National Library of Energy BETA

Sample records for integrated iterative solution

  1. Iterative solution of Hermite boundary integral equations (Journal...

    Office of Scientific and Technical Information (OSTI)

    Iterative solution of Hermite boundary integral equations Citation Details In-Document Search Title: Iterative solution of Hermite boundary integral equations An efficient ...

  2. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A port plug integration proposal developed with the US ITER diagnostics team has helped the international ITER collaboration arrive at a clever solution for safely housing all of ...

  3. Mixed direct-iterative methods for boundary integral formulations of continuum dielectric solvation models

    SciTech Connect (OSTI)

    Corcelli, S.A.; Kress, J.D.; Pratt, L.R.

    1995-08-07

    This paper develops and characterizes mixed direct-iterative methods for boundary integral formulations of continuum dielectric solvation models. We give an example, the Ca{sup ++}{hor_ellipsis}Cl{sup {minus}} pair potential of mean force in aqueous solution, for which a direct solution at thermal accuracy is difficult and, thus for which mixed direct-iterative methods seem necessary to obtain the required high resolution. For the simplest such formulations, Gauss-Seidel iteration diverges in rare cases. This difficulty is analyzed by obtaining the eigenvalues and the spectral radius of the non-symmetric iteration matrix. This establishes that those divergences are due to inaccuracies of the asymptotic approximations used in evaluation of the matrix elements corresponding to accidental close encounters of boundary elements on different atomic spheres. The spectral radii are then greater than one for those diverging cases. This problem is cured by checking for boundary element pairs closer than the typical spatial extent of the boundary elements and for those cases performing an ``in-line`` Monte Carlo integration to evaluate the required matrix elements. These difficulties are not expected and have not been observed for the thoroughly coarsened equations obtained when only a direct solution is sought. Finally, we give an example application of hybrid quantum-classical methods to deprotonation of orthosilicic acid in water.

  4. Engineering aspects of design and integration of ECE diagnostic in ITER

    SciTech Connect (OSTI)

    Udintsev, V. S.; Taylor, G.; Pandya, H. K.B.; Austin, M. E.; Casal, N.; Catalin, R.; Clough, M.; Cuquel, B.; Dapena, M.; Drevon, J. -M.; Feder, R.; Friconneau, J. P.; Giacomin, T.; Guirao, J.; Henderson, M. A.; Hughes, S.; Iglesias, S.; Johnson, D.; Kumar, Siddhart; Kumar, Vina; Levesy, B.; Loesser, D.; Messineo, M.; Penot, C.; Portalès, M.; Oosterbeek, J. W.; Sirinelli, A; Vacas, C.; Vayakis, G.; Walsh, M. J.; Kubo, S.

    2015-03-12

    ITER ECE diagnostic [1] needs not only to meet measurement requirements, but also to withstand various loads, such as electromagnetic, mechanical, neutronic and thermal, and to be protected from stray ECH radiation at 170 GHz and other millimeter wave emission, like Collective Thomson scattering which is planned to operate at 60 GHz. Same or similar loads will be applied to other millimetre-wave diagnostics [2], located both in-vessel and in-port plugs. These loads must be taken into account throughout the design phases of the ECE and other microwave diagnostics to ensure their structural integrity and maintainability. The integration of microwave diagnostics with other ITER systems is another challenging activity which is currently ongoing through port integration and in-vessel integration work. Port Integration has to address the maintenance and the safety aspects of diagnostics, too. Engineering solutions which are being developed to support and to operate ITER ECE diagnostic, whilst complying with safety and maintenance requirements, are discussed in this paper.

  5. Engineering aspects of design and integration of ECE diagnostic in ITER

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Udintsev, V. S.; Taylor, G.; Pandya, H. K.B.; Austin, M. E.; Casal, N.; Catalin, R.; Clough, M.; Cuquel, B.; Dapena, M.; Drevon, J. -M.; et al

    2015-03-12

    ITER ECE diagnostic [1] needs not only to meet measurement requirements, but also to withstand various loads, such as electromagnetic, mechanical, neutronic and thermal, and to be protected from stray ECH radiation at 170 GHz and other millimeter wave emission, like Collective Thomson scattering which is planned to operate at 60 GHz. Same or similar loads will be applied to other millimetre-wave diagnostics [2], located both in-vessel and in-port plugs. These loads must be taken into account throughout the design phases of the ECE and other microwave diagnostics to ensure their structural integrity and maintainability. The integration of microwave diagnosticsmore » with other ITER systems is another challenging activity which is currently ongoing through port integration and in-vessel integration work. Port Integration has to address the maintenance and the safety aspects of diagnostics, too. Engineering solutions which are being developed to support and to operate ITER ECE diagnostic, whilst complying with safety and maintenance requirements, are discussed in this paper.« less

  6. P-SPARSLIB: A parallel sparse iterative solution package

    SciTech Connect (OSTI)

    Saad, Y.

    1994-12-31

    Iterative methods are gaining popularity in engineering and sciences at a time where the computational environment is changing rapidly. P-SPARSLIB is a project to build a software library for sparse matrix computations on parallel computers. The emphasis is on iterative methods and the use of distributed sparse matrices, an extension of the domain decomposition approach to general sparse matrices. One of the goals of this project is to develop a software package geared towards specific applications. For example, the author will test the performance and usefulness of P-SPARSLIB modules on linear systems arising from CFD applications. Equally important is the goal of portability. In the long run, the author wishes to ensure that this package is portable on a variety of platforms, including SIMD environments and shared memory environments.

  7. Improved parallel solution techniques for the integral transport matrix method

    SciTech Connect (OSTI)

    Zerr, Robert J; Azmy, Yousry Y

    2010-11-23

    Alternative solution strategies to the parallel block Jacobi (PBJ) method for the solution of the global problem with the integral transport matrix method operators have been designed and tested. The most straightforward improvement to the Jacobi iterative method is the Gauss-Seidel alternative. The parallel red-black Gauss-Seidel (PGS) algorithm can improve on the number of iterations and reduce work per iteration by applying an alternating red-black color-set to the subdomains and assigning multiple sub-domains per processor. A parallel GMRES(m) method was implemented as an alternative to stationary iterations. Computational results show that the PGS method can improve on the PBJ method execution by up to {approx}50% when eight sub-domains per processor are used. However, compared to traditional source iterations with diffusion synthetic acceleration, it is still approximately an order of magnitude slower. The best-performing case are opticaUy thick because sub-domains decouple, yielding faster convergence. Further tests revealed that 64 sub-domains per processor was the best performing level of sub-domain division. An acceleration technique that improves the convergence rate would greatly improve the ITMM. The GMRES(m) method with a diagonal block preconditioner consumes approximately the same time as the PBJ solver but could be improved by an as yet undeveloped, more efficient preconditioner.

  8. US ITER is a strong contributor in plan to enhance international...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A port plug integration proposal developed with the US ITER diagnostics team has helped the international ITER collaboration arrive at a clever solution for safely housing all of ...

  9. An iterative method for the solution of nonlinear systems using the Faber polynomials for annular sectors

    SciTech Connect (OSTI)

    Myers, N.J.

    1994-12-31

    The author gives a hybrid method for the iterative solution of linear systems of equations Ax = b, where the matrix (A) is nonsingular, sparse and nonsymmetric. As in a method developed by Starke and Varga the method begins with a number of steps of the Arnoldi method to produce some information on the location of the spectrum of A. This method then switches to an iterative method based on the Faber polynomials for an annular sector placed around these eigenvalue estimates. The Faber polynomials for an annular sector are used because, firstly an annular sector can easily be placed around any eigenvalue estimates bounded away from zero, and secondly the Faber polynomials are known analytically for an annular sector. Finally the author gives three numerical examples, two of which allow comparison with Starke and Varga`s results. The third is an example of a matrix for which many iterative methods would fall, but this method converges.

  10. Parallel iterative procedures for approximate solutions of wave propagation by finite element and finite difference methods

    SciTech Connect (OSTI)

    Kim, S.

    1994-12-31

    Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.

  11. Momentum space iterative solution of the time-dependent Schrödinger equation

    SciTech Connect (OSTI)

    Kiss, G. Zs.; Borbély, S.; Nagy, L.

    2013-11-13

    We present a novel approach, the iterative solution of the time-dependent Schrödinger equation (iTDSE model), for the investigation of atomic systems interacting with external laser fields. This model is the extension of the momentum-space strong-field approximation (MSSFA) [1], in which the Coulomb potential was considered only as a first order perturbation. In the iTDSE approach higher order terms were gradually introduced until convergence was achieved. Benchmark calculations were done on the hydrogen atom, and the obtained results were compared to the direct numerical solution [2].

  12. Integrated Engineering, Construction, and Management Solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Engineering, Construction, and Management Solutions Washington Group International Contact: Susan Scott Public Affairs (505) 234-7204 http://www.wipp.ws Washington TRU Solutions LLC Washington TRU Solutions LLC Waste Isolation Pilot Plant Waste Isolation Pilot Plant P.O. Box 2078 P.O. Box 2078 Carlsbad, New Mexico 88221 Carlsbad, New Mexico 88221 For immediate release For immediate release Firm Awarded WIPP Records Demonstration Contract CARLSBAD, N.M., February 17, 2005 - Washington

  13. ODE System Solver W. Krylov Iteration & Rootfinding

    Energy Science and Technology Software Center (OSTI)

    1991-09-09

    LSODKR is a new initial value ODE solver for stiff and nonstiff systems. It is a variant of the LSODPK and LSODE solvers, intended mainly for large stiff systems. The main differences between LSODKR and LSODE are the following: (a) for stiff systems, LSODKR uses a corrector iteration composed of Newton iteration and one of four preconditioned Krylov subspace iteration methods. The user must supply routines for the preconditioning operations, (b) Within the corrector iteration,more » LSODKR does automatic switching between functional (fixpoint) iteration and modified Newton iteration, (c) LSODKR includes the ability to find roots of given functions of the solution during the integration.« less

  14. ODE System Solver W. Krylov Iteration & Rootfinding

    Energy Science and Technology Software Center (OSTI)

    1991-09-09

    LSODKR is a new initial value ODE solver for stiff and nonstiff systems. It is a variant of the LSODPK and LSODE solvers, intended mainly for large stiff systems. The main differences between LSODKR and LSODE are the following: (a) for stiff systems, LSODKR uses a corrector iteration composed of Newton iteration and one of four preconditioned Krylov subspace iteration methods. The user must supply routines for the preconditioning operations, (b) Within the corrector iteration,moreLSODKR does automatic switching between functional (fixpoint) iteration and modified Newton iteration, (c) LSODKR includes the ability to find roots of given functions of the solution during the integration.less

  15. A comparison of conjugate gradient, SIP, and other iterative methods for the solution of Poisson's equation with irregular boundary conditions

    SciTech Connect (OSTI)

    Bergmann, D.J.

    1990-06-01

    Several well known iterative methods for solving Poisson's equation, including Strongly Implicit Procedure and several preconditioned conjugate gradient methods are first applied to a problem with simple boundary conditions and a known solution. Then a problem with more complicated boundary conditions, similar to those encountered when modeling AVLIS plasmas, is solved. Differences in the solutions of the various methods are examined through the use of Fourier analysis. It was found that combinations of different iterative schemes will in some cases be the most efficient method of solution. 22 refs., 29 figs.

  16. One Acquisition Solution for Integrated Services (OASIS) - Brad...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition Solution for Integrated Services (OASIS) - Brad DeMers, General Services Administration (GSA) One Acquisition Solution for Integrated Services (OASIS) - Brad DeMers,...

  17. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing Central Solenoid Structural Integrity Key steps forward for US ITER magnet efforts ... vessel will be used in testing methods for sealing and insulating ITER magnet modules. ...

  18. Integrating Variable Renewable Energy: Challenges and Solutions

    SciTech Connect (OSTI)

    Bird, L.; Milligan, M.; Lew, D.

    2013-09-01

    In the U.S., a number of utilities are adopting higher penetrations of renewables, driven in part by state policies. While power systems have been designed to handle the variable nature of loads, the additional supply-side variability and uncertainty can pose new challenges for utilities and system operators. However, a variety of operational and technical solutions exist to help integrate higher penetrations of wind and solar generation. This paper explores renewable energy integration challenges and mitigation strategies that have been implemented in the U.S. and internationally, including forecasting, demand response, flexible generation, larger balancing areas or balancing area cooperation, and operational practices such as fast scheduling and dispatch.

  19. Integrated Design: A High-Performance Solution for Affordable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design: A High-Performance Solution for Affordable Housing Integrated Design: A High-Performance Solution for Affordable Housing ARIES lab houses. Photo courtesy of The Levy ...

  20. Twin-Screw Extruder and Pellet Accelerator Integration Developments for ITER

    SciTech Connect (OSTI)

    Meitner, Steven J; Baylor, Larry R; Combs, Stephen Kirk; Fehling, Dan T; Foust, Charles R; McGill, James M; Rasmussen, David A; Maruyama, So

    2011-01-01

    The ITER pellet injection system consisting of a twinscrew frozen hydrogen isotope extruder, coupled to a combination solenoid actuated pellet cutter and pneumatic pellet accelerator, is under development at the Oak Ridge National Laboratory. A prototype extruder has been built to produce a continuous solid deuterium extrusion and will be integrated with a secondary section, where pellets are cut, chambered, and launched with a single-stage pneumatic accelerator into the plasma through a guide tube. This integrated pellet injection system is designed to provide 5 mm fueling pellets, injected at a rate up to 10 Hz, or 3 mm edge localized mode (ELM) triggering pellets, injected at higher rates up to 20 Hz. The pellet cutter, chamber mechanism, and the solenoid operated pneumatic valve for the accelerator are optimized to provide pellet velocities between 200-300 m/s to ensure high pellet survivability while traversing the inner wall fueling guide tubes, and outer wall ELMpacing guide tubes. This paper outlines the current twin-screwextruder design, pellet accelerator design, and the integrationrequired for both fueling and ELM pacing pellets.

  1. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Service, January 4, 2007 Head of US ITER project named IEEE Fellow ORNL News ... Power IBM press release, July 2, 2007 ITER Selects ANSYS Solutions for Design of ...

  2. Integrating PV in Distributed Grids: Solutions and Technologies Workshop |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Systems Integration | NREL Integrating PV in Distributed Grids: Solutions and Technologies Workshop In October 2015, NREL's Energy Systems Integration team hosted a workshop on ways to safely integrate more photovoltaics (PV) onto the grid. The workshop was held at the Energy Systems Integration Facility. Presenters from industry, vendors, academia, NREL, and the U.S. Department of Energy participated in the workshops, bringing a broad perspective to the discussions. Below are

  3. A sparse matrix iterative method for efficiently computing multiple simultaneous solutions

    SciTech Connect (OSTI)

    Boyse, W.E.; Seidl, A.A.

    1994-12-31

    The authors consider the solution of large sparse complex symmetric indefinite systems of equations where multiple solutions are required. This type of problem occurs in calculating monostatic radar cross sections in electromagnetic scattering using the finite element method. The Quasi Minimum Residual (QMR) method, ideally suited for these matrices, is generalized using the block Lanozos algorithm to solve blocks of solutions simultaneously. The algorithm is presented and a natural convergence criterion is proposed which is shown to be as effective as the usual equation residual in monitoring convergence.

  4. Integrated Design: A High-Performance Solution for Affordable Housing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Integrated Design: A High-Performance Solution for Affordable Housing Integrated Design: A High-Performance Solution for Affordable Housing ARIES lab houses. Photo courtesy of The Levy Partnership, Inc. ARIES lab houses. Photo courtesy of The Levy Partnership, Inc. Lead Performer: The Levy Partnership, Inc.-New York, NY Partners: Habitat for Humanity International /Habitat Research Foundation, Atlanta, GA Columbia Count Habitat, NY Habitat of Newburgh, NY Habitat Greater

  5. Integrated Dynamic Electron Solutions, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Dynamic Electron Solutions, Inc. America's Next Top Energy Innovator Challenge 333 likes Integrated Dynamic Electron Solutions, Inc. Lawrence Livermore National Laboratory Dynamic Transmission Electron Microscopes DTEM reveal unprecedented details of the mechanisms underlying a host of nanoscale systems that are at the core of our current and future energy economy. A vast and growing number of materials utilized in the energy sector rely on nanostructured materials and their unique

  6. Technology solutions for wind integration in ERCOT

    SciTech Connect (OSTI)

    None, None

    2015-01-03

    Texas has for more than a decade led all other states in the U.S. with the most wind generation capacity on the U.S. electric grid. The State recognized the value that wind energy could provide, and committed early on to build out the transmission system necessary to move power from the windy regions in West Texas to the major population centers across the state. It also signaled support for renewables on the grid by adopting an aggressive renewable portfolio standard (RPS). The joining of these conditions with favorable Federal tax credits has driven the rapid growth in Texas wind capacity since its small beginning in 2000. In addition to the major transmission grid upgrades, there have been a number of technology and policy improvements that have kept the grid reliable while adding more and more intermittent wind generation. Technology advancements such as better wind forecasting and deployment of a nodal market system have improved the grid efficiency of wind. Successful large scale wind integration into the electric grid, however, continues to pose challenges. The continuing rapid growth in wind energy calls for a number of technology additions that will be needed to reliably accommodate an expected 65% increase in future wind resources. The Center for the Commercialization of Electric Technologies (CCET) recognized this technology challenge in 2009 when it submitted an application for funding of a regional demonstration project under the Recovery Act program administered by the U.S. Department of Energy1. Under that program the administration announced the largest energy grid modernization investment in U.S. history, making available some $3.4 billion in grants to fund development of a broad range of technologies for a more efficient and reliable electric system, including the growth of renewable energy sources like wind and solar. At that time, Texas was (and still is) the nation’s leader in the integration of wind into the grid, and was investing heavily

  7. TECHNOLOGY SOLUTIONS FOR WIND INTEGRATION IN ERCOT

    SciTech Connect (OSTI)

    None, None

    2015-01-03

    Texas has for more than a decade led all other states in the U.S. with the most wind generation capacity on the U.S. electric grid. The State recognized the value that wind energy could provide, and committed early on to build out the transmission system necessary to move power from the windy regions in West Texas to the major population centers across the state. It also signaled support for renewables on the grid by adopting an aggressive renewable portfolio standard (RPS). The joining of these conditions with favorable Federal tax credits has driven the rapid growth in Texas wind capacity since its small beginning in 2000. In addition to the major transmission grid upgrades, there have been a number of technology and policy improvements that have kept the grid reliable while adding more and more intermittent wind generation. Technology advancements such as better wind forecasting and deployment of a nodal market system have improved the grid efficiency of wind. Successful large scale wind integration into the electric grid, however, continues to pose challenges. The continuing rapid growth in wind energy calls for a number of technology additions that will be needed to reliably accommodate an expected 65% increase in future wind resources. The Center for the Commercialization of Electric Technologies (CCET) recognized this technology challenge in 2009 when it submitted an application for funding of a regional demonstration project under the Recovery Act program administered by the U.S. Department of Energy1. Under that program the administration announced the largest energy grid modernization investment in U.S. history, making available some $3.4 billion in grants to fund development of a broad range of technologies for a more efficient and reliable electric system, including the growth of renewable energy sources like wind and solar. At that time, Texas was (and still is) the nation’s leader in the integration of wind into the grid, and was investing heavily

  8. Novel aspects of plasma control in ITER

    SciTech Connect (OSTI)

    Humphreys, D.; Jackson, G.; Walker, M.; Welander, A.; Ambrosino, G.; Pironti, A.; Felici, F.; Kallenbach, A.; Raupp, G.; Treutterer, W.; Kolemen, E.; Lister, J.; Sauter, O.; Moreau, D.; Schuster, E.

    2015-02-15

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily for ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g., current profile regulation, tearing mode (TM) suppression), control mathematics (e.g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.

  9. US ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Central Solenoid Fabrication: A Photo Reportage ITER Newsline, July 18, 2016 Shooting selected pellets into the plasma ITER Newsline, June 13, 2016 General Atomics Applauds ...

  10. Preconditioned Iterative Solver

    Energy Science and Technology Software Center (OSTI)

    2002-08-01

    AztecOO contains a collection of preconditioned iterative methods for the solution of sparse linear systems of equations. In addition to providing many of the common algebraic preconditioners and basic iterative methods, AztecOO can be easily extended to interact with user-provided preconditioners and matrix operators.

  11. Integrated simulations of saturated neoclassical tearing modes in DIII-D, Joint European Torus, and ITER plasmas

    SciTech Connect (OSTI)

    Halpern, Federico D.; Bateman, Glenn; Kritz, Arnold H.

    2006-06-15

    A revised version of the ISLAND module [C. N. Nguyen et al., Phys. Plasmas 11, 3604 (2004)] is used in the BALDUR code [C. E. Singer et al., Comput. Phys. Commun. 49, 275 (1988)] to carry out integrated modeling simulations of DIII-D [J. Luxon, Nucl. Fusion 42, 614 (2002)], Joint European Torus (JET) [P. H. Rebut et al., Nucl. Fusion 25, 1011 (1985)], and ITER [R. Aymar et al., Plasma Phys. Control. Fusion 44, 519 (2002)] tokamak discharges in order to investigate the adverse effects of multiple saturated magnetic islands driven by neoclassical tearing modes (NTMs). Simulations are carried out with a predictive model for the temperature and density pedestal at the edge of the high confinement mode (H-mode) plasma and with core transport described using the Multi-Mode model. The ISLAND module, which is used to compute magnetic island widths, includes the effects of an arbitrary aspect ratio and plasma cross sectional shape, the effect of the neoclassical bootstrap current, and the effect of the distortion in the shape of each magnetic island caused by the radial variation of the perturbed magnetic field. Radial transport is enhanced across the width of each magnetic island within the BALDUR integrated modeling simulations in order to produce a self-consistent local flattening of the plasma profiles. It is found that the main consequence of the NTM magnetic islands is a decrease in the central plasma temperature and total energy. For the DIII-D and JET discharges, it is found that inclusion of the NTMs typically results in a decrease in total energy of the order of 15%. In simulations of ITER, it is found that the saturated magnetic island widths normalized by the plasma minor radius, for the lowest order individual tearing modes, are approximately 24% for the 2/1 mode and 12% for the 3/2 mode. As a result, the ratio of ITER fusion power to heating power (fusion Q) is reduced from Q=10.6 in simulations with no NTM islands to Q=2.6 in simulations with fully saturated

  12. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fact Sheets Fact Sheets Hydrogen Fusion ITER Project US ITER Progress US ITER Participants US ITER Participants Pin Map US ITER Hardware: Central Solenoid (CS) Tokamak Cooling ...

  13. PCG: A software package for the iterative solution of linear systems on scalar, vector and parallel computers

    SciTech Connect (OSTI)

    Joubert, W.; Carey, G.F.

    1994-12-31

    A great need exists for high performance numerical software libraries transportable across parallel machines. This talk concerns the PCG package, which solves systems of linear equations by iterative methods on parallel computers. The features of the package are discussed, as well as techniques used to obtain high performance as well as transportability across architectures. Representative numerical results are presented for several machines including the Connection Machine CM-5, Intel Paragon and Cray T3D parallel computers.

  14. A domain decomposition method of stochastic PDEs: An iterative solution techniques using a two-level scalable preconditioner

    SciTech Connect (OSTI)

    Subber, Waad Sarkar, Abhijit

    2014-01-15

    Recent advances in high performance computing systems and sensing technologies motivate computational simulations with extremely high resolution models with capabilities to quantify uncertainties for credible numerical predictions. A two-level domain decomposition method is reported in this investigation to devise a linear solver for the large-scale system in the Galerkin spectral stochastic finite element method (SSFEM). In particular, a two-level scalable preconditioner is introduced in order to iteratively solve the large-scale linear system in the intrusive SSFEM using an iterative substructuring based domain decomposition solver. The implementation of the algorithm involves solving a local problem on each subdomain that constructs the local part of the preconditioner and a coarse problem that propagates information globally among the subdomains. The numerical and parallel scalabilities of the two-level preconditioner are contrasted with the previously developed one-level preconditioner for two-dimensional flow through porous media and elasticity problems with spatially varying non-Gaussian material properties. A distributed implementation of the parallel algorithm is carried out using MPI and PETSc parallel libraries. The scalabilities of the algorithm are investigated in a Linux cluster.

  15. Use of the iterative solution method for coupled finite element and boundary element modeling; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Koteras, J.R.

    1993-07-01

    Tunnels buried deep within the earth constitute an important class geomechanics problems. Two numerical techniques used for the analysis of geomechanics problems, the finite element method and the boundary element method, have complementary characteristics for applications to problems of this type. The usefulness of combining these two methods for use as a geomechanics analysis tool has been recognized for some time, and a number of coupling techniques have been proposed. However, not all of them lend themselves to efficient computational implementations for large-scale problems. This report examines a coupling technique that can form the basis for an efficient analysis tool for large scale geomechanics problems through the use of an iterative equation solver.

  16. US ITER | Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Postings Careers in Fusion Science ITER Jobs Home > Jobs > US ITER Positions US ITER Positions US

  17. US ITER | Doing Business

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. ITER > Business Opportunities Business Opportunities U.S. ITER International ITER International Organization (IO) Competitive Task Agreements ITER International Department of ...

  18. Multiphysics Engineering Analysis for an Integrated Design of ITER Diagnostic First Wall and Diagnostic Shield Module Design

    SciTech Connect (OSTI)

    Zhai, Y.; Loesser, G.; Smith, M.; Udintsev, V.; Giacomin, T., T.; Khodak, A.; Johnson, D,; Feder, R,

    2015-07-01

    ITER diagnostic first walls (DFWs) and diagnostic shield modules (DSMs) inside the port plugs (PPs) are designed to protect diagnostic instrument and components from a harsh plasma environment and provide structural support while allowing for diagnostic access to the plasma. The design of DFWs and DSMs are driven by 1) plasma radiation and nuclear heating during normal operation 2) electromagnetic loads during plasma events and associate component structural responses. A multi-physics engineering analysis protocol for the design has been established at Princeton Plasma Physics Laboratory and it was used for the design of ITER DFWs and DSMs. The analyses were performed to address challenging design issues based on resultant stresses and deflections of the DFW-DSM-PP assembly for the main load cases. ITER Structural Design Criteria for In-Vessel Components (SDC-IC) required for design by analysis and three major issues driving the mechanical design of ITER DFWs are discussed. The general guidelines for the DSM design have been established as a result of design parametric studies.

  19. Comprehensive Solutions for Integration of Solar Resources into...

    Broader source: Energy.gov (indexed) [DOE]

    tool by incorporating accurate forecasting of solar generation, and then integrate ... and hence the costs of system integration of solar generation into the bulk power system. ...

  20. US ITER | Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Postings Careers in Fusion Science ITER Jobs Home > Jobs > International Job Postings International ITER Postions International

  1. Bifurcations of traveling wave solutions for an integrable equation

    SciTech Connect (OSTI)

    Li Jibin; Qiao Zhijun

    2010-04-15

    This paper deals with the following equation m{sub t}=(1/2)(1/m{sup k}){sub xxx}-(1/2)(1/m{sup k}){sub x}, which is proposed by Z. J. Qiao [J. Math. Phys. 48, 082701 (2007)] and Qiao and Liu [Chaos, Solitons Fractals 41, 587 (2009)]. By adopting the phase analysis method of planar dynamical systems and the theory of the singular traveling wave systems to the traveling wave solutions of the equation, it is shown that for different k, the equation may have infinitely many solitary wave solutions, periodic wave solutions, kink/antikink wave solutions, cusped solitary wave solutions, and breaking loop solutions. We discuss in a detail the cases of k=-2,-(1/2),(1/2),2, and parametric representations of all possible bounded traveling wave solutions are given in the different (c,g)-parameter regions.

  2. Dual Integrated Appliances as an Energy and Safety Solution for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Space and Domestic Water Heating Systems Building America Technology Solutions for New and Existing Homes: Performance of a Heat Pump Water Heater in the Hot-Humid Climate, ...

  3. US ITER | About

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    US ITER About US ITER ABOUT US ITER | WHY FUSION? | DOING BUSINESS WITH US ITER | MEDIA CORNER | JOBS | CONTACT US About US ITER US Hardware Contributions About US ITER Home > About US ITER Background US ITER is a DOE Office of Science project hosted by Oak Ridge National Laboratory in Tennessee. Partner labs are Princeton Plasma Physics Laboratory and Savannah River National Laboratory. The US is a partner nation in ITER, an unprecedented international collaboration of scientists and

  4. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Schedule Concerns Delay ITER's Go-Ahead Science Magazine, November 27, 2009 ITER council delays project Physics Today, November 20, 2009 ITER Blueprints Near Completion, But ...

  5. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building the heartbeat of ITER Building the heartbeat of ITER US ITER prepares for the fabrication of the international fusion reactor's central solenoid -Lynne Degitz Published ...

  6. US ITER | Doing Business

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Opportunties > For Vendors For Vendors US ITER Vendor Database (For US ITER internal use only) Vendor Account Status System ORNL Procurement ITER International Department of Energy ...

  7. What is ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ITER? ITER is a large international fusion experiment aimed at demonstrating the scientific and technological feasibility of fusion energy. ITER (Latin for "the way") will play a ...

  8. US ITER | Doing Business

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ITER International Organization Competitive Task Agreements International Organization ... ITER International Department of Energy Office of Science Oak Ridge National Laboratory ...

  9. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutronics at Wisconsin, ORNL advances ITER shielding and international collaboration "Neutronics" at Wisconsin, ORNL advances ITER shielding and international collaboration ...

  10. US ITER | Doing Business

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Business Opportunties > ITER Clauses, Documents & Forms ITER Clauses, Documents & Forms Technical Proposal Disclosure Policy (April 2013) Identification of Background Intellectual ...

  11. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mitigating plasma disruptions in ITER Mitigating plasma disruptions in ITER Using large cryogenic pellets, US ITER advances new fusion technology -Lynne Degitz Published September 18, 2014 A three-barrel pellet injector developed at Oak Ridge National Laboratory for the ITER disruption mitigation system. Photo: US ITER/ORNL. A three-barrel pellet injector developed at Oak Ridge National Laboratory for the ITER disruption mitigation system. Photo: US ITER/ORNL The international ITER fusion

  12. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Corner Fact Sheets Hydrogen Fusion ITER Project US ITER Progress US ITER Participants More Project Background Creating a Star - The Global ITER Partnership Features and Highlights Central Solenoid Fabrication: A Photo Reportage [ITER Newsline, July 18, 2016] Shooting selected pellets into the plasma [ITER Newsline, June 13, 2016] Winding completed on first central solenoid module [ITER Newsline, Arpril 11, 2016] Fusion diagnostics heat up across the US [US ITER, October 22, 2015] Preparing a

  13. NREL Teams With ComEd on Microgrid-Integrated Storage Solution to Get More

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar on the Grid | Energy Systems Integration | NREL Teams With ComEd on Microgrid-Integrated Storage Solution to Get More Solar on the Grid February 22, 2016 Effectively integrating large amounts of renewable energy such as solar photovoltaics (PV) onto the electric grid requires finding ways to manage the inherent variability of the resource. That's where energy storage technologies like batteries come in-when integrated into PV systems, storage can allow solar to power homes and

  14. Dual Integrated Appliances as an Energy and Safety Solution for Low Income

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherization Webinar | Department of Energy Dual Integrated Appliances as an Energy and Safety Solution for Low Income Weatherization Webinar Dual Integrated Appliances as an Energy and Safety Solution for Low Income Weatherization Webinar Slides from the Building America webinar presented by the NorthernSTAR team. webinar_northernstar_dual_appliances_20111019.pdf (9.61 MB) More Documents & Publications Building America Expert Meeting: Recommendations for Applying Water Heaters in

  15. One Acquisition Solution for Integrated Services (OASIS) - Brad DeMers,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    General Services Administration (GSA) | Department of Energy One Acquisition Solution for Integrated Services (OASIS) - Brad DeMers, General Services Administration (GSA) One Acquisition Solution for Integrated Services (OASIS) - Brad DeMers, General Services Administration (GSA) Overview What is OASIS? What are Pools? What is the scope of OASIS? How do I access OASIS? What are some advantages of using OASIS? What tools and resources are available? Other questions? Workshop 2015 -

  16. NREL Teams With ComEd on Microgrid-Integrated Storage Solution to Get More

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar on the Grid | Grid Modernization | NREL Teams With ComEd on Microgrid-Integrated Storage Solution to Get More Solar on the Grid February 22, 2016 Effectively integrating large amounts of renewable energy such as solar photovoltaics (PV) onto the electric grid requires finding ways to manage the inherent variability of the resource. That's where energy storage technologies like batteries come in-when integrated into PV systems, storage can allow solar to power homes and businesses even

  17. ITER | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ITER What is ITER? ITER is a large international fusion experiment aimed at demonstrating the scientific and technological feasibility of fusion energy. ITER (Latin for "the way") ...

  18. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subscribe to the US ITER Newsletter Need an Expert? Media are welcome to contact Mark Uhran for assistance in reaching an appropriate US ITER expert. US ITER staff members are also ...

  19. US ITER | Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nicolai Martovetsky US ITER Magnet Systems R&D Manager and Chief Engineer Tell us about ... What were you doing before you came to US ITER? Before coming to US ITER, I was a research ...

  20. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Division Management in Place at US ITER New Division Management in Place at US ITER Published September 20, 2011 After an extensive international search, US ITER selected John ...

  1. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Jacob's Room at US ITER In Jacob's Room at US ITER College Student Models, Simulates and Designs a Cooling Subsystem for the ITER Tokamak -Agatha Bardoel Published June 24, 2011 ...

  2. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    India DA Project Director Visits US ITER Project Office India DA Project Director Visits US ITER Project Office Published Janaury 5, 2012 India DA Project Director Visits US ITER ...

  3. US ITER | About

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Cyclotron Heating System Image Highlighted in pink: ITER Electron Cyclotron ... For more information, contact: David Rasmussen, US ITER Project Office EC Transmission ...

  4. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    US ITER preps for high performance plasma heating US ITER preps for high performance plasma heating New test results and innovations advance ion cyclotron high power transmission ...

  5. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fabrication of early delivery components for ITER advances US fabrication of early delivery components for ITER advances Delivery of tokamak cooling water system drain tanks will ...

  6. US ITER | Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organizational Charts ABOUT US ITER | WHY FUSION? | DOING BUSINESS WITH US ITER | MEDIA CORNER | JOBS | CONTACT US Visitor Information Key Contact Staff Directory Organizational ...

  7. US ITER | Doing Business

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    process for one of the above International ITER Organization requirements, please review ... Jeff Geouque Oak Ridge National Laboratory Procurement Director US ITER Project Email: ...

  8. US ITER | Doing Business

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    US Business Opportunities US Business Opportunities Upcoming US ITER Procurements WBS ... for Proposal POC - Point of Contact ITER International Department of Energy Office ...

  9. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This visualization demonstrates how the ITER reactor will create a burning plasma. ... Tokamak Complex- April 2012 An overview of construction progress for the ITER tokmak ...

  10. US ITER | About

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fact Sheet ICH Image Highlighted in pink: ITER Ion Cyclotron Heating Transmission Lines. ... For more information, contact: David Rasmussen, US ITER Project Office EC Transmission ...

  11. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron Science Division, November 22, 2006 US ITER Project Completes Management Team ORNL News Release, August 17, 2006 US ITER Project Office, a partnership of Princeton ...

  12. US ITER | About

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Welcome to East Tennessee, Oak Ridge National Laboratory (ORNL), and the U.S. ITER Project ... Accommodations Area Guides Food Local Media Maps Transportation Weather ITER International ...

  13. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advantages for US ITER engineers Desktop additive printers are changing the engineering design process 3D printing yields advantages for US ITER engineers Desktop additive ...

  14. US ITER | Doing Business

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International: Business Opportunities with Other International Partners European Union The European Union maintains a website with additional ITER Business Opportunities. ITER ...

  15. US ITER | About

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacuum Auxiliary Systems (WBS 1.3.1) Fact Sheet ITER Vacuum Vessle and Cryostat Image ... pumps and vacuum auxiliary system. The ITER tokamak, cryostat, and auxiliary vacuum ...

  16. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bardoel Published February 22, 2012 US ITER Toridal Field Coil Conductor US ITER toroidal field coil conductor production requires miles of niobium-tin superconducting wire. ...

  17. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Procurement Arrangement Signed for Low Field Side Reflectometer Diagnostic -Agatha Bardoel Published June 21, 2012 US ITER Project Manger Ned Sauthoff and ITER Director-General ...

  18. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UT Magnet Lab Advances US ITER and Next Generation of Engineers, Scientists UT Magnet Lab Advances US ITER and Next Generation of Engineers, Scientists -Agatha Bardoel Published ...

  19. US ITER | About

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cooling Water Systems Image Highlighted in pink: ITER Tokamak Cooling Water System. The US ... The TCWS interfaces with the majority of ITER systems, including the secondary cooling ...

  20. US ITER | Doing Business

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    US ITER > Business Opportunties > For Vendors > Tokamak Cooling Water System Opportunities Tokamak Cooling Water System (TCWS) Opportunities US ITER has contracted with AREVA...

  1. On the interplay between inner and outer iterations for a class of iterative methods

    SciTech Connect (OSTI)

    Giladi, E.

    1994-12-31

    Iterative algorithms for solving linear systems of equations often involve the solution of a subproblem at each step. This subproblem is usually another linear system of equations. For example, a preconditioned iteration involves the solution of a preconditioner at each step. In this paper, the author considers algorithms for which the subproblem is also solved iteratively. The subproblem is then said to be solved by {open_quotes}inner iterations{close_quotes} while the term {open_quotes}outer iteration{close_quotes} refers to a step of the basic algorithm. The cost of performing an outer iteration is dominated by the solution of the subproblem, and can be measured by the number of inner iterations. A good measure of the total amount of work needed to solve the original problem to some accuracy c is then, the total number of inner iterations. To lower the amount of work, one can consider solving the subproblems {open_quotes}inexactly{close_quotes} i.e. not to full accuracy. Although this diminishes the cost of solving each subproblem, it usually slows down the convergence of the outer iteration. It is therefore interesting to study the effect of solving each subproblem inexactly on the total amount of work. Specifically, the author considers strategies in which the accuracy to which the inner problem is solved, changes from one outer iteration to the other. The author seeks the `optimal strategy`, that is, the one that yields the lowest possible cost. Here, the author develops a methodology to find the optimal strategy, from the set of slowly varying strategies, for some iterative algorithms. This methodology is applied to the Chebychev iteration and it is shown that for Chebychev iteration, a strategy in which the inner-tolerance remains constant is optimal. The author also estimates this optimal constant. Then generalizations to other iterative procedures are discussed.

  2. US ITER | Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    US ITER Jobs ABOUT US ITER | WHY FUSION? | DOING BUSINESS WITH US ITER | MEDIA CORNER | JOBS | CONTACT US US Job Postings International Job Postings Careers in Fusion Science ITER Jobs Home > US ITER Jobs Be a Part of Something Big! US ITER is a Department of Energy multi-laboratory project that executes the US contributions to ITER for the US. The US is a non-host partner in the seven-member international collaboration between the United States, China, India, Japan, Korea, Russia, and the

  3. US ITER | Doing Business

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ITER US ITER Procurement Division is responsible for the acquisition of goods and services for the US ITER project. Business Opportunities US: Upcoming US ITER Procurements US: Business Opportunities with Other Partner Laboratories International: Calls for Nominations, Calls for Expertise and Market Surveys/Requests for Interest International: Opportunities with Other International Partners ITER International Organization (IO) Competitive Task Agreements. For Vendors Vendors wishing to do

  4. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Central solenoid insert coil confirms conductor readiness for ITER Central solenoid insert coil confirms conductor readiness for ITER Central solenoid insert coil confirms conductor readiness for ITER -Lynne Degitz Published August 13, 2015 The insert coil being lowered into the test facility at Naka, Japan. The insert coil being lowered into the test facility at Naka, Japan. Photo: JAEA In another step towards building the ITER fusion reactor, the US ITER team worked with international partners

  5. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ITER pump design benefits from testing at ORNL Spallation Neutron Source cryogenic facility ITER pump design benefits from testing at ORNL Spallation Neutron Source cryogenic facility ITER pump design benefits from testing at ORNL Spallation Neutron Source cryogenic facility -Lynne Degitz Published August 4, 2015 Robert Duckworth oversaw the testing of the 9-foot tall ITER cryoviscous compress pump prototype at the Spallation Neutron Source cryogenic test facility. Photo: US ITER/ORNL. Robert

  6. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    US delivers multiple "firsts" for ITER site US delivers multiple "firsts" for ITER site Conductor for toroidal field magnets, drain tanks and electrical components are being delivered to Europe for installation at the ITER site -Lynne Degitz March 19, 2015 Conductor for toroidal field magnets A close-up view of toroidal field production conductor. The conductor delivered in January is approximately 800 meters in length. Photo: US ITER As the international ITER magnetic fusion

  7. Green's function partitioning in Galerkin-based integral solution of the diffusion equation

    SciTech Connect (OSTI)

    Haji-Sheikh, A. ); Beck, J.V. )

    1990-02-01

    A procedure to obtain accurate solutions for many transient conduction problems in complex geometries using a Galerkin-based integral (GBI) method is presented. The nonhomogeneous boundary conditions are accommodated by the Green's function solution technique. A Green's function obtained by the GBI method exhibits excellent large-time accuracy. It is shown that the time partitioning of the Green's function yields accurate small-time and large-time solutions. In one example, a hollow cylinder with convective inner surface and prescribed heat flux at the outer surface is considered. Only a few terms for both large-time and small-time solutions are sufficient to produce results with excellent accuracy. The methodology used for homogeneous solids is modified for application to complex heterogeneous solids.

  8. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Jacob's Room at US ITER Fusion Comes to the Secret City Published June 20, 2011 The ... Over 1000 visitors toured the exhibits and learned more about fusion, ITER progress, and ...

  9. US ITER | About

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diagnostics Diagnostics (WBS 1.5.3) Fact Sheet ITER Diagnostics Image Highlighted in pink: US contributions to ITER diagnostics. The US is responsible for 14% of port-based ...

  10. US ITER - Why Fusion?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPL FusEdWeb Educational Outreach: US ITER staff members are available for presentations on fusion energy and the ITER project to technical, civic, community, and student groups. ...

