Sample records for integrated nanotechnologies cint

  1. Center for Integrated Nanotechnologies (CINT) | U.S. DOE Office of Science

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven National Laboratory Laboratory Policy(SC) Integrated

  2. An Integrated Approach to Nanotechnology Governance

    E-Print Network [OSTI]

    Paddock, LeRoy

    2010-01-01T23:59:59.000Z

    An Integrated Approach to Nanotechnology Governance LeRoyLegal and Social Issues . NANOTECHNOLOGY1. A National Nanotechnology Governance D

  3. Center for Integrated Nanotechnologies (CINT) | U.S. DOE Office...

    Office of Science (SC) Website

    (SUF) Division SUF Home About User Facilities User Facilities Dev X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for...

  4. Center for Integrated Nanotechnologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA SeriesNanocrystalNewsMPA-CINT Center for

  5. Sandia National Laboratories: CINT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News, News & Events, Photovoltaic, Renewable Energy, Research & Capabilities, Solar, SunShot The Center for Integrated Nanotechnologies at Sandia recently received a...

  6. Nanotechnology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruckNanostructuedNanotechnology

  7. Sandia National Laboratories: CINT Computer Simulation Guide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ClimateECEnergyRenewable EnergyBiofuelsCINT Computer Simulation Guide for Designing Polymeric Nanoparticles Published CINT Computer Simulation Guide for Designing Polymeric...

  8. Nanotechnology

    Broader source: Energy.gov [DOE]

    The Department of Energy's Nanotechnology Safety provides a forum for the exchange of best practices, lessons learned, and guidance in the area of nanotechnology safety and health management.

  9. Nanotechnology Research, Education, and Outreach by the Integrated Nanosystems Development Institute (INDI)

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Nanotechnology Research, Education, and Outreach by the Integrated Nanosystems Development IUPUI's Signature Center Initiative to advance nanotechnology-based systems research and spark student interest in this emerging STEM field. Innovation in the field of nanotechnology arises from

  10. Sandia Energy » CINT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche This author has not yetNovel Nanoparticle

  11. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (PSEL) National Supervisory Control and Data Acquisition (SCADA) Test Bed Center for Integrated Nanotechnologies (CINT) Distributed Energy Technologies Laboratory...

  12. Sandia Energy - Sandia/CINT Research on the Cover of Applied Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffects ofLetters Sandia/CINT Research on the

  13. Nanotechnology & Nanobiotechnology

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    1 Nanotechnology & Nanobiotechnology (Global Science, Engineering and Business Perspectives) by G of nanotechnology and nanobiotechnology and their global scientific and business prospects. · My research on design building blocks and their applications in science, engineering and health. What is nanotechnology

  14. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Nanotechnologies (106) CINT User Conference and SSLS EFRC Workshop (38) ECIS SMU Key Facilities 2011 (427) Energy, Climate, & Infrastructure Security Executive Summary...

  15. Microsystems and Nanotechnology Group

    E-Print Network [OSTI]

    Pulfrey, David L.

    Microsystems and Nanotechnology Group Microsystems and Nanotechnology Group 1 Microsystems and Nanotechnology Research Group The University of British Columbia Microsystems and Nanotechnology Research Group The University of British Columbia Annual Report ­ 2007 Microsystems and Nanotechnology Research Group 1 About

  16. Microsystems and Nanotechnology Group

    E-Print Network [OSTI]

    Pulfrey, David L.

    Microsystems and Nanotechnology Group Microsystems and Nanotechnology Group 1 Microsystems and Nanotechnology Research Group The University of British Columbia Microsystems and Nanotechnology Research Group The University of British Columbia Annual Report ­ 2008 Microsystems and Nanotechnology Research Group 1 About

  17. Nanowires As Building Blocks for Bottom-Up Nanotechnology

    E-Print Network [OSTI]

    Wang, Zhong L.

    #12;Nanowires As Building Blocks for Bottom-Up Nanotechnology The field of nanotechnology/or combinations of function in an integrated nanosystem. To enable this bottom-up approach for nanotechnology-dimensional (1D) nanostruc- tures at the forefront of nanoscience and nanotechnology. NWs and NBs are typi- cally

  18. Nanotechnology Needs Assessment What is Nanotechnology?

    E-Print Network [OSTI]

    Lewis, Robert Michael

    #12;1 Nanotechnology Needs Assessment What is Nanotechnology? The term nanomaterial technically are the inhabitants. Nanotechnology, then, is the design, characterization, production and application of structures, physical, and chemical reactivity is known as "bottom-up" production.2 Nanotechnology is a growing field

  19. PA Regional Nanotechnology Conference Nanotechnology for Industry

    E-Print Network [OSTI]

    Gilchrist, James F.

    4/19/2011 Present PA Regional Nanotechnology Conference Nanotechnology for Industry May 31, 2011 9 _____________________________________________________________ _____________The field of nanotechnology continues to be one of the leading forces behind our nation's ability to develop, commercialize, and produce advancements that are enabled by nanotechnology. Therefore, Drexel

  20. NANOTECHNOLOGY CERTIFICATE PROGRAM PRE-SURVEY What is Nanotechnology?

    E-Print Network [OSTI]

    Bennett, Gisele

    NANOTECHNOLOGY CERTIFICATE PROGRAM PRE-SURVEY What is Nanotechnology? Nanotechnology is the engineering of functional systems at length scales spanning 1 ­ 100 nm.nano.gatech.edu Why should I study Nanotechnology? Nanotechnology education will prepare you for exciting career

  1. Nanotechnology Commercialization in Oregon

    E-Print Network [OSTI]

    Moeck, Peter

    Nanotechnology Commercialization in Oregon February 27, 2012 Portland State University Physics Seminar Robert D. "Skip" Rung President and Executive Director #12;2 Nanotechnology Commercialization on "green" nanotechnology and gap fund portfolio company examples #12;3 Goals of the National Nanotechnology

  2. Nanotechnology at Maryland Nanotechnologies technologies using the special

    E-Print Network [OSTI]

    Hill, Wendell T.

    Nanotechnology at Maryland Nanotechnologies ­ technologies using the special properties the possibilities of nanotechnology. The center, led by founding Director Gary Rubloff, is an interdisciplinary-of-the-art facilities, guides nanotechnology ducation initiatives, and promotes technology transfer from the university

  3. MTL ANNUAL RESEARCH REPORT 2014 Nanotechnology 145 Nanotechnology, Nanomaterials

    E-Print Network [OSTI]

    Reif, Rafael

    MTL ANNUAL RESEARCH REPORT 2014 Nanotechnology 145 Nanotechnology, Nanomaterials Synthesize Silver Metal Chalcogenides ........................................165 #12;146 Nanotechnology MTL ANNUAL RESEARCH REPORT 2014 #12;MTL ANNUAL RESEARCH REPORT 2014 Nanotechnology 147 Synthesize Silver Nanoprisms

  4. Chemistry 455 Chemical Nanotechnology

    E-Print Network [OSTI]

    Rohs, Remo

    Chemistry 455 Chemical Nanotechnology 4 units Prof. Richard Brutchey, Fall 2014 (Lecture = 12:00­12:50 pm MWF) CHEM 455 is an upper-division undergraduate course in Chemical Nanotechnology. The intent

  5. Nanotechnology User Facility for

    E-Print Network [OSTI]

    A National Nanotechnology User Facility for Industry Academia Government #12;The National Institute of Commerce's nanotechnology user facility. The CNST enables innovation by providing rapid access to the tools new measurement and fabrication methods in response to national nanotechnology needs. www

  6. Research Highlights Nature Nanotechnology

    E-Print Network [OSTI]

    Müller, Markus

    © 2009 APS Research Highlights Nature Nanotechnology Published online: 17 July 2009 | doi:10 perfect fluid. Phys. Rev. Lett. 103, 025301 (2009). | Article |1. Nature Nanotechnology ISSN 1748 : Nature Nanotechnology http://www.nature.com/nnano/reshigh/2009/0709/full/nnano.2009.222.html 1 of 1 18

  7. Environmental Impacts of Nanotechnology

    E-Print Network [OSTI]

    Zhang, Junshan

    Environmental Impacts of Nanotechnology Paul Westerhoff, Ph.D., PE Professor and Chair Civil · Proposed Center for Environmental Implications of Nanotechnology (CEIN) · Successes by ASU researchers #12 of nanotechnology? #12;Nanomaterials are used in everyday life (> 500 products to date) Nano-silver in Bandages

  8. Nanotechnology Medical Applications Breakthroughs in nanotechnology promise to revolutionize drug

    E-Print Network [OSTI]

    Hill, Wendell T.

    Nanotechnology Medical Applications Breakthroughs in nanotechnology promise to revolutionize drug manufacturing, drug delivery, and medical diagnostics. By learning how substances behave differently's Nanotechnology Center are creating novel tools and developing new methods for crucial research areas of drug

  9. At EMSL, nanoscience and nanotechnology play a critical, crosscutting role in our mission to integrate experimental and computational resources for innovations that support the U.S. Department of Energy (DOE) and the nation. As a

    E-Print Network [OSTI]

    At EMSL, nanoscience and nanotechnology play a critical, crosscutting role in our mission capabilities with various applications in nanoscience and nanotechnology. Along with in-house staff expertise

  10. NANOTECHNOLOGY 4 NOVEMBER 2004 NanotechnologyE-Bulletin

    E-Print Network [OSTI]

    Rogers, John A.

    NANOTECHNOLOGY 4 NOVEMBER 2004 NanotechnologyE-Bulletin Three-dimensional nanofabrication for many areas of nanotechnology. An indirect approach to 3D uses the repeti- tive application of steps structures. #12;NANOTECHNOLOGY 4 NOVEMBER 2004 source and the size of the phase mask limit the dimensions

  11. Nanotechnology Regulation: A Study in Claims Making

    E-Print Network [OSTI]

    Malloy, Timothy F.

    2011-01-01T23:59:59.000Z

    A. Hodge, ‘Governing’ Nanotechnology without Government? ,2003). 22. Patrick Lin, Nanotechnology Bound: Evaluating theKeeping Pace with Nanotechnology: A Proposal for a New

  12. 2nd Workshop on Computations in Nanotechnology

    E-Print Network [OSTI]

    Adler, Joan

    2nd Workshop on Computations in Nanotechnology Keynote Speakers: Mark J. Biggs (Adelaide), Mark nanotechnology researchers Goal: Exposing computational analysis experts and nanotechnology experimentalists

  13. Nanotechnology Nanotechnology comprises measurement, design, modeling and fabrication of materials and systems at the atomic scale.

    E-Print Network [OSTI]

    Glowinski, Roland

    Nanotechnology Nanotechnology comprises measurement, design, modeling and fabrication of materials are able to customize their education by specializing in areas such as nanotechnology, computational

  14. Declaration of Concentration in Nanotechnology

    E-Print Network [OSTI]

    Goldberg, Bennett

    Declaration of Concentration in Nanotechnology Return completed form to ENG Undergraduate Records:____________________________ Instructions: ENG students declaring a Concentration in Nanotechnology should complete this form, obtain REQUIRED COURSES (Choose 1) 1. ENG EC 481­ Fundamentals of Nanomaterials and Nanotechnology 4.0 ELECTIVES

  15. Nanotechnology with DNA DNA Nanodevices

    E-Print Network [OSTI]

    Ludwig-Maximilians-Universität, München

    Nanotechnology with DNA DNA Nanodevices Friedrich C. Simmel* and Wendy U. Dittmer A DNA actuator. Introduction.............285 2. Overview: DNA Nanotechnology.......285 3. Prototypes of Nanomechanical DNA overview of DNA nanotechnology as a whole is given. The most important properties of DNA molecules

  16. Nanotechnology: Nanomaterials, Nanomedicine and Nanocars

    E-Print Network [OSTI]

    Fisher, Frank

    Nanotechnology: Nanomaterials, Nanomedicine and Nanocars Wednesday March 21, 2012, Babbio 122, 11am and Technology Rice University, Houston, TX An overview of several of the nanotechnology research areas in our Nanotechnology in 2008, the NASA Space Act Award in 2008 for his development of carbon nanotube reinforced

  17. DNA Structural Nanotechnology Duke University

    E-Print Network [OSTI]

    Reif, John H.

    DNA Structural Nanotechnology John Reif Duke University Graduate Students: Harish Chandran&Caltech Tube Lattices #12;Ned Seeman New York University, USA Ned Seeman: Father of DNA Nanotechnology His Initial Ideas & Motivation for DNA Nanotechnology #12;Cube Chen & Seeman, Nature350:631 (1991) Truncated

  18. Nanotechnology in Head and Neck Cancer: The Race Is On

    E-Print Network [OSTI]

    El-Sayed, Ivan H.

    2010-01-01T23:59:59.000Z

    10.1007/s11912-010-0087-2 Nanotechnology in Head and Neckthe applications of nanotechnology in head and neck cancer,plasmonic gold nanotechnology. Keywords Nanotechnology .

  19. Nanotechnology: Small Materials Making a Big Impact | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruckNanostructuedNanotechnologyNanotechnology: Small Materials

  20. Experiential Component Approval Form Concentration in Nanotechnology

    E-Print Network [OSTI]

    Goldberg, Bennett

    Experiential Component Approval Form Concentration in Nanotechnology Return completed form to ENG Plan to complete the experiential component as a requirement for the concentration in Nanotechnology to complete the experiential component for the Nanotechnology Concentration by: Research Experience in Lab

  1. New Developments in Transmission Electron Microscopy for Nanotechnology**

    E-Print Network [OSTI]

    Wang, Zhong L.

    New Developments in Transmission Electron Microscopy for Nanotechnology** By Zhong Lin Wang* 1. Electron Microscopy and Nanotechnology Nanotechnology, as an international initiative for science manufacturing are the foundation of nanotechnology. Tracking the historical background of why nanotechnology

  2. National Aeronautics and Space Administration NaNotechNology Roadmap

    E-Print Network [OSTI]

    Waliser, Duane E.

    National Aeronautics and Space Administration · NaNotechNology Roadmap Technology Area 10 Michael A-27 #12;Foreword NASA's integrated technology roadmap, including both technology pull and technology push state of this effort is documented in NASA's DRAFT Space Technology Roadmap, an integrated set

  3. Quantum Physics and Nanotechnology

    E-Print Network [OSTI]

    Vladimir K. Nevolin

    2011-06-06T23:59:59.000Z

    Experimental studies of infinite (unrestricted at least in one direction) quantum particle motion using probe nanotechnologies have revealed the necessity of revising previous concepts of their motion. Particularly, quantum particles transfer quantum motion nonlocality energy beside classical kinetic energy, in other words, they are in two different kinds of motion simultaneously. The quantum component of the motion energy may be quite considerable under certain circumstances. Some new effects were predicted and proved experimentally in terms of this phenomenon. A new prototype refrigerating device was tested, its principle of operation being based on the effect of transferring the quantum component of the motion energy.

  4. BIRCK NANOTECHNOLOGY CENTER ESTABLISHED MARCH, 2001

    E-Print Network [OSTI]

    Holland, Jeffrey

    BIRCK NANOTECHNOLOGY CENTER ESTABLISHED MARCH, 2001 As one of the first academic nanotechnology research centers in the US, the Birck Nanotechnology Center provides solutions to challenges in healthcare nanotechnology centers in the US; the 187,000 sq.ft. building includes a 25,000 sq. ft. cleanroom that is 45

  5. NANOTECHNOLOGY INITIATIVE Annual Report FY 20092010

    E-Print Network [OSTI]

    NC STATE NANOTECHNOLOGY INITIATIVE Annual Report FY 20092010 In This Report: · Raleigh named top AS AN EMERGING LEADER IN THE FIELD OF NANOTECHNOLOGY." Dr. Gregory Parsons, NC State Nanotechnology Initiative was a period of tremendous growth for nanotechnology activitiesThis past year was a period of tremendous growth

  6. Environmental Assessment for the Center for Integrated Nanotechnologie...

    Broader source: Energy.gov (indexed) [DOE]

    IMPACT CENTER FOR INTEGRATED NANOTECHNOLOGIES AT SANDIA NATIONAL LABORATORIESNEW MEXICO The United States Department of Energy (DOE), National Nuclear Security...

  7. Nanotechnology Applications in Self-Assembly and DNA Computing

    E-Print Network [OSTI]

    Akin, Hayri Engin

    2011-01-01T23:59:59.000Z

    patterned surfaces. Nature Nanotechnology 4, 557-561. doi:Conference on Molecular Nanotechnology Mintmire, J. W. ,Molecule Electronics. Nanotechnology, 175- 212. WILEY-VCH

  8. Disrupting Conventional Policy: The Three Faces of Nanotechnology

    E-Print Network [OSTI]

    Malloy, Timothy

    2010-01-01T23:59:59.000Z

    the brush sur- rounding nanotechnology policy and suggests aImpli- cations of Nanotechnology). 6. Regarding "governance"Policy: The Three Faces of Nanotechnology Timothy F Malloy*

  9. Ecologic: Nanotechnology, Environmental Assurance Bonding, and Symmetric Humility

    E-Print Network [OSTI]

    Kysar, Douglas A.

    2010-01-01T23:59:59.000Z

    315 (2008); James Yeagle, Nanotechnology and the FDA, 12 VA.For Regulation Of Nanotechnology, 34 J.L. MED. & ETHICSUncertainty: The Nanotechnology Environmental, Health, And

  10. Applications of nanotechnology to the central nervous system

    E-Print Network [OSTI]

    Blumling, James P.

    2012-01-01T23:59:59.000Z

    Silva. Introduction to nanotechnology and its applications220, 2004. 3. GA Silva. Nanotechnology approaches for theSilva. Neuroscience nanotechnology: Progress, opportunities

  11. NANOTECHNOLOGY GRADUATE PROGRAM SEMINAR SERIES STEVENS INSTITUTE OF TECHNOLOGY

    E-Print Network [OSTI]

    Fisher, Frank

    NANOTECHNOLOGY GRADUATE PROGRAM SEMINAR SERIES STEVENS INSTITUTE OF TECHNOLOGY NANOTECHNOLOGY and Engineering Drexel University Nanofiber technology is a branch of nanotechnology that concerns the processing

  12. INSTITUTE OF PHYSICS PUBLISHING NANOTECHNOLOGY Nanotechnology 17 (2006) 28912894 doi:10.1088/0957-4484/17/12/011

    E-Print Network [OSTI]

    Chen, Junhong

    2006-01-01T23:59:59.000Z

    INSTITUTE OF PHYSICS PUBLISHING NANOTECHNOLOGY Nanotechnology 17 (2006) 2891­2894 doi:10 new opportunities for exploring nanoscience, nanotechnology, and biotechnology. The assembly

  13. Nanotechnology: Small Matters

    SciTech Connect (OSTI)

    Cynthia Needham

    2008-06-30T23:59:59.000Z

    The primary objective of this project was to engage members of the public in an active and balanced deliberative discussion about the social, ethical, legal, environmental, and policy issues arising from nanotechnologies. A second but equally important objective was to interest members of the public in learning more about science and technology and nanotechnology specifically by understanding how it will affect their lives. The objectives were met through a series of electronic and face-to-face citizen forums conducted in conjunction with three Fred Friendly Seminars being taped on the University of California, Berkeley campus in partnership with Lawrence Hall of Science (this forum was conducted in partnership with the St. Louis Science Center); the Boston Museum of Science in Boston, MA; and the State Museum of South Carolina in Columbia, South Carolina. The topical area for each forum paralleled the content of the Fred Friendly Seminars series being taped at each location, but specific topics/issues were drawn from the concerns and interests of the communities. The three topical areas included Environmental Impact (St. Louis), Privacy vs. Security (Boston), and Health and Enhancement (Columbia). The PI and project leader worked with the local science centers to identify stakeholder groups, such as academic, corporate and government scientists; environmental advocates; business leaders; science and technology journalists; and public policy makers within each community. Representatives from each group along with members of the general public were invited to participate in a series of on line and in person deliberations that were designed to provide basic information about the science, its potential benefits and risks, and avenues for public participation in policy formulation. On line resources were designed and managed by ScienceVIEW at Lawrence Hall of Science and Earth & Sky, Inc. The activities at each site were evaluated by Inverness Research Associates to assess whether they have achieved the objectives.

  14. Fundamental enabling issues in nanotechnology :

    SciTech Connect (OSTI)

    Floro, Jerrold Anthony; Foiles, Stephen Martin; Hearne, Sean Joseph; Hoyt, Jeffrey John; Seel, Steven Craig; Webb, Edmund Blackburn,; Morales, Alfredo Martin; Zimmerman, Jonathan A.

    2007-10-01T23:59:59.000Z

    To effectively integrate nanotechnology into functional devices, fundamental aspects of material behavior at the nanometer scale must be understood. Stresses generated during thin film growth strongly influence component lifetime and performance; stress has also been proposed as a mechanism for stabilizing supported nanoscale structures. Yet the intrinsic connections between the evolving morphology of supported nanostructures and stress generation are still a matter of debate. This report presents results from a combined experiment and modeling approach to study stress evolution during thin film growth. Fully atomistic simulations are presented predicting stress generation mechanisms and magnitudes during all growth stages, from island nucleation to coalescence and film thickening. Simulations are validated by electrodeposition growth experiments, which establish the dependence of microstructure and growth stresses on process conditions and deposition geometry. Sandia is one of the few facilities with the resources to combine experiments and modeling/theory in this close a fashion. Experiments predicted an ongoing coalescence process that generates signficant tensile stress. Data from deposition experiments also supports the existence of a kinetically limited compressive stress generation mechanism. Atomistic simulations explored island coalescence and deposition onto surfaces intersected by grain boundary structures to permit investigation of stress evolution during later growth stages, e.g. continual island coalescence and adatom incorporation into grain boundaries. The predictive capabilities of simulation permit direct determination of fundamental processes active in stress generation at the nanometer scale while connecting those processes, via new theory, to continuum models for much larger island and film structures. Our combined experiment and simulation results reveal the necessary materials science to tailor stress, and therefore performance, in nanostructures and, eventually, integrated nanocomponents.

  15. IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 18 (2007) 375501 (11pp) doi:10.1088/0957-4484/18/37/375501

    E-Print Network [OSTI]

    Alaca, B. Erdem

    2007-01-01T23:59:59.000Z

    IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 18 (2007) 375501 (11pp) doi:10 University, R Feneri Yolu, 34450 Sariyer, Istanbul, Turkey 2 Department of Micro and Nanotechnology, Danmarks: Department of Micro and Nanotechnology, Danmarks Tekniske Universitet, DK-2800, Kongens Lyngby, Denmark. 5

  16. IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 19 (2008) 145304 (11pp) doi:10.1088/0957-4484/19/14/145304

    E-Print Network [OSTI]

    Vos, Willem L.

    2008-01-01T23:59:59.000Z

    IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 19 (2008) 145304 (11pp) doi:10 Systems (COPS), MESA+ Institute for Nanotechnology and Department of Science and Technology, University+ Institute for Nanotechnology and Department of Electrical Engineering, Mathematics and Computer Science

  17. SUSTAINABLE NANOTECHNOLOGY ORGANIZATION (SNO) Vision The Sustainable Nanotechnology Organization (SNO) is a non-profit, worldwide professional society

    E-Print Network [OSTI]

    SUSTAINABLE NANOTECHNOLOGY ORGANIZATION (SNO) Vision The Sustainable Nanotechnology Organization that are engaged in: · Research and development of sustainable nanotechnology · Implementation of sustainable nanotechnology for Environment, Health, and Safety · Advances in nanoscience, methods, protocols and metrology

  18. IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 4, NO. 2, MARCH 2005 153 Benchmarking Nanotechnology for

    E-Print Network [OSTI]

    Yener, Aylin

    IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 4, NO. 2, MARCH 2005 153 Benchmarking Nanotechnology Radosavljevic Abstract--Recently there has been tremendous progress made in the research of novel nanotechnology believe that benchmarking is a key element in accelerating the progress of nanotechnology research

  19. SPOTLIGHT on: Lindsay Freeman Chemical Engineering (Nanotechnology)

    E-Print Network [OSTI]

    Wang, Hai

    SPOTLIGHT on: Lindsay Freeman Chemical Engineering (Nanotechnology) Undergraduate Hometown.D. in chemical engineering with an emphasis in nanotechnology. Lindsay stands out as a very well-balanced student

  20. PROGRAM MANAGER CENTER FOR NANOTECHNOLOGY IN SOCIETY

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    PROGRAM MANAGER CENTER FOR NANOTECHNOLOGY IN SOCIETY AT ARIZONA STATE UNIVERSITY The Center for Nanotechnology in Society at Arizona State University (CNS-ASU) seeks a Program Manager to organize and coordinate activities, programs, and projects for the Center for Nanotechnology in Society (CNS) at Arizona

  1. Nanowarriors: Military Nanotechnology and Comic Books

    E-Print Network [OSTI]

    Nanowarriors: Military Nanotechnology and Comic Books Colin Milburn U N I V E R S I T Y O F C A L I with nanotechnology. The Army Research Office had issued broad agency solicitations for such a center in October 2001 what became dubbed the MIT Institute for Soldier Nanotechnologies (ISN). MIT's proposal out- lined

  2. Birck Nanotechnology Center Transforming Light with Metamaterials

    E-Print Network [OSTI]

    Fiebig, Peter

    Birck Nanotechnology Center Transforming Light with Metamaterials (with A.V. Kildishev, W. Cai, V.P. Drachev, S. Xiao, U. Chettiar) OUTLINE Birck Nanotechnology Center Vladimir M. Shalaev Purdue University;Birck Nanotechnology Center Meta-Magnetics: from 10GHz to 200THz Terahertz magnetism a) Yen, et al. ~ 1

  3. WHICH MODEL OF TECHNOLOGY TRANSFER FOR NANOTECHNOLOGY?

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 WHICH MODEL OF TECHNOLOGY TRANSFER FOR NANOTECHNOLOGY? A Comparison with Biotech.genet@grenoble-em.com Website: www.nanoeconomics.eu Abstract. Nanotechnologies are often presented as breakthrough innovations. This article investigates the model of knowledge transfer in the nanotechnologies in depth, by comparing

  4. Computer-based carbon nanotechnology prophecy

    E-Print Network [OSTI]

    Computer-based carbon nanotechnology prophecy As device sizes approach atomic dimensions, much that of experimental observations. No surprise that nanotechnology designers are increasingly turning to large in the nanotechnology domain fulfill the same mission as prophecies of old, namely guiding the evolution towards

  5. Nanotechnology: emerging tools for biology and medicine

    E-Print Network [OSTI]

    Bhatia, Sangeeta

    REVIEW Nanotechnology: emerging tools for biology and medicine Ian Y. Wong,1,2,10 Sangeeta N administration of thera- peutic treatments. Nanotechnology has the potential to transform these paradigms and physical functionality at small length scales. Here, we review nanotechnology- based approaches

  6. master's degree NaNotechNology

    E-Print Network [OSTI]

    Twente, Universiteit

    master's degree NaNotechNology When choosing a Master's programme, it is wise to look one step topical, incorporating the latest developments in applied physics, nanotechnology, chemical engineering projects will be carried out at the MESA+ institute for nanotechnology, or the MIRA institute

  7. Applications of Nanotechnology to Pharmaceutical Product Development

    E-Print Network [OSTI]

    Fisher, Frank

    Applications of Nanotechnology to Pharmaceutical Product Development Wednesday January 27, 2010 physical forms can create limitations in terms of product performance and/or safety. Nanotechnology can of the clinical benefits of using nanotechnology in drug product development.. Bill Bosch has been involved

  8. Hindawi Publishing Corporation Journal of Nanotechnology

    E-Print Network [OSTI]

    Wang, Yan Alexander

    Hindawi Publishing Corporation Journal of Nanotechnology Volume 2010, Article ID 801789, 42 pages a general interest in both fundamental and practical nanotechnology. Over the past 20 years, research's -orbital axis vector (POAV) #12;2 Journal of Nanotechnology (0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (1,1) (2

  9. Societal and Ethical Implications of Nanotechnology

    E-Print Network [OSTI]

    Subramanian, Venkat

    Societal and Ethical Implications of Nanotechnology #12;What is SEI? · Social and Ethical Nanotechnology Research & Development Act of 2003 (PL 108-153) · Established a societal implications research of their research · Provides for public input into nanotechnology research and development #12;Areas of Society

  10. Improving Targeted Radionuclide Therapy Using Nuclear Nanotechnology 

    E-Print Network [OSTI]

    Evans, Jordan Andrew

    2013-05-03T23:59:59.000Z

    IMPROVING TARGETED RADIONUCLIDE THERAPY USING NUCLEAR NANOTECHNOLOGY A Thesis by JORDAN ANDREW EVANS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of Nanotechnology ................................................. 4 1.3 Paradigm Shift - Improving TRT Using Nuclear Nanotechnology .......... 8 1.4 Cancer Cell Line Investigated in This Study .......................................... 14 1.5 Nano...

