

Jung, H. [University of Maryland; Gerasopoulos, K. [University of Maryland; Gnerlich, Markus [University of Maryland; Talin, A. Alec [Sandia National Laboratories; Ghodssi, Reza [University of Maryland

2014-06-01T23:59:59.000Z

288

Enhancement of the resolution of full-field optical coherence tomography by using a colour image sensor  

SciTech Connect (OSTI)

The influence of white balance in a colour image detector on the resolution of a full-field optical coherence tomograph (FFOCT) is studied. The change in the interference pulse width depending on the white balance tuning is estimated in the cases of a thermal radiation source (incandescent lamp) and a white light emitting diode. It is shown that by tuning white balance of the detector in a certain range, the FFOCT resolution can be increased by 20 % as compared to the resolution, attained with the use of a monochrome detector. (optical coherence tomography)

Kalyanov, A L; Lychagov, V V; Smirnov, I V; Ryabukho, V P [N.G. Chernyshevsky Saratov State University, Saratov (Russian Federation)

2013-08-31T23:59:59.000Z

289

Integration of highly probabilistic sources into optical quantum architectures: perpetual quantum computation  

E-Print Network [OSTI]

In this paper we introduce a design for an optical topological cluster state computer constructed exclusively from a single quantum component. Unlike previous efforts we eliminate the need for on demand, high fidelity photon sources and detectors and replace them with the same device utilised to create photon/photon entanglement. This introduces highly probabilistic elements into the optical architecture while maintaining complete specificity of the structure and operation for a large scale computer. Photons in this system are continually recycled back into the preparation network, allowing for a arbitrarily deep 3D cluster to be prepared using a comparatively small number of photonic qubits and consequently the elimination of high frequency, deterministic photon sources.

Simon J. Devitt; Ashley M. Stephens; William J. Munro; Kae Nemoto

2011-02-02T23:59:59.000Z

290

A microwave integrated optical cutoff modulator at 1.3 microns  

E-Print Network [OSTI]

to display photodiode Fig. 13. General test setup for DC and low frequency tests. passes through a linear polarizer, a half wave plate, and another linear polarizer creating a linearly polarized TE optical beam. End fire coupling with a microscope... objective lens couples the beam into the waveguide through a polished edge, and 44 the output facet, also polished, is imaged onto a photodiode with another objective lens. The output signal from the waveguide is displayed on a power meter or spectrum...

Marx, Jeffrey Michael

2012-06-07T23:59:59.000Z

291

Nondestructive Technique Survey for Assessing Integrity of Composite Firing Vessel  

SciTech Connect (OSTI)

The repeated use and limited lifetime of a composite tiring vessel compel a need to survey techniques for monitoring the structural integrity of the vessel in order to determine when it should be retired. Various nondestructive techniques were researched and evaluated based on their applicability to the vessel. The methods were visual inspection, liquid penetrant testing, magnetic particle testing, surface mounted strain gauges, thermal inspection, acoustic emission, ultrasonic testing, radiography, eddy current testing, and embedded fiber optic sensors. It was determined that embedded fiber optic sensor is the most promising technique due to their ability to be embedded within layers of composites and their immunity to electromagnetic interference.

Tran, A.

2000-08-01T23:59:59.000Z

292

Miniaturized Low-power Electro-optic Modulator Based on Silicon Integrated Nanophotonics and Organic Polymers  

E-Print Network [OSTI]

We design and demonstrate a compact, low-power, low-dispersion and broadband optical modulator based on electro-optic (EO) polymer refilled silicon slot photonic crystal waveguide (PCW). The EO polymer is engineered for large EO activity and near-infrared transparency. The half-wave switching-voltage is measured to be V{\\pi}=0.97V over optical spectrum range of 8nm, corresponding to a record-high effective in-device r33 of 1190pm/V and V{\\pi} L of 0.291Vmm in a push-pull configuration. Excluding the slow-light effect, we estimate the EO polymer is poled with an ultra-high efficiency of 89pm/V in the slot. In addition, to achieve high-speed modulation, silicon PCW is selectively doped to reduce RC time delay. The 3-dB RF bandwidth of the modulator is measured to be 11GHz, and a modulation response up to 40GHz is observed.

Zhang, Xingyu; Luo, Jingdong; Jen, Alex K -Y; Chen, Ray T

2014-01-01T23:59:59.000Z

293

Thermal microphotonic sensor and sensor array  

DOE Patents [OSTI]

A thermal microphotonic sensor is disclosed for detecting infrared radiation using heat generated by the infrared radiation to shift the resonant frequency of an optical resonator (e.g. a ring resonator) to which the heat is coupled. The shift in the resonant frequency can be determined from light in an optical waveguide which is evanescently coupled to the optical resonator. An infrared absorber can be provided on the optical waveguide either as a coating or as a plate to aid in absorption of the infrared radiation. In some cases, a vertical resonant cavity can be formed about the infrared absorber to further increase the absorption of the infrared radiation. The sensor can be formed as a single device, or as an array for imaging the infrared radiation.

Watts, Michael R. (Albuquerque, NM); Shaw, Michael J. (Tijeras, NM); Nielson, Gregory N. (Albuquerque, NM); Lentine, Anthony L. (Albuquerque, NM)

2010-02-23T23:59:59.000Z

294

Ris-PhD-19(EN) Self Calibrating Interferometric Sensor  

E-Print Network [OSTI]

Interferometric Sensor Department: Optics and Plasma Research Department Risø-PhD-19(EN) January 2006 This thesis

295

Theory of Optical Leaky-Wave Antenna Integrated in a Ring Resonator for Radiation Control  

E-Print Network [OSTI]

The integration of a leaky-wave antenna with a ring resonator is presented using analytical guided wave models. The device consists of a ring resonator fed by a directional coupler, where the ring resonator path includes a leaky-wave antenna segment. The resonator integration provides two main advantages: the high-quality factor ensures effective control of radiation intensity by controlling the resonance conditions and the efficient radiation from a leaky-wave antenna even when its length is much smaller than the propagation length of the leaky wave. We devise an analytical model of the guided wave propagation along a directional coupler and the ring resonator path including the antenna and non-radiating segments. The trade-offs regarding the quality factor of resonance and the antenna efficiency of such a design is reported in terms of the coupler parameters, leaky-wave constant and radiation length. Finally a CMOS-compatible OLWA design suitable for the ring resonator integration is designed where Silicon ...

Guclu, Caner; Capolino, Filippo

2015-01-01T23:59:59.000Z

296

Monolithically Integrated Selectable Repetition-Rate Laser Diode Source of Picosecond Optical Pulses  

E-Print Network [OSTI]

of standardized components using generic from which more complex circuits can be built. Recently however InP generic foundries have used a selection of basic optoelectronic components to assemble Application Specific Photonic Integrated Circuits (ASPICs) [15... (2007). 14. P. K. Tien, Rev. Mod. Phys. 49, 361-420 (1977). 15. M. Smit, X. Leijtens, E. Bente, J. van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, Optoelectronics, IET 5, 187-194 (2011). 16. M. Kuramoto, N. Kitajima, H. Guo...

Guo, Xuhan; Olle, Vojtech; Quarterman, Adrian; Wonfor, Adrian; Penty, Richard; White, Ian

2014-06-15T23:59:59.000Z

297

Nanowires and nanoribbons as subwavelength optical waveguides and their use as components in photonic circuits and devices  

DOE Patents [OSTI]

Nanoribbons and nanowires having diameters less than the wavelength of light are used in the formation and operation of optical circuits and devices. Such nanostructures function as subwavelength optical waveguides which form a fundamental building block for optical integration. The extraordinary length, flexibility and strength of these structures enable their manipulation on surfaces, including the precise positioning and optical linking of nanoribbon/wire waveguides and other nanoribbon/wire elements to form optical networks and devices. In addition, such structures provide for waveguiding in liquids, enabling them to further be used in other applications such as optical probes and sensors.

Yang, Peidong; Law, Matt; Sirbuly, Donald J.; Johnson, Justin C.; Saykally, Richard; Fan, Rong; Tao, Andrea

2012-10-02T23:59:59.000Z

298

Sensor placement algorithm development to maximize the efficiency of acid gas removal unit for integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture  

SciTech Connect (OSTI)

Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In this work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS) and the Parallel Computing toolbox from Mathworks. In this presentation, we will share our experience in setting up parallel computing using GA in the MATLAB environment and present the overall approach for achieving higher computational efficiency in this framework.

Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

299

Sensor placement algorithm development to maximize the efficiency of acid gas removal unit for integrated gasifiction combined sycle (IGCC) power plant with CO2 capture  

SciTech Connect (OSTI)

Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In this work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS) and the Parallel Computing toolbox from Mathworks. In this presentation, we will share our experience in setting up parallel computing using GA in the MATLAB environment and present the overall approach for achieving higher computational efficiency in this framework.

Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

300

Application of an all-solid-state diode-laser-based sensor for carbon monoxide detection by optical absorption in the 4.4 ? 4.8 m spectral region  

E-Print Network [OSTI]

APPLICATION OF AN ALL-SOLID-STATE DIODE-LASER-BASED SENSOR FOR CARBON MONOXIDE DETECTION BY OPTICAL ABSORPTION IN THE 4.4 ? 4.8 ?m SPECTRAL REGION A Dissertation by RODOLFO BARRON JIMENEZ Submitted to the Office of Graduate... FOR CARBON MONOXIDE DETECTION BY OPTICAL ABSORPTION IN THE 4.4 ? 4.8 ?m SPECTRAL REGION A Dissertation by RODOLFO BARRON JIMENEZ Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY...

Rodolfo, Barron Jimenez

2005-02-17T23:59:59.000Z

Note: This page contains sample records for the topic "integrated optical sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Capacitance pressure sensor  

DOE Patents [OSTI]

A microelectromechanical (MEM) capacitance pressure sensor integrated with electronic circuitry on a common substrate and a method for forming such a device are disclosed. The MEM capacitance pressure sensor includes a capacitance pressure sensor formed at least partially in a cavity etched below the surface of a silicon substrate and adjacent circuitry (CMOS, BiCMOS, or bipolar circuitry) formed on the substrate. By forming the capacitance pressure sensor in the cavity, the substrate can be planarized (e.g. by chemical-mechanical polishing) so that a standard set of integrated circuit processing steps can be used to form the electronic circuitry (e.g. using an aluminum or aluminum-alloy interconnect metallization).

Eaton, William P. (Tijeras, NM); Staple, Bevan D. (Albuquerque, NM); Smith, James H. (Albuquerque, NM)

2000-01-01T23:59:59.000Z

302

Multiplexed Sensor for Synthesis Gas Compsition and Temperature  

SciTech Connect (OSTI)

The overall goal of this project has been to develop a highly sensitive, multiplexed TDL-based sensor for CO{sub 2}, CO, H{sub 2}O (and temperature), CH{sub 4}, H{sub 2}S, and NH{sub 3}. Such a sensor was designed with so-called 'plug-and-play' characteristics to accommodate additional sensors, and provided in situ path-integrated measurements indicative of average concentrations at speeds suitable for direct gasifier control. The project developed the sensor and culminated in a real-world test of the underlying technology behind the sensor. During the project, new underlying measurements of spectroscopic constants for all of the gases of interest performed, in custom cells built for the project. The envisioned instrument was built from scratch from component lasers, fiber optics, amplifier blocks, detectors, etc. The sensor was tested for nearly a week in an operational power plant. The products of this research are expected to have a direct impact on gasifier technology and the production of high-quality syngas, with substantial broader application to coal and other energy systems. This report is the final technical report on project DE-FG26-04NT42172. During the project we completed all of the milestones planned in the project, with a modification of milestone (7) required due to lack of funding and personnel.

Steven Buckley; Reza Gharavi; Marco Leon

2007-10-01T23:59:59.000Z

303

Heterogeneously integrated microsystem-on-a-chip  

DOE Patents [OSTI]

A microsystem-on-a-chip comprises a bottom wafer of normal thickness and a series of thinned wafers can be stacked on the bottom wafer, glued and electrically interconnected. The interconnection layer comprises a compliant dielectric material, an interconnect structure, and can include embedded passives. The stacked wafer technology provides a heterogeneously integrated, ultra-miniaturized, higher performing, robust and cost-effective microsystem package. The highly integrated microsystem package, comprising electronics, sensors, optics, and MEMS, can be miniaturized both in volume and footprint to the size of a bottle-cap or less.

Chanchani, Rajen (Albuquerque, NM)

2008-02-26T23:59:59.000Z

304

Sensor Network Demonstration for In Situ Decommissioning - 13332  

SciTech Connect (OSTI)

Florida International University's (FIU's) Applied Research Center is currently supporting the Department of Energy's (DOE) Environmental Management Office of D and D and Facility Engineering program. FIU is supporting DOE's initiative to improve safety, reduce technical risks, and limit uncertainty within D and D operations by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting feasibility studies and large scale demonstrations of promising technologies. During FY11, FIU collaborated with Savannah River National Laboratory in the development of an experimental test site for the demonstration of multiple sensor systems for potential use in the in situ decommissioning process. In situ decommissioning is a process in which the above ground portion of a facility is dismantled and removed, and the underground portion is filled with a cementious material such as grout. In such a scenario, the question remains on how to effectively monitor the structural health of the grout (cracking, flexing, and sinking), as well as track possible migration of contaminants within and out of the grouted monolith. The right types of sensors can aid personnel in better understanding the conditions within the entombed structure. Without sensors embedded in and around the monolith, it will be very difficult to estimate structural integrity and contaminant transport. Yet, to fully utilize the appropriate sensors and the provided data, their performance and reliability must be evaluated outside a laboratory setting. To this end, a large scale experimental setup and demonstration was conducted at FIU. In order to evaluate a large suite of sensor systems, FIU personnel designed and purchased a pre-cast concrete open-top cube, which served as a mock-up of an in situ DOE decommissioned facility. The inside of the cube measures 10 ft x 10 ft x 8 ft. In order to ensure that the individual sensors would be immobilized during the grout pouring activities, a set of nine sensor racks were designed. The 270 sensors provided by Idaho National Laboratory (INL), Mississippi State University (MSU), University of Houston (UH), and University of South Carolina (USC) were secured to these racks based on predetermined locations. Once sensor racks were installed inside the test cube, connected and debugged, approximately 32 cubic yards of special grout material was used to entomb the sensors. MSU provided and demonstrated four types of fiber loop ring-down (FLR) sensors for detection of water, temperature, cracks, and movement of fluids. INL provided and demonstrated time differenced 3D electrical resistivity tomography (ERT), advanced tensiometers for moisture content, and thermocouples for temperature measurements. University of Houston provided smart aggregate (SA) sensors, which detect crack severity and water presence. An additional UH sensor system demonstrated was a Fiber Bragg Grating (FBG) fiber optic system measuring strain, presence of water, and temperature. USC provided a system which measured acoustic emissions during cracking, as well as temperature and pH sensors. All systems were connected to a Sensor Remote Access System (SRAS) data networking and collection system designed, developed and provided by FIU. The purpose of SRAS was to collect and allow download of the raw sensor data from all the sensor system, as well as allow upload of the processed data and any analysis reports and graphs. All this information was made available to the research teams via the Deactivation and Decommissioning Knowledge Management and Information Tool (D and D KM-IT). As a current research effort, FIU is performing an energy analysis, and transferring several sensor systems to a Photovoltaic (PV) System to continuously monitor energy consumption parameters and overall power demands. Also, One final component of this research is focusing on developing an integrated data network to capture, log and analyze sensor system data in near real time from a single inte

Lagos, L.; Varona, J.; Awwad, A. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)] [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States); Rivera, J.; McGill, J. [Department of Energy - DOE, Environmental Management Office (United States)] [Department of Energy - DOE, Environmental Management Office (United States)

2013-07-01T23:59:59.000Z

305

Electrochemical NOx Sensor for Monitoring Diesel Emissions  

Broader source: Energy.gov (indexed) [DOE]

advanced prototype built on an alumina substrate, provided by Ford, with an integrated heating element * Substrate packaged by U.S. automotive supplier into a commercial sensor...