  11. US ITER | About

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    your own transportation to and from US ITER. A rental car is suggested for short stays. ... or comments at webmaster@usiter.org. ITER International Department of Energy Office ...

  12. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo: US ITER. The first part of the central solenoid winding station is a de-spooler, shown here unwinding material for the mock-up coil. Photo: US ITER . At the heart of the ...

  13. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    US ITER ships 30,000 pounds of magnet system hardware to Europe US ITER ships 30,000 pounds of magnet system hardware to Europe An 800-meter length of sample toroidal field ...

  14. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    US ITER Major Vendors, Project Director to Speak at FPA Annual Meeting US ITER Major Vendors, Project Director to Speak at FPA Annual Meeting in December Published September 28, ...

  15. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Videos US ITER Moving Forward US ITER Moving Forward (2012) Ned Sauthoff and Susan McGinnis - Fusion Reaction Energy for the Future (2011) Ned Sauthoff and Susan McGinnis - Fusion ...

  16. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    US ITER is building one of the world's largest and most powerful electromagnets to energize the ITER tokamak, a device that confines plasma in the shape of a doughnut. The 13 meter ...

  17. US ITER | About

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    US ITER Project Office Disruption Mitigation Team Leader, Oak Ridge National Laboratory, rasmussnda@ornl.gov | 865-574-1158 News 3D printing yields advantages for US ITER ...

  18. US ITER | About

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tokamak Exhaust Processing System (WBS 1.3.2) FactSheet Exhaust Process Image The ITER ... ITER will require the processing of an unprecedented rate of hydrogen isotopes. To ...

  19. US ITER | About

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ITER > US Hardware > Toroidal Field (TF) Magnets Central Solenoid (CS) (WBS 1.1.1) Fact Sheet Central Solenoid Highlighted in pink: The central solenoid, or "backbone" of the ITER ...

  20. US ITER | Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What were you doing before you came to US ITER? When I was a sophomore at UTK, I began to ... and later bid on the job at ITER where I have been for the last five and a half years. ...

  1. US ITER Moving Forward

    SciTech Connect (OSTI)

    US ITER / ORNL

    2012-01-01

    US ITER Project Manager Ned Sauthoff, joined by Wayne Reiersen, Team Leader Magnet Systems, and Jan Berry, Team Leader Tokamak Cooling System, discuss the U.S.'s role in the ITER international collaboration.

  2. US ITER | About

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The maps below will help you find your way to the US ITER Project Office and around ORNL and Oak Ridge. They are all provided in PDF format unless noted. ITER - Oak Ridge Office ...

  3. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    develop high-performance steel for ITER The Oak Ridger, November 2, 2008 Can ... News Sentinel, July 29, 2008 Fund ITER Now EnergyBiz Magazine, July 21, 2008 ...

  4. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    test bed ring will load ITER transmission lines with up to 6 megawatts New test bed ring will load ITER transmission lines with up to 6 megawatts -Agatha Bardoel Published April ...

  5. US ITER | Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Suzanne Herron US ITER Deputy Project Manager Tell us about your background Suzanne Herron ... What were you doing before you came to US ITER? I have had a variety of experiences in my ...

  6. US ITER | Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Postings Careers in Fusion Science ITER Jobs Home > Jobs > Careers in Fusion Science Learn More About Working at US ITER and Careers in Fusion Science Jan Berry Takes a Different ...

  7. US ITER Moving Forward

    ScienceCinema (OSTI)

    US ITER / ORNL

    2012-03-16

    US ITER Project Manager Ned Sauthoff, joined by Wayne Reiersen, Team Leader Magnet Systems, and Jan Berry, Team Leader Tokamak Cooling System, discuss the U.S.'s role in the ITER international collaboration.

  8. What is ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The project is being designed and built by the ITER partners: China, the European Union, India, Japan, South Korea, the Russia Federation, and the United States. The ITER facility ...

  9. INSIDE: ITER Site Progress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry, Universities and Labs Job Openings Upcoming Events ITER's Central Magnet Requires a Powerful Support Cage Prototypes for the central solenoid support components have been fabricated and are being tested US ITER is building one of the world's largest and most powerful electromagnets to energize the ITER tokamak, a device that confines plasma in the shape of a doughnut. The 13 meter tall central solenoid will be located in the heart of the ITER fusion experiment. In order to maintain

  10. An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale

    SciTech Connect (OSTI)

    Matthew Bruff; Ned Godshall; Karen Evans

    2011-04-30

    This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

  11. Integrated PEV Charging Solutions and Reduced Energy for Occupant Comfort (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    Brochure on Vehicle Testing and Integration Facility, featuring the Vehicle Modification Facility, Vehicle Test Pad and ReCharge Integrated Demonstration System. Plug-in electric vehicles (PEVs) offer the opportunity to shift transportation energy demands from petroleum to electricity, but broad adoption will require integration with other systems. While automotive experts work to reduce the cost of PEVs, fossil fueled cars and trucks continue to burn hundreds of billions of gallons of petroleum each year - not only to get from point A to point B, but also to keep passengers comfortable with air conditioning and heat. At the National Renewable Energy Laboratory (NREL), three installations form a research laboratory known as the Vehicle Testing and Integration Facility (VTIF). At the VTIF, engineers are developing strategies to address two separate but equally crucial areas of research: meeting the demands of electric vehicle-grid integration and minimizing fuel consumption related to vehicle climate control. Part of NREL's Center for Transportation Technologies and Systems (CTTS), the VTIF is dedicated to renewable and energy efficient solutions. This facility showcases technology and systems designed to increase the viability of sustainably powered vehicles. NREL researchers instrument every class of on-road vehicle, conduct hardware and software validation for electric vehicle (EV) components and accessories, and develop analysis tools and technology for the Department of Energy, other government agencies and industry partners. Research conducted at the VTIF examines the interaction of building energy systems, utility grids, renewable energy sources and PEVs, integrating energy management solutions, and maximizing potential greenhouse gas (GHG) reduction, while smoothing the transition and reducing costs for EV owners. NREL's collaboration with automakers, charging station manufacturers, utilities and fleet operators to assess technologies using VTIF resources is

  12. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building the Heartbeat of ITER Building the Heartbeat of ITER Preparing a unique fabrication line for the central solenoid modules -Lynne Degitz September 14, 2015 A partial view of the General Atomics module fabrication line, with two winding station tables visible behind a yellow rail. Photo: GA A partial view of the General Atomics module fabrication line, with two winding station tables visible behind a yellow rail. Photo: GA With winding of the first production module for ITER's central

  13. US ITER | About

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Please feel free to contact us with any questions or comments at webmaster@usiter.org. ITER International Department of Energy Office of Science Oak Ridge National Laboratory ...

  14. US ITER | Doing Business

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Please direct any questions, correspondence or submissions to the PPPL Procurement Division. ITER International Department of Energy Office of Science Oak Ridge National Laboratory ...

  15. US ITER | Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Staff Directory Staff Directory Lookup Fields Last Name Institution Submit Reset ITER International Department of Energy Office of Science Oak Ridge National Laboratory Princeton ...

  16. US ITER - Why Fusion?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ITER International Department of Energy Office of Science Oak Ridge National Laboratory Princeton Plasma Physics Laboratory Savannah River National Laboratory Last updated: 0327...

  17. US ITER | About

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Steady-State Electrical Network is an AC power substation and distribution system that supplies electrical power to all ITER conventional systems and facilities. A separate ...

  18. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Life-size Mock-Up Helps R&D Staff Get a Feel for the Scale of ITER Life-size Mock-Up Helps R&D Staff Get a Feel for the Scale of ITER -Agatha Bardoel Published October 7, 2011 A ...

  19. Travel Requirements - ITER (June 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Travel Requirements - ITER (June 2014) Prior to any travel under this subcontract, the ... approval, with a copy to the identified US ITER Project Office Travel Administrative ...

  20. INSIDE: ITER Site Progress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Monaco/ITER Postdoctoral Fellowship Program Upcoming Events US Researchers Parse Complex Plasma Issues From "Snowballs in Hell" to "Burping the Baby" - by Agatha Bardoel The design, testing, and manufacture of a pellet injection system is one of the key contributions of the United States to ITER. Physicist David Rasmussen serves as the lead for US ITER's fueling team and as a group leader in the Fusion Energy Division at Oak Ridge National Laboratory. He points out

  1. US ITER | About

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    If you plan to be in the area for an extended time, you might find the accommodations page under the Relocating section to be helpful. ITER International Department of Energy ...

  2. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To produce the pellets, researchers developed a twin-screw extruder which shapes a ... needed to supply a few seconds of fuel pellets at a time, but the ITER tokamak will ...

  3. US ITER | About

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The ITER TF coils are designed to have a total magnetic energy of 41 gigajoules and a maximum magnetic field of 11.8 tesla. The US is responsible for enough conductor to wind ...

  4. US ITER | Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    US Key Contact Key Contact Mark Uhran Communications Manager 865-574-8381 ITER International Department of Energy Office of Science Oak Ridge National Laboratory Princeton Plasma Physics Laboratory Savannah River National Laboratory Last updated: 05/21/2013

  5. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion diagnostics heat up across the US Fusion diagnostics heat up across the US Teams are developing tools to monitor and control ITER plasma -Lynne Degitz October 22, 2015 ITER, the world's largest tokamak now under construction in France, will have over 60 diagnostic systems installed to enable plasma control, optimize plasma performance, and support machine protection¬. Princeton Plasma Physics Laboratory and Oak Ridge National Laboratory, in collaboration with industry and universities,

  6. INSIDE: ITER Site Progress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Continued on page 8 INSIDE: ITER Site Progress View from DOE US Systems Update Engaging Industry, Universities and Labs Upcoming Events Disruption Mitigation Researchers Investigate Design Options ITER, the world's first reactor-scale fusion machine, will have a plasma volume more than 10 times that of the next largest tokamak, JET. Plasma disruptions that can occur in a tokamak when the plasma becomes unstable can potentially damage plasma-facing surfaces of the machine. To lessen the impact of

  7. Energy Systems Integration Partnerships: NREL + LiquidCool Solutions, Energy Systems Integration (ESI), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LIQUIDCOOL SOLUTIONS NREL is working with LiquidCool Solutions, Inc. (LCS) to demonstrate and characterize the performance of LCS's liquid-submerged technology for cooling computers and servers. LCS employs a dielectric fluid strategically directed onto electronic components in a liquid tight server enclosure. The fluid's high heat-carrying capacity enables efficient heat removal from temperature-sensitive electronics such as central processing units, graphics processing units, and memory. The

  8. Iterative software kernels

    SciTech Connect (OSTI)

    Duff, I.

    1994-12-31

    This workshop focuses on kernels for iterative software packages. Specifically, the three speakers discuss various aspects of sparse BLAS kernels. Their topics are: `Current status of user lever sparse BLAS`; Current status of the sparse BLAS toolkit`; and `Adding matrix-matrix and matrix-matrix-matrix multiply to the sparse BLAS toolkit`.

  9. ITER Fusion Energy

    ScienceCinema (OSTI)

    Dr. Norbert Holtkamp

    2010-01-08

    ITER (in Latin ?the way?) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen ? deuterium and tritium ? fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project ? China, the European Union, India, Japan, Korea, Russia and the United States ? represent more than half the world?s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

  10. ETR/ITER systems code

    SciTech Connect (OSTI)

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.; Bulmer, R.H.; Busigin, A.; DuBois, P.F.; Fenstermacher, M.E.; Fink, J.; Finn, P.A.; Galambos, J.D.; Gohar, Y.; Gorker, G.E.; Haines, J.R.; Hassanein, A.M.; Hicks, D.R.; Ho, S.K.; Kalsi, S.S.; Kalyanam, K.M.; Kerns, J.A.; Lee, J.D.; Miller, J.R.; Miller, R.L.; Myall, J.O.; Peng, Y-K.M.; Perkins, L.J.; Spampinato, P.T.; Strickler, D.J.; Thomson, S.L.; Wagner, C.E.; Willms, R.S.; Reid, R.L.

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs.

  11. The ITER Project: International Collaboration to Demonstrate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The ITER Project: International Collaboration to Demonstrate Nuclear Fusion American Fusion News Category: U.S. ITER Link: The ITER Project: International Collaboration to ...

  12. US Contributions to ITER Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contributions to ITER Project 12715 D etailee * M M atrix * S C S ubcontractor * * D ual C apacity 2

  13. ITER | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ITER Subscribe to RSS - ITER ITER is a large international fusion experiment aimed at demonstrating the scientific and technological feasibility of fusion energy. ITER (Latin for "the way") will play a critical role advancing the worldwide availability of energy from fusion - the power source of the sun and the stars. To produce practical amounts of fusion power on earth, heavy forms of hydrogen are joined together at high temperature with an accompanying production of heat energy. The

  14. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cryogenic deuterium machine gun corrals edgy plasma Cryogenic deuterium machine gun corrals edgy plasma -Agatha Bardoel Published May 3, 2012 Cryogenic deuterium machine gun Internal image of the three-barrel repeating pneumatic deuterium pellet injector used on DIII-D for pellet ELM pacing experiments. Photo: US ITER/ORNL Using a cryogenic deuterium pellet injector installed on the DIII-D tokamak operated for the Department of Energy Office of Science by General Atomics in San Diego, ORNL

  15. Iterative reconstruction of magnetic induction using Lorentz...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iterative reconstruction of magnetic induction using Lorentz transmission electron tomography Title Iterative reconstruction of magnetic induction using Lorentz transmission...

  16. A new frequency domain arc furnace model for iterative harmonic analysis

    SciTech Connect (OSTI)

    Mayordomo, J.G.; Beites, L.F.; Asensi, R.; Izzeddine, M.; Zabala, L.; Amantegui, J.

    1997-10-01

    This paper presents a new frequency domain Arc Furnace model for Iterative Harmonic Analysis (IHA) by means of a Newton method. Powerful analytical expressions for harmonic currents and their derivatives are obtained under the balanced conditions of the system. The model offers a three phase configuration where there is no path for homopolar currents. Moreover, it contemplates continuous and discontinuous evolution of the arc current. The solution obtained is validated by means of time domain simulations. Finally, the model was integrated in a harmonic power flow where studies have been performed in a network with more than 700 busbars and 7 actual Arc Furnace Loads.

  17. Demonstrating and Deploying Integrated Retrofit Technologies and Solutions- 2014 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Presenter: Mark Stutman, Consortium for Building Energy Innovation The Penn State Consortium for Building Energy Innovation focuses on the development, demonstration, and deployment of energy-saving technologies and solutions that can achieve 50% energy reduction in small- and medium-sized commercial buildings (SMSCBs).

  18. INSIDE: ITER Site Progress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From the Project Manager Awards and Procurement Update Project Highlights 2015 Timeline A Ye a r o f " F i r s t s " Continued on page 3 December 2015 for US Delivery and Fabrication First Nuclear Grade Hardware Delivered The US completed delivery of five drain tanks, fabricated by Joseph Oat Corporation in Camden, New Jersey, for the tokamak cooling water system. The tanks represent the first delivery of nuclear grade hardware to the ITER site. The US team achieved a strong working

  19. US ITER | Why Fusion?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Why Fusion? US Fusion Research Educational Resources Why Fusion? Home > Why Fusion? What is Fusion? Fusion is a key element in long-term US energy plans. ITER will allow scientists to explore the physics of a burning plasma at energy densities close to that of a commercial power plant. This is a critical step towards producing and delivering electricity from fusion to the grid. Nuclear fusion occurs naturally in stars, like our sun. When hydrogen gets hot enough, the process of fusion

  20. ITER helium ash accumulation

    SciTech Connect (OSTI)

    Hogan, J.T.; Hillis, D.L.; Galambos, J.; Uckan, N.A. ); Dippel, K.H.; Finken, K.H. . Inst. fuer Plasmaphysik); Hulse, R.A.; Budny, R.V. . Plasma Physics Lab.)

    1990-01-01

    Many studies have shown the importance of the ratio {upsilon}{sub He}/{upsilon}{sub E} in determining the level of He ash accumulation in future reactor systems. Results of the first tokamak He removal experiments have been analysed, and a first estimate of the ratio {upsilon}{sub He}/{upsilon}{sub E} to be expected for future reactor systems has been made. The experiments were carried out for neutral beam heated plasmas in the TEXTOR tokamak, at KFA/Julich. Helium was injected both as a short puff and continuously, and subsequently extracted with the Advanced Limiter Test-II pump limiter. The rate at which the He density decays has been determined with absolutely calibrated charge exchange spectroscopy, and compared with theoretical models, using the Multiple Impurity Species Transport (MIST) code. An analysis of energy confinement has been made with PPPL TRANSP code, to distinguish beam from thermal confinement, especially for low density cases. The ALT-II pump limiter system is found to exhaust the He with maximum exhaust efficiency (8 pumps) of {approximately}8%. We find 1<{upsilon}{sub He}/{upsilon}{sub E}<3.3 for the database of cases analysed to date. Analysis with the ITER TETRA systems code shows that these values would be adequate to achieve the required He concentration with the present ITER divertor He extraction system.

  1. Technical Proposal Disclosure Policy - ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proposal Disclosure Policy - ITER Pursuant to this solicitation, UT-Battelle will treat confidential proposal information as such and will disclose such information on a need to ...

  2. An integrated solution for secure group communication in wide-area networks

    SciTech Connect (OSTI)

    Agarwal, Deborah A.; Chevassut, Olivier; Thompson, Mary; Tsudik, Gene

    2001-04-01

    Many distributed applications require a secure reliable group communication system to provide coordination among the application components. This paper describes a secure group layer (SGL) which bundles a reliable group communication system, a group authorization and access control mechanism, and a group key agreement protocol to provide a comprehensive and practical secure group communication platform. SGL also encapsulates the standard message security services (i.e, confidentiality, authenticity and integrity). A number of challenging issues encountered in the design of SGL are brought to light and experimental results obtained with a prototype implementation are discussed.

  3. Integrated Treatment and Storage Solutions for Solid Radioactive Waste at the Russian Shipyard Near Polyarny

    SciTech Connect (OSTI)

    Griffith, A.; Engoy, T.; Endregard, M.; Busmundrud, O.; Schwab, P.; Nazarian, A.; Krumrine, P.; Backe, S.; Gorin, S.; Evans, B.

    2002-02-27

    Russian Navy Yard No. 10 (Shkval), near the city of Murmansk, has been designated as the recipient for Solid Radioactive Waste (SRW) pretreatment and storage facilities under the Arctic Military Environmental Cooperation (AMEC) Program. This shipyard serves the Northern Fleet by servicing, repairing, and dismantling naval vessels. Specifically, seven nuclear submarines of the first and second generation and Victor class are laid up at this shipyard, awaiting defueling and dismantlement. One first generation nuclear submarine has already been dismantled there, but recently progress on dismantlement has slowed because all the available storage space is full. SRW has been placed in metal storage containers, which have been moved outside of the actual storage site, which increases the environmental risks. AMEC is a cooperative effort between the Russian Federation, Kingdom of Norway and the United States. AMEC Projects 1.3 and 1.4 specifically address waste treatment and storage issues. Various waste treatment options have been assessed, technologies selected, and now integrated facilities are being designed and constructed to address these problems. Treatment technologies that are being designed and constructed include a mobile pretreatment facility comprising waste assay, segregation, size reduction, compaction and repackaging operations. Waste storage technologies include metal and concrete containers, and lightweight modular storage buildings. This paper focuses on the problems and challenges that are and will be faced at the Polyarninsky Shipyard. Specifically, discussion of the waste quantities, types, and conditions and various site considerations versus the various technologies that are to be employed will be provided. A systems approach at the site is being proposed by the Russian partners, therefore integration with other ongoing and planned operations at the site will also be discussed.

  4. BBC Video Looks at ITER | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BBC Video Looks at ITER American Fusion News Category: U.S. ITER Link: BBC Video Looks at ITER

  5. Recent ADI iteration analysis and results

    SciTech Connect (OSTI)

    Wachspress, E.L.

    1994-12-31

    Some recent ADI iteration analysis and results are discussed. Discovery that the Lyapunov and Sylvester matrix equations are model ADI problems stimulated much research on ADI iteration with complex spectra. The ADI rational Chebyshev analysis parallels the classical linear Chebyshev theory. Two distinct approaches have been applied to these problems. First, parameters which were optimal for real spectra were shown to be nearly optimal for certain families of complex spectra. In the linear case these were spectra bounded by ellipses in the complex plane. In the ADI rational case these were spectra bounded by {open_quotes}elliptic-function regions{close_quotes}. The logarithms of the latter appear like ellipses, and the logarithms of the optimal ADI parameters for these regions are similar to the optimal parameters for linear Chebyshev approximation over superimposed ellipses. W.B. Jordan`s bilinear transformation of real variables to reduce the two-variable problem to one variable was generalized into the complex plane. This was needed for ADI iterative solution of the Sylvester equation.

  6. ITER Diagnostic First Wal

    SciTech Connect (OSTI)

    G. Douglas Loesser, et. al.

    2012-09-21

    The ITER Diagnostic Division is responsible for designing and procuring the First Wall Blankets that are mounted on the vacuum vessel port plugs at both the upper and equatorial levels This paper will discuss the effects of the diagnostic aperture shape and configuration on the coolant circuit design. The DFW design is driven in large part by the need to conform the coolant arrangement to a wide variety of diagnostic apertures combined with the more severe heating conditions at the surface facing the plasma, the first wall. At the first wall, a radiant heat flux of 35W/cm2 combines with approximate peak volumetric heating rates of 8W/cm3 (equatorial ports) and 5W/cm3 (upper ports). Here at the FW, a fast thermal response is desirable and leads to a thin element between the heat flux and coolant. This requirement is opposed by the wish for a thicker FW element to accommodate surface erosion and other off-normal plasma events.

  7. US ITER toroidal field coil conductor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ITER toroidal field coil conductor production requires miles of niobium-tin superconducting wire. Photo: Oxford Superconducting Technology Continued on page 6 INSIDE: ITER Site ...

  8. Identification of Export Control Classification Number - ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Export Control Classification Number - ITER (April 2012) As the "Shipper of Record" ... be shipped from the United States to the ITER International Organization in Cadarache, ...

  9. Gamma ray spectrometer for ITER

    SciTech Connect (OSTI)

    Gin, D.; Chugunov, I.; Shevelev, A.; Khilkevitch, E.; Doinikov, D.; Naidenov, V.; Pasternak, A.; Polunovsky, I.; Kiptily, V.

    2014-08-21

    Gamma diagnostics is considered to be primary for the confined α-particles and runaway electrons measurements on ITER. The gamma spectrometer will be embedded into a neutron dump of the ITER Neutral Particle Analyzer diagnostic complex. It will supplement NPA measurements on the fuel isotope ratio and confined alphas/fast ions. In this paper an update on ITER gamma spectrometer developments is given. A new geometry of the system is described and detailed analysis of expected signals for the spectrometer is presented.

  10. Design Analysis and Manufacturing Studies for ITER In-Vessel Coils

    SciTech Connect (OSTI)

    Kalish, M.; Heitzenroeder, P.; Neumeyer, C.; Titus, P.; Zhai, Y.; Zatz, I.; Messineo, M.; Gomez, M.; Hause, C.; Daly, E.; Martin, A.; Wu, Y.; Jin, J.; Long, F.; Song, Y.; Wang, Z.; Yun, Zan; Hsiao, J.; Pillsbury, J. R.; Bohm, T.; Sawan, M.; Jiang, NFN

    2014-07-01

    ITER is incorporating two types of In Vessel Coils (IVCs): ELM Coils to mitigate Edge Localized Modes and VS Coils to provide Vertical Stabilization of the plasma. Strong coupling with the plasma is required so that the ELM and VS Coils can meet their performance requirements. Accordingly, the IVCs are in close proximity to the plasma, mounted just behind the Blanket Shield Modules. This location results in a radiation and temperature environment that is severe necessitating new solutions for material selection as well as challenging analysis and design solutions. Fitting the coil systems in between the blanket shield modules and the vacuum vessel leads to difficult integration with diagnostic cabling and cooling water manifolds.

  11. FETI Prime Domain Decomposition base Parallel Iterative Solver Library Ver.1.0

    Energy Science and Technology Software Center (OSTI)

    2003-09-15

    FETI Prime is a library for the iterative solution of linear equations in solid and structural mechanics. The algorithm employs preconditioned conjugate gradients, with a domain decomposition-based preconditioner. The software is written in C++ and is designed for use with massively parallel computers, using MPI. The algorithm is based on the FETI-DP method, with additional capabilities for handling constraint equations, as well as interfacing with the Salinas structural dynamics code and the Finite Element Interfacemore » (FEI) library. Practical Application: FETI Prime is designed for use with finite element-based simulation codes for solid and structural mechanics. The solver uses element matrices, connectivity information, nodal information, and force vectors computed by the host code and provides back the solution to the linear system of equations, to the user specified level of accuracy, The library is compiled with the host code and becomes an integral part of the host code executable.« less

  12. ITER neutralizer modeling (abstract)

    SciTech Connect (OSTI)

    Minea, T.; Lifschitz, A.; Maynard, G.; Katsonis, K.; Bretagne, J.; Simonin, A.

    2008-02-15

    In the neutralizer of the ITER Neutral Beam Injector, a 1 MeV-D{sup -} beam passes through an structure filled with D{sub 2} gas, where negative ions are mainly converted to fast D{sup 0} atoms. Once that the beam is neutralized no further optical correction is possible, i.e., transport from the neutralizer to the confinement chamber is ballistic. Because of this, the transport through the neutralizer determines ultimately the geometrical properties of the neutral beams. The ionization of the buffer gas (D{sub 2}) filling the neutralizer induced by the D beam creates a rarefied and low temperature plasma (ionization degree {approx_equal}10{sup -3}, electron temperature {approx_equal}20 eV). This plasma can screen the electrostatic well of the D beam and, consequently, affect the properties of the extracted beam and the energy transport to the neutralizer walls. On the other hand, the plasma will eventually escape from the neutralizer and move back in the accelerator chain, toward the accelerating grids and the source. We present particle-in-cell simulations of the beam propagation and plasma formation through the neutralizer. Particle-particle and particle-wall collisions are treated using a Monte Carlo approach. Simulations show that the secondary plasma effectively screens the beam space charge preventing beam radial expansion due to Coulomb repulsion between beam ions. First results suggest that the current of plasma ions (D{sub 2}{sup +}) into the accelerator would be of the order of I(D{sup -})/100, with I(D{sup -}) the negative ion current.

  13. Bragg x-ray survey spectrometer for ITER

    SciTech Connect (OSTI)

    Varshney, S. K.; Jakhar, S.; Barnsley, R.; O'Mullane, M. G.

    2012-10-15

    Several potential impurity ions in the ITER plasmas will lead to loss of confined energy through line and continuum emission. For real time monitoring of impurities, a seven channel Bragg x-ray spectrometer (XRCS survey) is considered. This paper presents design and analysis of the spectrometer, including x-ray tracing by the Shadow-XOP code, sensitivity calculations for reference H-mode plasma and neutronics assessment. The XRCS survey performance analysis shows that the ITER measurement requirements of impurity monitoring in 10 ms integration time at the minimum levels for low-Z to high-Z impurity ions can largely be met.

  14. Energetic ions in ITER plasmas

    SciTech Connect (OSTI)

    Pinches, S. D.; Chapman, I. T.; Sharapov, S. E.; Lauber, Ph. W.; Oliver, H. J. C.; Shinohara, K.; Tani, K.

    2015-02-15

    This paper discusses the behaviour and consequences of the expected populations of energetic ions in ITER plasmas. It begins with a careful analytic and numerical consideration of the stability of Alfvén Eigenmodes in the ITER 15 MA baseline scenario. The stability threshold is determined by balancing the energetic ion drive against the dominant damping mechanisms and it is found that only in the outer half of the plasma (r/a>0.5) can the fast ions overcome the thermal ion Landau damping. This is in spite of the reduced numbers of alpha-particles and beam ions in this region but means that any Alfvén Eigenmode-induced redistribution is not expected to influence the fusion burn process. The influence of energetic ions upon the main global MHD phenomena expected in ITER's primary operating scenarios, including sawteeth, neoclassical tearing modes and Resistive Wall Modes, is also reviewed. Fast ion losses due to the non-axisymmetric fields arising from the finite number of toroidal field coils, the inclusion of ferromagnetic inserts, the presence of test blanket modules containing ferromagnetic material, and the fields created by the Edge Localised Mode (ELM) control coils in ITER are discussed. The greatest losses and associated heat loads onto the plasma facing components arise due to the use of the ELM control coils and come from neutral beam ions that are ionised in the plasma edge.

  15. Neutronics at Wisconsin, ORNL advances ITER shielding and internationa...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutronics at Wisconsin, ORNL advances ITER shielding and international collaboration American Fusion News Category: U.S. ITER Link: Neutronics at Wisconsin, ORNL advances ITER ...

  16. ITER movie created by Oak Ridge National Laboratory, National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ITER movie created by Oak Ridge National Laboratory, National Center for Computational Sciences American Fusion News Category: U.S. ITER Link: ITER movie created by Oak Ridge ...

  17. COLLOQUIUM: ITER and its Diagnostics - Rising to the Challenge...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MBG Auditorium COLLOQUIUM: ITER and its Diagnostics - Rising to the Challenge Dr. Mike Walsh ITER The ITER project is now well underway with many teams completing various aspects ...

  18. GENERAL CONDITIONS FOR ITER ORGANIZATION SERVICE CONTRACTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ......... 8 Article 10. Payment ......The ITER Organization shall make no payment for the period when the Contractor's to be ...

  19. On square-integrability of solutions of the stationary Schrödinger equation for the quantum harmonic oscillator in two dimensional constant curvature spaces

    SciTech Connect (OSTI)

    Noguera, Norman; Rózga, Krzysztof

    2015-07-15

    In this work, one provides a justification of the condition that is usually imposed on the parameters of the hypergeometric equation, related to the solutions of the stationary Schrödinger equation for the harmonic oscillator in two-dimensional constant curvature spaces, in order to determine the solutions which are square-integrable. One proves that in case of negative curvature, it is a necessary condition of square integrability and in case of positive curvature, a necessary condition of regularity. The proof is based on the analytic continuation formulas for the hypergeometric function. It is observed also that the same is true in case of a slightly more general potential than the one for harmonic oscillator.

  20. Object-oriented design of preconditioned iterative methods

    SciTech Connect (OSTI)

    Bruaset, A.M.

    1994-12-31

    In this talk the author discusses how object-oriented programming techniques can be used to develop a flexible software package for preconditioned iterative methods. The ideas described have been used to implement the linear algebra part of Diffpack, which is a collection of C++ class libraries that provides high-level tools for the solution of partial differential equations. In particular, this software package is aimed at rapid development of PDE-based numerical simulators, primarily using finite element methods.

  1. Overview of Recent Developments in Pellet Injection for ITER

    SciTech Connect (OSTI)

    Combs, Stephen Kirk; Baylor, Larry R; Meitner, Steven J; Caughman, John B; Rasmussen, David A; Maruyama, So

    2012-01-01

    Pellet injection is the primary fueling technique planned for core fueling of ITER burning plasmas. Also, the injection of relatively small pellets to purposely trigger rapid small edge localized modes (ELMs) has been proposed as a possible solution to the heat flux damage from larger natural ELMs likely to be an issue on the ITER divertor surfaces. The ITER pellet injection system is designed to inject pellets into the plasma through both inner and outer wall guide tubes. The inner wall guide tubes will provide high throughput pellet fueling while the outerwall guide tubes will be used primarily to trigger ELMs at a high frequency (>15 Hz). The pellet fueling rate ofeach injector is to be up to 120 Pa-m3/s, which will require the formation of solid D-T at a volumetric rate of ~1500 mm3/s. Two injectors are to be provided for ITER at the startup with a provision for up to six injectorsduring the D-T phase. The required throughput of each injector is greater than that of any injector built to date, and a novel twin-screw continuous extrusion system is being developed to meet the challenging design parameters. Status of the development activities will be presented, highlighting recent progress.

  2. Thermo-mechanical analysis of ITER first mirrors and its use for the ITER equatorial visible/infrared wide angle viewing system optical design

    SciTech Connect (OSTI)

    Joanny, M.; Salasca, S.; Dapena, M.; Cantone, B.; Travere, J. M.; Thellier, C.; Ferme, J. J.; Marot, L.; Buravand, O.; Perrollaz, G.; Zeile, C.

    2012-10-15

    ITER first mirrors (FMs), as the first components of most ITER optical diagnostics, will be exposed to high plasma radiation flux and neutron load. To reduce the FMs heating and optical surface deformation induced during ITER operation, the use of relevant materials and cooling system are foreseen. The calculations led on different materials and FMs designs and geometries (100 mm and 200 mm) show that the use of CuCrZr and TZM, and a complex integrated cooling system can limit efficiently the FMs heating and reduce their optical surface deformation under plasma radiation flux and neutron load. These investigations were used to evaluate, for the ITER equatorial port visible/infrared wide angle viewing system, the impact of the FMs properties change during operation on the instrument main optical performances. The results obtained are presented and discussed.

  3. Efficient solution of the simplified PN equations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hamilton, Steven P.; Evans, Thomas M.

    2014-12-23

    We show new solver strategies for the multigroup SPN equations for nuclear reactor analysis. By forming the complete matrix over space, moments, and energy a robust set of solution strategies may be applied. Moreover, power iteration, shifted power iteration, Rayleigh quotient iteration, Arnoldi's method, and a generalized Davidson method, each using algebraic and physics-based multigrid preconditioners, have been compared on C5G7 MOX test problem as well as an operational PWR model. These results show that the most ecient approach is the generalized Davidson method, that is 30-40 times faster than traditional power iteration and 6-10 times faster than Arnoldi's method.

  4. ITER Port Interspace Pressure Calculations

    SciTech Connect (OSTI)

    Carbajo, Juan J; Van Hove, Walter A

    2016-01-01

    The ITER Vacuum Vessel (VV) is equipped with 54 access ports. Each of these ports has an opening in the bioshield that communicates with a dedicated port cell. During Tokamak operation, the bioshield opening must be closed with a concrete plug to shield the radiation coming from the plasma. This port plug separates the port cell into a Port Interspace (between VV closure lid and Port Plug) on the inner side and the Port Cell on the outer side. This paper presents calculations of pressures and temperatures in the ITER (Ref. 1) Port Interspace after a double-ended guillotine break (DEGB) of a pipe of the Tokamak Cooling Water System (TCWS) with high temperature water. It is assumed that this DEGB occurs during the worst possible conditions, which are during water baking operation, with water at a temperature of 523 K (250 C) and at a pressure of 4.4 MPa. These conditions are more severe than during normal Tokamak operation, with the water at 398 K (125 C) and 2 MPa. Two computer codes are employed in these calculations: RELAP5-3D Version 4.2.1 (Ref. 2) to calculate the blowdown releases from the pipe break, and MELCOR, Version 1.8.6 (Ref. 3) to calculate the pressures and temperatures in the Port Interspace. A sensitivity study has been performed to optimize some flow areas.

  5. Preconditioned iterations to calculate extreme eigenvalues

    SciTech Connect (OSTI)

    Brand, C.W.; Petrova, S.

    1994-12-31

    Common iterative algorithms to calculate a few extreme eigenvalues of a large, sparse matrix are Lanczos methods or power iterations. They converge at a rate proportional to the separation of the extreme eigenvalues from the rest of the spectrum. Appropriate preconditioning improves the separation of the eigenvalues. Davidson`s method and its generalizations exploit this fact. The authors examine a preconditioned iteration that resembles a truncated version of Davidson`s method with a different preconditioning strategy.

  6. Identification of Export Control Classification Number - ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Export Control Classification Number - ITER (April 2012) As the "Shipper of Record" please provide the appropriate Export Control Classification Number (ECCN) for the products (equipment, components and/or materials) and if applicable the nonproprietary associated installation/maintenance documentation that will be shipped from the United States to the ITER International Organization in Cadarache, France or to ITER Members worldwide on behalf of the Company. In rare instances an

  7. French landmark decree authorizes ITER construction | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Members of the ITER Organization include China, India, Japan, Russia and South Korea, in addition to the United States and the European Union. Contact Info PPPL Office of ...

  8. Iterative reconstruction of magnetic induction using Lorentz...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    induction of a nanostructure. This allows for implementing the reconstruction as a linear algebra problem such that various iterative algebraic reconstruction methods can be...

  9. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    SciTech Connect (OSTI)

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N.

    2014-08-21

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ–ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.

  10. Advancements and performance of iterative methods in industrial applications codes on CRAY parallel/vector supercomputers

    SciTech Connect (OSTI)

    Poole, G.; Heroux, M.

    1994-12-31

    This paper will focus on recent work in two widely used industrial applications codes with iterative methods. The ANSYS program, a general purpose finite element code widely used in structural analysis applications, has now added an iterative solver option. Some results are given from real applications comparing performance with the tradition parallel/vector frontal solver used in ANSYS. Discussion of the applicability of iterative solvers as a general purpose solver will include the topics of robustness, as well as memory requirements and CPU performance. The FIDAP program is a widely used CFD code which uses iterative solvers routinely. A brief description of preconditioners used and some performance enhancements for CRAY parallel/vector systems is given. The solution of large-scale applications in structures and CFD includes examples from industry problems solved on CRAY systems.

  11. Microsoft Word - ex1b-ITER-mar07.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B - Patent Rights - Acquisition by the Government - ITER UT-B Contracts Div March 2007 Page 1 of 6 ex1b-ITER-mar07.doc Exhibit 1B ITER Ref: DEAR 952.227-13 PATENT RIGHTS - ...

  12. ITER Ion Cyclotron Heating and Fueling Systems

    SciTech Connect (OSTI)

    Rasmussen, D.A.; Baylor, L.R.; Combs, S.K.; Fredd, E.; Goulding, R.H.; Hosea, J.; Swain, D.W.

    2005-04-15

    The ITER burning plasma and advanced operating regimes require robust and reliable heating and current drive and fueling systems. The ITER design documents describe the requirements and reference designs for the ion cyclotron and pellet fueling systems. Development and testing programs are required to optimize, validate and qualify these systems for installation on ITER.The ITER ion cyclotron system offers significant technology challenges. The antenna must operate in a nuclear environment and withstand heat loads and disruption forces beyond present-day designs. It must operate for long pulse lengths and be highly reliable, delivering power to a plasma load with properties that will change throughout the discharge. The ITER ion cyclotron system consists of one eight-strap antenna, eight rf sources (20 MW, 35-65 MHz), associated high-voltage DC power supplies, transmission lines and matching and decoupling components.The ITER fueling system consists of a gas injection system and multiple pellet injectors for edge fueling and deep core fueling. Pellet injection will be the primary ITER fuel delivery system. The fueling requirements will require significant extensions in pellet injector pulse length ({approx}3000 s), throughput (400 torr-L/s,) and reliability. The proposed design is based on a centrifuge accelerator fed by a continuous screw extruder. Inner wall pellet injection with the use of curved guide tubes will be utilized for deep fueling.

  13. Simulations of plasma behavior during pellet injection in ITER

    SciTech Connect (OSTI)

    Klaywittaphat, P. Onjun, T.

    2012-06-15

    Plasma behavior during pellet injection in ITER is investigated using a 1.5D BALDUR integrated predictive modeling code. In these simulations, the pellet ablation is described using the neutral gas shielding (NGS) model developed by Parks and Turnbull [Phys. Fluids 21, 1735 (1978)]. The NGS pellet ablation model that includes the {nabla}B drift effect is coupled with a plasma core transport model, which is a combination of an MMM95 anomalous transport model and an NCLASS neoclassical transport model. The combination of core transport models, together with pellet model, is used to simulate the time evolution of plasma current, ion and electron temperatures, and density profiles for ITER standard type-I ELMy H-mode discharges during the pellet injection. It is found that the injection of pellet can result in either enhancement or degradation of plasma performance. The {nabla}B drift effect on the pellet deposition is very strong in ITER. The plasma density with high field side pellets, which favorable with the {nabla}B drift effect, is much higher and pellet can penetrate much deeper than that with low field side pellets.

  14. PPPL's Hawryluk Named ITER Deputy Director-General | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPL's Hawryluk Named ITER Deputy Director-General By Patti Wieser March 8, 2011 Tweet ... director-general of the ITER Organization and director of its administration department. ...

  15. Pre-Commercial Demonstration of Direct Non-Iterative State Estimator (DNSE+)

    SciTech Connect (OSTI)

    Lelic, Dino

    2015-04-24

    The objective of this DOE co-funded project is to demonstrate functionality and performance of a production-grade Direct Non-iterative State Estimator (DNSE) through its integration with NYPA’s Energy Management System (EMS) and an enhanced Real Time Dynamics Monitoring System (RTDMS) synchrophasor platform from Electric Power Group (EPG). A production-grade DNSE aims to overcome a major obstacle to the operational use of synchrophasor data in Synchro-Phasor Management Systems (SPMS) by providing SPMS applications with a consistent and a complete synchrophasor data foundation in the same way that a traditional EMS State Estimator (SE) provides to EMS applications. Specifically, the DNSE uses synchrophasor measurements and Supervisory Control and Data Acquisition (SCADA) measurements, together with the complete power system model, to simultaneously obtain the complete state of the entire utility’s operating model at rates that are close to the synchrophasor data rates. The full system coverage property is what distinguishes the DNSE from the linear synchrophasor SEs (which cover only parts of the operating model that are visible through synchrophasor measurements), and DNSE differs from traditional EMS SE in that the solution is obtained without iterations, without initial values (hence the “direct” in the name), and at a much higher execution rate. This presentation provides an overview of the project objectives, a brief description of the main tasks including the development work to productize and optimize DNSE from its current MATLAB code base, RTDMS enhancement for interfacing with the DNSE, factory acceptance testing, field installation, testing and demonstration, as well as the current status of the project execution.

  16. Looking northeast over the ITER construction site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking northeast over the ITER construction site. A power shovel removes the first of some 230,000 cubic meters from the Tokamak Pit. Operations and Safety on the ITER Platform are being carefully coordinated by the Engage Consortium and the French company APAVE. Bulldozers and scrapers are busy leveling the 14,000 square-meter area that will host the huge PF Coils Assembly Building. Welcome to the first U.S. ITER newsletter. We have prepared this publication as part of our effort to better

  17. Anderson Acceleration for Fixed-Point Iterations

    SciTech Connect (OSTI)

    Walker, Homer F.