  11. Physics-Based Mathematical Models for Nanotechnology

    E-Print Network [OSTI]

    Melnik, Roderick

    Physics-Based Mathematical Models for Nanotechnology 2008 J. Phys.: Conf. Ser. 107, 011001, doi: 10 for their excellent support during the workshop. Nanotechnology is the study and application of phenomena at or below. This workshop put strong emphasis on discussions of the new mathematics needed in nanotechnology especially

  12. Quantum Information Science and Nanotechnology

    E-Print Network [OSTI]

    Alexander Yu. Vlasov

    2009-03-06T23:59:59.000Z

    In this note is touched upon an application of quantum information science (QIS) in nanotechnology area. The laws of quantum mechanics may be very important for nano-scale objects. A problem with simulating of quantum systems is well known and quantum computer was initially suggested by R. Feynman just as the way to overcome such difficulties. Mathematical methods developed in QIS also may be applied for description of nano-devices. Few illustrative examples are mentioned and they may be related with so-called fourth generation of nanotechnology products.

  13. Nanoscience and nanotechnology as seen

    E-Print Network [OSTI]

    Shoubridge, Eric

    nanoscience to make a `quantum leap' · Analog circuits · Digital circuits· Digital circuits · Quantum circuits2/13/2012 1 Nanoscience and nanotechnology as seen through quantum dots Pat Kambhampati Department science to technology · MRI ­ a good thing! · But where did it come from? ­ Quantum Mechanics (1920's) ­ I

  14. Science and technology news Nanotechnology

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    Science and technology news Home Nanotechnology Physics Space & Earth Electronics Technology Smart Toxic Gas Monitor - Plug/Play sensor 10' extender cable NH3, CO, CL2, H2S, PH3, SO2, AsH3 - www to potentially toxic chemicals. The investigators hope to be able to market the wearable sensor within a few

  15. Perspectives Nanotechnology and the public: Effectively communicating nanoscale science

    E-Print Network [OSTI]

    Crone, Wendy C.

    Perspectives Nanotechnology and the public: Effectively communicating nanoscale science August 2006 Key words: nanotechnology, communication, public knowledge, public understanding the public on concepts and applications associated with nanotechnology. The goal of our work

  16. PA Nanotechnology 2012 Nanotech's Role in Advancing PA's Economy

    E-Print Network [OSTI]

    Gilchrist, James F.

    PA Nanotechnology 2012 Nanotech's Role in Advancing PA's Economy June 5, 2012 Harrisburg University University Drexel Nanotechnology Institute (DNI) Harrisburg Area Community College Harrisburg University of Science and Technology Lehigh University Center for Advanced Materials and Nanotechnology (CAMN) Penn

  17. Ris-R-1550(EN) Nanotechnology development in Denmark

    E-Print Network [OSTI]

    Risø-R-1550(EN) Nanotechnology development in Denmark - environmental opportunities and risk Maj Munch Andersen and Birgitte Rasmussen Title: Nanotechnology development in Denmark - environmental Products and Materials ­ Challenges from Nanotechnology, Biotechnology and ICT" (Jørgensen et al. 2006

  18. Emerging nanotechnology approaches for HIV/AIDS treatment and prevention

    E-Print Network [OSTI]

    von Andrian, Ulrich H.

    Emerging nanotechnology approaches for HIV/AIDS treatment and prevention The emergence of AIDS effects and is ineffective in patients in whom the virus develops resistance. Nanotechnology of nanotechnology to provide more effective treatment and preven

  19. Nanotechnology: a slightly different history

    E-Print Network [OSTI]

    Schulz, Peter

    2015-01-01T23:59:59.000Z

    Many introductory articles and books about nanotechnology have been written to disseminate this apparently new technology, which investigate and manipulates matter at dimension of a billionth of a meter. However, these texts show in general a common feature: there is very little about the origins of this multidisciplinary field. If anything is mentioned at all, a few dates, facts and characters are reinforced, which under the scrutiny of a careful historical digging do not sustain as really founding landmarks of the field. Nevertheless, in spite of these flaws, such historical narratives bring up important elements to understand and contextualize this human endeavor, as well as the corresponding dissemination among the public: would nanotechnology be a cultural imperative?

  20. National Nanotechnology Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar EnergyKambara /performancesequestrationNational

  1. Nanotechnology Nanotechnology 25 (2014) 155303 (7pp) doi:10.1088/0957-4484/25/15/155303

    E-Print Network [OSTI]

    Ihee, Hyotcherl

    2014-01-01T23:59:59.000Z

    Nanotechnology Nanotechnology 25 (2014) 155303 (7pp) doi:10.1088/0957-4484/25/15/155303 Anti-4484/14/155303+07$33.00 1 c 2014 IOP Publishing Ltd Printed in the UK #12;Nanotechnology 25 (2014) 155303 J Kim et al we

  2. IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 19 (2008) 105301 (4pp) doi:10.1088/0957-4484/19/10/105301

    E-Print Network [OSTI]

    Chen, Junhong

    2008-01-01T23:59:59.000Z

    IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 19 (2008) 105301 (4pp) doi:10 spectrum. 0957-4484/08/105301+04$30.00 © 2008 IOP Publishing Ltd Printed in the UK1 #12;Nanotechnology 19

  3. INSTITUTE OF PHYSICS PUBLISHING NANOTECHNOLOGY Nanotechnology 18 (2007) 055102 (6pp) doi:10.1088/0957-4484/18/5/055102

    E-Print Network [OSTI]

    Hammock, Bruce D.

    2007-01-01T23:59:59.000Z

    INSTITUTE OF PHYSICS PUBLISHING NANOTECHNOLOGY Nanotechnology 18 (2007) 055102 (6pp) doi:10-4484/07/055102+06$30.00 1 © 2007 IOP Publishing Ltd Printed in the UK #12;Nanotechnology 18 (2007) 055102 D Dosev et al

  4. IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 20 (2009) 475305 (5pp) doi:10.1088/0957-4484/20/47/475305

    E-Print Network [OSTI]

    Tian, Weidong

    2009-01-01T23:59:59.000Z

    IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 20 (2009) 475305 (5pp) doi:10 IOP Publishing Ltd Printed in the UK1 #12;Nanotechnology 20 (2009) 475305 W Y Fu et al Figure 1

  5. IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 19 (2008) 105709 (6pp) doi:10.1088/0957-4484/19/10/105709

    E-Print Network [OSTI]

    Chan, Derek Y C

    2008-01-01T23:59:59.000Z

    IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 19 (2008) 105709 (6pp) doi:10 universal 0957-4484/08/105709+06$30.00 © 2008 IOP Publishing Ltd Printed in the UK1 #12;Nanotechnology 19

  6. IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 19 (2008) 025701 (12pp) doi:10.1088/0957-4484/19/02/025701

    E-Print Network [OSTI]

    Melnik, Roderick

    2008-01-01T23:59:59.000Z

    IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 19 (2008) 025701 (12pp) doi:10 in the UK1 #12;Nanotechnology 19 (2008) 025701 N Sinha et al Figure 1. SEM image showing randomly oriented

  7. IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 20 (2009) 275603 (13pp) doi:10.1088/0957-4484/20/27/275603

    E-Print Network [OSTI]

    Ju, Yiguang

    2009-01-01T23:59:59.000Z

    IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 20 (2009) 275603 (13pp) doi:10;Nanotechnology 20 (2009) 275603 J Shan and Y Ju Among various host materials for UCNPs, NaYF4 in either cubic

  8. IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 24 (2013) 335703 (7pp) doi:10.1088/0957-4484/24/33/335703

    E-Print Network [OSTI]

    Münster, Westfälische Wilhelms-Universität

    2013-01-01T23:59:59.000Z

    IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 24 (2013) 335703 (7pp) doi:10 in the UK & the USA #12;Nanotechnology 24 (2013) 335703 D Ziegler et al Unfortunately, the poor accuracy

  9. IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 18 (2007) 165504 (6pp) doi:10.1088/0957-4484/18/16/165504

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 18 (2007) 165504 (6pp) doi:10-4484/07/165504+06$30.00 1 © 2007 IOP Publishing Ltd Printed in the UK #12;Nanotechnology 18 (2007) 165504 T Zhang et al

  10. IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 19 (2008) 332001 (14pp) doi:10.1088/0957-4484/19/33/332001

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 19 (2008) 332001 (14pp) doi:10 Printed in the UK1 #12;Nanotechnology 19 (2008) 332001 Topical Review I I 1-D Nanowire 2-D Thin film

  11. IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 20 (2009) 365701 (11pp) doi:10.1088/0957-4484/20/36/365701

    E-Print Network [OSTI]

    Tomar, Vikas

    2009-01-01T23:59:59.000Z

    IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 20 (2009) 365701 (11pp) doi:10-4484/09/365701+11$30.00 © 2009 IOP Publishing Ltd Printed in the UK1 #12;Nanotechnology 20 (2009) 365701 V Samvedi and V Tomar

  12. IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 19 (2008) 455610 (6pp) doi:10.1088/0957-4484/19/45/455610

    E-Print Network [OSTI]

    Chen, Junhong

    2008-01-01T23:59:59.000Z

    IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 19 (2008) 455610 (6pp) doi:10-4484/08/455610+06$30.00 © 2008 IOP Publishing Ltd Printed in the UK1 #12;Nanotechnology 19 (2008) 455610 S Mao et al Figure 1

  13. IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 18 (2007) 105303 (6pp) doi:10.1088/0957-4484/18/10/105303

    E-Print Network [OSTI]

    Grütter, Peter

    2007-01-01T23:59:59.000Z

    IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 18 (2007) 105303 (6pp) doi:10-4484/07/105303+06$30.00 1 © 2007 IOP Publishing Ltd Printed in the UK #12;Nanotechnology 18 (2007) 105303 J M Mativetsky et

  14. Nanotechnology and algae biofuels exhibits open July 26 at the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotechnology and algae biofuels exhibits open July 26 Nanotechnology and algae biofuels exhibits open July 26 at the Bradbury Science Museum The Bradbury Science Museum is...

  15. answers cancer nanotechnology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: 2nd Workshop on Computations in Nanotechnology Keynote Speakers: Mark J. Biggs (Adelaide), Mark nanotechnology researchers Goal: Exposing computational analysis...

  16. Nanotechnology in Cancer Treatment and Detection Richard Acosta

    E-Print Network [OSTI]

    Fygenson, Deborah Kuchnir

    Nanotechnology in Cancer Treatment and Detection Richard Acosta #12;Motivation ·Ineffectiveness or roughly 100 times smaller than most human cells Cancer Nanotechnology research is interdisciplinary

  17. The Hebrew University Center for Nanoscience and Nanotechnology

    E-Print Network [OSTI]

    Einat, Aharonov

    The Hebrew University Center for Nanoscience and Nanotechnology Annual Conference 2014 Royal your work during the Nanoscience and Nanotechnology Center Yearly Conference, which will be held

  18. The Hebrew University Center for Nanoscience and Nanotechnology

    E-Print Network [OSTI]

    Simon, Emmanuel

    The Hebrew University Center for Nanoscience and Nanotechnology Annual Conference 2015 Holiday Inn your work during the Nanoscience and Nanotechnology Center Yearly Conference, which will be held

  19. Northern California Nanotechnology Center Chemical Hygiene Plan

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    Northern California Nanotechnology Center Chemical Hygiene Plan Rev 11/12 Page 1 Northern California Nanotechnology Center Chemical Hygiene Plan 1.0 Introduction Cal-OSHA (Title 8 CCR 5191) and campus regulations require that all laboratories have a written Chemical Hygiene Plan. The Chemical

  20. Birck Nanotechnology Center Vladimir M. Shalaev

    E-Print Network [OSTI]

    Shalaev, Vladimir M.

    -Space Black hole #12;V. M. Shalaev, Oct. 26, 2007 5 Birck Nanotechnology Center Invisibility to Radar: Stealth Technology Stealth technique: Radar cross-section reductions by absorbing paint / non- metallic frame / shape 14 Birck Nanotechnology Center Natural Optical Materials Semiconductors Crystals Water Air metals #12

  1. Using Nanotechnology in Viscoelastic Surfactant Stimulation Fluids 

    E-Print Network [OSTI]

    Gurluk, Merve Rabia 1986-

    2012-11-12T23:59:59.000Z

    USING NANOTECHNOLOGY IN VISCOELASTIC SURFACTANT STIMULATION FLUIDS A Thesis by MERVE RABIA GURLUK Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... .......................................... 9 1.7 Kinetics of Micellization ......................................................................... 10 1.8 Nanotechnology ....................................................................................... 16...

  2. Nanotechnology for Life Sciences Vol. 4: Nanodevices for Life Sciences

    E-Print Network [OSTI]

    Hancock, William O.

    Nanotechnology for Life Sciences Vol. 4: Nanodevices for Life Sciences Protein-based nanotechnology such as semiconductors into functional materials.11,12 Another example of protein based nanotechnology is the push in nanotechnology18,19 and on applications of kinesin motors in microscale transport.4 Finally, there is a paralle

  3. 1.0 Introduction 1.1 Definition of Nanotechnology

    E-Print Network [OSTI]

    1 1.0 Introduction 1.1 Definition of Nanotechnology Nanotechnology is the art and science improvements in technologies for protecting the environment. While many definitions for nanotechnology exist Nanotechnology Initiative (NNI), a U.S. Government research and development (R&D) program established

  4. Level MSc 2013/14 Nanoscience to Nanotechnology

    E-Print Network [OSTI]

    Martin, Ralph R.

    Level MSc 2013/14 Nanoscience to Nanotechnology MSc Nanoscience to Nanotechnology Coordinator: Dr Nanoscale Structures and Devices 10 Credits Mr. TGG Maffeis/Dr. L Li/Dr. KS Teng EGNM02 Soft Nanotechnology Nano(geno)toxicology 10 Credits Dr. SH Doak EGNM05 Bio-nanotechnology 10 Credits Dr. CJ Wright PM-M23

  5. www.kostic.niu.edu/DRnanofluids Wet-Nanotechnology

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    1 www.kostic.niu.edu/DRnanofluids Wet-Nanotechnology: nanofluids at NIU www.kostic.niu.edu/DRnanofluids Dry- vs. Wet-nanotechnology · Fluids (gases & liquids) vs. Solids in Nature and (Chemical & Bio, and processes · Synergy of dry-nanotechnology (solid-state) & wet-nanotechnology (POLY-nanofluids) #12;2 www

  6. IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 19 (2008) 335707 (6pp) doi:10.1088/0957-4484/19/33/335707

    E-Print Network [OSTI]

    Fehske, Holger

    2008-01-01T23:59:59.000Z

    IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 19 (2008) 335707 (6pp) doi:10 for nanotechnology. However, since the discovery of stable multi-layers and single layers of graphene [2], the latter quickly shifted into the focus of nanotechnology as well. For carbon nanotubes a simple tight

  7. IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 20 (2009) 255501 (5pp) doi:10.1088/0957-4484/20/25/255501

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 20 (2009) 255501 (5pp) doi:10. Nanotechnology offers the promise of improved gas sensors with low-power consumption, fast response time which;Nanotechnology 20 (2009) 255501 T Zhang et al Figure 1. AFM images and diameter histograms of CSA-d

  8. IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 21 (2010) 405704 (6pp) doi:10.1088/0957-4484/21/40/405704

    E-Print Network [OSTI]

    Deng, Xinwei

    2010-01-01T23:59:59.000Z

    IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 21 (2010) 405704 (6pp) doi:10 Online at stacks.iop.org/Nano/21/405704 Abstract Although nanoscience and nanotechnology have been in the UK & the USA1 #12;Nanotechnology 21 (2010) 405704 W Mai and X Deng difficult, prohibiting

  9. INSTITUTE OF PHYSICS PUBLISHING NANOTECHNOLOGY Nanotechnology 17 (2006) 57175721 doi:10.1088/0957-4484/17/23/001

    E-Print Network [OSTI]

    Vos, Willem L.

    2006-01-01T23:59:59.000Z

    INSTITUTE OF PHYSICS PUBLISHING NANOTECHNOLOGY Nanotechnology 17 (2006) 5717­5721 doi:10), MESA+ Institute for Nanotechnology and Department of Science and Technology, University of Twente, PO Box 217, NL-7500 AE Enschede, The Netherlands 2 MESA+ Institute for Nanotechnology, University

  10. Precautionary Governance and the Limits of Scientific Knowledge: A Democratic Framework for Regulating Nanotechnology

    E-Print Network [OSTI]

    Perez, Oren

    2010-01-01T23:59:59.000Z

    the scientific study of nanotechnology should also include aStakeholder Forum and Nanotechnology Engagement Group, whichFramework for Regulating Nanotechnology Oren Perez * I.

  11. When Less Liability May Mean More Precaution: The Case of Nanotechnology

    E-Print Network [OSTI]

    Dana, David

    2010-01-01T23:59:59.000Z

    More Precaution: The Case of Nanotechnology David Dana* I.II. FRAMING THE NANOTECHNOLOGY PROBLEM A. TheApproach to Nanotechnology 1. Mandatory

  12. Marine Bio-Nanotechnology: High-Performance Materials from Sponge Silicatein

    E-Print Network [OSTI]

    Morse, Daniel E.

    2007-01-01T23:59:59.000Z

    Title: Marine Bio-Nanotechnology: High-Performance MaterialsChemical Biology (2005); Nanotechnology Review (2005, 2006);Marine biotechnology; nanotechnology; sponge; silica;

  13. Sandia National Laboratories: CINT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grid relies on power transmission from the production source-be it a coal-fired plant, solar array, or wind farm-to the consumer. Long-distance transmission results in...

  14. Sandia Energy - CINT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatings Initiated at PNNL's Sequim Bay CoatingsBuilding aCACTUSCINT

  15. July/August 200412 21 (nanotechnology,

    E-Print Network [OSTI]

    Kim, Ji Man

    , . (1999) , (1999- 2000) (2000-2001) , 2001 . (jimankim@ajou.ac.kr) Nanoporous Materials (Mesoporous Material) 1. . #12; July/August 2004 13 1 nm 30 nm . , .[3-6] . (nanochemistry) (nanotechnology), (supramolecular chemistry

  16. Nanotechnology-mediated targeting of tumor angiogenesis

    E-Print Network [OSTI]

    Banerjee, Deboshri

    Abstract Angiogenesis is disregulated in many diseased states, most notably in cancer. An emerging strategy for the development of therapies targeting tumor-associated angiogenesis is to harness the potential of nanotechnology ...

  17. Integration

    E-Print Network [OSTI]

    Koschorke, Albrecht; Musanovic, Emina

    2013-01-01T23:59:59.000Z

    Integration By Albrecht Koschorkeby Emina Musanovic [Integration (from Lat. integrare, “toa social unity. Social integration is distinct from systemic

  18. Nanotechnology in Science and Art

    SciTech Connect (OSTI)

    Bearinger, J

    2007-02-21T23:59:59.000Z

    The burgeoning field of nanotechnology opens windows between science and art. Exploration of this interplay encourages interaction between scientists, artists and educators alike. The image below serves as an example of the fertile ground for exchange. The substrate that this image captures is made of silicon, the material from which computer chips are made. A thin ({approx}1 nm thick) chemical coating was applied homogeneously to the silicon. Specific regions of the coating, 600 nm wide (approximately 150 times smaller than the diameter of a human hair), were then locally removed from the silicon via photocatalytic nanolithography (PCNL(Bearinger, Hiddessen et al. 2005)). PCNL engages light, such as from a light emitting diode or an ultraviolet source, to activate molecules that are attached to a transparent mask above the silicon substrate. These molecules can be compounds similar to chlorophyll, the photoactive material that aids plants in photosynthesis, or may be semiconductor materials, such as TiO{sub 2}. Once these molecules are activated, chemical reactions result in local destruction of the coating on the silicon. Thus, only regions of the coated silicon in close contact with mask are affected. A non-fouling polymer hydrogel ({approx}10 nm thick) was then grafted to the retained coating. Hydrogels are superabsorbent and are therefore used on the bulk scale in common items including contact lenses and diapers. They also find utility in topical drug delivery and tissue engineering applications. Because the hydrogel is so absorbent, exposing the silicon chip with patterned hydrogel to water vapor from one's breath reveals the pattern that the lithography dictates(Lopez, Biebuyck et al. 1993). The myriad of colors seen in the image are due to optical interference. The thickness of the swollen layer determines the colors that are visible. While the field of view immediately following hydration appears like a big drop of oil shining in the sun, the oil drop appearance breaks up into many small domains as the water vapor evaporates. The base silicon does not retain the water in the same way that the way the hydrogel does, due to differences in surface tension. Thus, the pattern stands out from the background. In addition to bringing together nanotechnology, polymer chemistry, materials science and optics, this image suggests imposing order to an otherwise chaotic world. This is a repeated theme in nature across multiple orders of magnitude. The interface of this order and chaos is amorphous, and render a Klimt-like vision of reflected light. As this image is just a still in time, it also reminds us that all things and states are transient and that the materials of the earth, just as we individuals, are constantly evolving.

  19. From Consumer Resistance to Stakeholder Resistance The case of nanotechnology*

    E-Print Network [OSTI]

    Boyer, Edmond

    1 From Consumer Resistance to Stakeholder Resistance The case of nanotechnology* Caroline Gauthier proposes to study the resistance of stakeholders, by exploring the nanotech field. Nanotechnology is today in the resistance context. Keywords. Nanotechnology; Resistance Bio. Caroline Gauthier is currently Professor

  20. Applications of nanotechnology in water and wastewater treatment

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Applications of nanotechnology in water and wastewater treatment Xiaolei Qu, Pedro J.J. Alvarez Accepted 11 September 2012 Available online 26 March 2013 Keywords: Nanotechnology Nanomaterials Water. Nanotechnology holds great potential in advancing water and wastewater treatment to improve treatment efficiency

  1. DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING LONDON CENTRE FOR NANOTECHNOLOGY

    E-Print Network [OSTI]

    Haddadi, Hamed

    DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING LONDON CENTRE FOR NANOTECHNOLOGY Chair/Readership in Nanoelectronics/Nanophotonics Ref:1335861 UCL Department / Division: London Centre for Nanotechnology / Department of nanotechnology for electronics and/or photonics. The appointment will be at Lecturer, Senior Lecturer, Reader

  2. Engineering Nanotechnology at Rice University has been huge

    E-Print Network [OSTI]

    Materials Engineering Abstract Nanotechnology at Rice University has been huge since the discovery by a revolution in nanotechnology. Solving the world's energy (and climate, and water) challenges will demand revolutionary breakthroughs in the physical sciences and engineering, and nanotechnology offers unprecedented

  3. updated 3/17/08 Birck Nanotechnology Center

    E-Print Network [OSTI]

    updated 3/17/08 1 Birck Nanotechnology Center This script assumes that the tour begins at the Birck Nanotechnology Center Main Entrance on Level 1, and continues through the major open areas of the facility Nanotechnology Center is very safe, but as a precaution, we are asking you to explain the information below

  4. PA Nanotechnology 2012: Nanotech's Role in Advancing PA's Economy

    E-Print Network [OSTI]

    Gilchrist, James F.

    PA Nanotechnology 2012: Nanotech's Role in Advancing PA's Economy Date: June 5, 2012 Time: 7:30 am collaborative nanotechnology research, education, technology transfer, entrepreneurship, and commercialization within the Commonwealth. · Publicize and promote PA leadership in nanotechnology R&D, workforce education

  5. PA Regional Nanotechnology Conference Collaborating in Today's Economy

    E-Print Network [OSTI]

    Gilchrist, James F.

