National Library of Energy BETA

Sample records for integrated high throughput

  1. Development of a high-throughput microfluidic integrated microarray for the detection of chimeric bioweapons.

    SciTech Connect (OSTI)

    Sheppod, Timothy; Satterfield, Brent; Hukari, Kyle W.; West, Jason A. A.; Hux, Gary A.

    2006-10-01

    The advancement of DNA cloning has significantly augmented the potential threat of a focused bioweapon assault, such as a terrorist attack. With current DNA cloning techniques, toxin genes from the most dangerous (but environmentally labile) bacterial or viral organism can now be selected and inserted into robust organism to produce an infinite number of deadly chimeric bioweapons. In order to neutralize such a threat, accurate detection of the expressed toxin genes, rather than classification on strain or genealogical decent of these organisms, is critical. The development of a high-throughput microarray approach will enable the detection of unknowns chimeric bioweapons. The development of a high-throughput microarray approach will enable the detection of unknown bioweapons. We have developed a unique microfluidic approach to capture and concentrate these threat genes (mRNA's) upto a 30 fold concentration. These captured oligonucleotides can then be used to synthesize in situ oligonucleotide copies (cDNA probes) of the captured genes. An integrated microfluidic architecture will enable us to control flows of reagents, perform clean-up steps and finally elute nanoliter volumes of synthesized oligonucleotides probes. The integrated approach has enabled a process where chimeric or conventional bioweapons can rapidly be identified based on their toxic function, rather than being restricted to information that may not identify the critical nature of the threat.

  2. Integrated crystal mounting and alignment system for high-throughput biological crystallography

    DOE Patents [OSTI]

    Nordmeyer, Robert A.; Snell, Gyorgy P.; Cornell, Earl W.; Kolbe, William; Yegian, Derek; Earnest, Thomas N.; Jaklevic, Joseph M.; Cork, Carl W.; Santarsiero, Bernard D.; Stevens, Raymond C.

    2005-07-19

    A method and apparatus for the transportation, remote and unattended mounting, and visual alignment and monitoring of protein crystals for synchrotron generated x-ray diffraction analysis. The protein samples are maintained at liquid nitrogen temperatures at all times: during shipment, before mounting, mounting, alignment, data acquisition and following removal. The samples must additionally be stably aligned to within a few microns at a point in space. The ability to accurately perform these tasks remotely and automatically leads to a significant increase in sample throughput and reliability for high-volume protein characterization efforts. Since the protein samples are placed in a shipping-compatible layered stack of sample cassettes each holding many samples, a large number of samples can be shipped in a single cryogenic shipping container.

  3. Integrated crystal mounting and alignment system for high-throughput biological crystallography

    DOE Patents [OSTI]

    Nordmeyer, Robert A.; Snell, Gyorgy P.; Cornell, Earl W.; Kolbe, William F.; Yegian, Derek T.; Earnest, Thomas N.; Jaklevich, Joseph M.; Cork, Carl W.; Santarsiero, Bernard D.; Stevens, Raymond C.

    2007-09-25

    A method and apparatus for the transportation, remote and unattended mounting, and visual alignment and monitoring of protein crystals for synchrotron generated x-ray diffraction analysis. The protein samples are maintained at liquid nitrogen temperatures at all times: during shipment, before mounting, mounting, alignment, data acquisition and following removal. The samples must additionally be stably aligned to within a few microns at a point in space. The ability to accurately perform these tasks remotely and automatically leads to a significant increase in sample throughput and reliability for high-volume protein characterization efforts. Since the protein samples are placed in a shipping-compatible layered stack of sample cassettes each holding many samples, a large number of samples can be shipped in a single cryogenic shipping container.

  4. High throughput optical scanner

    DOE Patents [OSTI]

    Basiji, David A. (Seattle, WA); van den Engh, Gerrit J. (Seattle, WA)

    2001-01-01

    A scanning apparatus is provided to obtain automated, rapid and sensitive scanning of substrate fluorescence, optical density or phosphorescence. The scanner uses a constant path length optical train, which enables the combination of a moving beam for high speed scanning with phase-sensitive detection for noise reduction, comprising a light source, a scanning mirror to receive light from the light source and sweep it across a steering mirror, a steering mirror to receive light from the scanning mirror and reflect it to the substrate, whereby it is swept across the substrate along a scan arc, and a photodetector to receive emitted or scattered light from the substrate, wherein the optical path length from the light source to the photodetector is substantially constant throughout the sweep across the substrate. The optical train can further include a waveguide or mirror to collect emitted or scattered light from the substrate and direct it to the photodetector. For phase-sensitive detection the light source is intensity modulated and the detector is connected to phase-sensitive detection electronics. A scanner using a substrate translator is also provided. For two dimensional imaging the substrate is translated in one dimension while the scanning mirror scans the beam in a second dimension. For a high throughput scanner, stacks of substrates are loaded onto a conveyor belt from a tray feeder.

  5. Robust, High-Throughput Analysis of Protein Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robust, High-Throughput Analysis of Protein Structures Robust, High-Throughput Analysis of Protein Structures Print Wednesday, 28 October 2009 00:00 Scientists have developed a fast and efficient way to determine the structure of proteins, shortening a process that often takes years into a matter of days. The Structurally Integrated BiologY for Life Sciences (SIBYLS) beamline at the ALS has implemented the world's highest-throughput biological-solution x-ray scattering beamline enabling

  6. High throughput protein production screening

    DOE Patents [OSTI]

    Beernink, Peter T.; Coleman, Matthew A.; Segelke, Brent W.

    2009-09-08

    Methods, compositions, and kits for the cell-free production and analysis of proteins are provided. The invention allows for the production of proteins from prokaryotic sequences or eukaryotic sequences, including human cDNAs using PCR and IVT methods and detecting the proteins through fluorescence or immunoblot techniques. This invention can be used to identify optimized PCR and WT conditions, codon usages and mutations. The methods are readily automated and can be used for high throughput analysis of protein expression levels, interactions, and functional states.

  7. Robust, High-Throughput Analysis of Protein Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robust, High-Throughput Analysis of Protein Structures Print Scientists have developed a fast and efficient way to determine the structure of proteins, shortening a process that often takes years into a matter of days. The Structurally Integrated BiologY for Life Sciences (SIBYLS) beamline at the ALS has implemented the world's highest-throughput biological-solution x-ray scattering beamline enabling genomic-scale protein-structure characterization. Coupling brilliant x rays from one of the

  8. Robust, High-Throughput Analysis of Protein Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robust, High-Throughput Analysis of Protein Structures Print Scientists have developed a fast and efficient way to determine the structure of proteins, shortening a process that often takes years into a matter of days. The Structurally Integrated BiologY for Life Sciences (SIBYLS) beamline at the ALS has implemented the world's highest-throughput biological-solution x-ray scattering beamline enabling genomic-scale protein-structure characterization. Coupling brilliant x rays from one of the

  9. Robust, High-Throughput Analysis of Protein Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robust, High-Throughput Analysis of Protein Structures Print Scientists have developed a fast and efficient way to determine the structure of proteins, shortening a process that often takes years into a matter of days. The Structurally Integrated BiologY for Life Sciences (SIBYLS) beamline at the ALS has implemented the world's highest-throughput biological-solution x-ray scattering beamline enabling genomic-scale protein-structure characterization. Coupling brilliant x rays from one of the

  10. Robust, High-Throughput Analysis of Protein Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robust, High-Throughput Analysis of Protein Structures Print Scientists have developed a fast and efficient way to determine the structure of proteins, shortening a process that often takes years into a matter of days. The Structurally Integrated BiologY for Life Sciences (SIBYLS) beamline at the ALS has implemented the world's highest-throughput biological-solution x-ray scattering beamline enabling genomic-scale protein-structure characterization. Coupling brilliant x rays from one of the

  11. Robust, High-Throughput Analysis of Protein Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robust, High-Throughput Analysis of Protein Structures Print Scientists have developed a fast and efficient way to determine the structure of proteins, shortening a process that often takes years into a matter of days. The Structurally Integrated BiologY for Life Sciences (SIBYLS) beamline at the ALS has implemented the world's highest-throughput biological-solution x-ray scattering beamline enabling genomic-scale protein-structure characterization. Coupling brilliant x rays from one of the

  12. Potential of High-Throughput Experimentation with Ammonia Borane...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of High-Throughput Experimentation with Ammonia Borane Solid Hydrogen Storage Materials (presentation) Potential of High-Throughput Experimentation with Ammonia Borane Solid ...

  13. High-Throughput/Combinatorial Techniques in Hydrogen Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-ThroughputCombinatorial Techniques in Hydrogen Storage Materials R&D (presentation) High-ThroughputCombinatorial Techniques in Hydrogen Storage Materials R&D (presentation)...

  14. High Throughput Materials Characterization John M. Gregoire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paper for Establishing a User Facility for Synchrotron-based High Throughput Materials Characterization John M. Gregoire 1 , Matthew J. Kramer 2 , Apurva Mehta 3 1 Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA, gregoire@caltech.edu 2 Critial Materials Institute, Ames Laboratory, Iowa State University, Ames IA, mjkramer@ameslab.gov 3 Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA,

  15. Automated High Throughput Drug Target Crystallography

    SciTech Connect (OSTI)

    Rupp, B

    2005-02-18

    The molecular structures of drug target proteins and receptors form the basis for 'rational' or structure guided drug design. The majority of target structures are experimentally determined by protein X-ray crystallography, which as evolved into a highly automated, high throughput drug discovery and screening tool. Process automation has accelerated tasks from parallel protein expression, fully automated crystallization, and rapid data collection to highly efficient structure determination methods. A thoroughly designed automation technology platform supported by a powerful informatics infrastructure forms the basis for optimal workflow implementation and the data mining and analysis tools to generate new leads from experimental protein drug target structures.

  16. High throughput chemical munitions treatment system

    DOE Patents [OSTI]

    Haroldsen, Brent L.; Stofleth, Jerome H.; Didlake, Jr., John E.; Wu, Benjamin C-P

    2011-11-01

    A new High-Throughput Explosive Destruction System is disclosed. The new system is comprised of two side-by-side detonation containment vessels each comprising first and second halves that feed into a single agent treatment vessel. Both detonation containment vessels further comprise a surrounding ventilation facility. Moreover, the detonation containment vessels are designed to separate into two half-shells, wherein one shell can be moved axially away from the fixed, second half for ease of access and loading. The vessels are closed by means of a surrounding, clam-shell type locking seal mechanisms.

  17. High-Throughput Analytical Model to Evaluate Materials for Temperature...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Throughput Analytical Model to Evaluate Materials for Temperature Swing Adsorption Processes Previous Next List mcontent.jpg Julian P. Sculley, Wolfgang M. Verdegaal, Weigang...

  18. High Throughput/Combinatorial Screening of Hydrogen Storage Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation by Adriaan Sachtler from the High Throughput Combinatorial Analysis of Hydrogen Storage Materials Meeting PDF icon sachtler.pdf More Documents & Publications ...

  19. High-throughput metagenomic technologies for complex microbial...

    Office of Scientific and Technical Information (OSTI)

    high-throughput sequencing and phenotypic screening) and others depend on reference genes or genomes (e.g., phylogenetic and functional gene arrays). Here, we provide a...

  20. High Throughput Combinatorial Screening of Biometic Metal-Organic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...Organic Materials for Military Hydrogen-Storage Materials (New Joint Miami UNREL DoDDLA Project) (presentation) High Throughput Combinatorial Screening of Biometic Metal-Organic ...

  1. Robust, High-Throughput Analysis of Protein Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that require genomic-scale information, such as Berkeley Lab's bioenergy efforts and cancer biology studies. Artist's abstract depiction of high-throughput SAXS combining...

  2. High-Throughput/Combinatorial Techniques in Hydrogen Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Soloveichik, General Electric Global Research NIST Combinatorial Methods, Leonid ... Solar Energy Center High-Throughput Methodology for Discovery of Metal-Organic ...

  3. High-throughput metagenomic technologies for complex microbial...

    Office of Scientific and Technical Information (OSTI)

    formats Prev Next Title: High-throughput metagenomic technologies for complex microbial community analysis. Open and closed formats You are accessing a document from...

  4. A targeted proteomics toolkit for high-throughput absolute quantificat...

    Office of Scientific and Technical Information (OSTI)

    targeted proteomics toolkit for high-throughput absolute quantification of Escherichia coli proteins Citation Details In-Document Search Title: A targeted proteomics toolkit for ...

  5. Robust, High-Throughput Analysis of Protein Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robust, High-Throughput Analysis of Protein Structures Print Scientists have developed a fast and efficient way to determine the structure of proteins, shortening a process that...

  6. Compartmentalized microchannel array for high-throughput analysis...

    Office of Scientific and Technical Information (OSTI)

    Subject: microchannel; high-throughput; cell; polarized growth; microfluidic; Neurospora crassa; Environmental Molecular Sciences Laboratory; fungal biology; lab-on-a-chip Word ...

  7. Compartmentalized microchannel array for high-throughput analysis...

    Office of Scientific and Technical Information (OSTI)

    ... Subject: microchannel; high-throughput; cell; polarized growth; microfluidic; Neurospora crassa; Environmental Molecular Sciences Laboratory; fungal biology; lab-on-a-chip Word ...

  8. High Throughput/Combinatorial Screening of Hydrogen Storage Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon htsymyxboussie.pdf More Documents & Publications High-Throughput Methodology for Discovery of Metal-Organic Frameworks with a High Binding Energy (New Joint UC-Berkeley...

  9. SAMDI Mass Spectrometry for High Throughput Discovery of Enzyme...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SAMDI Mass Spectrometry for High Throughput Discovery of Enzyme Function January 15, 2016 11:00AM to 12:00PM Presenter Milan Mrksich, Northwestern University Location Building 446,...

  10. Extended length microchannels for high density high throughput electrophoresis systems

    DOE Patents [OSTI]

    Davidson, James C.; Balch, Joseph W.

    2000-01-01

    High throughput electrophoresis systems which provide extended well-to-read distances on smaller substrates, thus compacting the overall systems. The electrophoresis systems utilize a high density array of microchannels for electrophoresis analysis with extended read lengths. The microchannel geometry can be used individually or in conjunction to increase the effective length of a separation channel while minimally impacting the packing density of channels. One embodiment uses sinusoidal microchannels, while another embodiment uses plural microchannels interconnected by a via. The extended channel systems can be applied to virtually any type of channel confined chromatography.

  11. High-Throughput Experimental Approach Capabilities | Materials Science |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL High-Throughput Experimental Approach Capabilities An image of a triangular diagram with cobalt oxide at the top vertex, zinc oxide at the lower left vertex, and nickel oxide at the lower right vertex. Colored section in upper half indicates conductivity of materials at constant oxygen partial pressure and temperature. Highest conductivity is represented by yellow and is for materials in the upper right sector. NREL's high-throughput experimental approach is based on the extensive set

  12. Advanced method for high-throughput expression of mutated eukaryotic

    Office of Scientific and Technical Information (OSTI)

    membrane proteins in Saccharomyces cerevisiae (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Advanced method for high-throughput expression of mutated eukaryotic membrane proteins in Saccharomyces cerevisiae Citation Details In-Document Search Title: Advanced method for high-throughput expression of mutated eukaryotic membrane proteins in Saccharomyces cerevisiae Crystallization of eukaryotic membrane proteins is a challenging, iterative process. The

  13. Constant pressure high throughput membrane permeation testing system

    Office of Scientific and Technical Information (OSTI)

    (Patent) | SciTech Connect Constant pressure high throughput membrane permeation testing system Citation Details In-Document Search Title: Constant pressure high throughput membrane permeation testing system The disclosure relates to a membrane testing system for individual evaluation of a plurality of planar membranes subjected to a feed gas on one side and a sweep gas on a second side. The membrane testing system provides a pressurized flow of a feed and sweep gas to each membrane testing

  14. High-Throughput Characterization of Porous Materials Using Graphics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processing Units | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome High-Throughput Characterization of Porous Materials Using Graphics Processing Units Previous Next List J. Kim, R. L. Martin, O. Rubel, M. Haranczyk, and B. Smit, J. Chem. Theory Comput. 8 (5), 1684 (2012) DOI: 10.1021/ct200787v Abstract: We have developed a high-throughput graphics processing unit (GPU) code that can characterize a large database of crystalline porous materials. In our

  15. Accelerating Electrolyte Discovery for Energy Storage with High Throughput

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Screening - Joint Center for Energy Storage Research December 26, 2014, Research Highlights Accelerating Electrolyte Discovery for Energy Storage with High Throughput Screening A screening scheme has been developed to down-select molecule candidates based on successive property evaluations obtained from high-throughput computations. Here we show the down-select results for ~1400 candidates for non-aqueous redox flow battery application. Scientific Achievement We have developed a strategy to

  16. High Throughput/Combinatorial Screening of Hydrogen Storage Materials: UOP Approaches

    Broader source: Energy.gov [DOE]

    Presentation by Adriaan Sachtler from the High Throughput/ Combinatorial Analysis of Hydrogen Storage Materials Meeting

  17. High-throughput proteomics : optical approaches.

    SciTech Connect (OSTI)

    Davidson, George S.

    2008-09-01

    Realistic cell models could greatly accelerate our ability to engineer biochemical pathways and the production of valuable organic products, which would be of great use in the development of biofuels, pharmaceuticals, and the crops for the next green revolution. However, this level of engineering will require a great deal more knowledge about the mechanisms of life than is currently available. In particular, we need to understand the interactome (which proteins interact) as it is situated in the three dimensional geometry of the cell (i.e., a situated interactome), and the regulation/dynamics of these interactions. Methods for optical proteomics have become available that allow the monitoring and even disruption/control of interacting proteins in living cells. Here, a range of these methods is reviewed with respect to their role in elucidating the interactome and the relevant spatial localizations. Development of these technologies and their integration into the core competencies of research organizations can position whole institutions and teams of researchers to lead in both the fundamental science and the engineering applications of cellular biology. That leadership could be particularly important with respect to problems of national urgency centered around security, biofuels, and healthcare.

  18. High-Throughput, High-Precision Hot Testing Tool for High-Brightness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The objective of this project is to develop, characterize, and verify a high-throughput, precision hot test tool towards the target measurement of one MacAdam ellipse, the color ...

  19. Towards Chip Scale Liquid Chromatography and High Throughput Immunosensing

    SciTech Connect (OSTI)

    Ni, J.

    2000-09-21

    This work describes several research projects aimed towards developing new instruments and novel methods for high throughput chemical and biological analysis. Approaches are taken in two directions. The first direction takes advantage of well-established semiconductor fabrication techniques and applies them to miniaturize instruments that are workhorses in analytical laboratories. Specifically, the first part of this work focused on the development of micropumps and microvalves for controlled fluid delivery. The mechanism of these micropumps and microvalves relies on the electrochemically-induced surface tension change at a mercury/electrolyte interface. A miniaturized flow injection analysis device was integrated and flow injection analyses were demonstrated. In the second part of this work, microfluidic chips were also designed, fabricated, and tested. Separations of two fluorescent dyes were demonstrated in microfabricated channels, based on an open-tubular liquid chromatography (OT LC) or an electrochemically-modulated liquid chromatography (EMLC) format. A reduction in instrument size can potentially increase analysis speed, and allow exceedingly small amounts of sample to be analyzed under diverse separation conditions. The second direction explores the surface enhanced Raman spectroscopy (SERS) as a signal transduction method for immunoassay analysis. It takes advantage of the improved detection sensitivity as a result of surface enhancement on colloidal gold, the narrow width of Raman band, and the stability of Raman scattering signals to distinguish several different species simultaneously without exploiting spatially-separated addresses on a biochip. By labeling gold nanoparticles with different Raman reporters in conjunction with different detection antibodies, a simultaneous detection of a dual-analyte immunoassay was demonstrated. Using this scheme for quantitative analysis was also studied and preliminary dose-response curves from an immunoassay of a mo del antigen were obtained. Simultaneous detection of several analytes at the same address can potentially increase the analysis speed, and can further expand the analysis capability of a microarray chip.

  20. Agenda from the U.S. Department of Energy's High Throughput Screening...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from the U.S. Department of Energy's High Throughput Screening of Hydrogen Storage Materials Workshop on June 26, 2007 Agenda from the U.S. Department of Energy's High Throughput ...

  1. Computational Proteomics: High-throughput Analysis for Systems Biology

    SciTech Connect (OSTI)

    Cannon, William R.; Webb-Robertson, Bobbie-Jo M.

    2007-01-03

    High-throughput (HTP) proteomics is a rapidly developing field that offers the global profiling of proteins from a biological system. The HTP technological advances are fueling a revolution in biology, enabling analyses at the scales of entire systems (e.g., whole cells, tumors, or environmental communities). However, simply identifying the proteins in a cell is insufficient for understanding the underlying complexity and operating mechanisms of the overall system. Systems level investigations are relying more and more on computational analyses, especially in the field of proteomics generating large-scale global data.

  2. Adaptive Sampling for High Throughput Data Using Similarity Measures

    SciTech Connect (OSTI)

    Bulaevskaya, V.; Sales, A. P.

    2015-05-06

    The need for adaptive sampling arises in the context of high throughput data because the rates of data arrival are many orders of magnitude larger than the rates at which they can be analyzed. A very fast decision must therefore be made regarding the value of each incoming observation and its inclusion in the analysis. In this report we discuss one approach to adaptive sampling, based on the new data points similarity to the other data points being considered for inclusion. We present preliminary results for one real and one synthetic data set.

  3. Environmental characterization studies of a high-throughput wood gasifier

    SciTech Connect (OSTI)

    Chang, H.; Niemann, R.C.; Wilzbach, K.E.; Paisley, M.

    1983-01-01

    Potential environmental effects associated with thermochemical biomass gasification have been studied by Argonne National Laboratory in cooperation with Battelle Columbus Laboratories (BCL). A series of samples from the process research unit of an indirectly heated, high-throughput wood gasifier operated by BCL has been analyzed for potentially toxic organic compounds and trace elements. The results indicate that, under the test-run conditions, the gasification of both pine and hardwood is accompanied by the formation of some oil, the heavier fraction of which gives a positive response in the Ames assay for mutagenicity and contains numerous phenols and polycyclic aromatic hydrocarbons, including some carcinogens. The implications of these observations are discussed.

  4. Automated High Throughput Protein Crystallization Screening at Nanoliter Scale and Protein Structural Study on Lactate Dehydrogenase

    SciTech Connect (OSTI)

    Fenglei Li

    2006-08-09

    The purposes of our research were: (1) To develop an economical, easy to use, automated, high throughput system for large scale protein crystallization screening. (2) To develop a new protein crystallization method with high screening efficiency, low protein consumption and complete compatibility with high throughput screening system. (3) To determine the structure of lactate dehydrogenase complexed with NADH by x-ray protein crystallography to study its inherent structural properties. Firstly, we demonstrated large scale protein crystallization screening can be performed in a high throughput manner with low cost, easy operation. The overall system integrates liquid dispensing, crystallization and detection and serves as a whole solution to protein crystallization screening. The system can dispense protein and multiple different precipitants in nanoliter scale and in parallel. A new detection scheme, native fluorescence, has been developed in this system to form a two-detector system with a visible light detector for detecting protein crystallization screening results. This detection scheme has capability of eliminating common false positives by distinguishing protein crystals from inorganic crystals in a high throughput and non-destructive manner. The entire system from liquid dispensing, crystallization to crystal detection is essentially parallel, high throughput and compatible with automation. The system was successfully demonstrated by lysozyme crystallization screening. Secondly, we developed a new crystallization method with high screening efficiency, low protein consumption and compatibility with automation and high throughput. In this crystallization method, a gas permeable membrane is employed to achieve the gentle evaporation required by protein crystallization. Protein consumption is significantly reduced to nanoliter scale for each condition and thus permits exploring more conditions in a phase diagram for given amount of protein. In addition, evaporation rate can be controlled or adjusted in this method during the crystallization process to favor either nucleation or growing processes for optimizing crystallization process. The protein crystals gotten by this method were experimentally proven to possess high x-ray diffraction qualities. Finally, we crystallized human lactate dehydrogenase 1 (H4) complexed with NADH and determined its structure by x-ray crystallography. The structure of LDH/NADH displays a significantly different structural feature, compared with LDH/NADH/inhibitor ternary complex structure, that subunits in LDH/NADH complex show open conformation or two conformations on the active site while the subunits in LDH/NADH/inhibitor are all in close conformation. Multiple LDH/NADH crystals were obtained and used for x-ray diffraction experiments. Difference in subunit conformation was observed among the structures independently solved from multiple individual LDH/NADH crystals. Structural differences observed among crystals suggest the existence of multiple conformers in solution.

  5. Vehicle Technologies Office Merit Review 2015: High-Throughput...

    Office of Environmental Management (EM)

    Vehicle Technologies Office Merit Review 2015: High-Throughp... 2015 DOE Hydrogen and Fuel Cells Program and Vehicle ... Development for Fuel Efficient Small Car Integrated ...

  6. Interactive Visual Analysis of High Throughput Text Streams

    SciTech Connect (OSTI)

    Steed, Chad A; Potok, Thomas E; Patton, Robert M; Goodall, John R; Maness, Christopher S; Senter, James K

    2012-01-01

    The scale, velocity, and dynamic nature of large scale social media systems like Twitter demand a new set of visual analytics techniques that support near real-time situational awareness. Social media systems are credited with escalating social protest during recent large scale riots. Virtual communities form rapidly in these online systems, and they occasionally foster violence and unrest which is conveyed in the users language. Techniques for analyzing broad trends over these networks or reconstructing conversations within small groups have been demonstrated in recent years, but state-of- the-art tools are inadequate at supporting near real-time analysis of these high throughput streams of unstructured information. In this paper, we present an adaptive system to discover and interactively explore these virtual networks, as well as detect sentiment, highlight change, and discover spatio- temporal patterns.

  7. Algorithms and tools for high-throughput geometry-based analysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials Previous Next List Thomas F. Willems, Chris H. Rycroft, Michaeel Kazi, Juan C....