    2015-08-31

    The purpose of this grant was to support research on acceleration methods for fixed-point iterations, with applications to computational frameworks and simulation problems that are of interest to DOE.

  18. Microsoft Word - ex15-ITER-sept10.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 - Rights in Data-Special Works - ITER UT-B Contracts Div Sept 2010 Page 1 of 1 ex15-ITER-sept10.doc Exhibit 15-ITER Ref: FAR 52.227-17 RIGHTS IN DATA SPECIAL WORKS ITER ...

  19. Optical dumps for H-alpha and visible spectroscopy in ITER

    SciTech Connect (OSTI)

    Andreenko, E. N.; Alekseev, A. G.; Gorshkov, A. V.; Orlovskiy, I. I.

    2014-08-21

    High-reflective Beryllium cover of ITER first wall (R≈30–60%) causes remarkable increase of divertor stray light component (DSL). Optical dumps are well-known solution for DSL attenuation. In this work few types of optical dumps have been examined both by modeling and experimental studies. Taking into account the limitations, induced by ITER first wall design, OD optimized design has been proposed which could decrease divertor stray light component by 10..100 times depending on incidence angle of light.

  20. U.S. Contributions to ITER

    SciTech Connect (OSTI)

    Ned R. Sauthoff

    2005-05-13

    The United States participates in the ITER project and program to enable the study of the science and technology of burning plasmas, a key programmatic element missing from the world fusion program. The 2003 U.S. decision to enter the ITER negotiations followed an extensive series of community and governmental reviews of the benefits, readiness, and approaches to the study of burning plasmas. This paper describes both the technical and the organizational preparations and plans for U.S. participation in the ITER construction activity: in-kind contributions, staff contributions, and cash contributions as well as supporting physics and technology research. Near-term technical activities focus on the completion of R&D and design and mitigation of risks in the areas of the central solenoid magnet, shield/blanket, diagnostics, ion cyclotron system, electron cyclotron system, pellet fueling system, vacuum system, tritium processing system, and conventional systems. Outside the project, the U .S. is engaged in preparations for the test blanket module program. Organizational activities focus on preparations of the project management arrangements to maximize the overall success of the ITER Project; elements include refinement of U.S. directions on the international arrangements, the establishment of the U.S. Domestic Agency, progress along the path of the U.S. Department of Energy's Project Management Order, and overall preparations for commencement of the fabrication of major items of equipment and for provision of staff and cash as specified in the upcoming ITER agreement.

  1. Preliminary Master Logic Diagram for ITER operation

    SciTech Connect (OSTI)

    Cadwallader, L.C.; Taylor, N.P.; Poucet, A.E.

    1998-04-01

    This paper describes the work performed to develop a Master Logic Diagram (MLD) for the operations phase of the International Thermonuclear Experimental Reactor (ITER). The MLD is a probabilistic risk assessment tool used to identify the broad set of potential initiating events that could lead to an offsite radioactive or toxic chemical release from the facility under study. The MLD described here is complementary to the failure modes and effects analyses (FMEAs) that have been performed for ITER`s major plant systems in the engineering evaluation of the facility design. While the FMEAs are a bottom-up or component level approach, the MLD is a top-down or facility level approach to identifying the broad spectrum of potential events. Strengths of the MLD are that it analyzes the entire plant, depicts completeness in the accident initiator process, provides an independent method for identification, and can also identify potential system interactions. MLDs have been used successfully as a hazard analysis tool. This paper describes the process used for the ITER MLD to treat the variety of radiological and toxicological source terms present in the ITER design. One subtree of the nineteen page MLD is shown to illustrate the levels of the diagram.

  2. Electromagnetic Analysis For The Design Of ITER Diagnostic Port Plugs During Plasma Disruptions

    SciTech Connect (OSTI)

    Zhai, Y

    2014-03-03

    ITER diagnostic port plugs perform many functions including structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to plasma. The design of diagnotic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate response of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs). Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration due to electrical contact among various EPP structural components are discussed.

  3. Electromagnetic Analysis of ITER Diagnostic Equatorial Port Plugs During Plasma Disruptions

    SciTech Connect (OSTI)

    Y. Zhai, R. Feder, A. Brooks, M. Ulrickson, C.S. Pitcher and G.D. Loesser

    2012-08-27

    ITER diagnostic port plugs perform many functionsincluding structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to the plasma. The design of diagnostic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate responses of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs), Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration due to electrical contact among various EPP structural components are discussed.

  4. DOE/SC Lehman Review of US ITER Project, USIPO,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SC Lehman Review of US ITER Project, USIPO, Oak Ridge, Tennessee, April 5-7, 2011 - Ned Sauthoff Project Manager, US ITER INSIDE: ITER Site Progress Secret City View from DOE US Project Highlights Engaging Industry New PPPL Head of ITER Department PPPL to Cadarache New Division Director Positions Open at US ITER Upcoming Events ORNL 2011-G00858/jpp It has been a busy season for US ITER, as the team positions for fabrication in late-FY 12 and FY 13. Our priorities remain completing designs,

  5. Report of a technical evaluation panel on the use of beryllium for ITER plasma facing material and blanket breeder material

    SciTech Connect (OSTI)

    Ulrickson, M.A.; Manly, W.D.; Dombrowski, D.E.

    1995-08-01

    Beryllium because of its low atomic number and high thermal conductivity, is a candidate for both ITER first wall and divertor surfaces. This study addresses the following: why beryllium; design requirements for the ITER divertor; beryllium supply and unirradiated physical/mechanical property database; effects of irradiation on beryllium properties; tritium issues; beryllium health and safety; beryllium-coolant interactions and safety; thermal and mechanical tests; plasma erosion of beryllium; recommended beryllium grades for ITER plasma facing components; proposed manufacturing methods to produce beryllium parts for ITER; emerging beryllium materials; proposed inspection and maintenance techniques for beryllium components and coatings; time table and costs; and the importance of integrating materials and manufacturing personnel with designers.

  6. COLLOQUIUM: Functional Capabilities and Design of the ITER EC...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MBG Auditorium, PPPL (284 cap.) COLLOQUIUM: Functional Capabilities and Design of the ITER EC H&CD System Dr. Mark Henderson ITER Organization A 24MW Electron Cyclotron (EC) system ...

  7. Annex I ITER Organization Service Contract General Conditions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    All property of the Contractor while at the ITER Organization premises shall be at the risk of the Contractor and the ITER Organization shall accept no liability for any loss or...

  8. Annex I ITER Organization Service Contract General Conditions (2014)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I ITER Organization Service Contract General Conditions (2014) Page 1 of 21 GENERAL CONDITIONS FOR ITER ORGANIZATION SERVICE CONTRACTS (2014) Definitions ..................................................................................................................... 3 Article 1. Law and language of the Contract ................................................................................. 3 Article 2. Communications

  9. RIGHT OF ACCESS BY OTHERS - ITER (December 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RIGHT OF ACCESS BY OTHERS - ITER (December 2013) In order to ensure the quality and fitness of components and systems procured for ITER, the Company, ITER International Organization (IO), other ITER Domestic Agencies (DA), or authorized representatives of any of these organizations (e.g. inspectors) shall have right of access to Seller's (and any of its subcontractor's) premises to: - Witness acceptance tests; - Attend periodic meetings to monitor contract execution; - Perform reviews,

  10. International Workshop: MFE Roadmapping in the ITER Era | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab International Workshop: MFE Roadmapping in the ITER Era International Workshop: MFE Roadmapping in the ITER Era Contact Information Website: International Workshop: MFE Roadmapping in the ITER Era Coordinator(s): Pamela Hampton phampton@pppl.gov Host(s): G.H. Neilson hneilson@pppl.gov Learn More Fusion roadmapping

  11. Main challenges for ITER optical diagnostics

    SciTech Connect (OSTI)

    Vukolov, K. Yu.; Orlovskiy, I. I.; Alekseev, A. G.; Borisov, A. A.; Andreenko, E. N.; Kukushkin, A. B.; Lisitsa, V. S.; Neverov, V. S.

    2014-08-21

    The review is made of the problems of ITER optical diagnostics. Most of these problems will be related to the intensive neutron radiation from hot plasma. At a high level of radiation loads the most types of materials gradually change their properties. This effect is most critical for optical diagnostics because of degradation of optical glasses and mirrors. The degradation of mirrors, that collect the light from plasma, basically will be induced by impurity deposition and (or) sputtering by charge exchange atoms. Main attention is paid to the search of glasses for vacuum windows and achromatic lens which are stable under ITER irradiation conditions. The last results of irradiation tests in nuclear reactor of candidate silica glasses KU-1, KS-4V and TF 200 are presented. An additional problem is discussed that deals with the stray light produced by multiple reflections from the first wall of the intense light emitted in the divertor plasma.

  12. Enisolar Energy Solutions | Open Energy Information

    Open Energy Info (EERE)

    Solutions Jump to: navigation, search Name: Enisolar Energy Solutions Place: Istanbul, Turkey Sector: Wind energy Product: Turkey-based wind, PV, and hybrid system integrator; also...

  13. Statistical properties of an iterated arithmetic mapping

    SciTech Connect (OSTI)

    Feix, M.R.; Rouet, J.L.

    1994-07-01

    We study the (3x = 1)/2 problem from a probabilistic viewpoint and show a forgetting mechanism for the last k binary digits of the seed after k iterations. The problem is subsequently generalized to a trifurcation process, the (lx + m)/3 problem. Finally the sequence of a set of seeds is empirically shown to be equivalent to a random walk of the variable log{sub 2}x (or log{sub 3} x) though computer simulations.

  14. Iterative Reconstruction of Coded Source Neutron Radiographs

    SciTech Connect (OSTI)

    Santos-Villalobos, Hector J; Bingham, Philip R; Gregor, Jens

    2012-01-01

    Use of a coded source facilitates high-resolution neutron imaging but requires that the radiographic data be deconvolved. In this paper, we compare direct deconvolution with two different iterative algorithms, namely, one based on direct deconvolution embedded in an MLE-like framework and one based on a geometric model of the neutron beam and a least squares formulation of the inverse imaging problem.

  15. US ITER is a strong contributor in plan to enhance international...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    US ITER is a strong contributor in plan to enhance international sharing of prime ITER real estate American Fusion News Category: U.S. ITER Link: US ITER is a strong contributor in ...

  16. Conformal mapping and convergence of Krylov iterations

    SciTech Connect (OSTI)

    Driscoll, T.A.; Trefethen, L.N.

    1994-12-31

    Connections between conformal mapping and matrix iterations have been known for many years. The idea underlying these connections is as follows. Suppose the spectrum of a matrix or operator A is contained in a Jordan region E in the complex plane with 0 not an element of E. Let {phi}(z) denote a conformal map of the exterior of E onto the exterior of the unit disk, with {phi}{infinity} = {infinity}. Then 1/{vert_bar}{phi}(0){vert_bar} is an upper bound for the optimal asymptotic convergence factor of any Krylov subspace iteration. This idea can be made precise in various ways, depending on the matrix iterations, on whether A is finite or infinite dimensional, and on what bounds are assumed on the non-normality of A. This paper explores these connections for a variety of matrix examples, making use of a new MATLAB Schwarz-Christoffel Mapping Toolbox developed by the first author. Unlike the earlier Fortran Schwarz-Christoffel package SCPACK, the new toolbox computes exterior as well as interior Schwarz-Christoffel maps, making it easy to experiment with spectra that are not necessarily symmetric about an axis.

  17. Suntech Energy Solutions Formerly EI Solutions | Open Energy...

    Open Energy Info (EERE)

    Place: Pasadena, California Zip: 91103 Sector: Solar Product: A California-based solar power systems integrator and installer. References: Suntech Energy Solutions...

  18. Planning for U.S. Fusion Community Participation in the ITER Program

    SciTech Connect (OSTI)

    Baker, Charles; Berk, Herbert; Greenwald, Martin; Mauel, Michael E.; Najmabadi, Farrokh; Nevins, William M.; Stambaugh, Ronald; Synakowski, Edmund; Batchelor, Donald B.; Fonck, Raymond; Hawryluk, Richard J.; Meade, Dale M.; Neilson, George H.; Parker, Ronald; Strait, Ted

    2006-06-07

    A central step in the mission of the U.S. Fusion Energy Sciences program is the creation and study of a fusion-powered "star on earth", where the same energy source that drives the sun and other stars is reproduced and controlled for sustained periods in the laboratory. This “star” is formed by an ionized gas, or plasma, heated to fusion temperatures in a magnetic confinement device known as a tokamak, which is the most advanced magnetic fusion concept. The ITER tokamak is designed to be the premier scientific tool for exploring and testing expectations for plasma behavior in the fusion burning plasma regime, wherein the fusion process itself provides the dominant heat source to sustain the plasma temperature. It will provide the scientific basis and control tools needed to move toward the fusion energy goal. The ITER project confronts the grand challenge of creating and understanding a burning plasma for the first time. The distinguishing characteristic of a burning plasma is the tight coupling between the fusion heating, the resulting energetic particles, and the confinement and stability properties of the plasma. Achieving this strongly coupled burning state requires resolving complex physics issues and integrating challenging technologies. A clear and comprehensive scientific understanding of the burning plasma state is needed to confidently extrapolate plasma behavior and related technology beyond ITER to a fusion power plant. Developing this predictive understanding is the overarching goal of the U.S. Fusion Energy Sciences program. The burning plasma research program in the U.S. is being organized to maximize the scientific benefits of U.S. participation in the international ITER experiment. It is expected that much of the research pursued on ITER will be based on the scientific merit of proposed activities, and it will be necessary to maintain strong fusion research capabilities in the U.S. to successfully contribute to the success of ITER and optimize

  19. GMRES and integral operators

    SciTech Connect (OSTI)

    Kelley, C.T.; Xue, Z.Q.

    1994-12-31

    Many discretizations of integral equations and compact fixed point problems are collectively compact and strongly convergent in spaces of continuous functions. These properties not only lead to stable and convergent approximations but also can be used in the construction of fast multilevel algorithms. Recently the GMRES algorithm has become a standard coarse mesh solver. The purpose of this paper is to show how the special properties of integral operators and their approximations are reflected in the performance of the GMRES iteration and how these properties can be used to strengthen the norm in which convergence takes place. The authors illustrate these ideas with composite Gauss rules for integral equations on the unit interval.

  20. Integration of progressive hedging and dual decomposition in stochastic integer programs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Watson, Jean -Paul; Guo, Ge; Hackebeil, Gabriel; Ryan, Sarah M.; Woodruff, David L.

    2015-04-07

    We present a method for integrating the Progressive Hedging (PH) algorithm and the Dual Decomposition (DD) algorithm of Carøe and Schultz for stochastic mixed-integer programs. Based on the correspondence between lower bounds obtained with PH and DD, a method to transform weights from PH to Lagrange multipliers in DD is found. Fast progress in early iterations of PH speeds up convergence of DD to an exact solution. As a result, we report computational results on server location and unit commitment instances.

  1. Final Report on ITER Task Agreement 81-08

    SciTech Connect (OSTI)

    Richard L. Moore

    2008-03-01

    As part of an ITER Implementing Task Agreement (ITA) between the ITER US Participant Team (PT) and the ITER International Team (IT), the INL Fusion Safety Program was tasked to provide the ITER IT with upgrades to the fusion version of the MELCOR 1.8.5 code including a beryllium dust oxidation model. The purpose of this model is to allow the ITER IT to investigate hydrogen production from beryllium dust layers on hot surfaces inside the ITER vacuum vessel (VV) during in-vessel loss-of-cooling accidents (LOCAs). Also included in the ITER ITA was a task to construct a RELAP5/ATHENA model of the ITER divertor cooling loop to model the draining of the loop during a large ex-vessel pipe break followed by an in-vessel divertor break and compare the results to a simular MELCOR model developed by the ITER IT. This report, which is the final report for this agreement, documents the completion of the work scope under this ITER TA, designated as TA 81-08.

  2. Diverse Power Iteration Embeddings and Its Applications

    SciTech Connect (OSTI)

    Huang H.; Yoo S.; Yu, D.; Qin, H.

    2014-12-14

    Abstract—Spectral Embedding is one of the most effective dimension reduction algorithms in data mining. However, its computation complexity has to be mitigated in order to apply it for real-world large scale data analysis. Many researches have been focusing on developing approximate spectral embeddings which are more efficient, but meanwhile far less effective. This paper proposes Diverse Power Iteration Embeddings (DPIE), which not only retains the similar efficiency of power iteration methods but also produces a series of diverse and more effective embedding vectors. We test this novel method by applying it to various data mining applications (e.g. clustering, anomaly detection and feature selection) and evaluating their performance improvements. The experimental results show our proposed DPIE is more effective than popular spectral approximation methods, and obtains the similar quality of classic spectral embedding derived from eigen-decompositions. Moreover it is extremely fast on big data applications. For example in terms of clustering result, DPIE achieves as good as 95% of classic spectral clustering on the complex datasets but 4000+ times faster in limited memory environment.

  3. PPPL's Hawryluk Named ITER Deputy Director-General | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab PPPL's Hawryluk Named ITER Deputy Director-General By Patti Wieser March 8, 2011 Tweet Widget Google Plus One Share on Facebook Richard Hawryluk (Photo by Elle Starkman, PPPL Office of Communications) Richard Hawryluk Richard Hawryluk, a senior scientist at the DOE Princeton Plasma Physics Laboratory (PPPL), has been appointed deputy director-general of the ITER Organization and director of its administration department. The ITER project, currently under construction in France,

  4. Preliminary Neutronics Analysis of the ITER Toroidal Interferometer and

    Office of Scientific and Technical Information (OSTI)

    Polarimeter Diagnostic Corner Cube Retroreflectors (Journal Article) | SciTech Connect Preliminary Neutronics Analysis of the ITER Toroidal Interferometer and Polarimeter Diagnostic Corner Cube Retroreflectors Citation Details In-Document Search Title: Preliminary Neutronics Analysis of the ITER Toroidal Interferometer and Polarimeter Diagnostic Corner Cube Retroreflectors ITER is an international project under construction in France that will demonstrate nuclear fusion at a power

  5. Simulation and Analysis of the Hybrid Operating Mode in ITER

    SciTech Connect (OSTI)

    Kessel, C.E.; Budny, R.V.; Indireshkumar, K.

    2005-09-22

    The hybrid operating mode in ITER is examined with 0D systems analysis, 1.5D discharge scenario simulations using TSC and TRANSP, and the ideal MHD stability is discussed. The hybrid mode has the potential to provide very long pulses and significant neutron fluence if the physics regime can be produced in ITER. This paper reports progress in establishing the physics basis and engineering limitation for the hybrid mode in ITER.

  6. COLLOQUIUM: Handling Plasma Wall Interactions on ITER | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab June 8, 2015, 4:15pm to 6:30pm Colloquia MBG Auditorium COLLOQUIUM: Handling Plasma Wall Interactions on ITER Dr. Richard Pitts ITER Although the ITER machine design is essentially complete, with almost all major systems into the procurement phase, there are many physics issues which remain open and require continued investigation during the machine construction years in preparation for both early operation and the high performance burning plasma phases. Boundary physics and the

  7. A sequential partly iterative approach for multicomponent reactive transport with CORE2D

    SciTech Connect (OSTI)

    Samper, J.; Xu, T.; Yang, C.

    2008-11-01

    CORE{sup 2D} V4 is a finite element code for modeling partly or fully saturated water flow, heat transport and multicomponent reactive solute transport under both local chemical equilibrium and kinetic conditions. It can handle coupled microbial processes and geochemical reactions such as acid-base, aqueous complexation, redox, mineral dissolution/precipitation, gas dissolution/exsolution, ion exchange, sorption via linear and nonlinear isotherms, sorption via surface complexation. Hydraulic parameters may change due to mineral precipitation/dissolution reactions. Coupled transport and chemical equations are solved by using sequential iterative approaches. A sequential partly-iterative approach (SPIA) is presented which improves the accuracy of the traditional sequential noniterative approach (SNIA) and is more efficient than the general sequential iterative approach (SIA). While SNIA leads to a substantial saving of computing time, it introduces numerical errors which are especially large for cation exchange reactions. SPIA improves the efficiency of SIA because the iteration between transport and chemical equations is only performed in nodes with a large mass transfer between solid and liquid phases. The efficiency and accuracy of SPIA are compared to those of SIA and SNIA using synthetic examples and a case study of reactive transport through the Llobregat Delta aquitard in Spain. SPIA is found to be as accurate as SIA while requiring significantly less CPU time. In addition, SPIA is much more accurate than SNIA with only a minor increase in computing time. A further enhancement of the efficiency of SPIA is achieved by improving the efficiency of the Newton-Raphson method used for solving chemical equations. Such an improvement is obtained by working with increments of log-concentrations and ignoring the terms of the Jacobian matrix containing derivatives of activity coefficients. A proof is given for the symmetry and non-singularity of the Jacobian matrix

  8. Microsoft Word - ex15-ITER-sept10.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 - Rights in Data-Special Works - ITER UT-B Contracts Div Sept 2010 Page 1 of 1 ex15-ITER-sept10.doc Exhibit 15-ITER Ref: FAR 52.227-17 RIGHTS IN DATA í SPECIAL WORKS í ITER (Sept 2010) (a) Definitions. (1) "Data", as used in this clause, means recorded information, regardless of form or the media on which it may be recorded. The term includes technical data and computer software. The term does not include information incidental to contract administration, such as financial,

  9. Microsoft Word - ex1b-ITER-mar07.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B - Patent Rights - Acquisition by the Government - ITER UT-B Contracts Div March 2007 Page 1 of 6 ex1b-ITER-mar07.doc Exhibit 1B ITER Ref: DEAR 952.227-13 PATENT RIGHTS - ACQUISITION BY THE GOVERNMENT - ITER (Mar 2007) (a) Definitions. (1) "Invention", as used in this clause, means any invention or discovery which is or may be patentable or otherwise protectable under title 35 of the United States Code or any novel variety of plant that is or may be protectable under the Plant Variety

  10. Microsoft Word - ex9-ITER-june11.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Technical Data - ITER UT-B Contracts Div June 2011 Page 1 of 5 ex9-ITER-june11.doc Exhibit 9 ITER Ref: DEAR 927.409; FAR 52.227-14, 52.227-14 Alt.V, 52.227-16 TECHNICAL DATA - ITER (June 2011) 1. RIGHTS IN DATA - GENERAL (a) Definitions. (1) "Computer data bases," as used in this clause, means a collection of data in a form capable of, and for the purpose of, being stored in, processed, and operated on by a computer. The term does not include computer software. (2) "Computer

  11. Microsoft Word - ex9ed-ITER-june11.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ED - Technical Data - ITER UT-B Contracts Div June 2011 Page 1 of 5 ex9ed-ITER-june11.doc Exhibit 9ED ITER Ref: DEAR 927.409; FAR 52.227-14, 52.227-14 Alt. IV, 52.227-14 Alt. V, 52.227-16 TECHNICAL DATA - ITER (June 2011) 1. RIGHTS IN DATA-GENERAL (a) Definitions. (1) "Computer data bases," as used in this clause, means a collection of data in a form capable of, and for the purpose of, being stored in, processed, and operated on by a computer. The term does not include computer

  12. Microsoft Word - ex9rdf-ITER-sept09.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RDF - Technical Data - ITER UT-B Contracts Div Sept 2009 Page 1 of 5 ex9rdf-ITER-sept09.doc Exhibit 9RDF-ITER Ref: DEAR 970.5227-1 TECHNICAL DATA - ITER (Sept 2009) 1. Rights in Data-Facilities. (a) Definitions. (1) "Computer Data Bases", as used in this clause, means a collection of data in a form capable of, and for the purpose of, being stored in, processed, and operated on by a computer. The term does not include Computer Software. (2) "Computer Software", as used in this

  13. Annex I ITER Organization Service Contract General Conditions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annex I ITER Organization Service Contract General Conditions (2014) Page 1 of 21 GENERAL ... 3 Article 1. Law and language of the Contract ......

  14. Technological Institute of Renewable Energy ITER | Open Energy...

    Open Energy Info (EERE)

    to: navigation, search Name: Technological Institute of Renewable Energy (ITER) Place: Santa Cruz de Tenerife, Spain Zip: 38611 Sector: Solar, Wind energy Product: Spain-based,...

  15. US ITER (International Thermonuclear Experimental Reactor) shield and blanket design activities

    SciTech Connect (OSTI)

    Baker, C.C.

    1988-08-01

    This paper summarizes nuclear-related work in support of the US effort for the International Thermonuclear Experimental Reactor (ITER) Study. Primary tasks carried out during the past year include design improvements of the inboard shield developed for the TIBER concept, scoping studies of a variety of tritium breeding blanket options, development of necessary design guidelines and evaluation criteria for the blanket options, further safety considerations related to nuclear components, and issues regarding structural materials for an ITER device. The blanket concepts considered are the aqueous/Li salt solution, a water-cooled, solid breeder blanket, a helium-cooled, solid-breeder blanket, a blanket cooled by helium containing lithium-bearing particulates, and a blanket concept based on breeding tritium from He/sup 3/. 1 ref., 2 tabs.

  16. Theory of runaway electrons in ITER: Equations, important parameters, and implications for mitigation

    SciTech Connect (OSTI)

    Boozer, Allen H.

    2015-03-15

    The plasma current in ITER cannot be allowed to transfer from thermal to relativistic electron carriers. The potential for damage is too great. Before the final design is chosen for the mitigation system to prevent such a transfer, it is important that the parameters that control the physics be understood. Equations that determine these parameters and their characteristic values are derived. The mitigation benefits of the injection of impurities with the highest possible atomic number Z and the slowing plasma cooling during halo current mitigation to ≳40 ms in ITER are discussed. The highest possible Z increases the poloidal flux consumption required for each e-fold in the number of relativistic electrons and reduces the number of high energy seed electrons from which exponentiation builds. Slow cooling of the plasma during halo current mitigation also reduces the electron seed. Existing experiments could test physics elements required for mitigation but cannot carry out an integrated demonstration. ITER itself cannot carry out an integrated demonstration without excessive danger of damage unless the probability of successful mitigation is extremely high. The probability of success depends on the reliability of the theory. Equations required for a reliable Monte Carlo simulation are derived.

  17. Nuclear Forensic Inferences Using Iterative Multidimensional Statistics

    SciTech Connect (OSTI)

    Robel, M; Kristo, M J; Heller, M A

    2009-06-09

    Nuclear forensics involves the analysis of interdicted nuclear material for specific material characteristics (referred to as 'signatures') that imply specific geographical locations, production processes, culprit intentions, etc. Predictive signatures rely on expert knowledge of physics, chemistry, and engineering to develop inferences from these material characteristics. Comparative signatures, on the other hand, rely on comparison of the material characteristics of the interdicted sample (the 'questioned sample' in FBI parlance) with those of a set of known samples. In the ideal case, the set of known samples would be a comprehensive nuclear forensics database, a database which does not currently exist. In fact, our ability to analyze interdicted samples and produce an extensive list of precise materials characteristics far exceeds our ability to interpret the results. Therefore, as we seek to develop the extensive databases necessary for nuclear forensics, we must also develop the methods necessary to produce the necessary inferences from comparison of our analytical results with these large, multidimensional sets of data. In the work reported here, we used a large, multidimensional dataset of results from quality control analyses of uranium ore concentrate (UOC, sometimes called 'yellowcake'). We have found that traditional multidimensional techniques, such as principal components analysis (PCA), are especially useful for understanding such datasets and drawing relevant conclusions. In particular, we have developed an iterative partial least squares-discriminant analysis (PLS-DA) procedure that has proven especially adept at identifying the production location of unknown UOC samples. By removing classes which fell far outside the initial decision boundary, and then rebuilding the PLS-DA model, we have consistently produced better and more definitive attributions than with a single pass classification approach. Performance of the iterative PLS-DA method

  18. Magnet design technical report---ITER definition phase

    SciTech Connect (OSTI)

    Henning, C.

    1989-04-28

    This report contains papers on the following topics: conceptual design; radiation damage of ITER magnet systems; insulation system of the magnets; critical current density and strain sensitivity; toroidal field coil structural analysis; stress analysis for the ITER central solenoid; and volt-second capabilities and PF magnet configurations.

  19. Evaluating iterative reconstruction performance in computed tomography

    SciTech Connect (OSTI)

    Chen, Baiyu Solomon, Justin; Ramirez Giraldo, Juan Carlos; Samei, Ehsan

    2014-12-15

    Purpose: Iterative reconstruction (IR) offers notable advantages in computed tomography (CT). However, its performance characterization is complicated by its potentially nonlinear behavior, impacting performance in terms of specific tasks. This study aimed to evaluate the performance of IR with both task-specific and task-generic strategies. Methods: The performance of IR in CT was mathematically assessed with an observer model that predicted the detection accuracy in terms of the detectability index (d′). d′ was calculated based on the properties of the image noise and resolution, the observer, and the detection task. The characterizations of image noise and resolution were extended to accommodate the nonlinearity of IR. A library of tasks was mathematically modeled at a range of sizes (radius 1–4 mm), contrast levels (10–100 HU), and edge profiles (sharp and soft). Unique d′ values were calculated for each task with respect to five radiation exposure levels (volume CT dose index, CTDI{sub vol}: 3.4–64.8 mGy) and four reconstruction algorithms (filtered backprojection reconstruction, FBP; iterative reconstruction in imaging space, IRIS; and sinogram affirmed iterative reconstruction with strengths of 3 and 5, SAFIRE3 and SAFIRE5; all provided by Siemens Healthcare, Forchheim, Germany). The d′ values were translated into the areas under the receiver operating characteristic curve (AUC) to represent human observer performance. For each task and reconstruction algorithm, a threshold dose was derived as the minimum dose required to achieve a threshold AUC of 0.9. A task-specific dose reduction potential of IR was calculated as the difference between the threshold doses for IR and FBP. A task-generic comparison was further made between IR and FBP in terms of the percent of all tasks yielding an AUC higher than the threshold. Results: IR required less dose than FBP to achieve the threshold AUC. In general, SAFIRE5 showed the most significant dose reduction

  20. Numerical solution of control problems governed by nonlinear differential equations

    SciTech Connect (OSTI)

    Heinkenschloss, M.

    1994-12-31

    In this presentation the author investigates an iterative method for the solution of optimal control problems. These problems are formulated as constrained optimization problems with constraints arising from the state equation and in the form of bound constraints on the control. The method for the solution of these problems uses the special structure of the problem arising from the bound constraint and the state equation. It is derived from SQP methods and projected Newton methods and combines the advantages of both methods. The bound constraint is satisfied by all iterates using a projection, the nonlinear state equation is satisfied in the limit. Only a linearized state equation has to be solved in every iteration. The solution of the linearized problems are done using multilevel methods and GMRES.

  1. Nuclear modules of ITER tokamak systems code

    SciTech Connect (OSTI)

    Gohar, Y.; Baker, C.; Brooks, J.; Finn, P.; Hassanein, A.; Willms, S.; Barr, W.; Bushigin, A.; Kalyanam, K.M.; Haines, J.

    1987-10-01

    Nuclear modules were developed to model various reactor components in the ITER systems code. Several design options and cost algorithms are included for each component. The first wall, blanket and shield modules calculate the beryllium zone thickness, the disruptions results, the nuclear responses in different components including the toroidal field coils. Tungsten shield/water coolant/steel structure and steel shield/water coolant are the shield options for the inboard and outboard sections of the reactor. Lithium nitrate dissolved in the water coolant with a variable beryllium zone thickness in the outboard section of the reactor provides the tritium breeding capability. The reactor vault module defines the thickness of the reactor wall and the roof based on the dose equivalent during operation including skyshine contribution. The impurity control module provides the design parameters for the divertor including plate design, heat load, erosion rate, tritium permeation through the plate material to the coolant, plasma contamination by sputtered impurities, and plate lifetime. Several materials: Be, C, V, Mo, and W can be used for the divertor plate to cover a range of plasma edge temperatures. The tritium module calculates tritium and deuterium flow rates for the reactor plant. The tritium inventory in the fuelers, neutral beams, vacuum pumps, impurity control, first wall, and blanket is calculated. Tritium requirements are provided for different operating conditions. The nuclear models are summarized in this paper including the different design options and key analyses of each module. 39 refs., 3 tabs.

  2. Microsoft Word - Second_ ITER Council Press Release.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Neil Calder Tel: 00 33 (0)6 14 16 41 75 ITER GAINS MOMENTUM Aomori, Japan 18 June 2008 On 17-18 June 2008, the ITER Council, the Governing Body of the new international Organization, convened for its second meeting. The two day meeting in Aomori, Japan, brought together senior representatives from the seven ITER Members: China, the European Union, India, Japan, Korea, Russia and the United States. Mr. Shingo Mimura, Governor of the Aomori Prefecture, welcomed delegates with a reminder of the

  3. A point implicit time integration technique for slow transient flow problems

    SciTech Connect (OSTI)

    Kadioglu, Samet Y.; Berry, Ray A.; Martineau, Richard C.

    2015-05-01

    We introduce a point implicit time integration technique for slow transient flow problems. The method treats the solution variables of interest (that can be located at cell centers, cell edges, or cell nodes) implicitly and the rest of the information related to same or other variables are handled explicitly. The method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods, except it involves a few additional function(s) evaluation steps. Moreover, the method is unconditionally stable, as a fully implicit method would be. This new approach exhibits the simplicity of implementation of explicit methods and the stability of implicit methods. It is specifically designed for slow transient flow problems of long duration wherein one would like to perform time integrations with very large time steps. Because the method can be time inaccurate for fast transient problems, particularly with larger time steps, an appropriate solution strategy for a problem that evolves from a fast to a slow transient would be to integrate the fast transient with an explicit or semi-implicit technique and then switch to this point implicit method as soon as the time variation slows sufficiently. We have solved several test problems that result from scalar or systems of flow equations. Our findings indicate the new method can integrate slow transient problems very efficiently; and its implementation is very robust.

  4. EC assisted start-up experiments reproduction in FTU and AUG for simulations of the ITER case

    SciTech Connect (OSTI)

    Granucci, G.; Ricci, D.; Farina, D.; Figini, L.; Cavinato, M.; Stober, J.; Tudisco, O.

    2014-02-12

    The breakdown and plasma start-up in ITER are well known issues studied in the last few years in many tokamaks with the aid of calculation based on simplified modeling. The thickness of ITER metallic wall and the voltage limits of the Central Solenoid Power Supply strongly limit the maximum toroidal electric field achievable (0.3 V/m), well below the level used in the present generation of tokamaks. In order to have a safe and robust breakdown, the use of Electron Cyclotron Power to assist plasma formation and current rump up has been foreseen. This has raised attention on plasma formation phase in presence of EC wave, especially in order to predict the required power for a robust breakdown in ITER. Few detailed theory studies have been performed up to nowadays, due to the complexity of the problems. A simplified approach, extended from that proposed in ref[1] has been developed including a impurity multispecies distribution and an EC wave propagation and absorption based on GRAY code. This integrated model (BK0D) has been benchmarked on ohmic and EC assisted experiments on FTU and AUG, finding the key aspects for a good reproduction of data. On the basis of this, the simulation has been devoted to understand the best configuration for ITER case. The dependency of impurity distribution content and neutral gas pressure limits has been considered. As results of the analysis a reasonable amount of power (1 - 2 MW) seems to be enough to extend in a significant way the breakdown and current start up capability of ITER. The work reports the FTU data reproduction and the ITER case simulations.

  5. NREL: Energy Systems Integration - Seminar Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    damage potential, and practical solutions for insecure field devices on the smart grid. ... Ravel Ammerman. Integrating PV in Distributed Grids: Solutions and Technologies Workshop ...

  6. Electrostatic Dust Detection and Removal for ITER

    SciTech Connect (OSTI)

    C.H. Skinner; A. Campos; H. Kugel; J. Leisure; A.L. Roquemore; S. Wagner

    2008-09-01

    We present some recent results on two innovative applications of microelectronics technology to dust inventory measurement and dust removal in ITER. A novel device to detect the settling of dust particles on a remote surface has been developed in the laboratory. A circuit board with a grid of two interlocking conductive traces with 25 μm spacing is biased to 30 – 50 V. Carbon particles landing on the energized grid create a transient short circuit. The current flowing through the short circuit creates a voltage pulse that is recorded by standard nuclear counting electronics and the total number of counts is related to the mass of dust impinging on the grid. The particles typically vaporize in a few seconds restoring the previous voltage standoff. Experience on NSTX however, showed that in a tokamak environment it was still possible for large particles or fibers to remain on the grid causing a long term short circuit. We report on the development of a gas puff system that uses helium to clear such particles. Experiments with varying nozzle designs, backing pressures, puff durations, and exit flow orientations have given an optimal configuration that effectively removes particles from an area up to 25 cm² with a single nozzle. In a separate experiment we are developing an advanced circuit grid of three interlocking traces that can generate a miniature electrostatic traveling wave for transporting dust to a suitable exit port. We have fabricated such a 3-pole circuit board with 25 micron insulated traces that operates with voltages up to 200 V. Recent results showed motion of dust particles with the application of only 50 V bias voltage. Such a device could potentially remove dust continuously without dedicated interventions and without loss of machine availability for plasma operations.

  7. An Overview Of The ITER In-Vessel Coil Systems

    SciTech Connect (OSTI)

    Heitzenroeder, P J; Chrzanowski, J H; Dahlgren, F; Hawryluk, R J; Loesser, G D; Neumeyer, C; Mansfield, C; Smith, J P; Schaffer, M; Humphreys, D; Cordier, J J; Campbell, D; Johnson, G A; Martin, A; Rebut, P H; Tao, J O; Fogarty, P J; Nelson, B E

    2009-09-24

    ELM mitigation is of particular importance in ITER in order to prevent rapid erosion or melting of the divertor surface, with the consequent risk of water leaks, increased plasma impurity content and disruptivity. Exploitable "natural" small or no ELM regimes might yet be found which extrapolate to ITER but this cannot be depended upon. Resonant Magnetic Perturbation has been added to pellet pacing as a tool for ITER to mitigate ELMs. Both are required, since neither method is fully developed and much work remains to be done. In addition, in-vessel coils enable vertical stabilization and RWM control. For these reasons, in-vessel coils (IVCs) are being designed for ITER to provide control of Edge Localized Modes (ELMs) in addition to providing control of moderately unstable resistive wall modes (RWMs) and the vertical stability (VS) of the plasma.

  8. Princeton Plasma Physics Lab - U.S. ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Video Looks at ITER http:www.pppl.govnode1536

  9. PPPL's Hawryluk Named ITER Deputy Director-General | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... ITER, named for the Latin word for "the way," has seven project partners, including China, the European Union, India, Japan, Russia, South Korea, and the U.S. PPPL is part of the ...

  10. United States and International Partners Initial ITER Agreement |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy International Partners Initial ITER Agreement United States and International Partners Initial ITER Agreement May 24, 2006 - 10:48am Addthis Paves the Way for Large-Scale, Clean Fusion Energy Project BRUSSELS, BELGIUM - Representing the United States, Dr. Raymond L. Orbach, Director of the U.S. Department of Energy's (DOE) Office of Science, joined counterparts from China, the European Union, India, Japan, the Republic of Korea, and the Russian Federation today to

  11. PPPL's Rich Hawryluk recognized for service to ITER international fusion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    project | Princeton Plasma Physics Lab PPPL's Rich Hawryluk recognized for service to ITER international fusion project By John Greenwald July 23, 2013 Tweet Widget Google Plus One Share on Facebook (Photo by U.S. Department of Energy) Gallery: From left, Energy Secretary Ernest Moniz and Rich Hawryluk (Photo by U.S. Department of Energy) From left, Energy Secretary Ernest Moniz and Rich Hawryluk Rich Hawryluk served as Deputy Director-General for the ITER Organization and Director of the

  12. Global Solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Solutions Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions A-Z Index Berkeley Lab masthead U.S. Department of Energy logo Phone Book Jobs Search BANGLADESH INDIA CHINA DAYA BAY CHINA RUSSIA SIBERIA JAPAN SAMOA HAWAII SOUTH POLE ANTARCTICA NEW MEXICO SOUTH DAKOTA TEXAS GULF OF MEXICO NEW YORK PUERTO RICO AMAZON RAIN FOREST CANARY ISLANDS SWITZERLAND ETHIOPIA

  13. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofit Integrated Space and Water Heating-Field Assessment Building America Technology Solutions for New and Existing Homes: Retrofit Integrated Space and Water Heating-Field ...

  14. Implementation of an iterative matching scheme for the Kapchinskij-Vladimirskij equations in the WARP code

    SciTech Connect (OSTI)

    Chilton, Sven; Chilton, Sven H.

    2008-07-01

    The WARP code is a robust electrostatic particle-in-cell simulation package used to model charged particle beams with strong space-charge forces. A fundamental operation associated with seeding detailed simulations of a beam transport channel is to generate initial conditions where the beam distribution is matched to the structure of a periodic focusing lattice. This is done by solving for periodic, matched solutions to a coupled set of ODEs called the Kapchinskij-Vladimirskij (KV) envelope equations, which describe the evolution of low-order beam moments subject to applied lattice focusing, space-charge defocusing, and thermal defocusing forces. Recently, an iterative numerical method was developed (Lund, Chilton, and Lee, Efficient computation of matched solutions to the KV envelope equations for periodic focusing lattices, Physical Review Special Topics-Accelerators and Beams 9, 064201 2006) to generate matching conditions in a highly flexible, convergent, and fail-safe manner. This method is extended and implemented in the WARP code as a Python package to vastly ease the setup of detailed simulations. In particular, the Python package accommodates any linear applied lattice focusing functions without skew coupling, and a more general set of beam parameter specifications than its predecessor. Lattice strength iteration tools were added to facilitate the implementation of problems with specific applied focusing strengths.

  15. Electromarking solution

    DOE Patents [OSTI]

    Bullock, Jonathan S.; Harper, William L.; Peck, Charles G.

    1976-06-22

    This invention is directed to an aqueous halogen-free electromarking solution which possesses the capacity for marking a broad spectrum of metals and alloys selected from different classes. The aqueous solution comprises basically the nitrate salt of an amphoteric metal, a chelating agent, and a corrosion-inhibiting agent.