306

Fiber optic D dimer biosensor  

DOE Patents [OSTI]

A fiber optic sensor for D dimer (a fibrinolytic product) can be used in vivo (e.g., in catheter-based procedures) for the diagnosis and treatment of stroke-related conditions in humans. Stroke is the third leading cause of death in the United States. It has been estimated that strokes and stroke-related disorders cost Americans between $15-30 billion annually. Relatively recently, new medical procedures have been developed for the treatment of stroke. These endovascular procedures rely upon the use of microcatheters. These procedures could be facilitated with this sensor for D dimer integrated with a microcatheter for the diagnosis of clot type, and as an indicator of the effectiveness, or end-point of thrombolytic therapy.

Glass, Robert S. (Livermore, CA); Grant, Sheila A. (Pleasanton, CA)

1999-01-01T23:59:59.000Z

307

Fiber optic D dimer biosensor  

DOE Patents [OSTI]

A fiber optic sensor for D dimer (a fibrinolytic product) can be used in vivo (e.g., in catheter-based procedures) for the diagnosis and treatment of stroke-related conditions in humans. Stroke is the third leading cause of death in the United States. It has been estimated that strokes and stroke-related disorders cost Americans between $15-30 billion annually. Relatively recently, new medical procedures have been developed for the treatment of stroke. These endovascular procedures rely upon the use of microcatheters. These procedures could be facilitated with this sensor for D dimer integrated with a microcatheter for the diagnosis of clot type, and as an indicator of the effectiveness, or end-point of thrombolytic therapy. 4 figs.

Glass, R.S.; Grant, S.A.

1999-08-17T23:59:59.000Z

308

MEMS Resonant Strain Sensor Integration  

E-Print Network [OSTI]

solid-state microscale lithium batteries for microspacecraftinclude small scale batteries [37], nuclear scavenging [38,

Myers, David Richard

2010-01-01T23:59:59.000Z

309

MEMS Resonant Strain Sensor Integration  

E-Print Network [OSTI]

sensing system. Microelectromechanical Systems, Journal of,amplifier. Microelectromechanical Systems, Journal of, 6(4):Journal of Microelectromechanical Systems, 11(6):784793,

Myers, David Richard

2010-01-01T23:59:59.000Z

310

Integrated Microfluidic Electrochemical DNA Sensor  

E-Print Network [OSTI]

of small scale fluid flow Laminar flow Easy to predict the flow patterns Very little diffusion This can make mixing difficult Small volumes Don't need to waste expensive reagents Easy fluid control;DNA Purification The DNA will be extracted using Invitrogen Charge Switch beads. Cellular Lysis

Fygenson, Deborah Kuchnir

311

Design and evaluation of the ReKon : an integrated detection and assessment perimeter system.  

SciTech Connect (OSTI)

Kontek Industries (Kannapolis, NC) and their subsidiary, Stonewater Control Systems (Kannapolis, NC), have entered into a cooperative research and development agreement with Sandia to jointly develop and evaluate an integrated perimeter security system solution, one that couples access delay with detection and assessment. This novel perimeter solution was designed to be configurable for use at facilities ranging from high-security military sites to commercial power plants, to petro/chemical facilities of various kinds. A prototype section of the perimeter has been produced and installed at the Sandia Test and Evaluation Center in Albuquerque, NM. This prototype system integrated fiber optic break sensors, active infrared sensors, fence disturbance sensors, video motion detection, and ground sensors. This report documents the design, testing, and performance evaluation of the developed ReKon system. The ability of the system to properly detect pedestrian or vehicle attempts to bypass, breach, or otherwise defeat the system is characterized, as well as the Nuisance Alarm Rate.

Dabling, Jeffrey Glenn; Andersen, Jason Jann; McLaughlin, James O. [Stonewater Control Systems, Inc., Kannapolis, NC

2013-02-01T23:59:59.000Z

312

Gamma-insensitive optical sensor  

DOE Patents [OSTI]

An ultra-violet/visible/infra-red gamma-insensitive gas avalanche focal plane array comprising a planar photocathode and a planar anode pad array separated by a gas-filled gap and across which is applied an electric potential. Electrons ejected from the photocathode are accelerated sufficiently between collisions with the gas molecules to ionize them, forming an electron avalanche. The gap acts like a proportional counter. The array of anode pad are mounted on the front of an anode plate and are connected to matching contact pads on the back of the anode via feed through wires. Connection of the anode to signal processing electronics is made from the contact pads using standard indium bump techniques, for example.

Kruger, Hans W. (Walnut Creek, CA)

1994-01-01T23:59:59.000Z

313

Gamma-insensitive optical sensor  

DOE Patents [OSTI]

An ultraviolet/visible/infrared gamma-insensitive gas avalanche focal plane array is described comprising a planar photocathode and a planar anode pad array separated by a gas-filled gap and across which is applied an electric potential. Electrons ejected from the photocathode are accelerated sufficiently between collisions with the gas molecules to ionize them, forming an electron avalanche. The gap acts like a proportional counter. The array of anode pad are mounted on the front of an anode plate and are connected to matching contact pads on the back of the anode via feed through wires. Connection of the anode to signal processing electronics is made from the contact pads using standard indium bump techniques, for example. 6 figures.

Kruger, H.W.

1994-03-15T23:59:59.000Z

314

Concept synthesis and design optimization of meso-scale, multi-degree-of-freedom precision flexure motion systems with integrated strain-based sensors  

E-Print Network [OSTI]

The purpose of this research was to generate the knowledge required to 1) identify where and how to best place strain-based sensors in multi-degree-of-freedom (MDOF) flexure systems and 2) design a flexure system with ...

DiBiasio, Christopher M. (Christopher Michael)

2010-01-01T23:59:59.000Z

315

Fluorescent temperature sensor  

DOE Patents [OSTI]

The present invention is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM

2009-03-03T23:59:59.000Z

316

Sensor Relocation with Mobile Sensors:Sensor Relocation with Mobile Sensors: Design,Design,  

E-Print Network [OSTI]

Sensor Relocation with Mobile Sensors:Sensor Relocation with Mobile Sensors: Design of Freiburg #12;OverviewOverview · Sensor networks · mobile sensor · mobile robot · Mote · sensor relocation #12;Sensor networks · A wirless network . · Set of sensors. · Static Mote #12;Mobile sensor networks

Schindelhauer, Christian

317

High-index-contrast electromechanical optical switches  

E-Print Network [OSTI]

System developers are looking to replace protocol-dependent, bandwidth-limited optical networks with intelligent optically-transparent integrated photonic networks. Several electromechanical optical switches are explored ...

Bryant, Reginald (Reginald Eugene), 1978-

2011-01-01T23:59:59.000Z

318

Remote sensing of total integrated water vapor, wind speed, and cloud liquid water over the ocean using the Special Sensor Microwave/Imager (SSM/I)  

E-Print Network [OSTI]

A modified D-matrix retrieval method is the basis of the refined total integrated water vapor (TIWV), total integrated cloud liquid water (CLW), and surface wind speed (WS) retrieval methods that are developed. The 85 GHZ polarization difference...

Manning, Norman Willis William

2012-06-07T23:59:59.000Z

319

Development of the recess mounting with monolithic metallization optoelectronic integrated circuit technology for optical clock distribution applications  

E-Print Network [OSTI]

Recess mounting with monolithic metallization, or RM3 integration, is used to integrate Ino.47Ga0.53As/InP based lattice-matched high quantum efficiency p-i-n photodetectors on silicon chips to build high performance ...

Atmaca, Eralp, 1976-

2007-01-01T23:59:59.000Z

320

Theoretical simulations of protective thin film Fabry-Prot filters for integrated optical elements of diode pumped alkali lasers (DPAL)  

SciTech Connect (OSTI)

The lifetime of Diode-Pumped Alkali Lasers (DPALs) is limited by damage initiated by reaction of the glass envelope of its gain medium with rubidium vapor. Rubidium is absorbed into the glass and the rubidium cations diffuse through the glass structure, breaking bridging Si-O bonds. A damage-resistant thin film was developed enhancing high-optical transmission at natural rubidium resonance input and output laser beam wavelengths of 780 nm and 795 nm, while protecting the optical windows of the gain cell in a DPAL. The methodology developed here can be readily modified for simulation of expected transmission performance at input pump and output laser wavelengths using different combination of thin film materials in a DPAL. High coupling efficiency of the light through the gas cell was accomplished by matching the air-glass and glass-gas interfaces at the appropriate wavelengths using a dielectric stack of high and low index of refraction materials selected to work at the laser energies and protected from the alkali metal vapor in the gain cell. Thin films as oxides of aluminum, zirconium, tantalum, and silicon were selected allowing the creation of Fabry-Perot optical filters on the optical windows achieving close to 100% laser transmission in a solid optic combination of window and highly reflective mirror. This approach allows for the development of a new whole solid optic laser.

Quarrie, L., E-mail: Lindsay.Quarrie@l-3com.com, E-mail: lindsay.o.quarrie@gmail.com [New Mexico Institute of Mining and Technology, Department of Materials Engineering, 801 LeRoy Place, Socorro, NM 87801 (United States); Air Force Research Laboratory, AFRL/RDLC Laser CoE, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776 (United States)

2014-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "integrated optical sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Integrated Coverage and Connectivity Configuration for Energy Conservation  

E-Print Network [OSTI]

Integrated Coverage and Connectivity Configuration for Energy Conservation in Sensor Networks University in St. Louis An effective approach for energy conservation in wireless sensor networks: Sensor network, wireless ad hoc network, coverage, connectiv- ity, energy conservation, topology

Lu, Chenyang

322

Luminescence-Based Spectroelectrochemical Sensor for [Tc(dmpe...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

within a Charge Abstract: A spectroelectrochemical sensor consisting of an indium tin oxide (ITO) optically transparent electrode (OTE) coated with a thin film of sulfonated...

323

A microelectronic design for low-cost disposable chemical sensors  

E-Print Network [OSTI]

This thesis demonstrates the novel concept and design of integrated microelectronics for a low-cost disposable chemical sensor. The critical aspects of this chemical sensor are the performance of the microelectronic chip ...

Laval, Stuart S. (Stuart Sean), 1980-

2004-01-01T23:59:59.000Z

324

Many-body effects on optical gain in GaAsPN/GaPN quantum well lasers for silicon integration  

SciTech Connect (OSTI)

Many-body effects on the optical gain in GaAsPN/GaP QW structures were investigated by using the multiband effective-mass theory and the non-Markovian gain model with many-body effects. The free-carrier model shows that the optical gain peak slightly increases with increasing N composition. In addition, the QW structure with a larger As composition shows a larger optical gain than that with a smaller As composition. On the other hand, in the case of the many-body model, the optical gain peak decreases with increasing N composition. Also, the QW structure with a smaller As composition is observed to have a larger optical gain than that with a larger As composition. This can be explained by the fact that the QW structure with a smaller As or N composition shows a larger Coulomb enhancement effect than that with a larger As or N composition. This means that it is important to consider the many-body effect in obtaining guidelines for device design issues.

Park, Seoung-Hwan, E-mail: shpark@cu.ac.kr [Department of Electronics Engineering, Catholic University of Daegu, Hayang, Kyeongbuk 712-702 (Korea, Republic of)

2014-02-14T23:59:59.000Z

325

Integrated optical and electrical modeling of plasmon-enhanced thin film photovoltaics: A case-study on organic devices  

SciTech Connect (OSTI)

The nanoscale light control for absorption enhancement of organic photovoltaic (OPV) devices inevitably produces strongly non-uniform optical fields. These non-uniformities due to the localized optical modes are a primary route toward absorption enhancement in OPV devices. Therefore, a rigorous modeling tool taking into account the spatial distribution of optical field and carrier generation is necessary. Presented here is a comprehensive numerical model to describe the coupled optical and electrical behavior of plasmon-enhanced polymer:fullerene bulk heterojunction (BHJ) solar cells. In this model, a position-dependent electron-hole pair generation rate that could become highly non-uniform due to photonic nanostructures is directly calculated from the optical simulations. By considering the absorption and plasmonic properties of nanophotonic gratings included in two different popular device architectures, and applying the Poisson, current continuity, and drift/diffusion equations, the model predicts quantum efficiency, short-circuit current density, and desired carrier mobility ratios for bulk heterojunction devices incorporating nanostructures for light management. In particular, the model predicts a significant degradation of device performance when the carrier species with lower mobility are generated far from the collecting electrode. Consequently, an inverted device architecture is preferred for materials with low hole mobility. This is especially true for devices that include plasmonic nanostructures. Additionally, due to the incorporation of a plasmonic nanostructure, we use simulations to theoretically predict absorption band broadening of a BHJ into energies below the band gap, resulting in a 4.8% increase in generated photocurrent.

Rourke, Devin [Department of Physics, University of Colorado, Boulder, Colorado 80309-0390 (United States); Ahn, Sungmo [Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309-0425 (United States); Nardes, Alexandre M.; Lagemaat, Jao van de; Kopidakis, Nikos [National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401 (United States); Park, Wounjhang, E-mail: won.park@colorado.edu [Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309-0425 (United States); Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303 (United States)

2014-09-21T23:59:59.000Z

326

A Robust MEMS Based Multi-Component Sensor for 3D Borehole Seismic Arrays  

SciTech Connect (OSTI)

The objective of this project was to develop, prototype and test a robust multi-component sensor that combines both Fiber Optic and MEMS technology for use in a borehole seismic array. The use such FOMEMS based sensors allows a dramatic increase in the number of sensors that can be deployed simultaneously in a borehole seismic array. Therefore, denser sampling of the seismic wave field can be afforded, which in turn allows us to efficiently and adequately sample P-wave as well as S-wave for high-resolution imaging purposes. Design, packaging and integration of the multi-component sensors and deployment system will target maximum operating temperature of 350-400 F and a maximum pressure of 15000-25000 psi, thus allowing operation under conditions encountered in deep gas reservoirs. This project aimed at using existing pieces of deployment technology as well as MEMS and fiber-optic technology. A sensor design and analysis study has been carried out and a laboratory prototype of an interrogator for a robust borehole seismic array system has been assembled and validated.

Paulsson Geophysical Services

2008-03-31T23:59:59.000Z

327

Multiparameter fiber optic sensing system for monitoring enhanced geothermal systems  

SciTech Connect (OSTI)

The goal of this project was to design, fabricate and test an optical fiber cable which supports multiple sensing modalities for measurements in the harsh environment of enhanced geothermal systems. To accomplish this task, optical fiber was tested at both high temperatures and strains for mechanical integrity, and in the presence of hydrogen for resistance to darkening. Both single mode (SM) and multimode (MM) commercially available optical fiber were identified and selected for the cable based on the results of these tests. The cable was designed and fabricated using a tube-within-tube construction containing two MM fibers and one SM fiber, and without supporting gel that is not suitable for high temperature environments. Commercial fiber optic sensing instruments using Raman DTS (distributed temperature sensing), Brillouin DTSS (distributed temperature and strain sensing), and Raleigh COTDR (coherent optical time domain reflectometry) were selected for field testing. A microelectromechanical systems (MEMS) pressure sensor was designed, fabricated, packaged, and calibrated for high pressure measurements at high temperatures and spliced to the cable. A fiber Bragg grating (FBG) temperature sensor was also spliced to the cable. A geothermal well was selected and its temperature and pressure were logged. The cable was then deployed in the well in two separate field tests and measurements were made on these different sensing modalities. Raman DTS measurements were found to be accurate to ???±5???°C, even with some residual hydrogen darkening. Brillouin DTSS measurements were in good agreement with the Raman results. The Rayleigh COTDR instrument was able to detect some acoustic signatures, but was generally disappointing. The FBG sensor was used to determine the effects of hydrogen darkening, but drift over time made it unreliable as a temperature or pressure sensor. The MEMS sensor was found to be highly stable and accurate to better than its 0.1% calibration.