  8. High Throughput Pretreatment and Enzyme Hydrolysis of Biomass: Screening Recalcitrance in Large Sample Populations (Presentation)

    SciTech Connect (OSTI)

    Decker, S. R.

    2010-10-01

    Presentation on the execution of the first high-throughput thermochemical pretreatment/enzyme digestion pipeline for screening biomass for recalcitrance.

  9. Advances in High Throughput Screening of Biomass Recalcitrance (Poster)

    SciTech Connect (OSTI)

    Turner, G. B.; Decker, S. R.; Tucker, M. P.; Law, C.; Doeppke, C.; Sykes, R. W.; Davis, M. F.; Ziebell, A.

    2012-06-01

    This was a poster displayed at the Symposium. Advances on previous high throughput screening of biomass recalcitrance methods have resulted in improved conversion and replicate precision. Changes in plate reactor metallurgy, improved preparation of control biomass, species-specific pretreatment conditions, and enzymatic hydrolysis parameters have reduced overall coefficients of variation to an average of 6% for sample replicates. These method changes have improved plate-to-plate variation of control biomass recalcitrance and improved confidence in sugar release differences between samples. With smaller errors plant researchers can have a higher degree of assurance more low recalcitrance candidates can be identified. Significant changes in plate reactor, control biomass preparation, pretreatment conditions and enzyme have significantly reduced sample and control replicate variability. Reactor plate metallurgy significantly impacts sugar release aluminum leaching into reaction during pretreatment degrades sugars and inhibits enzyme activity. Removal of starch and extractives significantly decreases control biomass variability. New enzyme formulations give more consistent and higher conversion levels, however required re-optimization for switchgrass. Pretreatment time and temperature (severity) should be adjusted to specific biomass types i.e. woody vs. herbaceous. Desalting of enzyme preps to remove low molecular weight stabilizers and improved conversion levels likely due to water activity impacts on enzyme structure and substrate interactions not attempted here due to need to continually desalt and validate precise enzyme concentration and activity.

  10. Solion ion source for high-efficiency, high-throughput solar cell manufacturing

    SciTech Connect (OSTI)

    Koo, John Binns, Brant; Miller, Timothy; Krause, Stephen; Skinner, Wesley; Mullin, James

    2014-02-15

    In this paper, we introduce the Solion ion source for high-throughput solar cell doping. As the source power is increased to enable higher throughput, negative effects degrade the lifetime of the plasma chamber and the extraction electrodes. In order to improve efficiency, we have explored a wide range of electron energies and determined the conditions which best suit production. To extend the lifetime of the source we have developed an in situ cleaning method using only existing hardware. With these combinations, source life-times of >200 h for phosphorous and >100 h for boron ion beams have been achieved while maintaining 1100 cell-per-hour production.

  11. Low inlet gas velocity high throughput biomass gasifier

    DOE Patents [OSTI]

    Feldmann, Herman F.; Paisley, Mark A.

    1989-01-01

    The present invention discloses a novel method of operating a gasifier for production of fuel gas from carbonaceous fuels. The process disclosed enables operating in an entrained mode using inlet gas velocities of less than 7 feet per second, feedstock throughputs exceeding 4000 lbs/ft.sup.2 -hr, and pressures below 100 psia.

  12. High-Throughput Methodology for Discovery of Metal-Organic Frameworks...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal-Organic Frameworks with a High Binding Energy (New Joint UC-BerkeleySymyx DoDDLA Project) (presentation) High-Throughput Methodology for Discovery of Metal-Organic ...

  13. High-Throughput/Combinatorial Techniques in Hydrogen Storage Materials R&D

    Broader source: Energy.gov [DOE]

    On June 26, 2007 the Hydrogen Storage Program of the U.S. Department of Energy (DOE) held a one-day meeting to identify how to better implement high-throughput/combinatorial techniques to benefit...

  14. A Class of Allosteric Caspase Inhibitors Identified by High-Throughput...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: A Class of Allosteric Caspase Inhibitors Identified by High-Throughput Screening Citation Details In-Document Search Title: A Class ...

  15. Attendees list from the U.S. Department of Energy's High Throughput...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attendees list from the U.S. Department of Energy's High Throughput Screening of Hydrogen Storage Materials Workshop on June 26, 2007 Attendees list from the U.S. Department of ...

  16. High-throughput generation, optimization and analysis of genome-scale metabolic models.

    SciTech Connect (OSTI)

    Henry, C. S.; DeJongh, M.; Best, A. A.; Frybarger, P. M.; Linsay, B.; Stevens, R. L.

    2010-09-01

    Genome-scale metabolic models have proven to be valuable for predicting organism phenotypes from genotypes. Yet efforts to develop new models are failing to keep pace with genome sequencing. To address this problem, we introduce the Model SEED, a web-based resource for high-throughput generation, optimization and analysis of genome-scale metabolic models. The Model SEED integrates existing methods and introduces techniques to automate nearly every step of this process, taking {approx}48 h to reconstruct a metabolic model from an assembled genome sequence. We apply this resource to generate 130 genome-scale metabolic models representing a taxonomically diverse set of bacteria. Twenty-two of the models were validated against available gene essentiality and Biolog data, with the average model accuracy determined to be 66% before optimization and 87% after optimization.

  17. Algorithms and tools for high-throughput geometry-based analysis of

    Office of Scientific and Technical Information (OSTI)

    crystalline porous materials (Journal Article) | SciTech Connect Journal Article: Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials Citation Details In-Document Search Title: Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials Authors: Willems, Thomas F ; Rycroft, Chris ; Kazi, Michael ; Meza, Juan Colin ; Haranczyk, Maciej Publication Date: 2012-01-01 OSTI Identifier: 1065948 DOE Contract Number:

  18. A Class of Allosteric Caspase Inhibitors Identified by High-Throughput

    Office of Scientific and Technical Information (OSTI)

    Screening (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: A Class of Allosteric Caspase Inhibitors Identified by High-Throughput Screening Citation Details In-Document Search Title: A Class of Allosteric Caspase Inhibitors Identified by High-Throughput Screening Authors: Feldman, Taya ; Kabaleeswaran, Venkataraman ; Jang, Se Bok ; Antczak, Christophe ; Djaballah, Hakim ; Wu, Hao ; Jiang, Xuejun [1] ; Weill-Med) [2] ; Pusan) [2] + Show Author Affiliations

  19. Agenda from the U.S. Department of Energy's High Throughput Screening of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Storage Materials Workshop on June 26, 2007 | Department of Energy from the U.S. Department of Energy's High Throughput Screening of Hydrogen Storage Materials Workshop on June 26, 2007 Agenda from the U.S. Department of Energy's High Throughput Screening of Hydrogen Storage Materials Workshop on June 26, 2007 Agenda from the U.S. Department of Energy's Hydrogen Storage Meeting held June 26, 2007 in Bethesda, Maryland. PDF icon ht_agenda.pdf More Documents & Publications

  20. Attendees list from the U.S. Department of Energy's High Throughput

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Screening of Hydrogen Storage Materials Workshop on June 26, 2007 | Department of Energy Attendees list from the U.S. Department of Energy's High Throughput Screening of Hydrogen Storage Materials Workshop on June 26, 2007 Attendees list from the U.S. Department of Energy's High Throughput Screening of Hydrogen Storage Materials Workshop on June 26, 2007 Attendees list from the U.S. Department of Energy's Hydrogen Storage Meeting held June 26, 2007 in Bethesda, Maryland. PDF icon

  1. Protein Sequence Annotation Tool (PSAT): A centralized web-based meta-server for high-throughput sequence annotations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Leung, Elo; Huang, Amy; Cadag, Eithon; Montana, Aldrin; Soliman, Jan Lorenz; Zhou, Carol L. Ecale

    2016-01-20

    In this study, we introduce the Protein Sequence Annotation Tool (PSAT), a web-based, sequence annotation meta-server for performing integrated, high-throughput, genome-wide sequence analyses. Our goals in building PSAT were to (1) create an extensible platform for integration of multiple sequence-based bioinformatics tools, (2) enable functional annotations and enzyme predictions over large input protein fasta data sets, and (3) provide a web interface for convenient execution of the tools. In this paper, we demonstrate the utility of PSAT by annotating the predicted peptide gene products of Herbaspirillum sp. strain RV1423, importing the results of PSAT into EC2KEGG, and using the resultingmore » functional comparisons to identify a putative catabolic pathway, thereby distinguishing RV1423 from a well annotated Herbaspirillum species. This analysis demonstrates that high-throughput enzyme predictions, provided by PSAT processing, can be used to identify metabolic potential in an otherwise poorly annotated genome. Lastly, PSAT is a meta server that combines the results from several sequence-based annotation and function prediction codes, and is available at http://psat.llnl.gov/psat/. PSAT stands apart from other sequencebased genome annotation systems in providing a high-throughput platform for rapid de novo enzyme predictions and sequence annotations over large input protein sequence data sets in FASTA. PSAT is most appropriately applied in annotation of large protein FASTA sets that may or may not be associated with a single genome.« less

  2. Low inlet gas velocity high throughput biomass gasifier

    SciTech Connect (OSTI)

    Feldmann, H.F.; Paisley, M.A.

    1989-05-09

    A method is described for operating a gasifier which comprises: introducing inlet gas at a velocity of about 0.5 to 7 ft/sec to fluidize a bed in a gasifier vessel; forming the bed into a fluidized bed in a first space region by means of the inlet gas, the fluidized bed containing a circulating hot relatively fine and inert solid bed particle component; inputting and throughputting carbonaceous material into and through the first space region with fluidized bed at a rate from 500-4400 lbs/ft/sup 2/-hr; endothermally pyrolyzing the carbonaceous material by means of the circulating hot inert particle component so as to form a product gas; forming contiguous to and above the fluidized bed a lower average density entrained space region containing an entrained mixture of inert solid particles, char, and carbonaceous material and the product gas; gradually and continuously removing the entrained mixture and the product gas from the lower average density entrained space region of the gasifier to a separator, residence time of the carbonaceous material in the gasifier not exceeding 3 minutes on average; separating the entrained mixture from the product gas; passing the entrained mixture containing inert solid particles, char, and carbonaceous material through an exothermic reaction zone to add heat; and returning at least the inert solid particles to the first space region.

  3. High throughput screening of ligand binding to macromolecules using high resolution powder diffraction

    DOE Patents [OSTI]

    Von Dreele, Robert B.; D'Amico, Kevin

    2006-10-31

    A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.

  4. A search model for topological insulators with high-throughput robustness descriptors

    SciTech Connect (OSTI)

    Yang, Kesong; Setyawan, Wahyu; Wang, Shidong; Nardelli, Marco B.; Curtarolo, Stephano

    2012-05-13

    Topological insulators (TI) are becoming one of the most studied classes of novel materials because of their great potential for applications ranging from spintronics to quantum computers. To fully integrate TI materials in electronic devices, high-quality epitaxial single-crystalline phases with sufficiently large bulk bandgaps are necessary. Current efforts have relied mostly on costly and time-consuming trial-and-error procedures. Here we show that by defining a reliable and accessible descriptor {cflx X}TI, which represents the topological robustness or feasibility of the candidate, and by searching the quantum materials repository aflowlib.org, we have automatically discovered 28 TIs (some of them already known) in five different symmetry families. These include peculiar ternary halides, Cs{l_brace}Sn,Pb,Ge{r_brace}{l_brace}Cl,Br,I{r_brace}{sub 3}, which could have been hardly anticipated without high-throughput means. Our search model, by relying on the significance of repositories in materials development, opens new avenues for the discovery of more TIs in different and unexplored classes of systems.

  5. An ultra-compact, high-throughput molecular beam epitaxy growth system

    SciTech Connect (OSTI)

    Baker, A. A.; Hesjedal, T.; Braun, W. E-mail: fischer@createc.de; Rembold, S.; Fischer, A. E-mail: fischer@createc.de; Gassler, G.

    2015-04-15

    We present a miniaturized molecular beam epitaxy (miniMBE) system with an outer diameter of 206 mm, optimized for flexible and high-throughput operation. The three-chamber system, used here for oxide growth, consists of a sample loading chamber, a storage chamber, and a growth chamber. The growth chamber is equipped with eight identical effusion cell ports with linear shutters, one larger port for either a multi-pocket electron beam evaporator or an oxygen plasma source, an integrated cryoshroud, retractable beam-flux monitor or quartz-crystal microbalance, reflection high energy electron diffraction, substrate manipulator, main shutter, and quadrupole mass spectrometer. The system can be combined with ultrahigh vacuum (UHV) end stations on synchrotron and neutron beamlines, or equivalently with other complex surface analysis systems, including low-temperature scanning probe microscopy systems. Substrate handling is compatible with most UHV surface characterization systems, as the miniMBE can accommodate standard surface science sample holders. We introduce the design of the system, and its specific capabilities and operational parameters, and we demonstrate the epitaxial thin film growth of magnetoelectric Cr{sub 2}O{sub 3} on c-plane sapphire and ferrimagnetic Fe{sub 3}O{sub 4} on MgO (001)

  6. FBI Fingerprint Image Capture System High-Speed-Front-End throughput modeling

    SciTech Connect (OSTI)

    Rathke, P.M.

    1993-09-01

    The Federal Bureau of Investigation (FBI) has undertaken a major modernization effort called the Integrated Automated Fingerprint Identification System (IAFISS). This system will provide centralized identification services using automated fingerprint, subject descriptor, mugshot, and document processing. A high-speed Fingerprint Image Capture System (FICS) is under development as part of the IAFIS program. The FICS will capture digital and microfilm images of FBI fingerprint cards for input into a central database. One FICS design supports two front-end scanning subsystems, known as the High-Speed-Front-End (HSFE) and Low-Speed-Front-End, to supply image data to a common data processing subsystem. The production rate of the HSFE is critical to meeting the FBI`s fingerprint card processing schedule. A model of the HSFE has been developed to help identify the issues driving the production rate, assist in the development of component specifications, and guide the evolution of an operations plan. A description of the model development is given, the assumptions are presented, and some HSFE throughput analysis is performed.

  7. High-throughput imaging of heterogeneous cell organelles with an X-ray laser

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hantke, Max, F.

    2014-11-17

    Preprocessed detector images that were used for the paper "High-throughput imaging of heterogeneous cell organelles with an X-ray laser". The CXI file contains the entire recorded data - including both hits and blanks. It also includes down-sampled images and LCLS machine parameters. Additionally, the Cheetah configuration file is attached that was used to create the pre-processed data.

  8. High Efficiency Integrated Package

    SciTech Connect (OSTI)

    Ibbetson, James

    2013-09-15

    Solid-state lighting based on LEDs has emerged as a superior alternative to inefficient conventional lighting, particularly incandescent. LED lighting can lead to 80 percent energy savings; can last 50,000 hours – 2-50 times longer than most bulbs; and contains no toxic lead or mercury. However, to enable mass adoption, particularly at the consumer level, the cost of LED luminaires must be reduced by an order of magnitude while achieving superior efficiency, light quality and lifetime. To become viable, energy-efficient replacement solutions must deliver system efficacies of ≥ 100 lumens per watt (LPW) with excellent color rendering (CRI > 85) at a cost that enables payback cycles of two years or less for commercial applications. This development will enable significant site energy savings as it targets commercial and retail lighting applications that are most sensitive to the lifetime operating costs with their extended operating hours per day. If costs are reduced substantially, dramatic energy savings can be realized by replacing incandescent lighting in the residential market as well. In light of these challenges, Cree proposed to develop a multi-chip integrated LED package with an output of > 1000 lumens of warm white light operating at an efficacy of at least 128 LPW with a CRI > 85. This product will serve as the light engine for replacement lamps and luminaires. At the end of the proposed program, this integrated package was to be used in a proof-of-concept lamp prototype to demonstrate the component’s viability in a common form factor. During this project Cree SBTC developed an efficient, compact warm-white LED package with an integrated remote color down-converter. Via a combination of intensive optical, electrical, and thermal optimization, a package design was obtained that met nearly all project goals. This package emitted 1295 lm under instant-on, room-temperature testing conditions, with an efficacy of 128.4 lm/W at a color temperature of ~2873K and 83 CRI. As such, the package’s performance exceeds DOE’s warm-white phosphor LED efficacy target for 2013. At the end of the program, we assembled an A19 sized demonstration bulb housing the integrated package which met Energy Star intensity variation requirements. With further development to reduce overall component cost, we anticipate that an integrated remote converter package such as developed during this program will find application in compact, high-efficacy LED-based lamps, particularly those requiring omnidirectional emission.

  9. Melter Throughput Enhancements for High-Iron HLW

    SciTech Connect (OSTI)

    Kruger, A. A.; Gan, Hoa; Joseph, Innocent; Pegg, Ian L.; Matlack, Keith S.; Chaudhuri, Malabika; Kot, Wing

    2012-12-26

    This report describes work performed to develop and test new glass and feed formulations in order to increase glass melting rates in high waste loading glass formulations for HLW with high concentrations of iron. Testing was designed to identify glass and melter feed formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts to assess melt rate using a vertical gradient furnace system and to develop new formulations with enhanced melt rate. Testing evaluated the effects of waste loading on glass properties and the maximum waste loading that can be achieved. The results from crucible-scale testing supported subsequent DuraMelter 100 (DM100) tests designed to examine the effects of enhanced glass and feed formulations on waste processing rate and product quality. The DM100 was selected as the platform for these tests due to its extensive previous use in processing rate determination for various HLW streams and glass compositions.

  10. Uranium Transport in a High-Throughput Electrorefiner for EBR-II Blanket Fuel

    SciTech Connect (OSTI)

    Ahluwalia, Rajesh K.; Hua, Thanh Q.; Vaden, DeeEarl

    2004-01-15

    A unique high-throughput Mk-V electrorefiner is being used in the electrometallurgical treatment of the metallic sodium-bonded blanket fuel from the Experimental Breeder Reactor II. Over many cycles, it transports uranium back and forth between the anodic fuel dissolution baskets and the cathode tubes until, because of imperfect adherence of the dendrites, it all ends up in the product collector at the bottom. The transport behavior of uranium in the high-throughput electrorefiner can be understood in terms of the sticking coefficients for uranium adherence to the cathode tubes in the forward direction and to the dissolution baskets in the reverse direction. The sticking coefficients are inferred from the experimental voltage and current traces and are correlated in terms of a single parameter representing the ratio of the cell current to the limiting current at the surface acting as the cathode. The correlations are incorporated into an engineering model that calculates the transport of uranium in the different modes of operation. The model also uses the experimentally derived electrorefiner operating maps that describe the relationship between the cell voltage and the cell current for the three principal transport modes. It is shown that the model correctly simulates the cycle-to-cycle variation of the voltage and current profiles. The model is used to conduct a parametric study of electrorefiner throughput rate as a function of the principal operating parameters. The throughput rate is found to improve with lowering of the basket rotation speed, reduction of UCl{sub 3} concentration in salt, and increasing the maximum cell current or cut-off voltage. Operating conditions are identified that can improve the throughput rate by 60 to 70% over that achieved at present.

  11. High-throughput metagenomic technologies for complex microbial community analysis. Open and closed formats

    SciTech Connect (OSTI)

    Zhou, Jizhong; He, Zhili; Yang, Yunfeng; Deng, Ye; Tringe, Susannah G.; Alvarez-Cohen, Lisa

    2015-01-27

    Understanding the structure, functions, activities and dynamics of microbial communities in natural environments is one of the grand challenges of 21st century science. To address this challenge, over the past decade, numerous technologies have been developed for interrogating microbial communities, of which some are amenable to exploratory work (e.g., high-throughput sequencing and phenotypic screening) and others depend on reference genes or genomes (e.g., phylogenetic and functional gene arrays). Here, we provide a critical review and synthesis of the most commonly applied “open-format” and “closed-format” detection technologies. We discuss their characteristics, advantages, and disadvantages within the context of environmental applications and focus on analysis of complex microbial systems, such as those in soils, in which diversity is high and reference genomes are few. In addition, we discuss crucial issues and considerations associated with applying complementary high-throughput molecular technologies to address important ecological questions.

  12. A versatile toolkit for high throughput functional genomics with Trichoderma reesei

    SciTech Connect (OSTI)

    Schuster, Andre; Bruno, Kenneth S.; Collett, James R.; Baker, Scott E.; Seiboth, Bernhard; Kubicek, Christian P.; Schmoll, Monika

    2012-01-02

    The ascomycete fungus, Trichoderma reesei (anamorph of Hypocrea jecorina), represents a biotechnological workhorse and is currently one of the most proficient cellulase producers. While strain improvement was traditionally accomplished by random mutagenesis, a detailed understanding of cellulase regulation can only be gained using recombinant technologies. RESULTS: Aiming at high efficiency and high throughput methods, we present here a construction kit for gene knock out in T. reesei. We provide a primer database for gene deletion using the pyr4, amdS and hph selection markers. For high throughput generation of gene knock outs, we constructed vectors using yeast mediated recombination and then transformed a T. reesei strain deficient in non-homologous end joining (NHEJ) by spore electroporation. This NHEJ-defect was subsequently removed by crossing of mutants with a sexually competent strain derived from the parental strain, QM9414.CONCLUSIONS:Using this strategy and the materials provided, high throughput gene deletion in T. reesei becomes feasible. Moreover, with the application of sexual development, the NHEJ-defect can be removed efficiently and without the need for additional selection markers. The same advantages apply for the construction of multiple mutants by crossing of strains with different gene deletions, which is now possible with considerably less hands-on time and minimal screening effort compared to a transformation approach. Consequently this toolkit can considerably boost research towards efficient exploitation of the resources of T. reesei for cellulase expression and hence second generation biofuel production.

  13. Baculovirus expression system and method for high throughput expression of genetic material

    DOE Patents [OSTI]

    Clark, Robin; Davies, Anthony

    2001-01-01

    The present invention provides novel recombinant baculovirus expression systems for expressing foreign genetic material in a host cell. Such expression systems are readily adapted to an automated method for expression foreign genetic material in a high throughput manner. In other aspects, the present invention features a novel automated method for determining the function of foreign genetic material by transfecting the same into a host by way of the recombinant baculovirus expression systems according to the present invention.

  14. Improving network performance on multicore systems: Impact of core affinities on high throughput flows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future Generation Computer Systems ( ) - Contents lists available at ScienceDirect Future Generation Computer Systems journal homepage: www.elsevier.com/locate/fgcs Improving network performance on multicore systems: Impact of core affinities on high throughput flows Nathan Hanford a,∗ , Vishal Ahuja a , Matthew Farrens a , Dipak Ghosal a , Mehmet Balman b , Eric Pouyoul b , Brian Tierney b a Department of Computer Science, University of California, Davis, CA, United States b Energy Sciences

  15. A new fungal large subunit ribosomal RNA primer for high throughput sequencing surveys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mueller, Rebecca C.; Gallegos-Graves, La Verne; Kuske, Cheryl R.

    2015-12-09

    The inclusion of phylogenetic metrics in community ecology has provided insights into important ecological processes, particularly when combined with high-throughput sequencing methods; however, these approaches have not been widely used in studies of fungal communities relative to other microbial groups. Two obstacles have been considered: (1) the internal transcribed spacer (ITS) region has limited utility for constructing phylogenies and (2) most PCR primers that target the large subunit (LSU) ribosomal unit generate amplicons that exceed current limits of high-throughput sequencing platforms. We designed and tested a PCR primer (LR22R) to target approximately 300–400 bp region of the D2 hypervariable regionmore » of the fungal LSU for use with the Illumina MiSeq platform. Both in silico and empirical analyses showed that the LR22R–LR3 pair captured a broad range of fungal taxonomic groups with a small fraction of non-fungal groups. Phylogenetic placement of publically available LSU D2 sequences showed broad agreement with taxonomic classification. Comparisons of the LSU D2 and the ITS2 ribosomal regions from environmental samples and known communities showed similar discriminatory abilities of the two primer sets. Altogether, these findings show that the LR22R–LR3 primer pair has utility for phylogenetic analyses of fungal communities using high-throughput sequencing methods.« less

  16. A new fungal large subunit ribosomal RNA primer for high throughput sequencing surveys

    SciTech Connect (OSTI)

    Mueller, Rebecca C.; Gallegos-Graves, La Verne; Kuske, Cheryl R.

    2015-12-09

    The inclusion of phylogenetic metrics in community ecology has provided insights into important ecological processes, particularly when combined with high-throughput sequencing methods; however, these approaches have not been widely used in studies of fungal communities relative to other microbial groups. Two obstacles have been considered: (1) the internal transcribed spacer (ITS) region has limited utility for constructing phylogenies and (2) most PCR primers that target the large subunit (LSU) ribosomal unit generate amplicons that exceed current limits of high-throughput sequencing platforms. We designed and tested a PCR primer (LR22R) to target approximately 300–400 bp region of the D2 hypervariable region of the fungal LSU for use with the Illumina MiSeq platform. Both in silico and empirical analyses showed that the LR22R–LR3 pair captured a broad range of fungal taxonomic groups with a small fraction of non-fungal groups. Phylogenetic placement of publically available LSU D2 sequences showed broad agreement with taxonomic classification. Comparisons of the LSU D2 and the ITS2 ribosomal regions from environmental samples and known communities showed similar discriminatory abilities of the two primer sets. Altogether, these findings show that the LR22R–LR3 primer pair has utility for phylogenetic analyses of fungal communities using high-throughput sequencing methods.