  16. US ITER is a strong contributor in plan to enhance international sharing of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    prime ITER real estate | Princeton Plasma Physics Lab US ITER is a strong contributor in plan to enhance international sharing of prime ITER real estate By Lynne Degitz, US ITER March 28, 2013 Tweet Widget Google Plus One Share on Facebook PPPL's Russell Feder, left, and David Johnson developed key features for a modular approach to housing the extensive diagnostic systems that will be installed on the ITER tokamak. (Photo by Elle Starkman/PPPL Office of Communications) PPPL's Russell Feder,

  17. Robust parallel iterative solvers for linear and least-squares problems, Final Technical Report

    SciTech Connect (OSTI)

    Saad, Yousef

    2014-01-16

    The primary goal of this project is to study and develop robust iterative methods for solving linear systems of equations and least squares systems. The focus of the Minnesota team is on algorithms development, robustness issues, and on tests and validation of the methods on realistic problems. 1. The project begun with an investigation on how to practically update a preconditioner obtained from an ILU-type factorization, when the coefficient matrix changes. 2. We investigated strategies to improve robustness in parallel preconditioners in a specific case of a PDE with discontinuous coefficients. 3. We explored ways to adapt standard preconditioners for solving linear systems arising from the Helmholtz equation. These are often difficult linear systems to solve by iterative methods. 4. We have also worked on purely theoretical issues related to the analysis of Krylov subspace methods for linear systems. 5. We developed an effective strategy for performing ILU factorizations for the case when the matrix is highly indefinite. The strategy uses shifting in some optimal way. The method was extended to the solution of Helmholtz equations by using complex shifts, yielding very good results in many cases. 6. We addressed the difficult problem of preconditioning sparse systems of equations on GPUs. 7. A by-product of the above work is a software package consisting of an iterative solver library for GPUs based on CUDA. This was made publicly available. It was the first such library that offers complete iterative solvers for GPUs. 8. We considered another form of ILU which blends coarsening techniques from Multigrid with algebraic multilevel methods. 9. We have released a new version on our parallel solver - called pARMS [new version is version 3]. As part of this we have tested the code in complex settings - including the solution of Maxwell and Helmholtz equations and for a problem of crystal growth.10. As an application of polynomial preconditioning we considered the

  18. NREL: Energy Systems Integration - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Here, Secretary of Energy Ernest Moniz experiences a 3D wind turbine model during a tour of ... equipment to find solutions to the challenges of effectively integrating clean ...

  19. ITER diagnostic systems in development in Ioffe Institute

    SciTech Connect (OSTI)

    Petrov, M.; Afanasyev, V.; Petrov, S.; Mironov, M.; Mukhin, E.; Tolstyakov, S.; Chugunov, I.; Shevelev, A.

    2014-08-21

    Three diagnostic systems are being developed in Ioffe Institute for ITER. Those are Neutral Particle Analysis (NPA), Thomson Scattering in Divertor (TSD) and Gamma Spectroscopy (GS). The main objective of NPA in ITER is to measure D/T fuel ration in plasma on the basis of measurement of neutralized fluxes of D and T ions [1]. Fuel ratio is one of the key parameters needed by ITER control system to provide the optimal conditions in plasma and the most effective plasma burning. Another objective is to measure the distribution function of fast ions (including alpha particles) generated as a result of the additional heating and nuclear fusion reactions. Thomson Scattering in Divertor (TSD) [2] will be used to measure electron temperature and density in the scrape-off layer in outer leg of ITER divertor. The main task of TSD is to protect the machine from divertor overloading. Gamma Spectroscopy (GS) [3] is based on the measurement of spectral lines of MeV range gammas generated in nuclear reactions in plasma. 2-D gamma-ray emission measurements give valuable information on the confined alpha particles in DT plasma. They also provide important information on the location of MeV range runaway electron beams in ITER plasma. For all three cases the physical basis and instrumentation are presented. The simple NPA version for measurements of D/T ratio in DEMO is also briefly described.

  20. Diamond neutral particle spectrometer for fusion reactor ITER

    SciTech Connect (OSTI)

    Krasilnikov, V.; Amosov, V.; Kaschuck, Yu.; Skopintsev, D.

    2014-08-21

    A compact diamond neutral particle spectrometer with digital signal processing has been developed for fast charge-exchange atoms and neutrons measurements at ITER fusion reactor conditions. This spectrometer will play supplementary role for Neutral Particle Analyzer providing 10 ms time and 30 keV energy resolutions for fast particle spectra in non-tritium ITER phase. These data will also be implemented for independent studies of fast ions distribution function evolution in various plasma scenarios with the formation of a single fraction of high-energy ions. In tritium ITER phase the DNPS will measure 14 MeV neutrons spectra. The spectrometer with digital signal processing can operate at peak counting rates reaching a value of 10{sup 6} cps. Diamond neutral particle spectrometer is applicable to future fusion reactors due to its high radiation hardness, fast response and high energy resolution.

  1. Description of the prototype diagnostic residual gas analyzer for ITER

    SciTech Connect (OSTI)

    Younkin, T. R.; Biewer, T. M.; Klepper, C. C.; Marcus, C.

    2014-11-15

    The diagnostic residual gas analyzer (DRGA) system to be used during ITER tokamak operation is being designed at Oak Ridge National Laboratory to measure fuel ratios (deuterium and tritium), fusion ash (helium), and impurities in the plasma. The eventual purpose of this instrument is for machine protection, basic control, and physics on ITER. Prototyping is ongoing to optimize the hardware setup and measurement capabilities. The DRGA prototype is comprised of a vacuum system and measurement technologies that will overlap to meet ITER measurement requirements. Three technologies included in this diagnostic are a quadrupole mass spectrometer, an ion trap mass spectrometer, and an optical penning gauge that are designed to document relative and absolute gas concentrations.

  2. Status of research toward the ITER disruption mitigation system

    SciTech Connect (OSTI)

    Hollmann, E. M.; Izzo, V. A.; Aleynikov, P. B.; Lehnen, M.; Snipes, J. A.; Fülöp, T.; Humphreys, D. A.; Lukash, V. E.; Papp, G.; Pautasso, G.; Saint-Laurent, F.

    2015-02-15

    An overview of the present status of research toward the final design of the ITER disruption mitigation system (DMS) is given. The ITER DMS is based on massive injection of impurities, in order to radiate the plasma stored energy and mitigate the potentially damaging effects of disruptions. The design of this system will be extremely challenging due to many physics and engineering constraints such as limitations on port access and the amount and species of injected impurities. Additionally, many physics questions relevant to the design of the ITER disruption mitigation system remain unsolved such as the mechanisms for mixing and assimilation of injected impurities during the rapid shutdown and the mechanisms for the subsequent formation and dissipation of runaway electron current.

  3. Recent progress and advances in iterative software (including parallel aspects)

    SciTech Connect (OSTI)

    Carey, G.; Young, D.M.; Kincaid, D.

    1994-12-31

    The purpose of the workshop is to provide a forum for discussion of the current state of iterative software packages. Of particular interest is software for large scale engineering and scientific applications, especially for distributed parallel systems. However, the authors will also review the state of software development for conventional architectures. This workshop will complement the other proposed workshops on iterative BLAS kernels and applications. The format for the workshop is as follows: To provide some structure, there will be brief presentations, each of less than five minutes duration and dealing with specific facets of the subject. These will be designed to focus the discussion and to stimulate an exchange with the participants. Issues to be covered include: The evolution of iterative packages, current state of the art, the parallel computing challenge, applications viewpoint, standards, and future directions and open problems.

  4. Is Carbon a Realistic Choice for ITER's Divertor?

    SciTech Connect (OSTI)

    C.H. Skinner; G. Federici

    2005-05-13

    Tritium retention by co-deposition with carbon on the divertor target plate is predicted to limit ITER's DT burning plasma operations (e.g. to about 100 pulses for the worst conditions) before the in-vessel tritium inventory limit, currently set at 350 g, is reached. At this point, ITER will only be able to continue its burning plasma program if technology is available that is capable of rapidly removing large quantities of tritium from the vessel with over 90% efficiency. The removal rate required is four orders of magnitude faster than that demonstrated in current tokamaks. Eighteen years after the observation of co-deposition on JET and TFTR, such technology is nowhere in sight. The inexorable conclusion is that either a major initiative in tritium removal should be funded or that research priorities for ITER should focus on metal alternatives.

  5. Proposals for ITER Ion Cyclotron Reference Design Upgrades

    SciTech Connect (OSTI)

    Bosia, G.; Beaumont, B.; Bremond, S.; Vulliez, K.; Testoni, P.

    2005-09-26

    A possible issue for the ITER Ion Cyclotron Heating and Current Drive system is related to the high electric field (2 kV/mm parallel to B0) at which the array is planned to operate, which may be associated to a low dielectric rigidity of the of the vessel 'vacuum'. The combined effects are likely to set the upper limit to the RF power transfer efficiency to the plasma core. This paper addresses the problem of how to improve the power handling in the ITER IC launcher described in the ITER Final Design Report (FDR), to either operate at a significantly lower E-field in the torus vacuum or, alternatively, at a lower plasma coupling.

  6. Integrated Energy Solutions LLC | Open Energy Information

    Open Energy Info (EERE)

    11900 College Blvd, Ste 210 Place: Overland Park, Kansas Zip: 66210-3939 Product: Bio-Coal TM Technology Number of Employees: 1-10 Year Founded: 2009 Phone Number: +1 913...

  7. Integrating Variable Renewable Energy: Challenges and Solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... substantial emissions by reducing fossil-fuel use for ... In the high wind and solar penetration scenarios SO2 ... Key considerations in selecting methods to address the ...

  8. Migration of vectorized iterative solvers to distributed memory architectures

    SciTech Connect (OSTI)

    Pommerell, C.; Ruehl, R.

    1994-12-31

    Both necessity and opportunity motivate the use of high-performance computers for iterative linear solvers. Necessity results from the size of the problems being solved-smaller problems are often better handled by direct methods. Opportunity arises from the formulation of the iterative methods in terms of simple linear algebra operations, even if this {open_quote}natural{close_quotes} parallelism is not easy to exploit in irregularly structured sparse matrices and with good preconditioners. As a result, high-performance implementations of iterative solvers have attracted a lot of interest in recent years. Most efforts are geared to vectorize or parallelize the dominating operation-structured or unstructured sparse matrix-vector multiplication, or to increase locality and parallelism by reformulating the algorithm-reducing global synchronization in inner products or local data exchange in preconditioners. Target architectures for iterative solvers currently include mostly vector supercomputers and architectures with one or few optimized (e.g., super-scalar and/or super-pipelined RISC) processors and hierarchical memory systems. More recently, parallel computers with physically distributed memory and a better price/performance ratio have been offered by vendors as a very interesting alternative to vector supercomputers. However, programming comfort on such distributed memory parallel processors (DMPPs) still lags behind. Here the authors are concerned with iterative solvers and their changing computing environment. In particular, they are considering migration from traditional vector supercomputers to DMPPs. Application requirements force one to use flexible and portable libraries. They want to extend the portability of iterative solvers rather than reimplementing everything for each new machine, or even for each new architecture.

  9. STELLOPT Modeling of the 3D Diagnostic Response in ITER

    SciTech Connect (OSTI)

    Lazerson, Samuel A

    2013-05-07

    The ITER three dimensional diagnostic response to an n=3 resonant magnetic perturbation is modeled using the STELLOPT code. The in-vessel coils apply a resonant magnetic perturbation (RMP) fi eld which generates a 4 cm edge displacement from axisymmetry as modeled by the VMEC 3D equilibrium code. Forward modeling of flux loop and magnetic probe response with the DIAGNO code indicates up to 20 % changes in measured plasma signals. Simulated LIDAR measurements of electron temperature indicate 2 cm shifts on the low field side of the plasma. This suggests that the ITER diagnostic will be able to diagnose the 3D structure of the equilibria.

  10. United States Research and Development effort on ITER magnet tasks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Martovetsky, Nicolai N.; Reierson, Wayne T.

    2011-01-22

    This study presents the status of research and development (R&D) magnet tasks that are being performed in support of the U.S. ITER Project Office (USIPO) commitment to provide a central solenoid assembly and toroidal field conductor for the ITER machine to be constructed in Cadarache, France. The following development tasks are presented: winding development, inlets and outlets development, internal and bus joints development and testing, insulation development and qualification, vacuum-pressure impregnation, bus supports, and intermodule structure and materials characterization.

  11. Power Radiated from ITER and CIT by Impurities

    DOE R&D Accomplishments [OSTI]

    Cummings, J.; Cohen, S. A.; Hulse, R.; Post, D. E.; Redi, M. H.; Perkins, J.

    1990-07-01

    The MIST code has been used to model impurity radiation from the edge and core plasmas in ITER and CIT. A broad range of parameters have been varied, including Z{sub eff}, impurity species, impurity transport coefficients, and plasma temperature and density profiles, especially at the edge. For a set of these parameters representative of the baseline ITER ignition scenario, it is seen that impurity radiation, which is produced in roughly equal amounts by the edge and core regions, can make a major improvement in divertor operation without compromising core energy confinement. Scalings of impurity radiation with atomic number and machine size are also discussed.

  12. Intel C++ compiler error: stl_iterator_base_types.h

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C++ compiler error: stl_iterator_base_types.h Intel C++ compiler error: stl_iterator_base_types.h December 7, 2015 by Scott French Because the system-supplied version of GCC is relatively old (4.3.4) it is common practice to load the gcc module on our Cray systems when C++11 support is required under the Intel C++ compilers. While this works as expected under the GCC 4.8 and 4.9 series compilers, the 5.x series can cause Intel C++ compile-time errors similar to the following:

  13. Polymer solutions

    DOE Patents [OSTI]

    Krawczyk, Gerhard Erich; Miller, Kevin Michael

    2011-07-26

    There is provided a method of making a polymer solution comprising polymerizing one or more monomer in a solvent, wherein said monomer comprises one or more ethylenically unsaturated monomer that is a multi-functional Michael donor, and wherein said solvent comprises 40% or more by weight, based on the weight of said solvent, one or more multi-functional Michael donor.

  14. PTRANSP Tests of TGLF and Predictions for ITER

    SciTech Connect (OSTI)

    Robert V. Budny, Xingqiu Yuan, S. Jardin, G. Hammett, G. Staebler, J. Kinsey, members of the ITPA Transport and Confinement Topical Group, and JET EFDA Contributors

    2012-09-23

    A new numerical solver for stiff transport predictions has been developed and implemented in the PTRANSP predictive transport code. The TGLF and GLF23 predictive codes have been incorporated in the solver, verified by comparisons with predictions from the XPTOR code, and validated by comparing predicted and measured profiles. Predictions for ITER baseline plasmas are presented.

  15. Visions for Data Management and Remote Collaboration on ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I P 0.9 MA P IN 2.3 MW H98 1.3 M. Greenwald, et al., APS-DPP November 2007 C-Mod Data Helps Break Covariance Between EFF and nn G Makes Extrapolation To ITER More...

  16. The influence of an ITER-like wall on disruptions at JET

    SciTech Connect (OSTI)

    Vries, P. C. de Hogeweij, G. M. D.; Baruzzo, M.; Murari, A.; Jachmich, S.; Lomas, P. J.; Matthews, G. F.; Pütterich, T.; Vega, J.; Collaboration: JET-EFDA Contributors

    2014-05-15

    In order to preserve the integrity of large tokamaks such as ITER, the number of disruptions has to be limited. JET has operated previously with a low frequency of disruptions (i.e., disruption rate) of 3.4% [P. C. de Vries et al., Nucl. Fusion 51, 053018 (2011)]. The start of operations with the new full-metal ITER-like wall at JET showed a marked rise in the disruption rate to 10%. A full survey was carried out to identify the root causes, the chain-of-events and classifying each disruption, similar to a previous analysis for carbon-wall operations. It showed the improvements made to avoid various disruption classes, but also indicated those disruption types responsible for the enhanced disruption rate. The latter can be mainly attributed to disruptions due to too high core radiation but also due to density control issues and error field locked modes. Detailed technical and physics understanding of disruption causes is essential for devising optimized strategies to avoid or mitigate these events.

  17. Modeling and Simulation of the ITER First Wall/Blanket Primary Heat Transfer System

    SciTech Connect (OSTI)

    Ying, Alice; Popov, Emilian L

    2011-01-01

    ITER inductive power operation is modeled and simulated using a thermal-hydraulics system code (RELAP5) integrated with a 3-D CFD (SC-Tetra) code. The Primary Heat Transfer System (PHTS) functions are predicted together with the main parameters operational ranges. The control algorithm strategy and derivation are summarized as well. The First Wall and Blanket modules are the primary components of PHTS, used to remove the major part of the thermal heat from the plasma. The modules represent a set of flow channels in solid metal structure that serve to absorb the radiation heat and nuclear heating from the fusion reactions and to provide shield for the vacuum vessel. The blanket modules are water cooled. The cooling is forced convective with constant blanket inlet temperature and mass flow rate. Three independent water loops supply coolant to the three blanket sectors. The main equipment of each loop consists of a pump, a steam pressurizer and a heat exchanger. A major feature of ITER is the pulsed operation. The plasma does not burn continuously, but on intervals with large periods of no power between them. This specific feature causes design challenges to accommodate the thermal expansion of the coolant during the pulse period and requires active temperature control to maintain a constant blanket inlet temperature.

  18. ISIS++Reference Guide (Iterative Scalable Implicit Solver in C++) Version 1.1

    SciTech Connect (OSTI)

    Alan B. Williams; Benjamin A. Allan; Kyran D. Mish; Robert L. Clay

    1999-04-01

    ISIS++ (Iterative Scalable Implicit Solver in C++) Version 1.1 is a portable, object-oriented framework for solving sparse linear systems of equations. It includes a collection of Krylov solution methods and preconditioners, as well as both uni-processor (serial) and multi-processor (scalable) matrix and vector classes. Though it was developed to solve systems of equations originating from large-scale, 3-D, finite element analyses, it has application in many other fields. This document supersedes the ISIS++ V1.0 Reference Guide, defines the V1. 1 interface specification, and includes the necessary instructions for building and running ISIS++ v 1.1 on Unix platforms. The interface is presented in annotated header format, along with background on design and implementation considerations. A finite difference modeling example problem is included to demonstrate the overall setup and use.

  19. Atomic data for the ITER Core Imaging X-ray Spectrometer (Conference...

    Office of Scientific and Technical Information (OSTI)

    Atomic data for the ITER Core Imaging X-ray Spectrometer Citation Details In-Document Search Title: Atomic data for the ITER Core Imaging X-ray Spectrometer You are accessing a ...

  20. ReNeW: Magnetic Fusion Energy Research Needs for the ITER Era...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ReNeW: Magnetic Fusion Energy Research Needs for the ITER Era Citation Details In-Document Search Title: ReNeW: Magnetic Fusion Energy Research Needs for the ITER Era Authors: ...

  1. U.S.Statements on International Fusion Reactor (ITER) Siting Decision |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy U.S.Statements on International Fusion Reactor (ITER) Siting Decision U.S.Statements on International Fusion Reactor (ITER) Siting Decision June 28, 2005 - 1:45pm Addthis WASHINGTON, DC - Today in Moscow, Russia, the ministers representing the six ITER parties, including Dr. Raymond L. Orbach, Director of the U.S. Department of Energy's Office of Science, announced the ITER international fusion reactor will be located at the EU site in Cadarache, France. Below are

  2. Comprehensive Water-Efficiency Solutions

    SciTech Connect (OSTI)

    McMordie Stoughton, Kate

    2015-07-15

    Energy performance contracts can be an effective way to integrate comprehensive water-efficient technologies and solutions into energy efficiency projects. Current practices often miss key opportunities to incorporate a full suite of water measures primarily because a comprehensive approach is not taken in the assessment. This article provides information on how to develop a comprehensive water project that leads to innovative solutions and potential for large water reduction.

  3. Integrated fusion simulation with self-consistent core-pedestal coupling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meneghini, O.; Snyder, P. B.; Smith, S. P.; Candy, J.; Staebler, G. M.; Belli, E. A.; Lao, L. L.; Park, J. M.; Green, D. L.; Elwasif, W.; et al

    2016-04-20

    In this study, accurate prediction of fusion performance in present and future tokamaks requires taking into account the strong interplay between core transport, pedestal structure, current profile and plasma equilibrium. An integrated modeling workflow capable of calculating the steady-state self- consistent solution to this strongly-coupled problem has been developed. The workflow leverages state-of-the-art components for collisional and turbulent core transport, equilibrium and pedestal stability. Validation against DIII-D discharges shows that the workflow is capable of robustly pre- dicting the kinetic profiles (electron and ion temperature and electron density) from the axis to the separatrix in good agreement with the experiments.more » An example application is presented, showing self-consistent optimization for the fusion performance of the 15 MA D-T ITER baseline scenario as functions of the pedestal density and ion effective charge Zeff.« less

  4. Optimization studies of the ITER low field side reflectometer

    SciTech Connect (OSTI)

    Hanson, Gregory R; Wilgen, John B; Bigelow, Tim S; Diem, Stephanie J

    2010-01-01

    Microwave reflectometry will be used on ITER to measure the electron density profile, density fluctuations due to MHD/turbulence, ELM density transients, and as a L-H transition monitor. The ITER low field side (LFS) reflectometer system will measure both core and edge quantities using multiple antenna arrays spanning frequency ranges of 15-155 GHz for the O-mode system and 55-220 GHz for the X-mode system. Optimization studies using the GENRAY ray-tracing code have been done for edge and core measurements. The reflectometer launchers will utilize the HE11 mode launched from circular corrugated waveguide. The launched beams are assumed to be Gaussian with a beam waist diameter of 0.643 times the waveguide diameter. Optimum launcher size and placement are investigated by computing the antenna coupling between launchers, assuming the launched and received beams have a Gaussian beam pattern.

  5. Optimization studies of the ITER low field side reflectometer

    SciTech Connect (OSTI)

    Diem, S. J.; Wilgen, J. B.; Bigelow, T. S.; Hanson, G. R.; Harvey, R. W.; Smirnov, A. P.

    2010-10-15

    Microwave reflectometry will be used on ITER to measure the electron density profile, density fluctuations due to MHD/turbulence, edge localized mode (ELM) density transients, and as an L-H transition monitor. The ITER low field side reflectometer system will measure both core and edge quantities using multiple antenna arrays spanning frequency ranges of 15-155 GHz for the O-mode system and 55-220 GHz for the X-mode system. Optimization studies using the GENRAY ray-tracing code have been done for edge and core measurements. The reflectometer launchers will utilize the HE11 mode launched from circular corrugated waveguide. The launched beams are assumed to be Gaussian with a beam waist diameter of 0.643 times the waveguide diameter. Optimum launcher size and placement are investigated by computing the antenna coupling between launchers, assuming the launched and received beams have a Gaussian beam pattern.

  6. Qualification of the Joints for ITER Central Solenoid

    SciTech Connect (OSTI)

    Martovetsky, Nicolai N; Berryhill, Adam B; Kenney, Steven J

    2012-01-01

    The ITER Central Solenoid has 36 interpancake joints, 12 bus joints, and 12 feeder joints in the magnet. The joints are required to have resistance below 4 nOhm at 45 kA at 4.5 K. The US ITER Project Office developed two different types of interpancake joints with some variations in details in order to find a better design, qualify the joints, and establish a fabrication process. We built and tested four samples of the sintered joints and two samples with butt-bonded joints (a total of eight joints). Both designs met the specifications. Results of the joint development, test results, and selection of the baseline design are presented and discussed in the paper.

  7. Development of the Butt Joint for the ITER Central Solenoid

    SciTech Connect (OSTI)

    Martovetsky, N N

    2006-08-23

    The ITER Central Solenoid (CS) requires compact and reliable joints for its Cable-in-Conduit Conductor (CICC). The baseline design is a diffusion bonded butt joint. In such a joint the mating cables are compacted to a very low void fraction in a copper sleeve and then heat treated. After the heat treatment the ends are cut, polished and aligned against each other and then diffusion bonded under high compression in a vacuum chamber at 750 C. The jacket is then welded on the conductor to complete the joint, which remarkably does not require more room than a regular conductor. This joint design is based on a proven concept developed for the ITER CS Model Coil that was successfully tested in the previous R&D phase.

  8. Variable frequency iteration MPPT for resonant power converters

    DOE Patents [OSTI]

    Zhang, Qian; Bataresh, Issa; Chen, Lin

    2015-06-30

    A method of maximum power point tracking (MPPT) uses an MPPT algorithm to determine a switching frequency for a resonant power converter, including initializing by setting an initial boundary frequency range that is divided into initial frequency sub-ranges bounded by initial frequencies including an initial center frequency and first and second initial bounding frequencies. A first iteration includes measuring initial powers at the initial frequencies to determine a maximum power initial frequency that is used to set a first reduced frequency search range centered or bounded by the maximum power initial frequency including at least a first additional bounding frequency. A second iteration includes calculating first and second center frequencies by averaging adjacent frequent values in the first reduced frequency search range and measuring second power values at the first and second center frequencies. The switching frequency is determined from measured power values including the second power values.

  9. An iterative learning controller for nonholonomic mobile robots

    SciTech Connect (OSTI)

    Oriolo, G.; Panzieri, S.; Ulivi, G.

    1998-09-01

    The authors present an iterative learning controller that applies to nonholonomic mobile robots, as well as other systems that can be put in chained form. The learning algorithm exploits the fact that chained-form. The learning algorithm exploits the fact that chained-form systems are linear under piecewise-constant inputs. The proposed control scheme requires the execution of a small number of experiments to drive the system to the desired state in finite time, with nice convergence and robustness properties with respect to modeling inaccuracies as well as disturbances. To avoid the necessity of exactly reinitializing the system at each iteration, the basic method is modified so as to obtain a cyclic controller, by which the system is cyclically steered through an arbitrary sequence of states. As a case study, a carlike mobile robot is considered. Both simulation and experimental results are reported to show the performance of the method.

  10. International Workshop: MFE Roadmapping in the ITER Era | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab Princeton, NJ International Workshop: MFE Roadmapping in the ITER Era Princeton University Princeton, NJ Host: G.H. Neilson Coordinator: Pamela Hampton /p> Contact Information Website: Website Coordinator(s): Pamela Hampton phampton@pppl.gov Host(s): G.H. Neilson hneilson@pppl.gov PPPL Entrance Procedures Visitor Information, Directions, Security at PPPL As a federal facility, the Princeton Plasma Physics Laboratory is operating under heightened security measures because of

  11. President Bush Issues Executive Order Designating ITER International Fusion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Organization A Public Interest Organization | U.S. DOE Office of Science (SC) President Bush Issues Executive Order Designating ITER International Fusion Energy Organization A Public Interest Organization News News Home Featured Articles Science Headlines 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000

  12. Alfven Eigenmode Stability with Beams in ITER-like Plasma

    SciTech Connect (OSTI)

    N.N. Gorelenkov; H.L. Berk; R.V. Budny

    2004-07-16

    Toroidicity Alfven Eigenmodes (TAE) in ITER can be driven unstable by two groups of energetic particles, the 3.5 MeV {alpha}-particle fusion products and the tangentially injected 1MeV beam ions. Stability conditions are established using the perturbative NOVA/NOVA-K codes. A quasi-linear diffusion model is then used to assess the induced redistribution of energetic particles.

  13. Shim3d Helmholtz Solution Package

    Energy Science and Technology Software Center (OSTI)

    2009-01-29

    This suite of codes solves the Helmholtz Equation for the steady-state propagation of single-frequency electromagnetic radiation in an arbitrary 2D or 3D dielectric medium. Materials can be either transparent or absorptive (including metals) and are described entirely by their shape and complex dielectric constant. Dielectric boundaries are assumed to always fall on grid boundaries and the material within a single grid cell is considered to be uniform. Input to the problem is in the formmore » of a Dirichlet boundary condition on a single boundary, and may be either analytic (Gaussian) in shape, or a mode shape computed using a separate code (such as the included eigenmode solver vwave20), and written to a file. Solution is via the finite difference method using Jacobi iteration for 3D problems or direct matrix inversion for 2D problems. Note that 3D problems that include metals will require different iteration parameters than described in the above reference. For structures with curved boundaries not easily modeled on a rectangular grid, the auxillary codes helmholtz11(2D), helm3d (semivectoral), and helmv3d (full vectoral) are provided. For these codes the finite difference equations are specified on a topological regular triangular grid and solved using Jacobi iteration or direct matrix inversion as before. An automatic grid generator is supplied.« less

  14. Modeling Results For the ITER Cryogenic Fore Pump. Final Report

    SciTech Connect (OSTI)

    Pfotenhauer, John M.; Zhang, Dongsheng

    2014-03-31

    A numerical model characterizing the operation of a cryogenic fore-pump (CFP) for ITER has been developed at the University of Wisconsin – Madison during the period from March 15, 2011 through June 30, 2014. The purpose of the ITER-CFP is to separate hydrogen isotopes from helium gas, both making up the exhaust components from the ITER reactor. The model explicitly determines the amount of hydrogen that is captured by the supercritical-helium-cooled pump as a function of the inlet temperature of the supercritical helium, its flow rate, and the inlet conditions of the hydrogen gas flow. Furthermore the model computes the location and amount of hydrogen captured in the pump as a function of time. Throughout the model’s development, and as a calibration check for its results, it has been extensively compared with the measurements of a CFP prototype tested at Oak Ridge National Lab. The results of the model demonstrate that the quantity of captured hydrogen is very sensitive to the inlet temperature of the helium coolant on the outside of the cryopump. Furthermore, the model can be utilized to refine those tests, and suggests methods that could be incorporated in the testing to enhance the usefulness of the measured data.

  15. Progress and present status of ITER cryoline system

    SciTech Connect (OSTI)

    Badgujar, S.; Bonneton, M.; Chalifour, M.; Forgeas, A.; Serio, L.; Sarkar, B.; Shah, N.

    2014-01-29

    The cryoline system at ITER forms a very complex network localized inside the Tokamak building, on a dedicated plant bridge and in cryoplant areas. The cooling power produced in the cryoplant is distributed via these lines with a total length of about 3.7 km and interconnecting all the cold boxes of the cryogenic system as well as the cold boxes of various clients (magnets, cryopumps and thermal shield). Distinct layouts and polygonal geometry, nuclear safety and confinement requirements, difficult installation and in-service inspection/repair demand very high reliability and availability for the cryolines. The finalization of the building-embedded plates for supporting the lines, before the detailed design, has made this project technologically more challenging. The conceptual design phase has been completed and procurement arrangements have been signed with India, responsible for providing the system of cryolines and warm lines to ITER, as in kind contribution. The prototype test for the design and performance validation has been planned on a representative cryoline section. After describing the basic features and general layout of the ITER cryolines, the paper presents key design requirements, conceptual design approach, progress and status of the cryolines project as well as challenges to build such a complex cryoline system.

  16. Qualification of the Joints for the ITER Central Solenoid

    SciTech Connect (OSTI)

    Martovetsky, N; Berryhill, A; Kenney, S

    2011-09-01

    The ITER Central Solenoid has 36 interpancake joints, 12 bus joints, and 12 feeder joints in the magnet. The joints are required to have resistance below 4 nOhm at 45 kA at 4.5 K. The US ITER Project Office developed two different types of interpancake joints with some variations in details in order to find a better design, qualify the joints, and establish a fabrication process. We built and tested four samples of the sintered joints and two samples with butt-bonded joints (a total of eight joints). Both designs met the specifications. Results of the joint development, test results, and selection of the baseline design are presented and discussed in the paper. The ITER Central Solenoid (CS) consists of six modules. Each module is composed of six wound hexapancakes and one quadrapancake. The multipancakes are connected electrically and hydraulically by in-line interpancake joints. The joints are located at the outside diameter (OD) of the module. Cable in conduit conductor (CICC) high-current joints are critical elements in the CICC magnets. In addition to low resistivity, the CS joints must fit a space envelope equivalent to the regular conductor cross section and must have low hydraulic impedance and enough structural strength to withstand the hoop and compressive forces during operation, including cycling. This paper is the continuation of the work reported on the intermodule joints.

  17. Voila: A visual object-oriented iterative linear algebra problem solving environment

    SciTech Connect (OSTI)

    Edwards, H.C.; Hayes, L.J.

    1994-12-31

    Application of iterative methods to solve a large linear system of equations currently involves writing a program which calls iterative method subprograms from a large software package. These subprograms have complex interfaces which are difficult to use and even more difficult to program. A problem solving environment specifically tailored to the development and application of iterative methods is needed. This need will be fulfilled by Voila, a problem solving environment which provides a visual programming interface to object-oriented iterative linear algebra kernels. Voila will provide several quantum improvements over current iterative method problem solving environments. First, programming and applying iterative methods is considerably simplified through Voila`s visual programming interface. Second, iterative method algorithm implementations are independent of any particular sparse matrix data structure through Voila`s object-oriented kernels. Third, the compile-link-debug process is eliminated as Voila operates as an interpreter.

  18. GPU-accelerated regularized iterative reconstruction for few-view cone beam CT

    SciTech Connect (OSTI)

    Matenine, Dmitri; Goussard, Yves

    2015-04-15

    Purpose: The present work proposes an iterative reconstruction technique designed for x-ray transmission computed tomography (CT). The main objective is to provide a model-based solution to the cone-beam CT reconstruction problem, yielding accurate low-dose images via few-views acquisitions in clinically acceptable time frames. Methods: The proposed technique combines a modified ordered subsets convex (OSC) algorithm and the total variation minimization (TV) regularization technique and is called OSC-TV. The number of subsets of each OSC iteration follows a reduction pattern in order to ensure the best performance of the regularization method. Considering the high computational cost of the algorithm, it is implemented on a graphics processing unit, using parallelization to accelerate computations. Results: The reconstructions were performed on computer-simulated as well as human pelvic cone-beam CT projection data and image quality was assessed. In terms of convergence and image quality, OSC-TV performs well in reconstruction of low-dose cone-beam CT data obtained via a few-view acquisition protocol. It compares favorably to the few-view TV-regularized projections onto convex sets (POCS-TV) algorithm. It also appears to be a viable alternative to full-dataset filtered backprojection. Execution times are of 1–2 min and are compatible with the typical clinical workflow for nonreal-time applications. Conclusions: Considering the image quality and execution times, this method may be useful for reconstruction of low-dose clinical acquisitions. It may be of particular benefit to patients who undergo multiple acquisitions by reducing the overall imaging radiation dose and associated risks.

  19. An iterative particle filter approach for coupled hydro-geophysical inversion of a controlled infiltration experiment

    SciTech Connect (OSTI)

    Manoli, Gabriele; Rossi, Matteo; Pasetto, Damiano; Deiana, Rita; Ferraris, Stefano; Cassiani, Giorgio; Putti, Mario

    2015-02-15

    The modeling of unsaturated groundwater flow is affected by a high degree of uncertainty related to both measurement and model errors. Geophysical methods such as Electrical Resistivity Tomography (ERT) can provide useful indirect information on the hydrological processes occurring in the vadose zone. In this paper, we propose and test an iterated particle filter method to solve the coupled hydrogeophysical inverse problem. We focus on an infiltration test monitored by time-lapse ERT and modeled using Richards equation. The goal is to identify hydrological model parameters from ERT electrical potential measurements. Traditional uncoupled inversion relies on the solution of two sequential inverse problems, the first one applied to the ERT measurements, the second one to Richards equation. This approach does not ensure an accurate quantitative description of the physical state, typically violating mass balance. To avoid one of these two inversions and incorporate in the process more physical simulation constraints, we cast the problem within the framework of a SIR (Sequential Importance Resampling) data assimilation approach that uses a Richards equation solver to model the hydrological dynamics and a forward ERT simulator combined with Archie's law to serve as measurement model. ERT observations are then used to update the state of the system as well as to estimate the model parameters and their posterior distribution. The limitations of the traditional sequential Bayesian approach are investigated and an innovative iterative approach is proposed to estimate the model parameters with high accuracy. The numerical properties of the developed algorithm are verified on both homogeneous and heterogeneous synthetic test cases based on a real-world field experiment.

  20. Alloy solution hardening with solute pairs

    DOE Patents [OSTI]

    Mitchell, John W.

    1976-08-24

    Solution hardened alloys are formed by using at least two solutes which form associated solute pairs in the solvent metal lattice. Copper containing equal atomic percentages of aluminum and palladium is an example.

  1. Impacts of pellets injected from the low-field side on plasma in ITER

    SciTech Connect (OSTI)

    Wisitsorasak, A.; Onjun, T.

    2011-01-15

    Impacts of pellets injected from the low-field side (LFS) on plasma in ITER are investigated using the 1.5D BALDUR integrated predictive modeling code. In these simulations, the pellet ablation is described using the neutral gas shielding (NGS) model. The pellet ablation model is coupled with the plasma core transport model, which is a combination of the MMM95 anomalous transport model and NCLASS neoclassical transport model. The boundary conditions are assumed to be at the top of the pedestal, in which the pedestal parameters are predicted using a pedestal model based on the theoretical-based pedestal width scaling (either magnetic and flow shear stabilization width scaling, or flow shear stabilization width scaling, or normalized poloidal pressure width scaling) and the infinite-n ballooning mode pressure gradient limit. These pedestal models depend sensitively on the density at the top of the pedestal, which can be strongly influenced by the injection of pellets. The combination of the MMM95 and NCLASS models, together with the pedestal and NGS models, is used to simulate the time evolution of the plasma current, ion and electron temperatures, and density profiles for ITER standard type-I ELMy H-mode discharges during the injection of LFS pellets. It is found that the injection of pellets results in a complicated plasma scenario, especially in the outer region of the plasma and the plasma conditions at the boundary in which the pellet has an impact on increasing the plasma edge density, but reducing the plasma edge temperature. The LFS pellet has a stronger impact on the edge as compared to the center. For fusion performance, the pellet can result in either enhancement or degradation, depending sensitively on the pellet parameters; such as the pellet size, pellet velocity, and pellet frequency. For example, when a series of deuterium pellets with a size of 0.5 cm, velocity of 1 km/s, and frequency of 2 Hz are injected into the ITER plasma from the LFS, the

  2. ITER Generic Diagnostic Upper Port Plug Nuclear Heating and Personnel Dose Rate Assesment

    SciTech Connect (OSTI)

    Russell E. Feder and Mahmoud Z. Youssef

    2009-01-28

    Neutronics analysis to find nuclear heating rates and personnel dose rates were conducted in support of the integration of diagnostics in to the ITER Upper Port Plugs. Simplified shielding models of the Visible-Infrared diagnostic and of a large aperture diagnostic were incorporated in to the ITER global CAD model. Results for these systems are representative of typical designs with maximum shielding and a small aperture (Vis-IR) and minimal shielding with a large aperture. The neutronics discrete-ordinates code ATTILA and SEVERIAN (the ATTILA parallel processing version) was used. Material properties and the 500 MW D-T volume source were taken from the ITER Brand Model MCNP benchmark model. A biased quadrature set equivelant to Sn=32 and a scattering degree of Pn=3 were used along with a 46-neutron and 21-gamma FENDL energy subgrouping. Total nuclear heating (neutron plug gamma heating) in the upper port plugs ranged between 380 and 350 kW for the Vis-IR and Large Aperture cases. The Large Aperture model exhibited lower total heating but much higher peak volumetric heating on the upper port plug structure. Personnel dose rates are calculated in a three step process involving a neutron-only transport calculation, the generation of activation volume sources at pre-defined time steps and finally gamma transport analyses are run for selected time steps. ANSI-ANS 6.1.1 1977 Flux-to-Dose conversion factors were used. Dose rates were evaluated for 1 full year of 500 MW DT operation which is comprised of 3000 1800-second pulses. After one year the machine is shut down for maintenance and personnel are permitted to access the diagnostic interspace after 2-weeks if dose rates are below 100 ?Sv/hr. Dose rates in the Visible-IR diagnostic model after one day of shutdown were 130 ?Sv/hr but fell below the limit to 90 ?Sv/hr 2-weeks later. The Large Aperture style shielding model exhibited higher and more persistent dose rates. After 1-day the dose rate was 230 ?Sv/hr but

  3. Numerical Analysis of Coolant Flow and Heat Transfer in ITER Diagnostic First Wall

    SciTech Connect (OSTI)

    Khodak, A.; Loesser, G.; Zhai, Y.; Udintsev, V.; Klabacha, J.; Wang, W.; Johnson, D.; Feder, R.

    2015-07-24

    We performed numerical simulations of the ITER Diagnostic First Wall (DFW) using ANSYS workbench. During operation DFW will include solid main body as well as liquid coolant. Thus thermal and hydraulic analysis of the DFW was performed using conjugated heat transfer approach, in which heat transfer was resolved in both solid and liquid parts, and simultaneously fluid dynamics analysis was performed only in the liquid part. This approach includes interface between solid and liquid part of the systemAnalysis was performed using ANSYS CFX software. CFX software allows solution of heat transfer equations in solid and liquid part, and solution of the flow equations in the liquid part. Coolant flow in the DFW was assumed turbulent and was resolved using Reynolds averaged Navier-Stokes equations with Shear Stress Transport turbulence model. Meshing was performed using CFX method available within ANSYS. The data cloud for thermal loading consisting of volumetric heating and surface heating was imported into CFX Volumetric heating source was generated using Attila software. Surface heating was obtained using radiation heat transfer analysis. Our results allowed us to identify areas of excessive heating. Proposals for cooling channel relocation were made. Additional suggestions were made to improve hydraulic performance of the cooling system.

  4. Numerical Analysis of Coolant Flow and Heat Transfer in ITER Diagnostic First Wall

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khodak, A.; Loesser, G.; Zhai, Y.; Udintsev, V.; Klabacha, J.; Wang, W.; Johnson, D.; Feder, R.