    4/23/2009 Present PA Regional Nanotechnology Conference Collaborating in Today's Economy May 27 of green technologies and alternative energy. The PA Initiative for Nanotechnology (PIN), established organizations - Drexel University's DNI, the LNN of Lehigh University, and The Nanotechnology Institute (NTI

  6. Research Priorities to Advance Eco-Responsible Nanotechnology

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Research Priorities to Advance Eco- Responsible Nanotechnology Pedro J. J. Alvarez,, * Vicki Colvin nanotechnology revolution has great potential to enhance a wide variety of products, services, and in- dustries than a future environmental liability, the Interna- tional Council on Nanotechnology (ICON

  7. DNA nanotechnology: understanding and optimisation through simulation

    E-Print Network [OSTI]

    Thomas E. Ouldridge

    2014-11-07T23:59:59.000Z

    DNA nanotechnology promises to provide controllable self-assembly on the nanoscale, allowing for the design of static structures, dynamic machines and computational architectures. In this article I review the state-of-the art of DNA nanotechnology, highlighting the need for a more detailed understanding of the key processes, both in terms of theoretical modelling and experimental characterisation. I then consider coarse-grained models of DNA, mesoscale descriptions that have the potential to provide great insight into the operation of DNA nanotechnology if they are well designed. In particular, I discuss a number of nanotechnological systems that have been studied with oxDNA, a recently developed coarse-grained model, highlighting the subtle interplay of kinetic, thermodynamic and mechanical factors that can determine behaviour. Finally, new results highlighting the importance of mechanical tension in the operation of a two-footed walker are presented, demonstrating that recovery from an unintended `overstepped' configuration can be accelerated by three to four orders of magnitude by application of a moderate tension to the walker's track. More generally, the walker illustrates the possibility of biasing strand-displacement processes to affect the overall rate.

  8. What is nanotechnology ? | About | Contact | Affiliates | Advertising | Companies Products People News Books Jobs Newsletter Services Login/Register

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    What is nanotechnology ? | About | Contact | Affiliates | Advertising | Companies Products People Company Products Nanotechnology courses Nanotechnology Jobs Partners Wanted Jobs Wanted Articles - English: Nanotechnology offers unique opportunities to advance the life sciences by facilitating the delivery

  9. Control Banding and Nanotechnology Synergist

    SciTech Connect (OSTI)

    Zalk, D; Paik, S

    2009-12-15T23:59:59.000Z

    The average Industrial Hygienist (IH) loves a challenge, right? Okay, well here is one with more than a few twists. We start by going through the basics of a risk assessment. You have some chemical agents, a few workers, and the makings of your basic exposure characterization. However, you have no occupational exposure limit (OEL), essentially no toxicological basis, and no epidemiology. Now the real handicap is that you cannot use sampling pumps, cassettes, tubes, or any of the media in your toolbox, and the whole concept of mass-to-dose is out the window, even at high exposure levels. Of course, by the title, you knew we were talking about nanomaterials (NM). However, we wonder how many IHs know that this topic takes everything you know about your profession and turns it upside down. It takes the very foundations that you worked so hard in college and in the field to master and pulls it out from underneath you. It even takes the gold standard of our profession, the quantitative science of exposure assessment, and makes it look pretty darn rusty. Now with NM there is the potential to get some aspect of quantitative measurements, but the instruments are generally very expensive and getting an appropriate workplace personal exposure measurement can be very difficult if not impossible. The potential for workers getting exposures, however, is very real, as evidenced by a recent publication reporting worker exposures to polyacrylate nanoparticles in a Chinese factory (Song et al. 2009). With something this complex and challenging, how does a concept as simple as Control Banding (CB) save the day? Although many IHs have heard of CB, most of their knowledge comes from its application in the COSHH Essentials toolkit. While there is conflicting published research on COSHH Essentials and its value for risk assessments, almost all of the experts agree that it can be useful when no OELs are available (Zalk and Nelson 2008). It is this aspect of CB, its utility with uncertainty, that attracted international NM experts to recommend this qualitative risk assessment approach for NM. However, since their CB recommendation was only in theory, we took on the challenge of developing a working toolkit, the CB Nanotool (see Zalk et al. 2009 and Paik et al. 2008), as a means to perform a risk assessment and protect researchers at the Lawrence Livermore National Laboratory. While it's been acknowledged that engineered NM have potentially endless benefits for society, it became clear to us that the very properties that make nanotechnology so useful to industry could also make them dangerous to humans and the environment. Among the uncertainties and unknowns with NM are: the contribution of their physical structure to their toxicity, significant differences in their deposition and clearance in the lungs when compared to their parent material (PM), a lack of agreement on the appropriate indices for exposure to NM, and very little background information on exposure scenarios or populations at risk. Part of this lack of background information can be traced to the lack of risk assessments historically performed in the industry, with a recent survey indicating that 65% of companies working with NM are not doing any kind of NM-specific risk assessment as they focus on traditional PM methods for IH (Helland et al. 2009). The good news is that the amount of peer-reviewed publications that address environmental, health and safety aspects of NM has been increasing over the last few years; however, the percentage of these that address practical methods to reduce exposure and protect workers is orders of magnitude lower. Our intent in developing the CB Nanotool was to create a simplified approach that would protect workers while unraveling the mysteries of NM for experts and non-experts alike. Since such a large part of the toxicological effects of both the physical and chemical properties of NM were unknown, not to mention changing logarithmically as new NM research continues growing, we needed to account for this lack of information as part of the CB Nano

  10. The National Nanotechnology Initiative's nanoEHS Workshop Series: February 24-25, 2009: Human and Environmental Exposure Assessment of Nanomaterials

    E-Print Network [OSTI]

    The National Nanotechnology Initiative's nanoEHS Workshop Series: February 24-25, 2009: Human & Ethical, Legal, and Societal Implications of Nanotechnology National Nanotechnology Initiative Save in the National Nanotechnology Initiative's Strategy for Nanotechnology-related Environmental, Health, and Safety

  11. Requirements for a Concentration in Nanotechnology The concentration in Nanotechnology can be earned by any student within the College of Engineering by fulfilling the

    E-Print Network [OSTI]

    Goldberg, Bennett

    Requirements for a Concentration in Nanotechnology The concentration in Nanotechnology can. As an introduction to the concentration, one of the (proposed) EK 131/132 nanotechnology modules is recommended but not required. Students planning to pursue a concentration in Nanotechnology should declare their intent

  12. Navillum Nanotechnologies | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1ResourceloadingOur MissionNavillum

  13. afm-based nanotechnology elucidates: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: 2nd Workshop on Computations in Nanotechnology Keynote Speakers: Mark J. Biggs (Adelaide), Mark nanotechnology researchers Goal: Exposing computational analysis...

  14. nature nanotechnology | VOL 4 | MARCH 2009 | www.nature.com/naturenanotechnology 139 researchhighlights

    E-Print Network [OSTI]

    Vertes, Akos

    nature nanotechnology | VOL 4 | MARCH 2009 | www.nature.com/naturenanotechnology 139) The demand for nanotechnology is rapid, and this growth comes with concerns about health risks

  15. Research Institute of Micro/Nanometer Science & Technology Multiple Openings : Chemistry, Materials Science, Nanotechnology

    E-Print Network [OSTI]

    Alpay, S. Pamir

    Science, Nanotechnology Shanghai, China We have several job openings for experienced polymer chemists / nanotechnology. We will consider hiring chemists who are skillful in macromolecular synthesis ("click chemistry

  16. Post-Genomics Nanotechnology Is Gaining Momentum: Nanoproteomics and Applications in Life Sciences

    E-Print Network [OSTI]

    Tan, Weihong

    Post-Genomics Nanotechnology Is Gaining Momentum: Nanoproteomics and Applications in Life Sciences of nanotechnology applications, including nanoporous structures, functionalized nanoparticles, quantum dots

  17. Nanotechnology applications to desalination : a report for the joint water reuse & desalination task force.

    SciTech Connect (OSTI)

    Brady, Patrick Vane; Mayer, Tom; Cygan, Randall Timothy

    2011-01-01T23:59:59.000Z

    Nanomaterials and nanotechnology methods have been an integral part of international research over the past decade. Because many traditional water treatment technologies (e.g. membrane filtration, biofouling, scale inhibition, etc.) depend on nanoscale processes, it is reasonable to expect one outcome of nanotechnology research to be better, nano-engineered water treatment approaches. The most immediate, and possibly greatest, impact of nanotechnology on desalination methods will likely be the development of membranes engineered at the near-molecular level. Aquaporin proteins that channel water across cell membranes with very low energy inputs point to the potential for dramatically improved performance. Aquaporin-laced polymer membranes and aquaporin-mimicking carbon nanotubes and metal oxide membranes developed in the lab support this. A critical limitation to widespread use of nanoengineered desalination membranes will be their scalability to industrial fabrication processes. Subsequent, long-term improvements in nanoengineered membranes may result in self-healing membranes that ideally are (1) more resistant to biofouling, (2) have biocidal properties, and/or (3) selectively target trace contaminants.

  18. National Nanotechnology Initiative's Signature Initiative Sustainable Nanomanufacturing: Creating the Industries of the Future

    Broader source: Energy.gov [DOE]

    Presentation for the Sustainable Nanomaterials Workshop by National Nanotechnology Coordination Office held on June 26, 2012

  19. Nanotechnology Today 2010: NanoReg & Keller and Heckman Announce Continuation of

    E-Print Network [OSTI]

    Gilchrist, James F.

    Nanotechnology Today 2010: NanoReg & Keller and Heckman Announce Continuation of Popular Nanotechnology Webinar Series Building on last year's popular webinars on the regulation of nanotechnology, Keller and Heckman & NanoReg are pleased to announce Nanotechnology Today 2010, a series of four new

  20. at the NatioNal iNstitutes of health Nanotechnology

    E-Print Network [OSTI]

    Bandettini, Peter A.

    at the NatioNal iNstitutes of health Nanotechnology New UNderstaNdiNg, New Capabilities, & New (2007) 318:430-43 - Researchers at the Center for Cancer Nanotechnology Excellence focused of Professor Shan X. Wang, PhD, and Sebastian J. Osterfeld, PhD. #12;what is nanotechnology? Nanotechnology

  1. Muddling-Through on the Cutting-Edge: How California and the European Union are Coping with the Risks of Nanotechnology

    E-Print Network [OSTI]

    Taylor, Margaret; Barandiaran, Javiera

    2008-01-01T23:59:59.000Z

    J. Banfield, 2006. Environmental Risks of Nanotechnology:National Nanotechnology Initiative Funding 2000-04.a European strategy for nanotechnology, in: DG, R. (Ed. ).

  2. Nanotechnology and textiles engineered by carbon nanotubes for the realization of advanced personal protective equipments

    SciTech Connect (OSTI)

    Andretta, Antonio, E-mail: Antonio-Andretta@klopman.com [Klopman International S.R.L., Via Mola dei Frati, 03100 Frosinone (Italy); Terranova, Maria Letizia; Lavecchia, Teresa; Gay, Stefano; Tamburri, Emanuela [Dipartimento di Scienze e Tecnologie Chimiche, Minima lab, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Roma (Italy); Picano, Alfredo; Mascioletti, Alessandro; Stirpe, Daniele [Labor - Industrial Research Lab, Via Giacomo Peroni, 386 C/O Tecnopolo Tiburtino, 00131 Roma (Italy); Cucchiella, Cristian; Pascucci, Eddy [InfoSolution S.p.A, Via Zoe Fontana 10, 00131 Roma, Via Luigi Cadorna 67, 20090 Vimodrone (MI) (Italy); Dugnani, Giovanni; Gatti, Davide [Tpa Spa - Tecnologie e Prodotti per l'Automazione, Via Carducci 221, 20099 Sesto San Giovanni (MI) (Italy); Laria, Giuseppe [Centre of Research for Pure and Applied Mathematics, via Giovanni Paolo II 132, 84084 Fisciano (Italy); Codenotti, Barbara [Lavanderie dell'Alto Adige S.p.A., via Nazionale 55, 39040 Ora (Italy); Maldini, Giorgio [Meta System S.p.A., Via Galimberti 8, 42124 Reggio Emilia (Italy); Roth, Siegmar [SINEUROP-Nanotech GmbH, TBC Kernerstrasse 34, 70182 Stuttgart (Germany); Passeri, Daniele; Rossi, Marco [Dipartimento di Scienze di Base ed Applicate per l'Ingegneria and CNIS, Sapienza Università di Roma, Via Scarpa 16, 00161 Roma (Italy)

    2014-06-19T23:59:59.000Z

    Carbon nanotubes (CNT) and CNT-based active materials have been used to assemble the gas sensing unit of innovative platforms able to detect toxic atmospheres developing in confined workplaces. The main goal of the project was to realize a full-featured, operator-friendly safety detection and monitoring system based on multifunctional textiles nanotechnologies. The fabricated sensing platform consists of a multiple gas detector coupled with a specifically designed telecommunication infrastructure. The portable device, totally integrated in the workwear, offers several advantages over the conventional safety tools employed in industrial work activities.

  3. Nanoscience and Nanotechnology: From Energy Applications to Advanced Medical Therapies

    ScienceCinema (OSTI)

    Tijana Rajh

    2010-01-08T23:59:59.000Z

    Dr. Rajh will present a general talk on nanotechnology ? an overview of why nanotechnology is important and how it is useful in various fields. The specific focus will be on Solar energy conversion, environmental applications and advanced medical therapies. She has broad expertise in synthesis and characterization of nanomaterials that are used in nanotechnology including novel hybrid systems connecting semiconductors to biological molecules like DNA and antibodies. This technology could lead to new gene therapy procedures, cancer treatments and other medical applications. She will also discuss technologies made possible by organizing small semiconductor particles called quantum dots, materials that exhibit a rich variety of phenomena that are size and shape dependent. Development of these new materials that harnesses the unique properties of materials at the 1-100 nanometer scale resulted in the new field of nanotechnology that currently affects many applications in technological and medical fields.

  4. ig research into the tiny world of nanotechnology received a giant boost with the establishment of the Russell Berrie Nanotechnology Institute (RBNI) at the

    E-Print Network [OSTI]

    Rimon, Elon

    B ig research into the tiny world of nanotechnology received a giant boost with the establishment of the Russell Berrie Nanotechnology Institute (RBNI) at the Technion. "The Technion's ranking as a world leader in nanotechnology strongly influenced our decision," said Angelica Berrie, president of the Russell Berrie

  5. UNDERGRADUATE JOURNAL IN NANOSCIENCE AND NANOTECHNOLOGY Professor Mark Hersam, editor; Kathleen Cook, managing editor

    E-Print Network [OSTI]

    Shull, Kenneth R.

    UNDERGRADUATE JOURNAL IN NANOSCIENCE AND NANOTECHNOLOGY Professor Mark Hersam, editor; Kathleen journal dedicated to nanoscience and nanotechnology. Aspiring authors went through a peer-review process fashioned after professional journals around the country. They gained valuable educational experience

  6. Nanotechnology in our Daily Life Iridescent car paint: Based on interference colors

    E-Print Network [OSTI]

    Himpsel, Franz J.

    Nanotechnology in our Daily Life Iridescent car paint: Based on interference colors (like a butterly, no bleaching after 5 years Miami) #12;Nanotechnology on our Desktops Hard Disk Sensor Medium

  7. 176 nature nanotechnology | VOL 5 | MARCH 2010 | www.nature.com/naturenanotechnology news & views

    E-Print Network [OSTI]

    Buratto, Steve

    176 nature nanotechnology | VOL 5 | MARCH 2010 | www.nature.com/naturenanotechnology news & views P humidity. Writing in Nature Nanotechnology, Saeed Moghaddam, Mark Shannon and colleagues1 at the University

  8. Research review paper Point-of-care assays for tuberculosis: Role of nanotechnology/microfluidics

    E-Print Network [OSTI]

    Demirci, Utkan

    Research review paper Point-of-care assays for tuberculosis: Role of nanotechnology/microfluidics Keywords: Tuberculosis Point-of-care Nanotechnology Microfluidics Tuberculosis (TB) remains one of the most for TB diagnosis, and highlight the recent advances in nanotechnology and microfluidics that potentially

  9. NANOTECHNOLOGY CENTER Eine Partnerschaft in Nanotechnologie von IBM Research und ETH Zrich

    E-Print Network [OSTI]

    Cachin, Christian

    NANOTECHNOLOGY CENTER Eine Partnerschaft in Nanotechnologie von IBM Research und ETH Zürich and Rohrer Nanotechnology Center is part of a strategic partnership in nanosciences with ETH Zurich, one FACT SHEET Above: The campus of IBM Research - Zurich Right: The Binnig and Rohrer Nanotechnology

  10. "Nanoscience and Nanotechnology Center Makes Rapid Progress" here is no question that great

    E-Print Network [OSTI]

    Fall 2001 "Nanoscience and Nanotechnology Center Makes Rapid Progress" here is no question such structures. The applica- tion of nanoscale materials and devices is denoted by the term nanotechnology. It is widely believed that nanotechnology will have an enormous impact on indus- trial technologies

  11. in: Nanotechnology 7(1), pp. 307314, 1996 Emergent Computation by Catalytic Reactions

    E-Print Network [OSTI]

    Dittrich, Peter

    in: Nanotechnology 7(1), pp. 307­314, 1996 Emergent Computation by Catalytic Reactions Wolfgang the idea behind the chemical computational metaphor and outline its relevance for nanotechnology. We set up within this context. The implications of this approach for nanotechnology, parallel computers based on mo

  12. Big Science, Small Scale Western University has made significant investments in nanotechnology

    E-Print Network [OSTI]

    Denham, Graham

    Big Science, Small Scale Western University has made significant investments in nanotechnology in materials and biomaterials. Nanotechnology is poised to revolutionize and advance many vital sectors in nanotechnology and photonics · Houses state-of-the-art instruments, with tools for SEM capabilities and focused

  13. Boundary spanning, knowledge dynamics and emerging innovation systems early lessons from nanotechnology

    E-Print Network [OSTI]

    nanotechnology DIME Workshop "Industrial innovation dynamics and knowledge characteristics, exploring systems. Using nanotechnology as a case the paper focuses on analysing boundary spanning effects to capture possible changes in the knowledge base and search modes related to the rise of nanotechnology

  14. nature nanotechnology | VOL 5 | DECEMBER 2010 | www.nature.com/naturenanotechnology 825 correspondence

    E-Print Network [OSTI]

    Zhang, Minghua

    nature nanotechnology | VOL 5 | DECEMBER 2010 | www.nature.com/naturenanotechnology 825 purpose of publishing research papers in various areas of nanoscience and nanotechnology. Many­4 . This article will quantify the growth over time in the number of nanotechnology journals using three databases

  15. Nanotechnology is defined as materi-als and systems ranging from 1 to 100

    E-Print Network [OSTI]

    Wong, Pak Kin

    Nanotechnology is defined as materi- als and systems ranging from 1 to 100 nm which exhibit novel in the potentially revo- lutionary impacts that nanotechnology has to offer clinical medicine, particu- larly oncology. Numerous proof of concept appli- cations of nanotechnology have been described for high impact

  16. Int. J. Nanotechnology, Vol. 1, No. 4, 2004 431 Copyright 2004 Inderscience Enterprises Ltd.

    E-Print Network [OSTI]

    Wang, Zhong L.

    Int. J. Nanotechnology, Vol. 1, No. 4, 2004 431 Copyright © 2004 Inderscience Enterprises Ltd) `Nanobelt and nanosaw structures of II-VI semiconductors', Int. J. Nanotechnology, Vol. 1, No. 4, pp.431 Fellow, and a Nanoscience and Nanotechnology Fellow (2003­2004). Currently, his research interests

  17. Application of Nanotechnology to liquid crystal displays H S Kwok, Z L Xie and Fion Yeung

    E-Print Network [OSTI]

    Application of Nanotechnology to liquid crystal displays H S Kwok, Z L Xie and Fion Yeung Center shall report new results on the application of nanotechnology to LCD. Specifically we shall discuss as the alignment layer. Summary We describe here two experiments on the application of nanotechnology to liquid

  18. Kelvin Nanotechnology Ltd (KNT) GUIDE TO INFORMATION AVAILABLE THROUGH OUR PUBLICATION SCHEME

    E-Print Network [OSTI]

    Glasgow, University of

    Kelvin Nanotechnology Ltd (KNT) GUIDE TO INFORMATION AVAILABLE THROUGH OUR PUBLICATION SCHEME it might cost. Kelvin Nanotechnology Ltd has adopted the Model Publication Scheme 2011 produced publication and explain why. Copyright Where Kelvin Nanotechnology Ltd holds the copyright in its published

  19. Nanotechnology the debate all direct quotes from: The Social and Economic Challenges of

    E-Print Network [OSTI]

    Moeck, Peter

    1 Nanotechnology ­ the debate all direct quotes from: The Social and Economic Challenges of Nanotechnology, ISBN 0-86226-294-1. Economic & Social Research Council of UK government one end: clear to become realms of human endeavor" G.H. Reynolds, Forward to the Future: Nanotechnology and regulatory

  20. Nanotechnology-Based Trusted Remote Sensing James B. Wendt and Miodrag Potkonjak

    E-Print Network [OSTI]

    Potkonjak, Miodrag

    Nanotechnology-Based Trusted Remote Sensing James B. Wendt and Miodrag Potkonjak Computer Science nanotechnology PPUF-based architecture for trusted remote sensing. Current public physical unclonable function the authentication process. Our novel nanotechnology- based architecture ensures fast authentication through partial

  1. ECPE/PHYS 4984: Nanotechnology Randy Heflin 1-4504 108 Robeson rheflin@vt.edu

    E-Print Network [OSTI]

    Heflin, Randy

    ECPE/PHYS 4984: Nanotechnology Randy Heflin 1-4504 108 Robeson rheflin@vt.edu Stephane Evoy 1 of instructor Course Number: ECPE 4984 PHYS 4984 Transcript Title: SS: Nanotechnology II. Rationale of course/ECPE 4984: Nanotechnology Course pack, edited by S. Rayyan , W. Barnhart, J. R. Heflin, and S. Evoy

  2. IBM NANOTECHNOLOGY CENTER Location: Campus of IBM Research -Zurich in Rschlikon, Switzerland

    E-Print Network [OSTI]

    BUILDING FACT SHEET IBM NANOTECHNOLOGY CENTER · Location: Campus of IBM Research - Zurich/normal labs: 1500 m2 PROJECT AREAS Working with partners, the Nanotechnology Center will focus on several Nanotechnology Center will continue IBM's tradition of environmental awareness and has been granted the use

  3. TECHNOLOGICAL AGGLOMERATION AND THE EMERGENCE OF CLUSTERS AND NETWORKS IN NANOTECHNOLOGY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    - 1 - TECHNOLOGICAL AGGLOMERATION AND THE EMERGENCE OF CLUSTERS AND NETWORKS IN NANOTECHNOLOGY clusters in nanotechnologies (MESA+ (Twente) and other centres in the Netherlands and Minatec in Grenoble nanotechnology-linked developments. We will use our ongoing studies of regions with a high concentration

  4. NIOSH -Nanotechnology Research Center Active in the lab and in the field

    E-Print Network [OSTI]

    Farritor, Shane

    NIOSH - Nanotechnology Research Center Active in the lab and in the field Laura Hodson, MSPH, CIH Kenneth F. Martinez, MSEE, CIH Charles Geraci, PhD, CIH Nanotechnology Research Center Education and should not be construed to represent any agency determination or policy. #12;Nanotechnology

  5. Nanotechnology has variously been described as a transformative technology, an enabling technology, and the next technological

    E-Print Network [OSTI]

    Moeck, Peter

    Nanotechnology has variously been described as a transformative technology, an enabling technology nanotechnology having a significant impact on society over the coming decades. However, enthusiasm over the rate. As nanotechnology moves toward widespread commercialization, not only is the debate over preventing adverse

  6. Professor Horacio Espinosa discusses his laboratory's advanced engineering approaches at the intersection of nanotechnology

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    at the intersection of nanotechnology and biological systems in search of biomedical solutions and knowledge this helped nanotechnology? The nanoscale material testing concepts we developed had a direct and significant to be successfully synthesised. The field of nanotechnology has grown rapidly ever since. The application of new

  7. "The Role of Standardisation in the Shaping of a Vision for Nanotechnology"

    E-Print Network [OSTI]

    Boyer, Edmond

    1 "The Role of Standardisation in the Shaping of a Vision for Nanotechnology" Aurélie Delemarle1 for Consumer Research (SIFO) harald.throne-holst@sifo.no Abstract Nanotechnologies are known as emerging first introduce the question of regulation in nanotechnologies, then describe the standardisation

  8. Revolutionary Research Advances The Georgia Tech Institute for Electronics and Nanotechnology (IEN)

    E-Print Network [OSTI]

    Garmestani, Hamid

    and Nanotechnology (IEN) brings together top researchers, thought leaders, and infrastructure to advance the fields of electronics and nanotechnology. INDUSTRY FRIENDLY CUSTOMER FOCUSED RESPONSIVE UNIQUELY VALUABLE Today and nanotechnology, we are focused on advancing research, creating human capital, informing state and national policy

  9. Nanotechnology finding its way into flame retardancy

    SciTech Connect (OSTI)

    Schartel, Bernhard, E-mail: bernhard.schartel@bam.de [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin (Germany)

    2014-05-15T23:59:59.000Z

    Nanotechnology is one of the key technologies of the 21{sup st} century. The exploitation of 'new' effects that arise from materials structured on the nano-scale has also been proposed successfully for flame retardancy of polymers since the end of the 90s. Of all of the approaches these include, at this time the use of nanocomposites offers the best potential for industrial application, also some other ideas are sketched, such as using electrospun nanofibers mats or layer-by-layer deposits as protection coatings, as well as sub-micrometer multilayer coatings as effective IR-mirrors. The general phenomena, inducing a flow limit in the pyrolysing melt and changing the fire residue, are identified in nanocomposites. Key experiments are performed such as quasi online investigation of the protection layer formation to understand what is going on in detail. The flame retardancy mechanisms are discussed and their impact on fire behaviour quantified. With the latter, the presentation pushes forward the state of the art. For instance, the heat shielding is experimentally quantified for a layered silicate epoxy resin nanocomposite proving that it is the only import mechanism controlling the reduction in peak heat release rate in the investigated system for different irradiations. The flame retardancy performance is assessed comprehensively illuminating not only the strengths but also the weak points of the concepts. Guidelines for materials development are deduced and discussed. Apart from inorganic fillers (layered silicate, boehmite, etc.) not only carbon nanoobjects such as multiwall carbon nanotubes, multilayer graphene and graphene are investigated, but also nanoparticles that are more reactive and harbor the potential for more beneficial interactions with the polymer matrix.