William A. Challener

2014-12-04T23:59:59.000Z

328

Sensors 2010, 10, 3857-3867; doi:10.3390/s100403857 ISSN 1424-8220  

E-Print Network [OSTI]

Sensors 2010, 10, 3857-3867; doi:10.3390/s100403857 sensors ISSN 1424-8220 www.mdpi.com/journal/sensors 2010 Abstract: This work shows the integration of a sensor based on carbon nanotubes using CMOS technology. A chip sensor (CS) was designed and manufactured using a 0.30 m CMOS process, leaving a free

Resasco, Daniel

329

Emissive sensors and devices incorporating these sensors  

DOE Patents [OSTI]

The present invention generally relates to luminescent and/or optically absorbing compositions and/or precursors to those compositions, including solid films incorporating these compositions/precursors, exhibiting increased luminescent lifetimes, quantum yields, enhanced stabilities and/or amplified emissions. The present invention also relates to sensors and methods for sensing analytes through luminescent and/or optically absorbing properties of these compositions and/or precursors. Examples of analytes detectable by the invention include electrophiles, alkylating agents, thionyl halides, and phosphate ester groups including phosphoryl halides, cyanides and thioates such as those found in certain chemical warfare agents. The present invention additionally relates to devices and methods for amplifying emissions, such as those produced using the above-described compositions and/or precursors, by incorporating the composition and/or precursor within a polymer having an energy migration pathway. In some cases, the compositions and/or precursors thereof include a compound capable of undergoing a cyclization reaction.

Swager, Timothy M; Zhang, Shi-Wei

2013-02-05T23:59:59.000Z

330

Thermal sensor with an improved coating  

DOE Patents [OSTI]

The disclosure is directed to an apparatus for detecting radiation having wavelengths from about 0.4 .mu.m to about 5.6 .mu.m. An optical coating is applied to a thermal sensor that is normally transparent to radiation with such wavelengths. The optical coating is thin and light and includes a modifier and an absorber. The thermal sensor can be a pyroelectric detector such as strontium barium niobate.

LaDelfe, Peter C. (Los Alamos, NM); Stotlar, Suzanne C. (Los Alamos, NM)

1986-01-01T23:59:59.000Z

331

Development of All-Solid-State Sensors for Measurement of Nitric Oxide and Ammonia Concentrations by Optical Absorption in Particle-Laden Combusion Exhaust Streams  

SciTech Connect (OSTI)

An all-solid-state continuous-wave (cw) laser system for ultraviolet absorption measurements of the nitric oxide (NO) molecule has been developed and demonstrated. For the NO sensor, 250 nW of tunable cw ultraviolet radiation is produced by sum-frequency-mixing of 532-nm radiation from a diode-pumped Nd:YAG laser and tunable 395-nm radiation from an external cavity diode laser (ECDL). The sum-frequency-mixing process occurs in a beta-barium borate crystal. The nitric oxide absorption measurements are performed by tuning the ECDL and scanning the sum-frequency-mixed radiation over strong nitric oxide absorption lines near 226 nm. The nitric oxide sensor has been used for measurements in the exhaust of a coal-fired laboratory combustion facility. The Texas A&M University boiler burner facility is a 30 kW (100,000 Btu/hr) downward-fired furnace with a steel shell encasing ceramic insulation. Measurements of nitric oxide concentration in the exhaust stream were performed after modification of the facility for laser based NOx diagnostics. The diode-laser-based sensor measurements showed good agreement with the results from physical probe sampling of the combustion exhaust. The diode-laser-based ultraviolet absorption measurements were successful even when the beam was severely attenuated by particulate in the exhaust stream and window fouling. Single-laser-sweep measurements were demonstrated with an effective time resolution of 100 msec, limited at this time by the scan rate of our mechanically tuned ECDL system. Future planned modifications will lead to even faster response times at sensitivity levels at or below 1 ppm.

Jerald A. Caton; Kalyan Annamalai

2003-09-24T23:59:59.000Z

332

Enabling Long-Lived Sensor Networks Through Solar Energy Harvesting  

E-Print Network [OSTI]

Sensor Networks through Solar Energy Harvesting Jason Hsu,Heliomote A integrated solar energy harvesting and storageYellow bar represent solar energy received locally Solar

Jason Hsu; Sadaf Zahedi; Jonathan Friedman; Aman Kansal; Vijay Raghunathan; Mani Srivastava

2005-01-01T23:59:59.000Z

333

Optical caliper with compensation for specimen deflection and method  

DOE Patents [OSTI]

An optical non-contact profilometry system and method provided by an optical caliper with matched optical sensors that are arranged conjugate to each other so that the surface profile and thickness of an article can be measured without using a fixed reference surface and while permitting the article to deflect in space within the acquisition range of the optical sensors. The output signals from the two optical sensors are algebraically added to compensate for any such deflection of the article and provide a so compensated signal, the balance and sign of which provides a measurement of the actual thickness of the article at the optical sensors.

Bernacki, Bruce E. (Knoxville, TN)

1997-01-01T23:59:59.000Z

334

Optical caliper with compensation for specimen deflection and method  

DOE Patents [OSTI]

An optical non-contact profilometry system and method provided by an optical caliper with matched optical sensors that are arranged conjugate to each other so that the surface profile and thickness of an article can be measured without using a fixed reference surface and while permitting the article to deflect in space within the acquisition range of the optical sensors. The output signals from the two optical sensors are algebraically added to compensate for any such deflection of the article and provide a so compensated signal, the balance and sign of which provides a measurement of the actual thickness of the article at the optical sensors. 2 figs.

Bernacki, B.E.

1997-12-09T23:59:59.000Z

335

Multidimensional Architectures for Functional Optical By Kevin A. Arpin, Agustin Mihi, Harley T. Johnson, Alfred J. Baca,  

E-Print Network [OSTI]

efficient solar cells, and unique sensors. Significant challenges remain including discovery of methods circuitry, enhancement of optical absorption processes in solar cells, and sensors.[1] Since the pioneering

Lewis, Jennifer

336

Simulating Microstructural Evolution and Electrical Transport in Ceramic Gas Sensors  

E-Print Network [OSTI]

. In this paper, using the example of the thermal processing of ceramic gas sensors, an integrated compu- tationalSimulating Microstructural Evolution and Electrical Transport in Ceramic Gas Sensors Yunzhi Wang in ceramic gas sensors has been proposed. First, the particle-flow model and the continuum-phase-field method

Ciobanu, Cristian

337

ENERGY EFFICIENT ROUTING IN WIRELESS SENSOR NETWORKS Curt Schurgers  

E-Print Network [OSTI]

the integration of communications, sensors and signal processing all together in one low-cost package. It is now feasible to fabricate ultra-small sensor nodes that can be scattered on the battlefield to gather strategic towards localized algorithms [1][2]. Due to the large number of sensors, network-scale interaction

Shihada, Basem

338

Sensors 2008, 8, 3903-3931; DOI: 10.3390/s8063903 OPEN ACCESS  

E-Print Network [OSTI]

Sensors 2008, 8, 3903-3931; DOI: 10.3390/s8063903 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.org/sensors to readers with a background in SAR. Keywords: Microscopy, Interferometric, Synthetic Aperture, Radar, Optical Coherence To- mography. #12;Sensors 2008, 8 3904 1. Introduction Traditional sensing modalities

Bhargava, Rohit

339

Sensitive And Selective Chemical Sensor With Nanostructured Surfaces.  

DOE Patents [OSTI]

A chemical sensor is provided which includes an optical resonator including a nanostructured surface comprising a plurality of nanoparticles bound to one or more surfaces of the resonator. The nanoparticles provide optical absorption and the sensor further comprises a detector for detecting the optical absorption of the nanoparticles or their environment. In particular, a selective chemical interaction is provided which modifies the optical absorption of the nanoparticles or their environment, and an analyte is detected based on the modified optical absorption. A light pulse is generated which enters the resonator to interrogate the modified optical absorption and the exiting light pulse is detected by the detector.

Pipino, Andrew C. R. (Gaithersburg, MD)

2003-02-04T23:59:59.000Z

340

GridOPTICS(TM) A Novel Software Framework for Integrating Power Grid Data Storage, Management and Analysis  

SciTech Connect (OSTI)

This paper describes the architecture and design of GridOPTICSTM, a novel software framework to integrate a collection of software tools developed by PNNLs Future Power Grid Initiative (FPGI) into a coherent, powerful operations and planning tool for the power grid of the future. GridOPTICSTM enables plug-and-play of various analysis, modeling and visualization software tools for fast and accurate control of the power grid. To bridge the data access for different control purposes, GridOPTICSTM provides a scalable and thin layer of event processing that hides the complexity of data storage and management. The initial prototype of GridOPTICSTM was demonstrated with several use cases from PNNLs FPGI.

Gorton, Ian; Yin, Jian; Akyol, Bora A.; Ciraci, Selim; Critchlow, Terence; Liu, Yan; Gibson, Tara D.; Purohit, Sumit; Sharma, Poorva; Vlachopoulou, Maria

2013-01-09T23:59:59.000Z

Note: This page contains sample records for the topic "integrated optical sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Development of All-Solid-State Sensors for Measurement of Nitric Oxide and Ammonia Concentrations by Optical Absorption in Particle-Laden Combustion Exhaust Streams  

SciTech Connect (OSTI)

An all-solid-state continuous-wave (cw) laser system for ultraviolet absorption measurements of the nitric oxide (NO) molecule has been developed and demonstrated. For the NO sensor, 250 nW of tunable cw ultraviolet radiation is produced by sum-frequency-mixing of 532-nm radiation from a diode-pumped Nd:YAG laser and tunable 395-nm radiation from an external cavity diode laser (ECDL). The sum-frequency-mixing process occurs in a beta-barium borate crystal. The nitric oxide absorption measurements are performed by tuning the ECDL and scanning the sum-frequency-mixed radiation over strong nitric oxide absorption lines near 226 nm. In Year 1 of the research, the nitric oxide sensor was used for measurements in the exhaust of a coal-fired laboratory combustion facility. The Texas A&M University boiler burner facility is a 30 kW (100,000 Btu/hr) downward-fired furnace with a steel shell encasing ceramic insulation. Measurements of nitric oxide concentration in the exhaust stream were performed after modification of the facility for laser based NOx diagnostics. The diode-laser-based ultraviolet absorption measurements were successful even when the beam was severely attenuated by particulate in the exhaust stream and window fouling. Single-laser-sweep measurements were demonstrated with an effective time resolution of 100 msec, limited at this time by the scan rate of our mechanically tuned ECDL system. In Year 2, the Toptica ECDL in the original system was replaced with a Sacher Lasers ECDL. The mode-hop-free tuning range and tuning rate of the Toptica ECDL were 25 GHz and a few Hz, respectively. The mode-hop-free tuning range and tuning rate of the Sacher Lasers ECDL were 90 GHz and a few hundred Hz, respectively. The Sacher Lasers ECDL thus allows us to scan over the entire NO absorption line and to determine the absorption baseline with increased accuracy and precision. The increased tuning rate is an advantage in that data can be acquired much more rapidly and the absorption measurements are less susceptible to the effects of transient fluctuations in the properties of the coal combustor exhaust stream. Gas cell measurements were performed using the NO sensor with the new ECDL, and a few spectra were acquired from the coal exhaust stream. However, the laser diode in the new ECDL failed during the coal combustor tests. In Year 3, however, we obtained a new GaN laser diode for our ECDL system, installed it, and completed an extensive series of measurements in the Texas A&M coal-fired laboratory combustion facility. The combustor was operated with coal and coal/biomass as fuels, with and without reburn, and with and without ammonia injection. Several different fuel equivalence ratios were investigated for each operating condition.

Jerald A. Caton; Kalyan Annamalai; Robert P. Lucht

2006-12-31T23:59:59.000Z

342

Development of All-Solid-State Sensors for Measurement of Nitric Oxide and Ammonia Concentrations by Optical Absorption in Particle-Laden Combustion Exhaust Streams  

SciTech Connect (OSTI)

An all-solid-state continuous-wave (cw) laser system for ultraviolet absorption measurements of the nitric oxide (NO) molecule has been developed and demonstrated. For the NO sensor, 250 nW of tunable cw ultraviolet radiation is produced by sum-frequency-mixing of 532-nm radiation from a diode-pumped Nd:YAG laser and tunable 395-nm radiation from an external cavity diode laser (ECDL). The sum-frequency-mixing process occurs in a beta-barium borate crystal. The nitric oxide absorption measurements are performed by tuning the ECDL and scanning the sum-frequency-mixed radiation over strong nitric oxide absorption lines near 226 nm. In Year 1 of the research, the nitric oxide sensor was used for measurements in the exhaust of a coal-fired laboratory combustion facility. The Texas A&M University boiler burner facility is a 30 kW (100,000 Btu/hr) downward-fired furnace with a steel shell encasing ceramic insulation. Measurements of nitric oxide concentration in the exhaust stream were performed after modification of the facility for laser based NOx diagnostics. The diode-laser-based ultraviolet absorption measurements were successful even when the beam was severely attenuated by particulate in the exhaust stream and window fouling. Single-laser-sweep measurements were demonstrated with an effective time resolution of 100 msec, limited at this time by the scan rate of our mechanically tuned ECDL system. In Year 2, the Toptica ECDL in the original system was replaced with a Sacher Lasers ECDL. The mode-hop-free tuning range and tuning rate of the Toptica ECDL were 25 GHz and a few Hz, respectively. The mode-hop-free tuning range and tuning rate of the Sacher Lasers ECDL were 90 GHz and a few hundred Hz, respectively. The Sacher Lasers ECDL thus allows us to scan over the entire NO absorption line and to determine the absorption baseline with increased accuracy and precision. The increased tuning rate is an advantage in that data can be acquired much more rapidly and the absorption measurements are less susceptible to the effects of transient fluctuations in the properties of the coal combustor exhaust stream. Gas cell measurements were performed using the NO sensor with the new ECDL, and a few spectra were acquired from the coal exhaust stream. However, the laser diode in the new ECDL failed during the coal combustor tests. In Year 3, however, we obtained a new GaN laser diode for our ECDL system, installed it, and completed an extensive series of measurements in the Texas A&M coal-fired laboratory combustion facility. The combustor was operated with coal and coal/biomass as fuels, with and without reburn, and with and without ammonia injection. Several different fuel equivalence ratios were investigated for each operating condition. A series of spectral simulations was performed using the HITRAN code to investigate the potential sensitivity of absorption measurements of ammonia in different spectral regions. It was concluded that ammonia absorption features in the 3000-nm spectral region would be hard to measure due to water vapor interferences. We will concentrate on the spectral region near 1530 nm, where other researchers have had some success in measuring ammonia.

Jerald A. Caton; Kalyan Annamalai; Robert P. Lucht

2005-09-30T23:59:59.000Z

343

DEVELOPMENT OF ALL-SOLID-STATE SENSORS FOR MEASUREMENT OF NITRIC OXIDE AND AMMONIA CONCENTRATIONS BY OPTICAL ABSORPTION IN PARTICLE-LADEN COMBUSTION EXHAUST STREAMS  

SciTech Connect (OSTI)

An all-solid-state continuous-wave (cw) laser system for ultraviolet absorption measurements of the nitric oxide (NO) molecule has been developed and demonstrated. For the NO sensor, 250 nW of tunable cw ultraviolet radiation is produced by sum-frequency-mixing of 532-nm radiation from a diode-pumped Nd:YAG laser and tunable 395-nm radiation from an external cavity diode laser (ECDL). The sum-frequency-mixing process occurs in a beta-barium borate crystal. The nitric oxide absorption measurements are performed by tuning the ECDL and scanning the sum-frequency-mixed radiation over strong nitric oxide absorption lines near 226 nm. In Year 1 of the research, the nitric oxide sensor was used for measurements in the exhaust of a coal-fired laboratory combustion facility. The Texas A&M University boiler burner facility is a 30 kW (100,000 Btu/hr) downward-fired furnace with a steel shell encasing ceramic insulation. Measurements of nitric oxide concentration in the exhaust stream were performed after modification of the facility for laser based NOx diagnostics. The diode-laser-based ultraviolet absorption measurements were successful even when the beam was severely attenuated by particulate in the exhaust stream and window fouling. Single-laser-sweep measurements were demonstrated with an effective time resolution of 100 msec, limited at this time by the scan rate of our mechanically tuned ECDL system. In Year 2 described in this progress report, the Toptica ECDL in the original system was replaced with a Sacher Lasers ECDL. The mode-hop-free tuning range and tuning rate of the Toptica ECDL were 25 GHz and a few Hz, respectively. The mode-hop-free tuning range and tuning rate of the Sacher Lasers ECDL were 90 GHz and a few hundred Hz, respectively. The Sacher Lasers ECDL thus allows us to scan over the entire NO absorption line and to determine the absorption baseline with increased accuracy and precision. The increased tuning rate is an advantage in that data can be acquired much more rapidly and the absorption measurements are less susceptible to the effects of transient fluctuations in the properties of the coal combustor exhaust stream. Gas cell measurements were performed using the NO sensor with the new ECDL, and a few spectra were acquired from the coal exhaust stream. However, the laser diode in the new ECDL failed during the coal combustor tests. A series of spectral simulations was performed using the HITRAN code to investigate the potential sensitivity of absorption measurements of ammonia in different spectral regions. It was concluded that ammonia absorption features in the 3000-nm spectral region would be hard to measure due to water vapor interferences.