    2015-07-24

    We performed numerical simulations of the ITER Diagnostic First Wall (DFW) using ANSYS workbench. During operation DFW will include solid main body as well as liquid coolant. Thus thermal and hydraulic analysis of the DFW was performed using conjugated heat transfer approach, in which heat transfer was resolved in both solid and liquid parts, and simultaneously fluid dynamics analysis was performed only in the liquid part. This approach includes interface between solid and liquid part of the systemAnalysis was performed using ANSYS CFX software. CFX software allows solution of heat transfer equations in solid and liquid part, and solution ofmore » the flow equations in the liquid part. Coolant flow in the DFW was assumed turbulent and was resolved using Reynolds averaged Navier-Stokes equations with Shear Stress Transport turbulence model. Meshing was performed using CFX method available within ANSYS. The data cloud for thermal loading consisting of volumetric heating and surface heating was imported into CFX Volumetric heating source was generated using Attila software. Surface heating was obtained using radiation heat transfer analysis. Our results allowed us to identify areas of excessive heating. Proposals for cooling channel relocation were made. Additional suggestions were made to improve hydraulic performance of the cooling system.« less

  5. Time parallelization of advanced operation scenario simulations of ITER plasma

    SciTech Connect (OSTI)

    Samaddar, D.; Casper, T. A.; Kim, S. H.; Berry, Lee A; Elwasif, Wael R; Batchelor, Donald B; Houlberg, Wayne A

    2013-01-01

    This work demonstrates that simulations of advanced burning plasma operation scenarios can be successfully parallelized in time using the parareal algorithm. CORSICA - an advanced operation scenario code for tokamak plasmas is used as a test case. This is a unique application since the parareal algorithm has so far been applied to relatively much simpler systems except for the case of turbulence. In the present application, a computational gain of an order of magnitude has been achieved which is extremely promising. A successful implementation of the Parareal algorithm to codes like CORSICA ushers in the possibility of time efficient simulations of ITER plasmas.

  6. In-vessel tritium retention and removal in ITER

    SciTech Connect (OSTI)

    Federici, G.; Anderl, R.A.; Andrew, P.

    1998-06-01

    The International Thermonuclear Experimental Reactor (ITER) is envisioned to be the next major step in the world`s fusion program from the present generation of tokamaks and is designed to study fusion plasmas with a reactor relevant range of plasma parameters. During normal operation, it is expected that a fraction of the unburned tritium, that is used to routinely fuel the discharge, will be retained together with deuterium on the surfaces and in the bulk of the plasma facing materials (PFMs) surrounding the core and divertor plasma. The understanding of he basic retention mechanisms (physical and chemical) involved and their dependence upon plasma parameters and other relevant operation conditions is necessary for the accurate prediction of the amount of tritium retained at any given time in the ITER torus. Accurate estimates are essential to assess the radiological hazards associated with routine operation and with potential accident scenarios which may lead to mobilization of tritium that is not tenaciously held. Estimates are needed to establish the detritiation requirements for coolant water, to determine the plasma fueling and tritium supply requirements, and to establish the needed frequency and the procedures for tritium recovery and clean-up. The organization of this paper is as follows. Section 2 provides an overview of the design and operating conditions of the main components which define the plasma boundary of ITER. Section 3 reviews the erosion database and the results of recent relevant experiments conducted both in laboratory facilities and in tokamaks. These data provide the experimental basis and serve as an important benchmark for both model development (discussed in Section 4) and calculations (discussed in Section 5) that are required to predict tritium inventory build-up in ITER. Section 6 emphasizes the need to develop and test methods to remove the tritium from the codeposited C-based films and reviews the status and the prospects of the

  7. Global ICRF system designs for ITER and TPX

    SciTech Connect (OSTI)

    Goulding, R.H.; Hoffman, D.J.; Ryan, P.M.; Durodie, F.

    1995-09-01

    The design of feed networks for ICRF antenna arrays on ITER and TPX are discussed. Features which are present in one or both of the designs include distribution of power to several straps from a single generator, the capability to vary phases of the currents on antenna elements rapidly without the need to rematch, and passive elements which present a nearly constant load to the generators during ELM induced loading transients of a factor of I0 or more. The FDAC (Feedline/Decoupler/Antenna Calculator) network modeling code is described, which allows convenient modeling of the electrical performance of nearly arbitrary ICRF feed networks.

  8. Iterative Schemes for Time Parallelization with Application to Reservoir Simulation

    SciTech Connect (OSTI)

    Garrido, I; Fladmark, G E; Espedal, M S; Lee, B

    2005-04-18

    Parallel methods are usually not applied to the time domain because of the inherit sequentialness of time evolution. But for many evolutionary problems, computer simulation can benefit substantially from time parallelization methods. In this paper, they present several such algorithms that actually exploit the sequential nature of time evolution through a predictor-corrector procedure. This sequentialness ensures convergence of a parallel predictor-corrector scheme within a fixed number of iterations. The performance of these novel algorithms, which are derived from the classical alternating Schwarz method, are illustrated through several numerical examples using the reservoir simulator Athena.

  9. Development of Acoustic Model-Based Iterative Reconstruction Technique for Thick-Concrete Imaging

    SciTech Connect (OSTI)

    Almansouri, Hani; Clayton, Dwight A; Kisner, Roger A; Polsky, Yarom; Bouman, Charlie; Santos-Villalobos, Hector J

    2015-01-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well s health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.

  10. Development of Acoustic Model-Based Iterative Reconstruction Technique for Thick-Concrete Imaging

    SciTech Connect (OSTI)

    Almansouri, Hani; Clayton, Dwight A; Kisner, Roger A; Polsky, Yarom; Bouman, Charlie; Santos-Villalobos, Hector J

    2016-01-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.

  11. Iterative reconstruction using a Monte Carlo based system transfer matrix for dedicated breast positron emission tomography

    SciTech Connect (OSTI)

    Saha, Krishnendu; Straus, Kenneth J.; Glick, Stephen J.; Chen, Yu.

    2014-08-28

    To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction.

  12. National Clean Energy Business Plan Competition: FGC Plasma Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    their method, FGC Plasma Solutions plans to integrate plasma-assisted combustion topology with a fuel nozzle-developed as a plug and play solution-which can be easily...

  13. Demonstrating and Deploying Integrated Retrofit Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    demonstration, and deployment of energy-saving technologies and solutions that can ... methods to support the integration of technology and and deep energy efficiency ...

  14. Demonstrating and Deploying Integrated Retrofit Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    validated methods to support the integration of technology and and deep energy efficiency retrofit solutions into the 5-10 year renovationasset management plans of SMSCBs. ...

  15. Sandia National Laboratories: Integrated Military Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Military Systems (IMS) Capabilities Facilities Projects Facebook Twitter YouTube Flickr RSS Integrated Military Systems (IMS) Integrated Military Systems Missile Air Defense Demonstrates advanced technologies, delivers responsive technical solutions in anticipation of Missile Defense mission needs, and facilitates the integration and sustainment of operational capabilities across the broad Missile Defense mission Missile Air Defense Strike Systems & Aerospace Technologies Provides

  16. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Integrated Solutions Collaborative, to determine the most cost-effective ... for Affordable Housing Attic Air Sealing Guide - Building America Top Innovation

  17. SunPower Italia formerly Solar Solutions | Open Energy Information

    Open Energy Info (EERE)

    SunPower Italia (formerly Solar Solutions) Place: Faenza, Italy Zip: 48018 Product: Italian distributor and systems integrator which was formed in 2002 and has 14 employees....

  18. Building America Technology Solutions Case Study: Sealed Crawled...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Case Study: Sealed Crawled Spaces with Integrated Whole-House Ventilation in a Cold Climate Building America Technology Solutions Case Study: Sealed Crawled Spaces with...

  19. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In this project, the Advanced Residential Integrated Solutions team investigated the suitability of mini-split heat pumps for multifamily retrofits. Replacing Resistance Heating ...

  20. Chevron beam dump for ITER edge Thomson scattering system

    SciTech Connect (OSTI)

    Yatsuka, E.; Hatae, T.; Bassan, M.; Itami, K.; Vayakis, G.

    2013-10-15

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  1. Tungsten dust impact on ITER-like plasma edge

    SciTech Connect (OSTI)

    Smirnov, R. D. Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2015-01-15

    The impact of tungsten dust originating from divertor plates on the performance of edge plasma in ITER-like discharge is evaluated using computer modeling with the coupled dust-plasma transport code DUSTT-UEDGE. Different dust injection parameters, including dust size and mass injection rates, are surveyed. It is found that tungsten dust injection with rates as low as a few mg/s can lead to dangerously high tungsten impurity concentrations in the plasma core. Dust injections with rates of a few tens of mg/s are shown to have a significant effect on edge plasma parameters and dynamics in ITER scale tokamaks. The large impact of certain phenomena, such as dust shielding by an ablation cloud and the thermal force on tungsten ions, on dust/impurity transport in edge plasma and consequently on core tungsten contamination level is demonstrated. It is also found that high-Z impurities provided by dust can induce macroscopic self-sustained plasma oscillations in plasma edge leading to large temporal variations of edge plasma parameters and heat load to divertor target plates.

  2. Modeling results for the ITER cryogenic fore pump

    SciTech Connect (OSTI)

    Zhang, D. S.; Miller, F. K.; Pfotenhauer, J. M.

    2014-01-29

    The cryogenic fore pump (CFP) is designed for ITER to collect and compress hydrogen isotopes during the regeneration process of torus cryopumps. Different from common cryopumps, the ITER-CFP works in the viscous flow regime. As a result, both adsorption boundary conditions and transport phenomena contribute unique features to the pump performance. In this report, the physical mechanisms of cryopumping are studied, especially the diffusion-adsorption process and these are coupled with standard equations of species, momentum and energy balance, as well as the equation of state. Numerical models are developed, which include highly coupled non-linear conservation equations of species, momentum and energy and equation of state. Thermal and kinetic properties are treated as functions of temperature, pressure, and composition. To solve such a set of equations, a novel numerical technique, identified as the Group-Member numerical technique is proposed. It is presented here a 1D numerical model. The results include comparison with the experimental data of pure hydrogen flow and a prediction for hydrogen flow with trace helium. An advanced 2D model and detailed explanation of the Group-Member technique are to be presented in following papers.

  3. Using AORSA to simulate helicon waves in DIIID and ITER

    SciTech Connect (OSTI)

    Lau, Cornwall H; Jaeger, E. F.; Berry, Lee Alan; Bertelli, Nicola; Green, David L; Murakami, Masanori; Park, J. M.; Prater, Ron

    2014-01-01

    Recent efforts by Vdovin [1] and Prater [2] have shown that helicon waves (fast waves at ~30 ion cyclotron frequency harmonic) may be an attractive option for driving efficient off-axis current drive during non-inductive tokamak operation for DIIID, ITER and DEMO. For DIIID scenarios, the ray tracing code GENRAY has been extensively used to study helicon current drive efficiency and location as a function many plasma parameters. has some limitations on absorption at high cyclotron harmonics, so the full wave code AORSA, which is applicable to arbitrary Larmor radius and can therefore resolve high ion cyclotron harmonics, has been recently used to validate the GENRAY model. It will be shown that the GENRAY and AORSA driven current drive profiles are comparable for the envisioned high temperature and density advanced scenarios for DIIID, where there is high single pass absorption due to electron Landau damping. AORSA results will be shown for various plasma parameters for DIIID and for ITER. Computational difficulties in achieving these AORSA results will also be discussed. * Work supported by USDOE Contract No. DE-AC05-00OR22725 [1] V. L. Vdovin, Plasma Physics Reports, V.39, No.2, 2013 [2] R. Prater et al, Nucl. Fusion, 52, 083024, 2014

  4. Tungsten dust impact on ITER-like plasma edge

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smirnov, R. D.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2015-01-12

    The impact of tungsten dust originating from divertor plates on the performance of edge plasma in ITER-like discharge is evaluated using computer modeling with the coupled dust-plasma transport code DUSTT-UEDGE. Different dust injection parameters, including dust size and mass injection rates, are surveyed. It is found that tungsten dust injection with rates as low as a few mg/s can lead to dangerously high tungsten impurity concentrations in the plasma core. Dust injections with rates of a few tens of mg/s are shown to have a significant effect on edge plasma parameters and dynamics in ITER scale tokamaks. The large impactmore » of certain phenomena, such as dust shielding by an ablation cloud and the thermal force on tungsten ions, on dust/impurity transport in edge plasma and consequently on core tungsten contamination level is demonstrated. Lastly, it is also found that high-Z impurities provided by dust can induce macroscopic self-sustained plasma oscillations in plasma edge leading to large temporal variations of edge plasma parameters and heat load to divertor target plates.« less

  5. Tungsten dust impact on ITER-like plasma edge

    SciTech Connect (OSTI)

    Smirnov, R. D.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2015-01-12

    The impact of tungsten dust originating from divertor plates on the performance of edge plasma in ITER-like discharge is evaluated using computer modeling with the coupled dust-plasma transport code DUSTT-UEDGE. Different dust injection parameters, including dust size and mass injection rates, are surveyed. It is found that tungsten dust injection with rates as low as a few mg/s can lead to dangerously high tungsten impurity concentrations in the plasma core. Dust injections with rates of a few tens of mg/s are shown to have a significant effect on edge plasma parameters and dynamics in ITER scale tokamaks. The large impact of certain phenomena, such as dust shielding by an ablation cloud and the thermal force on tungsten ions, on dust/impurity transport in edge plasma and consequently on core tungsten contamination level is demonstrated. Lastly, it is also found that high-Z impurities provided by dust can induce macroscopic self-sustained plasma oscillations in plasma edge leading to large temporal variations of edge plasma parameters and heat load to divertor target plates.

  6. Axisymmetric Simulations of the ITER Vertical Stability Coil

    SciTech Connect (OSTI)

    Titus, Peter H.

    2013-07-09

    The ITER in-vessel coil system includes Vertical Stability (VS) coils and Edge Localized Mode (ELM) coils. There are two large VS ring coils, one upper and one lower. Each has four turns which are independently connected. The VS coils are needed for successful operation of ITER for most all of its operating modes. The VS coils must be highly reliable and fault tolerant. The operating environment includes normal and disruption Lorentz forces. To parametrically address all these design conditions in a tractable analysis requires a simplified model. The VS coils are predominately axisymmetric, and this suggests that an axisymmetric model can be meaningfully used to address the variations in mechanical design, loading, material properties, and time dependency. The axisymmetric finite element analysis described in this paper includes simulations of the bolted frictional connections used for the mounting details. Radiation and elastic-plastic response are modeled particularly for the extreme faulted conditions. Thermal connectivity is varied to study the effects of partial thermal connection of the actively cooled conductor to the remaining structure.

  7. "Progress in U.S. ITER Magnet Systems", Wayne Reiersen, Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University | Princeton Plasma Physics Lab November 28, 2012, 4:15pm MBG Auditorium "Progress in U.S. ITER Magnet Systems", Wayne Reiersen, Princeton University Mr. Wayne Reiersen Princeton University U.S. ITER is responsible for providing the ITER Central Solenoid (CS), nine lengths of Toroidal Field (TF) Coil conductor, and Insert Coils for assessing CS and TF conductor performance. The status of the ongoing design and fabrication efforts will be reviewed. The interesting hurdles

  8. Iterative image-domain decomposition for dual-energy CT

    SciTech Connect (OSTI)

    Niu, Tianye; Dong, Xue; Petrongolo, Michael; Zhu, Lei

    2014-04-15

    Purpose: Dual energy CT (DECT) imaging plays an important role in advanced imaging applications due to its capability of material decomposition. Direct decomposition via matrix inversion suffers from significant degradation of image signal-to-noise ratios, which reduces clinical values of DECT. Existing denoising algorithms achieve suboptimal performance since they suppress image noise either before or after the decomposition and do not fully explore the noise statistical properties of the decomposition process. In this work, the authors propose an iterative image-domain decomposition method for noise suppression in DECT, using the full variance-covariance matrix of the decomposed images. Methods: The proposed algorithm is formulated in the form of least-square estimation with smoothness regularization. Based on the design principles of a best linear unbiased estimator, the authors include the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. The regularization term enforces the image smoothness by calculating the square sum of neighboring pixel value differences. To retain the boundary sharpness of the decomposed images, the authors detect the edges in the CT images before decomposition. These edge pixels have small weights in the calculation of the regularization term. Distinct from the existing denoising algorithms applied on the images before or after decomposition, the method has an iterative process for noise suppression, with decomposition performed in each iteration. The authors implement the proposed algorithm using a standard conjugate gradient algorithm. The method performance is evaluated using an evaluation phantom (Catphan600) and an anthropomorphic head phantom. The results are compared with those generated using direct matrix inversion with no noise suppression, a denoising method applied on the decomposed images, and an existing algorithm with similar formulation as the

  9. A finite integration method for conformal, structured-grid, electromagnetic simulation

    SciTech Connect (OSTI)

    Cooke, S.J. . E-mail: simon.cooke@nrl.navy.mil; Shtokhamer, R.; Mondelli, A.A.; Levush, B.

    2006-06-10

    We describe a numerical scheme for solving Maxwell's equations in the frequency domain on a conformal, structured, non-orthogonal, multi-block mesh. By considering Maxwell's equations in a volume parameterized by dimensionless curvilinear coordinates, we obtain a set of tensor equations that are a continuum analogue of common circuit equations, and that separate the metrical and metric-free parts of Maxwell's equations and the material constitutive relations. We discretize these equations using a new formulation that treats the electric field and magnetic induction using simple basis-function representations to obtain a discrete form of Faraday's law of induction, but that uses finite integral representations for the displacement current and magnetic field to obtain a discrete form of Ampere's law, as in the finite integration technique [T. Weiland, A discretization method for the solution of Maxwell's equations for six-component fields, Electron. Commun. (AE U) 31 (1977) 116; T. Weiland, Time domain electromagnetic field computation with finite difference methods, Int. J. Numer. Model: Electron. Netw. Dev. Field 9 (1996) 295-319]. We thereby derive new projection operators for the discrete tensor material equations and obtain a compact numerical scheme for the discrete differential operators. This scheme is shown to exhibit significantly reduced numerical dispersion when compared to the standard linear finite element method. We take advantage of the mesh structure on a block-by-block basis to implement these numerical operators efficiently, and achieve computational speed with modest memory requirements when compared to explicit sparse matrix storage. Using the Jacobi-Davidson [G.L.G. Sleijpen, H.A. van der Vorst, A Jacobi-Davidson iteration method for linear eigenvalue problems, SIAM J. Matrix Anal. Appl. 17 (2) (1996) 401-425; S.J. Cooke, B. Levush, Eigenmode solution of 2-D and 3-D electromagnetic cavities containing absorbing materials using the Jacobi

  10. C–IBI: Targeting cumulative coordination within an iterative protocol to derive coarse-grained models of (multi-component) complex fluids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    de Oliveira, Tiago E.; Netz, Paulo A.; Kremer, Kurt; Junghans, Christoph; Mukherji, Debashish

    2016-05-03

    We present a coarse-graining strategy that we test for aqueous mixtures. The method uses pair-wise cumulative coordination as a target function within an iterative Boltzmann inversion (IBI) like protocol. We name this method coordination iterative Boltzmann inversion (C–IBI). While the underlying coarse-grained model is still structure based and, thus, preserves pair-wise solution structure, our method also reproduces solvation thermodynamics of binary and/or ternary mixtures. In addition, we observe much faster convergence within C–IBI compared to IBI. To validate the robustness, we apply C–IBI to study test cases of solvation thermodynamics of aqueous urea and a triglycine solvation in aqueous urea.

  11. THERMAL DESIGN OF THE ITER VACUUM VESSEL COOLING SYSTEM

    SciTech Connect (OSTI)

    Carbajo, Juan J; Yoder Jr, Graydon L; Kim, Seokho H

    2010-01-01

    RELAP5-3D models of the ITER Vacuum Vessel (VV) Primary Heat Transfer System (PHTS) have been developed. The design of the cooling system is described in detail, and RELAP5 results are presented. Two parallel pump/heat exchanger trains comprise the design one train is for full-power operation and the other is for emergency operation or operation at decay heat levels. All the components are located inside the Tokamak building (a significant change from the original configurations). The results presented include operation at full power, decay heat operation, and baking operation. The RELAP5-3D results confirm that the design can operate satisfactorily during both normal pulsed power operation and decay heat operation. All the temperatures in the coolant and in the different system components are maintained within acceptable operating limits.

  12. Iterative methods for distributed parameter estimation in parabolic PDE

    SciTech Connect (OSTI)

    Vogel, C.R.; Wade, J.G.

    1994-12-31

    The goal of the work presented is the development of effective iterative techniques for large-scale inverse or parameter estimation problems. In this extended abstract, a detailed description of the mathematical framework in which the authors view these problem is presented, followed by an outline of the ideas and algorithms developed. Distributed parameter estimation problems often arise in mathematical modeling with partial differential equations. They can be viewed as inverse problems; the `forward problem` is that of using the fully specified model to predict the behavior of the system. The inverse or parameter estimation problem is: given the form of the model and some observed data from the system being modeled, determine the unknown parameters of the model. These problems are of great practical and mathematical interest, and the development of efficient computational algorithms is an active area of study.

  13. Iterative methods for dose reduction and image enhancement in tomography

    DOE Patents [OSTI]

    Miao, Jianwei; Fahimian, Benjamin Pooya

    2012-09-18

    A system and method for creating a three dimensional cross sectional image of an object by the reconstruction of its projections that have been iteratively refined through modification in object space and Fourier space is disclosed. The invention provides systems and methods for use with any tomographic imaging system that reconstructs an object from its projections. In one embodiment, the invention presents a method to eliminate interpolations present in conventional tomography. The method has been experimentally shown to provide higher resolution and improved image quality parameters over existing approaches. A primary benefit of the method is radiation dose reduction since the invention can produce an image of a desired quality with a fewer number projections than seen with conventional methods.

  14. The workshop on iterative methods for large scale nonlinear problems

    SciTech Connect (OSTI)

    Walker, H.F.; Pernice, M.

    1995-12-01

    The aim of the workshop was to bring together researchers working on large scale applications with numerical specialists of various kinds. Applications that were addressed included reactive flows (combustion and other chemically reacting flows, tokamak modeling), porous media flows, cardiac modeling, chemical vapor deposition, image restoration, macromolecular modeling, and population dynamics. Numerical areas included Newton iterative (truncated Newton) methods, Krylov subspace methods, domain decomposition and other preconditioning methods, large scale optimization and optimal control, and parallel implementations and software. This report offers a brief summary of workshop activities and information about the participants. Interested readers are encouraged to look into an online proceedings available at http://www.usi.utah.edu/logan.proceedings. In this, the material offered here is augmented with hypertext abstracts that include links to locations such as speakers` home pages, PostScript copies of talks and papers, cross-references to related talks, and other information about topics addresses at the workshop.

  15. Occupational Radiation Exposure Analysis of US ITER DCLL TBM

    SciTech Connect (OSTI)

    Merrill, Brad J; Cadwallader, Lee C; Dagher, Mohamad

    2007-08-01

    This report documents an Occupational Radiation Exposure (ORE) analysis that was performed for the US International Thermonuclear Experimental Reactor (ITER) Dual Coolant Lead Lithium (DCLL) Test Blanket Module (TBM). This analysis was performed with the QADMOD dose code for anticipated maintenance activities for this TBM concept and its ancillary systems. The QADMOD code was used to model the PbLi cooling loop of this TBM concept by specifying gamma ray source terms that simulated radioactive material within the piping, valves, heat exchanger, permeator, pump, drain tank, and cold trap of this cooling system. Estimates of the maintenance tasks that will have to be performed and the time required to perform these tasks where developed based on either expert opinion or on industrial maintenance experience for similar technologies. This report details the modeling activity and the calculated doses for the maintenance activities envisioned for the US DCLL TBM.

  16. Thermoelectric power of supported graphene - An iterative approach

    SciTech Connect (OSTI)

    Rizwana Begum, K.; Sankeshwar, N. S.

    2015-06-24

    Thermoelectric power, S, of graphene supported on SiO{sub 2} substrate is studied for 10K < T < 400K within the framework of Boltzmann transport formalism by an iterative method. Numerical calculations of diffusion thermopower, S{sub d}, as a function of temperature, are presented assuming the electrons to be scattered by impurities, vacancies, surface roughness, acoustic phonons, inelastic optical phonons and surface polar optical phonons. For the range of temperatures considered, S{sub d} is found to be dominated by impurities for T < 40K and by acoustic phonon and vacancy scatterings for T > 40K. The optical phonons are found to influence S{sub d} for T > 300K. Our calculations, assuming the drag component to be negligible, obtain good agreement with the recent experimental data.

  17. Development of the bus joint for the ITER Central Solenoid

    SciTech Connect (OSTI)

    Martovetsky, Nicolai N; Irick, David Kim; Kenney, Steven J

    2013-01-01

    The terminations of the Central Solenoid (CS) modules are connected to the bus extensions by joints located outside the CS in the gap between the CS and Torodial Field (TF) assemblies. These joints have very strict space limitations. Low resistance is a common requirement for all ITER joints. In addition, the CS bus joints will experience and must be designed to withstand significant variation in the magnetic field of several tenths of a Tesla per second during initiation of plasma. The joint resistance is specified to be less than 4 nOhm. The joints also have to be soldered in the field and designed with the possibility to be installed and dismantled in order to allow cold testing in the cold test facility. We have developed coaxial joints that meet these requirements and have demonstrated the feasibility to fabricate and assemble them in the vertical configuration. We introduced a coupling cylinder with superconducting strands soldered to the surface of the cable that can be installed in the ITER assembly hall and at the Cold Test Facility. This cylinder serves as a transition area between the CS module and the bus extension. We made two racetrack samples and tested four bus joints in our Joint Test Apparatus. Resistance of the bus joints was measured by a decay method and by a microvoltmeter; the value of the current was measured by the Hall probes. This measurement method was verified in the previous tests. The resistance of the joints varied insignificantly from 1.5 to 2 nOhm. One of the challenges associated with a soldered joint is the inability to use corrosive chemicals that are difficult to clean. This paper describes our development work on cable preparation, chrome removal, compaction, soldering, and final assembly and presents the test results.

  18. Proposal of an Arc Detection Technique Based on RF Measurements for the ITER ICRF Antenna

    SciTech Connect (OSTI)

    Huygen, S.; Dumortier, P.; Durodie, F.; Messiaen, A.; Vervier, M.; Vrancken, M.

    2011-12-23

    RF arc detection is a key operational and safety issue for the ICRF system on ITER. Indeed the high voltages inside the antenna put it at risk of arcing, which could cause substantial damage. This paper describes the various possibilities explored by circuit simulation and the strategy now considered to protect the ITER ICRF antenna from RF arcs.

  19. Erosion products of plasma facing materials formed under ITER-like transient load and deuterium retention in them

    SciTech Connect (OSTI)

    Putrik, A. B. Klimov, N. S.; Gasparyan, Yu. M. Efimov, V. S.; Barsuk, V. A.; Podkovyrov, V. L. Zhitlukhin, A. M. Yarochevskaya, A. D.; Kovalenko, D. V.

    2015-12-15

    Erosion of the plasma-facing materials in particular evaporation of the materials in a fusion reactor under intense transient events is one of the problems of the ITER. The current experimental data are insufficient to predict the properties of the erosion products, a significant part of which will be formed during transient events (edge-localized modes (ELMs) and disruptions). The paper concerns the experimental investigation of the graphite and tungsten erosion products deposited under pulsed plasma load at the QSPA-T: heat load on the target was 2.6 MJ/m{sup 2} with 0.5 ms pulse duration. The designed diagnostics for measuring the deposition rate made it possible to determine that the deposition of eroded material occurs during discharge, and the deposition rate is in the range (0.1–100) × 10{sup 19} at/(cm{sup 2} s), which is much higher than that for stationary processes. It is found that the relative atomic concentrations D/C and D/(W + C) in the erosion products deposited during the pulse process are on the same level as for the stationary processes. An exposure of erosion products to photonic energy densities typical of those expected at mitigated disruptions in the ITER (pulse duration of 0.5–1 ms, integral energy density of radiation of 0.1–0.5 MJ/m2) significantly decreases the concentration of trapped deuterium.

  20. Optimization of the ITER electron cyclotron equatorial launcher for improved heating and current drive functional capabilities

    SciTech Connect (OSTI)

    Farina, D.; Figini, L.; Henderson, M.; Saibene, G.

    2014-06-15

    The design of the ITER Electron Cyclotron Heating and Current Drive (EC H and CD) system has evolved in the last years both in goals and functionalities by considering an expanded range of applications. A large effort has been devoted to a better integration of the equatorial and the upper launchers, both from the point of view of the performance and of the design impact on the engineering constraints. However, from the analysis of the ECCD performance in two references H-mode scenarios at burn (the inductive H-mode and the advanced non-inductive scenario), it was clear that the EC power deposition was not optimal for steady-state applications in the plasma region around mid radius. An optimization study of the equatorial launcher is presented here aiming at removing this limitation of the EC system capabilities. Changing the steering of the equatorial launcher from toroidal to poloidal ensures EC power deposition out to the normalized toroidal radius ρ ≈ 0.6, and nearly doubles the EC driven current around mid radius, without significant performance degradation in the core plasma region. In addition to the improved performance, the proposed design change is able to relax some engineering design constraints on both launchers.

  1. Modeling and Analysis of Alternative Concept of ITER Vacuum Vessel Primary Heat Transfer System

    SciTech Connect (OSTI)

    Carbajo, Juan J; Yoder Jr, Graydon L; Dell'Orco, Giovanni; Curd, Warren; Kim, Seokho H

    2010-01-01

    A RELAP5-3D model of the ITER (Latin for the way ) vacuum vessel (VV) primary heat transfer system has been developed to evaluate a proposed design change that relocates the heat exchangers (HXs) from the exterior of the tokamak building to the interior. This alternative design protects the HXs from external hazards such as wind, tornado, and aircraft crash. The proposed design integrates the VV HXs into a VV pressure suppression system (VVPSS) tank that contains water to condense vapour in case of a leak into the plasma chamber. The proposal is to also use this water as the ultimate sink when removing decay heat from the VV system. The RELAP5-3D model has been run under normal operating and abnormal (decay heat) conditions. Results indicate that this alternative design is feasible, with no effects on the VVPSS tank under normal operation and with tank temperature and pressure increasing under decay heat conditions resulting in a requirement to remove steam generated if the VVPSS tank low pressure must be maintained.

  2. WE-G-18A-03: Cone Artifacts Correction in Iterative Cone Beam CT Reconstruction

    SciTech Connect (OSTI)

    Yan, H; Folkerts, M; Jiang, S; Jia, X; Wang, X; Bai, T; Lu, W

    2014-06-15

    Purpose: For iterative reconstruction (IR) in cone-beam CT (CBCT) imaging, data truncation along the superior-inferior (SI) direction causes severe cone artifacts in the reconstructed CBCT volume images. Not only does it reduce the effective SI coverage of the reconstructed volume, it also hinders the IR algorithm convergence. This is particular a problem for regularization based IR, where smoothing type regularization operations tend to propagate the artifacts to a large area. It is our purpose to develop a practical cone artifacts correction solution. Methods: We found it is the missing data residing in the truncated cone area that leads to inconsistency between the calculated forward projections and measured projections. We overcome this problem by using FDK type reconstruction to estimate the missing data and design weighting factors to compensate the inconsistency caused by the missing data. We validate the proposed methods in our multi-GPU low-dose CBCT reconstruction system on multiple patients' datasets. Results: Compared to the FDK reconstruction with full datasets, while IR is able to reconstruct CBCT images using a subset of projection data, the severe cone artifacts degrade overall image quality. For head-neck case under a full-fan mode, 13 out of 80 slices are contaminated. It is even more severe in pelvis case under half-fan mode, where 36 out of 80 slices are affected, leading to inferior soft-tissue delineation. By applying the proposed method, the cone artifacts are effectively corrected, with a mean intensity difference decreased from ∼497 HU to ∼39HU for those contaminated slices. Conclusion: A practical and effective solution for cone artifacts correction is proposed and validated in CBCT IR algorithm. This study is supported in part by NIH (1R01CA154747-01)

  3. Multilevel adaptive solution procedure for material nonlinear problems in visual programming environment

    SciTech Connect (OSTI)

    Kim, D.; Ghanem, R.

    1994-12-31

    Multigrid solution technique to solve a material nonlinear problem in a visual programming environment using the finite element method is discussed. The nonlinear equation of equilibrium is linearized to incremental form using Newton-Rapson technique, then multigrid solution technique is used to solve linear equations at each Newton-Rapson step. In the process, adaptive mesh refinement, which is based on the bisection of a pair of triangles, is used to form grid hierarchy for multigrid iteration. The solution process is implemented in a visual programming environment with distributed computing capability, which enables more intuitive understanding of solution process, and more effective use of resources.

  4. Grid Integration

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its grid integration subprogram.

  5. Status of the design of the ITER ECE diagnostic

    SciTech Connect (OSTI)

    Taylor, G.; Austin, M. E.; Beno, J. H.; Danani, S.; Feder, R.; Hesler, J. L.; Hubbard, A. E.; Johnson, D. W.; Kumar, R.; Pandya, H. K. B.; Roman, C.; Rowan, W. L.; Udintsev, V.; Vayakis, G.; Walsh, M.; Kubo, S.

    2015-03-12

    In this study, the baseline design for the ITER electron cyclotron emission (ECE) diagnostic has entered the detailed preliminary design phase. Two plasma views are planned, a radial view and an oblique view that is sensitive to distortions in the electron momentum distribution near the average thermal momentum. Both views provide high spatial resolution electron temperature profiles when the momentum distribution remains Maxwellian. The ECE diagnostic system consists of the front-end optics, including two 1000 K calibration sources, in equatorial port plug EP9, the 70-1000 GHz transmission system from the front-end to the diagnostics hall, and the ECE instrumentation in the diagnostics hall. The baseline ECE instrumentation will include two Michelson interferometers that can simultaneously measure ordinary and extraordinary mode ECE from 70 to 1000 GHz, and two heterodyne radiometer systems, covering 122-230 GHz and 244-355 GHz. Significant design challenges include 1) developing highly-reliable 1000 K calibration sources and the associated shutters/mirrors, 2) providing compliant couplings between the front-end optics and the polarization splitter box that accommodate displacements of the vacuum vessel during plasma operations and bake out, 3) protecting components from damage due to stray ECH radiation and other intense millimeter wave emission and 4) providing the low-loss broadband transmission system.

  6. Status of the design of the ITER ECE diagnostic

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Taylor, G.; Austin, M. E.; Beno, J. H.; Danani, S.; Ellis, R. F.; Feder, R.; Hesler, J. L.; Hubbard, A. E.; Johnson, D. W.; Kumar, R.; et al

    2015-03-12

    In this study, the baseline design for the ITER electron cyclotron emission (ECE) diagnostic has entered the detailed preliminary design phase. Two plasma views are planned, a radial view and an oblique view that is sensitive to distortions in the electron momentum distribution near the average thermal momentum. Both views provide high spatial resolution electron temperature profiles when the momentum distribution remains Maxwellian. The ECE diagnostic system consists of the front-end optics, including two 1000 K calibration sources, in equatorial port plug EP9, the 70-1000 GHz transmission system from the front-end to the diagnostics hall, and the ECE instrumentation inmore » the diagnostics hall. The baseline ECE instrumentation will include two Michelson interferometers that can simultaneously measure ordinary and extraordinary mode ECE from 70 to 1000 GHz, and two heterodyne radiometer systems, covering 122-230 GHz and 244-355 GHz. Significant design challenges include 1) developing highly-reliable 1000 K calibration sources and the associated shutters/mirrors, 2) providing compliant couplings between the front-end optics and the polarization splitter box that accommodate displacements of the vacuum vessel during plasma operations and bake out, 3) protecting components from damage due to stray ECH radiation and other intense millimeter wave emission and 4) providing the low-loss broadband transmission system.« less

  7. Compatibility of ITER candidate materials with static gallium

    SciTech Connect (OSTI)

    Luebbers, P.R.; Chopra, O.K.

    1995-09-01

    Corrosion tests have been conducted to determine the compatibility of gallium with candidate structural materials for the International Thermonuclear Experimental Reactor (ITER) first wall/blanket systems, e.g., Type 316 stainless steel (SS), Inconel 625, and Nb-5 Mo-1 Zr. The results indicate that Type 316 SS is least resistant to corrosion in static gallium and Nb-5 Mo-1 Zr alloy is most resistant. At 400 C, corrosion rates for Type 316 SS, Inconel 625, and Nb-5 Mo-1 Zr alloy are {approx} 4.0, 0.5, and 0.03 mm/yr, respectively. Iron, nickel, and chromium react rapidly with gallium. Iron shows greater corrosion than nickel at 400 C ({ge} 88 and 18 mm/yr, respectively). The present study indicates that at temperatures up to 400 C, corrosion occurs primarily by dissolution and is accompanied by formation of metal/gallium intermetallic compounds. The growth of intermetallic compounds may control the overall rate of corrosion.

  8. DESIGN, ANALYSIS AND TEST CONCEPT FOR PROTOTYPE CRYOLINE OF ITER

    SciTech Connect (OSTI)

    Sarkar, B.; Badgujar, S.; Vaghela, H.; Shah, N.; Bhattacharya, R.; Chakrapani, Ch.

    2008-03-16

    The ITER cryo-distribution and cryoline is a part of the in-kind supply for India. The design of the systems is in progress. The topology of torus and neutral beam cryoline is defined as six process pipes along with thermal shield at 80 K and outer vacuum jacket. In order to develop confidence in the concept and to establish the high level of engineering and manufacturing technology, a prototype testing has been proposed. The prototype test will be carried out on 1:1 model in terms of dimension. However, the mass flow rate of the supercritical helium at 4.5 K and gaseous helium at 80 K will be on a 1:10 scale. The prototype cryoline has been designed and analyzed for thermal, structural and hydraulic parameters. The objective of this prototype test is to verify mechanical behavior due to thermal stress and pressure force, thermal and hydraulic performances. The concept of test facility has been realized along with the Piping and Instrumentation (P and I) diagram, instrumentation, controls, data acquisition, 80 K helium generation system along with supply and return valve boxes and interfacing hardware. The design concept, methodology for analysis and results, as well as the test facility have been discussed.

  9. Microsoft Word - Second_ ITER Council Press Release.doc | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Second_ ITER Council Press Release.doc Microsoft Word - Second_ ITER Council Press Release.doc Microsoft Word - Second_ ITER Council Press Release.doc (123.14 KB) More Documents & Publications Before the House Subcommittee on Energy - Committee on Science, Space, and Technology Joint Statement by Energy Ministers of G8, The People's Republic of China, India and The Republic of Korea (June 2008) Joint Statement by Energy Ministers of G8, The People's Republic of China, India and

  10. Formation and Sustainment of ITPs in ITER with the Baseline Heating Mix

    SciTech Connect (OSTI)

    Francesca M. Poli and Charles Kessel

    2012-12-03

    Plasmas with internal transport barriers (ITBs) are a potential and attractive route to steady-state operation in ITER. These plasmas exhibit radially localized regions of improved con nement with steep pressure gradients in the plasma core, which drive large bootstrap current and generate hollow current pro les and negative shear. This work examines the formation and sustainment of ITBs in ITER with electron cyclotron heating and current drive. It is shown that, with a trade-o of the power delivered to the equatorial and to the upper launcher, the sustainment of steady-state ITBs can be demonstrated in ITER with the baseline heating con guration.

  11. Calculation of chemical equilibrium between aqueous solution...

    Office of Scientific and Technical Information (OSTI)

    SALTON SEA; SEAWATER; WATER; CALIFORNIA; COMPUTERS; DISPERSIONS; FELDSPARS; FLUIDS; HYDROGEN COMPOUNDS; IMPERIAL VALLEY; ITERATIVE METHODS; KINETICS; MANAGEMENT; MIXTURES; NORTH...

  12. Procurement Integrity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - ------------------------------Chapter 3.1 (Dec 2015) 1 Procurement Integrity [Reference: 41 U.S.C. 423, FAR 3.104, DEAR 903.104] Overview This section discusses the requirements of the Procurement Integrity Act and its impact on Federal employees. Background The Department of Energy (DOE), like most federal agencies, purchases many products and services from the private sector. To preserve the integrity of the Federal procurement process and assure fair treatment of bidders, offerors and

  13. Insolation integrator

    DOE Patents [OSTI]

    Dougherty, John J.; Rudge, George T.

    1980-01-01

    An electric signal representative of the rate of insolation is integrated to determine if it is adequate for operation of a solar energy collection system.

  14. Procurement Integrity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    To preserve the integrity of the Federal procurement process and assure fair treatment of bidders, offerors and contractors, laws govern the procurement process and the manner in ...

  15. SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR PV (SHINES)

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Sustainable and Holistic Integration of Energy Storage and Solar PV (SHINES) program develops and demonstrates integrated photovoltaic (PV) and energy storage solutions that are scalable,...

  16. Gas species, their evolution and segregation through the ITER vacuum systems

    SciTech Connect (OSTI)

    Pearce, R.J.H.; Antipenkov, Alexander; Bersier, Jean-Louis; Boussier, Bastien; Baylor, Larry R; Gardner, Walter L; Meitner, Steven J

    2012-01-01

    This paper takes the ITER fueling requirements and current knowledge of gas balance and exhaust from operating tokamaks to predict all likely gas inputs into the ITER Vacuum systems. Areas where gas dynamics modeling is relevant to the ITER design are highlighted. The design and operation of the ITER vacuum system gives an element of segregation of different gas flows and species. This paper analyses the time dependent gas segregation in the vacuum system resulting from different temperature dependences of cryogenic sorption and condensation processes of different gas species. As a specific example, the optimal transfer of Ar-41 through the vacuum system is studied with respect to its decay and the resulting effects on the design of system components.

  17. Final Report on ORDER No. 5312-20110620-JOHNSON-01ITER: Core...

    Office of Scientific and Technical Information (OSTI)

    Design Review Support Citation Details In-Document Search Title: Final Report on ORDER No. 5312-20110620-JOHNSON-01ITER: Core Imaging X-Ray Spectrometer Conceptual Design ...

  18. Final Report on ORDER No. 5312-20110620-JOHNSON-01ITER: Core...

    Office of Scientific and Technical Information (OSTI)

    Core Imaging X-Ray Spectrometer Conceptual Design Review Support Citation Details In-Document Search Title: Final Report on ORDER No. 5312-20110620-JOHNSON-01ITER: Core ...

  19. Electromagnetic analysis of forces and torques on the ITER shield modules due to plasma disruption.

    SciTech Connect (OSTI)

    Kotulski, Joseph Daniel; Coats, Rebecca Sue; Pasik, Michael Francis; Ulrickson, Michael Andrew

    2009-06-01

    An electromagnetic analysis is performed on the ITER shield modules under different plasma disruption scenarios using the OPERA-3d software. The modeling procedure is explained, electromagnetic torques are presented, and results of the modeling are discussed.

  20. during the ITER era S.J. Zinkle; J.P. Planchard; R.W. Callis...