  17. New Composite Membranes for High Throughput Solid-Liquid Separations at the Savannah River Site

    SciTech Connect (OSTI)

    Bhave, Ramesh R

    2012-01-01

    New Composite Membranes for High Throughput Solid-Liquid Separations at the Savannah River Site R. Bhave (Oak Ridge National Laboratory. Oak Ridge, TN) and M. R. Poirier* (Savannah River National Laboratory, Aiken SC) Solid-liquid separation is the limiting step for many waste treatment processes at the Savannah River Site. SRNL researchers have identified the rotary microfilter as a technology to improve the rate of solid-liquid separation processes. SRNL is currently developing the rotary microfilter for radioactive service and plans to deploy the technology as part of the small column ion exchange process. The rotary microfilter can utilize any filter media that is available as a flat sheet. The current baseline membrane is a 0.5 micron (nominal) porous metal filter (Pall PMM050). Previous testing with tubular filters showed that filters composed of a ceramic membrane on top of a stainless steel support produce higher flux than filters composed only of porous metal. The authors are working to develop flat sheet filter media composed of a ceramic membrane and/or ceramic-metal composite on top of a porous stainless steel support that can be used with the rotary microfilter to substantially increase filter flux resulting in a more compact, energy efficient and cost-effective high level radioactive waste treatment system. Composite membranes with precisely controlled pore size distribution were fabricated on porous metal supports. High quality uniform porous metal (316SS) supports were fabricated to achieve high water permeability. Separative layers of several different materials such as ultrafine metal particles and ceramic oxides were used to fabricate composite membranes. The fabrication process involved several high temperature heat treatments followed by characterization of gas and liquid permeability measurements and membrane integrity analysis. The fabricated composite membrane samples were evaluated in a static test cell manufactured by SpinTek. The composite membranes were evaluated on several feed slurries: 1 wt. % strontium carbonate in deionized water, 1 wt. % monosodium titanate in simulated salt solution, and 1 wt. % simulated sludge in simulated salt solution and deionized water. Flux as a function of feed flow rate and transmembrane pressure was measured for each of the above described feed slurries. The authors will discuss the new membrane development efforts, waste slurry filtration performance evaluations and scale-up considerations.

  18. High Throughput Plasmid Sequencing with Illumina and CLC Bio (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema (OSTI)

    Athavale, Ajay [Monsanto

    2013-01-25

    Ajay Athavale (Monsanto) presents "High Throughput Plasmid Sequencing with Illumina and CLC Bio" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  19. Advances in high-throughput speed, low-latency communication for embedded instrumentation ( 7th Annual SFAF Meeting, 2012)

    ScienceCinema (OSTI)

    Jordan, Scott [Physik Instrumente

    2013-02-11

    Scott Jordan on "Advances in high-throughput speed, low-latency communication for embedded instrumentation" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  20. High Throughput Computing Impact on Meta Genomics (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema (OSTI)

    Gore, Brooklin [Morgridge Institute for Research

    2013-01-22

    This presentation includes a brief background on High Throughput Computing, correlating gene transcription factors, optical mapping, genotype to phenotype mapping via QTL analysis, and current work on next gen sequencing.

  1. High Throughput Computing Impact on Meta Genomics (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect (OSTI)

    Gore, Brooklin [Morgridge Institute for Research] [Morgridge Institute for Research

    2011-10-12

    This presentation includes a brief background on High Throughput Computing, correlating gene transcription factors, optical mapping, genotype to phenotype mapping via QTL analysis, and current work on next gen sequencing.

  2. Conceptual design of a high throughput electrorefining of a uranium by using graphite cathode

    SciTech Connect (OSTI)

    Lee, J.H.; Kang, Y.H.; Hwang, S.C.; Park, S.B.; Shim, J.B.; Lee, H.S.; Kim, E.H.; Park, S.W.

    2007-07-01

    Conceptual designing of a high throughput electro-refiner was performed by using basic experimental data and a commercial computational fluid dynamic code, CFX. An electro-refiner concept equipped with a graphite cathode bundle was designed to recover a high purity uranium product continuously without a noble metal contamination. The performance of the process for a decontamination of a noble metal in a uranium product was evaluated as a function of the process parameters such as the rotation speeds of the stirrer and the anode basket. (authors)

  3. High-throughput method for optimum solubility screening for homogeneity and crystallization of proteins

    DOE Patents [OSTI]

    Kim, Sung-Hou; Kim, Rosalind; Jancarik, Jamila

    2012-01-31

    An optimum solubility screen in which a panel of buffers and many additives are provided in order to obtain the most homogeneous and monodisperse protein condition for protein crystallization. The present methods are useful for proteins that aggregate and cannot be concentrated prior to setting up crystallization screens. A high-throughput method using the hanging-drop method and vapor diffusion equilibrium and a panel of twenty-four buffers is further provided. Using the present methods, 14 poorly behaving proteins have been screened, resulting in 11 of the proteins having highly improved dynamic light scattering results allowing concentration of the proteins, and 9 were crystallized.

  4. High-throughput metagenomic technologies for complex microbial community analysis. Open and closed formats

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Jizhong; He, Zhili; Yang, Yunfeng; Deng, Ye; Tringe, Susannah G.; Alvarez-Cohen, Lisa

    2015-01-27

    Understanding the structure, functions, activities and dynamics of microbial communities in natural environments is one of the grand challenges of 21st century science. To address this challenge, over the past decade, numerous technologies have been developed for interrogating microbial communities, of which some are amenable to exploratory work (e.g., high-throughput sequencing and phenotypic screening) and others depend on reference genes or genomes (e.g., phylogenetic and functional gene arrays). Here, we provide a critical review and synthesis of the most commonly applied “open-format” and “closed-format” detection technologies. We discuss their characteristics, advantages, and disadvantages within the context of environmental applications andmore » focus on analysis of complex microbial systems, such as those in soils, in which diversity is high and reference genomes are few. In addition, we discuss crucial issues and considerations associated with applying complementary high-throughput molecular technologies to address important ecological questions.« less

  5. Generalized schemes for high throughput manipulation of the Desulfovibrio vulgaris Hildenborough genome

    SciTech Connect (OSTI)

    Chhabra, S.R.; Butland, G.; Elias, D.; Chandonia, J.-M.; Fok, V.; Juba, T.; Gorur, A.; Allen, S.; Leung, C.-M.; Keller, K.; Reveco, S.; Zane, G.; Semkiw, E.; Prathapam, R.; Gold, B.; Singer, M.; Ouellet, M.; Sazakal, E.; Jorgens, D.; Price, M.; Witkowska, E.; Beller, H.; Hazen, T.C.; Biggin, M.; Auer, M.; Wall, J.; Keasling, J.

    2011-07-15

    The ability to conduct advanced functional genomic studies of the thousands of sequenced bacteria has been hampered by the lack of available tools for making high- throughput chromosomal manipulations in a systematic manner that can be applied across diverse species. In this work, we highlight the use of synthetic biological tools to assemble custom suicide vectors with reusable and interchangeable DNA “parts” to facilitate chromosomal modification at designated loci. These constructs enable an array of downstream applications including gene replacement and creation of gene fusions with affinity purification or localization tags. We employed this approach to engineer chromosomal modifications in a bacterium that has previously proven difficult to manipulate genetically, Desulfovibrio vulgaris Hildenborough, to generate a library of over 700 strains. Furthermore, we demonstrate how these modifications can be used for examining metabolic pathways, protein-protein interactions, and protein localization. The ubiquity of suicide constructs in gene replacement throughout biology suggests that this approach can be applied to engineer a broad range of species for a diverse array of systems biological applications and is amenable to high-throughput implementation.

  6. Express Primer Tool for high-throughput gene cloning and expression

    Energy Science and Technology Software Center (OSTI)

    2002-12-01

    A tool to assist in the design of primers for DNA amplification. The Express Primer web-based tool generates primer sequences specifically for the generation of expression clones for both lab scale and high-throughput projects. The application is designed not only to allow the user complete flexibility to specify primer design parameters but also to minimize the amount of manual intervention needed to generate a large number of primers for simultaneous amplification of multiple target genes.more » The Express Primer Tool enables the user to specify various experimental parameters (e.g. optimal Tm, Tm range, maximum Tm difference) for single or multiple candidate sequence(s) in FASTA format input as a flat text (ASCII) file. The application generates condidate primers, selects optimal primer pairs, and writes the forward and reverse primers pairs to an Excel file that is suitable for electronic submission to a synthesis facility. The program parameters emphasize high-throughput but allow for target atrition at various stages of the project.« less

  7. Pneumatic Microvalve-Based Hydrodynamic Sample Injection for High-Throughput, Quantitative Zone Electrophoresis in Capillaries

    SciTech Connect (OSTI)

    Kelly, Ryan T.; Wang, Chenchen; Rausch, Sarah J.; Lee, Cheng S.; Tang, Keqi

    2014-07-01

    A hybrid microchip/capillary CE system was developed to allow unbiased and lossless sample loading and high throughput repeated injections. This new hybrid CE system consists of a polydimethylsiloxane (PDMS) microchip sample injector featuring a pneumatic microvalve that separates a sample introduction channel from a short sample loading channel and a fused silica capillary separation column that connects seamlessly to the sample loading channel. The sample introduction channel is pressurized such that when the pneumatic microvalve opens briefly, a variable-volume sample plug is introduced into the loading channel. A high voltage for CE separation is continuously applied across the loading channel and the fused silica capillary separation column. Analytes are rapidly separated in the fused silica capillary with high resolution. High sensitivity MS detection after CE separation is accomplished via a sheathless CE/ESI-MS interface. The performance evaluation of the complete CE/ESI-MS platform demonstrated that reproducible sample injection with well controlled sample plug volumes could be achieved by using the PDMS microchip injector. The absence of band broadening from microchip to capillary indicated a minimum dead volume at the junction. The capabilities of the new CE/ESI-MS platform in performing high throughput and quantitative sample analyses were demonstrated by the repeated sample injection without interrupting an ongoing separation and a good linear dependence of the total analyte ion abundance on the sample plug volume using a mixture of peptide standards. The separation efficiency of the new platform was also evaluated systematically at different sample injection times, flow rates and CE separation voltages.

  8. Development and operation of a high-throughput accurate-wavelength lens-based spectrometera)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bell, Ronald E.

    2014-07-11

    A high-throughput spectrometer for the 400-820 nm wavelength range has been developed for charge exchange recombination spectroscopy or general spectroscopy. A large 2160 mm-1 grating is matched with fast f /1.8 200 mm lenses, which provide stigmatic imaging. A precision optical encoder measures the grating angle with an accuracy ≤ 0.075 arc seconds. A high quantum efficiency low-etaloning CCD detector allows operation at longer wavelengths. A patch panel allows input fibers to interface with interchangeable fiber holders that attach to a kinematic mount behind the entrance slit. The computer-controlled hardware allows automated control of wavelength, timing, f-number, automated data collection,more » and wavelength calibration.« less

  9. Solid optical ring interferometer for high-throughput feedback-free spectral analysis and filtering

    SciTech Connect (OSTI)

    Petrak, B.; Peiris, M.; Muller, A.

    2015-02-15

    We describe a simple and inexpensive optical ring interferometer for use in high-resolution spectral analysis and filtering. It consists of a solid cuboid, reflection-coated on two opposite sides, in which constructive interference occurs for waves in a rhombic trajectory. Due to its monolithic design, the interferometers resonance frequencies are insensitive to environmental disturbances over time. Additional advantages are its simplicity of alignment, high-throughput, and feedback-free operation. If desired, it can be stabilized with a secondary laser without disturbance of the primary signal. We illustrate the use of the interferometer for the measurement of the spectral Mollow triplet from a quantum dot and characterize its long-term stability for filtering applications.

  10. Development and Operation of High-throughput Accurate-wavelength Lens-based Spectrometer

    SciTech Connect (OSTI)

    Bell, Ronald E

    2014-07-01

    A high-throughput spectrometer for the 400-820 nm wavelength range has been developed for charge exchange recombination spectroscopy or general spectroscopy. A large 2160 mm-1 grating is matched with fast f /1.8 200 mm lenses, which provide stigmatic imaging. A precision optical encoder measures the grating angle with an accuracy < 0.075 arc seconds. A high quantum efficiency low-etaloning CCD detector allows operation at longer wavelengths. A patch panel allows input fibers to interface with interchangeable fiber holders that attach to a kinematic mount behind the entrance slit. Computer-controlled hardware allows automated control of wavelength, timing, f-number, automated data collection, and wavelength calibration.

  11. Development and operation of a high-throughput accurate-wavelength lens-based spectrometera

    SciTech Connect (OSTI)

    Bell, Ronald E.

    2014-11-01

    A high-throughput spectrometer for the 400-820 nm wavelength range has been developed for charge exchange recombination spectroscopy or general spectroscopy. A large 2160 mm-1 grating is matched with fast f /1.8 200 mm lenses, which provide stigmatic imaging. A precision optical encoder measures the grating angle with an accuracy ? 0.075 arc seconds. A high quantum efficiency low-etaloning CCD detector allows operation at longer wavelengths. A patch panel allows input fibers to interface with interchangeable fiber holders that attach to a kinematic mount behind the entrance slit. Computer-controlled hardware allows automated control of wavelength, timing, f-number, automated data collection, and wavelength calibration.

  12. Development and operation of a high-throughput accurate-wavelength lens-based spectrometer

    SciTech Connect (OSTI)

    Bell, Ronald E.

    2014-11-15

    A high-throughput spectrometer for the 400820 nm wavelength range has been developed for charge exchange recombination spectroscopy or general spectroscopy. A large 2160 mm{sup ?1} grating is matched with fast f/1.8 200 mm lenses, which provide stigmatic imaging. A precision optical encoder measures the grating angle with an accuracy ?0.075 arc sec. A high quantum efficiency low-etaloning CCD detector allows operation at longer wavelengths. A patch panel allows input fibers to interface with interchangeable fiber holders that attach to a kinematic mount at the entrance slit. Computer-controlled hardware allows automated control of wavelength, timing, f-number, automated data collection, and wavelength calibration.

  13. High-throughput analysis of T-DNA location and structure using sequence capture

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Inagaki, Soichi; Henry, Isabelle M.; Lieberman, Meric C.; Comai, Luca

    2015-10-07

    Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA—genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously,more » using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. As a result, our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.« less

  14. High-throughput analysis of T-DNA location and structure using sequence capture

    SciTech Connect (OSTI)

    Inagaki, Soichi; Henry, Isabelle M.; Lieberman, Meric C.; Comai, Luca

    2015-10-07

    Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA—genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously, using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. As a result, our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.

  15. Metalloproteomics: High-Throughput Structural and Functional Annotation of Proteins in Structural Genomics

    SciTech Connect (OSTI)

    Shi,W.; Zhan, C.; Lgnatov, A.; Manjasetty, B.; Marinkovic, N.; Sullivan, M.; Huang, R.; Chance, M.; Li, H.; et al.

    2005-01-01

    A high-throughput method for measuring transition metal content based on quantitation of X-ray fluorescence signals was used to analyze 654 proteins selected as targets by the New York Structural GenomiX Research Consortium. Over 10% showed the presence of transition metal atoms in stoichiometric amounts; these totals as well as the abundance distribution are similar to those of the Protein Data Bank. Bioinformatics analysis of the identified metalloproteins in most cases supported the metalloprotein annotation; identification of the conserved metal binding motif was also shown to be useful in verifying structural models of the proteins. Metalloproteomics provides a rapid structural and functional annotation for these sequences and is shown to be {approx}95% accurate in predicting the presence or absence of stoichiometric metal content. The project's goal is to assay at least 1 member from each Pfam family; approximately 500 Pfam families have been characterized with respect to transition metal content so far.

  16. Thicker, more efficient superconducting strip-line detectors for high throughput macromolecules analysis

    SciTech Connect (OSTI)

    Casaburi, A.; Ejrnaes, M.; Cristiano, R.; Zen, N.; Ohkubo, M.; Pagano, S.

    2011-01-10

    Fast detectors with large area are required in time-of-flight mass spectrometers for high throughput analysis of biological molecules. We fabricated and characterized subnanosecond 1x1 mm{sup 2} NbN superconducting strip-line detectors. The influence of the strip-line thickness on the temporal characteristics and efficiency of the detector for the impacts of keV accelerated molecules is investigated. We find that the increase of thickness improves both efficiency and response time. In the thicker sample we achieved a rise time of 380 ps, a fall time of 1.38 ns, and a higher count rate. The physics involved in this behavior is investigated.

  17. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening

    SciTech Connect (OSTI)

    Cuttitta, Christina M.; Ericson, Daniel L.; Scalia, Alexander; Roessler, Christian G.; Teplitsky, Ella; Joshi, Karan; Campos, Olven; Agarwal, Rakhi; Allaire, Marc; Orville, Allen M.; Sweet, Robert M.; Soares, Alexei S.

    2015-01-01

    An acoustic high-throughput screening method is described for harvesting protein crystals and combining the protein crystals with chemicals such as a fragment library. Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s{sup ?1}) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening.

  18. High-throughput liquid-absorption air-sampling apparatus and methods

    DOE Patents [OSTI]

    Zaromb, Solomon

    2000-01-01

    A portable high-throughput liquid-absorption air sampler [PHTLAAS] has an asymmetric air inlet through which air is drawn upward by a small and light-weight centrifugal fan driven by a direct current motor that can be powered by a battery. The air inlet is so configured as to impart both rotational and downward components of motion to the sampled air near said inlet. The PHTLAAS comprises a glass tube of relatively small size through which air passes at a high rate in a swirling, highly turbulent motion, which facilitates rapid transfer of vapors and particulates to a liquid film covering the inner walls of the tube. The pressure drop through the glass tube is <10 cm of water, usually <5 cm of water. The sampler's collection efficiency is usually >20% for vapors or airborne particulates in the 2-3.mu. range and >50% for particles larger than 4.mu.. In conjunction with various analyzers, the PHTLAAS can serve to monitor a variety of hazardous or illicit airborne substances, such as lead-containing particulates, tritiated water vapor, biological aerosols, or traces of concealed drugs or explosives.

  19. Evaluation of a New Remote Handling Design for High Throughput Annular Centrifugal Contactors

    SciTech Connect (OSTI)

    David H. Meikrantz; Troy G. Garn; Jack D. Law; Lawrence L. Macaluso

    2009-09-01

    Advanced designs of nuclear fuel recycling plants are expected to include more ambitious goals for aqueous based separations including; higher separations efficiency, high-level waste minimization, and a greater focus on continuous processes to minimize cost and footprint. Therefore, Annular Centrifugal Contactors (ACCs) are destined to play a more important role for such future processing schemes. Previous efforts defined and characterized the performance of commercial 5 cm and 12.5 cm single-stage ACCs in a cold environment. The next logical step, the design and evaluation of remote capable pilot scale ACCs in a hot or radioactive environment was reported earlier. This report includes the development of remote designs for ACCs that can process the large throughput rates needed in future nuclear fuel recycling plants. Novel designs were developed for the remote interconnection of contactor units, clean-in-place and drain connections, and a new solids removal collection chamber. A three stage, 12.5 cm diameter rotor module has been constructed and evaluated for operational function and remote handling in highly radioactive environments. This design is scalable to commercial CINC ACC models from V-05 to V-20 with total throughput rates ranging from 20 to 650 liters per minute. The V-05R three stage prototype was manufactured by the commercial vendor for ACCs in the U.S., CINC mfg. It employs three standard V-05 clean-in-place (CIP) units modified for remote service and replacement via new methods of connection for solution inlets, outlets, drain and CIP. Hydraulic testing and functional checks were successfully conducted and then the prototype was evaluated for remote handling and maintenance suitability. Removal and replacement of the center position V-05R ACC unit in the three stage prototype was demonstrated using an overhead rail mounted PaR manipulator. This evaluation confirmed the efficacy of this innovative design for interconnecting and cleaning individual stages while retaining the benefits of commercially reliable ACC equipment for remote applications in the nuclear industry. Minor modifications and suggestions for improved manual remote servicing by the remote handling specialists were provided but successful removal and replacement was demonstrated in the first prototype.

  20. Metal Organic Framework Research: High Throughput Discovery of Robust Metal Organic Framework for CO2 Capture

    SciTech Connect (OSTI)

    None

    2010-08-01

    IMPACCT Project: LBNL is developing a method for identifying the best metal organic frameworks for use in capturing CO2 from the flue gas of coal-fired power plants. Metal organic frameworks are porous, crystalline compounds that, based on their chemical structure, vary considerably in terms of their capacity to grab hold of passing CO2 molecules and their ability to withstand the harsh conditions found in the gas exhaust of coal-fired power plants. Owing primarily to their high tunability, metal organic frameworks can have an incredibly wide range of different chemical and physical properties, so identifying the best to use for CO2 capture and storage can be a difficult task. LBNL uses high-throughput instrumentation to analyze nearly 100 materials at a time, screening them for the characteristics that optimize their ability to selectively adsorb CO2 from coal exhaust. Their work will identify the most promising frameworks and accelerate their large-scale commercial development to benefit further research into reducing the cost of CO2 capture and storage.

  1. High Throughput Ambient Mass Spectrometric Approach to Species Identification and Classification from Chemical Fingerprint Signatures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Musah, Rabi A.; Espinoza, Edgard O.; Cody, Robert B.; Lesiak, Ashton D.; Christensen, Earl D.; Moore, Hannah E.; Maleknia, Simin; Drijhout, Falko P.

    2015-07-09

    A high throughput method for species identification and classification through chemometric processing of direct analysis in real time (DART) mass spectrometry-derived fingerprint signatures has been developed. The method entails introduction of samples to the open air space between the DART ion source and the mass spectrometer inlet, with the entire observed mass spectral fingerprint subjected to unsupervised hierarchical clustering processing. Moreover, a range of both polar and non-polar chemotypes are instantaneously detected. The result is identification and species level classification based on the entire DART-MS spectrum. In this paper, we illustrate how the method can be used to: (1) distinguishmore » between endangered woods regulated by the Convention for the International Trade of Endangered Flora and Fauna (CITES) treaty; (2) assess the origin and by extension the properties of biodiesel feedstocks; (3) determine insect species from analysis of puparial casings; (4) distinguish between psychoactive plants products; and (5) differentiate between Eucalyptus species. An advantage of the hierarchical clustering approach to processing of the DART-MS derived fingerprint is that it shows both similarities and differences between species based on their chemotypes. Furthermore, full knowledge of the identities of the constituents contained within the small molecule profile of analyzed samples is not required.« less

  2. Anaerobic High-Throughput Cultivation Method for Isolation of Thermophiles Using Biomass-Derived Substrates

    SciTech Connect (OSTI)

    Hamilton-Brehm, Scott; Vishnivetskaya, Tatiana A; Allman, Steve L; Mielenz, Jonathan R; Elkins, James G

    2012-01-01

    Flow cytometry (FCM) techniques have been developed for sorting mesophilic organisms, but the difficulty increases if the target microbes are thermophilic anaerobes. We demonstrate a reliable, high-throughput method of screening thermophilic anaerobic organisms using FCM and 96-well plates for growth on biomass-relevant substrates. The method was tested using the cellulolytic thermophiles Clostridium ther- mocellum (Topt = 55 C), Caldicellulosiruptor obsidiansis (Topt = 78 C) and the fermentative hyperthermo- philes, Pyrococcus furiosus (Topt = 100 C) and Thermotoga maritima (Topt = 80 C). Multi-well plates were incubated at various temperatures for approximately 72 120 h and then tested for growth. Positive growth resulting from single cells sorted into individual wells containing an anaerobic medium was verified by OD600. Depending on the growth substrate, up to 80 % of the wells contained viable cultures, which could be transferred to fresh media. This method was used to isolate thermophilic microbes from Rabbit Creek, Yellowstone National Park (YNP), Wyoming. Substrates for enrichment cultures including crystalline cellulose (Avicel), xylan (from Birchwood), pretreated switchgrass and Populus were used to cultivate organisms that may be of interest to lignocellulosic biofuel production.

  3. High Throughput Ambient Mass Spectrometric Approach to Species Identification and Classification from Chemical Fingerprint Signatures

    SciTech Connect (OSTI)

    Musah, Rabi A.; Espinoza, Edgard O.; Cody, Robert B.; Lesiak, Ashton D.; Christensen, Earl D.; Moore, Hannah E.; Maleknia, Simin; Drijhout, Falko P.

    2015-07-09

    A high throughput method for species identification and classification through chemometric processing of direct analysis in real time (DART) mass spectrometry-derived fingerprint signatures has been developed. The method entails introduction of samples to the open air space between the DART ion source and the mass spectrometer inlet, with the entire observed mass spectral fingerprint subjected to unsupervised hierarchical clustering processing. Moreover, a range of both polar and non-polar chemotypes are instantaneously detected. The result is identification and species level classification based on the entire DART-MS spectrum. In this paper, we illustrate how the method can be used to: (1) distinguish between endangered woods regulated by the Convention for the International Trade of Endangered Flora and Fauna (CITES) treaty; (2) assess the origin and by extension the properties of biodiesel feedstocks; (3) determine insect species from analysis of puparial casings; (4) distinguish between psychoactive plants products; and (5) differentiate between Eucalyptus species. An advantage of the hierarchical clustering approach to processing of the DART-MS derived fingerprint is that it shows both similarities and differences between species based on their chemotypes. Furthermore, full knowledge of the identities of the constituents contained within the small molecule profile of analyzed samples is not required.

  4. A microreactor array for spatially resolved measurement of catalytic activity for high-throughput catalysis science

    SciTech Connect (OSTI)

    Kondratyuk, Petro; Gumuslu, Gamze; Shukla, Shantanu; Miller, James B; Morreale, Bryan D; Gellman, Andrew J

    2013-04-01

    We describe a 100 channel microreactor array capable of spatially resolved measurement of catalytic activity across the surface of a flat substrate. When used in conjunction with a composition spread alloy film (CSAF, e.g. Pd{sub x}Cu{sub y}Au{sub 1-x-y}) across which component concentrations vary smoothly, such measurements permit high-throughput analysis of catalytic activity and selectivity as a function of catalyst composition. In the reported implementation, the system achieves spatial resolution of 1 mm{sup 2} over a 10×10 mm{sup 2} area. During operation, the reactant gases are delivered at constant flow rate to 100 points of differing composition on the CSAF surface by means of a 100-channel microfluidic device. After coming into contact with the CSAF catalyst surface, the product gas mixture from each of the 100 points is withdrawn separately through a set of 100 isolated channels for analysis using a mass spectrometer. We demonstrate the operation of the device on a Pd{sub x}Cu{sub y}Au{sub 1-x-y} CSAF catalyzing the H{sub 2}-D{sub 2} exchange reaction at 333 K. In essentially a single experiment, we measured the catalytic activity over a broad swathe of concentrations from the ternary composition space of the Pd{sub x}Cu{sub y}Au{sub 1-x-y} alloy.