Jerald A. Caton; Kalyan Annamalai; Robert P. Lucht

2004-09-30T23:59:59.000Z

344

Theory of the circular closed loop antenna in the terahertz, infrared, and optical regions  

E-Print Network [OSTI]

-materials, single photon emitters,2 wireless optical broadcasting links,3 bio-sensors,4 and light capture in solar

345

Optical XOR gate  

DOE Patents [OSTI]

An optical XOR gate is formed as a photonic integrated circuit (PIC) from two sets of optical waveguide devices on a substrate, with each set of the optical waveguide devices including an electroabsorption modulator electrically connected in series with a waveguide photodetector. The optical XOR gate utilizes two digital optical inputs to generate an XOR function digital optical output. The optical XOR gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

Vawter, G. Allen

2013-11-12T23:59:59.000Z

346

Optical microphone  

DOE Patents [OSTI]

An optical microphone includes a laser and beam splitter cooperating therewith for splitting a laser beam into a reference beam and a signal beam. A reflecting sensor receives the signal beam and reflects it in a plurality of reflections through sound pressure waves. A photodetector receives both the reference beam and reflected signal beam for heterodyning thereof to produce an acoustic signal for the sound waves. The sound waves vary the local refractive index in the path of the signal beam which experiences a Doppler frequency shift directly analogous with the sound waves.

Veligdan, James T. (Manorville, NY)

2000-01-11T23:59:59.000Z

347

Gas sensor  

DOE Patents [OSTI]

A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

2014-09-09T23:59:59.000Z

348

Sensor apparatus  

DOE Patents [OSTI]

A sensor apparatus and method for detecting an environmental factor is shown that includes an acoustic device that has a characteristic resonant vibrational frequency and mode pattern when exposed to a source of acoustic energy and, futher, when exposed to an environmental factor, produces a different resonant vibrational frequency and/or mode pattern when exposed to the same source of acoustic energy.

Deason, Vance A. (Idaho Falls, ID) [Idaho Falls, ID; Telschow, Kenneth L. (Idaho Falls, ID) [Idaho Falls, ID

2009-12-22T23:59:59.000Z

349

SCIENCE, OPTICS & YOU GUIDEBOOK FOR THE TEACHER  

E-Print Network [OSTI]

SCIENCE, OPTICS & YOU GUIDEBOOK TABLE OF CONTENTS FOR THE TEACHER INTRODUCTION What is Science Optics and You? ...................................................... Using Centers to Teach Science Organizers ........................................................................... Integrating Science

Weston, Ken

350

Quantum Enabled Security (QES) for Optical Communications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

integrated with optical communications to provide a strong, innate, security foundation at the photonic layer for optical fiber networks. July 10, 2013 Quantum Enabled...

351

Molecular Design of Intercalation-Based Sensors. 1. Ammonia Sensing with Quartz Crystal  

E-Print Network [OSTI]

portable, ammonia sensors has grown markedly in recent years. Ammonia sensors recently described in the literature have taken advantage of optical or electrochemical responses in both liquids and vapors

352

Virtual Sensors: Abstracting Data from Physical Sensors  

E-Print Network [OSTI]

Virtual Sensors: Abstracting Data from Physical Sensors TR-UTEDGE-2006-001 Sanem Kabadayi Adam Pridgen Christine Julien © Copyright 2006 The University of Texas at Austin #12;Virtual Sensors: Abstracting Data from Physical Sensors Sanem Kabadayi, Adam Pridgen, and Christine Julien The Center

Julien, Christine

353

Fabrication of thermal microphotonic sensors and sensor arrays  

DOE Patents [OSTI]

A thermal microphotonic sensor is fabricated on a silicon substrate by etching an opening and a trench into the substrate, and then filling in the opening and trench with silicon oxide which can be deposited or formed by thermally oxidizing a portion of the silicon substrate surrounding the opening and trench. The silicon oxide forms a support post for an optical resonator which is subsequently formed from a layer of silicon nitride, and also forms a base for an optical waveguide formed from the silicon nitride layer. Part of the silicon substrate can be selectively etched away to elevate the waveguide and resonator. The thermal microphotonic sensor, which is useful to detect infrared radiation via a change in the evanescent coupling of light between the waveguide and resonator, can be formed as a single device or as an array.

Shaw, Michael J. (Tijeras, NM); Watts, Michael R. (Albuquerque, NM); Nielson, Gregory N. (Albuquerque, NM)

2010-10-26T23:59:59.000Z

354

Corrosion sensor  

DOE Patents [OSTI]

A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

Glass, Robert S. (Livermore, CA); Clarke, Jr., Willis L. (San Ramon, CA); Ciarlo, Dino R. (Livermore, CA)

1994-01-01T23:59:59.000Z

355

Corrosion sensor  

DOE Patents [OSTI]

A corrosion sensor array is described incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis. 7 figures.

Glass, R.S.; Clarke, W.L. Jr.; Ciarlo, D.R.

1994-04-26T23:59:59.000Z

356

FUTURE POWER GRID INITIATIVE Scalable Sensor Data  

E-Print Network [OSTI]

of sensors and a large number of applications in future smart grids Provide a uniformed API to allow applications to access real time power grid data Facilitate the integration of a large number of diverse management systems Allow easy integration of a large number of diverse power grid applications

357

Power inverter with optical isolation  

DOE Patents [OSTI]

An optically isolated power electronic power conversion circuit that includes an input electrical power source, a heat pipe, a power electronic switch or plurality of interconnected power electronic switches, a mechanism for connecting the switch to the input power source, a mechanism for connecting comprising an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or input bus bars, an optically isolated drive circuit connected to the switch, a heat sink assembly upon which the power electronic switch or switches is mounted, an output load, a mechanism for connecting the switch to the output load, the mechanism for connecting including an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or output bus bars, at least one a fiber optic temperature sensor mounted on the heat sink assembly, at least one fiber optic current sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic voltage sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic current sensor mounted on the input power interconnection cable and/or input bus bar, and at least one fiber optic voltage sensor mounted on the input power interconnection cable and/or input bus bar.

Duncan, Paul G.; Schroeder, John Alan

2005-12-06T23:59:59.000Z

358

Handbook of actuators and edge alignment sensors  

SciTech Connect (OSTI)

This actuator and sensor handbook was developed during a cooperative project between the NASA-Marshall Space Flight Center, the SDI-Directed Energy Program and LLNL. The common purpose of the joint effort was to develop precision actuators and sensors for the NASA initiated SpacE Laser ENE-rgy Program (SELENE). The purpose of the SELENE Program is to develop a highly cost effective segmented adaptive optics system for beaming laser power directly to spacecraft in earth orbit.

Krulewich, D A

1992-11-01T23:59:59.000Z

359

Bryan, Hannegan, Energy Systems Integration  

Broader source: Energy.gov (indexed) [DOE]

cross m ul*ple p athways a nd s cales New A pproach E nergy Systems Integra.on 5 * Sensors and controls * Design and integration * Modeling and simulation * System...

360

Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions...  

Broader source: Energy.gov (indexed) [DOE]

Accomplishments * Extensive sensor characterization - Optical, SEM, X-ray micro tomography, XRD, and EDAX * Identified interfacial issues and worked with ESL to address these...

Note: This page contains sample records for the topic "integrated optical sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

In situ, subsurface monitoring of vapor-phase TCE using fiber optics  

SciTech Connect (OSTI)

A vapor-phase, reagent-based, fiber optic trichloroethylene (TCE) sensor developed by Lawrence Livermore National Laboratory (LLNL) was demonstrated at the Savannah River Site (SRS) in two configurations. The first incorporated the sensor into a down-well instrument bounded by two inflatable packers capable of sealing an area for discrete depth analysis. The second involved an integration of the sensor into the probe tip of the Army Corps of Engineers Waterways Experiment Station (WES) cone penetrometry system. Discrete depth measurements of vapor-phase concentrations of TCE in the vadose zone were successfully made using both configurations. These measurements demonstrate the first successful in situ sensing (as opposed to sampling) of TCE at a field site.

Rossabi, J. [Westinghouse Savannah River Co., Aiken, SC (United States); Colston, B. Jr.; Brown, S.; Milanovich, F. [Lawrence Livermore National Lab., CA (United States); Lee, L.T. Jr. [Army Engineer Waterways Experiment Station, Vicksburg, MS (United States). Geotechnical Lab.

1993-03-05T23:59:59.000Z

362

Multiple channel optical data acquisition system  

DOE Patents [OSTI]

A multiple channel optical data acquisition system is provided in which a plurality of remote sensors monitoring specific process variable are interrogated by means of a single optical fiber connecting the remote station/sensors to a base station. The remote station/sensors derive all power from light transmitted through the fiber from the base station. Each station/sensor is individually accessed by means of a light modulated address code sent over the fiber. The remote station/sensors use a single light emitting diode to both send and receive light signals to communicate with the base station and provide power for the remote station. The system described can power at least 100 remote station/sensors over an optical fiber one mile in length.

Fasching, G.E.; Goff, D.R.

1985-02-22T23:59:59.000Z

363

Self-powered wireless sensor system using MEMS piezoelectric micro power generator (PMPG)  

E-Print Network [OSTI]

A thin-film lead zirconate titanate, Pb(Zr,Ti)03, MEMS Piezoelectric Micro Power Generator (PMPG) has been integrated with a commercial wireless sensor node (Telos), to demonstrate a self-powered RF temperature sensor ...

Xia, YuXin, M.B.A. Sloan School of Management.

2006-01-01T23:59:59.000Z

364

Infrared sensors and sensor fusion; Proceedings of the Meeting, Orlando, FL, May 19-21, 1987  

SciTech Connect (OSTI)

The present conference discusses topics in the fields of IR sensor multifunctional design; image modeling, simulation, and detection; IR sensor configurations and components; thermal sensor arrays; silicide-based IR sensors; and IR focal plane array utilization. Attention is given to the fusion of lidar and FLIR for target segmentation and enhancement, the synergetic integration of thermal and visual images for computer vision, the 'Falcon Eye' FLIR system, multifunctional electrooptics and multiaperture sensors for precision-guided munitions, and AI approaches to data integration. Also discussed are the comparative performance of Ir silicide and Pt silicide photodiodes, high fill-factor silicide monolithic arrays, and the characterization of noise in staring IR focal plane arrays.

Buser, R.G.; Warren, F.B.

1987-01-01T23:59:59.000Z

365

Hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

2010-11-23T23:59:59.000Z

366

Distributed Fiber Optic Gas Sensing for Harsh Environment  

SciTech Connect (OSTI)

This report summarizes work to develop a novel distributed fiber-optic micro-sensor that is capable of detecting common fossil fuel gases in harsh environments. During the 32-month research and development (R&D) program, GE Global Research successfully synthesized sensing materials using two techniques: sol-gel based fiber surface coating and magnetron sputtering based fiber micro-sensor integration. Palladium nanocrystalline embedded silica matrix material (nc-Pd/Silica), nanocrystalline palladium oxides (nc-PdO{sub x}) and palladium alloy (nc-PdAuN{sub 1}), and nanocrystalline tungsten (nc-WO{sub x}) sensing materials were identified to have high sensitivity and selectivity to hydrogen; while the palladium doped and un-doped nanocrystalline tin oxide (nc-PdSnO{sub 2} and nc-SnO{sub 2}) materials were verified to have high sensitivity and selectivity to carbon monoxide. The fiber micro-sensor comprises an apodized long-period grating in a single-mode fiber, and the fiber grating cladding surface was functionalized by above sensing materials with a typical thickness ranging from a few tens of nanometers to a few hundred nanometers. GE found that the morphologies of such sensing nanomaterials are either nanoparticle film or nanoporous film with a typical size distribution from 5-10 nanometers. nc-PdO{sub x} and alloy sensing materials were found to be highly sensitive to hydrogen gas within the temperature range from ambient to 150 C, while nc-Pd/Silica and nc-WO{sub x} sensing materials were found to be suitable to be operated from 150 C to 500 C for hydrogen gas detection. The palladium doped and un-doped nc-SnO{sub 2} materials also demonstrated sensitivity to carbon monoxide gas at approximately 500 C. The prototyped fiber gas sensing system developed in this R&D program is based on wavelength-division-multiplexing technology in which each fiber sensor is identified according to its transmission spectra features within the guiding mode and cladding modes. The interaction between the sensing material and fossil fuel gas results in a refractive index change and optical absorption in the sensing layer. This induces mode coupling strength and boundary conditions changes and thereby shifts the central wavelengths of the guiding mode and cladding modes propagation. GE's experiments demonstrated that such an interaction between the fossil fuel gas and sensing material not only shifts the central wavelengths of the guide mode and cladding modes propagation, but also alters their power loss characteristics. The integrated fiber gas sensing system includes multiple fiber gas sensors, fiber Bragg grating-based temperature sensors, fiber optical interrogator, and signal processing software.

Juntao Wu

2008-03-14T23:59:59.000Z

367

Towards a Unified Approach to Information Integration - A review paper on data/information fusion  

SciTech Connect (OSTI)

Information or data fusion of data from different sources are ubiquitous in many applications, from epidemiology, medical, biological, political, and intelligence to military applications. Data fusion involves integration of spectral, imaging, text, and many other sensor data. For example, in epidemiology, information is often obtained based on many studies conducted by different researchers at different regions with different protocols. In the medical field, the diagnosis of a disease is often based on imaging (MRI, X-Ray, CT), clinical examination, and lab results. In the biological field, information is obtained based on studies conducted on many different species. In military field, information is obtained based on data from radar sensors, text messages, chemical biological sensor, acoustic sensor, optical warning and many other sources. Many methodologies are used in the data integration process, from classical, Bayesian, to evidence based expert systems. The implementation of the data integration ranges from pure software design to a mixture of software and hardware. In this review we summarize the methodologies and implementations of data fusion process, and illustrate in more detail the methodologies involved in three examples. We propose a unified multi-stage and multi-path mapping approach to the data fusion process, and point out future prospects and challenges.

Whitney, Paul D.; Posse, Christian; Lei, Xingye C.

2005-10-14T23:59:59.000Z

368

Universal signal processing method for multimode reflective sensors  

E-Print Network [OSTI]

reference amplitude in the measurements. Generation of transmitted pulse and triggering of the monitoring satnple and hold chips was accomplished using existing PROM technology. Optical signals were received by a 600 MHz unity gain bandwidth receiver.... In the experiment, the effect of losses was introduced in the fiber by the use of bulkhead connections. The reflected pulse amplitudes of the reference and sensor pulses were measured while the sensor mirror distance was varied, and The ratio of sensor...

Larson, Robert Eugene

1988-01-01T23:59:59.000Z

369

Sensorpedia: Information Sharing Across Autonomous Sensor Systems  

SciTech Connect (OSTI)

The concept of adapting social media technologies is introduced as a means of achieving information sharing across autonomous sensor systems. Historical examples of interoperability as an underlying principle in loosely-coupled systems is compared and contrasted with corresponding tightly-coupled, integrated systems. Examples of ad hoc information sharing solutions based on Web 2.0 social networks, mashups, blogs, wikis, and data tags are presented and discussed. The underlying technologies of these solutions are isolated and defined, and Sensorpedia is presented as a formalized application for implementing sensor information sharing across large-scale enterprises with incompatible autonomous sensor systems.

Gorman, Bryan L [ORNL; Resseguie, David R [ORNL; Tomkins-Tinch, Christopher H [ORNL

2009-01-01T23:59:59.000Z

370

Optical Characterization Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Optical Characterization Laboratory at the Energy Systems Integration Facility. The Optical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) conducts optical characterization of large solar concentration devices. Concentration solar power (CSP) mirror panels and concentrating solar systems are tested with an emphasis is on measurement of parabolic trough mirror panels. The Optical Characterization Laboratory provides state-of-the-art characterization and testing capabilities for assessing the optical surface quality and optical performance for various CSP technologies including parabolic troughs, linear Fresnel, dishes, and heliostats.