    Office of Scientific and Technical Information (OSTI)

    Fusion materials science and technology research opportunities now and during the ITER era S.J. Zinkle; J.P. Planchard; R.W. Callis; C.E. Kessel; P.J. Lee; K.A. McCarty; Various...

  1. ITER (International Thermonuclear Experimental Reactor) shield and blanket work package report

    SciTech Connect (OSTI)

    Not Available

    1988-06-01

    This report summarizes nuclear-related work in support of the US effort for the International Thermonuclear Experimental Reactor (ITER) Study. The purpose of this work was to prepare for the first international ITER workshop devoted to defining a basic ITER concept that will serve as a basis for an indepth conceptual design activity over the next 2-1/2 years. Primary tasks carried out during the past year included: design improvements of the inboard shield developed for the TIBER concept, scoping studies of a variety of tritium breeding blanket options, development of necessary design guidelines and evaluation criteria for the blanket options, further safety considerations related to nuclear components and issues regarding structural materials for an ITER device. 44 refs., 31 figs., 29 tabs.

  2. PPPL and ITER: Lab teams support the world's largest fusion experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The United States participates in ITER together with China, the European Union, India, Japan, South Korea and Russia. "It is very exciting to work on such a challenging global ...

  3. Quasi-linear modeling of lower hybrid current drive in ITER and DEMO

    SciTech Connect (OSTI)

    Cardinali, A. Cesario, R.; Panaccione, L.; Santini, F.; Amicucci, L.; Castaldo, C.; Ceccuzzi, S.; Mirizzi, F.; Tuccillo, A. A.

    2015-12-10

    First pass absorption of the Lower Hybrid waves in thermonuclear devices like ITER and DEMO is modeled by coupling the ray tracing equations with the quasi-linear evolution of the electron distribution function in 2D velocity space. As usually assumed, the Lower Hybrid Current Drive is not effective in a plasma of a tokamak fusion reactor, owing to the accessibility condition which, depending on the density, restricts the parallel wavenumber to values greater than n{sub ∥crit} and, at the same time, to the high electron temperature that would enhance the wave absorption and then restricts the RF power deposition to the very periphery of the plasma column (near the separatrix). In this work, by extensively using the “ray{sup star}” code, a parametric study of the propagation and absorption of the LH wave as function of the coupled wave spectrum (as its width, and peak value), has been performed very accurately. Such a careful investigation aims at controlling the power deposition layer possibly in the external half radius of the plasma, thus providing a valuable aid to the solution of how to control the plasma current profile in a toroidal magnetic configuration, and how to help the suppression of MHD mode that can develop in the outer part of the plasma. This analysis is useful not only for exploring the possibility of profile control of a pulsed operation reactor as well as the tearing mode stabilization, but also in order to reconsider the feasibility of steady state regime for DEMO.

  4. A component analysis based on serial results analyzing performance of parallel iterative programs

    SciTech Connect (OSTI)

    Richman, S.C.

    1994-12-31

    This research is concerned with the parallel performance of iterative methods for solving large, sparse, nonsymmetric linear systems. Most of the iterative methods are first presented with their time costs and convergence rates examined intensively on sequential machines, and then adapted to parallel machines. The analysis of the parallel iterative performance is more complicated than that of serial performance, since the former can be affected by many new factors, such as data communication schemes, number of processors used, and Ordering and mapping techniques. Although the author is able to summarize results from data obtained after examining certain cases by experiments, two questions remain: (1) How to explain the results obtained? (2) How to extend the results from the certain cases to general cases? To answer these two questions quantitatively, the author introduces a tool called component analysis based on serial results. This component analysis is introduced because the iterative methods consist mainly of several basic functions such as linked triads, inner products, and triangular solves, which have different intrinsic parallelisms and are suitable for different parallel techniques. The parallel performance of each iterative method is first expressed as a weighted sum of the parallel performance of the basic functions that are the components of the method. Then, one separately examines the performance of basic functions and the weighting distributions of iterative methods, from which two independent sets of information are obtained when solving a given problem. In this component approach, all the weightings require only serial costs not parallel costs, and each iterative method for solving a given problem is represented by its unique weighting distribution. The information given by the basic functions is independent of iterative method, while that given by weightings is independent of parallel technique, parallel machine and number of processors.

  5. Qualification of the US made conductors for ITER TF magnet system

    SciTech Connect (OSTI)

    Martovetsky, N; Hatfield, D; Miller, J; Bruzzone, P; Stepanov, B; Seber, B

    2009-10-08

    The US Domestic Agency (USDA) is one of the six suppliers of the TF conductor for ITER. In order to qualify conductors according to ITER requirements we prepared several lengths of the CICC and short samples for testing in the SULTAN facility in CRPP, Switzerland. We also fully characterized the strands that were used in these SULTAN samples. Fabrication experience and test results are presented and discussed.

  6. Qualification of the US Made Conductors for ITER TF Magnet System

    SciTech Connect (OSTI)

    Martovetsky, Nicolai N; Hatfield, Daniel R; Miller, John R; Bruzzone, P.; Stepanov, B.; Seber, B.

    2010-01-01

    The US Domestic Agency (USDA) is one of the six suppliers of the TF conductor for ITER. In order to qualify conductors according to ITER requirements we prepared several lengths of the CICC and short samples for testing in the SULTAN facility in CRPP, Switzerland. We also fully characterized the strands that were used in these SULTAN samples. Fabrication experience and test results are presented and discussed.

  7. NREL: Energy Systems Integration - INTEGRATE Partner Demonstrates Active

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Network Management of Distributed Energy Resources at NREL Energy Systems Integration Printable Version INTEGRATE Partner Demonstrates Active Network Management of Distributed Energy Resources at NREL April 28, 2016 New York-based Smarter Grid Solutions (SGS) has employed its Active Network Management (ANM) system at NREL to manage and maintain a modeled distribution grid within normal operating limits through the autonomous management, coordination, and control of distributed energy

  8. The motional Stark effect diagnostic for ITER using a line-shift approach

    SciTech Connect (OSTI)

    Foley, E. L.; Levinton, F. M.; Yuh, H. Y.; Zakharov, L. E.

    2008-10-15

    The United States has been tasked with the development and implementation of a motional Stark effect (MSE) system on ITER. In the harsh ITER environment, MSE is particularly susceptible to degradation, as it depends on polarimetry, and the polarization reflection properties of surfaces are highly sensitive to thin film effects due to plasma deposition and erosion of a first mirror. Here we present the results of a comprehensive study considering a new MSE-based approach to internal plasma magnetic field measurements for ITER. The proposed method uses the line shifts in the MSE spectrum (MSE-LS) to provide a radial profile of the magnetic field magnitude. To determine the utility of MSE-LS for equilibrium reconstruction, studies were performed using the ESC-ERV code system. A near-term opportunity to test the use of MSE-LS for equilibrium reconstruction is being pursued in the implementation of MSE with laser-induced fluorescence on NSTX. Though the field values and beam energies are very different from ITER, the use of a laser allows precision spectroscopy with a similar ratio of linewidth to line spacing on NSTX as would be achievable with a passive system on ITER. Simulation results for ITER and NSTX are presented, and the relative merits of the traditional line polarization approach and the new line-shift approach are discussed.

  9. Integrating Information, Science, and Technology for Prediction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrating Information, Science, and Technology for Prediction Integrating Information, Science, and Technology for Prediction (IS&T) The Lab's four Science Pillars harness our scientific capabilities for national security solutions. Contacts Pillar Champion John Sarrao Email IS&T banner Integrating Information, Science, and Technology for Prediction Overview The Integrating Information, Science, and Technology for Prediction (IS&T) pillar addresses: emerging challenges in national

  10. OBTAINING POTENTIAL FIELD SOLUTIONS WITH SPHERICAL HARMONICS AND FINITE DIFFERENCES

    SciTech Connect (OSTI)

    Toth, Gabor; Van der Holst, Bart; Huang Zhenguang

    2011-05-10

    Potential magnetic field solutions can be obtained based on the synoptic magnetograms of the Sun. Traditionally, a spherical harmonics decomposition of the magnetogram is used to construct the current- and divergence-free magnetic field solution. This method works reasonably well when the order of spherical harmonics is limited to be small relative to the resolution of the magnetogram, although some artifacts, such as ringing, can arise around sharp features. When the number of spherical harmonics is increased, however, using the raw magnetogram data given on a grid that is uniform in the sine of the latitude coordinate can result in inaccurate and unreliable results, especially in the polar regions close to the Sun. We discuss here two approaches that can mitigate or completely avoid these problems: (1) remeshing the magnetogram onto a grid with uniform resolution in latitude and limiting the highest order of the spherical harmonics to the anti-alias limit; (2) using an iterative finite difference algorithm to solve for the potential field. The naive and the improved numerical solutions are compared for actual magnetograms and the differences are found to be rather dramatic. We made our new Finite Difference Iterative Potential-field Solver (FDIPS) a publicly available code so that other researchers can also use it as an alternative to the spherical harmonics approach.

  11. Building America Technology Solutions for New and Existing Homes: Retrofit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Space and Water Heating-Field Assessment | Department of Energy Retrofit Integrated Space and Water Heating-Field Assessment Building America Technology Solutions for New and Existing Homes: Retrofit Integrated Space and Water Heating-Field Assessment In this project, the NorthernSTAR team analyzed combined (combi) condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water and forced air space heating. Retrofit Integrated Space and

  12. Design and Analysis of the ITER Vertical Stability Coils

    SciTech Connect (OSTI)

    Peter H. Titus, et. al.

    2012-09-06

    The ITER vertical stability (VS) coils have been developed through the preliminary design phase by Princeton Plasma Physics Laboratory (PPPL). Final design, prototyping and construction will be carried out by the Chinese Participant Team contributing lab, Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). The VS coils are a part of the in-vessel coil systems which include edge localized mode (ELM) coils as well as the VS coils. An overview of the ELM coils is provided in another paper at this conference. 15 The VS design employs four turns of stainless steel jacketed mineral insulated copper (SSMIC) conductors The mineral insulation is Magnesium Oxide (MgO). Joule and nuclear heat is removed by water flowing at 3 m/s through the hollow copper conductor. A key element in the design is that slightly elevated temperatures in the conductor and its support spine during operation impose compressive stresses that mitigate fatigue damage. Away from joints, and break-outs, conductor thermal stresses are low because of the axisymmetry of the winding (there are no corner bends as in the ELM coils).The 120 degree segment joint, and break-out or terminal regions are designed with similar but imperfect constraint compared with the ring coil portion of the VS. The support for the break-out region is made from a high strength copper alloy, CuCrZr. This is needed to conduct nuclear heat to the actively cooled conductor and to the vessel wall. The support "spine" for the ring coil portion of the VS is 316 stainless steel, held to the vessel with preloaded 718 bolts. Lorentz loads resulting from normal operating loads, disruption loads and loads from disruption currents in the support spine shared with vessel, are applied to the VS coil. The transmission of the Lorentz and thermal expansion loads from the "spine" to the vessel rails is via friction augmented with a restraining "lip" to ensure the coil frictional slip is minimal and acceptable. Stresses in the coil

  13. Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A lot that needs to be done to enable the transition towards larger shares of renewables in the power mix. The 5th International Conference on Integration of Renewable Energy and ...

  14. ITER Building Design (D230-B), Task No. 28. Final report

    SciTech Connect (OSTI)

    1995-12-01

    The International Thermonuclear Experimental Reactor (ITER) Project requires a set of buildings, each with its own distinct function, to support ITER`s mission. The Joint Central Team (JCT) has identified all the buildings in the set and has placed them in an efficient arrangement on the site. The JCT has developed a conceptual layout of each individual building. The buildings have been categorized into two main groups: (1) {open_quotes}Level 1 Buildings{close_quotes} which are on the construction schedule critical path and (2) {open_quotes}Level 2 Buildings{close_quotes} which, while important, are not on the critical path. The buildings are further categorized according to construction material, that is, {open_quotes}reinforced concrete{close_quotes} or {open_quotes}steel-frame on concrete slab{close_quotes}. This Report responds to the Project`s request to perform the initial structural steel design for all the {open_quotes}steel-frame on concrete slab{close_quotes} buildings. Of the twelve (12) {open_quotes}steel-frame on concrete slab{close_quotes} buildings, four (4) are Level 1 and eight (8) are Level 2 Buildings. This Report is a deliverable for the ITER Task Assignment entitled {open_quotes}ITER Buildings Design (D230-B){close_quotes}, also designated as Task No. 28. ITER U.S. Home Team Industrial Consortium members, Raytheon Engineers & Constructors (RE&C) and Stone & Webster Engineering Corporation (SWEC), teamed to perform Task 28. This task commenced in May 1995. It was performed in accordance with the design criteria specified by the ITER-JCT, San Diego Joint Work Site.

  15. Randa Energy Solutions LLC R A Energy Solutions | Open Energy...

    Open Energy Info (EERE)

    LLC R A Energy Solutions Jump to: navigation, search Name: Randa Energy Solutions, LLC (R&A Energy Solutions) Place: North Ridgeville, Ohio Zip: 44039 Product: String...

  16. Investigation of statistical iterative reconstruction for dedicated breast CT

    SciTech Connect (OSTI)

    Makeev, Andrey; Glick, Stephen J.

    2013-08-15

    Purpose: Dedicated breast CT has great potential for improving the detection and diagnosis of breast cancer. Statistical iterative reconstruction (SIR) in dedicated breast CT is a promising alternative to traditional filtered backprojection (FBP). One of the difficulties in using SIR is the presence of free parameters in the algorithm that control the appearance of the resulting image. These parameters require tuning in order to achieve high quality reconstructions. In this study, the authors investigated the penalized maximum likelihood (PML) method with two commonly used types of roughness penalty functions: hyperbolic potential and anisotropic total variation (TV) norm. Reconstructed images were compared with images obtained using standard FBP. Optimal parameters for PML with the hyperbolic prior are reported for the task of detecting microcalcifications embedded in breast tissue.Methods: Computer simulations were used to acquire projections in a half-cone beam geometry. The modeled setup describes a realistic breast CT benchtop system, with an x-ray spectra produced by a point source and an a-Si, CsI:Tl flat-panel detector. A voxelized anthropomorphic breast phantom with 280 ?m microcalcification spheres embedded in it was used to model attenuation properties of the uncompressed woman's breast in a pendant position. The reconstruction of 3D images was performed using the separable paraboloidal surrogates algorithm with ordered subsets. Task performance was assessed with the ideal observer detectability index to determine optimal PML parameters.Results: The authors' findings suggest that there is a preferred range of values of the roughness penalty weight and the edge preservation threshold in the penalized objective function with the hyperbolic potential, which resulted in low noise images with high contrast microcalcifications preserved. In terms of numerical observer detectability index, the PML method with optimal parameters yielded substantially improved

  17. Heating and current drive requirements towards steady state operation in ITER

    SciTech Connect (OSTI)

    Poli, F. M.; Kessel, C. E.; Gorelenkova, M.; Bonoli, P. T.; Batchelor, D. B.; Harvey, B.; Petrov, Y.

    2014-02-12

    Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of H/CD sources that maintain weakly reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that, with a trade-off of the EC equatorial and upper launcher, the formation and sustainment of quasi-steady state ITBs could be demonstrated in ITER with the baseline heating configuration. However, with proper constraints from peeling-ballooning theory on the pedestal width and height, the fusion gain and the maximum non-inductive current are below the ITER target. Upgrades of the heating and current drive system in ITER, like the use of Lower Hybrid current drive, could overcome these limitations, sustaining higher non-inductive current and confinement, more expanded ITBs which are ideal MHD stable.

  18. In-vessel ITER tubing failure rates for selected materials and coolants

    SciTech Connect (OSTI)

    Marshall, T.D.; Cadwallader, L.C.

    1994-03-01

    Several materials have been suggested for fabrication of ITER in-vessel coolant tubing: beryllium, copper, Inconel, niobium, stainless steel, titanium, and vanadium. This report generates failure rates for the materials to identify the best performer from an operational safety and availability perspective. Coolant types considered in this report are helium gas, liquid lithium, liquid sodium, and water. Failure rates for the materials are generated by including the influence of ITER`s operating environment and anticipated tubing failure mechanisms with industrial operating experience failure rates. The analyses define tubing failure mechanisms for ITER as: intergranular attack, flow erosion, helium induced swelling, hydrogen damage, neutron irradiation embrittlement, cyclic fatigue, and thermal cycling. K-factors, multipliers, are developed to model each failure mechanism and are applied to industrial operating experience failure rates to generate tubing failure rates for ITER. The generated failure rates identify the best performer by its expected reliability. With an average leakage failure rate of 3.1e-10(m-hr){sup {minus}1}and an average rupture failure rate of 3.1e-11(m-hr){sup {minus}1}, titanium proved to be the best performer of the tubing materials. The failure rates generated in this report are intended to serve as comparison references for design safety and optimization studies. Actual material testing and analyses are required to validate the failure rates.

  19. ITER vacuum vessel fabrication plan and cost study (D 68) for the international thermonuclear experimental reactor

    SciTech Connect (OSTI)

    1995-01-01

    ITER Task No. 8, Vacuum Vessel Fabrication Plan and Cost Study (D68), was initiated to assess ITER vacuum vessel fabrication, assembly, and cost. The industrial team of Raytheon Engineers & Constructors and Chicago Bridge & Iron (Raytheon/CB&I) reviewed the current vessel basis and prepared a manufacturing plan, assembly plan, and cost estimate commensurate with the present design. The guidance for the Raytheon/CB&I assessment activities was prepared by the ITER Garching Work Site. This guidance provided in the form of work descriptions, sketches, drawings, and costing guidelines for each of the presently identified vacuum vessel Work Breakdown Structure (WBS) elements was compiled in ITER Garching Joint Work Site Memo (Draft No. 9 - G 15 MD 01 94-17-05 W 1). A copy of this document is provided as Appendix 1 to this report. Additional information and clarifications required for the Raytheon/CB&I assessments were coordinated through the US Home Team (USHT) and its technical representative. Design details considered essential to the Task 8 assessments but not available from the ITER Joint Central Team (JCT) were generated by Raytheon/CB&I and documented accordingly.

  20. Final Report- Transforming PV installations toward dispatchable, schedulable energy solutions

    Office of Energy Efficiency and Renewable Energy (EERE)

    Awardee: AE Solar EnergyLocation: Bend, ORSubprogram: Systems IntegrationFunding Program: SEGIS-ACProject: Transforming PV installations toward dispatchable, schedulable energy solutionsPrincipal...

  1. Solution deposition assembly

    DOE Patents [OSTI]

    Roussillon, Yann; Scholz, Jeremy H; Shelton, Addison; Green, Geoff T; Utthachoo, Piyaphant

    2014-01-21

    Methods and devices are provided for improved deposition systems. In one embodiment of the present invention, a deposition system is provided for use with a solution and a substrate. The system comprises of a solution deposition apparatus; at least one heating chamber, at least one assembly for holding a solution over the substrate; and a substrate curling apparatus for curling at least one edge of the substrate to define a zone capable of containing a volume of the solution over the substrate. In another embodiment of the present invention, a deposition system for use with a substrate, the system comprising a solution deposition apparatus; at heating chamber; and at least assembly for holding solution over the substrate to allow for a depth of at least about 0.5 microns to 10 mm.

  2. TVA- Solar Solutions Initiative

    Broader source: Energy.gov [DOE]

    Solar Solutions Initiative (SSI) is a pilot program that offers additional financial incentives for Solar PV systems participating in the Renewable Standard Offer program. Applications for new...

  3. Mixed oxide solid solutions

    DOE Patents [OSTI]

    Magno, Scott; Wang, Ruiping; Derouane, Eric

    2003-01-01

    The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.

  4. Lightweight Steel Solutions for Automotive Industry

    SciTech Connect (OSTI)

    Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho

    2010-06-15

    Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

  5. Numerical studies of the imaging properties of doubly focussing crystals and their application to ITER

    SciTech Connect (OSTI)

    Bitter, M.; Fraenkel, B.; Hill, K.W.; Hsuan, H.; von Goeler, S. )

    1995-01-01

    Line brightness calculations for the parameters at the International Thermonuclear Experimental Reactor (ITER) and results from recent experiments on the Tokamak Fusion Test Reactor (TFTR) indicate that time-resolved measurements of the central ion temperature and other central plasma parameters should be feasible on ITER with nonperturbing amounts of krypton. Since the measurements will have to be performed in the presence of high fluxes of 14-MeV neutrons from DT-fusion reactions, the size of windows, apertures and x-ray detectors must be as small as possible. Under these conditions, the use of doubly focussing crystals can significantly enhance the signal-to-noise ratio. This paper describes numerical studies of the focussing properties of spherically bent crystals and their application to ITER.

  6. Beyond ITER: Neutral beams for a demonstration fusion reactor (DEMO) (invited)

    SciTech Connect (OSTI)

    McAdams, R.

    2014-02-15

    In the development of magnetically confined fusion as an economically sustainable power source, International Tokamak Experimental Reactor (ITER) is currently under construction. Beyond ITER is the demonstration fusion reactor (DEMO) programme in which the physics and engineering aspects of a future fusion power plant will be demonstrated. DEMO will produce net electrical power. The DEMO programme will be outlined and the role of neutral beams for heating and current drive will be described. In particular, the importance of the efficiency of neutral beam systems in terms of injected neutral beam power compared to wallplug power will be discussed. Options for improving this efficiency including advanced neutralisers and energy recovery are discussed.

  7. Non-destructive qualification tests for ITER cryogenic axial insulating breaks

    SciTech Connect (OSTI)

    Kosek, Jacek; Lopez, Roberto; Tommasini, Davide; Rodriguez-Mateos, Felix

    2014-01-29

    In the ITER superconducting magnets the dielectric separation between the CICC (Cable-In-Conduit Conductors) and the helium supply pipes is made through the so-called insulating breaks (IB). These devices shall provide the required dielectric insulation at a 30 kV level under different types of stresses and constraints: thermal, mechanical, dielectric and ionizing radiations. As part of the R and D program, the ITER Organization launched contracts with industrial companies aimed at the qualification of the manufacturing techniques. After reviewing the main functional aspects, this paper describes and discusses the protocol established for non-destructive qualification tests of the prototypes.

  8. Rich Hawryluk recalls "exciting and challenging" years working on ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Princeton Plasma Physics Lab Rich Hawryluk recalls "exciting and challenging" years working on ITER By John Greenwald April 23, 2013 Tweet Widget Google Plus One Share on Facebook Gallery: What is it like to be at the center of ITER, the huge international fusion experiment that is under construction in Cadarache, France? "It's both exciting and challenging," said physicist Rich Hawryluk, who recently returned to PPPL after a two-year stint as deputy director-general

  9. Box Integrals

    SciTech Connect (OSTI)

    Bailey, David H.; Borwein, Jonathan M.; Crandall, Richard E.

    2006-06-01

    By a "box integral" we mean here an expectation $\\langle|\\vec r - \\vec q|^s \\rangle$ where $\\vec r$runs over the unit $n$-cube,with $\\vec q$ and $s$ fixed, explicitly:\\begin eqnarray*&&\\int_01 \\cdots \\int_01 \\left((r_1 - q_1)2 + \\dots+(r_n-q_n)2\\right)^ s/2 \\ dr_1 \\cdots dr_n.\\end eqnarray* The study ofbox integrals leads one naturally into several disparate fields ofanalysis. While previous studies have focused upon symbolic evaluationand asymptotic analysis of special cases (notably $s = 1$), we workherein more generally--in interdisciplinary fashion--developing resultssuch as: (1) analytic continuation (in complex $s$), (2) relevantcombinatorial identities, (3) rapidly converging series, (4) statisticalinferences, (5) connections to mathematical physics, and (6)extreme-precision quadrature techniques appropriate for these integrals.These intuitions and results open up avenues of experimental mathematics,with a view to new conjectures and theorems on integrals of thistype.

  10. Solvent wash solution

    DOE Patents [OSTI]

    Neace, James C. (Blackville, SC)

    1986-01-01

    Process for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 volume percent of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  11. Solvent wash solution

    DOE Patents [OSTI]

    Neace, J.C.

    1984-03-13

    A process is claimed for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 vol % of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  12. SU-F-18C-06: Prospective Patient Evaluation of Iterative Reconstruction in Radiation Oncology

    SciTech Connect (OSTI)

    Price, R; Vance, S; Cattaneo, R; Schultz, L; Elshaikh, M; Chetty, I; Glide-Hurst, C

    2014-06-15

    Purpose: This work incorporates iterative reconstruction (IR) into a dose reduction study to characterize image quality metrics, delineation, and dosimetric assessment, with the goal of reducing imaging dose in Radiation Oncology. Methods: Three-dimensional noise power spectrum (NPS) analysis characterized noise magnitude/texture (120 kVp, 50–200 mAs, IR levels 1–6 yielding noise reduction of 0.89–0.55 compared to filtered backprojection (FBP)). Task-specific Modulation Transfer Functions (MTFtask) were characterized across varied subject contrasts. A prospective dose reduction study (500 to 150 mAs) was conducted for 12 patients (43 inter-fraction CTs) for high-dose rate brachytherapy. Three physicians performed qualitative image assessment between full-dose FBP (FD-FBP, 500 mAs), low-dose FBP (LD-FBP, 150–250 mAs), and low-dose IRL5-6 (LD-IR) scans for image noise, cuff/bladder interface detectability, spatial resolution, texture, and segmentation confidence. Comparisons between LD-FBP and LD-IR were conducted for the following metrics: delineation (bladder and rectum evaluated via overlap indices (OI) and Dice similarity coefficients (DSC)), noise, boundary changes, dose calculation, and digitally reconstructed radiographs (DRRs). Results: NPS showed ∼50% reduction in noise magnitude and ∼0.1 1/mm spatial frequency shift with IRL6. The largest MTFtask decrease between FBP and IR was 0.08 A.U. Qualitative patient image evaluation revealed LD-IR was equivalent or slightly worse than FD-FBP, and superior to LD-FBP for all metrics except low contrast interface and texture. The largest CT number discrepancy from FBP occurred at a bone/tissue interface using IRL6 (−1.2 ± 4.9 HU (range: −17.6 – 12.5 HU)). No significant contour differences (OIs and DSCs = 0.85 – 0.95) and dose calculation discrepancy (<0.02%) were observed. DRRs preserved anatomical detail and demonstrated <2% difference in intensity between LD-FBP and LD-IRL6. Conclusion: While

  13. Dispersant solutions for dispersing hydrocarbons

    DOE Patents [OSTI]

    Tyndall, R.L.

    1997-03-11

    A dispersant solution includes a hydrocarbon dispersing solution derived from a bacterium from ATCC 75527, ATCC 75529, or ATCC 55638.

  14. Dispersant solutions for dispersing hydrocarbons

    DOE Patents [OSTI]

    Tyndall, Richard L. (Clinton, TN)

    1997-01-01

    A dispersant solution includes a hydrocarbon dispersing solution derived from a bacterium from ATCC 75527, ATCC 75529, or ATCC 55638.

  15. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Troxell, Wade

    2011-12-22

    electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

  16. Systems Integration Team | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration Team Systems Integration Team Guohui Yuan Headshot Guohui-Yuan.jpg Dr. Guohui Yuan is the program manager for the systems integration (SI) subprogram within the SunShot Initiative. His team supports research, development, and demonstration of technologies and solutions to enable the widespread deployment of solar energy on the nation's electricity grid. Dr. Yuan has been supporting the SunShot Initiative as a technical advisor since 2011. Previously, he held several key

  17. Seminars and Workshops | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seminars and Workshops NREL hosts workshops and seminars to educate and inform on all things energy systems integration. Download presentations and watch videos from past events. Subscribe to our newsletter to learn about upcoming events. Subscribe Smart Grid Educational Series Energy System Basics and Distribution Integration Seminar Series Frontiers in Distributed Optimization and Control of Sustainable Power Systems Workshop Integrating PV in Distributed Grids: Solutions and Technologies

  18. Integrated Dynamic Electron Solutions, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    existing buildings with costs comparable to conventional HVAC. Learn More California Lithium Battery, Inc. Argonne National Laboratory 626 likes California Lithium Battery...

  19. Integrated Dynamic Electron Solutions, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    transport and stationery power plants, marine, cars and trucks. Learn More California Lithium Battery, Inc. Argonne National Laboratory 626 likes California Lithium Battery...

  20. Integrated Dynamic Electron Solutions, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    method for building tiny chemical structures to greatly improve the performance of lithium-ion batteries. Lithium-ion batteries are rechargeable batteries that are widely used...

  1. TECHNOLOGY SOLUTIONS FOR WIND INTEGRATION IN ERCOT (Technical...

    Office of Scientific and Technical Information (OSTI)

    grants to fund development of a broad range of technologies for a more efficient and reliable electric system, including the growth of renewable energy sources like wind and solar. ...

  2. Technology solutions for wind integration in ERCOT (Technical...

    Office of Scientific and Technical Information (OSTI)

    grid modernization investment in U.S. history, making ... Sponsoring Org: USDOE Office of Electricity Delivery and ... Language: English Subject: 24 POWER TRANSMISSION AND ...

  3. Integrated Dynamic Electron Solutions, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    - like those used by wounded veterans returning from Iraq and Afghanistan - to military vehicle components, biomedical implants, aerospace fasteners and chemical plant valves....

  4. Analytical solutions to matrix diffusion problems

    SciTech Connect (OSTI)

    Keklinen, Pekka

    2014-10-06

    We report an analytical method to solve in a few cases of practical interest the equations which have traditionally been proposed for the matrix diffusion problem. In matrix diffusion, elements dissolved in ground water can penetrate the porous rock surronuding the advective flow paths. In the context of radioactive waste repositories this phenomenon provides a mechanism by which the area of rock surface in contact with advecting elements is greatly enhanced, and can thus be an important delay mechanism. The cases solved are relevant for laboratory as well for in situ experiments. Solutions are given as integral representations well suited for easy numerical solution.

  5. RADIATION INTEGRATOR

    DOE Patents [OSTI]

    Glass, F.M.; Wilson, H.N.

    1959-02-17

    Radiation detecting and measuring systems, particularly a compact, integrating, background monitor, are discussed. One of the principal features of the system is the use of an electrometer tube where the input of the tube is directly connected to an electrode of the radiation detector and a capacitor is coupled to the tube input. When a predetermined quantity of radiation has been integrated, a trigger signal is fed to a recorder and a charge is delivered to the capacitor to render the tube inoperative. The capacitor is then recharged for the next period of operation. With this arrangement there is a substantial reduction in lead lengths and the principal components may be enclosed and hermetically sealed to insure low leakage.

  6. Refinery Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mary Biddy Sue Jones NREL PNNL This presentation does not contain any proprietary, confidential, or otherwise restricted information DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Refinery Integration 4.1.1.31 NREL 4.1.1.51 PNNL Goal Statement GOALS: Model bio-intermediates insertion points to better define costs & ID opportunities, technical risks, information gaps, research needs Publish results Review with stakeholders 2 Leveraging existing refining infrastructure

  7. Fast Acting Eddy Current Driven Valve for Massive Gas Injection on ITER

    SciTech Connect (OSTI)

    Lyttle, Mark S; Baylor, Larry R; Carmichael, Justin R; Combs, Stephen Kirk; Ericson, Milton Nance; Ezell, N Dianne Bull; Meitner, S. J.; Rasmussen, David A; Warmack, Robert J Bruce; Maruyama, So; Kiss, Gabor

    2015-01-01

    Tokamak plasma disruptions present a significant challenge to ITER as they can result in intense heat flux, large forces from halo and eddy currents, and potential first-wall damage from the generation of multi-MeV runaway electrons. Massive gas injection (MGI) of high Z material using fast acting valves is being explored on existing tokamaks and is planned for ITER as a method to evenly distribute the thermal load of the plasma to prevent melting, control the rate of the current decay to minimize mechanical loads, and to suppress the generation of runaway electrons. A fast acting valve and accompanying power supply have been designed and first test articles produced to meet the requirements for a disruption mitigation system on ITER. The test valve incorporates a flyer plate actuator similar to designs deployed on TEXTOR, ASDEX upgrade, and JET [1 3] of a size useful for ITER with special considerations to mitigate the high mechanical forces developed during actuation due to high background magnetic fields. The valve includes a tip design and all-metal valve stem sealing for compatibility with tritium and high neutron and gamma fluxes.

  8. Amesos2 and Belos: Direct and Iterative Solvers for Large Sparse Linear Systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bavier, Eric; Hoemmen, Mark; Rajamanickam, Sivasankaran; Thornquist, Heidi

    2012-01-01

    Solvers for large sparse linear systems come in two categories: direct and iterative. Amesos2, a package in the Trilinos software project, provides direct methods, and Belos, another Trilinos package, provides iterative methods. Amesos2 offers a common interface to many different sparse matrix factorization codes, and can handle any implementation of sparse matrices and vectors, via an easy-to-extend C++ traits interface. It can also factor matrices whose entries have arbitrary “Scalar” type, enabling extended-precision and mixed-precision algorithms. Belos includes many different iterative methods for solving large sparse linear systems and least-squares problems. Unlike competing iterative solver libraries, Belos completely decouples themore » algorithms from the implementations of the underlying linear algebra objects. This lets Belos exploit the latest hardware without changes to the code. Belos favors algorithms that solve higher-level problems, such as multiple simultaneous linear systems and sequences of related linear systems, faster than standard algorithms. The package also supports extended-precision and mixed-precision algorithms. Together, Amesos2 and Belos form a complete suite of sparse linear solvers.« less

  9. Requirements for US regulatory approval of the International Thermonuclear Experimental Reactor (ITER)

    SciTech Connect (OSTI)

    Petti, D.A.; Haire, J.C.

    1993-12-01

    The International Thermonuclear Experimental Reactor (ITER) is the first fusion machine that will have sufficient decay heat and activation product inventory to pose potential nuclear safety concerns. As a result, nuclear safety and environmental issues will be much more important in the approval process for the design, siting, construction, and operation of ITER in the United States than previous fusion devices, such as the Tokamak Fusion Test Reactor. The purpose of this report is (a) to provide an overview of the regulatory approval process for a Department of Energy (DOE) nuclear facility; (b) to present the dose limits used by DOE to protect workers, the public, and the environment from the risks of exposure to radiation and hazardous materials; (c) to discuss some key nuclear safety-related issues that must be addressed early in the Engineering Design Activities (EDA) to obtain regulatory approval; and (d) to provide general guidelines to the ITER Joint Central Team (JCT) concerning the development of a regulatory framework for the ITER project.

  10. Status of ITER task T213 collaborative irradiation screening experiment on Cu/SS joints in the Russian Federation SM-2-reactor

    SciTech Connect (OSTI)

    Edwards, D.J.; Fabritsiev, S.A.; Pokrovsky, A.S.; Zinkle, S.J.

    1996-04-01

    Specimen fabrication is underway for an irradiation screening experiment planned to start in January 1996 in the SM-2 reactor in Dimitrovgrad, Russia. The purpose of the experiment is to evaluate the effects of neutron irradiation at ITER-relevant temperatures on the bond integrity performance of Cu/SS and Be/Cu joints, as well as to further investigate the base metal properties of irradiated copper alloys. Specimens from each of the four ITER parties (U.S., EU, japan, and RF) will be irradiated to a dose of {approx}0.2 dpa at two different temperatures, 150 and 300{degrees}C. The specimens will consist of Cu/SS and Be/Cu joints in several different geometries, as well as a large number of specimens from the base materials. Fracture toughness data on base metal and Cu/SS bonded specimens will be obtained from specimens supplied by the U.S. Due to lack of material, the Be/Cu specimens supplied by the U.S will only be irradiated as TEM disks.

  11. Residential Energy Efficiency Solutions

    Broader source: Energy.gov [DOE]

    Our mission is to increase the availability of high-quality, safe, affordable and workforce housing options. Through innovative reuse and rehabilitation we incorporate economic benefits, environmental stewardship/energy efficiency, and social solutions.

  12. Iterative electromagnetic Born inversion applied to earth conductivity imaging

    SciTech Connect (OSTI)

    Alumbaugh, D.L.

    1993-08-01

    This thesis investigates the use of a fast imaging technique to deduce the spatial conductivity distribution in the earth from low frequency (< 1 MHz), cross well electromagnetic (EM) measurements. The theory embodied in this work is the extension of previous strategies and is based on the Born series approximation to solve both the forward and inverse problem. Nonlinear integral equations are employed to derive the series expansion which accounts for the scattered magnetic fields that are generated by inhomogeneities embedded in either a homogenous or a layered earth. A sinusoidally oscillating, vertically oriented magnetic dipole is employed as a source, and it is assumed that the scattering bodies are azimuthally symmetric about the source dipole axis. The use of this model geometry reduces the 3-D vector problem to a more manageable 2-D scalar form. The validity of the cross well EM method is tested by applying the imaging scheme to two sets of field data. Images of the data collected at the Devine, Texas test site show excellent correlation with the well logs. Unfortunately there is a drift error present in the data that limits the accuracy of the results. A more complete set of data collected at the Richmond field station in Richmond, California demonstrates that cross well EM can be successfully employed to monitor the position of an injected mass of salt water. Both the data and the resulting images clearly indicate the plume migrates toward the north-northwest. The plausibility of these conclusions is verified by applying the imaging code to synthetic data generated by a 3-D sheet model.

  13. Integrative Bioengineering Institute

    SciTech Connect (OSTI)

    Eddington, David; Magin,L,Richard; Hetling, John; Cho, Michael

    2009-01-09

    Microfabrication enables many exciting experimental possibilities for medicine and biology that are not attainable through traditional methods. However, in order for microfabricated devices to have an impact they must not only provide a robust solution to a current unmet need, but also be simple enough to seamlessly integrate into standard protocols. Broad dissemination of bioMEMS has been stymied by the common aim of replacing established and well accepted protocols with equally or more complex devices, methods, or materials. The marriage of a complex, difficult to fabricate bioMEMS device with a highly variable biological system is rarely successful. Instead, the design philosophy of my lab aims to leverage a beneficial microscale phenomena (e.g. fast diffusion at the microscale) within a bioMEMS device and adapt to established methods (e.g. multiwell plate cell culture) and demonstrate a new paradigm for the field (adapt instead of replace). In order for the field of bioMEMS to mature beyond novel proof-of-concept demonstrations, researchers must focus on developing systems leveraging these phenomena and integrating into standard labs, which have largely been ignored. Towards this aim, the Integrative Bioengineering Institute has been established.

  14. Twin-Screw Extruder Development for the ITER Pellet Injection System

    SciTech Connect (OSTI)

    Meitner, Steven J; Baylor, Larry R; Combs, Stephen Kirk; Fehling, Dan T; McGill, James M; Rasmussen, David A; Leachman, J. W.

    2009-01-01

    The ITER pellet injection system is comprised of devices to form and accelerate pellets, and will be connected to inner wall guide tubes for fueling, and outer wall guide tubes for ELM pacing. An extruder will provide a stream of solid hydrogen isotopes to a secondary section, where pellets are cut and accelerated with a gas gun into the plasma. The ITER pellet injection system is required to provide a plasma fueling rate of 120 Pa-m3/s (900 mbar-L/s) and durations of up to 3000 s. The fueling pellets will be injected at a rate up to 10 Hz and pellets used to trigger ELMs will be injected at higher rates up to 20 Hz. A twin-screw extruder for the ITER pellet injection system is under development at the Oak Ridge National Laboratory. A one-fifth ITER scale prototype has been built and has demonstrated the production of a continuous solid deuterium extrusion. The 27 mm diameter, intermeshed, counter-rotating extruder screws are rotated at a rate up to ?5 rpm. Deuterium gas is pre-cooled and liquefied and solidified in separate extruder barrels. The precooler consists of a deuterium gas filled copper coil suspended in a separate stainless steel vessel containing liquid nitrogen. The liquefier is comprised of a copper barrel connected to a Cryomech AL330 cryocooler, which has a machined helical groove surrounded by a copper jacket, through which the pre-cooled deuterium condenses. The lower extruder barrel is connected to a Cryomech GB-37 cryocooler to solidify the deuterium (at ?15 K) before it is forced through the extruder die. The die forms the extrusion to a 3 mm x 4 mm rectangular cross section. Design improvements have been made to improve the pre-cooler and liquefier heat exchangers, to limit the loss of extrusion through gaps in the screws. This paper will describe the design improvements for the next iteration of the extruder prototype.