  5. Gasification of refuse derived fuel in the Battelle high throughput gasification system

    SciTech Connect (OSTI)

    Paisley, M.A.; Creamer, K.S.; Tweksbury, T.L.; Taylor, D.R. )

    1989-07-01

    This report presents the results of an experimental program to demonstrate the suitability of the Battelle High Throughput Gasification Process to non-wood biomass fuels. An extensive data base on wood gasification was generated during a multi-year experimental program. This data base and subsequent design and economic analysis activities led to the discussion to study the gasification character of other fuels. The specific fuel studied was refuse derived fuel (RDF) which is a prepared municipal solid waste (MSW). The use of RDF, while providing a valuable fuel, can also provide a solution to MSW disposal problems. Gasification of MSW provides advantages over land fill or mass burn technology since a more usable form of energy, medium Btu gas, is produced. Land filling of wastes produces no usable products and mass burning while greatly reducing the volume of wastes for disposal can produce only steam. This steam must be used on site or very nearby this limiting the potential locations for mass burn facilities. Such a gas, if produced from currently available supplies of MSW, can contribute 2 quads to the US energy supply. 3 refs., 12 figs., 7 tabs.

  6. High throughput screening using acoustic droplet ejection to combine protein crystals and chemical libraries on crystallization plates at high density

    SciTech Connect (OSTI)

    Teplitsky, Ella; Joshi, Karan; Ericson, Daniel L.; Scalia, Alexander; Mullen, Jeffrey D.; Sweet, Robert M.; Soares, Alexei S.

    2015-07-01

    We describe a high throughput method for screening up to 1728 distinct chemicals with protein crystals on a single microplate. Acoustic droplet ejection (ADE) was used to co-position 2.5 nL of protein, precipitant, and chemicals on a MiTeGen in situ-1 crystallization plate™ for screening by co-crystallization or soaking. ADE-transferred droplets follow a precise trajectory which allows all components to be transferred through small apertures in the microplate lid. The apertures were large enough for 2.5 nL droplets to pass through them, but small enough so that they did not disrupt the internal environment created by the mother liquor. Using this system, thermolysin and trypsin crystals were efficiently screened for binding to a heavy-metal mini-library. Fluorescence and X-ray diffraction were used to confirm that each chemical in the heavy-metal library was correctly paired with the intended protein crystal. Moreover, a fragment mini-library was screened to observe two known lysozyme We describe a high throughput method for screening up to 1728 distinct chemicals with protein crystals on a single microplate. Acoustic droplet ejection (ADE) was used to co-position 2.5 nL of protein, precipitant, and chemicals on a MiTeGen in situ-1 crystallization plate™ for screening by co-crystallization or soaking. ADE-transferred droplets follow a precise trajectory which allows all components to be transferred through small apertures in the microplate lid. The apertures were large enough for 2.5 nL droplets to pass through them, but small enough so that they did not disrupt the internal environment created by the mother liquor. Using this system, thermolysin and trypsin crystals were efficiently screened for binding to a heavy-metal mini-library. Fluorescence and X-ray diffraction were used to confirm that each chemical in the heavy-metal library was correctly paired with the intended protein crystal. A fragment mini-library was screened to observe two known lysozyme ligands using both co-crystallization and soaking. A similar approach was used to identify multiple, novel thaumatin binding sites for ascorbic acid. This technology pushes towards a faster, automated, and more flexible strategy for high throughput screening of chemical libraries (such as fragment libraries) using as little as 2.5 nL of each component.ds using both co-crystallization and soaking. We used a A similar approach to identify multiple, novel thaumatin binding sites for ascorbic acid. This technology pushes towards a faster, automated, and more flexible strategy for high throughput screening of chemical libraries (such as fragment libraries) using as little as 2.5 nL of each component.

  7. High throughput screening using acoustic droplet ejection to combine protein crystals and chemical libraries on crystallization plates at high density

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Teplitsky, Ella; Joshi, Karan; Ericson, Daniel L.; Scalia, Alexander; Mullen, Jeffrey D.; Sweet, Robert M.; Soares, Alexei S.

    2015-07-01

    We describe a high throughput method for screening up to 1728 distinct chemicals with protein crystals on a single microplate. Acoustic droplet ejection (ADE) was used to co-position 2.5 nL of protein, precipitant, and chemicals on a MiTeGen in situ-1 crystallization plate™ for screening by co-crystallization or soaking. ADE-transferred droplets follow a precise trajectory which allows all components to be transferred through small apertures in the microplate lid. The apertures were large enough for 2.5 nL droplets to pass through them, but small enough so that they did not disrupt the internal environment created by the mother liquor. Using thismore » system, thermolysin and trypsin crystals were efficiently screened for binding to a heavy-metal mini-library. Fluorescence and X-ray diffraction were used to confirm that each chemical in the heavy-metal library was correctly paired with the intended protein crystal. Moreover, a fragment mini-library was screened to observe two known lysozyme We describe a high throughput method for screening up to 1728 distinct chemicals with protein crystals on a single microplate. Acoustic droplet ejection (ADE) was used to co-position 2.5 nL of protein, precipitant, and chemicals on a MiTeGen in situ-1 crystallization plate™ for screening by co-crystallization or soaking. ADE-transferred droplets follow a precise trajectory which allows all components to be transferred through small apertures in the microplate lid. The apertures were large enough for 2.5 nL droplets to pass through them, but small enough so that they did not disrupt the internal environment created by the mother liquor. Using this system, thermolysin and trypsin crystals were efficiently screened for binding to a heavy-metal mini-library. Fluorescence and X-ray diffraction were used to confirm that each chemical in the heavy-metal library was correctly paired with the intended protein crystal. A fragment mini-library was screened to observe two known lysozyme ligands using both co-crystallization and soaking. A similar approach was used to identify multiple, novel thaumatin binding sites for ascorbic acid. This technology pushes towards a faster, automated, and more flexible strategy for high throughput screening of chemical libraries (such as fragment libraries) using as little as 2.5 nL of each component.ds using both co-crystallization and soaking. We used a A similar approach to identify multiple, novel thaumatin binding sites for ascorbic acid. This technology pushes towards a faster, automated, and more flexible strategy for high throughput screening of chemical libraries (such as fragment libraries) using as little as 2.5 nL of each component.« less

  8. High Temperature, High Voltage Fully Integrated Gate Driver Circuit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- Washington D.C. PDF icon ape03marlino.pdf More Documents & Publications High Temperature, High Voltage Fully Integrated Gate Driver Circuit Smart Integrated Power Module ...

  9. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells

    SciTech Connect (OSTI)

    Wu, Zhigang; Willing, Ben; Bjerketorp, Joakim; Jansson, Janet K.; Hjort, Klas

    2009-01-05

    We developed a new approach to separate bacteria from human blood cells based on soft inertial force induced migration with flow defined curved and focused sample flow inside a microfluidic device. This approach relies on a combination of an asymmetrical sheath flow and proper channel geometry to generate a soft inertial force on the sample fluid in the curved and focused sample flow segment to deflect larger particles away while the smaller ones are kept on or near the original flow streamline. The curved and focused sample flow and inertial effect were visualized and verified using a fluorescent dye primed in the device. First the particle behavior was studied in detail using 9.9 and 1.0 {micro}m particles with a polymer-based prototype. The prototype device is compact with an active size of 3 mm{sup 2}. The soft inertial effect and deflection distance were proportional to the fluid Reynolds number (Re) and particle Reynolds number (Re{sub p}), respectively. We successfully demonstrated separation of bacteria (Escherichia coli) from human red blood cells at high cell concentrations (above 10{sup 8}/mL), using a sample flow rate of up to 18 {micro}L/min. This resulted in at least a 300-fold enrichment of bacteria at a wide range of flow rates with a controlled flow spreading. The separated cells were proven to be viable. Proteins from fractions before and after cell separation were analyzed by gel electrophoresis and staining to verify the removal of red blood cell proteins from the bacterial cell fraction. This novel microfluidic process is robust, reproducible, simple to perform, and has a high throughput compared to other cell sorting systems. Microfluidic systems based on these principles could easily be manufactured for clinical laboratory and biomedical applications.

  10. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening

    SciTech Connect (OSTI)

    Cuttitta, Christina M.; Ericson, Daniel L.; Scalia, Alexander; Roessler, Christian G.; Teplitsky, Ella; Joshi, Karan; Campos, Olven; Agarwal, Rakhi; Allaire, Marc; Orville, Allen M.; Sweet, Robert M.; Soares, Alexei S.

    2014-06-01

    Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s-1) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening.

  11. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cuttitta, Christina M.; Ericson, Daniel L.; Scalia, Alexander; Roessler, Christian G.; Teplitsky, Ella; Joshi, Karan; Campos, Olven; Agarwal, Rakhi; Allaire, Marc; Orville, Allen M.; et al

    2014-06-01

    Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s-1) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from themore » inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening.« less

  12. WE-E-BRE-07: High-Throughput Mapping of Proton Biologic Effect

    SciTech Connect (OSTI)

    Bronk, L; Guan, F; Kerr, M; Dinh, J; Titt, U; Mirkovic, D; Lin, S; Mohan, R; Grosshans, D

    2014-06-15

    Purpose: To systematically relate the relative biological effectives (RBE) of proton therapy to beam linear energy transfer (LET) and dose. Methods: Using a custom irradiation apparatus previously characterized by our group, H460 NSCLCs were irradiated using a clinical 80MeV spot scanning proton beam. Utilizing this system allowed for high-throughput clonogenic assays performed in 96-well tissue culture plates as opposed to the traditional 6-well technique. Each column in the 96-well plate received a set LET-dose combination. By altering the total number of dose repaintings, numerous dose-LET configurations were examined to effectively generate surviving fraction (SF) data over the entire Bragg peak. The clonogenic assay was performed post-irradiation using an INCell Analyzer for colony quantification. SF data were fit to the linear-quadratic model for analysis. Results: Irradiation with increasing LETs resulted in decreased cell survival largely independent of dose. A significant correlation between LET and SF was identified by two-way ANOVA and the extra sum-of-squares F test. This trend was obscured at the lower LET values in the plateau region of the Bragg peak; however, it was clear for LET values at and beyond the Bragg peak. Data fits revealed the SF at a dose of 2Gy (SF2) to be 0.48 for the lowest tested LET (1.55keV/um), 0.47 at the end of the plateau region (4.74keV/um) and 0.33 for protons at the Bragg peak (10.35keV/um). Beyond the Bragg peak we measured SF2s of 0.16 for 15.01keV/um, 0.02 for 16.79keV/um, and 0.004 for 18.06keV/um. Conclusion: We have shown that our methodology enables high-content automated screening for proton irradiations over a range of LETs. The observed decrease in cellular SF in high LET regions confirms an increased RBE of the radiation and suggests further evaluation of proton RBE values is necessary to optimize clinical outcomes. Rosalie B. Hite Graduate Fellowship in Cancer Research, NIH Program Project Grant P01CA021239.

  13. New Challenges of the Computation of Multiple Sequence Alignments in the High-Throughput Era (2010 JGI/ANL HPC Workshop)

    ScienceCinema (OSTI)

    Notredame, Cedric [Centre for Genomic Regulation

    2011-06-08

    Cedric Notredame from the Centre for Genomic Regulation gives a presentation on "New Challenges of the Computation of Multiple Sequence Alignments in the High-Throughput Era" at the JGI/Argonne HPC Workshop on January 26, 2010.

  14. Vehicle Technologies Office Merit Review 2015: High-Throughput Study of Diffusion and Phase Transformation Kinetics of Magnesium-Based Systems For Automotive Cast Magnesium Alloys

    Broader source: Energy.gov [DOE]

    Presentation given by Ohio State University at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high-throughput study...

  15. High G MEMS integrated accelerometer

    SciTech Connect (OSTI)

    Davies, B.R.; Barron, C.C.; Montague, S.; Smith, J.H.; Murray, J.R.; Christenson, T.R.; Bateman, V.I.

    1996-12-31

    This paper describes the design and implementation of a surface micromachined accelerometer for measuring very high levels of acceleration (up to 50,000 G). Both the mechanical and electronic portions of the sensor were integrated on a single substrate using a process developed at Sandia National Laboratories. In this process, the mechanical components of the sensor were first fabricated at the bottom of a trench etched into the water substrate. The trench was then filled with oxide and sealed to protect the mechanical components during subsequent microelectronics processing. The wafer surface was then planarized in preparation for CMOS processing using Chemical Mechanical Polishing (CMP). Next, the CMOS electronics were fabricated on areas of the wafer adjacent to the embedded structures. Finally, the mechanical structures were released and the sensor tested. The mechanical structure of the sensor consisted of two polysilicon plate masses suspended by multiple springs (cantilevered beam structures) over corresponding polysilicon plates fixed to the substrate to form two parallel plate capacitors. The first polysilicon plate mass was suspended using compliant springs (cantilever beams) and acted as a variable capacitor during sensor acceleration. The second polysilicon plate mass was suspended using very stiff springs and acted as a fixed capacitor during acceleration. Acceleration was measured by comparing the capacitance of the variable capacitor (compliant suspension) with the fixed capacitance (stiff suspension).

  16. Assessment of advanced coal-gasification processes. [AVCO high throughput gasification in process; Bell High Mass Flux process; CS-R process; and Exxon Gasification process

    SciTech Connect (OSTI)

    McCarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

    1981-06-01

    This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process, Bell Single - Stage High Mass Flux (HMF) Process, Cities Service/Rockwell (CS/R) Hydrogasification Process, and the Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic fluidbed reactor producing all of the raw product methane in the gasifier.

  17. Miniaturized Analytical Platforms From Nanoparticle Components: Studies in the Construction, Characterization, and High-Throughput Usage of These Novel Architectures

    SciTech Connect (OSTI)

    Andrew David Pris

    2003-08-05

    The scientific community has recently experienced an overall effort to reduce the physical size of many experimental components to the nanometer size range. This size is unique as the characteristics of this regime involve aspects of pure physics, biology, and chemistry. One extensively studied example of a nanometer sized experimental component, which acts as a junction between these three principle scientific theologies, is deoxyribonucleic acid (DNA) or ribonucleic acid (RNA). These biopolymers not only contain the biological genetic guide to code for the production of life-sustaining materials, but are also being probed by physicists as a means to create electrical circuits and furthermore as controllable architectural and sensor motifs in the chemical disciplines. Possibly the most common nano-sized component between these sciences are nanoparticles composed of a variety of materials. The cross discipline employment of nanoparticles is evident from the vast amount of literature that has been produced from each of the individual communities within the last decade. Along these cross-discipline lines, this dissertation examines the use of several different types of nanoparticles with a wide array of surface chemistries to understand their adsorption properties and to construct unique miniaturized analytical and immunoassay platforms. This introduction will act as a literature review to provide key information regarding the synthesis and surface chemistries of several types of nanoparticles. This material will set the stage for a discussion of assembling ordered arrays of nanoparticles into functional platforms, architectures, and sensors. The introduction will also include a short explanation of the atomic force microscope that is used throughout the thesis to characterize the nanoparticle-based structures. Following the Introduction, four research chapters are presented as separate manuscripts. Chapter 1 examines the self-assembly of polymeric nanoparticles exhibiting a variety of surface chemistries and attempts to deconvolute general adsorption rules for their assembly on various substrates. Chapter 2 extends the usage of self-assembly of polymeric nanoparticles through a layer-by-layer deposition concept and photolithography methodologies to create analytical platforms with a vertical height controlled within the nanometer regime. This platform is then furthered in Chapter 3 by employing this integrated concept as a bio-recognition platform, with the extension of the method to a high-throughput screening system explored. Chapter 4 exploits two different types of nanoparticles, silica and gold, as multiplexed, self-assembled immunoassay sensors. This final research chapter is followed by a general summation and future prospectus section that concludes the dissertation.

  18. High Temperature, High Voltage Fully Integrated Gate Driver Circuit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. PDF icon ape003tolbert2010p.pdf More Documents & Publications High Temperature, High Voltage Fully Integrated Gate Driver Circuit Wide Bandgap Materials Smart ...

  19. High-throughput characterization of stresses in thin film materials libraries using Si cantilever array wafers and digital holographic microscopy

    SciTech Connect (OSTI)

    Lai, Y. W.; Ludwig, A.; Hamann, S.; Ehmann, M.

    2011-06-15

    We report the development of an advanced high-throughput stress characterization method for thin film materials libraries sputter-deposited on micro-machined cantilever arrays consisting of around 1500 cantilevers on 4-inch silicon-on-insulator wafers. A low-cost custom-designed digital holographic microscope (DHM) is employed to simultaneously monitor the thin film thickness, the surface topography and the curvature of each of the cantilevers before and after deposition. The variation in stress state across the thin film materials library is then calculated by Stoney's equation based on the obtained radii of curvature of the cantilevers and film thicknesses. DHM with nanometer-scale out-of-plane resolution allows stress measurements in a wide range, at least from several MPa to several GPa. By using an automatic x-y translation stage, the local stresses within a 4-inch materials library are mapped with high accuracy within 10 min. The speed of measurement is greatly improved compared with the prior laser scanning approach that needs more than an hour of measuring time. A high-throughput stress measurement of an as-deposited Fe-Pd-W materials library was evaluated for demonstration. The fast characterization method is expected to accelerate the development of (functional) thin films, e.g., (magnetic) shape memory materials, whose functionality is greatly stress dependent.

  20. High-throughput, dual probe biological assays based on single molecule detection

    DOE Patents [OSTI]

    Hollars, Christopher W.; Huser, Thomas R.; Lane, Stephen M.; Balhorn, Rodney L.; Bakajin, Olgica; Darrow, Christopher; Satcher, Jr., Joe H.

    2006-07-11

    A method and apparatus with the sensitivity to detect and identify single target molecules through the localization of dual, fluorescently labeled probe molecules. This can be accomplished through specific attachment of the taget to a surface or in a two-dimensional (2D) flowing fluid sheet having approximate dimensions of 0.5 .mu.m.times.100 .mu.m.times.100 .mu.m. A device using these methods would have 10.sup.3 10.sup.4 greater throughput than previous one-dimensional (1D) micro-stream devices having 1 .mu.m.sup.3 interrogation volumes and would for the first time allow immuno- and DNA assays at ultra-low (femtomolar) concentrations to be performed in short time periods (.about.10 minutes). The use of novel labels (such as metal or semiconductor nanoparticles) may be incorporated to further extend the sensitivity possibly into the attomolar range.

  1. Risk-based high-throughput chemical screening and prioritization using exposure models and in vitro bioactivity assays

    SciTech Connect (OSTI)

    Shin, Hyeong -Moo; Ernstoff, Alexi; Arnot, Jon A.; Wetmore, Barbara A.; Csiszar, Susan A.; Fantke, Peter; Zhang, Xianming; McKone, Thomas E.; Jolliet, Olivier; Bennett, Deborah H.

    2015-05-01

    We present a risk-based high-throughput screening (HTS) method to identify chemicals for potential health concerns or for which additional information is needed. The method is applied to 180 organic chemicals as a case study. We first obtain information on how the chemical is used and identify relevant use scenarios (e.g., dermal application, indoor emissions). For each chemical and use scenario, exposure models are then used to calculate a chemical intake fraction, or a product intake fraction, accounting for chemical properties and the exposed population. We then combine these intake fractions with use scenario-specific estimates of chemical quantity to calculate daily intake rates (iR; mg/kg/day). These intake rates are compared to oral equivalent doses (OED; mg/kg/day), calculated from a suite of ToxCast in vitro bioactivity assays using in vitro-to-in vivo extrapolation and reverse dosimetry. Bioactivity quotients (BQs) are calculated as iR/OED to obtain estimates of potential impact associated with each relevant use scenario. Of the 180 chemicals considered, 38 had maximum iRs exceeding minimum OEDs (i.e., BQs > 1). For most of these compounds, exposures are associated with direct intake, food/oral contact, or dermal exposure. The method provides high-throughput estimates of exposure and important input for decision makers to identify chemicals of concern for further evaluation with additional information or more refined models.

  2. Risk-based high-throughput chemical screening and prioritization using exposure models and in vitro bioactivity assays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shin, Hyeong -Moo; Ernstoff, Alexi; Arnot, Jon A.; Wetmore, Barbara A.; Csiszar, Susan A.; Fantke, Peter; Zhang, Xianming; McKone, Thomas E.; Jolliet, Olivier; Bennett, Deborah H.

    2015-05-01

    We present a risk-based high-throughput screening (HTS) method to identify chemicals for potential health concerns or for which additional information is needed. The method is applied to 180 organic chemicals as a case study. We first obtain information on how the chemical is used and identify relevant use scenarios (e.g., dermal application, indoor emissions). For each chemical and use scenario, exposure models are then used to calculate a chemical intake fraction, or a product intake fraction, accounting for chemical properties and the exposed population. We then combine these intake fractions with use scenario-specific estimates of chemical quantity to calculate dailymore » intake rates (iR; mg/kg/day). These intake rates are compared to oral equivalent doses (OED; mg/kg/day), calculated from a suite of ToxCast in vitro bioactivity assays using in vitro-to-in vivo extrapolation and reverse dosimetry. Bioactivity quotients (BQs) are calculated as iR/OED to obtain estimates of potential impact associated with each relevant use scenario. Of the 180 chemicals considered, 38 had maximum iRs exceeding minimum OEDs (i.e., BQs > 1). For most of these compounds, exposures are associated with direct intake, food/oral contact, or dermal exposure. The method provides high-throughput estimates of exposure and important input for decision makers to identify chemicals of concern for further evaluation with additional information or more refined models.« less

  3. High-Throughput, High-Precision Hot Testing Tool for High-Brightness Light-Emitting Diode Testing

    Broader source: Energy.gov [DOE]

    This project is determining the requirements of the solid-state lighting industry for high-quality color coordination and flux characterization of high-brightness light-emitting diodes (HBLEDs) as well as demonstrating and testing a cost-effective hot test tool that meets the requirements.

  4. Understanding the stable boron clusters: A bond model and first-principles calculations based on high-throughput screening

    SciTech Connect (OSTI)

    Xu, Shao-Gang; Liao, Ji-Hai; Zhao, Yu-Jun; Yang, Xiao-Bao

    2015-06-07

    The unique electronic property induced diversified structure of boron (B) cluster has attracted much interest from experimentalists and theorists. B{sub 30–40} were reported to be planar fragments of triangular lattice with proper concentrations of vacancies recently. Here, we have performed high-throughput screening for possible B clusters through the first-principles calculations, including various shapes and distributions of vacancies. As a result, we have determined the structures of B{sub n} clusters with n = 30–51 and found a stable planar cluster of B{sub 49} with a double-hexagon vacancy. Considering the 8-electron rule and the electron delocalization, a concise model for the distribution of the 2c–2e and 3c–2e bonds has been proposed to explain the stability of B planar clusters, as well as the reported B cages.

  5. Determination of gene expression patterns using high-throughput RNA in situ hybridizaion to whole-mount Drosophila embryos

    SciTech Connect (OSTI)

    Weiszmann, R.; Hammonds, A.S.; Celniker, S.E.

    2009-04-09

    We describe a high-throughput protocol for RNA in situ hybridization (ISH) to Drosophila embryos in a 96-well format. cDNA or genomic DNA templates are amplified by PCR and then digoxigenin-labeled ribonucleotides are incorporated into antisense RNA probes by in vitro transcription. The quality of each probe is evaluated before ISH using a RNA probe quantification (dot blot) assay. RNA probes are hybridized to fixed, mixed-staged Drosophila embryos in 96-well plates. The resulting stained embryos can be examined and photographed immediately or stored at 4oC for later analysis. Starting with fixed, staged embryos, the protocol takes 6 d from probe template production through hybridization. Preparation of fixed embryos requires a minimum of 2 weeks to collect embryos representing all stages. The method has been used to determine the expression patterns of over 6,000 genes throughout embryogenesis.

  6. Industrial co-generation through use of a medium BTU gas from biomass produced in a high throughput reactor

    SciTech Connect (OSTI)

    Feldmann, H.F.; Ball, D.A.; Paisley, M.A.

    1983-01-01

    A high-throughput gasification system has been developed for the steam gasification of woody biomass to produce a fuel gas with a heating value of 475 to 500 Btu/SCF without using oxygen. Recent developments have focused on the use of bark and sawdust as feedstocks in addition to wood chips and the testing of a new reactor concept, the so-called controlled turbulent zone (CTZ) reactor to increase gas production per unit of wood fed. Operating data from the original gasification system and the CTZ system are used to examine the preliminary economics of biomass gasification/gas turbine cogeneration systems. In addition, a ''generic'' pressurized oxygen-blown gasification system is evaluated. The economics of these gasification systems are compared with a conventional wood boiler/steam turbine cogeneration system.