Not Available

2011-10-01T23:59:59.000Z

371

Fabrication and characterization of As[subscript 2]S[subscript 3]/Y[subscript 3]Fe[subscript 5]O[subscript 12] and Y[subscript 3]Fe[subscript 5]O[subscript 12]/SOI strip-loaded waveguides for integrated optical isolator applications  

E-Print Network [OSTI]

We report two novel strategies to integrate magneto-optical oxides on oxidized silicon and SOI platforms based on strip-loaded waveguide structures. By using conventional waveguide fabrication and thin film deposition ...

Ross, Caroline A.

372

Ris-PhD-15(EN) Metal-Clad Waveguide Sensors  

E-Print Network [OSTI]

Risø-PhD-15(EN) Metal-Clad Waveguide Sensors Nina Skivesen Risø National Laboratory Roskilde Denmark September 2005 #12;Author: Nina Skivesen Title: Metal-Clad Waveguide Sensors Department: OPL Risø: 77 Abstract (max. 2000 char.): This work concerns planar optical waveguide sensors for biosensing

373

Compact real-time 2-D gradient-based analog VLSI motion sensor  

E-Print Network [OSTI]

the sensor might be favourably applied in industrial applications. Keywords: analog VLSI, motion sensor selectivity even for very low contrast input is demonstrated. As application it is shown how the pixel, smart vision sensor, parallel image processing, real-time computation, optical ow, machine vision, robot

Deutschmann, Rainer

374

Sensor response rate accelerator  

DOE Patents [OSTI]

An apparatus and method for sensor signal prediction and for improving sensor signal response time, is disclosed. An adaptive filter or an artificial neural network is utilized to provide predictive sensor signal output and is further used to reduce sensor response time delay.

Vogt, Michael C. (Westmont, IL)

2002-01-01T23:59:59.000Z

375

Remotely Deployed Virtual Sensors  

E-Print Network [OSTI]

Remotely Deployed Virtual Sensors TR-UTEDGE-2007-010 Sanem Kabadayi Christine Julien © Copyright 2007 The University of Texas at Austin #12;Remotely Deployed Virtual Sensors Sanem Kabadayi that run on mobile client devices connect to the sensors of a multihop sensor network. For emerging

Julien, Christine

376

Micro-position sensor using faraday effect  

DOE Patents [OSTI]

A micro-position sensor and sensing system using the Faraday Effect. The sensor uses a permanent magnet to provide a magnetic field, and a magneto-optic material positioned in the magnetic field for rotating the plane of polarization of polarized light transmitted through the magneto-optic material. The magnet is independently movable relative to the magneto-optic material so as to rotate the plane of polarization of the polarized light as a function of the relative position of the magnet. In this manner, the position of the magnet relative to the magneto-optic material may be determined from the rotated polarized light. The sensing system also includes a light source, such as a laser or LED, for producing polarized light, and an optical fiber which is connected to the light source and to the magneto-optic material at a sensing end of the optical fiber. Processing electronics, such as a polarimeter, are also provided for determining the Faraday rotation of the plane of polarization of the back-reflected polarized light to determine the position of the magnet relative to the sensing end of the optical fiber.

McElfresh, Michael (Livermore, CA); Lucas, Matthew (Pittsburgh, PA); Silveira, Joseph P. (Tracy, CA); Groves, Scott E. (Brentwood, CA)

2007-02-27T23:59:59.000Z

377

Fiber-optic displacement sensor system  

E-Print Network [OSTI]

. Light pulses from a light emitting diode (LED) were coupled into a multimode fiber. The displacement of a mirror positioned near the end of the fiber was measured by monitoring the amplitude of the reflected pulses. A reference reflection from a... emitting diode (LED) were coupled into a multimode fiber. The displacement of a mirror positioned near the end of the fiber was measured by monitoring the amplitude...

Cava, Norayda Nora

2012-06-07T23:59:59.000Z

378

Vision based navigation using novel optical sensors  

E-Print Network [OSTI]

~ O g M ~ R o 3j a o g O o 4k o + 6go O ) + A O L g A 0 ~O VJ A 'tS A oo A M A O O I4 8 'C el CC + C O C O ~O L 0 A V C C4 . 8 M C5 0 'C 0 C4 8 'C CC . 5 0 27 ~Sl R*Bt Experimental Setup 2 In a first.... Additionally, we define the following quantities: I: Inertia of the robot about G. M: Mass of the robot. Let's calculate the equations of inofion of G. Projecting the thrusters forces: MX ' VU~ cos 8 + VU2 cos 8 VUi sin 8 ? VU4 sin 8 MY = VU, sin 8+ VU...

Wazni, Karim Patrick

2012-06-07T23:59:59.000Z

379

Sandia National Laboratories: Sensors & Optical Diagnostics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreaking Work onClimateSemiconductor RevolutionSensing

380

Sandia National Laboratories: Sensors & Optical Diagnostics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreaking Work onClimateSemiconductor RevolutionSensingMeasurements of

Note: This page contains sample records for the topic "integrated optical sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Sandia National Laboratories: Sensors & Optical Diagnostics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for US PatentOperational EnergyScientific ResearchSensing

382

Six degree of freedom sensor  

DOE Patents [OSTI]

This small, non-contact optical sensor increases the capability and flexibility of computer controlled machines by detecting its relative position to a workpiece in all six degrees of freedom (DOF). At a fraction of the cost, it is over 200 times faster and up to 25 times more accurate than competing 3-DOF sensors. Applications range from flexible manufacturing to a 6-DOF mouse for computers. Until now, highly agile and accurate machines have been limited by their inability to adjust to changes in their tasks. By enabling them to sense all six degrees of position, these machines can now adapt to new and complicated tasks without human intervention or delay--simplifying production, reducing costs, and enhancing the value and capability of flexible manufacturing. 3 figs.

Vann, C.S.

1999-03-16T23:59:59.000Z

383

Graphene Enhanced Wireless Sensors Taoran Le, Trang Thai, Vasileios Lakafosis,  

E-Print Network [OSTI]

Graphene Enhanced Wireless Sensors Taoran Le, Trang Thai, Vasileios Lakafosis, Manos Tentzeris utilizing both analog and digital principles. The sensors will utilize Graphene-based thin films integrated. Our thin films are produced from water-based, inkjet printed graphene oxide (GO) on paper

Tentzeris, Manos

384

Workplace Applications of Sensor Networks* W. Steven Conner1  

E-Print Network [OSTI]

]. The recent trend to integrate wireless networking into interactive devices such as PDAs, cellular phones throughout workplaces in both industrial and non-industrial office environments. These sensors include HVAC

Heidemann, John

385

An architectural selection framework for data fusion in sensor platforms  

E-Print Network [OSTI]

The role of data fusion in sensor platforms is becoming increasingly important in various domains of science, technology and business. Fusion pertains to the merging or integration of information towards an enhanced level ...

Mirza, Atif R

2007-01-01T23:59:59.000Z

386

In Situ Decommissioning Sensor Network, Meso-Scale Test Bed - Phase 3 Fluid Injection Test Summary Report  

SciTech Connect (OSTI)

The DOE Office of Environmental management (DOE EM) faces the challenge of decommissioning thousands of excess nuclear facilities, many of which are highly contaminated. A number of these excess facilities are massive and robust concrete structures that are suitable for isolating the contained contamination for hundreds of years, and a permanent decommissioning end state option for these facilities is in situ decommissioning (ISD). The ISD option is feasible for a limited, but meaningfull number of DOE contaminated facilities for which there is substantial incremental environmental, safety, and cost benefits versus alternate actions to demolish and excavate the entire facility and transport the rubble to a radioactive waste landfill. A general description of an ISD project encompasses an entombed facility; in some cases limited to the blow-grade portion of a facility. However, monitoring of the ISD structures is needed to demonstrate that the building retains its structural integrity and the contaminants remain entombed within the grout stabilization matrix. The DOE EM Office of Deactivation and Decommissioning and Facility Engineering (EM-13) Program Goal is to develop a monitoring system to demonstrate long-term performance of closed nuclear facilities using the ISD approach. The Savannah River National Laboratory (SRNL) has designed and implemented the In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) to address the feasibility of deploying a long-term monitoring system into an ISD closed nuclear facility. The ISDSN-MSTB goal is to demonstrate the feasibility of installing and operating a remote sensor network to assess cementitious material durability, moisture-fluid flow through the cementitious material, and resulting transport potential for contaminate mobility in a decommissioned closed nuclear facility. The original ISDSN-MSTB installation and remote sensor network operation was demonstrated in FY 2011-12 at the ISDSN-MSTB test cube located at the Florida International University Applied Research Center, Miami, FL (FIU-ARC). A follow-on fluid injection test was developed to detect fluid and ion migration in a cementitious material/grouted test cube using a limited number of existing embedded sensor systems. This In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) - Phase 3 Fluid Injection Test Summary Report summarizes the test implementation, acquired and processed data, and results from the activated embedded sensor systems used during the fluid injection test. The ISDSN-MSTB Phase 3 Fluid Injection Test was conducted from August 27 through September 6, 2013 at the FIU-ARC ISDSN-MSTB test cube. The fluid injection test activated a portion of the existing embedded sensor systems in the ISDSN-MSTB test cube: Electrical Resistivity Tomography-Thermocouple Sensor Arrays, Advance Tensiometer Sensors, and Fiber Loop Ringdown Optical Sensors. These embedded sensor systems were activated 15 months after initial placement. All sensor systems were remotely operated and data acquisition was completed through the established Sensor Remote Access System (SRAS) hosted on the DOE D&D Knowledge Management Information Tool (D&D DKM-IT) server. The ISDN Phase 3 Fluid Injection Test successfully demonstrated the feasibility of embedding sensor systems to assess moisture-fluid flow and resulting transport potential for contaminate mobility through a cementitious material/grout monolith. The ISDSN embedded sensor systems activated for the fluid injection test highlighted the robustness of the sensor systems and the importance of configuring systems in-depth (i.e., complementary sensors and measurements) to alleviate data acquisition gaps.

Serrato, M. G.

2013-09-27T23:59:59.000Z

387

Integrated Energy Efficiency  

E-Print Network [OSTI]

10 Off The Grid Sensor Integration Natural Daylight Base and Peak Energy Reduction 11 Lowest Cost Renewable Solar Integrated Lighting $1.0 million/MW $6 9 million/MW Wind $1.3 - 1.9 million/MW Biomass $1.5 2.5 million/MW Geothermal $1.6 million...Integrated Energy Efficiency Steve Heins VP Communications and Government Affairs Orion Energy Systems, Inc. 2 MegaTrend Convergence We need companies to commercialize technologies that use less energy without compromise to operations. Energy...

Heins, S.

388

Towards Managing Variability in the Safety Design of an Automotive Hall Effect Sensor  

E-Print Network [OSTI]

Towards Managing Variability in the Safety Design of an Automotive Hall Effect Sensor Dimitri Van) as the main devel- opment process for an automotive Hall Effect sensor. This versatile component is integrated for every automotive application in which the sensor is to be used. In addition, no support is given

Paris-Sud XI, Université de

389

YSI Blue-Green Algae (BGA) Sensors Spatial Water Quality Mapping of the Potomac River Estuary  

E-Print Network [OSTI]

YSI Blue-Green Algae (BGA) Sensors Spatial Water Quality Mapping of the Potomac River Estuary Visit integrated Yellow Spring Instruments (YSI) blue- green algae (BGA) sensors into our system to evaluate of Microcystis aeruginosa. We compared interpolated results of traditional chlorophyll sensors with the BGA data

Boynton, Walter R.

390

Optically stimulated differential impedance spectroscopy  

DOE Patents [OSTI]

Methods and apparatuses for evaluating a material are described. Embodiments typically involve use of an impedance measurement sensor to measure the impedance of a sample of the material under at least two different states of illumination. The states of illumination may include (a) substantially no optical stimulation, (b) substantial optical stimulation, (c) optical stimulation at a first wavelength of light, (d) optical stimulation at a second wavelength of light, (e) a first level of light intensity, and (f) a second level of light intensity. Typically a difference in impedance between the impedance of the sample at the two states of illumination is measured to determine a characteristic of the material.

Maxey, Lonnie C; Parks, II, James E; Lewis, Sr., Samuel A; Partridge, Jr., William P

2014-02-18T23:59:59.000Z

391

Bragg Experimental SensorNet Testbed (BEST)  

SciTech Connect (OSTI)

The principal causative objectives of BEST were to consolidate the 9-1-1 and emergency response services into an Integrated Incident Management Center (I2MC) and to establish an 'Interoperability framework' based on SensorNet protocols to allow additional components to be added to the I2MC over time.

Gorman, Bryan

2010-01-25T23:59:59.000Z

392

Wireless sensor systems and methods, and methods of monitoring structures  

DOE Patents [OSTI]

A wireless sensor system includes a passive sensor apparatus configured to be embedded within a concrete structure to monitor infiltration of contaminants into the structure. The sensor apparatus includes charging circuitry and a plurality of sensors respectively configured to measure environmental parameters of the structure which include information related to the infiltration of contaminants into the structure. A reader apparatus is communicatively coupled to the sensor apparatus, the reader apparatus being configured to provide power to the charging circuitry during measurements of the environmental parameters by the sensors. The reader apparatus is configured to independently interrogate individual ones of the sensors to obtain information measured by the individual sensors. The reader apparatus is configured to generate an induction field to energize the sensor apparatus. Information measured by the sensor apparatus is transmitted to the reader apparatus via a response signal that is superimposed on a return induction field generated by the sensor apparatus. Methods of monitoring structural integrity of the structure are also provided.

Kunerth, Dennis C.; Svoboda, John M.; Johnson, James T.; Harding, L. Dean; Klingler, Kerry M.

2007-02-20T23:59:59.000Z

393

7003A-30, Session 5 Zero-crossing detection algorithm for arrays of optical  

E-Print Network [OSTI]

7003A-30, Session 5 Zero-crossing detection algorithm for arrays of optical spatial fi ltering-crossing detection algorithm for arrays of compact low-cost optical sensors for measuring e.g. minor fl uctuations-to-noise ratio, and delivers a "real time" output (0-1 kHz). The sensors use optical spatial-fi ltering

394

LSST Camera Optics Design  

SciTech Connect (OSTI)

The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, telescope design feeding a camera system that includes a set of broad-band filters and three refractive corrector lenses to produce a flat field at the focal plane with a wide field of view. Optical design of the camera lenses and filters is integrated in with the optical design of telescope mirrors to optimize performance. We discuss the rationale for the LSST camera optics design, describe the methodology for fabricating, coating, mounting and testing the lenses and filters, and present the results of detailed analyses demonstrating that the camera optics will meet their performance goals.

Riot, V J; Olivier, S; Bauman, B; Pratuch, S; Seppala, L; Gilmore, D; Ku, J; Nordby, M; Foss, M; Antilogus, P; Morgado, N

2012-05-24T23:59:59.000Z

395

Building Adaptable Sensor Networks with Sensor Cubes  

E-Print Network [OSTI]

of layers allows easy experiments, upgrades and extensions Small-scale sensor network Example sensor module- world network algorithm and power management behavior · Results from small scale tests can be compared (short packets and high bit rate reduce collision probability); Transmitter's MAC table logic: Small

Roussos, George

396

Digital Sensor Technology  

SciTech Connect (OSTI)

The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

2013-07-01T23:59:59.000Z

397

Giant magnetoresistive sensor  

DOE Patents [OSTI]

A magnetoresistive sensor element with a three-dimensional micro-architecture is capable of significantly improved sensitivity and highly localized measurement of magnetic fields. The sensor is formed of a multilayer film of alternately magnetic and nonmagnetic materials. The sensor is optimally operated in a current perpendicular to plane mode. The sensor is useful in magnetic read/write heads, for high density magnetic information storage and retrieval.