  15. Characterization of a commercial hybrid iterative and model-based reconstruction algorithm in radiation oncology

    SciTech Connect (OSTI)

    Price, Ryan G.; Vance, Sean; Cattaneo, Richard; Elshaikh, Mohamed A.; Chetty, Indrin J.; Glide-Hurst, Carri K.; Schultz, Lonni

    2014-08-15

    Purpose: Iterative reconstruction (IR) reduces noise, thereby allowing dose reduction in computed tomography (CT) while maintaining comparable image quality to filtered back-projection (FBP). This study sought to characterize image quality metrics, delineation, dosimetric assessment, and other aspects necessary to integrate IR into treatment planning. Methods: CT images (Brilliance Big Bore v3.6, Philips Healthcare) were acquired of several phantoms using 120 kVp and 25–800 mAs. IR was applied at levels corresponding to noise reduction of 0.89–0.55 with respect to FBP. Noise power spectrum (NPS) analysis was used to characterize noise magnitude and texture. CT to electron density (CT-ED) curves were generated over all IR levels. Uniformity as well as spatial and low contrast resolution were quantified using a CATPHAN phantom. Task specific modulation transfer functions (MTF{sub task}) were developed to characterize spatial frequency across objects of varied contrast. A prospective dose reduction study was conducted for 14 patients undergoing interfraction CT scans for high-dose rate brachytherapy. Three physicians performed image quality assessment using a six-point grading scale between the normal-dose FBP (reference), low-dose FBP, and low-dose IR scans for the following metrics: image noise, detectability of the vaginal cuff/bladder interface, spatial resolution, texture, segmentation confidence, and overall image quality. Contouring differences between FBP and IR were quantified for the bladder and rectum via overlap indices (OI) and Dice similarity coefficients (DSC). Line profile and region of interest analyses quantified noise and boundary changes. For two subjects, the impact of IR on external beam dose calculation was assessed via gamma analysis and changes in digitally reconstructed radiographs (DRRs) were quantified. Results: NPS showed large reduction in noise magnitude (50%), and a slight spatial frequency shift (∼0.1 mm{sup −1}) with

  16. Magnetostatic focal spot correction for x-ray tubes operating in strong magnetic fields using iterative optimization

    SciTech Connect (OSTI)

    Lillaney, Prasheel; Shin, Mihye; Conolly, Steven M.; Fahrig, Rebecca

    2012-09-15

    Purpose: Combining x-ray fluoroscopy and MR imaging systems for guidance of interventional procedures has become more commonplace. By designing an x-ray tube that is immune to the magnetic fields outside of the MR bore, the two systems can be placed in close proximity to each other. A major obstacle to robust x-ray tube design is correcting for the effects of the magnetic fields on the x-ray tube focal spot. A potential solution is to design active shielding that locally cancels the magnetic fields near the focal spot. Methods: An iterative optimization algorithm is implemented to design resistive active shielding coils that will be placed outside the x-ray tube insert. The optimization procedure attempts to minimize the power consumption of the shielding coils while satisfying magnetic field homogeneity constraints. The algorithm is composed of a linear programming step and a nonlinear programming step that are interleaved with each other. The coil results are verified using a finite element space charge simulation of the electron beam inside the x-ray tube. To alleviate heating concerns an optimized coil solution is derived that includes a neodymium permanent magnet. Any demagnetization of the permanent magnet is calculated prior to solving for the optimized coils. The temperature dynamics of the coil solutions are calculated using a lumped parameter model, which is used to estimate operation times of the coils before temperature failure. Results: For a magnetic field strength of 88 mT, the algorithm solves for coils that consume 588 A/cm{sup 2}. This specific coil geometry can operate for 15 min continuously before reaching temperature failure. By including a neodymium magnet in the design the current density drops to 337 A/cm{sup 2}, which increases the operation time to 59 min. Space charge simulations verify that the coil designs are effective, but for oblique x-ray tube geometries there is still distortion of the focal spot shape along with deflections of

  17. Approximations of very weak solutions to boundary-value problems.

    SciTech Connect (OSTI)

    Berggren, Martin Olof

    2003-03-01

    Standard weak solutions to the Poisson problem on a bounded domain have square-integrable derivatives, which limits the admissible regularity of inhomogeneous data. The concept of solution may be further weakened in order to define solutions when data is rough, such as for inhomogeneous Dirichlet data that is only square-integrable over the boundary. Such very weak solutions satisfy a nonstandard variational form (u, v) = G(v). A Galerkin approximation combined with an approximation of the right-hand side G defines a finite-element approximation of the very weak solution. Applying conforming linear elements leads to a discrete solution equivalent to the text-book finite-element solution to the Poisson problem in which the boundary data is approximated by L{sub 2}-projections. The L{sub 2} convergence rate of the discrete solution is O(h{sub s}) for some s {element_of} (0,1/2) that depends on the shape of the domain, asserting a polygonal (two-dimensional) or polyhedral (three-dimensional) domain without slits and (only) square-integrable boundary data.

  18. ACCELERATION INTEGRATOR

    DOE Patents [OSTI]

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  19. Solution mass measurement

    SciTech Connect (OSTI)

    Ford, W.; Marshall, R.S.; Osborn, L.C.; Picard, R.; Thomas, C.C. Jr.

    1982-07-01

    This report describes the efforts to develop and demonstrate a solution mass measurement system for use at the Los Alamos Plutonium Facility. Because of inaccuracy of load cell measurements, our major effort was directed towards the pneumatic bubbler tube. The differential pressure between the air inlet to the bubbler tube and the glovebox interior is measured and is proportional to the solution mass in the tank. An inexpensive, reliable pressure transducer system for measuring solution mass in vertical, cylindrical tanks was developed, tested, and evaluated in a laboratory test bed. The system can withstand the over- and underpressures resulting from solution transfer operations and can prevent solution backup into the measurement pressure transducer during transfers. Drifts, noise, quantization error, and other effects limit the accuracy to 30 g. A transportable calibration system using a precision machined tank, pneumatic bubbler tubes, and a Ruska DDR 6000 electromanometer was designed, fabricated, tested, and evaluated. Resolution of the system is +-3.5 g out of 50 kg. The calibration error is 5 g, using room-temperature water as the calibrating fluid. Future efforts will be directed towards in-plant test and evaluation of the tank measurement systems. 16 figures, 3 tables.

  20. Microbial Activity and Precipitation at Solution-Solution Mixing...

    Office of Scientific and Technical Information (OSTI)

    Media -- Subsurface Biogeochemical Research Citation Details In-Document Search Title: Microbial Activity and Precipitation at Solution-Solution Mixing Zones in Porous Media -- ...

  1. Fissile solution measurement apparatus

    DOE Patents [OSTI]

    Crane, T.W.; Collinsworth, P.R.

    1984-06-11

    An apparatus for determining the content of a fissile material within a solution by detecting delayed fission neutrons emitted by the fissile material after it is temporarily irradiated by a neutron source. The apparatus comprises a container holding the solution and having a portion defining a neutron source cavity centrally disposed within the container. The neutron source cavity temporarily receives the neutron source. The container has portions defining a plurality of neutron detector ports that form an annular pattern and surround the neutron source cavity. A plurality of neutron detectors count delayed fission neutrons emitted by the fissile material. Each neutron detector is located in a separate one of the neutron detector ports.

  2. NREL: Transmission Grid Integration - Wind Integration Datasets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Integration Datasets The datasets below provide energy professionals with a consistent set of ... Eastern and Western Wind Datasets WIND Toolkit Solar Integration Datasets ...

  3. NREL: Energy Systems Integration - Systems Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-level system integration New distribution scenarios such as household DC systems and residential-scale generation and storage integrated with home energy management systems. ...

  4. Reducing the effects of acoustic heterogeneity with an iterative reconstruction method from experimental data in microwave induced thermoacoustic tomography

    SciTech Connect (OSTI)

    Wang, Jinguo; Zhao, Zhiqin Song, Jian; Chen, Guoping; Nie, Zaiping; Liu, Qing-Huo

    2015-05-15

    Purpose: An iterative reconstruction method has been previously reported by the authors of this paper. However, the iterative reconstruction method was demonstrated by solely using the numerical simulations. It is essential to apply the iterative reconstruction method to practice conditions. The objective of this work is to validate the capability of the iterative reconstruction method for reducing the effects of acoustic heterogeneity with the experimental data in microwave induced thermoacoustic tomography. Methods: Most existing reconstruction methods need to combine the ultrasonic measurement technology to quantitatively measure the velocity distribution of heterogeneity, which increases the system complexity. Different to existing reconstruction methods, the iterative reconstruction method combines time reversal mirror technique, fast marching method, and simultaneous algebraic reconstruction technique to iteratively estimate the velocity distribution of heterogeneous tissue by solely using the measured data. Then, the estimated velocity distribution is used subsequently to reconstruct the highly accurate image of microwave absorption distribution. Experiments that a target placed in an acoustic heterogeneous environment are performed to validate the iterative reconstruction method. Results: By using the estimated velocity distribution, the target in an acoustic heterogeneous environment can be reconstructed with better shape and higher image contrast than targets that are reconstructed with a homogeneous velocity distribution. Conclusions: The distortions caused by the acoustic heterogeneity can be efficiently corrected by utilizing the velocity distribution estimated by the iterative reconstruction method. The advantage of the iterative reconstruction method over the existing correction methods is that it is successful in improving the quality of the image of microwave absorption distribution without increasing the system complexity.

  5. Sol Solution | Open Energy Information

    Open Energy Info (EERE)

    Solution Jump to: navigation, search Name: Sol Solution Place: Los Gatos, California Zip: 95030 Region: Bay Area Sector: Solar Product: Rainbow Concentrator, Current matching...

  6. Building Solutions | Open Energy Information

    Open Energy Info (EERE)

    Building Solutions Jump to: navigation, search Name: Building Solutions Place: California Sector: Efficiency Product: California-based energy efficiency contractor and consultancy....

  7. Soy Solutions | Open Energy Information

    Open Energy Info (EERE)

    Solutions Jump to: navigation, search Name: Soy Solutions Place: Milford, Iowa Zip: 51351 Product: Manufacturer and distributor of 100 percent Soy-Based Biodiesel References: Soy...

  8. Enspiria Solutions | Open Energy Information

    Open Energy Info (EERE)

    Page Edit with form History Enspiria Solutions Jump to: navigation, search Name: Enspiria Solutions Place: Greenwood Village, Colorado Sector: Services Product: Greenwood...

  9. Powerit Solutions | Open Energy Information

    Open Energy Info (EERE)

    Powerit Solutions Jump to: navigation, search Name: Powerit Solutions Address: 568 First Ave South Place: Seattle, Washington Zip: 98104 Region: Pacific Northwest Area Sector:...

  10. An efficient computational scheme for electronic excitation spectra of molecules in solution using the symmetry-adapted cluster–configuration interaction method: The accuracy of excitation energies and intuitive charge-transfer indices

    SciTech Connect (OSTI)

    Fukuda, Ryoichi Ehara, Masahiro

    2014-10-21

    Solvent effects on electronic excitation spectra are considerable in many situations; therefore, we propose an efficient and reliable computational scheme that is based on the symmetry-adapted cluster-configuration interaction (SAC-CI) method and the polarizable continuum model (PCM) for describing electronic excitations in solution. The new scheme combines the recently proposed first-order PCM SAC-CI method with the PTE (perturbation theory at the energy level) PCM SAC scheme. This is essentially equivalent to the usual SAC and SAC-CI computations with using the PCM Hartree-Fock orbital and integrals, except for the additional correction terms that represent solute-solvent interactions. The test calculations demonstrate that the present method is a very good approximation of the more costly iterative PCM SAC-CI method for excitation energies of closed-shell molecules in their equilibrium geometry. This method provides very accurate values of electric dipole moments but is insufficient for describing the charge-transfer (CT) indices in polar solvent. The present method accurately reproduces the absorption spectra and their solvatochromism of push-pull type 2,2{sup ′}-bithiophene molecules. Significant solvent and substituent effects on these molecules are intuitively visualized using the CT indices. The present method is the simplest and theoretically consistent extension of SAC-CI method for including PCM environment, and therefore, it is useful for theoretical and computational spectroscopy.

  11. Energy Solutions Conference

    Broader source: Energy.gov [DOE]

    The virtual Energy Solutions Conference will be held March 23–24, 2016. Bioenergy Technologies Office Director Jonathan Male will be giving a virtual presentation on the Office’s activities supporting the federal bioeconomy as part of the renewable energy portion of the program.

  12. SCADA Engineering Solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Solutions - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  13. Design of a diagnostic residual gas analyzer for the ITER divertor

    SciTech Connect (OSTI)

    Klepper, C Christopher; Biewer, T. M.; Graves, Van B; Andrew, P.; Marcus, Chris; Shimada, M.; Hughes, S.; Boussier, B.; Johnson, D. W.; Gardner, W. L.; Hillis, D. L.; Vayakis, G.; Vayakis, G.; Walsh, M.

    2015-01-01

    One of the ITER diagnostics having reached an advanced design stage is a diagnostic RGA for the divertor, i.e. residual gas analysis system for the ITER divertor, which is intended to sample the divertor pumping duct region during the plasma pulse and to have a response time compatible with plasma particle and impurity lifetimes in the divertor region. Main emphasis is placed on helium (He) concentration in the ducts, as well as the relative concentration between the hydrogen isotopes (H2, D2, T2). Measurement of the concentration of radiative gases, such as neon (Ne) and nitrogen (N2), is also intended. Numerical modeling of the gas flow from the sampled region to the cluster of analysis sensors, through a long (~8m long, ~110mm diameter) sampling pipe terminating in a pressure reducing orifice, confirm that the desired response time (~1s for He or D2) is achieved with the present design.

  14. Experimental neutronics tests for a neutron activation system for the European ITER TBM

    SciTech Connect (OSTI)

    Klix, A.; Fischer, U.; Gehre, D.; Kleizer, G.; Raj, P.; Rovni, I.; Ruecker, Tom

    2014-08-21

    We are investigating methods for neutron flux measurement in the ITER TBM. In particular we have tested sets of activation materials leading to induced gamma activities with short half-lives of the order of tens of seconds up to minutes and standard activation materials. Packages of activation foils have been irradiated with the intense neutron generator of Technical University of Dresden in a pure DT neutron field as well as in a neutronics mock-up of the European ITER HCLL TBM. An important aim was to check whether the gamma activity induced in the activation foils in these packages could be measured simultaneously. It was indeed possible to identify gamma lines of interest in gamma-ray measurements immediately after extraction from the irradiation.

  15. The ITER pre-compression rings – A first in cryogenic composite technology

    SciTech Connect (OSTI)

    Rajainmaki, Hannu; Fanthome, John; Losasso, Marcello; Rodriguez, Jesus; Evans, David; Diaz, Victor

    2014-01-27

    The ITER Pre-Compression Rings represent one of the heaviest composite structures ever manufactured as a single piece and the largest - the outer diameter will be above 5.5 meters - intended for use in a cryogenic environment. With a cross section of 337 mm × 288 mm, each item will weigh more than 3,000 kg. A development program, based on filament wound and dry wound S2 glass unidirectional fibers, the latter processed by VARTM, was completed on one fifth scale rings, and these materials and techniques were shown to be satisfactory. The paper describes how a technology applied to build up primary structures of European launchers is being accommodated to produce the ITER Pre-Compression Rings, fulfilling its extremely challenging requirements. In addition, we will describe how the structural analysis is correlated with the test results of scaled down rings, as well as how the pre-compression rings’ manufacturing process will be qualified.

  16. Science and Technology Research and Development in Support to ITER and the Broader Approach at CEA

    SciTech Connect (OSTI)

    Becoulet, A.; Hoang, G T; Abiteboul, J.; Achard, J.; Alarcon, T.; Klepper, C Christopher

    2013-01-01

    In parallel to the direct contribution to the procurement phase of ITER and Broader Approach, CEA has initiated research & development programmes, accompanied by experiments together with a significant modelling effort, aimed at ensuring robust operation, plasma performance, as well as mitigating the risks of the procurement phase. This overview reports the latest progress in both fusion science and technology including many areas, namely the mitigation of superconducting magnet quenches, disruption-generated runaway electrons, edge-localized modes (ELMs), the development of imaging surveillance, and heating and current drive systems for steady-state operation. The WEST (W Environment for Steady-state Tokamaks) project, turning Tore Supra into an actively cooled W-divertor platform open to the ITER partners and industries, is presented.

  17. Evaluation of graphite/steam interactions for ITER (International Thermonuclear Experimental Reactor)

    SciTech Connect (OSTI)

    Smolik, G.R.; Merrill, B.J.; Piet, S.J.; Holland, D.F.

    1990-09-01

    In this report we present the results of an experimental/analytical study designed to determine the quantity of hydrogen generated during a coolant inleakage accident in ITER. This hydrogen could represent a potential explosive hazard, provided the proper conditions exist, causing machine damage and release of radioactive material. We have measured graphite/steam reaction rates for several graphites and carbon-based composites at temperatures between 1000 C and 1700 C. The effects of steam flow rate, and partial pressure were also examined. The measured reaction rates correlated well with two Arrhenius type relationships. We have used the relationships for GraphNOL N3M in a thermal model to determine that for ITER the quantity of hydrogen produced would range between 5 and 35 kg, depending upon how the graphite tiles are attached to the first wall. While 5 kg is not a significant concern, 35 kg presents an explosive hazard. 20 refs., 14 figs., 1 tab.

  18. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction

    SciTech Connect (OSTI)

    Fahimian, Benjamin P.; Zhao Yunzhe; Huang Zhifeng; Fung, Russell; Zhu Chun; Miao Jianwei; Mao Yu; Khatonabadi, Maryam; DeMarco, John J.; McNitt-Gray, Michael F.; Osher, Stanley J.

    2013-03-15

    Purpose: A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. Methods: EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). In each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Results: Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the lowest

  19. Review of the International Thermonuclear Experimental Reactor (ITER) detailed design report

    SciTech Connect (OSTI)

    1997-04-18

    Dr. Martha Krebs, Director, Office of Energy Research at the US Department of Energy (DOE), wrote to the Fusion Energy Sciences Advisory Committee (FESAC), in letters dated September 23 and November 6, 1996, requesting that FESAC review the International Thermonuclear Experimental Reactor (ITER) Detailed Design Report (DDR) and provide its view of the adequacy of the DDR as part of the basis for the United States decision to enter negotiations with the other interested Parties regarding the terms and conditions for an agreement for the construction, operations, exploitation and decommissioning of ITER. The letter from Dr. Krebs, referred to as the Charge Letter, provided context for the review and a set of questions of specific interest.

  20. Vacuum Bellows, Vacuum Piping, Cryogenic Break, and Copper Joint Failure Rate Estimates for ITER Design Use

    SciTech Connect (OSTI)

    L. C. Cadwallader

    2010-06-01

    The ITER international project design teams are working to produce an engineering design in preparation for construction of the International Thermonuclear Experimental Reactor (ITER) tokamak. During the course of this work, questions have arisen in regard to safety barriers and equipment reliability as important facets of system design. The vacuum system designers have asked several questions about the reliability of vacuum bellows and vacuum piping. The vessel design team has asked about the reliability of electrical breaks and copper-copper joints used in cryogenic piping. Research into operating experiences of similar equipment has been performed to determine representative failure rates for these components. The following chapters give the research results and the findings for vacuum system bellows, power plant stainless steel piping (amended to represent vacuum system piping), cryogenic system electrical insulating breaks, and copper joints.

  1. Registration of range data using a hybrid simulated annealing and iterative closest point algorithm

    SciTech Connect (OSTI)

    LUCK,JASON; LITTLE,CHARLES Q.; HOFF,WILLIAM

    2000-04-17

    The need to register data is abundant in applications such as: world modeling, part inspection and manufacturing, object recognition, pose estimation, robotic navigation, and reverse engineering. Registration occurs by aligning the regions that are common to multiple images. The largest difficulty in performing this registration is dealing with outliers and local minima while remaining efficient. A commonly used technique, iterative closest point, is efficient but is unable to deal with outliers or avoid local minima. Another commonly used optimization algorithm, simulated annealing, is effective at dealing with local minima but is very slow. Therefore, the algorithm developed in this paper is a hybrid algorithm that combines the speed of iterative closest point with the robustness of simulated annealing. Additionally, a robust error function is incorporated to deal with outliers. This algorithm is incorporated into a complete modeling system that inputs two sets of range data, registers the sets, and outputs a composite model.

  2. Design and Overview of 100 kV Bushing for the DNB Injector of ITER

    SciTech Connect (OSTI)

    Shah, Sejal; Bandyopadhyay, M.; Rotti, C.; Singh, M. J.; Roopesh, G.; Chakraborty, A. K. [ITER-India, Institute for Plasma Research, Gandhinagar-382025, Gujarat (India); Rajesh, S. [ITER-India, Institute for Plasma Research, Gandhinagar-382025, Gujarat (India); Microelectronics and Materials Physics Labs, P.O.Box 4500, FIN-90014 University of Oulu (Finland); Nishad, S.; Srusti, B. [DesignTech Systems Ltd, Banjara Hills, Hyderabad, Andhra Pradesh-500034 (India); Schunke, B.; Hemsworth, R.; Chareyre, J.; Svensson, L. [ITER Organisation, Route de Vinon, CS 90 046, 13067 St. Paul lez Durance Cedex (France)

    2011-09-26

    The 100 kV bushing is one of the most important and technologically challenging Safety Important Class (SIC) components of the Diagnostic Neutral Beam (DNB) injector of ITER. It forms interface between gas insulated electrical transmission line and torus primary vacuum and acts as a vacuum feedthrough of ITER. Design optimization has been carried out to meet the electric and structural requirements based on its classification. Unlike HNB bushing, single stage bushing is designed to provide 100 kV isolation. Finite Element Analysis (FEA) based optimization has been carried out for electrostatic and structural analysis. Manufacturing assembly sequence is studied and presented in this paper. However validation of the same is foreseen from manufacturer.

  3. Assessment of database for interaction of tritium with ITER plasma facing materials

    SciTech Connect (OSTI)

    Dolan, T.J.; Anderl, R.A.

    1994-09-01

    The present work surveys recent literature on hydrogen isotope interactions with Be, SS and Inconels, Cu, C, and V, and alloys of Cu and V. The goals are (1) to provide input to the International Thermonuclear Experimental Reactor (ITER) team to help with tritium source term estimates for the Early Safety and Environmental Characterization Study and (2) to provide guidance for planning additional research that will be needed to fill gaps in the present materials database. Properties of diffusivity, solubility, permeability, chemical reactions, Soret effect, recombination coefficient, surface effects, trapping, porosity, layered structures, interfaces, and oxides are considered. Various materials data are tabulated, and a matrix display shows an assessment of the quality of the data available for each main property of each material. Recommendations are made for interim values of diffusivity and solubility to be used, pending further discussion by the ITER community.

  4. In-Vessel Coil Material Failure Rate Estimates for ITER Design Use

    SciTech Connect (OSTI)

    L. C. Cadwallader

    2013-01-01

    The ITER international project design teams are working to produce an engineering design for construction of this large tokamak fusion experiment. One of the design issues is ensuring proper control of the fusion plasma. In-vessel magnet coils may be needed for plasma control, especially the control of edge localized modes (ELMs) and plasma vertical stabilization (VS). These coils will be lifetime components that reside inside the ITER vacuum vessel behind the blanket modules. As such, their reliability is an important design issue since access will be time consuming if any type of repair were necessary. The following chapters give the research results and estimates of failure rates for the coil conductor and jacket materials to be used for the in-vessel coils. Copper and CuCrZr conductors, and stainless steel and Inconel jackets are examined.

  5. Preliminary Neutronics Analysis of the ITER Toroidal Interferometer and Polarimeter Diagnostic Corner Cube Retroreflectors

    SciTech Connect (OSTI)

    Tresemer, K. R.

    2015-07-01

    ITER is an international project under construction in France that will demonstrate nuclear fusion at a power plant-relevant scale. The Toroidal Interferometer and Polarimeter (TIP) Diagnostic will be used to measure the plasma electron line density along 5 laser-beam chords. This line-averaged density measurement will be input to the ITER feedback-control system. The TIP is considered the primary diagnostic for these measurements, which are needed for basic ITER machine control. Therefore, system reliability & accuracy is a critical element in TIP’s design. There are two major challenges to the reliability of the TIP system. First is the survivability and performance of in-vessel optics and second is maintaining optical alignment over long optical paths and large vessel movements. Both of these issues greatly depend on minimizing the overall distortion due to neutron & gamma heating of the Corner Cube Retroreflectors (CCRs). These are small optical mirrors embedded in five first wall locations around the vacuum vessel, corresponding to certain plasma tangency radii. During the development of the design and location of these CCRs, several iterations of neutronics analyses were performed to determine and minimize the total distortion due to nuclear heating of the CCRs. The CCR corresponding to TIP Channel 2 was chosen for analysis as a good middle-road case, being an average distance from the plasma (of the five channels) and having moderate neutron shielding from its blanket shield housing. Results show that Channel 2 meets the requirements of the TIP Diagnostic, but barely. These results suggest other CCRs might be at risk of exceeding thermal deformation due to nuclear heating.

  6. Effects of coupling and asymmetries on load resilience of IC ITER-like structures

    SciTech Connect (OSTI)

    Bosia, G.; Bremond, S.; Colas, L.

    2005-09-26

    ITER-like structures feature an intrinsic resilience to load variations, which is related to the symmetry of the currents in the two branches of the structure. It has been suggested that the effects of coupling between the array elements would significantly impair the load resilience of the structure. In this paper the effect of inter strap coupling and of however induced electrical array asymmetries on the structure load resilience are quantitatively examined.

  7. PPPL and ITER: Lab teams support the world's largest fusion experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with leading-edge ideas and design | Princeton Plasma Physics Lab and ITER: Lab teams support the world's largest fusion experiment with leading-edge ideas and design By John Greenwald May 7, 2013 Tweet Widget Google Plus One Share on Facebook PPPL scientists, engineers, technicians and other specialists contribute to the international project. (Photo by Elle Starkman/ PPPL Office of Communications) PPPL scientists, engineers, technicians and other specialists contribute to the international

  8. Absolutely and uniformly convergent iterative approach to inverse scattering with an infinite radius of convergence

    DOE Patents [OSTI]

    Kouri, Donald J.; Vijay, Amrendra; Zhang, Haiyan; Zhang, Jingfeng; Hoffman, David K.

    2007-05-01

    A method and system for solving the inverse acoustic scattering problem using an iterative approach with consideration of half-off-shell transition matrix elements (near-field) information, where the Volterra inverse series correctly predicts the first two moments of the interaction, while the Fredholm inverse series is correct only for the first moment and that the Volterra approach provides a method for exactly obtaining interactions which can be written as a sum of delta functions.

  9. Integrated Building Management System (IBMS)

    SciTech Connect (OSTI)

    Anita Lewis

    2012-07-01

    This project provides a combination of software and services that more easily and cost-effectively help to achieve optimized building performance and energy efficiency. Featuring an open-platform, cloud- hosted application suite and an intuitive user experience, this solution simplifies a traditionally very complex process by collecting data from disparate building systems and creating a single, integrated view of building and system performance. The Fault Detection and Diagnostics algorithms developed within the IBMS have been designed and tested as an integrated component of the control algorithms running the equipment being monitored. The algorithms identify the normal control behaviors of the equipment without interfering with the equipment control sequences. The algorithms also work without interfering with any cooperative control sequences operating between different pieces of equipment or building systems. In this manner the FDD algorithms create an integrated building management system.

  10. The ITER 3D Magnetic Diagnostic Response to Applied n=3 and n=4 RMP's

    SciTech Connect (OSTI)

    Lazerson, S A

    2014-09-01

    The ITER magnetic diagnostic response to applied n=3 and n=4 RMPs has been calculated for the 15MA scenario. The VMEC code was utilized to calculate free boundary 3D ideal MHD equilibria, where the non-stellarator symmetric terms were included in the calculation. This allows an assessment to be made of the possible boundary displacements due to RMP application in ITER. As the VMEC code assumes a continuous set of nested flux surface, the possibility of island and stochastic region formation is ignored. At the start of the current at-top (L-Mode) application of n = 4 RMP's indicates approximately 1 cm peak-to-peak displacements on the low field side of the plasma while later in the shot (H-mode) perturbations as large as 3 cm are present. Forward modeling of the ITER magnetic diagnostics indicates significant non-axisymmetric plasma response, exceeding 10% the axisymmetric signal in many of the flux loops. Magnetic field probes seem to indicate a greater robustness to 3D effects but still indicate large sensitivities to 3D effects in a number of sensors. Forward modeling of the diagnostics response to 3D equilibria allows assessment of diagnostics design and control scenarios.

  11. Benchmark of numerical tools simulating beam propagation and secondary particles in ITER NBI

    SciTech Connect (OSTI)

    Sartori, E. Veltri, P.; Serianni, G.; Dlougach, E.; Hemsworth, R.; Singh, M.

    2015-04-08

    Injection of high energy beams of neutral particles is a method for plasma heating in fusion devices. The ITER injector, and its prototype MITICA (Megavolt ITER Injector and Concept Advancement), are large extrapolations from existing devices: therefore numerical modeling is needed to set thermo-mechanical requirements for all beam-facing components. As the power and charge deposition originates from several sources (primary beam, co-accelerated electrons, and secondary production by beam-gas, beam-surface, and electron-surface interaction), the beam propagation along the beam line is simulated by comprehensive 3D models. This paper presents a comparative study between two codes: BTR has been used for several years in the design of the ITER HNB/DNB components; SAMANTHA code was independently developed and includes additional phenomena, such as secondary particles generated by collision of beam particles with the background gas. The code comparison is valuable in the perspective of the upcoming experimental operations, in order to prepare a reliable numerical support to the interpretation of experimental measurements in the beam test facilities. The power density map calculated on the Electrostatic Residual Ion Dump (ERID) is the chosen benchmark, as it depends on the electric and magnetic fields as well as on the evolution of the beam species via interaction with the gas. Finally the paper shows additional results provided by SAMANTHA, like the secondary electrons produced by volume processes accelerated by the ERID fringe-field towards the Cryopumps.

  12. Uncertainty assessment and analysis of ITER in-VV tritium inventory determination

    SciTech Connect (OSTI)

    Cristescu, I. R.; Cristescu, I.; Glugla, M.; Murdoch, D.; Ciattaglia, S.

    2008-07-15

    Tracking of tritium inventories on ITER will be essential to ensure that the safety limits established for the mobilizable tritium inventory in the vacuum vessel are not violated. Tritium will be delivered to the ITER site from outside suppliers. Staring with the tritium imports the value of tritium inventory at ITER site will be known with a certain error that will propagate in time. During plasma operation, shot by shot measurements of the tritium delivered to the Torus and recovered will allow the amount of tritium trapped in the Torus to be computed at the end of the day. A case study for different measuring techniques and several measuring points for the tritium recovered from Torus have been done. An alternative method is to measure overnight the variation in the inventory of the storage and delivery system and the associated error when this method will be employed are presented. In order to reduce the errors on the tritium trapped in-vessel, at certain time intervals a method of global tritium inventory will be performed. The method envisages the transfer of all the mobilizable tritium from the plant and measurement of this inventory in the self-assay beds from the storage and delivery system. Evaluation of the most important sources of error for the tritium trapped in-vessel and means of minimization are eventually presented. (authors)

  13. NREL: Process Development and Integration Laboratory - Integrated

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements and Characterization Capabilities Integrated Measurements and Characterization Capabilities The Integrated Measurements and Characterization cluster tool in the Process Development and Integration Laboratory offers powerful capabilities with integrated tools for measuring and characterizing photovoltaic materials and devices. Contact Pete Sheldon for more details on these capabilities. Basic Cluster Tool Capabilities Sample Handling Ultra-high-vacuum robot Transport pod: allows

  14. High Efficiency Integrated Package

    SciTech Connect (OSTI)

    Ibbetson, James

    2013-09-15

    Solid-state lighting based on LEDs has emerged as a superior alternative to inefficient conventional lighting, particularly incandescent. LED lighting can lead to 80 percent energy savings; can last 50,000 hours – 2-50 times longer than most bulbs; and contains no toxic lead or mercury. However, to enable mass adoption, particularly at the consumer level, the cost of LED luminaires must be reduced by an order of magnitude while achieving superior efficiency, light quality and lifetime. To become viable, energy-efficient replacement solutions must deliver system efficacies of ≥ 100 lumens per watt (LPW) with excellent color rendering (CRI > 85) at a cost that enables payback cycles of two years or less for commercial applications. This development will enable significant site energy savings as it targets commercial and retail lighting applications that are most sensitive to the lifetime operating costs with their extended operating hours per day. If costs are reduced substantially, dramatic energy savings can be realized by replacing incandescent lighting in the residential market as well. In light of these challenges, Cree proposed to develop a multi-chip integrated LED package with an output of > 1000 lumens of warm white light operating at an efficacy of at least 128 LPW with a CRI > 85. This product will serve as the light engine for replacement lamps and luminaires. At the end of the proposed program, this integrated package was to be used in a proof-of-concept lamp prototype to demonstrate the component’s viability in a common form factor. During this project Cree SBTC developed an efficient, compact warm-white LED package with an integrated remote color down-converter. Via a combination of intensive optical, electrical, and thermal optimization, a package design was obtained that met nearly all project goals. This package emitted 1295 lm under instant-on, room-temperature testing conditions, with an efficacy of 128.4 lm/W at a color temperature of ~2873

  15. Validation of the thermal transport model used for ITER startup scenario predictions with DIII-D experimental data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Casper, T. A.; Meyer, W. H.; Jackson, G. L.; Luce, T. C.; Hyatt, A. W.; Humphreys, D. A.; Turco, F.

    2010-12-08

    We are exploring characteristics of ITER startup scenarios in similarity experiments conducted on the DIII-D Tokamak. In these experiments, we have validated scenarios for the ITER current ramp up to full current and developed methods to control the plasma parameters to achieve stability. Predictive simulations of ITER startup using 2D free-boundary equilibrium and 1D transport codes rely on accurate estimates of the electron and ion temperature profiles that determine the electrical conductivity and pressure profiles during the current rise. Here we present results of validation studies that apply the transport model used by the ITER team to DIII-D discharge evolutionmore » and comparisons with data from our similarity experiments.« less

  16. A fresh look at electron cyclotron current drive power requirements for stabilization of tearing modes in ITER

    SciTech Connect (OSTI)

    La Haye, R. J.

    2015-12-10

    ITER is an international project to design and build an experimental fusion reactor based on the “tokamak” concept. ITER relies upon localized electron cyclotron current drive (ECCD) at the rational safety factor q=2 to suppress or stabilize the expected poloidal mode m=2, toroidal mode n=1 neoclassical tearing mode (NTM) islands. Such islands if unmitigated degrade energy confinement, lock to the resistive wall (stop rotating), cause loss of “H-mode” and induce disruption. The International Tokamak Physics Activity (ITPA) on MHD, Disruptions and Magnetic Control joint experiment group MDC-8 on Current Drive Prevention/Stabilization of Neoclassical Tearing Modes started in 2005, after which assessments were made for the requirements for ECCD needed in ITER, particularly that of rf power and alignment on q=2 [1]. Narrow well-aligned rf current parallel to and of order of one percent of the total plasma current is needed to replace the “missing” current in the island O-points and heal or preempt (avoid destabilization by applying ECCD on q=2 in absence of the mode) the island [2-4]. This paper updates the advances in ECCD stabilization on NTMs learned in DIII-D experiments and modeling during the last 5 to 10 years as applies to stabilization by localized ECCD of tearing modes in ITER. This includes the ECCD (inside the q=1 radius) stabilization of the NTM “seeding” instability known as sawteeth (m/n=1/1) [5]. Recent measurements in DIII-D show that the ITER-similar current profile is classically unstable, curvature stabilization must not be neglected, and the small island width stabilization effect from helical ion polarization currents is stronger than was previously thought [6]. The consequences of updated assumptions in ITER modeling of the minimum well-aligned ECCD power needed are all-in-all favorable (and well-within the ITER 24 gyrotron capability) when all effects are included. However, a “wild card” may be broadening of the localized

  17. A model of lipid-free Apolipoprotein A-I revealed by iterative molecular dynamics simulation

    SciTech Connect (OSTI)

    Zhang, Xing; Lei, Dongsheng; Zhang, Lei; Rames, Matthew; Zhang, Shengli

    2015-03-20

    Apolipoprotein A-I (apo A-I), the major protein component of high-density lipoprotein, has been proven inversely correlated to cardiovascular risk in past decades. The lipid-free state of apo A-I is the initial stage which binds to lipids forming high-density lipoprotein. Molecular models of lipid-free apo A-I have been reported by methods like X-ray crystallography and chemical cross-linking/mass spectrometry (CCL/MS). Through structural analysis we found that those current models had limited consistency with other experimental results, such as those from hydrogen exchange with mass spectrometry. Through molecular dynamics simulations, we also found those models could not reach a stable equilibrium state. Therefore, by integrating various experimental results, we proposed a new structural model for lipidfree apo A-I, which contains a bundled four-helix N-terminal domain (1–192) that forms a variable hydrophobic groove and a mobile short hairpin C-terminal domain (193–243). This model exhibits an equilibrium state through molecular dynamics simulation and is consistent with most of the experimental results known from CCL/MS on lysine pairs, fluorescence resonance energy transfer and hydrogen exchange. This solution-state lipid-free apo A-I model may elucidate the possible conformational transitions of apo A-I binding with lipids in high-density lipoprotein formation.

  18. A model of lipid-free Apolipoprotein A-I revealed by iterative molecular dynamics simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Xing; Lei, Dongsheng; Zhang, Lei; Rames, Matthew; Zhang, Shengli

    2015-03-20

    Apolipoprotein A-I (apo A-I), the major protein component of high-density lipoprotein, has been proven inversely correlated to cardiovascular risk in past decades. The lipid-free state of apo A-I is the initial stage which binds to lipids forming high-density lipoprotein. Molecular models of lipid-free apo A-I have been reported by methods like X-ray crystallography and chemical cross-linking/mass spectrometry (CCL/MS). Through structural analysis we found that those current models had limited consistency with other experimental results, such as those from hydrogen exchange with mass spectrometry. Through molecular dynamics simulations, we also found those models could not reach a stable equilibrium state. Therefore,more » by integrating various experimental results, we proposed a new structural model for lipidfree apo A-I, which contains a bundled four-helix N-terminal domain (1–192) that forms a variable hydrophobic groove and a mobile short hairpin C-terminal domain (193–243). This model exhibits an equilibrium state through molecular dynamics simulation and is consistent with most of the experimental results known from CCL/MS on lysine pairs, fluorescence resonance energy transfer and hydrogen exchange. This solution-state lipid-free apo A-I model may elucidate the possible conformational transitions of apo A-I binding with lipids in high-density lipoprotein formation.« less

  19. US ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exposure at the Commerce Park site. Individuals are not required to wear the blue dosimeter badges at this site. 2.11 Worksite Warning Signs and Labels The typical signs you...

  20. Hanford site integrated pest management plan

    SciTech Connect (OSTI)

    Giddings, R.F.

    1996-04-09

    The Hanford Site Integrated Pest Management Plan (HSIPMP) defines the Integrated Pest Management (IPM) decision process and subsequent strategies by which pest problems are to be solved at all Hanford Site properties per DOE-RL Site Infrastructure Division memo (WHC 9505090). The HSIPMP defines the roles that contractor organizations play in supporting the IPM process. In short the IPM process anticipates and prevents pest activity and infestation by combining several strategies to achieve long-term pest control solutions.

  1. Technology Solutions for New Homes Case Study: Multifamily Zero Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ready Home Analysis | Department of Energy Multifamily Zero Energy Ready Home Analysis Technology Solutions for New Homes Case Study: Multifamily Zero Energy Ready Home Analysis AvalonBay Communities, which is a large multifamily developer, was developing a three-building complex in Elmsford, New York. The buildings were planned to be certified to the ENERGY STAR® Homes Version 3 program. This plan led to AvalonBay partnering with the Advanced Residential Integrated Solutions (ARIES)

  2. Building America Technology Solutions for New and Existing Homes: Duct

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sealing Using Injected Spray Sealant | Department of Energy Sealing Using Injected Spray Sealant Building America Technology Solutions for New and Existing Homes: Duct Sealing Using Injected Spray Sealant In this project, the Raleigh Housing Authority worked with Building America team, the Advanced Residential Integrated Solutions Collaborative, to determine the most cost-effective ways to reduce duct leakage in its low-rise housing units. Ducts Sealing Using Injected Spray Sealant (701.91

  3. Building America Technology Solutions for New and Existing Homes: Replacing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resistance Heating with Mini-Split Heat Pumps | Department of Energy Replacing Resistance Heating with Mini-Split Heat Pumps Building America Technology Solutions for New and Existing Homes: Replacing Resistance Heating with Mini-Split Heat Pumps In this project, the Advanced Residential Integrated Solutions team investigated the suitability of mini-split heat pumps for multifamily retrofits. Replacing Resistance Heating with Mini-Split Heat Pumps (638.84 KB) More Documents &

  4. Project Profile: Innovative Phase Change Thermal Energy Storage Solution

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Baseload Power | Department of Energy Phase Change Thermal Energy Storage Solution for Baseload Power Project Profile: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Infinia logo Infinia, under the Baseload CSP FOA, developed and demonstrated a subscale system for baseload CSP power generation using thermal energy storage (TES) in a unique integration of innovative enhancements that improves performance and reduces cost. Approach Illustration of two gray

  5. Apply: Funding Opportunity - Advancing Solutions to Improve Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency of Commercial Buildings | Department of Energy Advancing Solutions to Improve Energy Efficiency of Commercial Buildings Apply: Funding Opportunity - Advancing Solutions to Improve Energy Efficiency of Commercial Buildings October 23, 2014 - 3:51pm Addthis This funding opportunity is closed. Funding Opportunity Announcement (FOA) Number: DE-FOA-0001168 The Building Technologies Office (BTO) Commercial Buildings Integration Program has announced the availability of nearly $9 million

  6. ITER Generic Diagnostic Upper Port Plug Nuclear Heating and Personnel Dose Rate Assesment Neutronics Analysis using the ATTILA Discrete Ordinates Code

    SciTech Connect (OSTI)

    Russell Feder and Mahmoud Z. Yousef

    2009-05-29

    Neutronics analysis to find nuclear heating rates and personnel dose rates were conducted in support of the integration of diagnostics in to the ITER Upper Port Plugs. Simplified shielding models of the Visible-Infrared diagnostic and of the ECH heating system were incorporated in to the ITER global CAD model. Results for these systems are representative of typical designs with maximum shielding and a small aperture (Vis-IR) and minimal shielding with a large aperture (ECH). The neutronics discrete-ordinates code ATTILA and SEVERIAN (the ATTILA parallel processing version) was used. Material properties and the 500 MW D-T volume source were taken from the ITER Brand Model MCNP benchmark model. A biased quadrature set equivelant to Sn=32 and a scattering degree of Pn=3 were used along with a 46-neutron and 21-gamma FENDL energy subgrouping. Total nuclear heating (neutron plug gamma heating) in the upper port plugs ranged between 380 and 350 kW for the Vis-IR and ECH cases. The ECH or Large Aperture model exhibited lower total heating but much higher peak volumetric heating on the upper port plug structure. Personnel dose rates are calculated in a three step process involving a neutron-only transport calculation, the generation of activation volume sources at pre-defined time steps and finally gamma transport analyses are run for selected time steps. ANSI-ANS 6.1.1 1977 Flux-to-Dose conversion factors were used. Dose rates were evaluated for 1 full year of 500 MW DT operation which is comprised of 3000 1800-second pulses. After one year the machine is shut down for maintenance and personnel are permitted to access the diagnostic interspace after 2-weeks if dose rates are below 100 ?Sv/hr. Dose rates in the Visible-IR diagnostic model after one day of shutdown were 130 ?Sv/hr but fell below the limit to 90 ?Sv/hr 2-weeks later. The Large Aperture or ECH style shielding model exhibited higher and more persistent dose rates. After 1-day the dose rate was 230 ?Sv

  7. Energy: elusive solutions

    SciTech Connect (OSTI)

    Velocci, T.