  7. High-throughput identification of off-targets for the mechanistic study of severe adverse drug reactions induced by analgesics

    SciTech Connect (OSTI)

    Pan, Jian-Bo; Ji, Nan; Pan, Wen; Hong, Ru; Wang, Hao; Ji, Zhi-Liang

    2014-01-01

    Drugs may induce adverse drug reactions (ADRs) when they unexpectedly bind to proteins other than their therapeutic targets. Identification of these undesired protein binding partners, called off-targets, can facilitate toxicity assessment in the early stages of drug development. In this study, a computational framework was introduced for the exploration of idiosyncratic mechanisms underlying analgesic-induced severe adverse drug reactions (SADRs). The putative analgesic-target interactions were predicted by performing reverse docking of analgesics or their active metabolites against human/mammal protein structures in a high-throughput manner. Subsequently, bioinformatics analyses were undertaken to identify ADR-associated proteins (ADRAPs) and pathways. Using the pathways and ADRAPs that this analysis identified, the mechanisms of SADRs such as cardiac disorders were explored. For instance, 53 putative ADRAPs and 24 pathways were linked with cardiac disorders, of which 10 ADRAPs were confirmed by previous experiments. Moreover, it was inferred that pathways such as base excision repair, glycolysis/glyconeogenesis, ErbB signaling, calcium signaling, and phosphatidyl inositol signaling likely play pivotal roles in drug-induced cardiac disorders. In conclusion, our framework offers an opportunity to globally understand SADRs at the molecular level, which has been difficult to realize through experiments. It also provides some valuable clues for drug repurposing. - Highlights: A novel computational framework was developed for mechanistic study of SADRs. Off-targets of drugs were identified in large scale and in a high-throughput manner. SADRs like cardiac disorders were systematically explored in molecular networks. A number of ADR-associated proteins were identified.

  8. High throughput lessons from the LHC experience.Johnston.TNC2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Currently it appears that a Web-based knowledge base is one effective way to do this. Some ... therefore, high latency paths - only at speeds 10-100 times slower than the link capacity. ...

  9. Development and operation of a high-throughput accurate-wavelength...

    Office of Scientific and Technical Information (OSTI)

    imaging. A precision optical encoder measures the grating angle with an accuracy 0.075 arc sec. A high quantum efficiency low-etaloning CCD detector allows operation at longer...

  10. High throughput lessons from the LHC experience.Johnston.TNC2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High natural gas output and inventories contribute to lower prices High natural gas production and ample gas inventories are expected to keep natural gas prices relatively low for the rest of 2015. In its new monthly forecast, the U.S. Energy Information Administration says that while expected production growth is slowing from last year's torrid pace, domestic natural gas production in 2015 is still expected to be almost 6 percent above the 2014 level. Higher production has pushed U.S. natural

  11. Air-stable ink for scalable, high-throughput layer deposition

    DOE Patents [OSTI]

    Weil, Benjamin D; Connor, Stephen T; Cui, Yi

    2014-02-11

    A method for producing and depositing air-stable, easily decomposable, vulcanized ink on any of a wide range of substrates is disclosed. The ink enables high-volume production of optoelectronic and/or electronic devices using scalable production methods, such as roll-to-roll transfer, fast rolling processes, and the like.

  12. Scalable Computational Methods for the Analysis of High-Throughput Biological Data

    SciTech Connect (OSTI)

    Langston, Michael A

    2012-09-06

    This primary focus of this research project is elucidating genetic regulatory mechanisms that control an organism?¢????s responses to low-dose ionizing radiation. Although low doses (at most ten centigrays) are not lethal to humans, they elicit a highly complex physiological response, with the ultimate outcome in terms of risk to human health unknown. The tools of molecular biology and computational science will be harnessed to study coordinated changes in gene expression that orchestrate the mechanisms a cell uses to manage the radiation stimulus. High performance implementations of novel algorithms that exploit the principles of fixed-parameter tractability will be used to extract gene sets suggestive of co-regulation. Genomic mining will be performed to scrutinize, winnow and highlight the most promising gene sets for more detailed investigation. The overall goal is to increase our understanding of the health risks associated with exposures to low levels of radiation.

  13. Evaluation of High Throughput Screening Methods in Picking up Differences between Cultivars of Lignocellulosic Biomass for Ethanol Production

    SciTech Connect (OSTI)

    Lindedam, Jane; Bruun, Sander; Jorgensen, Henning; Decker, Stephen R.; Turner, Geoffrey B.; DeMartini, Jaclyn D.; Wyman, Charles E.; Felby, Claus

    2014-07-01

    Here, we present a unique evaluation of three advanced high throughput pretreatment and enzymatic hydrolysis systems (HTPH-systems) for screening of lignocellulosic biomass for enzymatic saccharification. Straw from 20 cultivars of winter wheat from two sites in Denmark was hydrothermally pretreated and enzymatically processed in each of the separately engineered HTPH-systems at 1) University of California, Riverside, 2) National Renewable Energy Laboratory (NREL), Colorado, and 3) University of Copenhagen (CPH). All three systems were able to detect significant differences between the cultivars in the release of fermentable sugars, with average cellulose conversions of 57%, 64%, and 71% from Riverside, NREL and CPH, respectively. We found the best correlation of glucose yields between the Riverside and NREL systems (R2 = 0.2139), and the best correlation for xylose yields was found between Riverside and CPH (R2 = 0.4269). The three systems identified Flair as the highest yielding cultivar and Dinosor, Glasgow, and Robigus as low yielding cultivars. Despite different conditions in the three HTPH-systems, the approach of microscale screening for phenotypically less recalcitrant feedstock seems sufficiently robust to be used as a generic analytical platform.

  14. Compartmentalized microchannel array for high-throughput analysis of single cell polarized growth and dynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Geng, Tao; Bredeweg, Erin L.; Szymanski, Craig J.; Liu, Bingwen; Baker, Scott E.; Orr, Galya; Evans, James E.; Kelly, Ryan T.

    2015-11-04

    Here, interrogating polarized growth is technologically challenging due to extensive cellular branching and uncontrollable environmental conditions in conventional assays. Here we present a robust and high-performance microfluidic system that enables observations of polarized growth with enhanced temporal and spatial control over prolonged periods. The system has built-in tunability and versatility to accommodate a variety of science applications requiring precisely controlled environments. Using the model filamentous fungus, Neurospora crassa, this microfluidic system enabled direct visualization and analysis of cellular heterogeneity in a clonal fungal cell population, nuclear distribution and dynamics at the subhyphal level, and quantitative dynamics of gene expression withmore » single hyphal compartment resolution in response to carbon source starvation and exchange experiments. Although the microfluidic device is demonstrated on filamentous fungi, our technology is immediately extensible to a wide array of other biosystems that exhibit similar polarized cell growth with applications ranging from bioenergy production to human health.« less

  15. Compartmentalized microchannel array for high-throughput analysis of single cell polarized growth and dynamics

    SciTech Connect (OSTI)

    Geng, Tao; Bredeweg, Erin L.; Szymanski, Craig J.; Liu, Bingwen; Baker, Scott E.; Orr, Galya; Evans, James E.; Kelly, Ryan T.

    2015-11-04

    Interrogating polarized growth is technologically challenging due to extensive cellular branching and uncontrollable environmental conditions in conventional assays. Here we present a robust and high-performance microfluidic system that enables observations of polarized growth with enhanced temporal and spatial control over prolonged periods. The system has built-in tunability and versatility to accommodate a variety of science applications requiring precisely controlled environments. Using the model filamentous fungus, Neurospora crassa, this microfluidic system enabled direct visualization and analysis of cellular heterogeneity in a clonal fungal cell population, nuclear distribution and dynamics at the subhyphal level, and quantitative dynamics of gene expression with single hyphal compartment resolution in response to carbon source starvation and exchange experiments. Although the microfluidic device is demonstrated on filamentous fungi, our technology is immediately extensible to a wide array of other biosystems that exhibit similar polarized cell growth with applications ranging from bioenergy production to human health.

  16. Compartmentalized microchannel array for high-throughput analysis of single cell polarized growth and dynamics

    SciTech Connect (OSTI)

    Geng, Tao; Bredeweg, Erin L.; Szymanski, Craig J.; Liu, Bingwen; Baker, Scott E.; Orr, Galya; Evans, James E.; Kelly, Ryan T.

    2015-11-04

    Here, interrogating polarized growth is technologically challenging due to extensive cellular branching and uncontrollable environmental conditions in conventional assays. Here we present a robust and high-performance microfluidic system that enables observations of polarized growth with enhanced temporal and spatial control over prolonged periods. The system has built-in tunability and versatility to accommodate a variety of science applications requiring precisely controlled environments. Using the model filamentous fungus, Neurospora crassa, this microfluidic system enabled direct visualization and analysis of cellular heterogeneity in a clonal fungal cell population, nuclear distribution and dynamics at the subhyphal level, and quantitative dynamics of gene expression with single hyphal compartment resolution in response to carbon source starvation and exchange experiments. Although the microfluidic device is demonstrated on filamentous fungi, our technology is immediately extensible to a wide array of other biosystems that exhibit similar polarized cell growth with applications ranging from bioenergy production to human health.

  17. Conversion of forest residues to a methane-rich gas in a high-throughput gasifier

    SciTech Connect (OSTI)

    Feldmann, H.F.; Paisley, M.A.; Appelbaum, H.R.; Taylor, D.R.

    1988-05-01

    Research was conducted in a process research unit to develop an entrained bed gasifier which is supplied heat by recirculating a stream of sand between a separate combustion vessel and the gasifier. The char remaining after gasification of the wood provides the fuel for the combustor. The research program was conducted in two phases. In the first phase, a 6 in. I.D. gasifier was used to establish the feasibility of the concept for a wide variety of biomass feeds. The second phase of the program was conducted with a 10 in. I.D. gasifier, and a fully automated feeder system, to evaluate gasifier performance at very high feed rates. The experimental results were used to develop design parameters and detailed energy and material balances for a conceptual plant. A preliminary cost analysis is presented in the report based on the conceptual design. 5 refs., 24 figs., 13 tabs.

  18. High-Throughput Genetic Analysis and Combinatorial Chiral Separations Based on Capillary Electrophoresis

    SciTech Connect (OSTI)

    Wenwan Zhong

    2003-08-05

    Capillary electrophoresis (CE) offers many advantages over conventional analytical methods, such as speed, simplicity, high resolution, low cost, and small sample consumption, especially for the separation of enantiomers. However, chiral method developments still can be time consuming and tedious. They designed a comprehensive enantioseparation protocol employing neutral and sulfated cyclodextrins as chiral selectors for common basic, neutral, and acidic compounds with a 96-capillary array system. By using only four judiciously chosen separation buffers, successful enantioseparations were achieved for 49 out of 54 test compounds spanning a large variety of pKs and structures. Therefore, unknown compounds can be screened in this manner to identify optimal enantioselective conditions in just one rn. In addition to superior separation efficiency for small molecules, CE is also the most powerful technique for DNA separations. Using the same multiplexed capillary system with UV absorption detection, the sequence of a short DNA template can be acquired without any dye-labels. Two internal standards were utilized to adjust the migration time variations among capillaries, so that the four electropherograms for the A, T, C, G Sanger reactions can be aligned and base calling can be completed with a high level of confidence. the CE separation of DNA can be applied to study differential gene expression as well. Combined with pattern recognition techniques, small variations among electropherograms obtained by the separation of cDNA fragments produced from the total RNA samples of different human tissues can be revealed. These variations reflect the differences in total RNA expression among tissues. Thus, this Ce-based approach can serve as an alternative to the DNA array techniques in gene expression analysis.

  19. High Efficiency Microturbine with Integral Heat Recovery - Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2014 High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2014 Capstone Turbine...

  20. Integrated Solar Thermochemical Reaction System for High Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Solar Thermochemical Reaction System for High Efficiency Production of Electricity Integrated Solar Thermochemical Reaction System for High Efficiency Production of ...

  1. High Efficiency Solar Integrated Roof Membrane Product

    SciTech Connect (OSTI)

    Partyka, Eric; Shenoy, Anil

    2013-05-15

    This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

  2. High throughput microcantilever detector

    DOE Patents [OSTI]

    Thundat, Thomas G.; Ferrell, Thomas L.; Hansen, Karolyn M.; Tian, Fang

    2004-07-20

    In an improved uncoated microcantilever detector, the sample sites are placed on a separate semi-conducting substrate and the microcantilever element detects and measures the changes before and after a chemical interaction or hybridization of the sites by sensing differences of phase angle between an alternating voltage applied to the microcantilever element and vibration of the microcantilever element. In another embodiment of the invention, multiple sample sites are on a sample array wherein an array of microcantilever elements detect and measure the change before and after chemical interactions or hybridizations of the sample sites.

  3. Robofurnace: A semi-automated laboratory chemical vapor deposition system for high-throughput nanomaterial synthesis and process discovery

    SciTech Connect (OSTI)

    Oliver, C. Ryan; Westrick, William; Koehler, Jeremy; Brieland-Shoultz, Anna; Anagnostopoulos-Politis, Ilias; Cruz-Gonzalez, Tizoc [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Hart, A. John, E-mail: ajhart@mit.edu [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2013-11-15

    Laboratory research and development on new materials, such as nanostructured thin films, often utilizes manual equipment such as tube furnaces due to its relatively low cost and ease of setup. However, these systems can be prone to inconsistent outcomes due to variations in standard operating procedures and limitations in performance such as heating and cooling rates restrict the parameter space that can be explored. Perhaps more importantly, maximization of research throughput and the successful and efficient translation of materials processing knowledge to production-scale systems, relies on the attainment of consistent outcomes. In response to this need, we present a semi-automated lab-scale chemical vapor deposition (CVD) furnace system, called Robofurnace. Robofurnace is an automated CVD system built around a standard tube furnace, which automates sample insertion and removal and uses motion of the furnace to achieve rapid heating and cooling. The system has a 10-sample magazine and motorized transfer arm, which isolates the samples from the lab atmosphere and enables highly repeatable placement of the sample within the tube. The system is designed to enable continuous operation of the CVD reactor, with asynchronous loading/unloading of samples. To demonstrate its performance, Robofurnace is used to develop a rapid CVD recipe for carbon nanotube (CNT) forest growth, achieving a 10-fold improvement in CNT forest mass density compared to a benchmark recipe using a manual tube furnace. In the long run, multiple systems like Robofurnace may be linked to share data among laboratories by methods such as Twitter. Our hope is Robofurnace and like automation will enable machine learning to optimize and discover relationships in complex material synthesis processes.

  4. PROJECT PROFILE: Combined PV/Battery Grid Integration with High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROJECT PROFILE: Combined PVBattery Grid Integration with High Frequency Magnetics Enabled Power Electronics (SuNLaMP) PROJECT PROFILE: Combined PVBattery Grid Integration with ...

  5. Development of High-Capacity Cathode Materials with Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Development of High-Capacity Cathode Materials with Integrated Structures Vehicle Technologies Office Merit Review 2015: Design and Evaluation of High...

  6. High Temperature Integrated Thermoelectric Ststem and Materials

    SciTech Connect (OSTI)

    Mike S. H. Chu

    2011-06-06

    The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits. Two composition systems, specifically 1.0 SrO - 0.8 x 1.03 TiO2 - 0.2 x 1.03 NbO2.5 and 0.97 TiO2 - 0.03 NbO2.5, have been identified as good base line compositions for n-type thermoelectric compositions in future module design. Tests of these materials at an outside company were promising using that company's processing and material expertise. There was no unique p-type thermoelectric compositions identified in phase I work other than several current cobaltite materials. Ca3Co4O9 will be the primary p-type material for the future module design until alternative materials are developed. BaTiO3 and rare earth titanate based dielectric compositions show both p-type and n-type behavior even though their electrical conductivities were very low. Further research and development of these materials for thermoelectric applications is planned in the future. A preliminary modeling and optimization of a thermoelectric generator (TEG) that uses the n-type 1.0 SrO - 1.03 x 0.8 TiO2 - 1.03 x 0.2 NbO2.5 was performed. Future work will combine development of ceramic powders and manufacturing expertise at TAM, development of SPS at TAM or a partner organization, and thermoelectric material/module testing, modeling, optimization, production at several partner organizations.

  7. NREL: Energy Systems Integration Facility - High-Performance Computing and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analytics High-Performance Computing and Analytics High-performance computing and analytic capabilities at the Energy Systems Integration Facility enable study and simulation of material properties, processes, and fully integrated systems that would otherwise be too expensive, too dangerous, or even impossible to study by direct experimentation. With state-of-the-art computational modeling and predictive simulation capabilities, the Energy System Integration Facility's high-performance

  8. Development of High-Capacity Cathode Materials with Integrated Structures |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es019_kang_2011_p.pdf More Documents & Publications Development of High-Capacity Cathode Materials with Integrated Structures Development of High-Capacity Cathode Materials with Integrated Structures Development of high-capacity cathode materials with integrated structures

  9. Development of High-Capacity Cathode Materials with Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Peer Evaluation PDF icon es019kang2011p.pdf More Documents & Publications Development of High-Capacity Cathode Materials with Integrated Structures Development of...

  10. High Efficiency Microturbine with Integral Heat Recovery - Presentatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Capstone Turbine Corporation, June 2011 High Efficiency Microturbine with Integral Heat Recovery - Presentation by Capstone Turbine Corporation, June 2011 Presentation on ...

  11. Approved High Integrity Containers - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    review is performed during the waste stream profile review. Arrow Pak High Density Polyethylene (HDPE)HIC NUKEM Nuclear Technologies NUHIC-55 SEG Enduro Pak HDPE HIC SEG SQ113...

  12. Development of High-Capacity Cathode Materials with Integrated Structures |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es019_thackeray_2012_o.pdf More Documents & Publications Development of High-Capacity Cathode Materials with Integrated Structures Vehicle Technologies Office Merit Review 2015: Design and Evaluation of High Capacity Cathodes Development of High-Capacity Cathode Materials with Integrated Structures

  13. Development of economically viable, highly integrated, highly modular SEGIS architecture.

    SciTech Connect (OSTI)

    Enslin, Johan; Hamaoui, Ronald; Gonzalez, Sigifredo; Haddad, Ghaith; Rustom, Khalid; Stuby, Rick; Kuran, Mohammad; Mark, Evlyn; Amarin, Ruba; Alatrash, Hussam; Bower, Ward Isaac; Kuszmaul, Scott S.; Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali

    2012-03-01

    Initiated in 2008, the SEGIS initiative is a partnership involving the U.S. DOE, Sandia National Laboratories, private sector companies, electric utilities, and universities. Projects supported under the initiative have focused on the complete-system development of solar technologies, with the dual goal of expanding renewable PV applications and addressing new challenges of connecting large-scale solar installations in higher penetrations to the electric grid. Petra Solar, Inc., a New Jersey-based company, received SEGIS funds to develop solutions to two of these key challenges: integrating increasing quantities of solar resources into the grid without compromising (and likely improving) power quality and reliability, and moving the design from a concept of intelligent system controls to successful commercialization. The resulting state-of-the art technology now includes a distributed photovoltaic (PV) architecture comprising AC modules that not only feed directly into the electrical grid at distribution levels but are equipped with new functions that improve voltage stability and thus enhance overall grid stability. This integrated PV system technology, known as SunWave, has applications for 'Power on a Pole,' and comes with a suite of technical capabilities, including advanced inverter and system controls, micro-inverters (capable of operating at both the 120V and 240V levels), communication system, network management system, and semiconductor integration. Collectively, these components are poised to reduce total system cost, increase the system's overall value and help mitigate the challenges of solar intermittency. Designed to be strategically located near point of load, the new SunWave technology is suitable for integration directly into the electrical grid but is also suitable for emerging microgrid applications. SunWave was showcased as part of a SEGIS Demonstration Conference at Pepco Holdings, Inc., on September 29, 2011, and is presently undergoing further field testing as a prelude to improved and expanded commercialization.

  14. Development of High-Capacity Cathode Materials with Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 -- Washington D.C. PDF icon es019kang2010o.pdf More Documents & Publications Development of high-capacity cathode materials with integrated structures Development of...

  15. Integrated Design: A High-Performance Solution for Affordable Housing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Integrated Design: A High-Performance Solution for Affordable Housing Integrated Design: A High-Performance Solution for Affordable Housing ARIES lab houses. Photo courtesy of The Levy Partnership, Inc. ARIES lab houses. Photo courtesy of The Levy Partnership, Inc. Lead Performer: The Levy Partnership, Inc.-New York, NY Partners: Habitat for Humanity International /Habitat Research Foundation, Atlanta, GA Columbia Count Habitat, NY Habitat of Newburgh, NY Habitat Greater

  16. NREL: Energy Systems Integration - NREL Releases High-Penetration PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Handbook for Distribution Engineers Releases High-Penetration PV Handbook for Distribution Engineers A new resource sponsored by the Energy Department's SunShot Initiative helps distribution engineers understand the challenges of high-penetration PV integration. January 27, 2016 As solar photovoltaic (PV) systems are increasingly installed throughout the country at distribution-level utility scale, a new challenge is emerging: how to safely and effectively integrate greater amounts of

  17. High-throughput behavioral phenotyping of drug and alcohol susceptibility traits in the expanded panel of BXD recombinant inbred strains

    SciTech Connect (OSTI)

    Philip, Vivek M [ORNL; Ansah, T [University of Tennessee Health Science Center, Memphis; Blaha, C, [University of Tennessee Health Science Center, Memphis; Cook, Melloni N. [University of Memphis; Hamre, Kristin M. [University of Tennessee Health Science Center, Memphis; Lariviere, William R [University of Pittsburgh; Matthews, Douglas B [Baylor University; Goldowitz, Daniel [University of British Columbia, Vancouver; Chesler, Elissa J [ORNL

    2010-01-01

    Genetic reference populations, particularly the BXD recombinant inbred strains, are a valuable resource for the discovery of the bio-molecular substrates and genetic drivers responsible for trait variation and co- ariation. This approach can be profitably applied in the analysis of susceptibility and mechanisms of drug and alcohol use disorders for which many predisposing behaviors may predict occurrence and manifestation of increased preference for these substances. Many of these traits are modeled by common mouse behavioral assays, facilitating the detection of patterns and sources of genetic co-regulation of predisposing phenotypes and substance consumption. Members of the Tennessee Mouse Genome Consortium have obtained behavioral phenotype data from 260 measures related to multiple behavioral assays across several domains: self-administration, response to, and withdrawal from cocaine, MDMA, morphine and alcohol; novelty seeking; behavioral despair and related neurological phenomena; pain sensitivity; stress sensitivity; anxiety; hyperactivity; and sleep/wake cycles. All traits have been measured in both sexes and the recently expanded panel of 69 additional BXD recombinant inbred strains (N=69). Sex differences and heritability estimates were obtained for each trait, and a comparison of early (N = 32) and recent BXD RI lines was performed. Primary data is publicly available for heritability, sex difference and genetic analyses using www.GeneNetwork.org. These analyses include QTL detection and genetic analysis of gene expression. Stored results from these analyses are available at http://ontologicaldiscovery.org for comparison to other genomic analysis results. Together with the results of related studies, these data form a public resource for integrative systems genetic analysis of neurobehavioral traits.

  18. Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods

    SciTech Connect (OSTI)

    Lewis, Amanda; Zhao, Hongbin; Hopkins, Scott

    2014-09-30

    This report summarizes the work completed under the U.S. Department of Energy Project Award No.: DE-FE0001181 titled “Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods.” The project started in October 1, 2009 and was finished September 30, 2014. Pall Corporation worked with Cornell University to sputter and test palladium-based ternary alloys onto silicon wafers to examine many alloys at once. With the specialized equipment at Georgia Institute of Technology that analyzed the wafers for adsorbed carbon and sulfur species six compositions were identified to have resistance to carbon and sulfur species. These compositions were deposited on Pall AccuSep® supports by Colorado School of Mines and then tested in simulated synthetic coal gas at the Pall Corporation. Two of the six alloys were chosen for further investigations based on their performance. Alloy reproducibility and long-term testing of PdAuAg and PdZrAu provided insight to the ability to manufacture these compositions for testing. PdAuAg is the most promising alloy found in this work based on the fabrication reproducibility and resistance to carbon and sulfur. Although PdZrAu had great initial resistance to carbon and sulfur species, the alloy composition has a very narrow range that hindered testing reproducibility.

  19. HIV-1 entry inhibition by small-molecule CCR5 antagonists: A combined molecular modeling and mutant study using a high-throughput assay

    SciTech Connect (OSTI)

    Labrecque, Jean; Metz, Markus; Lau, Gloria; Darkes, Marilyn C.; Wong, Rebecca S.Y.; Bogucki, David; Carpenter, Bryon; Chen Gang; Li Tongshuang; Nan, Susan; Schols, Dominique; Bridger, Gary J.; Fricker, Simon P.; Skerlj, Renato T.

    2011-05-10

    Based on the attrition rate of CCR5 small molecule antagonists in the clinic the discovery and development of next generation antagonists with an improved pharmacology and safety profile is necessary. Herein, we describe a combined molecular modeling, CCR5-mediated cell fusion, and receptor site-directed mutagenesis approach to study the molecular interactions of six structurally diverse compounds (aplaviroc, maraviroc, vicriviroc, TAK-779, SCH-C and a benzyloxycarbonyl-aminopiperidin-1-yl-butane derivative) with CCR5, a coreceptor for CCR5-tropic HIV-1 strains. This is the first study using an antifusogenic assay, a model of the interaction of the gp120 envelope protein with CCR5. This assay avoids the use of radioactivity and HIV infection assays, and can be used in a high throughput mode. The assay was validated by comparison with other established CCR5 assays. Given the hydrophobic nature of the binding pocket several binding models are suggested which could prove useful in the rational drug design of new lead compounds.

  20. A NOVEL LOW THERMAL BUDGET THIN-FILM POLYSILICON FABRICATION PROCESS FOR LARGE-AREA, HIGH-THROUGHPUT SOLAR CELL PRODUCTION

    SciTech Connect (OSTI)

    Yue Kuo

    2010-08-15

    A novel thin-film poly-Si fabrication process has been demonstrated. This low thermal budget process transforms the single- and multi-layer amorphous silicon thin films into a poly-Si structure in one simple step over a pulsed rapid thermal annealing process with the enhancement of an ultrathin Ni layer. The complete poly-Si solar cell was fabricated in a short period of time without deteriorating the underneath glass substrate. The unique vertical crystallization process including the mechanism is discussed. Influences of the dopant type and process parameters on crystal structure will be revealed. The poly-Si film structure has been proved using TEM, XRD, Raman, and XPS methods. The poly-Si solar cell structure and the performance have been examined. In principle, the new process is potentially applicable to produce large-area thin-film poly-Si solar cells at a high throughput and low cost. A critical issue in this process is to prevent the excessive dopant diffusion during crystallization. Process parameters and the cell structure have to be optimized to achieve the production goal.