  10. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    SciTech Connect (OSTI)

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12T23:59:59.000Z

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  11. Boosting medicine with nanotechnology to destroy cancers http://www.physorg.com/news/2011-04-boosting-medicine-nanotechnology-cancers.html[4/21/2011 11:29:07 AM

    E-Print Network [OSTI]

    Brinker, C. Jeffrey

    Boosting medicine with nanotechnology to destroy cancers http://www.physorg.com/news/2011-04-boosting-medicine-nanotechnology-cancers.html[4/21/2011 11:29:07 AM] Sign in Register Home Nanotechnology into a separate site. Read more Boosting medicine with nanotechnology to destroy cancers April 18, 2011 The figure

  12. Coarse-graining DNA for simulations of DNA nanotechnology

    E-Print Network [OSTI]

    Doye, Jonathan P K; Louis, Ard A; Romano, Flavio; Sulc, Petr; Matek, Christian; Snodin, Benedict E K; Rovigatti, Lorenzo; Schreck, John S; Harrison, Ryan M; Smith, William P J

    2013-01-01T23:59:59.000Z

    To simulate long time and length scale processes involving DNA it is necessary to use a coarse-grained description. Here we provide an overview of different approaches to such coarse graining, focussing on those at the nucleotide level that allow the self-assembly processes associated with DNA nanotechnology to be studied. OxDNA, our recently-developed coarse-grained DNA model, is particularly suited to this task, and has opened up this field to systematic study by simulations. We illustrate some of the range of DNA nanotechnology systems to which the model is being applied, as well as the insights it can provide into fundamental biophysical properties of DNA.

  13. Potential impacts of nanotechnology on energy transmission applications and needs.

    SciTech Connect (OSTI)

    Elcock, D.; Environmental Science Division

    2007-11-30T23:59:59.000Z

    The application of nanotechnologies to energy transmission has the potential to significantly impact both the deployed transmission technologies and the need for additional development. This could be a factor in assessing environmental impacts of right-of-way (ROW) development and use. For example, some nanotechnology applications may produce materials (e.g., cables) that are much stronger per unit volume than existing materials, enabling reduced footprints for construction and maintenance of electricity transmission lines. Other applications, such as more efficient lighting, lighter-weight materials for vehicle construction, and smaller batteries having greater storage capacities may reduce the need for long-distance transport of energy, and possibly reduce the need for extensive future ROW development and many attendant environmental impacts. This report introduces the field of nanotechnology, describes some of the ways in which processes and products developed with or incorporating nanomaterials differ from traditional processes and products, and identifies some examples of how nanotechnology may be used to reduce potential ROW impacts. Potential environmental, safety, and health impacts are also discussed.

  14. The Navy's Program in Nanoscience and Nanotechnology A Look Ahead

    E-Print Network [OSTI]

    Maryland at College Park, University of

    The Navy's Program in Nanoscience and Nanotechnology ­ A Look Ahead Robert Kavetsky Office of Naval Research 800 North Quincy Street, Arlington, VA., USA Robert_Kavetsky@onr.navy.mil ABSTRACT The Navy to building the "Navy After Next". The Office of Naval Research provided a leadership role in exploring those

  15. Last Revised: 01/08/2014 UNDERGRADUATE MINOR IN "NANOTECHNOLOGY"

    E-Print Network [OSTI]

    Subramanian, Venkat

    of Engineering and Applied Science and several in the School of Arts and Sciences. It is open to any UG student pursuing an Engineering or Arts & Sciences (Chemistry, Physics, Biology, Environmental Studies, Pre SCIENCE Available to any UG pursuing an Arts and Science or Engineering degree I. Objective Nanotechnology

  16. DNA Nanotechnology DOI: 10.1002/anie.201206389

    E-Print Network [OSTI]

    Hone, James

    DNA Nanotechnology DOI: 10.1002/anie.201206389 Assembly of Heterogeneous Functional Nanomaterials on DNA Origami Scaffolds** Risheng Wang,* Colin Nuckolls, and Shalom J. Wind* Hybrid nanomaterial systems;[1] selective growth;[4,9] and DNA-mediated assem- bly,[3,8] including the formation of 3D

  17. DNA nanotechnology DOI: 10.1002/smll.200500464

    E-Print Network [OSTI]

    Li, Jiali

    DNA nanotechnology DOI: 10.1002/smll.200500464 Towards Rapid DNA Sequencing: Detecting Single- Stranded DNA with a Solid-State Nanopore Hao Yan* and Bingqian Xu* Keywords: · DNA · sequencing · single for rapid detection of single DNA molecules and their sequences. Two types of nanopores have been used

  18. International Conference on Carbon Nanotechnology: Potential and Challenges (Carbon 10)

    E-Print Network [OSTI]

    Srivastava, Kumar Vaibhav

    International Conference on Carbon Nanotechnology: Potential and Challenges (Carbon 10) 15 - 17th Since the discovery of the carbon nanotube (CNT) about two decades ago, research related to its of Materials and Process Engineering Kanpur Chapter hosted the `International Conference on Carbon

  19. IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 19 (2008) 395604 (6pp) doi:10.1088/0957-4484/19/39/395604

    E-Print Network [OSTI]

    Shelnutt, John A.

    2008-01-01T23:59:59.000Z

    nanocomposites have potential applications in catalysis and solar energy conversion systems. S Supplementary data that make them useful for applications in catalysis, sensors, molecular electronics, and solar energy-4484/08/395604+06$30.00 © 2008 IOP Publishing Ltd Printed in the UK1 #12;Nanotechnology 19 (2008) 395604 Z Wang et al Figure 1

  20. Center for Disease Biology and Integrative Medicine

    E-Print Network [OSTI]

    Miyashita, Yasushi

    ---------------------------------------------------------------------------------- http://www.bmw.t.u-tokyo.ac.jp/english/index.html http://park.itc.u-tokyo.ac.jp/NBEP/index-en.html http://square.umin.ac.jp/t-e/ Nanodevices produced by nanotechnology integrate materials and systems on a nanometer scale, and hold the key

  1. Putting Science to Work BUILDING NANOTECHNOLOGY DEVELOPMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70COMMUNITY AEROSOL: Shale naturalTechnical(continued on

  2. IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 19 (2008) 265703 (7pp) doi:10.1088/0957-4484/19/26/265703

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    .1088/0957-4484/19/26/265703 In situ nanoscale mapping of the chemical composition of surfaces and 3D nanostructures by photoelectron de la Recherche Scientifique--Energie, Mat´eriaux et T´el´ecommunications (INRS-EMT), Universit´e du conditions. 0957-4484/08/265703+07$30.00 © 2008 IOP Publishing Ltd Printed in the UK1 #12;Nanotechnology 19

  3. 05/05/2014 11:01Nanotechnology's Revolutionary Next Phase Page 1 of 7http://www.forbes.com/sites/brucedorminey/2013/02/26/nanotechnologys-civilization-changing-revolutionary-next-phase/

    E-Print Network [OSTI]

    05/05/2014 11:01Nanotechnology's Revolutionary Next Phase Page 1 of 7http://www.forbes.com/sites/brucedorminey/2013/02/26/nanotechnologys-civilization-changing-revolutionary-next-phase/ TECH (/TECHNOLOGY) 5:01Nanotechnology's Revolutionary Next Phase Page 2 of 7http://www.forbes.com/sites/brucedorminey/2013

  4. The Hebrew University Center for Nanoscience and Nanotechnology UHUJ Nano-Art

    E-Print Network [OSTI]

    Simon, Emmanuel

    The Hebrew University Center for Nanoscience and Nanotechnology UHUJ Nano-Art Annual Conference of works of art based on nanotechnology. Prizes will be awarded to top three selected works. Nano-Art features nanolandscapes, natural or manmade structures of matter at the nano (sub- micro) scale, e

  5. The Hebrew University Center for Nanoscience and Nanotechnology UHUJ Nano-Art

    E-Print Network [OSTI]

    Einat, Aharonov

    The Hebrew University Center for Nanoscience and Nanotechnology UHUJ Nano-Art Annual Conference of art based on nanotechnology. Prizes will be awarded to top three selected works. Nano-Art features nanolandscapes, natural or manmade structures of matter at the nano scale, e.g., molecular and atomic scales

  6. Life Cycle Energy and Climate Change Implication of Nanotechnologies: A Critical Review Hyung Chul Kim and Vasilis Fthenakis

    E-Print Network [OSTI]

    and health impacts of nano-technologies triggered a recent surge of life cycle assessment (LCA) studies in parallel with the progress of nanotechnologies by employing life-cycle assessment (LCA) that is widely1 Life Cycle Energy and Climate Change Implication of Nanotechnologies: A Critical Review Hyung

  7. Nanotechnology through the Lenses of Science-Fiction Case Study of a Manga: Ganmu (Battle Angel Alita) by Kishiro Yukito.

    E-Print Network [OSTI]

    1 Nanotechnology through the Lenses of Science-Fiction Case Study of a Manga: Ganmu (Battle Angel of room at the bottom" and Taniguchi Norio's coining of the term in 1974, nanotechnology has emerged. Most of the articles dealing with nanotechnology stress out the fascinating progress made by those who

  8. nature nanotechnology | VOL 4 | JANUARY 2009 | www.nature.com/naturenanotechnology 5 From two cultures to new cultures

    E-Print Network [OSTI]

    nature nanotechnology | VOL 4 | JANUARY 2009 | www.nature.com/naturenanotechnology 5 thesis From in academic circles for decades. chris toumey explores how nanotechnology fits into this picture and how where does nanotechnology fit into arguments about the two cultures? Much has changed since 1959

  9. Nanotechnology through the Lenses of Science Fiction Case Study of the Manga Ganmu (Battle Angel Alita) by Kishiro Yukito.

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Nanotechnology through the Lenses of Science Fiction Case Study of the Manga Ganmu (Battle Angel of room at the bottom" and Taniguchi Norio's coining of the term in 1974, nanotechnology has emerged. Most of the articles dealing with nanotechnology stress out the fascinating progress made by those who

  10. Faculty of Mechanical Science and Engineering At the Institute of Materials Science, Chair of Materials Science and Nanotechnology

    E-Print Network [OSTI]

    Schubart, Christoph

    of Materials Science and Nanotechnology (Prof. G. Cuniberti), is open to work in the field of biomaterials and / or biologically inspired nanotechnology the position of a Senior Lecturer and Research Group leader (max. E 14 TV (Wissenschaftszeitvertragsgesetz ­ WissZeitVG). The scientific activities of the Chair of Materials Science and Nanotechnology

  11. Safe Nanotechnology in the Work Space Different types of nanoparticles are made or used in various industrial processes. To

    E-Print Network [OSTI]

    Cohen, Robert E.

    Safety Safe Nanotechnology in the Work Space Different types of nanoparticles are made or used://www.cdc.gov/niosh/docs/2008-112/pdfs/2008-112.pdf http://www.nanoshel.com/buy-nanotubes.php #12;Safety Safe Nanotechnology-112/pdfs/2008-112.pdf #12;Safety Safe Nanotechnology in the Work Space Exposure: Inhalation--The most

  12. IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 4, NO. 1, JANUARY 2005 1 THIS Special Issue contains papers from the 2004 IEEE

    E-Print Network [OSTI]

    Privman, Vladimir

    IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 4, NO. 1, JANUARY 2005 1 Foreword THIS Special Issue contains papers from the 2004 IEEE Nanotechnology Council (NTC) Quantum Device Tech- nology Workshop, which interests span broad areas of nanotechnology, including physics of semiconductor nanodevices, spintronics

  13. Nanotechnology Alert. Nanofountain for Treatment of Cancer; Nanocomposites To Improve Computers' Life Span; Lithium Sulfur Batteries Using Nanocarbon

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    Nanotechnology Alert. Nanofountain for Treatment of Cancer; Nanocomposites To Improve Computers/29/2009 Nanotechnology Alert. Nanofountain f... frost.com/.../market-service-segment... 1/2 #12;Learn how we can provide/29/2009 Nanotechnology Alert. Nanofountain f... frost.com/.../market-service-segment... 2/2 #12;

  14. Solar Cell Nanotechnology Final Technical Report

    SciTech Connect (OSTI)

    Das, Biswajit [University of Nevada, Las Vegas

    2014-05-07T23:59:59.000Z

    The objective of this project is to develop a low cost nonlithographic nanofabrication technology for the fabrication of thin film porous templates as well as uniform arrays of semiconductor nanostructures for the implementation of high efficiency solar cells. Solar cells based on semiconductor nanostructures are expected to have very high energy conversion efficiencies due to the increased absorption coefficients of semiconductor nanostructures. In addition, the thin film porous template can be used for optimum surface texturing of solar cells leading to additional enhancement in energy conversion efficiency. An important requirement for these applications is the ability to synthesize nanostructure arrays of different dimensions with good size control. This project employed nanoporous alumina templates created by the anodization of aluminum thin films deposited on glass substrates for the fabrication of the nanostructures and optimized the process parameters to obtain uniform pore diameters. An additional requirement is uniformity or regularity of the nanostructure arrays. While constant current anodization was observed to provide controlled pore diameters, constant voltage anodization was needed for regularity of the nanostructure arrays. Thus a two-step anodization process was investigated and developed in this project for improving the pore size distribution and pore periodicity of the nanoporous alumina templates. CdTe was selected to be the active material for the nanowires, and the process for the successful synthesis of CdTe nanowires was developed in this project. Two different synthesis approaches were investigated in this project, electrochemical and electrophoretic deposition. While electrochemical synthesis was successfully employed for the synthesis of nanowires inside the pores of the alumina templates, the technique was determined to be non-optimum due to the need of elevated temperature that is detrimental to the structural integrity of the nanoporous alumina templates. In order to eliminate this problem, electrophoretic deposition was selected as the more appropriate technique, which involves the guided deposition of semiconductor nanoparticles in the presence of ultrasonic energy to form the crystalline nanowires. Extensive experimental research was carried out to optimize the process parameters for formation of crystalline nanowires. It was observed that the environmental bath temperature plays a critical role in determining the structural integrity of the nanowires and hence their lengths. Investigation was carried out for the formation of semitransparent ohmic contacts on the nanowires to facilitate photocurrent spectroscopy measurements as well as for solar cell implementation. Formation of such ohmic contacts was found to be challenging and a process involving mechanical and electrochemical polishing was developed to facilitate such contacts. The use of nanoporous alumina templates for the surface texturing of mono- and multi-crystalline solar cells was extensively investigated by electrochemical etching of the silicon through the pores of the nanoporous templates. The processes for template formation as well as etching were optimized and the alumina/silicon interface was investigated using capacitance-voltage characterization. The process developed was found to be viable for improving solar cell performance.

  15. Nanotechnology and Quasicrystals: From self assembly to photonic applications

    E-Print Network [OSTI]

    Ron Lifshitz

    2008-10-28T23:59:59.000Z

    After providing a concise overview on quasicrystals and their discovery more than a quarter of a century ago, I consider the unexpected interplay between nanotechnology and quasiperiodic crystals. Of particular relevance are efforts to fabricate artificial functional micro- or nanostructures, as well as efforts to control the self-assembly of nanostructures, where current knowledge about the possibility of having long-range order without periodicity can provide significant advantages. I discuss examples of systems ranging from artificial metamaterials for photonic applications, through self-assembled soft matter, to surface waves and optically-induced nonlinear photonic quasicrystals.

  16. The University of New Mexico An NSF Integrative Graduate

    E-Print Network [OSTI]

    New Mexico, University of

    chemical calculations are capable to describe the electronic structure and complex dynamics in such complex ligands on the electronic structure and observe strong surface-ligand interactions leading to formation.chtm.unm.edu/incbnigert/ Integrating Nanotechnology with Cell Biology and Neuroscience Excited State Dynamics and Energy Transfer

  17. APPLICATIONS OF BIOTECHNOLOGY IN DEVELOPMENT OF BIOMATERIALS: NANOTECHNOLOGY AND BIOFILMS

    SciTech Connect (OSTI)

    Brigmon, R.; Berry, T.; Narayan, R.

    2010-11-29T23:59:59.000Z

    Biotechnology is the application of biological techniques to develop new tools and products for medicine and industry. Due to various properties including chemical stability, biocompatibility, and specific activity, e.g. antimicrobial properties, many new and novel materials are being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. Many of these materials are less than 100 nanometers in size. Nanotechnology is the engineering discipline encompassing designing, producing, testing, and using structures and devices less than 100 nanometers. One of the challenges associated with biomaterials is microbial contamination that can lead to infections. In recent work we have examined the functionalization of nanoporous biomaterials and antimicrobial activities of nanocrystalline diamond materials. In vitro testing has revealed little antimicrobial activity against Pseudomonas fluorescens bacteria and associated biofilm formation that enhances recalcitrance to antimicrobial agents including disinfectants and antibiotics. Laser scanning confocal microscopy studies further demonstrated properties and characteristics of the material with regard to biofilm formation.

  18. 12 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 1, NO. 1, MARCH 2002 Scanning the Controls: Genomics and

    E-Print Network [OSTI]

    12 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 1, NO. 1, MARCH 2002 Scanning the Controls: Genomics and topological complexity is the complexity of the genome itself, consisting of about one billion basepairs. The Human Genome Proj

  19. NANOTECHNOLOGY LAW & BUSINESS MARCH 2007 585 Carbon Nanotube-Based Supercapacitors

    E-Print Network [OSTI]

    Bennett, Gisele

    NANOTECHNOLOGY LAW & BUSINESS · MARCH 2007 585 Carbon Nanotube-Based Supercapacitors: Technologies-layer capacitors (also known as "supercapacitors" or "ultracapacitors") have tremendous potential as high double layer (ECDL) capacitors (also abbreviated EDLC), commonly called "supercapacitors

  20. NERSC/DOE BES Requirements Workshop Worksheet - Normand Modine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Phenomena thrust is the component of CINT dedicated to developing and applying theory to enable nanoscale integration. Two examples of specific goals that we hope to...

  1. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Safety Workshop On April 7, 2014, in Capabilities, CINT, Distribution Grid Integration, Energy, Energy Storage, Energy Storage Systems, Facilities, Grid...

  2. Developing nanotechnology for biofuel and plant science applications

    SciTech Connect (OSTI)

    Valenstein, Justin

    2012-06-20T23:59:59.000Z

    This dissertation presents the research on the development of mesoporous silica based nanotechnology for applications in biofuels and plant science. Mesoporous silica nanoparticles (MSNs) have been the subject of great interest in the last two decades due to their unique properties of high surface area, tunable pore size and particle morphology. The robust nature of the silica framework is easily functionalized to make the MSNs a promising option for selective separations. Also, the independent channels that form the pores of MSN have been exploited in the use of particles as platforms for molecular delivery. Pore size and organic functionality are varied to identify the ideal adsorbent material for free fatty acids (FFAs). The resulting material is able to sequester FFAs with a high degree of selectivity from a simulated solution and microalgal oil. The recyclability and industrial implications are also explored. A continuation of the previous material, further tuning of MSN pore size was investigated. Particles with a smaller diameter selectively sequester polyunsaturated free fatty acids (PUFAs) over monounsaturated FFAs and saturated FFAs. The experimental results were verified with molecular modeling. Mesoporous silica nanoparticle materials with a pore diameter of 10 nm (MSN-10) were decorated with small gold nanoparticles. The resulting materials were shown to deliver proteins and DNA into plant cells using the biolistic method.

  3. Discovery Park's Birck Nanotechnology Center (BNC) has assumed a leadership role in K-12 STEM activities. Faculty, administrators, and graduate students work together to provide K-12

    E-Print Network [OSTI]

    Ginzel, Matthew

    Discovery Park's Birck Nanotechnology Center (BNC) has assumed a leadership role in K-12 STEM that are fun, interactive and educational. Birck Nanotechnology Center led a workshop for K-12 teachers in 2009, the Birck Nanotechnology Center continued to build this relationship by hosting NanoDays, a nationwide

  4. Copyright c 2002 Tech Science Press CMES, vol.3, no.5, pp.539-555, 2002 Multiscale Modeling of Laser Ablation: Applications to Nanotechnology

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    of Laser Ablation: Applications to Nanotechnology Leonid V. Zhigilei1 and Avinash M. Dongare 1 Abstract-driven methods in nanotechnology. In this pa- per we discuss two computational schemes developed for simulation, applications of laser ablation have been extended into emerging area of nanotechnology. In particular, laser

  5. Boosting medicine with nanotechnology strengthens drug cocktail many times over http://www.nanowerk.com/news/newsid=21055.php[4/21/2011 11:18:27 AM

    E-Print Network [OSTI]

    Brinker, C. Jeffrey

    Boosting medicine with nanotechnology strengthens drug cocktail many times over http a report of consumers' views on the use of nanotechnology Posted: Apr 21st, 2011 Using niosomes: Apr 18th, 2011 Boosting medicine with nanotechnology strengthens drug cocktail many times over

  6. IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 24 (2013) 135501 (10pp) doi:10.1088/0957-4484/24/13/135501

    E-Print Network [OSTI]

    King, William P.

    2013-01-01T23:59:59.000Z

    .1088/0957-4484/24/13/135501 Fast nanotopography imaging using a high speed cantilever with integrated heater­thermometer Byeonghee a high speed tapping cantilever with an integrated heater­thermometer for fast nanotopography imaging frequency of 1.4 MHz. The mechanical response time is characterized by scanning over a backward-facing step

  7. IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 7, NO. 1, JANUARY 2008 91 Graphene Terahertz Plasmon Oscillators

    E-Print Network [OSTI]

    Afshari, Ehsan

    IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 7, NO. 1, JANUARY 2008 91 Graphene Terahertz Plasmon on charge density wave (plasmon) amplifi- cation in two-dimensional graphene. The coupling of the plasmons to interband electron­hole transitions in population inverted graphene layers can lead to plasmon amplification

  8. Bridging nanotechnological opportunities and construction needs A survey of nanoinnovation in Danish construction

    E-Print Network [OSTI]

    Bridging nanotechnological opportunities and construction needs NanoByg A survey of nanoinnovation in Danish construction Executive summary, Dansk Maj 2007 #12;NanoByg Author: Maj Munch Andersen, Måns Molin Title: NanoByg ­ A survey of nanoinnovation in Danish construction ­ Executive summary Dansk Department

  9. Bridging nanotechnological opportunities and construction needs A survey of nanoinnovation in Danish construction

    E-Print Network [OSTI]

    Bridging nanotechnological opportunities and construction needs NanoByg A survey of nanoinnovation in Danish construction Executive summary, English May 2007 #12;NanoByg Author: Maj Munch Andersen, Måns Molin Title: NanoByg ­ A survey of nanoinnovation in Danish construction ­ Executive summary English

  10. Bridging nanotechnological opportunities and construction needs A survey of nanoinnovation in Danish Construction

    E-Print Network [OSTI]

    Bridging nanotechnological opportunities and construction needs NanoByg A survey of nanoinnovation in Danish Construction Risø-R-1602 (EN) Risø National Laboratory Technical University of Denmark Roskilde in Danish construction Department: Systems Analysis Department Risø-R-1602 (EN) May 2007 ISSN 0106-2840 ISBN

  11. Savage et al. (eds.), Nanotechnology Applications for Clean Water, 561582, 2009 William Andrew Inc.

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    561 Savage et al. (eds.), Nanotechnology Applications for Clean Water, 561­582, © 2009 William, energy, and toxicity intensive aspects of the application, and provides a basis for improvement. To date are quantified and a particular application, photovoltaic solar panels, is examined. #12;562 Societal Issues 37

  12. Connecticut State University System Initiative for Nanotechnology-Related Equipment, Faculty Development and Curriculum Development

    SciTech Connect (OSTI)

    Broadbridge, Christine C. [Southern Connecticut State University

    2013-03-28T23:59:59.000Z

    DOE grant used for partial fulfillment of necessary laboratory equipment for course enrichment and new graduate programs in nanotechnology at the four institutions of the Connecticut State University System (CSUS). Equipment in this initial phase included variable pressure scanning electron microscope with energy dispersive x-ray spectroscopy elemental analysis capability [at Southern Connecticut State University]; power x-ray diffractometer [at Central Connecticut State University]; a spectrophotometer and spectrofluorimeter [at Eastern Connecticut State University; and a Raman Spectrometer [at Western Connecticut State University]. DOE's funding was allocated for purchase and installation of this scientific equipment and instrumentation. Subsequently, DOE funding was allocated to fund the curriculum, faculty development and travel necessary to continue development and implementation of the System's Graduate Certificate in Nanotechnology (GCNT) program and the ConnSCU Nanotechnology Center (ConnSCU-NC) at Southern Connecticut State University. All of the established outcomes have been successfully achieved. The courses and structure of the GCNT program have been determined and the program will be completely implemented in the fall of 2013. The instrumentation has been purchased, installed and has been utilized at each campus for the implementation of the nanotechnology courses, CSUS GCNT and the ConnSCU-NC. Additional outcomes for this grant include curriculum development for non-majors as well as faculty and student research.

  13. Research Profile The Nanotechnology Group is involved in research in several

    E-Print Network [OSTI]

    Sandoghdar, Vahid

    .nanotechnology.ethz.ch Advanced Microscopy, Instrumentation, Biofuel Cells, Patterning and Directed Assembly MRCMaterials Research science and technology, with a special focus on: surface analysis and the development of advanced­ sensing colloidal and molecular building blocks) platforms to harvest electric power from human cells­ (biofuel cell

  14. Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for

    E-Print Network [OSTI]

    Zheng, Yufeng

    Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology April 2013 Accepted 27 September 2013 Available online 8 October 2013 A B S T R A C T Graphene oxide (GO and uncoated Ti substrate. Ó 2013 Elsevier Ltd. All rights reserved. 1. Introduction Graphene oxide (GO

  15. NANOTECHNOLOGY LAW & BUSINESS MARCH 2007 569 Carbon Nanotube-Based Supercapacitors

    E-Print Network [OSTI]

    Pan, Ning

    NANOTECHNOLOGY LAW & BUSINESS · MARCH 2007 569 Carbon Nanotube-Based Supercapacitors CHUNSHENG DU and NING PAN ABSTRACT Due to the need for increased power performance, supercapacitors are emerging nanotubes are a promising material for next generation supercapacitors. Specifically, the use of nanotubes

  16. Nanotechnology Now -Press Release: "Sandia and UNM lead effort to destroy cancers: Boosting medicine with nanotechnology strengthens drug cocktail many times over" http://www.nanotech-now.com/news.cgi?story_id=42258[4/21/2011 11:23:41 AM

    E-Print Network [OSTI]

    Brinker, C. Jeffrey

    Nanotechnology Now - Press Release: "Sandia and UNM lead effort to destroy cancers: Boosting medicine with nanotechnology strengthens drug cocktail many times over" http://www.nanotech-now.com/news.cgi?story_id=42258[4/21/2011 11:23:41 AM] About Us Nanotechnology News Columns Products Directories Career Center

  17. Robotic-Lab.COM Nanotechnology boosts anticancer drug cocktail many times over http://www.robotic-lab.com/en/2011/04/22/nanotechnology-boosts-anticancer-drug-cocktail-many-times-over/[5/2/2011 12:11:22 PM

    E-Print Network [OSTI]

    Brinker, C. Jeffrey

    Robotic-Lab.COM » Nanotechnology boosts anticancer drug cocktail many times over http://www.robotic-lab.com/en/2011/04/22/nanotechnology-boosts-anticancer-drug-cocktail-many-times-over/[5/2/2011 12:11:22 PM] Nanotechnology boosts anticancer drug cocktail many times over Writte by Jim Lewis the 22/04/2011 Using

  18. IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 23 (2012) 055709 (8pp) doi:10.1088/0957-4484/23/5/055709

    E-Print Network [OSTI]

    King, William P.