Stearns, Daniel G. (Los Altos, CA); Vernon, Stephen P. (Pleasanton, CA); Ceglio, Natale M. (Livermore, CA); Hawryluk, Andrew M. (Modesto, CA)

1999-01-01T23:59:59.000Z

398

Integrated Daylight Harvesting and Occupancy Detection Using Digital Imaging  

E-Print Network [OSTI]

Integrated Daylight Harvesting and Occupancy Detection Using Digital Imaging Abhijit Sarkar dynamic range CMOS video camera to integrate daylight harvesting and occupancy sensing functionalities by these sensors. The prototype involves three algorithms, daylight estimation, occupancy detection and lighting

Salvaggio, Carl

399

Full spectrum optical safeguard  

DOE Patents [OSTI]

An optical safeguard device with two linear variable Fabry-Perot filters aligned relative to a light source with at least one of the filters having a nonlinear dielectric constant material such that, when a light source produces a sufficiently high intensity light, the light alters the characteristics of the nonlinear dielectric constant material to reduce the intensity of light impacting a connected optical sensor. The device can be incorporated into an imaging system on a moving platform, such as an aircraft or satellite.

Ackerman, Mark R. (Albuquerque, NM)

2008-12-02T23:59:59.000Z

400

Sensor system scaling issues  

SciTech Connect (OSTI)

A model for IR sensor performance is used to compare estimates of sensor cost effectiveness. Although data from aircraft sensors indicate a weaker scaling, their agreement is adequate to support the assessment of the benefits of operating up to the maximum altitude of most current UAVs.

Canavan, G.H.

1996-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated optical sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Sensors for Environmental Observatories  

E-Print Network [OSTI]

Sensors for Environmental Observatories Report of the NSF-Sponsored Workshop December 2004 #12 States of America. 2005. #12;Sensors for Environmental Observatories Report of the NSF Sponsored Workshop sensor technology and the networks that collect data from them. Present work clearly demonstrates

Hamilton, Michael P.

402

Automotive vehicle sensors  

SciTech Connect (OSTI)

This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

1995-09-01T23:59:59.000Z

403

High temperature, minimally invasive optical sensing modules  

DOE Patents [OSTI]

A remote temperature sensing system includes a light source selectively producing light at two different wavelengths and a sensor device having an optical path length that varies as a function of temperature. The sensor receives light emitted by the light source and redirects the light along the optical path length. The system also includes a detector receiving redirected light from the sensor device and generating respective signals indicative of respective intensities of received redirected light corresponding to respective wavelengths of light emitted by the light source. The system also includes a processor processing the signals generated by the detector to calculate a temperature of the device.

Riza, Nabeel Agha (Oviedo, FL); Perez, Frank (Tujunga, CA)

2008-02-05T23:59:59.000Z

404

Design, fabrication and characterization of the first AC-coupled silicon microstrip sensors in India  

E-Print Network [OSTI]

This paper reports the design, fabrication and characterization of single-sided silicon microstrip sensors with integrated biasing resistors and coupling capacitors, produced for the first time in India. We have first developed a prototype sensor on a four-inch wafer. After finding suitable test procedures for characterizing these AC coupled sensors, we have fine-tuned various process parameters in order to produce sensors with the desired specifications.

T. Aziz; S. R. Chendvankar; G. B. Mohanty; M. R. Patil; K. K. Rao; Y. R. Rani; Y. P. P. Rao; H. Behnamian; S. Mersi; M. Naseri

2014-05-08T23:59:59.000Z

405

Preliminary photovoltaic arc-fault prognostic tests using sacrificial fiber optic cabling.  

SciTech Connect (OSTI)

Through the New Mexico Small Business Assistance Program, Sandia National Laboratories worked with Sentient Business Systems, Inc. to develop and test a novel photovoltaic (PV) arc-fault detection system. The system operates by pairing translucent polymeric fiber optic sensors with electrical circuitry so that any external abrasion to the system or internal heating causes the fiber optic connection to fail or detectably degrade. A periodic pulse of light is sent through the optical path using a transmitter-receiver pair. If the receiver does not detect the pulse, an alarm is sounded and the PV system can be de-energized. This technology has the unique ability to prognostically determine impending failures to the electrical system in two ways: (a) the optical connection is severed prior to physical abrasion or cutting of PV DC electrical conductors, and (b) the polymeric fiber optic cable melts via Joule heating before an arc-fault is established through corrosion. Three arc-faults were created in different configurations found in PV systems with the integrated fiber optic system to determine the feasibility of the technology. In each case, the fiber optic cable was broken and the system annunciated the fault.

Johnson, Jay; Blemel, Kenneth D. [Sentient Business Systems, Inc., Albuquerque, NM; Peter, Francis [Sentient Business Systems, Inc., Albuquerque, NM

2013-02-01T23:59:59.000Z

406

Renewable-reagent electrochemical sensor  

DOE Patents [OSTI]

A new electrochemical probe(s) design allowing for continuous (renewable) reagent delivery is described. The probe comprises an integrated membrane sampling/electrochemical sensor that prevents interferences from surface-active materials and greatly extends the linear range. The probe(s) is useful for remote or laboratory-based monitoring in connection with microdialysis sampling and electrochemical measurements of metals and organic compounds that are not readily detected in the absence of reacting with the compound. Also disclosed is a method of using the probe(s). 19 figs.

Wang, J.; Olsen, K.B.

1999-08-24T23:59:59.000Z

407

Renewable-reagent electrochemical sensor  

DOE Patents [OSTI]

A new electrochemical probe(s) design allowing for continuous (renewable) reagent delivery. The probe comprises an integrated membrane-sampling/electrochemical sensor that prevents interferences from surface-active materials and greatly extends the linear range. The probe(s) is useful for remote or laboratory-based monitoring in connection with microdialysis sampling and electrochemical measurements of metals and organic compounds that are not readily detected in the absence of reacting with the compound. Also disclosed is a method of using the probe(s).

Wang, Joseph (Las Cruces, NM); Olsen, Khris B. (Richland, WA)

1999-01-01T23:59:59.000Z

408

Title Author(s) Year Published Category Analysis and Design of Analog Integrated Circuits, Third Edition Gray; Meyer 1993 Circuits  

E-Print Network [OSTI]

Optics Terahertz Optoelectronics Sakai 2005 Optics / Laser Optics Advanced Optoelectronic Devices Dragoman; Dragoman 1999 Optoelectronic Devices / Packaging Optical Integrated Circuits Nishihara; Haruna; Suhara 1989 Optoelectronic Devices / Packaging Optical Networks, Second Edition Ramaswami; Sivarajan 2002

Huang, Zhaoran "Rena"

409

Optical Delineation of Benthic Habitat Using an Autonomous Underwater Vehicle  

SciTech Connect (OSTI)

To improve understanding and characterization of coastal regions, there has been an increasing emphasis on autonomous systems that can sample the ocean on relevant scales. Autonomous underwater vehicles (AUVs) with active propulsion are especially well suited for studies of the coastal ocean because they are able to provide systematic and near-synoptic spatial observations. With this capability, science users are beginning to integrate sensor suits for a broad range of specific and often novel applications. Here, the relatively mature Remote Environmental Monitoring Units (REMUS) AUV system is configured with multi-spectral radiometers to delineate benthic habitat in Sequim Bay, WA. The vehicle was deployed in a grid pattern along 5 km of coastline in depths from 30 to less than 2 meters. Similar to satellite and/or aerial remote sensing, the bandwidth ratios from the downward looking radiance sensor and upward looking irradiance sensor were used to identify beds of eelgrass on sub-meter scales. Strong correlations were found between the optical reflectance signals and the geo-referenced in situ data collected with underwater video within the grid. Results demonstrate the ability of AUVs to map littoral habitats at high resolution and highlight the overall utility of the REMUS vehicle for nearshore oceanography.

Moline, Mark A.; Woodruff, Dana L.; Evans, Nathan R.

2007-06-01T23:59:59.000Z

410

Device integration for silicon microphotonic platforms  

E-Print Network [OSTI]

Silicon ULSI compatible, high index contrast waveguides and devices provide high density integration for optical networking and on-chip optical interconnects. Four such waveguide systems were fabricated and analyzed: ...

Lim, Desmond Rodney

2000-01-01T23:59:59.000Z

411

NANOSCALE OPTICAL COMPUTING USING RESONANCE ENERGY  

E-Print Network [OSTI]

OPTICAL COMPUTING USING RESONANCE ENERGY TRANSFER LOGIC A NEW NANOSCALE DEVICE BASED ON A SINGLE-MOLECULE OPTICAL PHENOMENON CALLED RESONANCE ENERGY TRANSFER. THIS DEVICE ENABLES A COMPLETE INTEGRATED TECHNOLOGY, PROVIDING A POTENTIAL PATH TO MOLECULAR-SCALE COMPUTING

Lebeck, Alvin R.

412

Payload-envelope detection and label-detection integrated photonic circuit for asynchronous variable-length optical-packet switching with 40-Gb/s RZ payloads and 10-Gb/s NRZ labels  

E-Print Network [OSTI]

ing and Integrated Optoelectronics Laboratory, University ofinterests include optoelectronics integration and packaging,

Koch, B R; Hu, Z Y; Bowers, J E; Blumenthal, D J

2006-01-01T23:59:59.000Z

413

Fiber optic refractive index monitor  

DOE Patents [OSTI]

A sensor for measuring the change in refractive index of a liquid uses the lowest critical angle of a normal fiber optic to achieve sensitivity when the index of the liquid is significantly less than the index of the fiber core. Another embodiment uses a liquid filled core to ensure that its index is approximately the same as the liquid being measured.

Weiss, Jonathan David (Albuquerque, NM)

2002-01-01T23:59:59.000Z

414

Optical Fibers Optics and Photonics  

E-Print Network [OSTI]

Optical Fibers Optics and Photonics Dr. Palffy-Muhoray Ines Busuladzic Department of Theoretical and Applied Mathematics The University of Akron April 21, 2008 #12;Outline · History of optical fibers · What are optical fibers? · How are optical fibers made? · Light propagation through optical fibers · Application

Palffy-Muhoray, Peter

415

Working Group Report: Sensors  

SciTech Connect (OSTI)

Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

Artuso, M.; et al.,

2013-10-18T23:59:59.000Z

416

Capacitive chemical sensor  

DOE Patents [OSTI]

A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

2014-05-27T23:59:59.000Z

417

Tests gauge LED sensors for fuel-dye measurements  

SciTech Connect (OSTI)

The goal of this work was to develop a low cost, robust sensor to allow direct measurement of Solvent Red 164 dye concentration in off-road fuel at refineries and fuel terminals. Optical absorption sensors based on light emitting diodes (LEDs) are rugged, low-cost, have low power consumption, and can be designed to be intrinsically safe.LED-based systems have been used in a variety of chemical detection applications including heavy metals, pH, CO2, and O2. The approach for this work was to develop a sensor that could be mounted on a pipeline sight glass, precluding the need for direct contact of the sensor with the fuel. Below is described the design and testing of three different LED/photodiode sensors utilizing reflectance spectrometry for the measurement of dye concentration.

Ozanich, Richard M.; Lucke, Richard B.; Melville, Angela M.; Wright, Bob W.

2009-10-19T23:59:59.000Z

418

Contact stress sensor  

DOE Patents [OSTI]

A method for producing a contact stress sensor that includes one or more MEMS fabricated sensor elements, where each sensor element of includes a thin non-recessed portion, a recessed portion and a pressure sensitive element adjacent to the recessed portion. An electric circuit is connected to the pressure sensitive element. The circuit includes a pressure signal circuit element configured to provide a signal upon movement of the pressure sensitive element.

Kotovsky, Jack

2014-02-11T23:59:59.000Z

419

Remote electrochemical sensor  

DOE Patents [OSTI]

An electrochemical sensor for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis.

Wang, Joseph (Las Cruces, NM); Olsen, Khris (Richland, WA); Larson, David (Las Cruces, NM)

1997-01-01T23:59:59.000Z

420

Electro-Mechanical Resonant Magnetic Field Sensor  

E-Print Network [OSTI]

We describe a new type of magnetic field sensor which is termed an Electro-Mechanical Resonant Sensor (EMRS). The key part of this sensor is a small conductive elastic element with low damping rate and therefore a high Q fundamental mode of frequency $f_1$. An AC current is driven through the elastic element which, in the presence of a magnetic field, causes an AC force on the element. When the frequency of the AC current matches the resonant frequency of the element, maximum vibration of the element occurs and this can be measured precisely by optical means. We have built and tested a model sensor of this type using for the elastic element a length of copper wire of diameter 0.030 mm formed into a loop shape. The wire motion was measured using a light emitting diode photo-transistor assembly. This sensor demonstrated a sensitivity better than 0.001G for an applied magnetic field of $ \\sim 1$G and a good selectivity for the magnetic field direction. The sensitivity can be easily improved by a factor of $\\sim ...

Temnykh, A B; Temnykh, Alexander B.; Lovelace, Richard V. E.

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated optical sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Low threshold vertical cavity surface emitting lasers integrated onto Si-CMOS ICs using novel hybrid assembly techniques  

E-Print Network [OSTI]

A new heterogeneous integration technique has been developed and demonstrated to integrate vertical cavity surface emitting lasers (VCSELs) on silicon CMOS integrated circuits for optical interconnect applications. Individual ...

Perkins, James Michael, 1978-

2007-01-01T23:59:59.000Z

422

Optical processing furnace with quartz muffle and diffuser plate  

DOE Patents [OSTI]

An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy.

Sopori, Bhushan L. (Denver, CO)

1996-01-01T23:59:59.000Z

423

Adaptive optics for ophthalmic applications using a pyramid wavefront  

E-Print Network [OSTI]

Adaptive optics for ophthalmic applications using a pyramid wavefront sensor St´ephane R. Chamot and Chris Dainty Applied Optics, Experimental Physics Department National University of Ireland Galway, University Road Galway, Ireland stephane.chamot@nuigalway.ie http://optics.nuigalway.ie/index.html Simone

Dainty, Chris

424

VIRTUAL SENSORS FOR SERVICE ORIENTED INTELLIGENT ENVIRONMENTS Raja Bose, Abdelsalam (Sumi) Helal, Vishak Sivakumar and Shinyoung Lim  

E-Print Network [OSTI]

VIRTUAL SENSORS FOR SERVICE ORIENTED INTELLIGENT ENVIRONMENTS Raja Bose, Abdelsalam (Sumi) Helal an elegant model to create and compose interoperable applications. In the case of sensor networks, SOA is considered to be a very attractive enabler for sensor programmability and self-integration. However, SOA

Helal, Abdelsalam

425

Optical and optoelectronic fiber devices  

E-Print Network [OSTI]

The ability to integrate materials with disparate electrical, thermal, and optical properties into a single fiber structure enabled the realization of fiber devices with diverse and complex functionalities. Amongst those, ...

Shapira, Ofer, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

426

New optical materials containing isobenzofuran  

E-Print Network [OSTI]

Isobenzofuran, a member of the benzo[c]heterocycles, is an extremely reactive molecule with unusual electronic properties. In this thesis we investigate the integration of isobenzofuran subunits into conjugated optical ...

Meek, Scott Thomas

2009-01-01T23:59:59.000Z

427

Energy Conservation in Sensor and  

E-Print Network [OSTI]

Chapter 4 Energy Conservation in Sensor and Sensor-Actuator Networks Ivan Stojmenovic 4 wireless network, and must work unattended. The limited energy budget at the individual sensor level

Stojmenovic, Ivan

428

Embedded Piezoresistive Microcantilever Sensors Functionalized for the Detection of Methyl Salicylate  

SciTech Connect (OSTI)

Sensors designed to detect the presence of methyl salicylate (MeS) have been tested. These sensors use a sensor platform based on the embedded piezoresistive microcantilever (EPM) design. Sensing materials tested in this study included the polymer poly (ethylene vinyl acetate), or PEVA as well as a composite sensing material consisting of the enzyme SA-binding protein 2, or SABP-2. The SABP-2 was immobilized within a biocompatible Hypol gel matrix. The PEVA-based sensors exhibited slower but reversible responses to MeS vapors, recovering fully to their initial state after the analyte was removed. SABP-2 sensors exhibited faster overall response to the introduction of MeS, responding nearly instantly. These sensors, however, do not recover after exposures have ended. Sensors using the SABP-2 sensing materials act instead as integrating sensors, measuring irreversibly the total MeS dose obtained.