  1. A case study for cloud based high throughput analysis of NGS data using the globus genomics system

    SciTech Connect (OSTI)

    Bhuvaneshwar, Krithika; Sulakhe, Dinanath; Gauba, Robinder; Rodriguez, Alex; Madduri, Ravi; Dave, Utpal; Lacinski, Lukasz; Foster, Ian; Gusev, Yuriy; Madhavan, Subha

    2015-01-01

    Next generation sequencing (NGS) technologies produce massive amounts of data requiring a powerful computational infrastructure, high quality bioinformatics software, and skilled personnel to operate the tools. We present a case study of a practical solution to this data management and analysis challenge that simplifies terabyte scale data handling and provides advanced tools for NGS data analysis. These capabilities are implemented using the “Globus Genomics” system, which is an enhanced Galaxy workflow system made available as a service that offers users the capability to process and transfer data easily, reliably and quickly to address end-to-end NGS analysis requirements. The Globus Genomics system is built on Amazon's cloud computing infrastructure. The system takes advantage of elastic scaling of compute resources to run multiple workflows in parallel and it also helps meet the scale-out analysis needs of modern translational genomics research.

  2. A case study for cloud based high throughput analysis of NGS data using the globus genomics system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bhuvaneshwar, Krithika; Sulakhe, Dinanath; Gauba, Robinder; Rodriguez, Alex; Madduri, Ravi; Dave, Utpal; Lacinski, Lukasz; Foster, Ian; Gusev, Yuriy; Madhavan, Subha

    2015-01-01

    Next generation sequencing (NGS) technologies produce massive amounts of data requiring a powerful computational infrastructure, high quality bioinformatics software, and skilled personnel to operate the tools. We present a case study of a practical solution to this data management and analysis challenge that simplifies terabyte scale data handling and provides advanced tools for NGS data analysis. These capabilities are implemented using the “Globus Genomics” system, which is an enhanced Galaxy workflow system made available as a service that offers users the capability to process and transfer data easily, reliably and quickly to address end-to-end NGS analysis requirements. The Globus Genomicsmore » system is built on Amazon's cloud computing infrastructure. The system takes advantage of elastic scaling of compute resources to run multiple workflows in parallel and it also helps meet the scale-out analysis needs of modern translational genomics research.« less

  3. Development of high through-put Sr isotope analysis for monitoring reservoir integrity for CO{sub 2} storage.

    SciTech Connect (OSTI)

    Wall, Andy; Jain, Jinesh; Stewart, Brian; Capo, Rosemary; Hakala, Alexandra J.; Hammack, Richard; Guthrie, George

    2012-01-01

    Recent innovations in multi-collector ICP-mass spectrometry (MC-ICP-MS) have allowed for rapid and precise measurements of isotope ratios in geological samples. Naturally occurring Sr isotopes has the potential for use in Monitoring, Verification, and Accounting (MVA) associated with geologic CO2 storage. Sr isotopes can be useful for: Sensitive tracking of brine migration; Determining seal rock leakage; Studying fluid/rock reactions. We have optimized separation chemistry procedures that will allow operators to prepare samples for Sr isotope analysis off site using rapid, low cost methods.

  4. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling

    SciTech Connect (OSTI)

    Valerio, Luis G. . E-mail: luis.valerio@FDA.HHS.gov; Arvidson, Kirk B.; Chanderbhan, Ronald F.; Contrera, Joseph F.

    2007-07-01

    Consistent with the U.S. Food and Drug Administration (FDA) Critical Path Initiative, predictive toxicology software programs employing quantitative structure-activity relationship (QSAR) models are currently under evaluation for regulatory risk assessment and scientific decision support for highly sensitive endpoints such as carcinogenicity, mutagenicity and reproductive toxicity. At the FDA's Center for Food Safety and Applied Nutrition's Office of Food Additive Safety and the Center for Drug Evaluation and Research's Informatics and Computational Safety Analysis Staff (ICSAS), the use of computational SAR tools for both qualitative and quantitative risk assessment applications are being developed and evaluated. One tool of current interest is MDL-QSAR predictive discriminant analysis modeling of rodent carcinogenicity, which has been previously evaluated for pharmaceutical applications by the FDA ICSAS. The study described in this paper aims to evaluate the utility of this software to estimate the carcinogenic potential of small, organic, naturally occurring chemicals found in the human diet. In addition, a group of 19 known synthetic dietary constituents that were positive in rodent carcinogenicity studies served as a control group. In the test group of naturally occurring chemicals, 101 were found to be suitable for predictive modeling using this software's discriminant analysis modeling approach. Predictions performed on these compounds were compared to published experimental evidence of each compound's carcinogenic potential. Experimental evidence included relevant toxicological studies such as rodent cancer bioassays, rodent anti-carcinogenicity studies, genotoxic studies, and the presence of chemical structural alerts. Statistical indices of predictive performance were calculated to assess the utility of the predictive modeling method. Results revealed good predictive performance using this software's rodent carcinogenicity module of over 1200 chemicals, comprised primarily of pharmaceutical, industrial and some natural products developed under an FDA-MDL cooperative research and development agreement (CRADA). The predictive performance for this group of dietary natural products and the control group was 97% sensitivity and 80% concordance. Specificity was marginal at 53%. This study finds that the in silico QSAR analysis employing this software's rodent carcinogenicity database is capable of identifying the rodent carcinogenic potential of naturally occurring organic molecules found in the human diet with a high degree of sensitivity. It is the first study to demonstrate successful QSAR predictive modeling of naturally occurring carcinogens found in the human diet using an external validation test. Further test validation of this software and expansion of the training data set for dietary chemicals will help to support the future use of such QSAR methods for screening and prioritizing the risk of dietary chemicals when actual animal data are inadequate, equivocal, or absent.

  5. A multi-channel gel electrophoresis and continuous fraction collection apparatus for high throughput protein separation and characterization

    SciTech Connect (OSTI)

    Choi, Megan; Nordmeyer, Robert A.; Cornell, Earl; Dong, Ming; Biggin, Mark D.; Jin, Jian

    2009-10-02

    To facilitate a direct interface between protein separation by PAGE and protein identification by mass spectrometry, we developed a multichannel system that continuously collects fractions as protein bands migrate off the bottom of gel electrophoresis columns. The device was constructed using several short linear gel columns, each of a different percent acrylamide, to achieve a separation power similar to that of a long gradient gel. A Counter Free-Flow elution technique then allows continuous and simultaneous fraction collection from multiple channels at low cost. We demonstrate that rapid, high-resolution separation of a complex protein mixture can be achieved on this system using SDS-PAGE. In a 2.5 h electrophoresis run, for example, each sample was separated and eluted into 48-96 fractions over a mass range of 10-150 kDa; sample recovery rates were 50percent or higher; each channel was loaded with up to 0.3 mg of protein in 0.4 mL; and a purified band was eluted in two to three fractions (200 L/fraction). Similar results were obtained when running native gel electrophoresis, but protein aggregation limited the loading capacity to about 50 g per channel and reduced resolution.

  6. BioSAXS Sample Changer: a robotic sample changer for rapid and reliable high-throughput X-ray solution scattering experiments

    SciTech Connect (OSTI)

    Round, Adam, E-mail: around@embl.fr; Felisaz, Franck [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Universit Grenoble AlpesEMBLCNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Fodinger, Lukas; Gobbo, Alexandre [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Huet, Julien [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Universit Grenoble AlpesEMBLCNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Villard, Cyril [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Blanchet, Clement E., E-mail: around@embl.fr [EMBL c/o DESY, Notkestrasse 85, 22603 Hamburg (Germany); Pernot, Petra; McSweeney, Sean [ESRF, 6 Rue Jules Horowitz, 38000 Grenoble (France); Roessle, Manfred; Svergun, Dmitri I. [EMBL c/o DESY, Notkestrasse 85, 22603 Hamburg (Germany); Cipriani, Florent, E-mail: around@embl.fr [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Universit Grenoble AlpesEMBLCNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France)

    2015-01-01

    A robotic sample changer for solution X-ray scattering experiments optimized for speed and to use the minimum amount of material has been developed. This system is now in routine use at three high-brilliance European synchrotron sites, each capable of several hundred measurements per day. Small-angle X-ray scattering (SAXS) of macromolecules in solution is in increasing demand by an ever more diverse research community, both academic and industrial. To better serve user needs, and to allow automated and high-throughput operation, a sample changer (BioSAXS Sample Changer) that is able to perform unattended measurements of up to several hundred samples per day has been developed. The Sample Changer is able to handle and expose sample volumes of down to 5 l with a measurement/cleaning cycle of under 1 min. The samples are stored in standard 96-well plates and the data are collected in a vacuum-mounted capillary with automated positioning of the solution in the X-ray beam. Fast and efficient capillary cleaning avoids cross-contamination and ensures reproducibility of the measurements. Independent temperature control for the well storage and for the measurement capillary allows the samples to be kept cool while still collecting data at physiological temperatures. The Sample Changer has been installed at three major third-generation synchrotrons: on the BM29 beamline at the European Synchrotron Radiation Facility (ESRF), the P12 beamline at the PETRA-III synchrotron (EMBL@PETRA-III) and the I22/B21 beamlines at Diamond Light Source, with the latter being the first commercial unit supplied by Bruker ASC.

  7. Velo and REXAN - Integrated Data Management and High Speed Analysis for Experimental Facilities

    SciTech Connect (OSTI)

    Kleese van Dam, Kerstin; Carson, James P.; Corrigan, Abigail L.; Einstein, Daniel R.; Guillen, Zoe C.; Heath, Brandi S.; Kuprat, Andrew P.; Lanekoff, Ingela T.; Lansing, Carina S.; Laskin, Julia; Li, Dongsheng; Liu, Yan; Marshall, Matthew J.; Miller, Erin A.; Orr, Galya; Pinheiro da Silva, Paulo; Ryu, Seun; Szymanski, Craig J.; Thomas, Mathew

    2013-01-10

    The Chemical Imaging Initiative at the Pacific Northwest National Laboratory (PNNL) is creating a Rapid Experimental Analysis (REXAN) Framework, based on the concept of reusable component libraries. REXAN allows developers to quickly compose and customize high throughput analysis pipelines for a range of experiments, as well as supporting the creation of multi-modal analysis pipelines. In addition, PNNL has coupled REXAN with its collaborative data management and analysis environment Velo to create an easy to use data management and analysis environments for experimental facilities. This paper will discuss the benefits of Velo and REXAN in the context of three examples: PNNL High Resolution Mass Spectrometry - reducing analysis times from hours to seconds, and enabling the analysis of much larger data samples (100KB to 40GB) at the same time ALS X-Ray tomography - reducing analysis times of combined STXM and EM data collected at the ALS from weeks to minutes, decreasing manual work and increasing data volumes that can be analysed in a single step Multi-modal nano-scale analysis of STXM and TEM data - providing a semi automated process for particle detection The creation of REXAN has significantly shortened the development time for these analysis pipelines. The integration of Velo and REXAN has significantly increased the scientific productivity of the instruments and their users by creating easy to use data management and analysis environments with greatly reduced analysis times and improved analysis capabilities.

  8. Biochemical & Thermochemical High Throughput Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    20 40 60 80 100 120 140 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 Frequency Corn Stover Corn Cob Miscanthus Wheat...

  9. Biochemical & Thermochemical High Throughput Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    20 40 60 80 100 120 140 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 Frequency Corn Stover Corn Cob Miscanthus Wheat

  10. High throughput reproducible cantilever functionalization

    DOE Patents [OSTI]

    Evans, Barbara R; Lee, Ida

    2014-01-21

    A method for functionalizing cantilevers is provided that includes providing a holder having a plurality of channels each having a width for accepting a cantilever probe and a plurality of probes. A plurality of cantilever probes are fastened to the plurality of channels of the holder by the spring clips. The wells of a well plate are filled with a functionalization solution, wherein adjacent wells in the well plate are separated by a dimension that is substantially equal to a dimension separating adjacent channels of the plurality of channels. Each cantilever probe that is fastened within the plurality of channels of the holder is applied to the functionalization solution that is contained in the wells of the well plate.

  11. High-throughput prediction of Acacia and eucalypt lignin syringyl/guaiacyl content using FT-Raman spectroscopy and partial least squares modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lupoi, Jason S.; Healey, Adam; Singh, Seema; Sykes, Robert; Davis, Mark; Lee, David J.; Shepherd, Merv; Simmons, Blake A.; Henry, Robert J.

    2015-01-16

    High-throughput techniques are necessary to efficiently screen potential lignocellulosic feedstocks for the production of renewable fuels, chemicals, and bio-based materials, thereby reducing experimental time and expense while supplanting tedious, destructive methods. The ratio of lignin syringyl (S) to guaiacyl (G) monomers has been routinely quantified as a way to probe biomass recalcitrance. Mid-infrared and Raman spectroscopy have been demonstrated to produce robust partial least squares models for the prediction of lignin S/G ratios in a diverse group of Acacia and eucalypt trees. The most accurate Raman model has now been used to predict the S/G ratio from 269 unknown Acaciamore » and eucalypt feedstocks. This study demonstrates the application of a partial least squares model composed of Raman spectral data and lignin S/G ratios measured using pyrolysis/molecular beam mass spectrometry (pyMBMS) for the prediction of S/G ratios in an unknown data set. The predicted S/G ratios calculated by the model were averaged according to plant species, and the means were not found to differ from the pyMBMS ratios when evaluating the mean values of each method within the 95 % confidence interval. Pairwise comparisons within each data set were employed to assess statistical differences between each biomass species. While some pairwise appraisals failed to differentiate between species, Acacias, in both data sets, clearly display significant differences in their S/G composition which distinguish them from eucalypts. In conclusion, this research shows the power of using Raman spectroscopy to supplant tedious, destructive methods for the evaluation of the lignin S/G ratio of diverse plant biomass materials.« less

  12. High Density Polymer-Based Integrated Electgrode Array

    DOE Patents [OSTI]

    Maghribi, Mariam N.; Krulevitch, Peter A.; Davidson, James Courtney; Hamilton, Julie K.

    2006-04-25

    A high density polymer-based integrated electrode apparatus that comprises a central electrode body and a multiplicity of arms extending from the electrode body. The central electrode body and the multiplicity of arms are comprised of a silicone material with metal features in said silicone material that comprise electronic circuits.

  13. Highly Integrated Quality Assurance – An Empirical Case

    SciTech Connect (OSTI)

    Drake Kirkham; Amy Powell; Lucas Rich

    2011-02-01

    Highly Integrated Quality Assurance – An Empirical Case Drake Kirkham1, Amy Powell2, Lucas Rich3 1Quality Manager, Radioisotope Power Systems (RPS) Program, Idaho National Laboratory, P.O. Box 1625 M/S 6122, Idaho Falls, ID 83415-6122 2Quality Engineer, RPS Program, Idaho National Laboratory 3Quality Engineer, RPS Program, Idaho National Laboratory Contact: Voice: (208) 533-7550 Email: Drake.Kirkham@inl.gov Abstract. The Radioisotope Power Systems Program of the Idaho National Laboratory makes an empirical case for a highly integrated Quality Assurance function pertaining to the preparation, assembly, testing, storage and transportation of 238Pu fueled radioisotope thermoelectric generators. Case data represents multiple campaigns including the Pluto/New Horizons mission, the Mars Science Laboratory mission in progress, and other related projects. Traditional Quality Assurance models would attempt to reduce cost by minimizing the role of dedicated Quality Assurance personnel in favor of either functional tasking or peer-based implementations. Highly integrated Quality Assurance adds value by placing trained quality inspectors on the production floor side-by-side with nuclear facility operators to enhance team dynamics, reduce inspection wait time, and provide for immediate, independent feedback. Value is also added by maintaining dedicated Quality Engineers to provide for rapid identification and resolution of corrective action, enhanced and expedited supply chain interfaces, improved bonded storage capabilities, and technical resources for requirements management including data package development and Certificates of Inspection. A broad examination of cost-benefit indicates highly integrated Quality Assurance can reduce cost through the mitigation of risk and reducing administrative burden thereby allowing engineers to be engineers, nuclear operators to be nuclear operators, and the cross-functional team to operate more efficiently. Applicability of this case extends to any high-value, long-term project where traceability and accountability are determining factors.

  14. High-Penetration PV Integration Handbook for Distribution Engineers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 High-Penetration PV Integration Handbook for Distribution Engineers Rich Seguin, Jeremy Woyak, David Costyk, and Josh Hambrick Electrical Distribution Design Barry Mather National

  15. Achieving High Reliability Operations Through Multi-Program Integration

    SciTech Connect (OSTI)

    Holly M. Ashley; Ronald K. Farris; Robert E. Richards

    2009-04-01

    Over the last 20 years the Idaho National Laboratory (INL) has adopted a number of operations and safety-related programs which has each periodically taken its turn in the limelight. As new programs have come along there has been natural competition for resources, focus and commitment. In the last few years, the INL has made real progress in integrating all these programs and are starting to realize important synergies. Contributing to this integration are both collaborative individuals and an emerging shared vision and goal of the INL fully maturing in its high reliability operations. This goal is so powerful because the concept of high reliability operations (and the resulting organizations) is a masterful amalgam and orchestrator of the best of all the participating programs (i.e. conduct of operations, behavior based safety, human performance, voluntary protection, quality assurance, and integrated safety management). This paper is a brief recounting of the lessons learned, thus far, at the INL in bringing previously competing programs into harmony under the goal (umbrella) of seeking to perform regularly as a high reliability organization. In addition to a brief diagram-illustrated historical review, the authors will share the INLs primary successes (things already effectively stopped or started) and the gaps yet to be bridged.

  16. High-Level Liquid Waste Tank Integrity Workshop - 2008

    Office of Environmental Management (EM)

    techniques for primarysecondary tank wall and concrete * * Develop tank integrity roadmap and execution plan Develop tank integrity roadmap and execution plan including...

  17. Highly parallel vector visualization using line integral convolution

    SciTech Connect (OSTI)

    Cabral, B.; Leedom, C.

    1995-12-01

    Line Integral Convolution (LIC) is an effective imaging operator for visualizing large vector fields. It works by blurring an input image along local vector field streamlines yielding an output image. LIC is highly parallelizable because it uses only local read-sharing of input data and no write-sharing of output data. Both coarse- and fine-grained implementations have been developed. The coarse-grained implementation uses a straightforward row-tiling of the vector field to parcel out work to multiple CPUs. The fine-grained implementation uses a series of image warps and sums to compute the LIC algorithm across the entire vector field at once. This is accomplished by novel use of high-performance graphics hardware texture mapping and accumulation buffers.

  18. Integrating High Penetrations of PV into Southern California

    SciTech Connect (OSTI)

    Kroposki, B.; Mather, B.; Hasper-Tuttle, J.; Neal, R.; Katiraei, F.; Yazdani, A.; Aguero, J. R.; Hoff, T. E.; Norris, B. L.; Parkins, A.; Seguin, R.; Schauder, C.

    2011-01-01

    California regulators recently approved a plan proposed by Southern California Edison (SCE) to install 500 MW of distributed photovoltaic (PV) energy in its utility service territory over the next 5 years. The installations will include 250 MW of utility-owned solar and 250 MW of independently owned solar. SCE expects that the majority of these systems will be commercial-scale rooftop PV systems connected at various points in the distribution system. Each of the SCE rooftop PV systems will typically have a rating of 1-3 MW. To understand the impact of high-penetration PV on the distribution grid, the National Renewable Energy Laboratory (NREL) and SCE brought together a team of experts in resource assessment, distribution modeling, and planning to help analyze the impacts of adding high penetration of PV into the distribution system. Through modeling and simulation, laboratory testing, and field demonstrations, the team will address the issues identified in the analysis by fully examining the challenges, developing solutions, and transitioning those solutions to the field for large-scale deployment. This paper gives an update on the project and discusses technical results of integrating a large number of distributed PV systems into the grid.

  19. Print-based Manufacturing of Integrated, Low Cost, High Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... (L3) Integrated Optimized * Electronics (PCB, Driver, LED's) * Heatsink * Housing * Optics On Track to meet Project End Goal Next Steps Equipment readiness , Process validation, ...

  20. High order Chin actions in path integral Monte Carlo

    SciTech Connect (OSTI)

    Sakkos, K.; Casulleras, J.; Boronat, J.

    2009-05-28

    High order actions proposed by Chin have been used for the first time in path integral Monte Carlo simulations. Contrary to the Takahashi-Imada action, which is accurate to the fourth order only for the trace, the Chin action is fully fourth order, with the additional advantage that the leading fourth-order error coefficients are finely tunable. By optimizing two free parameters entering in the new action, we show that the time step error dependence achieved is best fitted with a sixth order law. The computational effort per bead is increased but the total number of beads is greatly reduced and the efficiency improvement with respect to the primitive approximation is approximately a factor of 10. The Chin action is tested in a one-dimensional harmonic oscillator, a H{sub 2} drop, and bulk liquid {sup 4}He. In all cases a sixth-order law is obtained with values of the number of beads that compare well with the pair action approximation in the stringent test of superfluid {sup 4}He.

  1. INTEGRATED 15KV SIC VSD AND HIGH-SPEED MW MOTOR FOR GAS COMPRESSION...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INTEGRATED 15KV SIC VSD AND HIGH-SPEED MW MOTOR FOR GAS COMPRESSION SYSTEMS Eaton Corporation - Arden, NC A 15 kilovolt (kV) SiC variable-speed drive will be integrated with a ...

  2. Integrated Solar Thermochemical Reaction System for High Efficiency

    Broader source: Energy.gov (indexed) [DOE]

    In addition to the integrated technology validation projects sponsored by DOE, universities, along with state and local government entities throughout the world are partnering with industry to demonstrate integrated hydrogen and fuel cell technologies in real-world applications. GM/DOW Chemical Partnership The first General Motors fuel cell trailer is in place at the Dow Chemical Company plant in Freeport, TX, helping to power one of the world's largest chemical plants. Photo courtesy of General

  3. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOE Patents [OSTI]

    Ingram, L.O.; Ohta, Kazuyoshi; Wood, B.E.

    1998-10-13

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol. 13 figs.

  4. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOE Patents [OSTI]

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    2000-08-22

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  5. Recombinant cells that highly express chromosomally-integrated heterologous gene

    DOE Patents [OSTI]

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    2007-03-20

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  6. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOE Patents [OSTI]

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    1998-01-01

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  7. Integrated high efficiency blower apparatus for HVAC systems

    DOE Patents [OSTI]

    Liu, Xiaoyue; Weigman, Herman; Wang, Shixiao

    2007-07-24

    An integrated centrifugal blower wheel for a heating, ventilation and air conditioning (HVAC) blower unit includes a first blade support, a second blade support, and a plurality of S-shaped blades disposed between the first and second blade supports, wherein each of the S-shaped blades has a trailing edge bent in a forward direction with respect to a defined direction of rotation of the wheel.

  8. Application of a High-Throughput Analyzer in Evaluating Solid Adsorbents for Post-Combustion Carbon Capture via Multicomponent Adsorption of CO2, N-2, and H2O

    SciTech Connect (OSTI)

    Mason, JA; McDonald, TM; Bae, TH; Bachman, JE; Sumida, K; Dutton, JJ; Kaye, SS; Long, JR

    2015-04-15

    Despite the large number of metal-organic frameworks that have been studied in the context of post-combustion carbon capture, adsorption equilibria of gas mixtures including CO2, N-2, and H2O, which are the three biggest components of the flue gas emanating from a coal- or natural gas-fired power plant, have never been reported. Here, we disclose the design and validation of a high-throughput multicomponent adsorption instrument that can measure equilibrium adsorption isotherms for mixtures of gases at conditions that are representative of an actual flue gas from a power plant. This instrument is used to study 15 different metal-organic frameworks, zeolites, mesoporous silicas, and activated carbons representative of the broad range of solid adsorbents that have received attention for CO2 capture. While the multicomponent results presented in this work provide many interesting fundamental insights, only adsorbents functionalized with alkylamines are shown to have any significant CO2 capacity in the presence of N-2 and H2O at equilibrium partial pressures similar to those expected in a carbon capture process. Most significantly, the amine-appended metal organic framework mmen-Mg-2(dobpdc) (mmen = N,N'-dimethylethylenediamine, dobpdc (4-) = 4,4'-dioxido-3,3'-biphenyldicarboxylate) exhibits a record CO2 capacity of 4.2 +/- 0.2 mmol/g (16 wt %) at 0.1 bar and 40 degrees C in the presence of a high partial pressure of H2O.

  9. Data Integration for the Generation of High Resolution Reservoir Models

    SciTech Connect (OSTI)

    Albert Reynolds; Dean Oliver; Gaoming Li; Yong Zhao; Chaohui Che; Kai Zhang; Yannong Dong; Chinedu Abgalaka; Mei Han

    2009-01-07

    The goal of this three-year project was to develop a theoretical basis and practical technology for the integration of geologic, production and time-lapse seismic data in a way that makes best use of the information for reservoir description and reservoir performance predictions. The methodology and practical tools for data integration that were developed in this research project have been incorporated into computational algorithms that are feasible for large scale reservoir simulation models. As the integration of production and seismic data require calibrating geological/geostatistical models to these data sets, the main computational tool is an automatic history matching algorithm. The following specific goals were accomplished during this research. (1) We developed algorithms for calibrating the location of the boundaries of geologic facies and the distribution of rock properties so that production and time-lapse seismic data are honored. (2) We developed and implemented specific procedures for conditioning reservoir models to time-lapse seismic data. (3) We developed and implemented algorithms for the characterization of measurement errors which are needed to determine the relative weights of data when conditioning reservoir models to production and time-lapse seismic data by automatic history matching. (4) We developed and implemented algorithms for the adjustment of relative permeability curves during the history matching process. (5) We developed algorithms for production optimization which accounts for geological uncertainty within the context of closed-loop reservoir management. (6) To ensure the research results will lead to practical public tools for independent oil companies, as part of the project we built a graphical user interface for the reservoir simulator and history matching software using Visual Basic.