    2012-01-01T23:59:59.000Z

    opportunities for combining integrated cantilever actuation with other cantilever functions, such as self-heating. This paper presents magnetic actuation of a self-heating cantilever using the Lorentz force. The first papers

  19. 4.3.2 DEVELOPMENT OF MUSEUM EXHIBIT ON NANOSCIENCE & NANOTECHNOLOGY Barry Aprison, Museum of Science & Industry, Chicago

    E-Print Network [OSTI]

    Shull, Kenneth R.

    4.3.2 DEVELOPMENT OF MUSEUM EXHIBIT ON NANOSCIENCE & NANOTECHNOLOGY Barry Aprison, Museum is through self-directed, voluntary exploration, the NU- NSEC entered into a partnership with the Museum

  20. Potential nanotechnology applications for reducing freshwater consumption at coal fired power plants : an early view.

    SciTech Connect (OSTI)

    Elcock, D. (Environmental Science Division)

    2010-09-17T23:59:59.000Z

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the overall research effort of the Existing Plants Research Program by evaluating water issues that could impact power plants. A growing challenge to the economic production of electricity from coal-fired power plants is the demand for freshwater, particularly in light of the projected trends for increasing demands and decreasing supplies of freshwater. Nanotechnology uses the unique chemical, physical, and biological properties that are associated with materials at the nanoscale to create and use materials, devices, and systems with new functions and properties. It is possible that nanotechnology may open the door to a variety of potentially interesting ways to reduce freshwater consumption at power plants. This report provides an overview of how applications of nanotechnology could potentially help reduce freshwater use at coal-fired power plants. It was developed by (1) identifying areas within a coal-fired power plant's operations where freshwater use occurs and could possibly be reduced, (2) conducting a literature review to identify potential applications of nanotechnology for facilitating such reductions, and (3) collecting additional information on potential applications from researchers and companies to clarify or expand on information obtained from the literature. Opportunities, areas, and processes for reducing freshwater use in coal-fired power plants considered in this report include the use of nontraditional waters in process and cooling water systems, carbon capture alternatives, more efficient processes for removing sulfur dioxide and nitrogen oxides, coolants that have higher thermal conductivities than water alone, energy storage options, and a variety of plant inefficiencies, which, if improved, would reduce energy use and concomitant water consumption. These inefficiencies include air heater inefficiencies, boiler corrosion, low operating temperatures, fuel inefficiencies, and older components that are subject to strain and failure. A variety of nanotechnology applications that could potentially be used to reduce the amount of freshwater consumed - either directly or indirectly - by these areas and activities was identified. These applications include membranes that use nanotechnology or contain nanomaterials for improved water purification and carbon capture; nano-based coatings and lubricants to insulate and reduce heat loss, inhibit corrosion, and improve fuel efficiency; nano-based catalysts and enzymes that improve fuel efficiency and improve sulfur removal efficiency; nanomaterials that can withstand high temperatures; nanofluids that have better heat transfer characteristics than water; nanosensors that can help identify strain and impact damage, detect and monitor water quality parameters, and measure mercury in flue gas; and batteries and capacitors that use nanotechnology to enable utility-scale storage. Most of these potential applications are in the research stage, and few have been deployed at coal-fired power plants. Moving from research to deployment in today's economic environment will be facilitated with federal support. Additional support for research development and deployment (RD&D) for some subset of these applications could lead to reductions in water consumption and could provide lessons learned that could be applied to future efforts. To take advantage of this situation, it is recommended that NETL pursue funding for further research, development, or deployment for one or more of the potential applications identified in this report.

  1. The Center for Nanotechnology in Society at Arizona State University (CNS-ASU) facilitates the involvement of the general public in nanoscale research and development, to build new capabilities for understanding and

    E-Print Network [OSTI]

    Hall, Sharon J.

    The Center for Nanotechnology in Society at Arizona State University (CNS-ASU) facilitates for understanding and governing the power of nanotechnology to transform society. CNS-ASU is affiliated

  2. Nanotechnology Now -News Story: "Fast heat dissipation in gold" http://www.nanotech-now.com/news.cgi?story_id=07985 1 of 2 3/9/2005 4:51 PM

    E-Print Network [OSTI]

    Braun, Paul

    Nanotechnology Now - News Story: "Fast heat dissipation in gold" http Nano-Enabled Drug Discovery Market to Reach $1.3B by 2009 March 8th, 2005 Nanotechnology promises around the world, free Subscribe "N" is for Nanotechnology BUY NOW Subscribe to the Forbes/Wolfe Nanotech

  3. 4/10/2014 NANOTECHNOLOGY: World's Smallest Windmill Is Smaller Than A Grain Of Rice http://nanotech2day.blogspot.com/2014/04/worlds-smallest-windmill-is-smaller.html 1/4

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    4/10/2014 NANOTECHNOLOGY: World's Smallest Windmill Is Smaller Than A Grain Of Rice http://nanotech2day.blogspot.com/2014/04/worlds-smallest-windmill-is-smaller.html 1/4 NANOTECHNOLOGY UNLIK THE MOST In #12;4/10/2014 NANOTECHNOLOGY: World's Smallest Windmill Is Smaller Than A Grain Of Rice http

  4. The Center for Nanotechnology in Society at Arizona State University (CNS-ASU) facilitates the involvement of the general public in nanoscale research and development, to build new capabilities for understanding and

    E-Print Network [OSTI]

    Kambhampati, Subbarao

    The Center for Nanotechnology in Society at Arizona State University (CNS-ASU) facilitates for understanding and governing the power of nanotechnology to transform society. CNS-ASU is affiliated concerns. The Center for Nanotechnology in Society A R I Z O N A S T A T E U N I V E R S I T Y A computer

  5. Nanotechnology and Innovation, Recent status and the strategic implication for the formation of high tech clusters in Greece, in between a global economic crisis

    E-Print Network [OSTI]

    Gkanas, Evangelos I; Makridis, Sofoklis S; Stubos, Athanasios K; Bakouros, Ioannis

    2013-01-01T23:59:59.000Z

    Nanotechnology is the first major worldwide research initiative of the 21st century and probably is the solution vector in the economic environment. Also, innovation is widely recognized as a key factor in the economic development of nations, and is essential for the competitiveness of the industrial firms as well. Policy and management of innovation are necessary in order to develop innovation and it involves processes. It is essential to develop new methods for nanotechnology development for better understanding of nanotechnology based innovation. Nanotechnologies reveal commercialization processes, from start ups to large firms in collaboration with public sector research. In the current paper, a study in the present status of innovation in nanotechnology and the affection of global economic crisis in this section is made and also the potential of increase the innovation via the presence of clusters in a small country like Greece which is in the eye of tornado from the global crisis is studied.

  6. This issue of Topics in Catalysis is devoted to ``Nanotechnology in Catalysis'' and covers some of the

    E-Print Network [OSTI]

    Resasco, Daniel

    silica, catalyst supports and catalytic membranes. Nanosized hollow spheres (silica or carbon) have been crystal structures, electronic configurations, or surface compositions that can only be obtained with nano of Nanotechnology. A well-known advan- tage of reducing particle size is the increase in surface area per unit

  7. NANOTECHNOLOGY Shortstraws

    E-Print Network [OSTI]

    Cai, Long

    , could find application in solar cells and light-emitting diodes. George Whitesides and his team used

  8. nanotechnologies | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of strong brown carbon chromophores. Citation: Laskin J, A Laskin, S Nizkorodov, PJ Roach, PA Eckert, MK Gilles, B Wang, HJ Lee, and Q Hu.2014."Molecular Selectivity of Brown...

  9. Molecular & Nanotechnology

    E-Print Network [OSTI]

    Reif, Rafael

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18 Magnetic Nanostructures for Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15 Building Three-dimensional Nanostructures via Membrane Folding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19 Organic Floating-gate Memory Devices . . . . . . . . . . . . . . . . . . . . . . .

  10. Sandia Energy - CINT Computer Simulation Guide for Designing Polymeric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatings Initiated at PNNL's Sequim Bay CoatingsBuilding

  11. Enhancing Graduate Student Communication to General Audiences through Blogging about Nanotechnology and Sustainability

    SciTech Connect (OSTI)

    Bishop, Lee M.; Tillman, Ayesha S.; Geiger, Franz M.; Haynes, Christy L.; Klaper, Rebecca D.; Murphy, Catherine; Orr, Galya; Pedersen, Joel A.; DeStefano, Lizanne; Hamers, Robert J.

    2014-10-14T23:59:59.000Z

    We have developed and assessed a multiauthor science blog on the topic of nanotechnology and sustainability as a tool to improve the written communication and public engagement skills of graduate students. Focus group studies revealed that after participation in the blog, student authors felt more confident and capable of communicating technical topics to general audiences. Students' research mentors viewed this as an important component of their students' education, as indicated by survey data. Important design aspects of this effort include participation of an editor as well as having flexible content and target-audience guidelines. We have explicitly outlined aspects of the effort we see as critical in order to enable others to replicate this model in related settings.

  12. Novel microwave near-field sensors for material characterization, biology, and nanotechnology

    E-Print Network [OSTI]

    Joffe, R; Shavit, R

    2015-01-01T23:59:59.000Z

    The wide range of interesting electromagnetic behavior of contemporary materials requires that experimentalists working in this field master many diverse measurement techniques and have a broad understanding of condensed matter physics and biophysics. Measurement of the electromagnetic response of materials at microwave frequencies is important for both fundamental and practical reasons. In this paper, we propose a novel near-field microwave sensor with application to material characterization, biology, and nanotechnology. The sensor is based on a subwavelength ferrite-disk resonator with magnetic-dipolar-mode (MDM) oscillations. Strong energy concentration and unique topological structures of the near fields originated from the MDM resonators allow effective measuring material parameters in microwaves, both for ordinary structures and objects with chiral properties.

  13. Nanotechnology for Solar-hydrogen Production via Photoelectrochemical Water-splitting: Design, Synthesis, Characterization, and Application of Nanomaterials and Quantum Dots 

    E-Print Network [OSTI]

    Alenzi, Naser D.

    2012-02-14T23:59:59.000Z

    NANOTECHNOLOGY FOR SOLAR-HYDROGEN PRODUCTION VIA PHOTOELECTROCHEMICAL WATER-SPLITTING: DESIGN, SYNTHESIS, CHARACTERIZATION, AND APPLICATION OF NANOMATERIALS AND QUANTUM DOTS A Dissertation by NASER D. ALENZI Submitted... to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2010 Major Subject: Petroleum Engineering NANOTECHNOLOGY FOR SOLAR-HYDROGEN PRODUCTION VIA...

  14. Grid Integration

    SciTech Connect (OSTI)

    Not Available

    2008-09-01T23:59:59.000Z

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its grid integration subprogram.

  15. Evolution integrals

    E-Print Network [OSTI]

    Rocco Duvenhage

    2006-05-24T23:59:59.000Z

    A framework analogous to path integrals in quantum physics is set up for abstract dynamical systems in a W*-algebraic setting. We consider spaces of evolutions, defined in a specific way, of a W*-algebra A as an analogue of spaces of classical paths, and show how integrals over such spaces, which we call ``evolution integrals'', lead to dynamics in a Hilbert space on a ``higher level'' which is viewed as an analogue of quantum dynamics obtained from path integrals. The measures with respect to which these integrals are performed are projection valued.

  16. Research Resources and Centers Research plays an integral role in Rensselaer's vision of the

    E-Print Network [OSTI]

    Varela, Carlos

    in materials, devices, systems, nanotechnology, light emitting diodes (LEDs), organic light emitting diodes

  17. Insolation integrator

    DOE Patents [OSTI]

    Dougherty, John J. (Norristown, PA); Rudge, George T. (Lansdale, PA)

    1980-01-01T23:59:59.000Z

    An electric signal representative of the rate of insolation is integrated to determine if it is adequate for operation of a solar energy collection system.

  18. USC TROJAN FAMILY MAGAZINE winter 2006 2928 USC TROJAN FAMILY MAGAZINE spring 2007 POPULAR INTRODUCTIONS to nanotechnology usually crow about the

    E-Print Network [OSTI]

    Southern California, University of

    , such naïveté forces an invol- untary guffaw out of Timothy Triche, chief pathologist at Childrens Hospital Los manageable than lab work at the atomic level. But science does not * For the record, nanas is Greek has scored impressive breakthroughs in fund- ing. ("Nanotechnology," an Oxford don reportedly sneered

  19. Please see LNN website (www.lehigh.edu/lnn/events.shtml) for full list of events. Center for Advanced Materials and Nanotechnology(CAMN) Open House

    E-Print Network [OSTI]

    Gilchrist, James F.

    , 2012 Time: 7:30am-6.15pm Location: Harrisburg University of Science and Technology 326 Market Street Harrisburg, PA 17101 Cost: TBD Sponsored by: Carnegie Mellon University Drexel Nanotechnology Institute Harrisburg Area Community College Harrisburg University Lehigh University CAMN Penn State Nanofabrication

  20. The 4th International Symposium on Mechanical Science based on Nanotechnology, Sendai, Japan, February 2007, pp. 143-146, published by Tohoku University, 21st Century COE programme

    E-Print Network [OSTI]

    Cambridge, University of

    The 4th International Symposium on Mechanical Science based on Nanotechnology, Sendai, Japan susceptible to thermal fatigue, especially in thick sections of the kind frequent in power generation in the expectation that nuclear fusion will deliver energy within the life time of the present generation of human

  1. NREL: Energy Systems Integration - Energy Systems Integration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Printable Version Energy Systems Integration Facility Newsroom The Energy Systems Integration Facility (ESIF) will be one of the only megawatt-scale test facilities in the United...

  2. Environmental Assessment for the Center for Integrated Nanotechnologie...

    Broader source: Energy.gov (indexed) [DOE]

    Environmental Assessment March 2003 1 1.0 PURPOSE AND NEED FOR AGENCY ACTION In 1999, the United States government announced the National Nanotechnology Initiative (NNI)...

  3. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01T23:59:59.000Z

    4 Inkjet Printed Electronics Using Copper Nanoparticle29 Inkjet Printed Electronics For Multifunctional Compositenanocrystals toward printed electronics,” Nanotechnology,

  4. Nanotechnology and algae biofuels exhibits open July 26 at the Bradbury

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSRdiodesScience Museum

  5. A Nanotechnology-Based, Self-Healing, Chromate-Free Conversion Coating For

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1USummer in theWeb Policies52Magnesium

  6. Nanotechnology Energizing Our Future | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven National LaboratoryJeffreyMs. Linda CerroneNaming of

  7. Manifold Integration: Data Integration on Multiple Manifolds

    E-Print Network [OSTI]

    Choi, Hee Youl

    2011-08-08T23:59:59.000Z

    MANIFOLD INTEGRATION: DATA INTEGRATION ON MULTIPLE MANIFOLDS A Dissertation by HEE YOUL CHOI Submitted to the O?ce of Graduate Studies of Texas A&M University in partial fulflllment of the requirements for the degree of DOCTOR OF PHILOSOPHY... May 2010 Major Subject: Computer Science MANIFOLD INTEGRATION: DATA INTEGRATION ON MULTIPLE MANIFOLDS A Dissertation by HEE YOUL CHOI Submitted to the O?ce of Graduate Studies of Texas A&M University in partial fulflllment of the requirements...

  8. Numerical Integration Numerical Summation

    E-Print Network [OSTI]

    Cohen, Henri

    Numerical Integration Numerical Summation Numerical Extrapolation Numerical Recipes for Multiprecision Computations #12;Numerical Integration Numerical Summation Numerical Extrapolation Multiprecision, integration, summation, extrapolation, evaluation of continued fractions, Euler products and sums, complete

  9. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  10. The Cauchy Integral Formula

    E-Print Network [OSTI]

    Steve Bell

    2009-06-24T23:59:59.000Z

    Feb 23, 2009 ... Cauchy Integral Formula basics. I'm using the enumerate environment on this slide. 1. The Cauchy Integral Formula was discovered by Cauchy ...

  11. Systems integration for global sustainability

    E-Print Network [OSTI]

    2015-01-01T23:59:59.000Z

    Le, A. Z. Khan, Improving integration for integrated coastal347 ISSUE 6225 Systems integration for global sustainabilitySUSTAINABILITY Systems integration for global sustainability

  12. Turnitin Moodle Direct Integration

    E-Print Network [OSTI]

    de Lijser, Peter

    Turnitin Moodle® Direct Integration Instructor User Manual Turnitin Moodle Integration Manual: 1. Turnitin Moodle Integration Manual: 2 Contents Instructor User Manual 1 Creating a Turnitin Assignment 3 Accessing GradeMark® 15 Glossary 16 #12;Instructor User Manual Turnitin Moodle Integration Manual: 3

  13. Wind Integration Study Methods (Presentation)

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.

    2011-04-01T23:59:59.000Z

    This presentation provides an overview of common elements, differences, integration costs, and errors in integration analysis.

  14. Buried waste integrated demonstration technology integration process

    SciTech Connect (OSTI)

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01T23:59:59.000Z

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD).

  15. Buried waste integrated demonstration technology integration process

    SciTech Connect (OSTI)

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01T23:59:59.000Z

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE`s Office of Technology Development (OTD).

  16. Transmission Commercial Project Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improvement (CBPI) Customer Forum Energy Imbalance Market Generator Interconnection Reform Implementation Network Integration Transmission Service (NT Service) Network Open...

  17. Community-oriented information integration

    E-Print Network [OSTI]

    Katsis, Ioannis

    2009-01-01T23:59:59.000Z

    2.6.1 Community-oriented Integration . . 2.6.2Chapter 5 Integration Conclusions and FutureFigure Community-oriented Integration Architecture . . . .

  18. Art Integration and Cognitive Development

    E-Print Network [OSTI]

    Baker, Dawn

    2013-01-01T23:59:59.000Z

    journal on arts integration in schools and communities. 1(Art Integration and Cognitive Development Dawn Baker,in the curriculum. Art integration involves learning core

  19. Motion Integration Using Competitive Priors

    E-Print Network [OSTI]

    Wu, Shuang; Lu, Hongjing; Lee, Alan; Yuille, Alan

    2009-01-01T23:59:59.000Z

    to investigate motion integration across orientation andspace. VSS 2006. Motion integration using competitive priorsMotion integration using competitive priors Shuang Wu 1 ,

  20. Motion Integration Using Competitive Priors

    E-Print Network [OSTI]

    Shuang Wu; Hongjing Lu; Alan Lee; Alan Yuille

    2011-01-01T23:59:59.000Z

    to investigate motion integration across orientation andspace. VSS 2006. Motion integration using competitive priorsMotion integration using competitive priors Shuang Wu 1 ,

  1. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration Energy Supply Transformation Needed On February 20, 2013, in DETL, Distribution Grid Integration, Energy, Energy Assurance, Energy Surety, Grid Integration,...

  2. NANOTECHNOLOGY AT USC ENGINEERING

    E-Print Network [OSTI]

    Zhou, Chongwu

    -Campus Interviews Career Fairs Company Information Sessions Strategic Recruitment Planning Help the next generation The Best and the Brightest Meet Engineering Contour Crafting Construction Technology for the Future with a guaranteed income stream for life while also helping to secure the future of the USC School of Engineering

  3. NANOTECHNOLOGY Peering into

    E-Print Network [OSTI]

    Falge, Eva

    the finches, above all the sub-species of giant tortoises, each specifically adapted to the ecological for Ornithology attach GPS loggers and ultramodern 3-D accelerometers to the shells of some of the tortois- es. This allows them to precisely track the animals over long periods and compare their observations with climate

  4. NANOTECHNOLOGY 19 (2008) 405607

    E-Print Network [OSTI]

    Boyer, Edmond

    2008-01-01T23:59:59.000Z

    the electrodeposition yield of nickel nanoparticles/nanowires at low voltage. As an illustration, the pore filling of electrodeposited Ni nanoparticles/nanowires inside porous anodic alumina templates by an exponential anodization the density of pores filled with metal (by electrodeposition) rather than the pore density itself. This could

  5. Nanotechnology | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement ofConverDyn NOPRNancy Sutley About Us Nancy Sutley

  6. Contribution to Nanotechnology Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution And Bylaws

  7. U.S. and EU Unite to Strengthen Economic Integration and Boost...

    Energy Savers [EERE]

    and agreed to support innovation in areas such as health-related industries, nanotechnology and automotives. Participants further discussed a range of other critical economic...

  8. NREL: Transmission Grid Integration - Wind Integration Datasets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmission Planning andStudy PhaseWind

  9. Technology Integration Overview

    Broader source: Energy.gov (indexed) [DOE]

    Technology Integration Overview Dennis A. Smith - Clean Cities Deployment Connie Bezanson - Vehicle Education June 17, 2014 VEHICLE TECHNOLOGIES OFFICE This presentation does not...

  10. Integrated Technology Deployment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Integrated technology deployment is a comprehensive approach to implementing solutions that increase the use of energy efficiency and renewable energy technologies. Federal, state, and local...

  11. Technology Integration Overview

    Broader source: Energy.gov (indexed) [DOE]

    -Technology Integration Overview - Dennis A. Smith Connie Bezanson U. S. Department of Energy Headquarters Office - Washington, D.C. May 2013 Project ID: TI000 2013 Department of...

  12. Algal Integrated Biorefineries

    Broader source: Energy.gov [DOE]

    The Algae Program works closely with the Demonstration and Deployment Program on projects that can validate advancements toward commercialization at increasing scales. Integrated biorefineries...

  13. Nano Patents and Innovations: Sandia And UNM Lead Effort To Use Nanotechnology To Destroy Cancers http://nanopatentsandinnovations.blogspot.com/2011/04/sandia-and-unm-lead-effort-to-use.html[4/21/2011 11:20:54 AM

    E-Print Network [OSTI]

    Brinker, C. Jeffrey

    Nano Patents and Innovations: Sandia And UNM Lead Effort To Use Nanotechnology To Destroy Cancers http://nanopatentsandinnovations.blogspot.com/2011/04/sandia-and-unm-lead-effort-to-use.html[4/21/2011 11:20:54 AM] M O N D A Y , A P R I L 1 8 , 2 0 1 1 Sandia And UNM Lead Effort To Use Nanotechnology

  14. Water Waves and Integrability

    E-Print Network [OSTI]

    Rossen I. Ivanov

    2007-07-12T23:59:59.000Z

    The Euler's equations describe the motion of inviscid fluid. In the case of shallow water, when a perturbative asymtotic expansion of the Euler's equations is taken (to a certain order of smallness of the scale parameters), relations to certain integrable equations emerge. Some recent results concerning the use of integrable equation in modeling the motion of shallow water waves are reviewed in this contribution.

  15. Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    The Systems Integration (SI) subprogram works closely with industry, universities, and the national laboratories to overcome technical barriers to the large-scale deployment of solar technologies. To support these goals, the subprogram invests primarily in four areas: grid integration, technology validation, solar resource assessment, and balance of system development.

  16. Flame aerosol nano-technology has been developed to preparation of thin and defect-free porous membrane from the gas phase as a one step method in preparation of membrane for gas

    E-Print Network [OSTI]

    Abstract Flame aerosol nano-technology has been developed to preparation of thin and defect on deposition of nano particles (-Al2O3, MgO or spinel MgAl2O4), formed in the premixed flame reactor through/or aluminium precursors in the flame to form nano-particles of -Al2O3, MgO or MgAl2O4 spinel. The generated

  17. Integrated assessment briefs

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    Integrated assessment can be used to evaluate and clarify resource management policy options and outcomes for decision makers. The defining characteristics of integrated assessment are (1) focus on providing information and analysis that can be understood and used by decision makers rather than for merely advancing understanding and (2) its multidisciplinary approach, using methods, styles of study, and considerations from a broader variety of technical areas than would typically characterize studies produced from a single disciplinary standpoint. Integrated assessment may combine scientific, social, economic, health, and environmental data and models. Integrated assessment requires bridging the gap between science and policy considerations. Because not everything can be valued using a single metric, such as a dollar value, the integrated assessment process also involves evaluating trade-offs among dissimilar attributes. Scientists at Oak Ridge National Laboratory (ORNL) recognized the importance and value of multidisciplinary approaches to solving environmental problems early on and have pioneered the development of tools and methods for integrated assessment over the past three decades. Major examples of ORNL`s experience in the development of its capabilities for integrated assessment are given.

  18. PEV Integration with Renewables (Presentation)

    SciTech Connect (OSTI)

    Markel, T.

    2014-06-18T23:59:59.000Z

    This presentation discusses current research at NREL on integrating plug-in electric vehicles with the grid and using renewable energy to charge the grid. The Electric Vehicle Grid Integration (EVGI) and Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) are addressing the opportunities and technical requirements for vehicle grid integration that will increase marketability and lead to greater petroleum reduction.

  19. Problems on Integration.

    E-Print Network [OSTI]

    2007-07-02T23:59:59.000Z

    INTEGRATION. V2.0. 1. One-liners. Problem 1. True of false: If f is a non-negative function defined on. R and. ?. R f dx < ?, then lim|x|?? f(x) = 0. Problem 2.

  20. INTEGRATING PHOTOVOLTAIC SYSTEMS

    E-Print Network [OSTI]

    Delaware, University of

    for Energy and Environmental Policy University of Delaware February 2006 #12;INTEGRATING PHOTOVOLTAIC Delmarva Power Delaware Energy Office University of Delaware Center for Energy and Environmental Policy..................................................................................................... 5 3.3.1 Delaware's Solar Resource

  1. On Web Taxonomy Integration

    E-Print Network [OSTI]

    Zhang, Dell

    We address the problem of integrating objects from a source taxonomy into a master taxonomy. This problem is not only pervasive on the nowadays web, but also important to the emerging semantic web. A straightforward approach ...

  2. SOLAR PROGRAM: SYSTEMS INTEGRATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010 2. Current Request for Information (RFI) 3. Questions 4 | Systems Integration eere.energy.gov Summary of 1W Workshop Date: August 11th and 12th, 2010 Attendees: 86 total;...