    1980-08-01

    The author states that America's seven-year search for answers to the energy crisis has produced more promise than substance. In fact, the US is even more dependent on imported oil today than it was in 1973 when the Arabs slapped on their economy-busting embargo. US imports have risen from 35% then to 40% now of daily oil consumption. The price of a barrel has doubled since last year and US product is sagging. Synthetic fuels from oil shale and coal deposits and conservation are still seen as the only solution to US independence from OPEC nations. (PSB)

  8. Dirac solutions for quaternionic potentials

    SciTech Connect (OSTI)

    De Leo, Stefano Giardino, Sergio

    2014-02-15

    The Dirac equation is solved for quaternionic potentials, i?V{sub 0} + j?W{sub 0} (V{sub 0}?R , W{sub 0}?C). The study shows two different solutions. The first one contains particle and anti-particle solutions and leads to the diffusion, tunneling, and Klein energy zones. The standard solution is recovered taking the complex limit of this solution. The second solution, which does not have a complex counterpart, can be seen as a V{sub 0}-antiparticle or |W{sub 0}|-particle solution.

  9. Using a derivative-free optimization method for multiple solutions of inverse transport problems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Armstrong, Jerawan C.; Favorite, Jeffrey A.

    2016-01-14

    Identifying unknown components of an object that emits radiation is an important problem for national and global security. Radiation signatures measured from an object of interest can be used to infer object parameter values that are not known. This problem is called an inverse transport problem. An inverse transport problem may have multiple solutions and the most widely used approach for its solution is an iterative optimization method. This paper proposes a stochastic derivative-free global optimization algorithm to find multiple solutions of inverse transport problems. The algorithm is an extension of a multilevel single linkage (MLSL) method where a meshmore » adaptive direct search (MADS) algorithm is incorporated into the local phase. Furthermore, numerical test cases using uncollided fluxes of discrete gamma-ray lines are presented to show the performance of this new algorithm.« less

  10. Integrated Deployment Model: A Comprehensive Approach to Transforming the Energy Economy

    SciTech Connect (OSTI)

    Werner, M.

    2010-11-01

    This paper describes the Integrated Deployment model to accelerate market adoption of alternative energy solutions to power homes, businesses, and vehicles through a comprehensive and aggressive approach.

  11. Sustainable and Holistic Integration of Energy Storage and Solar PV (SHINES) Funding Opportunity

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Sustainable and Holistic Integration of Energy Storage and Solar PV (SHINES) solution as envisioned by SunShot will have the following features:

  12. Conceptual design of the tangentially viewing combined interferometer-polarimeter for ITER density measurements

    SciTech Connect (OSTI)

    Van Zeeland, M. A.; Boivin, R. L.; Carlstrom, T. N.; Chavez, J. A.; O'Neill, R. C.; Brower, D. L.; Ding, W. X.; Lin, L.; Feder, R.; Johnson, D.; Watts, C.

    2013-04-15

    One of the systems planned for the measurement of electron density in ITER is a multi-channel tangentially viewing combined interferometer-polarimeter (TIP). This work discusses the current status of the design, including a preliminary optical table layout, calibration options, error sources, and performance projections based on a CO{sub 2}/CO laser system. In the current design, two-color interferometry is carried out at 10.59 {mu}m and 5.42 {mu}m and a separate polarimetry measurement of the plasma induced Faraday effect, utilizing the rotating wave technique, is made at 10.59 {mu}m. The inclusion of polarimetry provides an independent measure of the electron density and can also be used to correct the conventional two-color interferometer for fringe skips at all densities, up to and beyond the Greenwald limit. The system features five chords with independent first mirrors to reduce risks associated with deposition, erosion, etc., and a common first wall hole to minimize penetration sizes. Simulations of performance for a projected ITER baseline discharge show the diagnostic will function as well as, or better than, comparable existing systems for feedback density control. Calculations also show that finite temperature effects will be significant in ITER even for moderate temperature plasmas and can lead to a significant underestimate of electron density. A secondary role TIP will fulfill is that of a density fluctuation diagnostic; using a toroidal Alfven eigenmode as an example, simulations show TIP will be extremely robust in this capacity and potentially able to resolve coherent mode fluctuations with perturbed densities as low as {delta}n/n Almost-Equal-To 10{sup -5}.

  13. Development of ITER 15 MA ELMy H-mode Inductive Scenario

    SciTech Connect (OSTI)

    Kessel, C. E.; Campbell, D.; Gribov, Y.; Saibene, G.; Ambrosino, G.; Casper, T.; Cavinato, M.; Fujieda, H.; Hawryluk, R.; Horton, L. D.; Kavin, A.; Kharyrutdinov, R.; Koechl, F.; Leuer, J.; Loarte, A.; Lomas, P. J.; Luce, T.; Lukash, V.; Mattei, M.; Nunes, I.; Parail, V.; Polevoi, A.; Portone, A.; Sartori, R.; Sips, A. C.C.; Thomas, P. R.; Welander, A.; Wesley, J.

    2008-10-16

    The poloidal field (PF) coil system on ITER, which provides both feedforward and feedback control of plasma position, shape, and current, is a critical element for achieving mission performance. Analysis of PF capabilities has focused on the 15 MA Q = 10 scenario with a 300-500 s flattop burn phase. The operating space available for the 15 MA ELMy H-mode plasma discharges in ITER and upgrades to the PF coils or associated systems to establish confidence that ITER mission objectives can be reached have been identified. Time dependent self-consistent free-boundary calculations were performed to examine the impact of plasma variability, discharge programming, and plasma disturbances. Based on these calculations a new reference scenario was developed based upon a large bore initial plasma, early divertor transition, low level heating in L-mode, and a late H-mode onset. Equilibrium analyses for this scenario indicate that the original PF coil limitations do not allow low li (<0.8) operation or lower flux states, and the flattop burn durations were predicted to be less than the desired 400 s. This finding motivates the expansion of the operating space, considering several upgrade options to the PF coils. Analysis was also carried out to examine the feedback current reserve required in the CS and PF coils during a series of disturbances and a feasibility assessment of the 17 MA scenario was undertaken. Results of the studies show that the new scenario and modified PF system will allow a wide range of 15 MA 300-500 s operation and more limited but finite 17 MA operation.

  14. TU-F-18A-02: Iterative Image-Domain Decomposition for Dual-Energy CT

    SciTech Connect (OSTI)

    Niu, T; Dong, X; Petrongolo, M; Zhu, L

    2014-06-15

    Purpose: Dual energy CT (DECT) imaging plays an important role in advanced imaging applications due to its material decomposition capability. Direct decomposition via matrix inversion suffers from significant degradation of image signal-to-noise ratios, which reduces clinical value. Existing de-noising algorithms achieve suboptimal performance since they suppress image noise either before or after the decomposition and do not fully explore the noise statistical properties of the decomposition process. We propose an iterative image-domain decomposition method for noise suppression in DECT, using the full variance-covariance matrix of the decomposed images. Methods: The proposed algorithm is formulated in the form of least-square estimation with smoothness regularization. It includes the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. Performance is evaluated using an evaluation phantom (Catphan 600) and an anthropomorphic head phantom. Results are compared to those generated using direct matrix inversion with no noise suppression, a de-noising method applied on the decomposed images, and an existing algorithm with similar formulation but with an edge-preserving regularization term. Results: On the Catphan phantom, our method retains the same spatial resolution as the CT images before decomposition while reducing the noise standard deviation of decomposed images by over 98%. The other methods either degrade spatial resolution or achieve less low-contrast detectability. Also, our method yields lower electron density measurement error than direct matrix inversion and reduces error variation by over 97%. On the head phantom, it reduces the noise standard deviation of decomposed images by over 97% without blurring the sinus structures. Conclusion: We propose an iterative image-domain decomposition method for DECT. The method combines noise suppression and material decomposition into an iterative

  15. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT

    SciTech Connect (OSTI)

    Matenine, Dmitri Mascolo-Fortin, Julia; Goussard, Yves

    2015-11-15

    Purpose: The present work evaluates an iterative reconstruction approach, namely, the ordered subsets convex (OSC) algorithm with regularization via total variation (TV) minimization in the field of cone-beam optical computed tomography (optical CT). One of the uses of optical CT is gel-based 3D dosimetry for radiation therapy, where it is employed to map dose distributions in radiosensitive gels. Model-based iterative reconstruction may improve optical CT image quality and contribute to a wider use of optical CT in clinical gel dosimetry. Methods: This algorithm was evaluated using experimental data acquired by a cone-beam optical CT system, as well as complementary numerical simulations. A fast GPU implementation of OSC-TV was used to achieve reconstruction times comparable to those of conventional filtered backprojection. Images obtained via OSC-TV were compared with the corresponding filtered backprojections. Spatial resolution and uniformity phantoms were scanned and respective reconstructions were subject to evaluation of the modulation transfer function, image uniformity, and accuracy. The artifacts due to refraction and total signal loss from opaque objects were also studied. Results: The cone-beam optical CT data reconstructions showed that OSC-TV outperforms filtered backprojection in terms of image quality, thanks to a model-based simulation of the photon attenuation process. It was shown to significantly improve the image spatial resolution and reduce image noise. The accuracy of the estimation of linear attenuation coefficients remained similar to that obtained via filtered backprojection. Certain image artifacts due to opaque objects were reduced. Nevertheless, the common artifact due to the gel container walls could not be eliminated. Conclusions: The use of iterative reconstruction improves cone-beam optical CT image quality in many ways. The comparisons between OSC-TV and filtered backprojection presented in this paper demonstrate that OSC-TV can

  16. X-ray crystal spectrometer upgrade for ITER-like wall experiments at JET

    SciTech Connect (OSTI)

    Shumack, A. E.; Rzadkiewicz, J.; Chernyshova, M.; Czarski, T.; Karpinski, L.; Jakubowska, K.; Scholz, M.; Byszuk, A.; Cieszewski, R.; Kasprowicz, G.; Pozniak, K.; Wojenski, A.; Zabolotny, W.; Dominik, W.; Conway, N. J.; Dalley, S.; Tyrrell, S.; Zastrow, K.-D.; Figueiredo, J. [EFDA-CSU, Culham Science Centre, Abingdon OX14 3DB; Associação EURATOM and others

    2014-11-15

    The high resolution X-Ray crystal spectrometer at the JET tokamak has been upgraded with the main goal of measuring the tungsten impurity concentration. This is important for understanding impurity accumulation in the plasma after installation of the JET ITER-like wall (main chamber: Be, divertor: W). This contribution provides details of the upgraded spectrometer with a focus on the aspects important for spectral analysis and plasma parameter calculation. In particular, we describe the determination of the spectrometer sensitivity: important for impurity concentration determination.

  17. Source term evaluation for accident transients in the experimental fusion facility ITER

    SciTech Connect (OSTI)

    Virot, F.; Barrachin, M.; Cousin, F.

    2015-03-15

    We have studied the transport and chemical speciation of radio-toxic and toxic species for an event of water ingress in the vacuum vessel of experimental fusion facility ITER with the ASTEC code. In particular our evaluation takes into account an assessed thermodynamic data for the beryllium gaseous species. This study shows that deposited beryllium dusts of atomic Be and Be(OH){sub 2} are formed. It also shows that Be(OT){sub 2} could exist in some conditions in the drain tank. (authors)

  18. Carbon charge exchange analysis in the ITER-like wall environment

    SciTech Connect (OSTI)

    Menmuir, S.; Giroud, C.; Hawkes, N. C.; Biewer, T. M.; Coffey, I. H.; Delabie, E.; Sertoli, M.

    2014-11-15

    Charge exchange spectroscopy has long been a key diagnostic tool for fusion plasmas and is well developed in devices with Carbon Plasma-Facing Components. Operation with the ITER-like wall at JET has resulted in changes to the spectrum in the region of the Carbon charge exchange line at 529.06 nm and demonstrates the need to revise the core charge exchange analysis for this line. An investigation has been made of this spectral region in different plasma conditions and the revised description of the spectral lines to be included in the analysis is presented.

  19. Development of the prototype pneumatic transfer system for ITER neutron activation system

    SciTech Connect (OSTI)

    Cheon, M. S.; Seon, C. R.; Pak, S.; Lee, H. G.; Bertalot, L.

    2012-10-15

    The neutron activation system (NAS) measures neutron fluence at the first wall and the total neutron flux from the ITER plasma, providing evaluation of the fusion power for all operational phases. The pneumatic transfer system (PTS) is one of the key components of the NAS for the proper operation of the system, playing a role of transferring encapsulated samples between the capsule loading machine, irradiation stations, counting stations, and disposal bin. For the validation and the optimization of the design, a prototype of the PTS was developed and capsule transfer tests were performed with the developed system.

  20. Refinement of overlapping local/global iteration method based on Monte Carlo/p-CMFD calculations

    SciTech Connect (OSTI)

    Jo, Y.; Yun, S.; Cho, N. Z.

    2013-07-01

    In this paper, the overlapping local/global (OLG) iteration method based on Monte Carlo/p-CMFD calculations is refined in two aspects. One is the consistent use of estimators to generate homogenized scattering cross sections. Another is that the incident or exiting angular interval is divided into multi-angular bins to modulate albedo boundary conditions for local problems. Numerical tests show that, compared to the one angle bin case in a previous study, the four angle bin case shows significantly improved results. (authors)

  1. "Rip" Perkins, pioneering PPPL physicist and a design leader for ITER,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dies at 80 | Princeton Plasma Physics Lab "Rip" Perkins, pioneering PPPL physicist and a design leader for ITER, dies at 80 By John Greenwald August 11, 2014 Tweet Widget Google Plus One Share on Facebook Francis "Rip" Perkins Francis "Rip" Perkins Gallery: "Rip" Perkins, center, as head of the PPPL Theory Department with Wei-li Lee, left, and John Krommes, right. "Rip" Perkins, center, as head of the PPPL Theory Department with Wei-li Lee,

  2. "Rip" Perkins, pioneering PPPL physicist and a design leader for ITER,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dies at 80 | Princeton Plasma Physics Lab "Rip" Perkins, pioneering PPPL physicist and a design leader for ITER, dies at 80 By John Greenwald August 11, 2014 Tweet Widget Google Plus One Share on Facebook Francis "Rip" Perkins Francis "Rip" Perkins Gallery: "Rip" Perkins, center, as head of the PPPL Theory Department with Wei-li Lee, left, and John Krommes, right. "Rip" Perkins, center, as head of the PPPL Theory Department with Wei-li Lee,

  3. Note: Readout of a micromechanical magnetometer for the ITER fusion reactor

    SciTech Connect (OSTI)

    Rimminen, H.; Kyynaeraeinen, J.

    2013-05-15

    We present readout instrumentation for a MEMS magnetometer, placed 30 m away from the MEMS element. This is particularly useful when sensing is performed in high-radiation environment, where the semiconductors in the readout cannot survive. High bandwidth transimpedance amplifiers are used to cancel the cable capacitances of several nanofarads. A frequency doubling readout scheme is used for crosstalk elimination. Signal-to-noise ratio in the range of 60 dB was achieved and with sub-percent nonlinearity. The presented instrument is intended for the steady-state magnetic field measurements in the ITER fusion reactor.

  4. Engineer Russ Feder leads development of diagnostic tools for US ITER as

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    physicist Dave Johnson shifts to part-time work | Princeton Plasma Physics Lab Engineer Russ Feder leads development of diagnostic tools for US ITER as physicist Dave Johnson shifts to part-time work By John Greenwald March 16, 2015 Tweet Widget Google Plus One Share on Facebook Dave Johnson, left, and Russ Feder with design for component of a diagnostic system behind them. (Photo by Elle Starkman/PPPL Office of Communications) Dave Johnson, left, and Russ Feder with design for component of

  5. Engineer Russ Feder leads development of diagnostic tools for US ITER as

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    physicist Dave Johnson shifts to part-time work | Princeton Plasma Physics Lab Engineer Russ Feder leads development of diagnostic tools for US ITER as physicist Dave Johnson shifts to part-time work By John Greenwald March 16, 2015 Tweet Widget Google Plus One Share on Facebook Dave Johnson, left, and Russ Feder with design for component of a diagnostic system behind them. (Photo by Elle Starkman/PPPL Office of Communications) Dave Johnson, left, and Russ Feder with design for component of

  6. Using an iterative eigensolver to compute vibrational energies with phase-spaced localized basis functions

    SciTech Connect (OSTI)

    Brown, James Carrington, Tucker

    2015-07-28

    Although phase-space localized Gaussians are themselves poor basis functions, they can be used to effectively contract a discrete variable representation basis [A. Shimshovitz and D. J. Tannor, Phys. Rev. Lett. 109, 070402 (2012)]. This works despite the fact that elements of the Hamiltonian and overlap matrices labelled by discarded Gaussians are not small. By formulating the matrix problem as a regular (i.e., not a generalized) matrix eigenvalue problem, we show that it is possible to use an iterative eigensolver to compute vibrational energy levels in the Gaussian basis.

  7. A review of the US joining technologies for plasma facing components in the ITER fusion reactor

    SciTech Connect (OSTI)

    Odegard, B.C. Jr.; Cadden, C.H.; Watson, R.D.; Slattery, K.T.

    1998-02-01

    This paper is a review of the current joining technologies for plasma facing components in the US for the International Thermonuclear Experimental Reactor (ITER) project. Many facilities are involved in this project. Many unique and innovative joining techniques are being considered in the quest to join two candidate armor plate materials (beryllium and tungsten) to a copper base alloy heat sink (CuNiBe, OD copper, CuCrZr). These techniques include brazing and diffusion bonding, compliant layers at the bond interface, and the use of diffusion barrier coatings and diffusion enhancing coatings at the bond interfaces. The development and status of these joining techniques will be detailed in this report.

  8. Nebraska Statewide Wind Integration Study: April 2008 - January 2010

    SciTech Connect (OSTI)

    EnerNex Corporation, Knoxville, Tennessee; Ventyx, Atlanta, Georgia; Nebraska Power Association, Lincoln, Nebraska

    2010-03-01

    Wind generation resources in Nebraska will play an increasingly important role in the environmental and energy security solutions for the state and the nation. In this context, the Nebraska Power Association conducted a state-wide wind integration study.

  9. Analytical solutions of a generalized non-central potential in N-dimensions

    SciTech Connect (OSTI)

    Durmus, Aysen; zfidan, Aysel

    2014-10-15

    We present that N-dimensional non-relativistic wave equation for the generalized non-central potential with arbitrary angular momentum is analytically solvable in the hyperspherical coordinates. Asymptotic iteration method as a different approach is applied to obtain N-dimensional energy eigenvalues and the corresponding eigenfunctions. In hyperspherical coordinates, the wave function solutions are obtained in terms of hypergeometric functions and Jacobi polynomials. The bound states of quantum systems under consideration for some special cases, such as Hartmann and Makarov potentials, have been discussed in N-dimensions.

  10. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  11. Integrating Environmental Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stewardship Many Laboratory functions are integrated with environmental stewardship. This Strategy cannot be effective without systematic integration with other related Laboratory...

  12. Distribution Grid Integration

    Broader source: Energy.gov [DOE]

    The DOE Systems Integration team funds distribution grid integration research and development (R&D) activities to address the technical issues that surround distribution grid planning,...

  13. TGLF Recalibration for ITER Standard Case Parameters FY2015: Theory and Simulation Performance Target Final Report

    SciTech Connect (OSTI)

    Candy, J.

    2015-12-01

    This work was motivated by the observation, as early as 2008, that GYRO simulations of some ITER operating scenarios exhibited nonlinear zonal-flow generation large enough to effectively quench turbulence inside r /a ~ 0.5. This observation of flow-dominated, low-transport states persisted even as more accurate and comprehensive predictions of ITER profiles were made using the state-of-the-art TGLF transport model. This core stabilization is in stark contrast to GYRO-TGLF comparisons for modern-day tokamaks, for which GYRO and TGLF are typically in very close agreement. So, we began to suspect that TGLF needed to be generalized to include the effect of zonal-flow stabilization in order to be more accurate for the conditions of reactor simulations. While the precise cause of the GYRO-TGLF discrepancy for ITER parameters was not known, it was speculated that closeness to threshold in the absence of driven rotation, as well as electromagnetic stabilization, created conditions more sensitive the self-generated zonal-flow stabilization than in modern tokamaks. Need for nonlinear zonal-flow stabilization: To explore the inclusion of a zonal-flow stabilization mechanism in TGLF, we started with a nominal ITER profile predicted by TGLF, and then performed linear and nonlinear GYRO simulations to characterize the behavior at and slightly above the nominal temperature gradients for finite levels of energy transport. Then, we ran TGLF on these cases to see where the discrepancies were largest. The predicted ITER profiles were indeed near to the TGLF threshold over most of the plasma core in the hybrid discharge studied (weak magnetic shear, q > 1). Scanning temperature gradients above the TGLF power balance values also showed that TGLF overpredicted the electron energy transport in the low-collisionality ITER plasma. At first (in Q3), a model of only the zonal-flow stabilization (Dimits shift) was attempted. Although we were able to construct an ad hoc model of the zonal

  14. The targeted heating and current drive applications for the ITER electron cyclotron system

    SciTech Connect (OSTI)

    Henderson, M.; Darbos, C.; Gandini, F.; Gassmann, T.; Loarte, A.; Omori, T.; Purohit, D.; Saibene, G.; Gagliardi, M.; Farina, D.; Figini, L.; Hanson, G.; Poli, E.; Takahashi, K.

    2015-02-15

    A 24 MW Electron Cyclotron (EC) system operating at 170 GHz and 3600 s pulse length is to be installed on ITER. The EC plant shall deliver 20 MW of this power to the plasma for Heating and Current Drive (H and CD) applications. The EC system is designed for plasma initiation, central heating, current drive, current profile tailoring, and Magneto-hydrodynamic control (in particular, sawteeth and Neo-classical Tearing Mode) in the flat-top phase of the plasma. A preliminary design review was performed in 2012, which identified a need for extended application of the EC system to the plasma ramp-up, flattop, and ramp down phases of ITER plasma pulse. The various functionalities are prioritized based on those applications, which can be uniquely addressed with the EC system in contrast to other H and CD systems. An initial attempt has been developed at prioritizing the allocated H and CD applications for the three scenarios envisioned: ELMy H-mode (15 MA), Hybrid (∼12 MA), and Advanced (∼9 MA) scenarios. This leads to the finalization of the design requirements for the EC sub-systems.

  15. Modeling and simulation of a beam emission spectroscopy diagnostic for the ITER prototype neutral beam injector

    SciTech Connect (OSTI)

    Barbisan, M. Zaniol, B.; Pasqualotto, R.

    2014-11-15

    A test facility for the development of the neutral beam injection system for ITER is under construction at Consorzio RFX. It will host two experiments: SPIDER, a 100 keV H{sup −}/D{sup −} ion RF source, and MITICA, a prototype of the full performance ITER injector (1 MV, 17 MW beam). A set of diagnostics will monitor the operation and allow to optimize the performance of the two prototypes. In particular, beam emission spectroscopy will measure the uniformity and the divergence of the fast particles beam exiting the ion source and travelling through the beam line components. This type of measurement is based on the collection of the H{sub α}/D{sub α} emission resulting from the interaction of the energetic particles with the background gas. A numerical model has been developed to simulate the spectrum of the collected emissions in order to design this diagnostic and to study its performance. The paper describes the model at the base of the simulations and presents the modeled H{sub α} spectra in the case of MITICA experiment.

  16. Convergence estimates for iterative methods via the Kriess Matrix Theorem on a general complex domain

    SciTech Connect (OSTI)

    Toh, K.C.; Trefethen, L.N.

    1994-12-31

    What properties of a nonsymmetric matrix A determine the convergence rate of iterations such as GMRES, QMR, and Arnoldi? If A is far from normal, should one replace the usual Ritz values {r_arrow} eigenvalues notion of convergence of Arnoldi by alternative notions such as Arnoldi lemniscates {r_arrow} pseudospectra? Since Krylov subspace iterations can be interpreted as minimization processes involving polynomials of matrices, the answers to questions such as these depend upon mathematical problems of the following kind. Given a polynomial p(z), how can one bound the norm of p(A) in terms of (1) the size of p(z) on various sets in the complex plane, and (2) the locations of the spectrum and pseudospectra of A? This talk reports some progress towards solving these problems. In particular, the authors present theorems that generalize the Kreiss matrix theorem from the unit disk (for the monomial A{sup n}) to a class of general complex domains (for polynomials p(A)).

  17. Material migration studies with an ITER first wall panel proxy on EAST

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ding, R.; Pitts, R. A.; Borodin, D.; Carpentier, S.; Ding, F.; Gong, X. Z.; Guo, H. Y.; Kirschner, A.; Kocan, M.; Li, J. G.; et al

    2015-01-23

    The ITER beryllium (Be) first wall (FW) panels are shaped to protect leading edges between neighbouring panels arising from assembly tolerances. This departure from a perfectly cylindrical surface automatically leads to magnetically shadowed regions where eroded Be can be re-deposited, together with co-deposition of tritium fuel. To provide a benchmark for a series of erosion/re-deposition simulation studies performed for the ITER FW panels, dedicated experiments have been performed on the EAST tokamak using a specially designed, instrumented test limiter acting as a proxy for the FW panel geometry. Carbon coated molybdenum plates forming the limiter front surface were exposed tomore » the outer midplane boundary plasma of helium discharges using the new Material and Plasma Evaluation System (MAPES). Net erosion and deposition patterns are estimated using ion beam analysis to measure the carbon layer thickness variation across the surface after exposure. The highest erosion of about 0.8 µm is found near the midplane, where the surface is closest to the plasma separatrix. No net deposition above the measurement detection limit was found on the proxy wall element, even in shadowed regions. The measured 2D surface erosion distribution has been modelled with the 3D Monte Carlo code ERO, using the local plasma parameter measurements together with a diffusive transport assumption. In conclusion, excellent agreement between the experimentally observed net erosion and the modelled erosion profile has been obtained.« less

  18. Material migration studies with an ITER first wall panel proxy on EAST

    SciTech Connect (OSTI)

    Ding, R.; Pitts, R. A.; Borodin, D.; Carpentier, S.; Ding, F.; Gong, X. Z.; Guo, H. Y.; Kirschner, A.; Kocan, M.; Li, J. G.; Luo, G. -N.; Mao, H. M.; Qian, J. P.; Stangeby, P. C.; Wampler, W. R.; Wang, H. Q.; Wang, W. Z.; Chen, J. L.; Gan, K. F.

    2015-01-23

    The ITER beryllium (Be) first wall (FW) panels are shaped to protect leading edges between neighbouring panels arising from assembly tolerances. This departure from a perfectly cylindrical surface automatically leads to magnetically shadowed regions where eroded Be can be re-deposited, together with co-deposition of tritium fuel. To provide a benchmark for a series of erosion/re-deposition simulation studies performed for the ITER FW panels, dedicated experiments have been performed on the EAST tokamak using a specially designed, instrumented test limiter acting as a proxy for the FW panel geometry. Carbon coated molybdenum plates forming the limiter front surface were exposed to the outer midplane boundary plasma of helium discharges using the new Material and Plasma Evaluation System (MAPES). Net erosion and deposition patterns are estimated using ion beam analysis to measure the carbon layer thickness variation across the surface after exposure. The highest erosion of about 0.8 µm is found near the midplane, where the surface is closest to the plasma separatrix. No net deposition above the measurement detection limit was found on the proxy wall element, even in shadowed regions. The measured 2D surface erosion distribution has been modelled with the 3D Monte Carlo code ERO, using the local plasma parameter measurements together with a diffusive transport assumption. In conclusion, excellent agreement between the experimentally observed net erosion and the modelled erosion profile has been obtained.

  19. Fusion Materials Science and Technology Research Needs: Now and During the ITER era

    SciTech Connect (OSTI)

    Wirth, Brian D.; Kurtz, Richard J.; Snead, Lance L.

    2013-09-30

    The plasma facing components, first wall and blanket systems of future tokamak-based fusion power plants arguably represent the single greatest materials engineering challenge of all time. Indeed, the United States National Academy of Engineering has recently ranked the quest for fusion as one of the top grand challenges for engineering in the 21st Century. These challenges are even more pronounced by the lack of experimental testing facilities that replicate the extreme operating environment involving simultaneous high heat and particle fluxes, large time varying stresses, corrosive chemical environments, and large fluxes of 14-MeV peaked fusion neutrons. This paper will review, and attempt to prioritize, the materials research and development challenges facing fusion nuclear science and technology into the ITER era and beyond to DEMO. In particular, the presentation will highlight the materials degradation mechanisms we anticipate to occur in the fusion environment, the temperature- displacement goals for fusion materials and plasma facing components and the near and long-term materials challenges required for both ITER, a fusion nuclear science facility and longer term ultimately DEMO.

  20. H-mode pedestal characteristics in ITER shape discharges on DIII-D

    SciTech Connect (OSTI)

    Osborne, T.H.; Burrell, K.H.; Groebner, R.J.

    1998-09-01

    Characteristics of the H-mode pedestal are studied in Type 1 ELM discharges with ITER cross-sectional shape and aspect ratio. The scaling of the width of the edge step gradient region, {delta}, which is most consistent with the data is with the normalized edge pressure, ({beta}{sub POL}{sup PED}){sup 0.4}. Fits of {delta} to a function of temperature, such as {rho}{sub POL}, are ruled out in divertor pumping experiments. The edge pressure gradient is found to scale as would be expected from infinite n ballooning mode theory; however, the value of the pressure gradient exceeds the calculated first stable limit by more than a factor of 2 in some discharges. This high edge pressure gradient is consistent with access to the second stable regime for ideal ballooning for surfaces near the edge. In lower q discharges, including discharges at the ITER value of q, edge second stability requires significant edge current density. Transport simulations give edge bootstrap current of sufficient magnitude to open second stable access in these discharges. Ideal kink analysis using current density profiles including edge bootstrap current indicate that before the ELM these discharges may be unstable to low n, edge localized modes.

  1. Development of a Twin-Screw D-2 Extruder for the ITER Pellet Injection System

    SciTech Connect (OSTI)

    Meitner, Steven J; Baylor, Larry R; Carbajo, Juan J; Combs, Stephen Kirk; Fehling, Dan T; Foust, Charles R; McFee, Marshall T; McGill, James M; Rasmussen, David A; Sitterson, R G; Sparks, Dennis O; Qualls, A L

    2009-07-01

    A twin-screw extruder for the ITER pellet injection system is under development at the Oak Ridge National Laboratory. The extruder will provide a stream of solid hydrogen isotopes to a secondary section, where pellets are cut and accelerated with single-stage gas gun into the plasma. A one-fifth ITER scale prototype extruder has been built to produce a continuous solid deuterium extrusion. Deuterium gas is precooled and liquefied before being introduced into the extruder. The precooler consists of a copper vessel containing liquid nitrogen surrounded by a deuterium gas filled copper coil. The liquefier is comprised of a copper cylinder connected to a Cryomech AL330 cryocooler, which is surrounded by a copper coil that the precooled deuterium flows through. The lower extruder barrel is connected to a Cryomech GB-37 cryocooler to solidify the deuterium (at approximate to 15 K) before it is forced through the extruder nozzle. A viewport located below the extruder nozzle provides a direct view of the extrusion. A camera is used to document the extrusion quality and duration. A data acquisition system records the extruder temperatures, torque, and speed, upstream, and downstream pressures. This paper will describe the prototype twin-screw extruder and initial extrusion results.

  2. ITER Core Imaging X-Ray Spectrometer Conceptual Design and Performance Assessment - Phase 2

    SciTech Connect (OSTI)

    Beiersdorfer, P; Wen, J; Dunn, J; Morris, K

    2011-01-02

    During Phase 2 of our study of the CIXS conceptual design we have tackled additional important issues that are unique to the ITER environment. These include the thermal control of the crystal and detector enclosures located in an environment with a 100-250 C ambient temperature, tritium containment, and the range of crystal and detector movement based on the need for spectral adjustments and the desire to make measurements of colder plasmas. In addressing these issues we have selected a ''Dewar''-type enclosure for the crystals and detectors. Applying realistic view factors for radiant heat and making allowance for conduction we have made engineering studies of this enclosure and showed that the cooling requirements can be solved and the temperature can be kept sufficiently constant without compromising the specification parameters of the CIXS. We have chosen a minimum 3 mm combined thickness of the six beryllium windows needed in a Dewar-type enclosure and showed that a single window of 0.5 mm thickness satisfies tritium containment requirements. For measuring the temperature in cooler ITER plasmas, we have chosen to use the K-shell lines of Fe24+. Iron is the preferred choice because its radiation can be analyzed with the identical CIXS settings used for analyzing the tungsten radiation, i.e., essentially no adjustments besides a simple crystal rotation need to be made. We have, however, included an xy{theta}-drive motor arrangement in our design for fine adjustments and full rotation of the crystal mounts.

  3. NEMS integrating module documentation report

    SciTech Connect (OSTI)

    Not Available

    1993-12-14

    The National Energy Modeling System (NEMS) is a computer modeling system that produces a general equilibrium solution for energy supply and demand in the US energy markets. The model achieves a supply and demand balance in the end-use demand regions, defined as the nine Census Divisions, by solving for the prices of each energy type such that the quantities producers are willing to supply equal the quantities consumers wish to consume. The system reflects market economics, industry structure, and energy policies and regulations that influence market behavior. The NEMS Integrating Module is the central integrating component of a complex modeling system. As such, a thorough understanding of its role in the modeling process can only be achieved by placing it in the proper context with respect to the other modules. To that end, this document provides an overview of the complete NEMS model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

  4. NREL: Energy Systems Integration - Energy Systems Integration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Systems Modeling and Control Get the full list of job postings and learn more about working at NREL. Smarter Grid Solutions to Demonstrate Active Network Management System ...

  5. Integrated Management Tracking System

    Energy Science and Technology Software Center (OSTI)

    2000-03-30

    The Integrated Management Tracking System (IMTS) is a "Web Enabled" Client/Server Business application that provides for the Identification and Resolution of commitments, situations, events and problems. The IMTS engine is written with Microsoft Active Server Pages (ASP) for IIS4. The system provides for reporting, entering, editing, closing and administration over a Intranet, Extranet or Internet. This Application facilitates: Electronic assignment, acceptance and tracking to completion. Email notifications of assigned action. Establishment of Due Dates. Electronicmore » search and retrieval based on keywords in combination with user specified database parameters (Document Type, Date Ranges, etc.). Coded for Trending and Reporting. User selected reports. Various levels of access for reports and administration. The "Server" side of this application consists of a Microsoft Access database running on a NT Server with Internet Information Server (IIS). As the "Client" side of the application runs on any Web browser, this solution is a cost effective, user friendly application that lends itself to organizations not physically colocated in one location providing information immediately available to everyone at once.« less

  6. Sandia Energy - Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Transmission Grid Integration Transmission Grid...

  7. Sandia Energy - Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Distribution Grid Integration Distribution Grid...

  8. Procurement Integrity Brochure What is Procurement Integrity?

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procurement Integrity Brochure What is Procurement Integrity? The Department of Energy, like most federal agencies, purchases many products and services from the private sector. To preserve the integrity of the Federal procurement process and assure fair treatment of bidders, offerors, and contractors, laws govern the procurement process and the manner in which federal and contractor personnel conduct business with each other. One of these statutes is Section 27 of the Office of Federal

  9. SU-E-I-33: Initial Evaluation of Model-Based Iterative CT Reconstruction Using Standard Image Quality Phantoms

    SciTech Connect (OSTI)

    Gingold, E; Dave, J

    2014-06-01

    Purpose: The purpose of this study was to compare a new model-based iterative reconstruction with existing reconstruction methods (filtered backprojection and basic iterative reconstruction) using quantitative analysis of standard image quality phantom images. Methods: An ACR accreditation phantom (Gammex 464) and a CATPHAN600 phantom were scanned using 3 routine clinical acquisition protocols (adult axial brain, adult abdomen, and pediatric abdomen) on a Philips iCT system. Each scan was acquired using default conditions and 75%, 50% and 25% dose levels. Images were reconstructed using standard filtered backprojection (FBP), conventional iterative reconstruction (iDose4) and a prototype model-based iterative reconstruction (IMR). Phantom measurements included CT number accuracy, contrast to noise ratio (CNR), modulation transfer function (MTF), low contrast detectability (LCD), and noise power spectrum (NPS). Results: The choice of reconstruction method had no effect on CT number accuracy, or MTF (p<0.01). The CNR of a 6 HU contrast target was improved by 167% with iDose4 relative to FBP, while IMR improved CNR by 145367% across all protocols and dose levels. Within each scan protocol, the CNR improvement from IMR vs FBP showed a general trend of greater improvement at lower dose levels. NPS magnitude was greatest for FBP and lowest for IMR. The NPS of the IMR reconstruction showed a pronounced decrease with increasing spatial frequency, consistent with the unusual noise texture seen in IMR images. Conclusion: Iterative Model Reconstruction reduces noise and improves contrast-to-noise ratio without sacrificing spatial resolution in CT phantom images. This offers the possibility of radiation dose reduction and improved low contrast detectability compared with filtered backprojection or conventional iterative reconstruction.

  10. NREL: Transmission Grid Integration - Wind Integration National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy Efficiency and Renewable Energy, Wind and Water Power Technologies Office, and ... Principles for Integration Studies Glossary News Did you find what you needed? ...

  11. Examination of the Entry to Burn and Burn Control for the ITER 15 MA Baseline and Other Scenarios

    SciTech Connect (OSTI)

    Kesse, Charles E.; Kim, S-H.; Koechl, F.

    2014-09-01

    The entry to burn and flattop burn control in ITER will be a critical need from the first DT experiments. Simulations are used to address time-dependent behavior under a range of possible conditions that include injected power level, impurity content (W, Ar, Be), density evolution, H-mode regimes, controlled parameter (Wth, Pnet, Pfusion), and actuator (Paux, fueling, fAr), with a range of transport models. A number of physics issues at the L-H transition require better understanding to project to ITER, however, simulations indicate viable control with sufficient auxiliary power (up to 73 MW), while lower powers become marginal (as low as 43 MW).

  12. The high-β{sub N} hybrid scenario for ITER and FNSF steady-state missions

    SciTech Connect (OSTI)

    Turco, F.; Petty, C. C.; Luce, T. C.; Carlstrom, T. N.; Van Zeeland, M. A.; Ferron, J. R.; Heidbrink, W.; Carpanese, F.; Holcomb, C. T.

    2015-05-15

    New experiments on DIII-D have demonstrated the steady-state potential of the hybrid scenario, with 1 MA of plasma current driven fully non-inductively and β{sub N} up to 3.7 sustained for ∼3 s (∼1.5 current diffusion time, τ{sub R}, in DIII-D), providing the basis for an attractive option for steady-state operation in ITER and FNSF. Excellent confinement is achieved (H{sub 98y2} ∼ 1.6) without performance limiting tearing modes. The hybrid regime overcomes the need for off-axis current drive efficiency, taking advantage of poloidal magnetic flux pumping that is believed to be the result of a saturated 3/2 tearing mode. This allows for efficient current drive close to the axis, without deleterious sawtooth instabilities. In these experiments, the edge surface loop voltage is driven down to zero for >1 τ{sub R} when the poloidal β is increased above 1.9 at a plasma current of 1.0 MA and the ECH power is increased to 3.2 MW. Stationary operation of hybrid plasmas with all on-axis current drive is sustained at pressures slightly above the ideal no-wall limit, while the calculated ideal with-wall MHD limit is β{sub N} ∼ 4–4.5. Off-axis Neutral Beam Injection (NBI) power has been used to broaden the pressure and current profiles in this scenario, seeking to take advantage of higher predicted kink stability limits and lower values of the tearing stability index Δ′, as calculated by the DCON and PEST3 codes. Results based on measured profiles predict ideal limits at β{sub N} > 4.5, 10% higher than the cases with on-axis NBI. A 0-D model, based on the present confinement, β{sub N} and shape values of the DIII-D hybrid scenario, shows that these plasmas are consistent with the ITER 9 MA, Q = 5 mission and the FNSF 6.7 MA scenario with Q = 3.5. With collisionality and edge safety factor values comparable to those envisioned for ITER and FNSF, the high-β{sub N} hybrid represents an attractive high performance option for the steady

  13. Better Buildings Residential Program Solution Center Demonstration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Residential Program Solution Center Demonstration Better Buildings Residential Program Solution Center Demonstration Better Buildings Residential Program Solution Center Demonstration from the U.S. Department of Energy. Solution Center Demo (2.8 MB) More Documents & Publications Building Science Solutions … Faster and Better Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential Program Solution Center

  14. Financing Solutions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financing Solutions Financing Solutions Transitioning to a clean energy economy requires innovative financing solutions that enable state, local, and tribal governments to invest in clean energy technologies. However, the clean energy puzzle can be daunting, especially when it comes to financing. With that in mind this website aims to provide an overview of financing as it pertains to state, local, and tribal governments who are designing and implementing clean energy financing programs. Learn

  15. Employment Solutions Division (HC-13)

    Broader source: Energy.gov [DOE]

    This division develops and implements innovative HCM business solutions relating to corporate recruiting, organizational and workforce development, workforce and succession planning, talent...

  16. MPower Solutions | Open Energy Information

    Open Energy Info (EERE)

    Dundee,, United Kingdom Zip: DD2 4UH Product: MPower Solutions is one Europe's largest battery manufacturers supplying over 500,000 batteries every month. MPower provides optimised...

  17. SBY Solutions | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: SBY Solutions Place: Israel Zip: 42836 Sector: Solar Product: Solar panel installer, mainly focusing on rooftops. References: SBY...

  18. Extraordinary vacuum black string solutions

    SciTech Connect (OSTI)

    Kim, Hyeong-Chan; Lee, Jungjai

    2008-01-15

    In addition to the boosted static solution there are two other classes of stationary stringlike solutions of the vacuum Einstein equation in (4+1) dimensions. Each class is characterized by three parameters of mass, tension, and momentum flow along the fifth coordinate. We analyze the metric properties of one of the two classes, which was previously assumed to be naked singular, and show that the solution spectrum contains black string and wormhole in addition to the known naked singularity as the momentum flow to mass ratio increases. Interestingly, there does not exist new zero momentum solution in these cases.

  19. Biofuel Solutions | Open Energy Information

    Open Energy Info (EERE)

    developer, which had been developing one plant in Fairmont, Minnesota and another in Wood River, Biofuel Energy LLC took over plant development of Biofuel Solutions' projects in...

  20. DEVELOPMENT Solutions | Open Energy Information

    Open Energy Info (EERE)

    Product: DEVELOPMENT Solutions (DS) supports investors to realise projects with sustainable applications, including in the areas of environment, energy efficiency, water...