  10. Integrated seal for high-temperature electrochemical device

    DOE Patents [OSTI]

    Tucker, Michael C; Jacobson, Craig P

    2013-07-16

    The present invention provides electrochemical device structures having integrated seals, and methods of fabricating them. According to various embodiments the structures include a thin, supported electrolyte film with the electrolyte sealed to the support. The perimeter of the support is self-sealed during fabrication. The perimeter can then be independently sealed to a manifold or other device, e.g., via an external seal. According to various embodiments, the external seal does not contact the electrolyte, thereby eliminating the restrictions on the sealing method and materials imposed by sealing against the electrolyte.

  11. Print-based Manufacturing of Integrated, Low Cost, High Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a new low-cost, high-efficiency LED architecture made possible by novel large-area ... Related Publications PDF icon 2015 BTO Peer Review Presentation - Print-based ...

  12. Development of high-capacity cathode materials with integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon esp14kang.pdf More Documents & Publications Development of High-Capacity Cathode Materials ...

  13. INTEGRATION OF HIGH TEMPERATURE GAS REACTORS WITH IN SITU OIL SHALE RETORTING

    SciTech Connect (OSTI)

    Eric P. Robertson; Michael G. McKellar; Lee O. Nelson

    2011-05-01

    This paper evaluates the integration of a high-temperature gas-cooled reactor (HTGR) to an in situ oil shale retort operation producing 7950 m3/D (50,000 bbl/day). The large amount of heat required to pyrolyze the oil shale and produce oil would typically be provided by combustion of fossil fuels, but can also be delivered by an HTGR. Two cases were considered: a base case which includes no nuclear integration, and an HTGR-integrated case.

  14. High-Voltage LED Light Engine with Integrated Driver | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Voltage LED Light Engine with Integrated Driver High-Voltage LED Light Engine with Integrated Driver Lead Performer: Lumileds, LLC - San Jose, CA DOE Total Funding: $1,499,346 Cost Share: $499,783 Project Term: 9/1/2014 - 2/29/2016 Funding Opportunity: SSL R&D Funding Opportunity Announcement (FOA) (DE-FOA-0000973) Project Objective This project will develop a high-voltage light engine integrating low-cost, high-power patterned sapphire substrate flip-chip (PSS-FC) architecture LEDs with

  15. Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications

    SciTech Connect (OSTI)

    Lee Nelson

    2011-09-01

    This report is a summary of analyses performed by the NGNP project to determine whether it is technically and economically feasible to integrate high temperature gas cooled reactor (HTGR) technology into industrial processes. To avoid an overly optimistic environmental and economic baseline for comparing nuclear integrated and conventional processes, a conservative approach was used for the assumptions and calculations.

  16. High Efficiency Microturbine with Integral Heat Recovery- Presentation by Capstone Turbine Corporation, June 2011

    Broader source: Energy.gov [DOE]

    Presentation on High Efficiency Microturbine with Integral Heat Recovery, given by John Nourse of Capstone Turbine Corporation, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

  17. Lumileds Develops High-Voltage LED Light Engine with Integrated Driver

    Broader source: Energy.gov [DOE]

    With the help of DOE funding, Lumileds has developed a high-voltage LED light engine with an integrated driver, achieving an efficacy greater than 128 lm/W at a luminous flux greater than 4,100 lm...

  18. High Throughput Materials Characterization John M. Gregoire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alpha N'Diaye JCAP 3 : John Gregoire, Santosh Suram, Misha Pesenson, Junko Yano, Frances Houle CMI 4 : Matt Kramer JCESR 5 : Venkat Srinivasan Kristin Persson (MP 6 ), Tieren...

  19. High throughput liquid absorption preconcentrator sampling instrument

    DOE Patents [OSTI]

    Zaromb, Solomon (Hinsdale, IL); Bozen, Ralph M. (Hattiesburg, MS)

    1992-01-01

    A system for detecting trace concentrations of an analyte in air includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container comprising a wettable material. The wettable material is continuously wetted with an analyte-sorbing liquid which flows from one part of the container to a lower end. Sampled air flows through the container in contact with the wetted material with a swirling motion which results in efficient transfer of analyte vapors or aerosol particles to the sorbing liquid and preconcentration of traces of analyte in the liquid. The preconcentrated traces of analyte may be either detected within the container or removed therefrom for injection into a separate detection means or for subsequent analysis.

  20. High throughput liquid absorption preconcentrator sampling instrument

    DOE Patents [OSTI]

    Zaromb, S.; Bozen, R.M.

    1992-12-22

    A system for detecting trace concentrations of an analyte in air includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container comprising a wettable material. The wettable material is continuously wetted with an analyte-sorbing liquid which flows from one part of the container to a lower end. Sampled air flows through the container in contact with the wetted material with a swirling motion which results in efficient transfer of analyte vapors or aerosol particles to the sorbing liquid and preconcentration of traces of analyte in the liquid. The preconcentrated traces of analyte may be either detected within the container or removed therefrom for injection into a separate detection means or for subsequent analysis. 12 figs.

  1. Constant pressure high throughput membrane permeation testing...

    Office of Scientific and Technical Information (OSTI)

    A digital controller may be utilized to position the retentate and permeate multiport valves cyclically, allowing for gas sampling of different membrane cells over an extended ...

  2. Constant pressure high throughput membrane permeation testing...

    Office of Scientific and Technical Information (OSTI)

    membrane testing cell is ported by a permeate multiport valve for sampling or venting. ... pressures and flow rates on each side of the planar membrane throughout a sampling cycle. ...

  3. High throughput solar cell ablation system

    DOE Patents [OSTI]

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2014-10-14

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  4. High throughput solar cell ablation system

    DOE Patents [OSTI]

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2012-09-11

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  5. Ensemble Jobs for Better Throughput - Videoconference | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ensemble Jobs for Better Throughput - Videoconference Event Sponsor: Argonne National Laboratory Start Date: Sep 24 2015 - 1:00pm BuildingRoom: Online Videoconference Location:...

  6. Low-Cost, High Efficiency Integration of SSL and Building Controls using a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PET Power Distribution System | Department of Energy High Efficiency Integration of SSL and Building Controls using a PET Power Distribution System Low-Cost, High Efficiency Integration of SSL and Building Controls using a PET Power Distribution System Lead Performer: VoltServer Inc. - East Greenwich, RI DOE Total Funding: $999,122 Project Term: July 28, 2015 - July 27, 2017 Funding Opportunity: FY2015 Phase II Release 2 SBIR Awards PROJECT OBJECTIVE This project will demonstrate a novel

  7. Print-based Manufacturing of Integrated, Low Cost, High Performance SSL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Luminaires | Department of Energy Print-based Manufacturing of Integrated, Low Cost, High Performance SSL Luminaires Print-based Manufacturing of Integrated, Low Cost, High Performance SSL Luminaires Lead Performer: Eaton Corporation - Menomonee Falls, WI Partners: - Heraeus Materials Technology, LLC - Conshohocken, PA - Haiku Tech, Inc - Miami, FL - Eaton Cooper Lighting Innovation Center - Peachtree City, GA DOE Total Funding: $2,468,672 Cost Share: $2,468,676 Project Term: 9/15/2013 -

  8. Emerging Issues and Challenges with Integrating High Levels of Solar into

    Office of Environmental Management (EM)

    the Electrical Generation and Transmission Systems | Department of Energy Electrical Generation and Transmission Systems Emerging Issues and Challenges with Integrating High Levels of Solar into the Electrical Generation and Transmission Systems Emerging Issues and Challenges with Integrating High Levels of Solar into the Electrical Generation and Transmission Systems Increasing the use of grid-flexibility options (improved grid management, demand response, and energy storage) could enable

  9. INTEGRATED 15KV SIC VSD AND HIGH-SPEED MW MOTOR FOR GAS COMPRESSION SYSTEMS

    Broader source: Energy.gov [DOE]

    Eaton Corporation – Arden, NC A 15 kilovolt (kV) SiC variable-speed drive will be integrated with a high-speed megawatt motor for gas compression applications. This new drive technology will be developed and tested to operate at greater than 99% efficiency and achieve 10 times the power density of competing drives, providing an integrated, highly-efficient motor and drive system for natural gas applications. Fact sheet coming soon.

  10. High-Penetration PV Integration Handbook for Distribution Engineers

    SciTech Connect (OSTI)

    Seguin, Rich; Woyak, Jeremy; Costyk, David; Hambrick, Josh; Mather, Barry

    2016-01-01

    This handbook has been developed as part of a five-year research project which began in 2010. The National Renewable Energy Laboratory (NREL), Southern California Edison (SCE), Quanta Technology, Satcon Technology Corporation, Electrical Distribution Design (EDD), and Clean Power Research (CPR) teamed together to analyze the impacts of high-penetration levels of photovoltaic (PV) systems interconnected onto the SCE distribution system. This project was designed specifically to leverage the experience that SCE and the project team would gain during the significant installation of 500 MW of commercial scale PV systems (1-5 MW typically) starting in 2010 and completing in 2015 within SCE’s service territory through a program approved by the California Public Utility Commission (CPUC).

  11. High Efficancy Integrated Under-Cabinet Phosphorescent OLED

    SciTech Connect (OSTI)

    Michael Hack

    2001-10-31

    In this two year program Universal Display Corporation (UDC) together with the University of Michigan, Teknokon, developed and delivered an energy efficient phosphorescent OLED under cabinet illumination system. Specifically the UDC team goal was in 2011 to deliver five (5) Beta level OLED under cabinet lighting fixtures each consisting of five 6-inch x 6-inch OLED lighting panels, delivering over 420 lumens, at an overall system efficacy of >60 lm/W, a CRI of >85, and a projected lifetime to 70% of initial luminance to exceed 20,000 hours. During the course of this program, the Team pursued the commercialization of these OLED based under cabinet lighting fixtures, to enable the launch of commercial OLED lighting products. The UDC team was ideally suited to develop these novel and efficient solid state lighting fixtures, having both the technical experience and commercial distribution mechanisms to leverage work performed under this contract. UDC's business strategy is to non-exclusively license its PHOLED technology to lighting manufacturers, and also supply them with our proprietary PHOLED materials. UDC is currently working with several licensees who are manufacturing OLED lighting panels using our technology. During this 2 year program, we further developed our high efficiency white Phosphorescent OLEDs from the first milestone, achieving a 80 lm/W single pixel to the final milestone, achieving an under-cabinet PHOLED lighting system that operates at 56 lm/W at 420 lumens. Each luminaire was comprised of ten 15cm x 7.5cm lighting modules mounted in outcoupling enhancement lenses and a control module. The lamps modules are connected together using either plugs or wires with plugs on each end, allowing for unlimited configurations. The lamps are driven by an OLED driver mounted in an enclosure which includes the AC plug. As a result of advancements gained under this program, the path to move OLED lighting panels from development into manufacturing has been further realized. We have found that under-cabinet lighting is an ideal first entry product opportunity to launch OLED lighting for residential applications. From the studies that we have performed, our PHOLED under-cabinet lighting system performance is very similar to many of the current commercially available LED under-cabinet luminaires. We also found that the projected cost of PHOLED luminaire should be comparable to the LED luminaire by 2015. With the additional benefits of PHOLED lighting, no glare, better uniformity and low operating temperature, it can be easily seen how the PHOLED under-cabinet luminaire could be preferred over the LED competition. Although the metrics we set for this program were extremely aggressive, the performance we achieved and reported, represents a very significant advancement in the OLED lighting industry.

  12. Princeton Power Systems (TRL 5 6 Component)- Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage

    Broader source: Energy.gov [DOE]

    Princeton Power Systems (TRL 5 6 Component) - Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage

  13. FULLY INTEGRATED HIGH SPEED MEGAWATT CLASS MOTOR AND HIGH FREQUENCY VARIABLE SPEED DRIVE SYSTEM

    Broader source: Energy.gov [DOE]

    Clemson University – North Charleston, SC New motor power converter technologies will be used to develop a pre-commercial megawatt class variable speed drive. The fully integrated prototype system will be made by TECO Westinghouse Motor Company in its Round Rock, TX facility and be demonstrated at Clemson’s eGRID Center. Fact sheet coming soon.

  14. Structural integrity and potential failure modes of hanford high-level waste tanks

    SciTech Connect (OSTI)

    Han, F.C.

    1996-09-30

    Structural Integrity of the Hanford High-Level Waste Tanks were evaluated based on the existing Design and Analysis Documents. All tank structures were found adequate for the normal operating and seismic loads. Potential failure modes of the tanks were assessed by engineering interpretation and extrapolation of the existing engineering documents.

  15. Materials and Process Design for High-Temperature Carburizing: Integrating Processing and Performance

    SciTech Connect (OSTI)

    D. Apelian

    2007-07-23

    The objective of the project is to develop an integrated process for fast, high-temperature carburizing. The new process results in an order of magnitude reduction in cycle time compared to conventional carburizing and represents significant energy savings in addition to a corresponding reduction of scrap associated with distortion free carburizing steels.

  16. Integrating High Penetrations of PV into Southern California: Year 2 Project Update; Preprint

    SciTech Connect (OSTI)

    Mather, B.; Neal, R.

    2012-08-01

    Southern California Edison (SCE) is well into a five-year project to install a total of 500 MW of distributed photovoltaic (PV) energy within its utility service territory. Typical installations to date are 1-3 MW peak rooftop PV systems that interconnect to medium-voltage urban distribution circuits or larger (5 MW peak) ground-mounted systems that connect to medium-voltage rural distribution circuits. Some of the PV system interconnections have resulted in distribution circuits that have a significant amount of PV generation compared to customer load, resulting in high-penetration PV integration scenarios. The National Renewable Energy Laboratory (NREL) and SCE have assembled a team of distribution modeling, resource assessment, and PV inverter technology experts in order to investigate a few of the high-penetration PV distribution circuits. Currently, the distribution circuits being studied include an urban circuit with a PV penetration of approximately 46% and a rural circuit with a PV penetration of approximately 60%. In both cases, power flow on the circuit reverses direction, compared to traditional circuit operation, during periods of high PV power production and low circuit loading. Research efforts during year two of the five-year project were focused on modeling the distribution system level impacts of high-penetration PV integrations, the development and installation of distribution circuit data acquisition equipment appropriate for quantifying the impacts of high-penetration PV integrations, and investigating high-penetration PV impact mitigation strategies. This paper outlines these research efforts and discusses the following activities in more detail: the development of a quasi-static time-series test feeder for evaluating high-penetration PV integration modeling tools; the advanced inverter functions being investigated for deployment in the project's field demonstration and a power hardware-in-loop test of a 500-kW PV inverter implementing a limited set of advanced inverter functions.

  17. Initial Operation of the High Temperature Electrolysis Integrated Laboratory Scale Experiment at INL

    SciTech Connect (OSTI)

    C. M. Stoots; J. E. O'Brien; K. G. Condie; J. S. Herring; J. J. Hartvigsen

    2008-06-01

    An integrated laboratory scale, 15 kW high-temperature electrolysis facility has been developed at the Idaho National Laboratory under the U.S. Department of Energy Nuclear Hydrogen Initiative. Initial operation of this facility resulted in over 400 hours of operation with an average hydrogen production rate of approximately 0.9 Nm3/hr. The integrated laboratory scale facility is designed to address larger-scale issues such as thermal management (feed-stock heating, high-temperature gas handling), multiple-stack hot-zone design, multiple-stack electrical configurations, and other “integral” issues. This paper documents the initial operation of the ILS, with experimental details about heat-up, initial stack performance, as well as long-term operation and stack degradation.

  18. NREL/SCE High Penetration PV Integration Project: FY13 Annual Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL/SCE High Penetration PV Integration Project: FY13 Annual Report Barry A. Mather National Renewable Energy Laboratory Sunil Shah Southern California Edison Benjamin L. Norris and John H. Dise Clean Power Research Li Yu, Dominic Paradis, and Farid Katiraei Quanta Technology Richard Seguin, David Costyk, Jeremy Woyak, Jaesung Jung, Kevin Russell, and Robert Broadwater Electrical Distribution Design, Inc. Technical Report NREL/TP-5D00-61269 June 2014 NREL is a national laboratory of the U.S.

  19. NREL: Process Development and Integration Laboratory - Rationale for the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Processing Platform Rationale for the Atmospheric Processing Platform This page provides background information on the rationale for developing the Atmospheric Processing platform in the Process Development and Integration Laboratory. The photovoltaics (PV) industry has been increasingly interested in lower-cost, high-throughput atmospheric approaches to processing PV devices. Over the last five years, the National Renewable Energy Laboratory (NREL) has developed a suite of

  20. The development of a subsea high integrity pipeline protection system (HIPPS)

    SciTech Connect (OSTI)

    Frafjord, P.; Corneliussen, S.; Adriaansen, L.A.

    1995-12-31

    This paper considers the design criteria for a subsea High Integrity Pipeline pressure Protection System (HIPPS), which enables subsea pipelines to be designed for the operating, rather than the shut in wellhead pressure. Such systems will save considerable investment cost in the development of high pressure offshore oil and gas fields, particularly where the distance to the processing infrastructure is long. The conceptual design of a HIPPS which comprises two rapidly closing valves to protect the pipeline from over-pressure, is described. The reliability of the system is assessed and dynamic simulation of the valve and process flow are discussed.

  1. Current Activities Assessing Butt Fusion Joint Integrity in High Density Polyethylene Piping

    SciTech Connect (OSTI)

    Crawford, Susan L.; Cinson, Anthony D.; Doctor, Steven R.; Denslow, Kayte M.

    2012-09-01

    The Pacific Northwest National Laboratory (PNNL) in Richland, Washington, conducted initial studies to evaluate the effectiveness of nondestructive examinations (NDE) coupled with mechanical testing for assessing butt fusion joint integrity in high density polyethylene (HDPE) pipe. The work provided insightful information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques for detecting lack of fusion (LOF) conditions in the fusion joints. HDPE has been installed on a limited basis in American Society of Mechanical Engineers (ASME) Class 3, buried piping systems at several operating U.S. nuclear power plants and has been proposed for use in new construction. A comparison was made between the results from ultrasonic and microwave nondestructive examinations and the results from mechanical destructive evaluations, specifically the high-speed tensile test and the side-bend test, for determining joint integrity. The data comparison revealed that none of the NDE techniques detected all of the lack-of-fusion conditions that were revealed by the destructive tests. Follow-on work has recently been initiated at PNNL to accurately characterize the NDE responses from machined flaws of varying size and location in PE 4710 materials as well as the LOF condition. This effort is directed at quantifying the ability of volumetric NDE techniques to detect flaws in relation to the critical flaw size associated with joint integrity. A status of these latest investigations is presented.

  2. Models for the Configuration and Integrity of Partially Oxidized Fuel Rod Cladding at High Temperatures

    SciTech Connect (OSTI)

    Siefken, L.J.

    1999-01-01

    Models were designed to resolve deficiencies in the SCDAP/RELAP5/MOD3.2 calculations of the configuration and integrity of hot, partially oxidized cladding. These models are expected to improve the calculations of several important aspects of fuel rod behavior. First, an improved mapping was established from a compilation of PIE results from severe fuel damage tests of the configuration of melted metallic cladding that is retained by an oxide layer. The improved mapping accounts for the relocation of melted cladding in the circumferential direction. Then, rules based on PIE results were established for calculating the effect of cladding that has relocated from above on the oxidation and integrity of the lower intact cladding upon which it solidifies. Next, three different methods were identified for calculating the extent of dissolution of the oxidic part of the cladding due to its contact with the metallic part. The extent of dissolution effects the stress and thus the integrity of the oxidic part of the cladding. Then, an empirical equation was presented for calculating the stress in the oxidic part of the cladding and evaluating its integrity based on this calculated stress. This empirical equation replaces the current criterion for loss of integrity which is based on temperature and extent of oxidation. Finally, a new rule based on theoretical and experimental results was established for identifying the regions of a fuel rod with oxidation of both the inside and outside surfaces of the cladding. The implementation of these models is expected to eliminate the tendency of the SCDAP/RELAP5 code to overpredict the extent of oxidation of the upper part of fuel rods and to underpredict the extent of oxidation of the lower part of fuel rods and the part with a high concentration of relocated material. This report is a revision and reissue of the report entitled, Improvements in Modeling of Cladding Oxidation and Meltdown.

  3. Guidelines for development of structural integrity programs for DOE high-level waste storage tanks

    SciTech Connect (OSTI)

    Bandyopadhyay, K.; Bush, S.; Kassir, M.; Mather, B.; Shewmon, P.; Streicher, M.; Thompson, B.; Rooyen, D. van; Weeks, J.

    1997-01-01

    Guidelines are provided for developing programs to promote the structural integrity of high-level waste storage tanks and transfer lines at the facilities of the Department of Energy. Elements of the program plan include a leak-detection system, definition of appropriate loads, collection of data for possible material and geometric changes, assessment of the tank structure, and non-destructive examination. Possible aging degradation mechanisms are explored for both steel and concrete components of the tanks, and evaluated to screen out nonsignificant aging mechanisms and to indicate methods of controlling the significant aging mechanisms. Specific guidelines for assessing structural adequacy will be provided in companion documents. Site-specific structural integrity programs can be developed drawing on the relevant portions of the material in this document.

  4. CREVICE CORROSION & PITTING OF HIGH-LEVEL WASTE CONTAINERS: INTEGRATION OF DETERMINISTIC & PROBABILISTIC MODELS

    SciTech Connect (OSTI)

    JOSEPH C. FARMER AND R. DANIEL MCCRIGHT

    1997-10-01

    A key component of the Engineered Barrier System (EBS) being designed for containment of spent-fuel and high-level waste at the proposed geological repository at Yucca Mountain, Nevada is a two-layer canister. In this particular design, the inner barrier is made of a corrosion resistant material (CRM) such as Alloy 625 or C-22, while the outer barrier is made of a corrosion-allowance material (CAM) such as carbon steel or Monel 400. An integrated predictive model is being developed to account for the effects of localized environmental conditions in the CRM-CAM crevice on the initiation and propagation of pits through the CRM.

  5. Crevice corrosion {ampersand} pitting of high-level waste containers: integration of deterministic {ampersand} probabilistic models

    SciTech Connect (OSTI)

    Farmer, J.C.; McCright, R.D.

    1997-10-01

    A key component of the Engineered Barrier System (EBS) being designed for containment of spent-fuel and high-level waste at the proposed geological repository at Yucca Mountain, Nevada is a two-layer canister. In this particular design, the inner barrier is made of a corrosion resistant material (CRM) such as Alloy 625 or C-22, while the outer barrier is made of a corrosion-allowance material (CAM) such as carbon steel or Monel 400. An integrated predictive model is being developed to account for the effects of localized environmental conditions in the CRM-CAM crevice on the initiation and propagation of pits through the CRM.

  6. Ensemble Jobs for Better Throughput | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ensemble Jobs for Better Throughput Ensemble Jobs for Better Throughput Ensemble Jobs for Better Throughput at the ALCF Want better throughput for your small (<8K node) jobs? Ensemble jobs may hold the key. Ensemble jobs are ideal for users whose workloads include multiple small jobs (<8K nodes) that are suitable to run concurrently. During our interactive videoconference, you will: learn which job submission type is best for your specific workload gain hands-on experience setting up an

  7. THE INTEGRAL HIGH-ENERGY CUT-OFF DISTRIBUTION OF TYPE 1 ACTIVE GALACTIC NUCLEI

    SciTech Connect (OSTI)

    Malizia, A.; Molina, M.; Bassani, L.; Stephen, J. B.; Bazzano, A.; Ubertini, P.; Bird, A. J.

    2014-02-20

    In this Letter we present the primary continuum parameters, the photon index Γ, and the high-energy cut-off E {sub c} of 41 type-1 Seyfert galaxies extracted from the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) complete sample of active galactic nuclei (AGNs). We performed broadband (0.3-100 keV) spectral analysis by simultaneously fitting the soft and hard X-ray spectra obtained by XMM and INTEGRAL/IBIS-Swift/BAT, respectively, in order to investigate the general properties of these parameters, in particular their distribution and mean values. We find a mean photon index of 1.73 with a standard deviation of 0.17 and a mean high-energy cut-off of 128 keV with a standard deviation of 46 keV for the whole sample. This is the first time that the cut-off energy is constrained in such a large number of AGNs. We have 26 measurements of the cut-off, which corresponds to 63% of the entire sample, distributed between 50 and 200 keV. There are a further 11 lower limits mostly below 300 keV. Using the main parameters of the primary continuum, we have been able to obtain the actual physical parameters of the Comptonizing region, i.e., the plasma temperature kT {sub e} from 20 to 100 keV and the optical depth τ < 4. Finally, with the high signal-to-noise ratio spectra starting to come from NuSTAR it will soon be possible to better constrain the cut-off values in many AGNs, allowing the determination of more physical models and thus better understand the continuum emission and geometry of the region surrounding black holes.

  8. A 5.5-Mb high-resolution integrated map of distal 11q13

    SciTech Connect (OSTI)

    Merscher, S.; Bekri, S.; De Leeuw, B.

    1997-02-01

    The distal part of 11q13, which contains several genes relevant to human diseases, has been poorly mapped as part of genome-wide mapping efforts. In the prospect of drawing a fine-scale integrated map of the area containing KRN1 and OMP, we have established a framework of markers by hybridization to DNA of somatic cell hybrids and by fluorescence in situ hybridization (FISH) on metaphase chromosomes. The probes studied were used to isolate 27 YACs and 16 cosmids that could be organized in three contigs covering approximately 6 Mb. These contigs were separated by two gaps that are likely to contain sequences underrepresented in YAC libraries. They were then integrated based on long-range restriction mapping and DNA-fiber FISH into a high-resolution physical map, which covers a 5.5-Mb region and includes 36 anonymous markers and 10 genes. This map will be used to search for genes within the 2/3 of this region where none have been localized as yet. It will also lay the ground for the characterization of an amplicon surrounding GARP in breast cancer and for the search of disease genes within this region. 42 refs., 2 figs., 2 tabs.