  3. Integrated optical isolators

    E-Print Network [OSTI]

    Zaman, Tauhid R

    2005-01-01T23:59:59.000Z

    Introduction: Optical isolators are important components in lasers. Their main function is to eliminate noise caused by back-reflections into these lasers. The need for integrated isolators comes from the continuing growth ...

  4. IDC Integrated Master Plan.

    SciTech Connect (OSTI)

    Clifford, David J.; Harris, James M.

    2014-12-01T23:59:59.000Z

    This is the IDC Re-Engineering Phase 2 project Integrated Master Plan (IMP). The IMP presents the major accomplishments planned over time to re-engineer the IDC system. The IMP and the associate Integrated Master Schedule (IMS) are used for planning, scheduling, executing, and tracking the project technical work efforts. REVISIONS Version Date Author/Team Revision Description Authorized by V1.0 12/2014 IDC Re- engineering Project Team Initial delivery M. Harris

  5. Simplistic Integration for Complex Wigglers

    E-Print Network [OSTI]

    Forest, E.

    2011-01-01T23:59:59.000Z

    y (c) and (d) are for 35 integration steps, (e) and (f) arey — p y plot for 15 integration steps which is equivalent to32792 UC-410 Symplectic Integration for Complex Wigglers E.

  6. China's Civil-Military Integration

    E-Print Network [OSTI]

    LAFFERTY, Brian; SHRABERG, Aaron; CLEMENS, Morgan

    2013-01-01T23:59:59.000Z

    China’s civil-military integration, and China’s high tech2013 China’s Civil-Military Integration Brian LAFFERTY Aarons pursuit of civil-military integration (CMI) intensified in

  7. NREL: Energy Systems Integration Facility - Systems Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |Infrastructure The foundation of

  8. Physiological Integration and Phenotypic Variation

    E-Print Network [OSTI]

    Arnold, Jonathan

    Physiological Integration and Phenotypic Variation in Vertebrates Seminar and Roundtable Guest Speaker: Lynn "Marty" Martin, PhD Assistant Professor Department of Integrative Biology, University

  9. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IEC 61400-26 Availability Standard On June 12, 2014, in Analysis, Distribution Grid Integration, Energy, Grid Integration, Infrastructure Security, News, News & Events,...

  10. Systems Integration | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Integration SHARE Systems Integration The Distributed Energy Communications and Controls (DECC) Laboratory offers a unique test bed for testing distributed energy...

  11. Examining Implicit Acculturation and Bicultural Identity Integration

    E-Print Network [OSTI]

    Miramontez, Daniel Robert

    2010-01-01T23:59:59.000Z

    Bicultural identity Integration (BII): Components, andBicultural identity integration (BII) and valence ofassimilation, separation, integration, and marginalization.

  12. Transportation and Stationary Power Integration: Workshop Proceedings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration: Workshop Proceedings Transportation and Stationary Power Integration: Workshop Proceedings Proceedings for the Transportation and Stationary Power Integration Workshop...

  13. Numerical Integration Gordon K. Smyth

    E-Print Network [OSTI]

    Smyth, Gordon K.

    Numerical Integration Gordon K. Smyth in Encyclopedia of Biostatistics (ISBN 0471 975761) Edited by Peter Armitage and Theodore Colton John Wiley & Sons, Ltd, Chichester, 1998 #12;Numerical Integration Numerical integration is the study of how the numerical value of an integral can be found. Also called

  14. Numerical Integration Gordon K. Smyth

    E-Print Network [OSTI]

    Smyth, Gordon K.

    Numerical Integration Gordon K. Smyth May 1997 Numerical integration is the study of how the numerical value of an integral can be found. Also called quadrature, which refers to finding a square whose \\Lambda . Of central interest is the process of approximating a definite integral from values of the in

  15. Twisted symmetries and integrable systems

    E-Print Network [OSTI]

    G. Cicogna; G. Gaeta

    2010-02-07T23:59:59.000Z

    Symmetry properties are at the basis of integrability. In recent years, it appeared that so called "twisted symmetries" are as effective as standard symmetries in many respects (integrating ODEs, finding special solutions to PDEs). Here we discuss how twisted symmetries can be used to detect integrability of Lagrangian systems which are not integrable via standard symmetries.

  16. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Wade Troxell

    2011-09-30T23:59:59.000Z

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation â?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSUâ??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratoryâ??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

  17. Integrity at CERN

    E-Print Network [OSTI]

    Department, HR

    2015-01-01T23:59:59.000Z

    In the fulfillment of its mission, CERN relies upon the trust and material support of its Member States and partners, and is committed to exercising exemplary stewardship of the resources with which it is entrusted. Accordingly, CERN expects the highest level of integrity from all its contributors (whether members of the personnel, consultants, contractors working on site, or persons engaged in any other capacity at or on behalf of CERN). Integrity is a core value of CERN, defined in the Code of Conduct as “behaving ethically, with intellectual honesty and being accountable for one’s own actions”.

  18. Integrated heterodyne terahertz transceiver

    DOE Patents [OSTI]

    Lee, Mark (Albuquerque, NM); Wanke, Michael C. (Albuquerque, NM)

    2009-06-23T23:59:59.000Z

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. An antenna connected to the Schottky diode receives a terahertz signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  19. Integrated heterodyne terahertz transceiver

    DOE Patents [OSTI]

    Wanke, Michael C. (Albuquerque, NM); Lee, Mark (Albuquerque, NM); Nordquist, Christopher D. (Albuquerque, NM); Cich, Michael J. (Albuquerque, NM)

    2012-09-25T23:59:59.000Z

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. A terahertz signal can be received by an antenna connected to the mixer, an end facet or sidewall of the laser, or through a separate active section that can amplify the incident signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  20. Integrated Energy Efficiency 

    E-Print Network [OSTI]

    Heins, S.

    2007-01-01T23:59:59.000Z

    6 Customer Story Bemis Manufacturing Sheboygan Falls, WI Before After Energy & Financial Impacts Annual Energy Savings $317,897 Maintenance Savings $63,579 Payback Period Less than 2 years Annual Displaced Energy 6,300,289 kWh Displaced Capacity 731... 10 Off The Grid Sensor Integration Natural Daylight Base and Peak Energy Reduction 11 Lowest Cost Renewable Solar Integrated Lighting $1.0 million/MW $6 – 9 million/MW Wind $1.3 - 1.9 million/MW Biomass $1.5 – 2.5 million/MW Geothermal $1.6 million...

  1. Integrated Safety Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25T23:59:59.000Z

    The order ensures that DOE/NNSA, systematically integrates safety into management and work practices at all levels, so that missions are accomplished efficiently while protecting the workers, the public, and the environment. Cancels DOE M 450.4-1 and DOE M 411.1-1C

  2. Integrated Safety Management Policy

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25T23:59:59.000Z

    The policy establishes DOE's expectation for safety, including integrated safety management that will enable the Department’s mission goals to be accomplished efficiently while ensuring safe operations at all departmental facilities and activities. Cancels DOE P 411.1, DOE P 441.1, DOE P 450.2A, DOE P 450.4, and DOE P 450.7

  3. Bioluminescent bioreporter integrated circuit

    DOE Patents [OSTI]

    Simpson, Michael L. (Knoxville, TN); Sayler, Gary S. (Blaine, TN); Paulus, Michael J. (Knoxville, TN)

    2000-01-01T23:59:59.000Z

    Disclosed are monolithic bioelectronic devices comprising a bioreporter and an OASIC. These bioluminescent bioreporter integrated circuit are useful in detecting substances such as pollutants, explosives, and heavy-metals residing in inhospitable areas such as groundwater, industrial process vessels, and battlefields. Also disclosed are methods and apparatus for environmental pollutant detection, oil exploration, drug discovery, industrial process control, and hazardous chemical monitoring.

  4. Modular Integrated Energy Systems

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Building 3147 Oak Ridge, TN 37831 April 27, 2006 Prepared by: Honeywell Laboratories 3660 Technology Drive Honeywell #12;Modular Integrated Energy Systems Task 5 Prototype Development Reference Design Documentation: Steve Gabel, Program Manager (612) 951-7555 Honeywell Laboratories 3660 Technology Drive Minneapolis

  5. Modular Integrated Energy Systems

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Building 3147 Oak Ridge, TN 37831 July 22, 2005 Prepared by: Honeywell Laboratories 3660 Technology Drive­April 2005 Honeywell #12;Modular Integrated Energy Systems Task 6 Field Monitoring Interim Report Period Oak Ridge, TN 37831 Prepared by: Steve Gabel, Program Manager (612) 951-7555 Honeywell Laboratories

  6. Modular Integrated Energy Systems

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Building 3147 Oak Ridge, TN 37831 March 24, 2005 Prepared by: Honeywell Laboratories 3660 Technology Drive­December 2004 Honeywell #12;Modular Integrated Energy Systems Task 6 Field Monitoring Interim Report Period Oak Ridge, TN 37831 Prepared by: Steve Gabel, Program Manager (612) 951-7555 Honeywell Laboratories

  7. Modular Integrated Energy Systems

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Honeywell Modular Integrated Energy Systems Task 6 Field Monitoring Interim Report Period Covered 3147 Oak Ridge, TN 37831 Prepared by: Honeywell Laboratories 3660 Technology Drive Minneapolis, MN 3147 Oak Ridge, TN 37831 Prepared by: Steve Gabel, Program Manager (612) 951-7555 Honeywell

  8. integration division Human Systems

    E-Print Network [OSTI]

    integration division Human Systems Eye-Movement Metrics: Non-Intrusive Quantitative Tools for Monitoring Human Visual Performance Objective Approach Impact A reliable quantitative yet non-intrusive methodologies that provide quantitative yet non-intrusive measures of human visual performance for use

  9. Direct numerical integration for multi-loop integrals

    E-Print Network [OSTI]

    Sebastian Becker; Stefan Weinzierl

    2013-03-18T23:59:59.000Z

    We present a method to construct a suitable contour deformation in loop momentum space for multi-loop integrals. This contour deformation can be used to perform the integration for multi-loop integrals numerically. The integration can be performed directly in loop momentum space without the introduction of Feynman or Schwinger parameters. The method can be applied to finite multi-loop integrals and to divergent multi-loop integrals with suitable subtraction terms. The algorithm extends techniques from the one-loop case to the multi-loop case. Examples at two and three loops are discussed explicitly.

  10. Quantum measure and integration theory

    E-Print Network [OSTI]

    Stan Gudder

    2009-09-11T23:59:59.000Z

    This article begins with a review of quantum measure spaces. Quantum forms and indefinite inner-product spaces are then discussed. The main part of the paper introduces a quantum integral and derives some of its properties. The quantum integral's form for simple functions is characterized and it is shown that the quantum integral generalizes the Lebesgue integral. A bounded, monotone convergence theorem for quantum integrals is obtained and it is shown that a Radon-Nikodym type theorem does not hold for quantum measures. As an example, a quantum-Lebesgue integral on the real line is considered.

  11. Integrated turbomachine oxygen plant

    SciTech Connect (OSTI)

    Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

    2014-06-17T23:59:59.000Z

    An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

  12. Integrated Optical Probes

    SciTech Connect (OSTI)

    Brent Frogget, Douglas DeVore, Vincent Romero, David Esquibel, and David Holtkamp

    2008-09-04T23:59:59.000Z

    Optical probes used in velocimetry measurements have typically been individual probes that collect data for a single diagnostic at a single point. These probes have been used in diagnostics such as VISAR, PDV, and radiometry, which measure surface velocity, temperature, and other characteristics. When separate probes are used for these measurements, the different diagnostic points measured must be significantly separated. We have developed integrated probes that collect data for multiple optical diagnostics; these probes measure points in close proximity.

  13. Integrated Energy Efficiency

    E-Print Network [OSTI]

    Heins, S.

    Integrated Energy Efficiency Steve Heins VP Communications and Government Affairs Orion Energy Systems, Inc. 2 MegaTrend Convergence We need companies to commercialize technologies that use less energy without compromise to operations. Energy... Environment US electricity consumption growing 43% by 2030 Power generation expected to account for 50% of CO 2 emission increases 3 How Electricity Is Used 24 Hour Operation Midnight 6 a.m. Noon 6 p.m. Midnight kW 4 Lighting is a Major Component...

  14. Integrated Deployment and the Energy Systems Integration Facility: Workshop Proceedings

    SciTech Connect (OSTI)

    Kroposki, B.; Werner, M.; Spikes, A.; Komomua, C.

    2013-01-01T23:59:59.000Z

    This report summarizes the workshop entitled: Integrated Deployment and the Energy Systems Integration Facility. In anticipation of the opening of the ESIF, NREL held the workshop August 21-23, 2012 and invited participants from utilities, government, industry, and academia to discuss renewable integration challenges and discover new ways to meet them by taking advantage of the ESIF's capabilities.

  15. Integrative Bioengineering Institute

    SciTech Connect (OSTI)

    Eddington, David; Magin,L,Richard; Hetling, John; Cho, Michael

    2009-01-09T23:59:59.000Z

    Microfabrication enables many exciting experimental possibilities for medicine and biology that are not attainable through traditional methods. However, in order for microfabricated devices to have an impact they must not only provide a robust solution to a current unmet need, but also be simple enough to seamlessly integrate into standard protocols. Broad dissemination of bioMEMS has been stymied by the common aim of replacing established and well accepted protocols with equally or more complex devices, methods, or materials. The marriage of a complex, difficult to fabricate bioMEMS device with a highly variable biological system is rarely successful. Instead, the design philosophy of my lab aims to leverage a beneficial microscale phenomena (e.g. fast diffusion at the microscale) within a bioMEMS device and adapt to established methods (e.g. multiwell plate cell culture) and demonstrate a new paradigm for the field (adapt instead of replace). In order for the field of bioMEMS to mature beyond novel proof-of-concept demonstrations, researchers must focus on developing systems leveraging these phenomena and integrating into standard labs, which have largely been ignored. Towards this aim, the Integrative Bioengineering Institute has been established.

  16. High Efficiency Integrated Package

    SciTech Connect (OSTI)

    Ibbetson, James

    2013-09-15T23:59:59.000Z

    Solid-state lighting based on LEDs has emerged as a superior alternative to inefficient conventional lighting, particularly incandescent. LED lighting can lead to 80 percent energy savings; can last 50,000 hours – 2-50 times longer than most bulbs; and contains no toxic lead or mercury. However, to enable mass adoption, particularly at the consumer level, the cost of LED luminaires must be reduced by an order of magnitude while achieving superior efficiency, light quality and lifetime. To become viable, energy-efficient replacement solutions must deliver system efficacies of ? 100 lumens per watt (LPW) with excellent color rendering (CRI > 85) at a cost that enables payback cycles of two years or less for commercial applications. This development will enable significant site energy savings as it targets commercial and retail lighting applications that are most sensitive to the lifetime operating costs with their extended operating hours per day. If costs are reduced substantially, dramatic energy savings can be realized by replacing incandescent lighting in the residential market as well. In light of these challenges, Cree proposed to develop a multi-chip integrated LED package with an output of > 1000 lumens of warm white light operating at an efficacy of at least 128 LPW with a CRI > 85. This product will serve as the light engine for replacement lamps and luminaires. At the end of the proposed program, this integrated package was to be used in a proof-of-concept lamp prototype to demonstrate the component’s viability in a common form factor. During this project Cree SBTC developed an efficient, compact warm-white LED package with an integrated remote color down-converter. Via a combination of intensive optical, electrical, and thermal optimization, a package design was obtained that met nearly all project goals. This package emitted 1295 lm under instant-on, room-temperature testing conditions, with an efficacy of 128.4 lm/W at a color temperature of ~2873K and 83 CRI. As such, the package’s performance exceeds DOE’s warm-white phosphor LED efficacy target for 2013. At the end of the program, we assembled an A19 sized demonstration bulb housing the integrated package which met Energy Star intensity variation requirements. With further development to reduce overall component cost, we anticipate that an integrated remote converter package such as developed during this program will find application in compact, high-efficacy LED-based lamps, particularly those requiring omnidirectional emission.

  17. January 2005 INTEGRATING IT SECURITY

    E-Print Network [OSTI]

    January 2005 INTEGRATING IT SECURITY INTO THE CAPITAL PLANNING AND INVESTMENT CONTROL PROCESS By Joan S. Hash, Computer Security Division, Information Technology Laboratory, National Institute of Standards and Technology Introduction To assist federal agencies with effec tively integrating security

  18. Pendulum Integration and Elliptic Functions

    E-Print Network [OSTI]

    P. L. Garrido; G. Gallavotti

    2008-12-12T23:59:59.000Z

    Revisiting canonical integration of the classical pendulum around its unstable equilibrium, normal hyperbolic canonical coordinates are constructed

  19. Noncommutative integrable systems and quasideterminants

    SciTech Connect (OSTI)

    Hamanaka, Masashi [Department of Mathematics, Nagoya University, Chikusa-ku, Nagoya, 464-8602 (Japan)

    2010-03-08T23:59:59.000Z

    We discuss extension of soliton theories and integrable systems into noncommutative spaces. In the framework of noncommutative integrable hierarchy, we give infinite conserved quantities and exact soliton solutions for many noncommutative integrable equations, which are represented in terms of Strachan's products and quasi-determinants, respectively. We also present a relation to an noncommutative anti-self-dual Yang-Mills equation, and make comments on how 'integrability' should be considered in noncommutative spaces.

  20. Integrated Biorefineries | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    displayed. Integrated biorefineries use novel technologies and diverse biomass feedstocks-requiring significant investments in research, development, and deployment to...

  1. Lectures on integrable Hamiltonian systems

    E-Print Network [OSTI]

    G. Sardanashvily

    2013-03-21T23:59:59.000Z

    We consider integrable Hamiltonian systems in a general setting of invariant submanifolds which need not be compact. For instance, this is the case a global Kepler system, non-autonomous integrable Hamiltonian systems and integrable systems with time-dependent parameters.

  2. Integrated Assessment Modeling

    SciTech Connect (OSTI)

    Edmonds, James A.; Calvin, Katherine V.; Clarke, Leon E.; Janetos, Anthony C.; Kim, Son H.; Wise, Marshall A.; McJeon, Haewon C.

    2012-10-31T23:59:59.000Z

    This paper discusses the role of Integrated Assessment models (IAMs) in climate change research. IAMs are an interdisciplinary research platform, which constitutes a consistent scientific framework in which the large-scale interactions between human and natural Earth systems can be examined. In so doing, IAMs provide insights that would otherwise be unavailable from traditional single-discipline research. By providing a broader view of the issue, IAMs constitute an important tool for decision support. IAMs are also a home of human Earth system research and provide natural Earth system scientists information about the nature of human intervention in global biogeophysical and geochemical processes.

  3. Iterated integrals of superconnections

    E-Print Network [OSTI]

    Igusa, Kiyoshi

    2009-01-01T23:59:59.000Z

    Starting with a Z-graded superconnection on a graded vector bundle over a smooth manifold M, we show how Chen's iterated integration of such a superconnection over smooth simplices in M gives an A-infinity functor if and only if the superconnection is flat. If the graded bundle is trivial, this gives a twisting cochain. Very similar results were obtained by K.T. Chen using similar methods. This paper is intended to explain this from scratch beginning with the definition and basic properties of a connection and ending with an exposition of Chen's "formal connections" and a brief discussion of how this is related to higher Reidemeister torsion.

  4. Integrity in Depth

    E-Print Network [OSTI]

    Beebe, John

    1992-01-01T23:59:59.000Z

    to the common problem of colluding with the attitude that shame is something to be ashamed of. He agrees with Andrew Morrison that for any in dividual with major deficits of the self, shame, not rage, is the principal affect. Beebe advocates "a psychology... is "Working on Integrity." In its opening section, "Fidelity to Process," Beebe shares a poi gnant therapeutic interchange in which he makes a mistake that leads to the patient's being angry at him. This rage facilitates the patient's discovery of her own...

  5. Transmission Commercial Project Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopoCarbon|default Sign In About |

  6. Integrated Safety Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National Nuclear Security Administration Facebook

  7. Integrated Support Center Jobs

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,ofOpportunitieshighlights/ Theisc/about/jobs/ Below is

  8. Integrated Safety Management Policy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on ArmedManufacturing | DepartmentINTEGRATED SAFETY MANAGEMENT

  9. Integrating Program Component Executables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other NewsSpin andInterim DataCooling - EnergyIntegrating

  10. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPower SystemsCarbon CaptureBiofuels

  11. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPower SystemsCarbon

  12. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPower SystemsCarbonEnergy Sandia

  13. Integrated Landscape Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry Research Project Integrated Laboratoryand

  14. Integrated Project Team RM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry Research ProjectIntegrated Project Team (IPT)

  15. Fourier transforms of UD integrals

    E-Print Network [OSTI]

    Igor Kondrashuk; Anatoly Kotikov

    2008-02-23T23:59:59.000Z

    UD integrals published by N. Usyukina and A. Davydychev in 1992-1993 are integrals corresponding to ladder-type Feynman diagrams. The results are UD functions $\\Phi^{(L)},$ where $L$ is the number of loops. They play an important role in N=4 supersymmetic Yang-Mills theory. The integrals were defined and calculated in the momentum space. In this paper the position space representation of UD functions is investigated. We show that Fourier transforms of UD functions are UD functions of space-time intervals but this correspondence is indirect. For example, the Fourier transform of the second UD integral is the second UD integral.

  16. European Integration, Nationalism, and European Identity

    E-Print Network [OSTI]

    Fligstein, Neil; Polyakova, Alina; Sandholtz, Wayne

    2011-01-01T23:59:59.000Z

    the politicization of European integration be reversed? ’ InOpinion and European Integration’. European Union Politics,Politics of European Integration (London: Routledge). Sides,

  17. Query Answering in Data Integration Systems

    E-Print Network [OSTI]

    Salloum, Mariam

    2011-01-01T23:59:59.000Z

    the AbeBooks.com data collection. Data Integration Systemquery plans for data integration. In Data Engineering, 2002.Recursive query plans for data integration. Journal of Logic

  18. Booly: a new data integration platform

    E-Print Network [OSTI]

    Do, Long H; Esteves, Francisco F; Karten, Harvey J; Bier, Ethan

    2010-01-01T23:59:59.000Z

    of the nation in data integration for bioinformatics. JBooly: a new data integration platform. BMC BioinformaticsAccess Booly: a new data integration platform Long H Do 1* ,

  19. Financial Integration in Emerging Market Economies

    E-Print Network [OSTI]

    Pasricha, Gurnain

    2008-01-01T23:59:59.000Z

    Economies in Global Context: The Integration Process and itsGlobal Capital Markets: Integration, Crises And Growth. Cam-1 percent level. Table 7. Integration Index Country Denmark

  20. Development of Advanced Nanomanufacturing: 3D Integration and High Speed Directed Self-assembly 

    E-Print Network [OSTI]

    Li, Huifeng

    2011-10-21T23:59:59.000Z

    Development of nanoscience and nanotechnology requires rapid and robust nanomanufacturing processes to produce nanoscale materials, structures and devices. The dissertation aims to contribute to two major challenging and attractive topics...

  1. Building-integrated photovoltaics

    SciTech Connect (OSTI)

    NONE

    1993-01-01T23:59:59.000Z

    This is a study of the issues and opportunities for building-integrated PV products, seen primarily from the perspective of the design community. Although some quantitative analysis is included, and limited interviews are used, the essence of the study is qualitative and subjective. It is intended as an aid to policy makers and members of the technical community in planning and setting priorities for further study and product development. It is important to remember that the success of a product in the building market is not only dependent upon its economic value; the diverse group of building owners, managers, regulators, designers, tenants and users must also find it practical, aesthetically appealing and safe. The report is divided into 11 sections. A discussion of technical and planning considerations is followed by illustrative diagrams of different wall and roof assemblies representing a range of possible PV-integration schemes. Following the diagrams, several of these assemblies are then applied to a conceptual test building which is analyzed for PV performance. Finally, a discussion of mechanical/electrical building products incorporating PVs is followed by a brief surveys of cost issues, market potential and code implications. The scope of this report is such that most of the discussion does not go beyond stating the questions. A more detailed analysis will be necessary to establish the true costs and benefits PVs may provide to buildings, taking into account PV power revenue, construction costs, and hidden costs and benefits to building utility and marketability.

  2. Integrating preconcentrator heat controller

    DOE Patents [OSTI]

    Bouchier, Francis A. (Albuquerque, NM); Arakaki, Lester H. (Edgewood, NM); Varley, Eric S. (Albuquerque, NM)

    2007-10-16T23:59:59.000Z

    A method and apparatus for controlling the electric resistance heating of a metallic chemical preconcentrator screen, for example, used in portable trace explosives detectors. The length of the heating time-period is automatically adjusted to compensate for any changes in the voltage driving the heating current across the screen, for example, due to gradual discharge or aging of a battery. The total deposited energy in the screen is proportional to the integral over time of the square of the voltage drop across the screen. Since the net temperature rise, .DELTA.T.sub.s, of the screen, from beginning to end of the heating pulse, is proportional to the total amount of heat energy deposited in the screen during the heating pulse, then this integral can be calculated in real-time and used to terminate the heating current when a pre-set target value has been reached; thereby providing a consistent and reliable screen temperature rise, .DELTA.T.sub.s, from pulse-to-pulse.

  3. Vertical Integration and Market Entry in the Generic Pharmaceutical Industry

    E-Print Network [OSTI]

    Kubo, Kensuke

    2011-01-01T23:59:59.000Z

    Competitive Effects of Vertical Integration . . . . . . .2.2.3 Trend in Vertical Integration . . . . . . . . .for Vertical Integration . . . . . . . . . . . . . . . . . .

  4. NREL: Energy Systems Integration Facility - Integrated Deployment Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL is spearheadingIntegrated Deployment Workshop

  5. Integrated optical sensor

    DOE Patents [OSTI]

    Watkins, A.D.; Smartt, H.B.; Taylor, P.L.

    1994-01-04T23:59:59.000Z

    An integrated optical sensor for arc welding having multifunction feedback control is described. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties. 6 figures.

  6. Integral Geometry and Holography

    E-Print Network [OSTI]

    Czech, Bartlomiej; McCandlish, Samuel; Sully, James

    2015-01-01T23:59:59.000Z

    We present a mathematical framework which underlies the connection between information theory and the bulk spacetime in the AdS$_3$/CFT$_2$ correspondence. A key concept is kinematic space: an auxiliary Lorentzian geometry whose metric is defined in terms of conditional mutual informations and which organizes the entanglement pattern of a CFT state. When the field theory has a holographic dual obeying the Ryu-Takayanagi proposal, kinematic space has a direct geometric meaning: it is the space of bulk geodesics studied in integral geometry. Lengths of bulk curves are computed by kinematic volumes, giving a precise entropic interpretation of the length of any bulk curve. We explain how basic geometric concepts -- points, distances and angles -- are reflected in kinematic space, allowing one to reconstruct a large class of spatial bulk geometries from boundary entanglement entropies. In this way, kinematic space translates between information theoretic and geometric descriptions of a CFT state. As an example, we...