Porter, T. L. [UNLV; Venedam, R. J. [NSTec

2013-03-01T23:59:59.000Z

429

Hierarchical Nanoceramics for Industrial Process Sensors  

SciTech Connect (OSTI)

This project developed a robust, tunable, hierarchical nanoceramics materials platform for industrial process sensors in harsh-environments. Control of material structure at multiple length scales from nano to macro increased the sensing response of the materials to combustion gases. These materials operated at relatively high temperatures, enabling detection close to the source of combustion. It is anticipated that these materials can form the basis for a new class of sensors enabling widespread use of efficient combustion processes with closed loop feedback control in the energy-intensive industries. The first phase of the project focused on materials selection and process development, leading to hierarchical nanoceramics that were evaluated for sensing performance. The second phase focused on optimizing the materials processes and microstructures, followed by validation of performance of a prototype sensor in a laboratory combustion environment. The objectives of this project were achieved by: (1) synthesizing and optimizing hierarchical nanostructures; (2) synthesizing and optimizing sensing nanomaterials; (3) integrating sensing functionality into hierarchical nanostructures; (4) demonstrating material performance in a sensing element; and (5) validating material performance in a simulated service environment. The project developed hierarchical nanoceramic electrodes for mixed potential zirconia gas sensors with increased surface area and demonstrated tailored electrocatalytic activity operable at high temperatures enabling detection of products of combustion such as NOx close to the source of combustion. Methods were developed for synthesis of hierarchical nanostructures with high, stable surface area, integrated catalytic functionality within the structures for gas sensing, and demonstrated materials performance in harsh lab and combustion gas environments.

Ruud, James, A.; Brosnan, Kristen, H.; Striker, Todd; Ramaswamy, Vidya; Aceto, Steven, C.; Gao, Yan; Willson, Patrick, D.; Manoharan, Mohan; Armstrong, Eric, N., Wachsman, Eric, D.; Kao, Chi-Chang

2011-07-15T23:59:59.000Z

430

CHARACTERISATION OF SEMICONDUCTOR OPTICAL AMPLIFIERS FOR ALL-OPTICAL REGENERATION  

E-Print Network [OSTI]

electrical pumping, broad spectral range and opportunities for integration and mass production. Among these components, the semiconductor optical amplifier (SOA) with gain saturation, low optical and electrical power Various SOAs from Alcatel-Thales III-V lab were characterized in the framework of the French project FUTUR

Paris-Sud XI, Université de

431

Planar Pixel Sensors for the ATLAS Upgrade: Beam Tests results  

E-Print Network [OSTI]

Results of beam tests with planar silicon pixel sensors aimed towards the ATLAS Insertable B-Layer and High Luminosity LHC (HL-LHC) upgrades are presented. Measurements include spatial resolution, charge collection performance and charge sharing between neighbouring cells as a function of track incidence angle for different bulk materials. Measurements of n-in-n pixel sensors are presented as a function of fluence for different irradiations. Furthermore p-type silicon sensors from several vendors with slightly differing layouts were tested. All tested sensors were connected by bump-bonding to the ATLAS Pixel read-out chip. We show that both n-type and p-type tested planar sensors are able to collect significant charge even after integrated fluences expected at HL-LHC.

J. Weingarten; S. Altenheiner; M. Beimforde; M. Benoit; M. Bomben; G. Calderini; C. Gallrapp; M. George; S. Gibson; S. Grinstein; Z. Janoska; J. Jentzsch; O. Jinnouchi; T. Kishida; A. La Rosa; V. Libov; A. Macchiolo; G. Marchiori; D. Mnstermann; R. Nagai; G. Piacquadio; B. Ristic; I. Rubinskiy; A. Rummler; Y. Takubo; G. Troska; S. Tsiskaridtze; I. Tsurin; Y. Unno; P. Weigell; T. Wittig

2012-11-09T23:59:59.000Z

432

The silicon microstrip sensors of the ATLAS semiconductor tracker  

SciTech Connect (OSTI)

This paper describes the AC-coupled, single-sided, p-in-n silicon microstrip sensors used in the Semiconductor Tracker (SCT) of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The sensor requirements, specifications and designs are discussed, together with the qualification and quality assurance procedures adopted for their production. The measured sensor performance is presented, both initially and after irradiation to the fluence anticipated after 10 years of LHC operation. The sensors are now successfully assembled within the detecting modules of the SCT, and the SCT tracker is completed and integrated within the ATLAS Inner Detector. Hamamatsu Photonics Ltd. supplied 92.2percent of the 15,392 installed sensors, with the remainder supplied by CiS.

ATLAS SCT Collaboration; Spieler, Helmuth G.

2007-04-13T23:59:59.000Z

433

Sensors and actuators 1990  

SciTech Connect (OSTI)

This book contains the proceedings on sensors and actuators 1990. Topics covered include: Hot wire air flow meter for engine control systems, A technique for the real-time estimation of air-fuel ratio using molecular weight ratios, combustion knock sensing: Sensor selection and application issues, and An indirect sensing technique for closed-loop diesel fuel quantity control.

Not Available

1990-01-01T23:59:59.000Z

434

Finite Element Modeling of Dermally-implanted Enzymatic Microparticle Glucose Sensors  

E-Print Network [OSTI]

recent efforts have focused on the development of optical microscale glucose sensing systems based on the encapsulation of glucose oxidase within microspheres coated with polyelectrolyte multilayer nanofilms. In such sensors, a phosphorescent oxygen...

Ali, Saniya

2011-10-21T23:59:59.000Z

435

The Sandia MEMS passive shock sensor : FY07 maturation activities.  

SciTech Connect (OSTI)

This report describes activities conducted in FY07 to mature the MEMS passive shock sensor. The first chapter of the report provides motivation and background on activities that are described in detail in later chapters. The second chapter discusses concepts that are important for integrating the MEMS passive shock sensor into a system. Following these two introductory chapters, the report details modeling and design efforts, packaging, failure analysis and testing and validation. At the end of FY07, the MEMS passive shock sensor was at TRL 4.

Houston, Jack E.; Blecke, Jill; Mitchell, John Anthony; Wittwer, Jonathan W.; Crowson, Douglas A.; Clemens, Rebecca C.; Walraven, Jeremy Allen; Epp, David S.; Baker, Michael Sean

2008-08-01T23:59:59.000Z

436

Steam distribution and energy delivery optimization using wireless sensors  

SciTech Connect (OSTI)

The Extreme Measurement Communications Center at Oak Ridge National Laboratory (ORNL) explores the deployment of a wireless sensor system with a real-time measurement-based energy efficiency optimization framework in the ORNL campus. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize the energy delivery within the steam distribution system. We address the goal of achieving significant energy-saving in steam lines by monitoring and acting on leaking steam valves/traps. Our approach leverages an integrated wireless sensor and real-time monitoring capabilities. We make assessments on the real-time status of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observe the state measurements of these sensors. Our assessments are based on analysis of the wireless sensor measurements. We describe Fourier-spectrum based algorithms that interpret acoustic vibration sensor data to characterize flows and classify the steam system status. We are able to present the sensor readings, steam flow, steam trap status and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption.

Olama, Mohammed M [ORNL; Allgood, Glenn O [ORNL; Kuruganti, Phani Teja [ORNL; Sukumar, Sreenivas R [ORNL; Djouadi, Seddik M [ORNL; Lake, Joe E [ORNL

2011-01-01T23:59:59.000Z

437

Validation of a Model of a Resonant Optothermoacoustic Trace Gas Sensor  

E-Print Network [OSTI]

Validation of a Model of a Resonant Optothermoacoustic Trace Gas Sensor N. Petra1, J. Zweck1, S. E optothermoacoustic sensor is validated by comparison with experiments performed with 0.5% acetylene in nitrogen Optical Society of America OCIS codes: 300.6430, 300.6340. 1. Introduction Quartz-Enhanced Photo

Minkoff, Susan E.

438

Advanced technologies for perimeter intrusion detection sensors  

SciTech Connect (OSTI)

The development of integrated circuit fabrication techniques and the resulting devices have contributed more to the advancement of exterior intrusion detectors and alarm assessment devices than any other technology. The availability of this technology has led to the improvements in and further development of smaller more powerful computers, microprocessors, solid state memories, solid state cameras, thermal imagers, low-power lasers, and shorter pulse width and higher frequency electronic circuitry. This paper presents information on planning a perimeter intrusion detection system, identifies the site characteristics that affect its performance, and describes improvements to perimeter intrusion detection sensors and assessment devices that have been achieved by using integrated circuit technology.

Williams, J.D.

1995-03-01T23:59:59.000Z

439

1292 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 12, NO. 6, NOVEMBER/DECEMBER 2006 Optical Detection of Single Nanoparticles and Viruses  

E-Print Network [OSTI]

on a nanoparticle as it passes through a confined optical field, and the other method uses a background, sensor, viruses. I. INTRODUCTION THERE is a high demand for sensors that are able to detect small amounts this threat. Therefore, a broad network of sensors has to be deployed. These sensors must be affordable

Novotny, Lukas

440

Short-wavelength upconversion emissions in codoped glass ceramic and the optical  

E-Print Network [OSTI]

of electrical engineering, Yanshan University, Qinhuangdao, 066004, China 3 Laboratory of Sono- and photo. In addition, an optical temperature sensor based on the blue upconversion emissions from 5 F2,3/3 K85 I8 and 5 ceramic be a promising candidate for sensitive optical temperature sensor with high resolution and good

Cao, Wenwu

Note: This page contains sample records for the topic "integrated optical sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Electrocatalytic cermet sensor  

DOE Patents [OSTI]

A sensor for O.sub.2 and CO.sub.2 gases. The gas sensor includes a plurality of layers driven by a cyclic voltage to generate a unique plot characteristic of the gas in contact with the sensor. The plurality of layers includes an alumina substrate, a reference electrode source of anions, a lower electrical reference electrode of Pt coupled to the reference source of anions, a solid electrolyte containing tungsten and coupled to the lower reference electrode, a buffer layer for preventing flow of Pt ions into the solid electrolyte and an upper catalytically active Pt electrode coupled to the buffer layer.

Shoemaker, Erika L. (Westmont, IL); Vogt, Michael C. (Westmont, IL)

1998-01-01T23:59:59.000Z

442

Electrocatalytic cermet sensor  

DOE Patents [OSTI]

A sensor is described for O{sub 2} and CO{sub 2} gases. The gas sensor includes a plurality of layers driven by a cyclic voltage to generate a unique plot characteristic of the gas in contact with the sensor. The plurality of layers includes an alumina substrate, a reference electrode source of anions, a lower electrical reference electrode of Pt coupled to the reference source of anions, a solid electrolyte containing tungsten and coupled to the lower reference electrode, a buffer layer for preventing flow of Pt ions into the solid electrolyte and an upper catalytically active Pt electrode coupled to the buffer layer. 16 figs.

Shoemaker, E.L.; Vogt, M.C.

1998-06-30T23:59:59.000Z

443

Remote electrochemical sensor  

DOE Patents [OSTI]

An electrochemical sensor is described for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis. 21 figs.

Wang, J.; Olsen, K.; Larson, D.

1997-10-14T23:59:59.000Z

444

Electrochemical micro sensor  

DOE Patents [OSTI]

A micro-amperometric electrochemical sensor for detecting the presence of a pre-determined species in a fluid material is disclosed. The sensor includes a smooth substrate having a thin coating of solid electrolytic material deposited thereon. The working and counter electrodes are deposited on the surface of the solid electrolytic material and adhere thereto. Electrical leads connect the working and counter electrodes to a potential source and an apparatus for measuring the change in an electrical signal caused by the electrochemical oxidation or reduction of the species. Alternatively, the sensor may be fabricated in a sandwich structure and also may be cylindrical, spherical or other shapes.

Setter, Joseph R. (Naperville, IL); Maclay, G. Jordan (Maywood, IL)

1989-09-12T23:59:59.000Z

445

Wireless passive radiation sensor  

DOE Patents [OSTI]

A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.

Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G; Limmer, Steven J

2013-12-03T23:59:59.000Z

446

A microcomputer control system for a fiber optic spectrophotometer  

E-Print Network [OSTI]

SENSOR LICH'I SOURCE OPTICAL F I BER ~SAMPLE PHOTODE'IECTOR o r D o o n o 0 ~ o r Figure lb. Block Diagram of a Fiber Optic Spectrophotometer Fiber optic spectrophotometry uses the light conducting properties of tiny optical fibers... to carry the light to and from a remote sensor, as shown in Figure lb, page 2. At the tip of the fibers, a small chamber contains either the sample itself or an indicator for the sample, whose spectrophotometric properties change with the concentration...

Spar, Steven Matthew

1986-01-01T23:59:59.000Z

447

Optical state-of-charge monitor for batteries  

DOE Patents [OSTI]

A method and apparatus for determining the instantaneous state-of-charge of a battery in which change in composition with discharge manifests itself as a change in optical absorption. In a lead-acid battery, the sensor comprises a fiber optic system with an absorption cell or, alternatively, an optical fiber woven into an absorbed-glass-mat battery. In a lithium-ion battery, the sensor comprises fiber optics for introducing light into the anode to monitor absorption when lithium ions are introduced.

Weiss, Jonathan D. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

448

Aircraft as a meteorological sensor  

E-Print Network [OSTI]

Meteorological Institute 2 | The aircraft as a meteorological sensor Photo cover: A KLM Airbus A330-200 landsAircraft as a meteorological sensor Using Mode-S Enhanced Surveillance data to derive upper air Meteorological Institute 3 | The aircraft as a meteorological sensor Aircraft as a meteorological sensor Using

Haak, Hein

449

Sensors and Actuators for the Advanced LIGO Mirror Suspensions  

E-Print Network [OSTI]

We have developed, produced and characterised integrated sensors, actuators and the related read-out and drive electronics that will be used for the control of the Advanced LIGO suspensions. The overall system consists of the BOSEMs (displacement sensor with integrated electro-magnetic actuator), the satellite boxes (BOSEM readout and interface electronics) and six different types of coil-driver units. In this paper we present the design of this read-out and control system, we discuss the related performance relevant for the Advanced LIGO suspensions, and we report on the experimental activity finalised at the production of the instruments for the Advanced LIGO detectors.

L. Carbone; S. M. Aston; R. M. Cutler; A. Freise; J. Greenhalgh; J. Heefner; D. Hoyland; N. A. Lockerbie; D. Lodhia; N. A. Robertson; C. C. Speake; K. A. Strain; A. Vecchio

2012-05-25T23:59:59.000Z

450

Geographically distributed environmental sensor system  

DOE Patents [OSTI]

The present invention is directed to a sensor network that includes a number of sensor units and a base unit. The base station operates in a network discovery mode (in which network topology information is collected) in a data polling mode (in which sensed information is collected from selected sensory units). Each of the sensor units can include a number of features, including an anemometer, a rain gauge, a compass, a GPS receiver, a barometric pressure sensor, an air temperature sensor, a humidity sensor, a level, and a radiant temperature sensor.

French, Patrick; Veatch, Brad; O'Connor, Mike

2006-10-03T23:59:59.000Z

451

Moisture sensor based on evanescent wave light scattering by porous sol-gel silica coating  

DOE Patents [OSTI]

An optical fiber moisture sensor that can be used to sense moisture present in gas phase in a wide range of concentrations is provided, as well techniques for making the same. The present invention includes a method that utilizes the light scattering phenomenon which occurs in a porous sol-gel silica by coating an optical fiber core with such silica. Thus, a porous sol-gel silica polymer coated on an optical fiber core forms the transducer of an optical fiber moisture sensor according to an embodiment. The resulting optical fiber sensor of the present invention can be used in various applications, including to sense moisture content in indoor/outdoor air, soil, concrete, and low/high temperature gas streams.

Tao, Shiquan; Singh, Jagdish P.; Winstead, Christopher B.