  7. Integrated optical sensor

    DOE Patents [OSTI]

    Watkins, Arthur D. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); Taylor, Paul L. (Idaho Falls, ID)

    1994-01-01T23:59:59.000Z

    An integrated optical sensor for arc welding having multifunction feedback control. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties.

  8. National Renewable Energy Laboratory's Energy Systems Integration...

    Energy Savers [EERE]

    National Renewable Energy Laboratory's Energy Systems Integration Facility Overview National Renewable Energy Laboratory's Energy Systems Integration Facility Overview This...

  9. Sandia National Laboratories: renewable energy integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration, Infrastructure Security, Microgrid, News, News & Events, Partnership, Renewable Energy, SMART Grid, Transmission Grid Integration, Transportation Energy Under...

  10. Stochastic Joint Inversion for Integrated Data Interpretation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stochastic Joint Inversion for Integrated Data Interpretation in Geothermal Exploration Stochastic Joint Inversion for Integrated Data Interpretation in Geothermal Exploration...

  11. Sandia Energy - Renewable Energy Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    need to integrate renewable energy, improve energy efficiency, and allow consumers more control over their energy consumption. One of the challenges of renewable power generation...

  12. Buildings to Grid Integration & Interoperability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings to Grid Integration & Interoperability Joe Hagerman, Senior Advisor DOE Building Technologies Office March 11, 2013 EERE: Office of Energy Efficiency and Renewable Energy...

  13. Advanced Integrated Electric Traction System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Electric Traction System Greg S. Smith Email: gregory.3.smith@gm.com Phone: (310) 257-3812 Organization: General Motors Team members: Ames Laboratory Arnold Magnetics...

  14. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News, News & Events, Renewable Energy, SMART Grid, Systems Analysis, Transmission Grid Integration, Wind Energy Sandia finalized and submitted the updated "WECC Wind Power Plant...

  15. Fuel Pathways Integration Tech Team

    Broader source: Energy.gov [DOE]

    Presentation on Fuel Pathways Integration Tech Team to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

  16. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia-Electric Power Research Institute Partnership Publishes Photovoltaic Reliability Report On January 21, 2014, in Energy, Facilities, Grid Integration, Modeling & Analysis,...

  17. Arnold Schwarzenegger INTEGRATED FORECAST AND

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN Manager Joseph O' Hagan Project Manager Kelly Birkinshaw Program Area Manager ENERGY-RELATED ENVIRONMENTAL

  18. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency, Grid Integration, Microgrid, Modeling & Analysis, News, Partnership, SMART Grid Vermont-a leader in energy efficiency and deployment of so-called smart-grid...

  19. OPTIMAL OPERATION OF INTEGRATED PROCESSES

    E-Print Network [OSTI]

    Skogestad, Sigurd

    OPTIMAL OPERATION OF INTEGRATED PROCESSES Studies on Heat Recovery Systems by Bjørn Glemmestad exchanger network (HEN) for heat recovery. Within the process engineering community, much attention has been

  20. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Offers Approach to Help Utilities Understand Effects of PV Variability on the Grid On March 7, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety,...

  1. Advanced Integrated Traction System

    SciTech Connect (OSTI)

    Greg Smith; Charles Gough

    2011-08-31T23:59:59.000Z

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step towards enabling a smart-grid application. GM under this work assessed 29 technologies; investigated 36 configurations/types power electronics and electric machines, filed 41 invention disclosures; and ensured technology compatibility with vehicle production. Besides the development of a high temperature ETS the development of industrial suppliers took place because of this project. Suppliers of industrial power electronic components are numerous, but there are few that have traction drive knowledge. This makes it difficult to achieve component reliability, durability, and cost requirements necessary of high volume automotive production. The commercialization of electric traction systems for automotive industry requires a strong diverse supplier base. Developing this supplier base is dependent on a close working relationship between the OEM and supplier so that appropriate component requirements can be developed. GM has worked closely with suppliers to develop components for electric traction systems. Components that have been the focus of this project are power modules, capacitors, heavy copper boards, current sensors, and gate drive and controller chip sets. Working with suppliers, detailed component specifications have been developed. Current, voltage, and operation environment during the vehicle drive cycle were evaluated to develop higher resolution/accurate component specifications.

  2. Los Alamos Lab: Materials Physics & Applications Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADEPS Materials Physics and Applications, MPA About Us Organization Jobs Materials Physics & Applications Home Center for Integrated Nanotechnologies Superconductivity Technology...

  3. Integrated system checkout report

    SciTech Connect (OSTI)

    Not Available

    1991-08-14T23:59:59.000Z

    The planning and preparation phase of the Integrated Systems Checkout Program (ISCP) was conducted from October 1989 to July 1991. A copy of the ISCP, DOE-WIPP 90--002, is included in this report as an appendix. The final phase of the Checkout was conducted from July 10, 1991, to July 23, 1991. This phase exercised all the procedures and equipment required to receive, emplace, and retrieve contact handled transuranium (CH TRU) waste filled dry bins. In addition, abnormal events were introduced to simulate various equipment failures, loose surface radioactive contamination events, and personnel injury. This report provides a detailed summary of each days activities during this period. Qualification of personnel to safely conduct the tasks identified in the procedures and the abnormal events were verified by observers familiar with the Bin-Scale CH TRU Waste Test requirements. These observers were members of the staffs of Westinghouse WID Engineering, QA, Training, Health Physics, Safety, and SNL. Observers representing a number of DOE departments, the state of new Mexico, and the Defense Nuclear Facilities Safety Board observed those Checkout activities conducted during the period from July 17, 1991, to July 23, 1991. Observer comments described in this report are those obtained from the staff member observers. 1 figs., 1 tab.

  4. Integral Geometry and Holography

    E-Print Network [OSTI]

    Bartlomiej Czech; Lampros Lamprou; Samuel McCandlish; James Sully

    2015-05-20T23:59:59.000Z

    We present a mathematical framework which underlies the connection between information theory and the bulk spacetime in the AdS$_3$/CFT$_2$ correspondence. A key concept is kinematic space: an auxiliary Lorentzian geometry whose metric is defined in terms of conditional mutual informations and which organizes the entanglement pattern of a CFT state. When the field theory has a holographic dual obeying the Ryu-Takayanagi proposal, kinematic space has a direct geometric meaning: it is the space of bulk geodesics studied in integral geometry. Lengths of bulk curves are computed by kinematic volumes, giving a precise entropic interpretation of the length of any bulk curve. We explain how basic geometric concepts -- points, distances and angles -- are reflected in kinematic space, allowing one to reconstruct a large class of spatial bulk geometries from boundary entanglement entropies. In this way, kinematic space translates between information theoretic and geometric descriptions of a CFT state. As an example, we discuss in detail the static slice of AdS$_3$ whose kinematic space is two-dimensional de Sitter space.

  5. Navillum Nanotechnologies | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    by light or applied electrical source. Semiconducting nanocrystals can make solar panels up to 45 percent more efficient, which is more than a two-fold increase over existing...

  6. Navillum Nanotechnologies | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Systems Massachusetts Institute of Technology SolidEnergy Systems developed cutting-edge battery technologies to meet the world's growing energy storage demand. The Polymer Ionic...

  7. Science and technology news Nanotechnology

    E-Print Network [OSTI]

    Rogers, John A.

    Stretchable electronics device holds promise for treating irregular heart rhythms March 24, 2010 Enlarge A new-Champaign and the University of Pennsylvania are the first to demonstrate a flexible silicon electronics device used and microfluidic devices. "The heart is dynamic and not flat, but electronics currently used for monitoring

  8. Separation Nanotechnology of Diethylenetriaminepentaacetic Acid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    using transmission electron microscopy (TEM), helium ion microscopy (HIM), Fourier transform-infrared (FT-IR) spectrometry, and X-ray diffractometry. The coated and...

  9. Navillum Nanotechnologies | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Mesdi Systems developed revolutionary equipment for manufacturing lithium-ion batteries, solar cells, and other high precision products that will improve their performance and...

  10. Advanced Materials / Nanoscience and Nanotechnology

    E-Print Network [OSTI]

    Shoubridge, Eric

    range from superconductors to insulators, from emitters to sensors and from static to THz or even opticO metallic, TiO2 insulator · SrTiO3: insulator, SrTiO3:Nb (0.5 %wt) metallic and superconducting below 900 mCu3O7-d : superconductor high Tc : 93K #12;Composition · Small compositional variations can

  11. Navillum Nanotechnologies | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSeeNUCLEAR SCIENCENationalNaval

  12. Svaya Nanotechnologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By FaultSunpods IncEuropeSustainable UrbanSvaya

  13. Energy Systems Integration Facility Overview

    SciTech Connect (OSTI)

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2014-02-28T23:59:59.000Z

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  14. Communication Needs and Integration Options

    E-Print Network [OSTI]

    Communication Needs and Integration Options for AMI in the Smart Grid Future Grid Initiative White System #12;Communication Needs and Integration Options for AMI in the Smart Grid Prepared for the Project #12;ii Executive Summary This white paper analyzes the current state of communications

  15. Communication Needs and Integration Options

    E-Print Network [OSTI]

    Communication Needs and Integration Options for AMI in the Smart Grid Future Grid Initiative White System #12;Communication Needs and Integration Options for AMI in the Smart Grid Prepared for the Project the current state of communications for the advanced metering infrastructure (AMI) and recommends

  16. Energy Systems Integration Facility Overview

    ScienceCinema (OSTI)

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2014-06-10T23:59:59.000Z

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  17. Integrated Transportation System Design Optimization

    E-Print Network [OSTI]

    Integrated Transportation System Design Optimization by Christine Taylor B.S. Cornell University by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Professor Jaime Peraire Chairman, Department Graduate Committee #12;2 #12;Integrated Transportation System Abstract Traditionally, the design of a transportation system has focused on either the vehicle design

  18. Analysis of Integrated Tropical Biorefineries

    E-Print Network [OSTI]

    the integration of an anaerobic digester into each biochemical platform technology. The combustion of biogas not rely on biogas combustion to be thermally self- sufficient. However, their output of excess electricity is enhanced by integrating anaerobic digestion into the conversion process. Consequently, all investigated

  19. Winners of the Postdoctoral Publication Prize in Experimental Sciences 2013 Hsin-Chih (Tim) Yeh MPA-CINT

    E-Print Network [OSTI]

    Uranium Nitride Nature Chemistry (Sept. 2010) 2009 Christopher Graves MPA-10 Science (Sept. 2011) Robert Thomsen Honorable Mention MPA-MC Uranium Azide Organometallic Uranium(V)-Imido Halide Complexes: From Synthesis to Electronic Structure

  20. Microsoft PowerPoint - Gao_2014_CINT-CNMS User Project Highlight_AngewChemie [Read-Only]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand RetrievalsFinalModule8.ppt Microsoft PowerPoint -March 26 -Graphene

  1. Non-Integrability of a weakly integrable Hamiltonian system

    E-Print Network [OSTI]

    Giuseppe Pucacco; Kjell Rosquist

    2003-08-29T23:59:59.000Z

    The geometric approach to mechanics based on the Jacobi metric allows to easily construct natural mechanical systems which are integrable (actually separable) at a fixed value of the energy. The aim of the present paper is to investigate the dynamics of a simple prototype system outside the zero-energy hypersurface. We find that the general situation is that in which integrability is not preserved at arbitrary values of the energy. The structure of the Hamiltonian in the separating coordinates at zero energy allows a perturbation treatment of this system at energies slightly different from zero, by which we obtain an analytical proof of non-integrability.

  2. Application of the Yoshida-Ruth Techniques to Implicit Integration and Multi-Map Explicit Integration

    E-Print Network [OSTI]

    Forest, E.

    2011-01-01T23:59:59.000Z

    with the method of integration. This can be done withwe can use a standard integration method. Finally, it isexplicit and implicit integration. References R.D. Ruth ,

  3. Mathematical Review for Physical Chemistry 1. Integration

    E-Print Network [OSTI]

    Peterson, Kirk A.

    Mathematical Review for Physical Chemistry Outline: 1. Integration (a) Important Integrals (b) Tricks for evaluating integrals 2. Derivatives (a) Important derivatives (b) Tricks 3. Expansions 4 dierentials 6. Properties of Logs 7. Review of Trigonometry 1 Integration: 1.1 Integrals you should know: 1

  4. MSc Integrated Petroleum Geoscience Programme Handbook

    E-Print Network [OSTI]

    Levi, Ran

    MSc Integrated Petroleum Geoscience Programme Handbook 2013-14 edition #12;Page 2 Contents Preface 3 1.MSc Integrated Petroleum Geoscience ­ FAQ 4 1.1 Why should I do this programme? 4 1.2 What Integrated Petroleum Geoscience: 57F610B1 PgDip Integrated Petroleum Geoscience: 61F610VX PgCert Integrated

  5. NREL: Transmission Grid Integration - Hawaii Solar Integration Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecasting NREL

  6. NREL: Transmission Grid Integration - Oahu Wind Integration and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecastingNews The following

  7. NREL: Transmission Grid Integration - Solar Integration National Dataset

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecastingNewsToolkit

  8. NREL: Transmission Grid Integration - Solar Power Data for Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport

  9. NREL: Transmission Grid Integration - Western Wind and Solar Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmission Planning and

  10. NREL: Transmission Grid Integration - Western Wind and Solar Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmission Planning andStudy Phase 2

  11. Ultrafast, high precision gated integrator

    SciTech Connect (OSTI)

    Wang, X.

    1995-01-01T23:59:59.000Z

    An ultrafast, high precision gated integrator has been developed by introducing new design approaches that overcome the problems associated with earlier gated integrator circuits. The very high speed is evidenced by the output settling time of less than 50 ns and 20 MHz input pulse rate. The very high precision is demonstrated by the total output offset error of less than 0.2mV and the output droop rate of less than 10{mu}V/{mu}s. This paper describes the theory of this new gated integrator circuit operation. The completed circuit test results are presented.

  12. NATURE NANOTECHNOLOGY | VOL 9 | JANUARY 2014 | www.nature.com/naturenanotechnology 19 rystalline silicon (c-Si) is the most important semiconduc-

    E-Print Network [OSTI]

    applications. As a result, around 90% of solar panels in use today are based on silicon. The optical properties present maturity. Together with its 1.1-eV bandgap -- optimal for capturing the solar spectrum using, highly integrated and low-cost devices. For photovoltaics applications, higher optoelectronic performance

  13. Integrated Safety Management System Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-11-01T23:59:59.000Z

    This manual provides requirements and guidance for DOE and contractors to ensure development and implementation of an effective Integrated Safety Management system that is periodically reviewed and continuously improved. Canceled by DOE O 450.2.

  14. Advancing Energy Systems through Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil 30 ever-greenenergy.com Ever-Green Energy Integrated Energy System Questions? Ken Smith, President and CEO ken.smith@ever-greenenergy.com www.districtenergy.com...

  15. Optical waveguides for microfluidic integration

    E-Print Network [OSTI]

    Ram, Rajeev J.

    A scalable polymer backplane for dense integration of photonics with lab-on-a-chip systems is presented. A high-throughput cell culture chip employing waveguides for monitoring and control of culture conditions is used to ...

  16. BPA Wind Integration Team Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BPA Wind Integration Team Update Customer Supplied Generation Imbalance (CSGI) Pilot Transmission Services Customer Forum 29 July 28, 2010 B O N N E V I L L E P O W E R A D M I N...

  17. Numerical integration of variational equations

    E-Print Network [OSTI]

    Ch. Skokos; E. Gerlach

    2010-09-29T23:59:59.000Z

    We present and compare different numerical schemes for the integration of the variational equations of autonomous Hamiltonian systems whose kinetic energy is quadratic in the generalized momenta and whose potential is a function of the generalized positions. We apply these techniques to Hamiltonian systems of various degrees of freedom, and investigate their efficiency in accurately reproducing well-known properties of chaos indicators like the Lyapunov Characteristic Exponents (LCEs) and the Generalized Alignment Indices (GALIs). We find that the best numerical performance is exhibited by the \\textit{`tangent map (TM) method'}, a scheme based on symplectic integration techniques which proves to be optimal in speed and accuracy. According to this method, a symplectic integrator is used to approximate the solution of the Hamilton's equations of motion by the repeated action of a symplectic map $S$, while the corresponding tangent map $TS$, is used for the integration of the variational equations. A simple and systematic technique to construct $TS$ is also presented.

  18. Uniform asymptotic approximations of integrals 

    E-Print Network [OSTI]

    Khwaja, Sarah Farid

    2014-07-01T23:59:59.000Z

    In this thesis uniform asymptotic approximations of integrals are discussed. In order to derive these approximations, two well-known methods are used i.e., the saddle point method and the Bleistein method. To start with ...

  19. Scattering theory with path integrals

    SciTech Connect (OSTI)

    Rosenfelder, R. [Particle Theory Group, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)] [Particle Theory Group, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2014-03-15T23:59:59.000Z

    Starting from well-known expressions for the T-matrix and its derivative in standard nonrelativistic potential scattering, I rederive recent path-integral formulations due to Efimov and Barbashov et al. Some new relations follow immediately.

  20. Demonstration of integrated optimization software

    SciTech Connect (OSTI)

    NONE

    2008-01-01T23:59:59.000Z

    NeuCO has designed and demonstrated the integration of five system control modules using its proprietary ProcessLink{reg_sign} technology of neural networks, advanced algorithms and fuzzy logic to maximize performance of coal-fired plants. The separate modules control cyclone combustion, sootblowing, SCR operations, performance and equipment maintenance. ProcessLink{reg_sign} provides overall plant-level integration of controls responsive to plant operator and corporate criteria. Benefits of an integrated approach include NOx reduction improvement in heat rate, availability, efficiency and reliability; extension of SCR catalyst life; and reduced consumption of ammonia. All translate into cost savings. As plant complexity increases through retrofit, repowering or other plant modifications, this integrated process optimization approach will be an important tool for plant operators. 1 fig., 1 photo.

  1. Microfluidic Systems Integrated Microfluidic Systems**

    E-Print Network [OSTI]

    Ismagilov, Rustem F.

    Microfluidic Systems Integrated Microfluidic Systems** Rustem F. Ismagilov* Keywords: analytical methods · enzymes · microfluidics · microreactors · protein structures Microfluidic systems use networks of channels thinner than a human hair to manipulate nanoliter volumes of re- agents. The goal of microfluidics

  2. Arnold Schwarzenegger INTEGRATED FORECAST AND

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN with primary contributions in the area of decision support for reservoir planning and management Commission Energy-Related Environmental Research Joseph O' Hagan Contract Manager Joseph O' Hagan Project

  3. Arnold Schwarzenegger INTEGRATED FORECAST AND

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN: California Energy Commission Energy-Related Environmental Research Joseph O' Hagan Contract Manager Joseph O' Hagan Project Manager Kelly Birkinshaw Program Area Manager ENERGY-RELATED ENVIRONMENTAL RESEARCH Martha

  4. "DOE O 450.2 INTEGRATED SAFETY MANAGEMENT AND DOE P 450.4A INTEGRATED...

    Office of Environmental Management (EM)

    "DOE O 450.2 INTEGRATED SAFETY MANAGEMENT AND DOE P 450.4A INTEGRATED SAFETY MANAGEMENT POLICY FAMILIAR LEVEL "DOE O 450.2 INTEGRATED SAFETY MANAGEMENT AND DOE P 450.4A INTEGRATED...

  5. Signal Integrity Analysis of a 2-D and 3-D Integrated Potentiostat for Neurotransmitter Sensing

    E-Print Network [OSTI]

    Stanacevic, Milutin

    for the substrate, power network, and through silicon vias (TSVs). These models are combined integrated implantable systems. I. INTRODUCTION A multichannel potentiostat, integrated with micro and power dissipation. Signal integrity characteristics of a 2- D and 3-D integrated potentiostat

  6. Spent fuel integrity during transportation

    SciTech Connect (OSTI)

    Funk, C.W.; Jacobson, L.D.

    1980-01-01T23:59:59.000Z

    The conditions of recent shipments of light water reactor spent fuel were surveyed. The radioactivity level of cask coolant was examined in an attempt to find the effects of transportation on LWR fuel assemblies. Discussion included potential cladding integrity loss mechanisms, canning requirements, changes of radioactivity levels, and comparison of transportation in wet or dry media. Although integrity loss or degradation has not been identified, radioactivity levels usually increase during transportation, especially for leaking assemblies.

  7. NREL: Energy Systems Integration - Solectria

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL is spearheading engineering

  8. NREL: Energy Systems Integration - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL is spearheading engineeringWebmaster Please

  9. NREL: Transmission Grid Integration - Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecasting NREL researchers use

  10. NREL: Transmission Grid Integration - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecastingNews The following news

  11. NREL: Transmission Grid Integration - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecastingNews The

  12. NREL: Transmission Grid Integration - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecastingNews ThePublications

  13. NREL: Transmission Grid Integration - Webinars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmission Planning and Analysis

  14. NREL: Transmission Grid Integration - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmission Planning and AnalysisWebmaster

  15. Contour integration: Psychophysical, neurophysiological and computational perspectives

    E-Print Network [OSTI]

    Dumoulin, Serge O.

    1 Contour integration: Psychophysical, neurophysiological and computational perspectives Robert F integration. Contours form the outlines of objects, and are the first step in shape perception. We discuss the mechanism of contour integration from psychophysical, neurophysiological and computational perspectives. 1

  16. Integration of Renewable Resources November 2007

    E-Print Network [OSTI]

    Integration of Renewable Resources November 2007 Transmission and operating issues and recommendations for integrating renewable resources on the California ISO-controlled Grid California Independent System Operator #12;CAISO Integration of Renewable Resources Members of the Renewables Workgroup

  17. Distributed Energy Systems Integration Group (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01T23:59:59.000Z

    Factsheet developed to describe the activites of the Distributed Energy Systems Integration Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

  18. Building Technologies Research and Integration Center | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Integration Center October 02, 2014 Today, through the Building Technologies Research and Integration Center (BTRIC) and associated Centers of Excellence, ORNL applies...

  19. Residential Buildings Integration Program Overview - 2015 BTO...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Integration Program Overview - 2015 BTO Peer Review Residential Buildings Integration Program Overview - 2015 BTO Peer Review Presenter: David Lee, U.S. Department of...

  20. Transportation and Stationary Power Integration Workshop Session...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration Workshop Session II: State and Industry Perspectives Transportation and Stationary Power Integration Workshop Session II: State and Industry Perspectives Opportunities...

  1. Commercial Buildings Integration Program Overview - 2015 BTO...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Integration Program Overview - 2015 BTO Peer Review Commercial Buildings Integration Program Overview - 2015 BTO Peer Review Presenter: Kristen Taddonio, U.S. Department...

  2. Transportation and Stationary Power Integration Workshop Attendees...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attendees List Transportation and Stationary Power Integration Workshop Attendees List List of attendees for the Transportation and Stationary Power Integration Workshop...

  3. A new magnetic field integral measurement system

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measurements. b. Second field integral (horizontal and vertical) measurements. c. Multipole components of first field integral measurements. 2. Translation Coil a. Multipole...

  4. A Blueprint for Urban Sustainability: Integrating Sustainable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Blueprint for Urban Sustainability: Integrating Sustainable Energy Practices into Metropolitan Planning, May 2004 A Blueprint for Urban Sustainability: Integrating Sustainable...

  5. Sandia National Laboratories: Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Grid Integration Wind Generator Modeling On June 26, 2014, in Computational Modeling & Simulation, Energy, Energy Surety, Grid Integration, Infrastructure Security,...

  6. Sandia National Laboratories: Integrated Research and Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ClimateEnergy InfrastructureAdvanced Electric SystemsIntegrated Research and Development Integrated Research and Development Sandia's Renewable Systems and Energy Infrastructure...

  7. Sandia National Laboratories: Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Supply Transformation Needed On February 20, 2013, in DETL, Distribution Grid Integration, Energy, Energy Assurance, Energy Surety, Grid Integration, Infrastructure...

  8. Sandia National Laboratories: Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Its Phase 1 Operational Demonstration in Late January On April 5, 2013, in Distribution Grid Integration, Energy Assurance, Energy Assurance, Energy Surety, Grid Integration,...

  9. Sandia National Laboratories: Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Grid Integration Recent Sandia Secure, Scalable Microgrid Advanced Controls Research Accomplishments On March 3, 2015, in Capabilities, Distribution Grid Integration,...

  10. Opening Remarks, Grid Integration Initiative Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Loads Power Systems Integration Lab PV and Grid Simulators Energy Systems Integration Lab Fuel Cells, Electrolyzers Outdoor Test Area EVs, MV equipment Rooftop PV & Wind Energy...

  11. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- Washington D.C. ape13bennion.pdf More Documents & Publications Power Electronic Thermal System Performance and Integration Integrated Power Module Cooling Vehicle...

  12. Sandia National Laboratories: Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Grid Integration ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety,...

  13. Integrating Nanomaterial Applications in the Field of Sustainable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrating Nanomaterial Applications in the Field of Sustainable Biomaterials Integrating Nanomaterial Applications in the Field of Sustainable Biomaterials Integrating...

  14. Welfare State Integration of Immigrants: the Case of Germany

    E-Print Network [OSTI]

    Heckmann, Friedrich

    2012-01-01T23:59:59.000Z

    in Bayern. Stand der Integration und integrationspolitischedeutscher Stiftungen für Integration und Migration 2010:Zuwanderung gestalten, Integration fördern. Berlin VOR88501-

  15. NREL: Transmission Grid Integration - Western Wind and Solar Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmission Planning andStudy Phase 2Study

  16. Separations and safeguards model integration.

    SciTech Connect (OSTI)

    Cipiti, Benjamin B.; Zinaman, Owen

    2010-09-01T23:59:59.000Z

    Research and development of advanced reprocessing plant designs can greatly benefit from the development of a reprocessing plant model capable of transient solvent extraction chemistry. This type of model can be used to optimize the operations of a plant as well as the designs for safeguards, security, and safety. Previous work has integrated a transient solvent extraction simulation module, based on the Solvent Extraction Process Having Interaction Solutes (SEPHIS) code developed at Oak Ridge National Laboratory, with the Separations and Safeguards Performance Model (SSPM) developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The goal of this work was to strengthen the integration by linking more variables between the two codes. The results from this integrated model show expected operational performance through plant transients. Additionally, ORIGEN source term files were integrated into the SSPM to provide concentrations, radioactivity, neutron emission rate, and thermal power data for various spent fuels. This data was used to generate measurement blocks that can determine the radioactivity, neutron emission rate, or thermal power of any stream or vessel in the plant model. This work examined how the code could be expanded to integrate other separation steps and benchmark the results to other data. Recommendations for future work will be presented.

  17. MHD Integrated Topping Cycle Project

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

  18. Integrated Building Management System (IBMS)

    SciTech Connect (OSTI)

    Anita Lewis

    2012-07-01T23:59:59.000Z

    This project provides a combination of software and services that more easily and cost-effectively help to achieve optimized building performance and energy efficiency. Featuring an open-platform, cloud- hosted application suite and an intuitive user experience, this solution simplifies a traditionally very complex process by collecting data from disparate building systems and creating a single, integrated view of building and system performance. The Fault Detection and Diagnostics algorithms developed within the IBMS have been designed and tested as an integrated component of the control algorithms running the equipment being monitored. The algorithms identify the normal control behaviors of the equipment without interfering with the equipment control sequences. The algorithms also work without interfering with any cooperative control sequences operating between different pieces of equipment or building systems. In this manner the FDD algorithms create an integrated building management system.

  19. National Bioenergy Center Biochemical Platform Integration Project

    SciTech Connect (OSTI)

    Not Available

    2008-07-01T23:59:59.000Z

    April through June 2008 update on activities of the National Bioenergy Center's Biochemical Platform Integration Project.

  20. x Integration Level x CAN Controller Architecture

    E-Print Network [OSTI]

    Kozak, Victor R.

    x Integration Level x CAN Controller Architecture x Message Handling x Acceptance Filtering x-offs between stand-alone and integrated CAN peripherals. The integrated CAN peripheral is cheaper not only developed for an integrated CAN peripheral may not function on another CPU with on-chip CAN. © CiA x Am

  1. INSTRUCTIONS INTEGRATED OCEAN DRILLING PROGRAM (IODP)

    E-Print Network [OSTI]

    INSTRUCTIONS FOR THE INTEGRATED OCEAN DRILLING PROGRAM (IODP) MANUSCRIPT AND PHOTOGRAPH COPYRIGHT, Integrated Ocean Drilling Program, 1000 Discovery Drive, College Station, Texas 77845, USA A signed copyright of the Integrated Ocean Drilling Program or any other publications of the Integrated Ocean Drilling Program. Author

  2. ACADEMIC INTEGRITY CODE 1 GENERAL PROVISIONS

    E-Print Network [OSTI]

    Droegemeier, Kelvin K.

    approve the Council's procedures as well as bylaws and membership requirements. The Integrity CouncilACADEMIC INTEGRITY CODE 1 GENERAL PROVISIONS 1.1 Basic Principle of Academic Integrity Academic integrity means honesty and responsibility in scholarship. Academic assignments exist to help students learn

  3. Symplectic numerical integration of Hamiltonian systems

    SciTech Connect (OSTI)

    Scovel, C.

    1989-09-11T23:59:59.000Z

    This paper describes some general techniques available for symplectic or Lie-Poisson integration and illustrate the results with some numerical computations. In this spirit, I also discuss reversible integration, equivariant integration, integration of volume preserving flows, and symplectic cellular automata. My intention is not to be exhaustive but to give a representative review. 76 refs., 5 figs.

  4. Energy Storage Management for VG Integration (Presentation)

    SciTech Connect (OSTI)

    Kirby, B.

    2011-10-01T23:59:59.000Z

    This presentation describes how you economically manage integration costs of storage and variable generation.

  5. ESIF 2014 (Energy Systems Integration Facility) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01T23:59:59.000Z

    This report covers research highlights and achievements for the Energy Systems Integration Facility in 2014.

  6. ORISE: Integrated Safety Management (ISM)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE ProjectCrisisIndependent verificationIntegrated Safety

  7. Integrated Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartmentEnergy Integrated Energy AnalysisIntegrated Projects

  8. Integrated Disposal Facility Risk Assessment

    SciTech Connect (OSTI)

    MANN, F. M.

    2003-06-03T23:59:59.000Z

    An environmental risk assessment associated with the disposal of projected Immobilized Low-Activity Waste, solid wastes and failed or decommissioned melters in an Integrated Disposal Facility was performed. Based on the analyses all performance objectives associated with the groundwater, air, and intruder pathways were met.

  9. 2010INTEGRATED ENERGY POLICY REPORT

    E-Print Network [OSTI]

    . Examples of specific assistance include: cities and counties providing meeting accommodations for Energy;II ENERGY UPGRADE CALIFORNIA Ascentium Association of Bay Area Governments CalCERTS, Inc. California2010INTEGRATED ENERGY POLICY REPORT UPDATE CALIFORNIA ENERGY COMMISSION EDMUND G. BROWN JR

  10. Path Integration on Darboux Spaces

    E-Print Network [OSTI]

    Christian Grosche

    2005-07-20T23:59:59.000Z

    In this paper the Feynman path integral technique is applied to two-dimensional spaces of non-constant curvature: these spaces are called Darboux spaces $\\DI$--$\\DIV$. We start each consideration in terms of the metric and then analyze the quantum theory in the separable coordinate systems. The path integral in each case is formulated and then solved in the majority of cases, the exceptions being quartic oscillators where no closed solution is known. The required ingredients are the path integral solutions of the linear potential, the harmonic oscillator, the radial harmonic oscillator, the modified P\\"oschl--Teller potential, and for spheroidal wave-functions, respectively. The basic path integral solutions, which appear here in a complicated way, have been developed in recent work and are known. The final solutions are represented in terms of the corresponding Green's functions and the expansions into the wave-functions, respectively. We also sketch some limiting cases of the Darboux spaces, where spaces of constant negative and zero curvature emerge.

  11. Seeking Best Practices for Integrating

    E-Print Network [OSTI]

    Minnesota, University of

    Seeking Best Practices for Integrating International and Domestic Students Research and analysis. Humphrey School 301 19th Ave. South Minneapolis, Minnesota 55455 isss@umn.edu www of Oklahoma 54 13. International@Iowa, University of Iowa 59 14. American Chemical Society ­ International

  12. INTEGRATED GHz VOLTAGE CONTROLLED OSCILLATORS

    E-Print Network [OSTI]

    Kinget, Peter

    INTEGRATED GHz VOLTAGE CONTROLLED OSCILLATORS Peter Kinget Bell Labs - Lucent Technologies Murray Hill, NJ (USA) Abstract The voltage controlled oscillator (VCO) is a critical sub. We focus on the de- sign of a critical sub-block: the voltage controlled oscillator (VCO). We review

  13. Integrated Mechanical & Electrical Engineering (IMEE)

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    Integrated Mechanical & Electrical Engineering (IMEE) Department of Electronic & Electrical and electrical engineering are in great demand because of their ability to work on complex interdisciplinary and become an expert in the core areas of both mechanical and electrical engineering. Subject aims

  14. Integrating Food Production and Biodiversity

    E-Print Network [OSTI]

    with food, and NPK fluxes at farm level. The biofuels were crude rapeseed oil, horse draft, ethanol from a combination of a workhorse and a crude rapeseed oil-fuelled tractor. Ethanol from wheat had the largest impactIntegrating Food Production and Biodiversity Energy and Scale Issues in Implementation Kristina

  15. Challenges in Integrating Renewable Technologies

    E-Print Network [OSTI]

    -5706 Phone: 480-965-1643 Fax: 480-965-0745 Notice Concerning Copyright Material Permission is given to copy as the source material. This white paper is available for downloading from the PSERC website. 2010 Arizona State University All rights reserved #12;PSERC White Paper 1 Challenges in Integrating Renewable Technologies

  16. The Center for integrative genomics

    E-Print Network [OSTI]

    Kaessmann, Henrik

    The Center for integrative genomics Report 2005­2006 #12;Presentation Director's message 4 Scientific advisory committee 6 Organigram of the CIG 7 research The structure and function of genomes and their evolution alexandrereymond ­ Genome structure and expression 10 henrikKaessmann ­ Evolutionary genomics 12

  17. February 2012 Towards Integrated Water

    E-Print Network [OSTI]

    US Army Corps of Engineers

    February 2012 Towards Integrated Water Resources Management A Conceptual Framework for U.S.Army Corps of Engineers Water and Related Land Resources Implementation Studies 2012-VSP-01 #12;Throughout its history, the Institute for Water Resources (IWR) has invited preeminent water resources

  18. NEMS integrating module documentation report

    SciTech Connect (OSTI)

    Not Available

    1993-12-14T23:59:59.000Z

    The National Energy Modeling System (NEMS) is a computer modeling system that produces a general equilibrium solution for energy supply and demand in the US energy markets. The model achieves a supply and demand balance in the end-use demand regions, defined as the nine Census Divisions, by solving for the prices of each energy type such that the quantities producers are willing to supply equal the quantities consumers wish to consume. The system reflects market economics, industry structure, and energy policies and regulations that influence market behavior. The NEMS Integrating Module is the central integrating component of a complex modeling system. As such, a thorough understanding of its role in the modeling process can only be achieved by placing it in the proper context with respect to the other modules. To that end, this document provides an overview of the complete NEMS model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

  19. TREATMENT SYSTEMS AN INTEGRATED APPROACH

    E-Print Network [OSTI]

    Heal, Kate

    for on-site management and treatment of effluent and solid waste 3. Provide for surface water attenuationECOLOGICAL TREATMENT SYSTEMS AN INTEGRATED APPROACH TO THE TREATMENT OF WASTE AND WASTE WATER biological removal efficiencies in excess of 95% Treatment system averages 92% reduction in suspended solids

  20. Integrated decontamination process for metals

    DOE Patents [OSTI]

    Snyder, Thomas S. (Oakmont, PA); Whitlow, Graham A. (Murrysville, PA)

    1991-01-01T23:59:59.000Z

    An integrated process for decontamination of metals, particularly metals that are used in the nuclear energy industry contaminated with radioactive material. The process combines the processes of electrorefining and melt refining to purify metals that can be decontaminated using either electrorefining or melt refining processes.

  1. FROM TRANSACTIONAL SPATIAL DATABASES INTEGRITY CONSTRAINTS TO SPATIAL DATACUBES INTEGRITY CONSTRAINTS

    E-Print Network [OSTI]

    FROM TRANSACTIONAL SPATIAL DATABASES INTEGRITY CONSTRAINTS TO SPATIAL DATACUBES INTEGRITY, Sherbrooke, Canada - brodeur@nrcan.gc.ca KEY WORDS: Integrity Constraint, Spatial Datacube, Spatio technology (SOLAP). They are aimed at supporting Geographic Knowledge Discovery (GKD) as well as certain

  2. Investigating Deformation and Failure Mechanisms in Nanoscale Multilayer Metallic Composites

    SciTech Connect (OSTI)

    Zbib, Hussein M [Washington State University; Bahr, David F [Purdue University

    2014-10-22T23:59:59.000Z

    Over the history of materials science there are many examples of materials discoveries that have made superlative materials; the strongest, lightest, or toughest material is almost always a goal when we invent new materials. However, often these have been a result of enormous trial and error approaches. A new methodology, one in which researchers design, from the atoms up, new ultra-strong materials for use in energy applications, is taking hold within the science and engineering community. This project focused on one particular new classification of materials; nanolaminate metallic composites. These materials, where two metallic materials are intimately bonded and layered over and over to form sheets or coatings, have been shown over the past decade to reach strengths over 10 times that of their constituents. However, they are not yet widely used in part because while extremely strong (they don’t permanently bend), they are also not particularly tough (they break relatively easily when notched). Our program took a coupled approach to investigating new materials systems within the laminate field. We used computational materials science to explore ways to institute new deformation mechanisms that occurred when a tri-layer, rather than the more common bi-layer system was created. Our predictions suggested that copper-nickel or copper-niobium composites (two very common bi-layer systems) with layer thicknesses on the order of 20 nm and then layered 100’s of times, would be less tough than a copper-nickel-niobium metallic composite of similar thicknesses. In particular, a particular mode of permanent deformation, cross-slip, could be activated only in the tri-layer system; the crystal structure of the other bi-layers would prohibit this particular mode of deformation. We then experimentally validated this predication using a wide range of tools. We utilized a DOE user facility, the Center for Integrated Nanotechnology (CINT), to fabricate, for the first time, these tri-layer composites. CINT formed nanolaminate composites were tested in tension, with bulge testing, using nanoindentation, and using micro-compression testing to demonstrate that the tri-layer films were indeed tougher and hardened more during deformation (they got stronger as we deformed them) than equivalent bi-layers. The seven graduate students, 4 post-docs and research faculty, and the two faculty co-PI’s were able to create a collaborated computational prediction and experimental validation team to demonstrate the benefits of this class of materials to the community. The computational work crossed from atomistic to bulk simulations, and the experiments coupled form nm-scale to the mm scale; closely matching the simulations. The simulations provided viable mechanisms that explained the observed results, and new experimental results were used to push the boundaries of the simulation tools. Over the life of the 7 years of this program we proved that tri-layer nanolaminate metallic composite systems exceeded the mechanical performance of bi-layer systems if the right materials were chosen, and that the mechanism responsible for this was tied to the cross slip of dislocations. With 30 journal publications resulting from this work we have broadly disseminated this family of results to the scientific community.

  3. Vertically Integrated Circuits at Fermilab

    SciTech Connect (OSTI)

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2009-01-01T23:59:59.000Z

    The exploration of the vertically integrated circuits, also commonly known as 3D-IC technology, for applications in radiation detection started at Fermilab in 2006. This paper examines the opportunities that vertical integration offers by looking at various 3D designs that have been completed by Fermilab. The emphasis is on opportunities that are presented by through silicon vias (TSV), wafer and circuit thinning and finally fusion bonding techniques to replace conventional bump bonding. Early work by Fermilab has led to an international consortium for the development of 3D-IC circuits for High Energy Physics. The consortium has submitted over 25 different designs for the Fermilab organized MPW run organized for the first time.

  4. Integral fast reactor safety features

    SciTech Connect (OSTI)

    Cahalan, J.E.; Kramer, J.M.; Marchaterre, J.F.; Mueller, C.J.; Pedersen, D.R.; Sevy, R.H.; Wade, D.C.; Wei, T.Y.C.

    1988-01-01T23:59:59.000Z

    The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. In addition to liquid metal cooling, the principal design features that distinguish the IFR are: (1) a pool-type primary system, (2) an advanced ternary alloy metallic fuel, and (3) an integral fuel cycle with on-site fuel reprocessing and fabrication. This paper focuses on the technical aspects of the improved safety margins available in the IFR concept. This increased level of safety is made possible by (1) the liquid metal (sodium) coolant and pool-type primary system layout, which together facilitate passive decay heat removal, and (2) a sodium-bonded metallic fuel pin design with thermal and neutronic properties that provide passive core responses which control and mitigate the consequences of reactor accidents.

  5. MHD Integrated Topping Cycle Project

    SciTech Connect (OSTI)

    Not Available

    1992-07-01T23:59:59.000Z

    This seventeenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period August 1, 1991 to October 31, 1991. Manufacturing of the prototypical combustor pressure shell has been completed including leak, proof, and assembly fit checking. Manufacturing of forty-five cooling panels was also completed including leak, proof, and flow testing. All precombustor internal components (combustion can baffle and swirl box) were received and checked, and integration of the components was initiated. A decision was made regarding the primary and backup designs for the 1A4 channel. The assembly of the channel related prototypical hardware continued. The cathode wall electrical wiring is now complete. The mechanical design of the diffuser has been completed.

  6. Projected integrated farm in Nepal

    SciTech Connect (OSTI)

    Dhital, K.

    1980-01-01T23:59:59.000Z

    A proposed integrated crop-livestock agro-processing complex to be based at Janakpur, Nepal is described. This project was proposed by the Agricultural Development Bank and is a small effort towards creating a self-sufficient rural community similar to one reported in China. The plan of the farm aims to achieve the integration of several agricultural, aquacultural, solar energy and biogas energy components with complete recycling of waste. These include biogas plants with associated slurry and storage tanks for operating a 3-kW generator, a 3.7-kW pump, providing domestic cooking, as well as energy to operate a fruit-processing plant. Energy for water heating, crop drying and refrigeration will be supplied by solar energy. Fish, livestock, fruits and vegetables will be produced by the farm.

  7. Integrated production and maintenance scheduling

    E-Print Network [OSTI]

    Whitaker, Laura Oakes

    1996-01-01T23:59:59.000Z

    to simultaneously solve the electronic assembly plannmg and scheduling problem. Khoshnevis er a/ (1994) show that the integration of the assembly planning and scheduling process is possible, and favorable results can be obtained. The system developed consists... of an initial planning model, which is a rule- based model, and a simultaneous assembly planner/scheduler module, which takes the assembly plans from the initial module and schedules work, given a set of constrained resources. Dagnio (1994) discusses research...

  8. Grid Integration of Robotic Telescopes

    E-Print Network [OSTI]

    F. Breitling; T. Granzer; H. Enke

    2009-03-23T23:59:59.000Z

    Robotic telescopes and grid technology have made significant progress in recent years. Both innovations offer important advantages over conventional technologies, particularly in combination with one another. Here, we introduce robotic telescopes used by the Astrophysical Institute Potsdam as ideal instruments for building a robotic telescope network. We also discuss the grid architecture and protocols facilitating the network integration that is being developed by the German AstroGrid-D project. Finally, we present three user interfaces employed for this purpose.

  9. Sandia Energy - Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcomeLongEnergy StorageB.

  10. Systems Integration | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposed Action(InsertAbout the

  11. Research and Institutional Integrity Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s oPrecipitationWeatherTacklingAboutNRAP:RSF isand

  12. Sandia Energy - Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectsonSandia's Stan AtcittyRenewables

  13. Sandia Energy » Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche This authorEnergy &EC,Team

  14. Transmission and Grid Integration: Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01T23:59:59.000Z

    Factsheet developed to describe the activites of the Transmission and Grid Integration Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

  15. Integrated Resource Planning Model (IRPM)

    SciTech Connect (OSTI)

    Graham, T. B.

    2010-04-01T23:59:59.000Z

    The Integrated Resource Planning Model (IRPM) is a decision-support software product for resource-and-capacity planning. Users can evaluate changing constraints on schedule performance, projected cost, and resource use. IRPM is a unique software tool that can analyze complex business situations from a basic supply chain to an integrated production facility to a distributed manufacturing complex. IRPM can be efficiently configured through a user-friendly graphical interface to rapidly provide charts, graphs, tables, and/or written results to summarize postulated business scenarios. There is not a similar integrated resource planning software package presently available. Many different businesses (from government to large corporations as well as medium-to-small manufacturing concerns) could save thousands of dollars and hundreds of labor hours in resource and schedule planning costs. Those businesses also could avoid millions of dollars of revenue lost from fear of overcommitting or from penalties and lost future business for failing to meet promised delivery by using IRPM to perform what-if business-case evaluations. Tough production planning questions that previously were left unanswered can now be answered with a high degree of certainty. Businesses can anticipate production problems and have solutions in hand to deal with those problems. IRPM allows companies to make better plans, decisions, and investments.

  16. MHD Integrated Topping Cycle Project

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois {number sign}6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.

  17. Integrated nonthermal treatment system study

    SciTech Connect (OSTI)

    Biagi, C.; Bahar, D.; Teheranian, B.; Vetromile, J. [Morrison Knudsen Corp. (United States); Quapp, W.J. [Nuclear Metals (United States); Bechtold, T.; Brown, B.; Schwinkendorf, W. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Swartz, G. [Swartz and Associates (United States)

    1997-01-01T23:59:59.000Z

    This report presents the results of a study of nonthermal treatment technologies. The study consisted of a systematic assessment of five nonthermal treatment alternatives. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The alternatives considered were innovative nonthermal treatments for organic liquids and sludges, process residue, soil and debris. Vacuum desorption or various washing approaches are considered for treatment of soil, residue and debris. Organic destruction methods include mediated electrochemical oxidation, catalytic wet oxidation, and acid digestion. Other methods studied included stabilization technologies and mercury separation of treatment residues. This study is a companion to the integrated thermal treatment study which examined 19 alternatives for thermal treatment of MLLW waste. The quantities and physical and chemical compositions of the input waste are based on the inventory database developed by the US Department of Energy. The Integrated Nonthermal Treatment Systems (INTS) systems were evaluated using the same waste input (2,927 pounds per hour) as the Integrated Thermal Treatment Systems (ITTS). 48 refs., 68 figs., 37 tabs.

  18. Integrated Coal Gasification Power Plant Credit (Kansas)

    Broader source: Energy.gov [DOE]

    Integrated Coal Gasification Power Plant Credit states that an income taxpayer that makes a qualified investment in a new integrated coal gasification power plant or in the expansion of an existing...

  19. Wind Power Integration: Exploring Impacts and Alternatives

    E-Print Network [OSTI]

    Walter, M.Todd

    Wind Power Integration: Exploring Impacts and Alternatives Assist. Prof. C sustainable sources of energy. The idea of harnessing wind energy has been there have been no less than fifteen in-depth wind integration studies

  20. Functional Integration for Quantum Field Theory

    E-Print Network [OSTI]

    J. LaChapelle

    2006-10-16T23:59:59.000Z

    The functional integration scheme for path integrals advanced by Cartier and DeWitt-Morette is extended to the case of fields. The extended scheme is then applied to quantum field theory. Several aspects of the construction are discussed.

  1. Integration of silicon photonics into electronic processes

    E-Print Network [OSTI]

    Orcutt, Jason S.

    Front-end monolithic integration has enabled photonic devices to be fabricated in bulk and thin-SOI CMOS as well as DRAM electronics processes. Utilizing the CMOS generic process model, integration was accomplished on ...

  2. Education Abroad Curriculum Integration Support Grants

    E-Print Network [OSTI]

    Education Abroad Curriculum Integration Support Grants Application of a larger pool of nearly $30,000 for new international education abroad initiatives Criteria 1. Education Abroad Curriculum Integration Support Grants are to be applied

  3. Process Integration of Industrial Heat Pumps 

    E-Print Network [OSTI]

    Priebe, S. J.; Chappell, R. N.

    1986-01-01T23:59:59.000Z

    The integration of heat pumps into industrial processes shows potential for energy savings. Heat pumps must, however, be integrated properly relative to the process pinch and the unit operations in the process. The shape of the grand composite curve...

  4. Cost estimation of human systems integration

    E-Print Network [OSTI]

    Liu, Kevin K. (Kevin Kaitan), 1986-

    2010-01-01T23:59:59.000Z

    Human Systems Integration (HSI) is the interdisciplinary technical and management processes for integrating human considerations within and across all system elements. The goal of this research is to develop a better ...

  5. Vertical Integration and Technology: Theory and Evidence

    E-Print Network [OSTI]

    Acemoglu, Daron

    We study the determinants of vertical integration. We first derive a number of predictions regarding the relationship between technology intensity and vertical integration from a simple incomplete contracts model. Then, ...

  6. Retrofitting analysis of integrated bio-refineries

    E-Print Network [OSTI]

    Cormier, Benjamin R.

    2007-04-25T23:59:59.000Z

    to integrated bio-refineries. Focus is given to the problem of process modification to an existing plant by considering capacity expansion and material substitution with biomass feedstocks. Process integration studies were conducted to determine cost...

  7. S. Boyd EE102 Integral action

    E-Print Network [OSTI]

    response, or even instability (more on choice of ki later) Integral action 14­11 #12;closed-loop step responses of heater example, with C(s) = 1 + ki s , ki = 0 (proportional control; no integral action), ki

  8. Integrating Renewable Energy Systems in Buildings (Presentation)

    SciTech Connect (OSTI)

    Hayter, S. J.

    2011-08-01T23:59:59.000Z

    This presentation on integrating renewable energy systems into building was presented at the August, 2011 ASHRAE Region IX CRC meetings.

  9. Western Wind and Solar Integration Study

    SciTech Connect (OSTI)

    GE Energy

    2010-05-01T23:59:59.000Z

    This report provides a full description of the Western Wind and Solar Integration Study (WWSIS) and its findings.

  10. Track 5: Integration of Safety Into Design

    Broader source: Energy.gov [DOE]

    ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 5: Integration of Safety Into Design

  11. Track 6: Integrating Safety Into Security Operations

    Broader source: Energy.gov [DOE]

    ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 6: Integrating Safety Into Security Operations

  12. Eastern Renewable Generation Integration Study (Presentation)

    SciTech Connect (OSTI)

    Bloom, A.

    2014-05-01T23:59:59.000Z

    This presentation provides a high-level overview of the Eastern Renewable Generation Integration Study process, scenarios, tools, and goals.

  13. UAS Integration in the NAS Project

    E-Print Network [OSTI]

    with the national strategy consistent with NextGen. ­ Objectives: UAS Integration in the NAS ConOps; Ensure UAS

  14. Articles about Grid Integration and Transmission

    Broader source: Energy.gov [DOE]

    Stories about grid integration and transmission featured by the U.S. Department of Energy (DOE) Wind Program.

  15. Integrated Ingredients Dehydrated Agricultural Drying Low Temperature...

    Open Energy Info (EERE)

    Ingredients Dehydrated Agricultural Drying Low Temperature Geothermal Facility Jump to: navigation, search Name Integrated Ingredients Dehydrated Agricultural Drying Low...

  16. Integrating Experimental Design Into Your Program

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), exaplin how you can integrate experimental design into your program.

  17. Integrated Chemical Geothermometry System for Geothermal Exploration

    Broader source: Energy.gov (indexed) [DOE]

    interpretations) * Reduce exploration and development costs Innovation * Numerical optimization of multicomponent chemical geothermometry at multiple locations * Integration with...

  18. NREL: Transmission Grid Integration - Western Wind and Solar Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |InfrastructureAerialWork-for-OthersStudy

  19. Chief Scientist, Los Alamos National Laboratory - Center for Integrated

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office of theNuclearNanotechnologies | National Nuclear

  20. INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING

    E-Print Network [OSTI]

    INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING FOR GAS TURBINE Prepared For: California Energy REPORT (FAR) INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING FOR GAS TURBINE CYCLES EISG AWARDEE University://www.energy.ca.gov/research/index.html. #12;Page 1 Integral Catalytic Combustion/Fuel Reforming for Gas Turbine Cycles EISG Grant # 99