2006-05-02T23:59:59.000Z

452

AquaNodes: An Underwater Sensor Network Iuliu Vasilescu  

E-Print Network [OSTI]

modem and an optical mo- dem implemented using green light. The system of sensor nodes communicates communication and support for sensing and mobil- ity. The nodes in the system are connected acoustically for broadcast communication using an acoustic modem we de- veloped. For higher point to point communication

Farritor, Shane

453

AquaNodes: An Underwater Sensor Network Iuliu Vasilescu  

E-Print Network [OSTI]

and an optical mo- dem implemented using green light. The system of sensor nodes communicates with a TDMA communication and support for sensing and mobil- ity. The nodes in the system are connected acoustically for broadcast communication using an acoustic modem we de- veloped. For higher point to point communication

Zhou, Shengli

454

A CAPACITIVELY BASED MEMS AFFINITY GLUCOSE SENSOR Xian Huang1*  

E-Print Network [OSTI]

sensors, based on MEMS technology, allow low-cost non-invasive or minimally-invasive glucose monitoring on a magnetically actuated cantilever whose vibration was detected optically, represented our initial effort towards the feasibility for stable and potentially implantable CGM. DEVICE DESIGN AND FABRICATION The device consists

Lin, Qiao

455

Tactile measurement with a GelSight sensor  

E-Print Network [OSTI]

This thesis introduces a method of measuring contact force with GelSight. GelSight is an optical-based tactile sensor that uses a piece of coated elastomer as the contact medium. A camera records the distortion of the ...

Yuan, Wenzhen, S.M. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

456

Complex pendulum biomass sensor  

DOE Patents [OSTI]

A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Perrenoud, Ben C. (Rigby, ID)

2007-12-25T23:59:59.000Z

457

Remote Sensor Placement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

developed to place the sensor nodes in the field. Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff...

458

Modular sensor network node  

DOE Patents [OSTI]

A distributed wireless sensor network node is disclosed. The wireless sensor network node includes a plurality of sensor modules coupled to a system bus and configured to sense a parameter. The parameter may be an object, an event or any other parameter. The node collects data representative of the parameter. The node also includes a communication module coupled to the system bus and configured to allow the node to communicate with other nodes. The node also includes a processing module coupled to the system bus and adapted to receive the data from the sensor module and operable to analyze the data. The node also includes a power module connected to the system bus and operable to generate a regulated voltage.

Davis, Jesse Harper Zehring (Berkeley, CA); Stark, Jr., Douglas Paul (Tracy, CA); Kershaw, Christopher Patrick (Hayward, CA); Kyker, Ronald Dean (Livermore, CA)

2008-06-10T23:59:59.000Z

459

Magnetic infrasound sensor  

DOE Patents [OSTI]

A magnetic infrasound sensor is produced by constraining a permanent magnet inside a magnetic potential well above the surface of superconducting material. The magnetic infrasound sensor measures the position or movement of the permanent magnet within the magnetic potential well, and interprets the measurements. Infrasound sources can be located and characterized by combining the measurements from one or more infrasound sensors. The magnetic infrasound sensor can be tuned to match infrasound source types, resulting in better signal-to-noise ratio. The present invention can operate in frequency modulation mode to improve sensitivity and signal-to-noise ratio. In an alternate construction, the superconductor can be levitated over a magnet or magnets. The system can also be driven, so that time resolved perturbations are sensed, resulting in a frequency modulation version with improved sensitivity and signal-to-noise ratio.

Mueller, Fred M. (Los Alamos, NM); Bronisz, Lawrence (Los Alamos, NM); Grube, Holger (Los Alamos, NM); Nelson, David C. (Santa Fe, NM); Mace, Jonathan L. (Los Alamos, NM)

2006-11-14T23:59:59.000Z

460

NOx Sensor Development  

Broader source: Energy.gov (indexed) [DOE]

needed to meet emission targets and enable widespread use of diesel vehicles with better fuel economies: We are developing a novel sensor with the potential to meet OEM cost and...

Note: This page contains sample records for the topic "integrated optical sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Sensor Network Lifetime Maximization Via Sensor Energy Balancing: Construction and Optimal Scheduling of Sensor Trees  

E-Print Network [OSTI]

in such a way that the total energy usage of the active sensor nodes in the tree is minimized. However whenSensor Network Lifetime Maximization Via Sensor Energy Balancing: Construction and Optimal Scheduling of Sensor Trees Ling Shi , Agostino Capponi , Karl H. Johansson and Richard M. Murray Abstract

Johansson, Karl Henrik

462

Development of Combined Opto-Acoustical Sensor Modules  

E-Print Network [OSTI]

The faint fluxes of cosmic neutrinos expected at very high energies require large instrumented detector volumes. The necessary volumes in combination with a sufficient shielding against background constitute forbidding and complex environments (e.g. the deep sea) as sites for neutrino telescopes. To withstand these environments and to assure the data quality, the sensors have to be reliable and their operation has to be as simple as possible. A compact sensor module design including all necessary components for data acquisition and module calibration would simplify the detector mechanics and ensures the long term operability of the detector. The compact design discussed here combines optical and acoustical sensors inside one module, therefore reducing electronics and additional external instruments for calibration purposes. In this design the acoustical sensor is primary used for acoustic positioning of the module. The module may also be used for acoustic particle detection and marine science if an appropriat...

Enzenhfer, A; Graf, K; Hl, J; Katz, U; Lahmann, R; Neff, M; Richardt, C

2011-01-01T23:59:59.000Z

463

Oxazine-based sensor for contaminant detection, fabrication method therefor, and uses thereof  

DOE Patents [OSTI]

A sensor, a method for its fabrication, and a method for its use to detect contaminants, for example, ammonia, in stagnant and dynamic fluid media, especially liquid media. The sensor is an opto-chemical sensor that includes a polymer optical fiber, a sensing layer comprising oxazine 170 perchlorate on the polymer optical fiber, and a membrane layer on the sensing layer. The membrane layer is gas permeable and not permeable to the fluid in the fluid system, and moisture is entrapped by and between the sensing and membrane layers.

Nnanna, Agbai Agwu; Jalal, Ahmed Hasnian

2014-05-27T23:59:59.000Z

464

Hybrid silicon integration R. Jones H. D. Park A. W. Fang J. E. Bowers O. Cohen  

E-Print Network [OSTI]

Film Fabrications and Optoelectronic Devices Integration for Fully Embedded Board-Level Optical film with integrated optoelectronic devices (vertical-cavity surface- emitting laser (VCSEL) and p

Bowers, John

465

E-Print Network 3.0 - applying fourier optics Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Engineering 2 Achromatic planar-integrated free-space optical Fourier transformer G. Minguez-Vega, M. Gruber, J. Jahns Summary: Achromatic planar-integrated...

466

Adaptive Optics for Large Telescopes  

SciTech Connect (OSTI)

The use of adaptive optics was originally conceived by astronomers seeking to correct the blurring of images made with large telescopes due to the effects of atmospheric turbulence. The basic idea is to use a device, a wave front corrector, to adjust the phase of light passing through an optical system, based on some measurement of the spatial variation of the phase transverse to the light propagation direction, using a wave front sensor. Although the original concept was intended for application to astronomical imaging, the technique can be more generally applied. For instance, adaptive optics systems have been used for several decades to correct for aberrations in high-power laser systems. At Lawrence Livermore National Laboratory (LLNL), the world's largest laser system, the National Ignition Facility, uses adaptive optics to correct for aberrations in each of the 192 beams, all of which must be precisely focused on a millimeter scale target in order to perform nuclear physics experiments.

Olivier, S

2008-06-27T23:59:59.000Z

467

A Cross-Layer Design for Decentralized Detection in Tree Sensor Networks  

E-Print Network [OSTI]

for sensors is developed. For tree networks, energy-efficient routing for signal detectioA Cross-Layer Design for Decentralized Detection in Tree Sensor Networks Ashraf Tantawy, Xenofon Koutsoukos, and Gautam Biswas Institute for Software Integrated Systems (ISIS) Department of Electrical

Koutsoukos, Xenofon D.

468

Autonomous Correction of Sensor Data Applied to Building Technologies Utilizing Statistical Processing Methods  

E-Print Network [OSTI]

Ridge, TN outfitted with a total of 1,218 sensors. The focus of this paper is on three different types.S. ("Intergovernmental Panel," 2007). There is a need for integrated building strategies, according to the U.S. Green concerns relevant to sensors being used to collect a wide variety of variables (e.g., humidity ratio, solar

Wang, Xiaorui "Ray"

469

Xsense -a miniaturised multi-sensor platform for explosives detection Michael Stenbk Schmidt1  

E-Print Network [OSTI]

device size allows us to integrate the four sensors into one portable device at a low cost. Keywords project is based on the development of a reliable, sensitive, portable and low-cost explosives detector and provide redundancy under various environmental conditions. As each sensor can be fabricated using

470

Microfluidic Integration into Neural Implants University of Southern California, Los Angeles, CA  

E-Print Network [OSTI]

Microfluidic Integration into Neural Implants E. Meng1 1 University of Southern California, Los technological deficiencies can be addressed by integrating microfluidics with electrodes and electrochemical sensors. Multimodality neural interfaces that combine electronics and microfluidics open new possibilities

Meng, Ellis

471

Micro benchtop optics by bulk silicon micromachining  

DOE Patents [OSTI]

Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

Lee, Abraham P. (Walnut Creek, CA); Pocha, Michael D. (Livermore, CA); McConaghy, Charles F. (Livermore, CA); Deri, Robert J. (Pleasanton, CA)

2000-01-01T23:59:59.000Z

472

Development of an architectural design tool for 3-D VLSI sensors  

E-Print Network [OSTI]

Three dimensional integration schemes for VLSI have the potential for enabling the development of new high-performance architectures for applications such as focal plane sensors. Due to the high costs involved in 3-D VLSI ...

Tyrrell, Brian (Brian Matthew)

2004-01-01T23:59:59.000Z

473

An elastic-spring-substrated nanogenerator as an active sensor for self-powered balance  

E-Print Network [OSTI]

demonstrated in various elds, such as heart- beating pulse diagnosis,13 tyre pressure/speed measurement,14 wind-substrated nanogenerator (SNG) was fabricated to accomplish the monolithic integration of an active sensor device onto

Wang, Zhong L.

474

Slide #1CENTER FOR INTEGRATED ACCESS NETWORKS  

E-Print Network [OSTI]

Slide #1CENTER FOR INTEGRATED ACCESS NETWORKS Photonics Communication Engineering Khanh Kieu, Ph.D. College of Optical Sciences, University of Arizona #12;Slide #2CENTER FOR INTEGRATED ACCESS NETWORKS is around 340m/s. #12;Slide #3CENTER FOR INTEGRATED ACCESS NETWORKS Homework Problem 2: Calculate

Kieu, Khanh

475

Slide #1CENTER FOR INTEGRATED ACCESS NETWORKS  

E-Print Network [OSTI]

Slide #1CENTER FOR INTEGRATED ACCESS NETWORKS Photonics Communication Engineering Khanh Kieu, Ph.D. College of Optical Sciences, University of Arizona #12;Slide #2CENTER FOR INTEGRATED ACCESS NETWORKS OPTI · Metropolitan and local area networks #12;Slide #3CENTER FOR INTEGRATED ACCESS NETWORKS OPTI500C Syllabus

Kieu, Khanh

476

Slide #1CENTER FOR INTEGRATED ACCESS NETWORKS  

E-Print Network [OSTI]

Slide #1CENTER FOR INTEGRATED ACCESS NETWORKS Photonics Communication Engineering Khanh Kieu, Ph.D. College of Optical Sciences, University of Arizona #12;Slide #2CENTER FOR INTEGRATED ACCESS NETWORKS multiplexing · Network topology #12;Slide #3CENTER FOR INTEGRATED ACCESS NETWORKS Communication Source

Kieu, Khanh

477

Slide #1CENTER FOR INTEGRATED ACCESS NETWORKS  

E-Print Network [OSTI]

Slide #1CENTER FOR INTEGRATED ACCESS NETWORKS Photonics Communication Engineering Khanh Kieu, Ph.D. College of Optical Sciences, University of Arizona #12;Slide #2CENTER FOR INTEGRATED ACCESS NETWORKS Significant progress #12;Slide #3CENTER FOR INTEGRATED ACCESS NETWORKS What else can we multiplex

Kieu, Khanh

478

Integrated Quantum Optoelectronics Lab Integrated Quantum Optoelectronics Lab at University of Washington (UW), Seattle is seeking  

E-Print Network [OSTI]

Integrated Quantum Optoelectronics Lab Integrated Quantum Optoelectronics Lab at University-matter interaction to enable scalable, extremely low power opto-electronics. The applications, for which we are developing these opto-electronic devices, include efficient electro-optic modulators, optical computing

Washington at Seattle, University of

479

Integrated control system and method  

DOE Patents [OSTI]

An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.

Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin

2013-10-29T23:59:59.000Z

480

Fiber Optic Based Thermometry System for Superconducting RF Cavities  

SciTech Connect (OSTI)

Thermometry is recognized as the best technique to identify and characterize losses in SRF cavities. The most widely used and reliable apparatus for temperature mapping at cryogenic temperatures is based on carbon resistors (RTDs). The use of this technology on multi-cell cavities is inconvenient due to the very large number of sensors required to obtain sufficient spatial resolution. Recent developments make feasible the use of multiplexible fiber optic sensors for highly distributed temperature measurements. However, sensitivity of multiplexible cryogenic temperature sensors was found extending only to 12K at best and thus was not sufficient for SRF cavity thermometry. During the course of the project the team of MicroXact, JLab and Virginia Tech developed and demonstrated the multiplexible fiber optic sensor with adequate response below 20K. The demonstrated temperature resolution is by at least a factor of 60 better than that of the best multiplexible fiber optic temperature sensors reported to date. The clear path toward at least 10times better temperature resolution is shown. The first to date temperature distribution measurements with ~2.5mm spatial resolution was done with fiber optic sensors at 2K to4K temperatures. The repeatability and accuracy of the sensors were verified only at 183K, but at this temperature both parameters significantly exceeded the state of the art. The results of this work are expected to find a wide range of applications, since the results are enabling the whole new testing capabilities, not accessible before.

Dr. Kochergin, Vladimir [Microxact Inc.] [Microxact Inc.

2013-05-06T23:59:59.000Z

Note: This page contains sample records for the topic "integrated optical sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Sensor Development and Readout Prototyping for the STAR Pixel Detector  

SciTech Connect (OSTI)

The STAR experiment at the Relativistic Heavy Ion Collider (RHIC) is designing a new vertex detector. The purpose of this upgrade detector is to provide high resolution pointing to allow for the direct topological reconstruction of heavy flavor decays such as the D{sup 0} by finding vertices displaced from the collision vertex by greater than 60 microns. We are using Monolithic Active Pixel Sensor (MAPS) as the sensor technology and have a coupled sensor development and readout system plan that leads to a final detector with a <200 {micro}s integration time, 400 M pixels and a coverage of -1 < {eta} < 1. We present our coupled sensor and readout development plan and the status of the prototyping work that has been accomplished.

Greiner, L.; Anderssen, E.; Matis, H.S.; Ritter, H.G.; Stezelberger, T.; Szelezniak, M.; Sun, X.; Vu, C.; Wieman, H.

2009-01-14T23:59:59.000Z

482

Sensor Characteristics Reference Guide  

SciTech Connect (OSTI)

The Buildings Technologies Office (BTO), within the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), is initiating a new program in Sensor and Controls. The vision of this program is: Buildings operating automatically and continuously at peak energy efficiency over their lifetimes and interoperating effectively with the electric power grid. Buildings that are self-configuring, self-commissioning, self-learning, self-diagnosing, self-healing, and self-transacting to enable continuous peak performance. Lower overall building operating costs and higher asset valuation. The overarching goal is to capture 30% energy savings by enhanced management of energy consuming assets and systems through development of cost-effective sensors and controls. One step in achieving this vision is the publication of this Sensor Characteristics Reference Guide. The purpose of the guide is to inform building owners and operators of the current status, capabilities, and limitations of sensor technologies. It is hoped that this guide will aid in the design and procurement process and result in successful implementation of building sensor and control systems. DOE will also use this guide to identify research priorities, develop future specifications for potential market adoption, and provide market clarity through unbiased information

Cree, Johnathan V.; Dansu, A.; Fuhr, P.; Lanzisera, Steven M.; McIntyre, T.; Muehleisen, Ralph T.; Starke, M.; Banerjee, Pranab; Kuruganti, T.; Castello, C.

2013-04-01T23:59:59.000Z