  9. High Througput Combinatorial Techniques in Hydrogen Storage Materials R&D Workshop

    Broader source: Energy.gov [DOE]

    Summary of the June 2007 high-throughput combinatorial techniques in hyrogen storage materials workshop

  10. Integrated State Estimation and Contingency Analysis Software Implementation using High Performance Computing Techniques

    SciTech Connect (OSTI)

    Chen, Yousu; Glaesemann, Kurt R.; Rice, Mark J.; Huang, Zhenyu

    2015-12-31

    Power system simulation tools are traditionally developed in sequential mode and codes are optimized for single core computing only. However, the increasing complexity in the power grid models requires more intensive computation. The traditional simulation tools will soon not be able to meet the grid operation requirements. Therefore, power system simulation tools need to evolve accordingly to provide faster and better results for grid operations. This paper presents an integrated state estimation and contingency analysis software implementation using high performance computing techniques. The software is able to solve large size state estimation problems within one second and achieve a near-linear speedup of 9,800 with 10,000 cores for contingency analysis application. The performance evaluation is presented to show its effectiveness.

  11. ENERGY PRODUCTIVITY OF THE HIGH VELOCITY ALGAE RACEWAY INTEGRATED DESIGN (ARID-HV)

    SciTech Connect (OSTI)

    Attalah, Said; Waller, Peter; Khawam, G.; Ryan, Randy; Huesemann, Michael H.

    2015-01-31

    The original Algae Raceway Integrated Design (ARID) raceway was an effective method to increase algae culture temperature in open raceways. However, the energy input was high and flow mixing was poor. Thus, the High Velocity Algae Raceway Integrated Design (ARID-HV) raceway was developed to reduce energy input requirements and improve flow mixing in a serpentine flow path. A prototype ARID-HV system was installed in Tucson, Arizona. Based on algae growth simulation and hydraulic analysis, an optimal ARID-HV raceway was designed, and the electrical energy input requirement (kWh ha-1 d-1) was calculated. An algae growth model was used to compare the productivity of ARIDHV and conventional raceways. The model uses a pond surface energy balance to calculate water temperature as a function of environmental parameters. Algae growth and biomass loss are calculated based on rate constants during day and night, respectively. A 10 year simulation of DOE strain 1412 (Chlorella sorokiniana) showed that the ARID-HV raceway had significantly higher production than a conventional raceway for all months of the year in Tucson, Arizona. It should be noted that this difference is species and climate specific and is not observed in other climates and with other algae species. The algae growth model results and electrical energy input evaluation were used to compare the energy productivity (algae production rate/energy input) of the ARID-HV and conventional raceways for Chlorella sorokiniana in Tucson, Arizona. The energy productivity of the ARID-HV raceway was significantly greater than the energy productivity of a conventional raceway for all months of the year.

  12. SCR-DPF Integrations for Diesel ExhaustPerformance and Perspectives for High SCR Loadings

    Broader source: Energy.gov [DOE]

    Presents laboratory and engine bench test results from integrating the SCR catalyst into the diesel filter as one multifunctional unit.

  13. TH-A-BRF-09: Integration of High-Resolution MRSI Into Glioblastoma Treatment Planning

    SciTech Connect (OSTI)

    Schreibmann, E; Cordova, J; Shu, H; Crocker, I; Curran, W; Holder, C; Shim, H

    2014-06-15

    Purpose: Identification of a metabolite signature that shows significant tumor cell infiltration into normal brain in regions that do not appear abnormal on standard MRI scans would be extremely useful for radiation oncologists to choose optimal regions of brain to treat, and to quantify response beyond the MacDonald criteria. We report on integration of high-resolution magnetic resonance spectroscopic imaging (HR-MRSI) with radiation dose escalation treatment planning to define and target regions at high risk for recurrence. Methods: We propose to supplement standard MRI with a special technique performed on an MRI scanner to measure the metabolite levels within defined volumes. Metabolite imaging was acquired using an advanced MRSI technique combining 3D echo-planar spectroscopic imaging (EPSI) with parallel acquisition (GRAPPA) using a multichannel head coil that allows acquisition of whole brain metabolite maps with 108 μl resolution in 12 minutes implemented on a 3T MR scanner. Elevation in the ratio of two metabolites, choline (Cho, elevated in proliferating high-grade gliomas) and N-acetyl aspartate (NAA, a normal neuronal metabolite), was used to image infiltrating high-grade glioma cells in vivo. Results: The metabolite images were co-registered with standard contrast-enhanced T1-weighted MR images using in-house registration software and imported into the treatment-planning system. Regions with tumor infiltration are identified on the metabolic images and used to create adaptive IMRT plans that deliver a standard dose of 60 Gy to the standard target volume and an escalated dose of 75 Gy (or higher) to the most suspicious regions, identified as areas with elevated Cho/NAA ratio. Conclusion: We have implemented a state-of-the-art HR-MRSI technology that can generate metabolite maps of the entire brain in a clinically acceptable scan time, coupled with introduction of an imaging co-registration/ analysis program that combines MRSI data with standard imaging studies in a clinically useful fashion.

  14. Optimum Reactor Outlet Temperatures for High Temperature Gas-Cooled Reactors Integrated with Industrial Processes

    SciTech Connect (OSTI)

    Lee O. Nelson

    2011-04-01

    This report summarizes the results of a temperature sensitivity study conducted to identify the optimum reactor operating temperatures for producing the heat and hydrogen required for industrial processes associated with the proposed new high temperature gas-cooled reactor. This study assumed that primary steam outputs of the reactor were delivered at 17 MPa and 540°C and the helium coolant was delivered at 7 MPa at 625–925°C. The secondary outputs of were electricity and hydrogen. For the power generation analysis, it was assumed that the power cycle efficiency was 66% of the maximum theoretical efficiency of the Carnot thermodynamic cycle. Hydrogen was generated via the hightemperature steam electrolysis or the steam methane reforming process. The study indicates that optimum or a range of reactor outlet temperatures could be identified to further refine the process evaluations that were developed for high temperature gas-cooled reactor-integrated production of synthetic transportation fuels, ammonia, and ammonia derivatives, oil from unconventional sources, and substitute natural gas from coal.

  15. High Burn-Up Spent Nuclear Fuel Vibration Integrity Study 15134

    SciTech Connect (OSTI)

    Wang, Jy-An John; Wang, Hong; Jiang, Hao; Bevard, Bruce Balkcom; Howard, Rob L; Scaglione, John M

    2015-01-01

    The Oak Ridge National Laboratory (ORNL) has developed the cyclic integrated reversible-bending fatigue tester (CIRFT) approach to successfully demonstrate the controllable fatigue fracture on high burnup (HBU) spent nuclear fuel (SNF) in a normal vibration mode. CIRFT enables examination of the underlying mechanisms of SNF system dynamic performance. Due to the inhomogeneous composite structure of the SNF system, the detailed mechanisms of the pellet-pellet and pellet-clad interactions and the stress concentration effects at the pellet-pellet interface cannot be readily obtained from a CIRFT system measurement. Therefore, finite element analyses (FEAs) are used to translate the global moment-curvature measurement into local stress-strain profiles for further investigation. The major findings of CIRFT on the HBU SNF are as follows: SNF system interface bonding plays an important role in SNF vibration performance. Fuel structure contributes to SNF system stiffness. There are significant variations in stress and curvature of SNF systems during vibration cycles resulting from segment pellets and clad interactions. SNF failure initiates at the pellet-pellet interface region and appears to be spontaneous.

  16. Emerging Issues and Challenges with Integrating High Levels of Solar into the Distribution System

    Broader source: Energy.gov [DOE]

    Wide use of advanced inverters could double the electricity-distribution system’s hosting capacity for distributed PV at low costs—from about 170 GW to 350 GW (see Palmintier et al. 2016). At the distribution system level, increased variable generation due to high penetrations of distributed PV (typically rooftop and smaller ground-mounted systems) could challenge the management of distribution voltage, potentially increase wear and tear on electromechanical utility equipment, and complicate the configuration of circuit-breakers and other protection systems—all of which could increase costs, limit further PV deployment, or both. However, improved analysis of distribution system hosting capacity—the amount of distributed PV that can be interconnected without changing the existing infrastructure or prematurely wearing out equipment—has overturned previous rule-of-thumb assumptions such as the idea that distributed PV penetrations higher than 15% require detailed impact studies. For example, new analysis suggests that the hosting capacity for distributed PV could rise from approximately 170 GW using traditional inverters to about 350 GW with the use of advanced inverters for voltage management, and it could be even higher using accessible and low-cost strategies such as careful siting of PV systems within a distribution feeder and additional minor changes in distribution operations. Also critical to facilitating distributed PV deployment is the improvement of interconnection processes, associated standards and codes, and compensation mechanisms so they embrace PV’s contributions to system-wide operations. Ultimately SunShot-level PV deployment will require unprecedented coordination of the historically separate distribution and transmission systems along with incorporation of energy storage and “virtual storage,” which exploits improved management of electric vehicle charging, building energy systems, and other large loads. Additional analysis and innovation are needed in every area to realize the potential of this integrated vision.

  17. Science and technology of piezoelectric/diamond heterostructures for monolithically integrated high performance MEMS/NEMS/CMOS devices.

    SciTech Connect (OSTI)

    Auciello, O.; Sumant, A. V.; Hiller, J.; Kabius, B.; Ma, Z.; Srinivasan, S.

    2008-12-01

    This paper describes the fundamental and applied science performed to integrate piezoelectric PbZr{sub x}Ti{sub 1-x}O{sub 3} and AlN films with a novel mechanically robust ultrananocrystalline diamond layer to enable a new generation of low voltage/high-performance piezoactuated hybrid piezoelectric/diamond MEMS/NEMS devices.

  18. The Eastern Renewable Generation Integration Study: Flexibility and High Penetrations of Wind and Solar (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eastern Renewable Generation Integration Study: Flexibility and High Penetrations of Wind and Solar Aaron Bloom, Aaron Townsend, and David Palchak The National Renewable Energy Laboratory 1 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL/PR-6A20-64795 IEEE PES General Meeting Denver, Colorado July 26-30, 2015 2 Simulated dispatch for high solar period in FRCC Simulated

  19. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    SciTech Connect (OSTI)

    Corwin, William R; Burchell, Timothy D; Katoh, Yutai; McGreevy, Timothy E; Nanstad, Randy K; Ren, Weiju; Snead, Lance Lewis; Wilson, Dane F

    2008-08-01

    Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. The focus of this document will be the overall range of DOE's structural materials research activities being conducted to support VHTR development. By far, the largest portion of material's R&D supporting VHTR development is that being performed directly as part of the Next-Generation Nuclear Plant (NGNP) Project. Supplementary VHTR materials R&D being performed in the DOE program, including university and international research programs and that being performed under direct contracts with the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, will also be described. Specific areas of high-priority materials research that will be needed to deploy the NGNP and provide a basis for subsequent VHTRs are described, including the following: (1) Graphite: (a) Extensive unirradiated materials characterization and assessment of irradiation effects on properties must be performed to qualify new grades of graphite for nuclear service, including thermo-physical and mechanical properties and their changes, statistical variations from billot-to-billot and lot-to-lot, creep, and especially, irradiation creep. (b) Predictive models, as well as codification of the requirements and design methods for graphite core supports, must be developed to provide a basis for licensing. (2) Ceramics: Both fibrous and load-bearing ceramics must be qualified for environmental and radiation service as insulating materials. (3) Ceramic Composites: Carbon-carbon and SiC-SiC composites must be qualified for specialized usage in selected high-temperature components, such as core stabilizers, control rods, and insulating covers and ducting. This will require development of component-specific designs and fabrication processes, materials characterization, assessment of environmental and irradiation effects, and establishment of codes and standards for materials testing and design requirements. (4) Pressure Vessel Steels: (a) Qualification of short-term, high-temperature properties of light water reactor steels for anticipated VHTR off-normal conditions must be determined, as well as the effects of aging on tensile, creep, and toughness properties, and on thermal emissivity. (b) Large-scale fabrication process for higher temperature alloys, such as 9Cr-1MoV, including ensuring thick-section and weldment integrity must be developed, as well as improved definitions of creep-fatigue and negligible creep behavior. (5) High-Temperature Alloys: (a) Qualification and codification of materials for the intermediate heat exchanger, such as Alloys 617 or 230, for long-term very high-temperature creep, creep-fatigue, and environmental aging degradation must be done, especially in thin sections for compact designs, for both base metal and weldments. (b) Constitutive models and an improved methodology for high-temperature design must be developed.

  20. Critical Causes of Degradation in Integrated Laboratory Scale Cells during High Temperature Electrolysis

    SciTech Connect (OSTI)

    M.S. Sohal; J.E. O'Brien; C.M. Stoots; J. J. Hartvigsen; D. Larsen; S. Elangovan; J.S. Herring; J.D. Carter; V.I. Sharma; B. Yildiz

    2009-05-01

    An ongoing project at Idaho National Laboratory involves generating hydrogen from steam using solid oxide electrolysis cells (SOEC). This report describes background information about SOECs, the Integrated Laboratory Scale (ILS) testing of solid-oxide electrolysis stacks, ILS performance degradation, and post-test examination of SOECs by various researchers. The ILS test was a 720- cell, three-module test comprised of 12 stacks of 60 cells each. A peak H2 production rate of 5.7 Nm3/hr was achieved. Initially, the module area-specific resistance ranged from 1.25 Ocm2 to just over 2 Ocm2. Total H2 production rate decreased from 5.7 Nm3/hr to a steady state value of 0.7 Nm3/hr. The decrease was primarily due to cell degradation. Post test examination by Ceramatec showed that the hydrogen electrode appeared to be in good condition. The oxygen evolution electrode does show delamination in operation and an apparent foreign layer deposited at the electrolyte interface. Post test examination by Argonne National Laboratory showed that the O2-electrode delaminated from the electrolyte near the edge. One possible reason for this delamination is excessive pressure buildup with high O2 flow in the over-sintered region. According to post test examination at the Massachusetts Institute of Technology, the electrochemical reactions have been recognized as one of the prevalent causes of their degradation. Specifically, two important degradation mechanisms were examined: (1) transport of Crcontaining species from steel interconnects into the oxygen electrode and LSC bond layers in SOECs, and (2) cation segregation and phase separation in the bond layer. INL conducted a workshop October 27, 2008 to discuss possible causes of degradation in a SOEC stack. Generally, it was agreed that the following are major degradation issues relating to SOECs: Delamination of the O2-electrode and bond layer on the steam/O2-electrode side Contaminants (Ni, Cr, Si, etc.) on reaction sites (triple phase boundary) Loss of electrical/ionic conductivity of electrolyte.

  1. Development of a Chemoenzymatic-like and Photoswitchable Method for the High-Throughput creation of Protein Microarrays. Application to the Analysis of the Protein/Protein Interactions Involved in the YOP Virulon from Yersinia pestis.

    SciTech Connect (OSTI)

    Camarero, J A

    2006-12-07

    Protein arrays are ideal tools for the rapid analysis of whole proteomes as well as for the development of reliable and cheap biosensors. The objective of this proposal is to develop a new ligand assisted ligation method based in the naturally occurring protein trans-splicing process. This method has been used for the generation of spatially addressable arrays of multiple protein components by standard micro-lithographic techniques. Key to our approach is the use of the protein trans-splicing process. This naturally occurring process allows the development of a truly generic and highly efficient method for the covalent attachment of proteins through its C-terminus to any solid support. This technology has been used for the creation of protein chips containing several virulence factors from the human pathogen Y. pestis.

  2. Integrated High-Level Waste System Planning - Utilizing an Integrated Systems Planning Approach to Ensure End-State Definitions are Met and Executed - 13244

    SciTech Connect (OSTI)

    Ling, Lawrence T.; Chew, David P.

    2013-07-01

    The Savannah River Site (SRS) is a Department of Energy site which has produced nuclear materials for national defense, research, space, and medical programs since the 1950's. As a by-product of this activity, approximately 37 million gallons of high-level liquid waste containing approximately 292 million curies of radioactivity is stored on an interim basis in 45 underground storage tanks. Originally, 51 tanks were constructed and utilized to support the mission. Four tanks have been closed and taken out of service and two are currently undergoing the closure process. The Liquid Waste System is a highly integrated operation involving safely storing liquid waste in underground storage tanks; removing, treating, and dispositioning the low-level waste fraction in grout; vitrifying the higher activity waste at the Defense Waste Processing Facility; and storing the vitrified waste in stainless steel canisters until permanent disposition. After waste removal and processing, the storage and processing facilities are decontaminated and closed. A Liquid Waste System Plan (hereinafter referred to as the Plan) was developed to integrate and document the activities required to disposition legacy and future High-Level Waste and to remove from service radioactive liquid waste tanks and facilities. It establishes and records a planning basis for waste processing in the liquid waste system through the end of the program mission. The integrated Plan which recognizes the challenges of constrained funding provides a path forward to complete the liquid waste mission within all regulatory and legal requirements. The overarching objective of the Plan is to meet all Federal Facility Agreement and Site Treatment Plan regulatory commitments on or ahead of schedule while preserving as much life cycle acceleration as possible through incorporation of numerous cost savings initiatives, elimination of non-essential scope, and deferral of other scope not on the critical path to compliance. There is currently a premium on processing and storage space in the radioactive liquid waste tank system. To enable continuation of risk reduction initiatives, the Plan establishes a processing strategy that provides tank space required to meet, or minimizes the impacts to meeting, programmatic objectives. The Plan also addresses perturbations in funding and schedule impacts. (authors)

  3. Method and apparatus for maximizing throughput of indirectly heated rotary kilns

    DOE Patents [OSTI]

    Coates, Ralph L; Smoot, L. Douglas; Hatfield, Kent E

    2012-10-30

    An apparatus and method for achieving improved throughput capacity of indirectly heated rotary kilns used to produce pyrolysis products such as shale oils or coal oils that are susceptible to decomposition by high kiln wall temperatures is disclosed. High throughput is achieved by firing the kiln such that optimum wall temperatures are maintained beginning at the point where the materials enter the heating section of the kiln and extending to the point where the materials leave the heated section. Multiple high velocity burners are arranged such that combustion products directly impact on the area of the kiln wall covered internally by the solid material being heated. Firing rates for the burners are controlled to maintain optimum wall temperatures.

  4. Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications

    SciTech Connect (OSTI)

    Lee Nelson

    2009-10-01

    This report is a preliminary comparison of conventional and potential HTGR-integrated processesa in several common industrial areas: ? Producing electricity via a traditional power cycle ? Producing hydrogen ? Producing ammonia and ammonia-derived products, such as fertilizer ? Producing gasoline and diesel from natural gas or coal ? Producing substitute natural gas from coal, and ? Steam-assisted gravity drainage (extracting oil from tar sands).

  5. NREL/SCE High-Penetration PV Integration Project: Report on Field Demonstration of Advanced Inverter Functionality in Fontana, CA

    SciTech Connect (OSTI)

    Mather, B.

    2014-08-01

    The National Renewable Energy Laboratory/Southern California Edison High-Penetration PV Integration Project is (1) researching the distribution system level impacts of high-penetration photovoltaic (PV) integration, (2) determining mitigation methods to reduce or eliminate those impacts, and (3) seeking to demonstrate these mitigation methods on actual high-penetration PV distribution circuits. This report describes a field demonstration completed during the fall of 2013 on the Fontana, California, study circuit, which includes a total of 4.5 MW of interconnected utility-scale rooftop PV systems. The demonstration included operating a 2-MW PV system at an off-unity power factor that had been determined during previously completed distribution system modeling and PV impact assessment analyses. Data on the distribution circuit and PV system operations were collected during the 2-week demonstration period. This demonstration reinforces the findings of previous laboratory testing that showed that utility-scale PV inverters are capable of operating at off-unity power factor to mitigate PV impacts; however, because of difficulties setting and retaining PV inverter power factor set points during the field demonstration, it was not possible to demonstrate the effectiveness of off-unity power factor operation to mitigate the voltage impacts of high-penetration PV integration. Lessons learned from this field demonstration are presented to inform future field demonstration efforts.

  6. Ensemble Jobs for Better Throughput - Videoconference | Argonne Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Facility Ensemble Jobs for Better Throughput - Videoconference Event Sponsor: Argonne National Laboratory Start Date: Mar 30 2016 - 1:00pm to 3:30pm Event Website: https://www.alcf.anl.gov/workshops/ensemble-jobs-better-throughput [Note: This event will be repeated July 13. Registration for both dates is now open at the link above.] Want better throughput for your small (<8K node) jobs? Ensemble jobs may hold the key. Ensemble jobs are ideal for users whose workloads include

  7. Integrating High Penetrations of Solar in the Western United States: Results of the Western Wind and Solar Integration Study Phase 2 (Poster)

    SciTech Connect (OSTI)

    Bird, L.; Lew, D.

    2013-10-01

    This poster presents a summary of the results of the Western Wind and Solar Integration Study Phase 2.

  8. PROJECT PROFILE: Combined PV/Battery Grid Integration with High Frequency Magnetics Enabled Power Electronics (SuNLaMP)

    Broader source: Energy.gov [DOE]

    This project will develop new power electronics devices, systems, and materials to address power electronic and dispatchability challenges that result from connecting hundreds of gigawatts of solar energy onto the electricity grid. These devices will incorporate advanced high-frequency (HF) magnetics along with the latest wide bandgap silicon carbide (SiC) switches. This design enables cost-effective grid integration of PV while increasing its dispatchability.

  9. Development of a High Latent Effectiveness Energy Recovery Ventilator with Integration into Rooftop Package Equipment

    SciTech Connect (OSTI)

    Gregory M. Dobbs; Norberto O. Lemcoff; Frederick J. Cogswell; Jeffrey T. Benolt

    2006-03-01

    This Final Report covers the Cooperative Program carried out to design and optimize an enhanced flat-plate energy recovery ventilator and integrate it into a packaged unitary (rooftop) air conditioning unit. The project objective was to optimize the design of a flat plate energy recovery ventilator (ERV) core that compares favorably to flat plate air-to-air heat exchanger cores on the market and to cost wise to small enthalpy wheel devices. The benefits of an integrated unit incorporating an enhanced ERV core and a downsized heating/cooling unit were characterized and the design of an integrated unit considering performance and cost was optimized. Phase I was to develop and optimize the design of a membrane based heat exchanger core. Phase II was the creation and observation of a system integrated demonstrator unit consisting of the Enhanced Energy Recovery Ventilator (EERV) developed in Phase I coupled to a standard Carrier 50HJ rooftop packaged unitary air conditioning unit. Phase III was the optimization of the system prior to commercialization based on the knowledge gained in Phase II. To assure that the designs chosen have the possibility of meeting cost objectives, a preliminary manufacturability and production cost study was performed by the Center for Automation Technologies at RPI. Phase I also included a preliminary design for the integrated unit to be further developed in Phase II. This was to assure that the physical design of the heat exchanger designed in Phase I would be acceptable for use in Phase II. An extensive modeling program was performed by the Center for Building Performance & Diagnostics of CMU. Using EnergyPlus as the software, a typical office building with multiple system configurations in multiple climatic zones in the US was simulated. The performance of energy recovery technologies in packaged rooftop HVAC equipment was evaluated. The experimental program carried out in Phases II and III consisted of fabricating and testing a demonstrator unit using Carrier Comfort Network (CCN) based controls. Augmenting the control signals, CCN was also used to monitor and record additional performance data that supported modeling and conceptual understanding. The result of the testing showed that the EERV core developed in Phase I recovered energy in the demonstrator unit at the expected levels based on projections. In fact, at near-ARI conditions the core recovered about one ton of cooling enthalpy when operating with a three-ton rooftop packaged unit.

  10. High mass throughput particle generation using multiple nozzle spraying

    DOE Patents [OSTI]

    Pui, David Y.H.; Chen, Da-Ren

    2004-07-20

    Spraying apparatus and methods that employ multiple nozzle structures for producing multiple sprays of particles, e.g., nanoparticles, for various applications, e.g., pharmaceuticals, are provided. For example, an electrospray dispensing device may include a plurality of nozzle structures, wherein each nozzle structure is separated from adjacent nozzle structures by an internozzle distance. Sprays of particles are established from the nozzle structures by creating a nonuniform electrical field between the nozzle structures and an electrode electrically isolated therefrom.

  11. High mass throughput particle generation using multiple nozzle spraying

    DOE Patents [OSTI]

    Pui, David Y. H.; Chen, Da-Ren

    2009-03-03

    Spraying apparatus and methods that employ multiple nozzle structures for producing multiple sprays of particles, e.g., nanoparticles, for various applications, e.g., pharmaceuticals, are provided. For example, an electrospray dispensing device may include a plurality of nozzle structures, wherein each nozzle structure is separated from adjacent nozzle structures by an internozzle distance. Sprays of particles are established from the nozzle structures by creating a nonuniform electrical field between the nozzle structures and an electrode electrically isolated therefrom.

  12. High-throughput liquid-absorption preconcentrator sampling methods

    DOE Patents [OSTI]

    Zaromb, S.

    1994-07-12

    A system for detecting trace concentrations of an analyte in air includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container comprising a wettable material. The wettable material is continuously wetted with an analyte-sorbing liquid which flows from one part of the container to a lower end. Sampled air flows through the container in contact with the wetted material with a swirling motion which results in efficient transfer of analyte vapors or aerosol particles to the sorbing liquid and preconcentration of traces of analyte in the liquid. The preconcentrated traces of analyte may be either detected within the container or removed therefrom for injection into a separate detection means or for subsequent analysis. 12 figs.

  13. Improved Algae-based Biorefining and High-throughput Screening...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Improved ... culture is needed, and also that fluid transport limits shear stress on the cells, thus ...

  14. MRI contrast agents and high-throughput screening by MRI

    DOE Patents [OSTI]

    Lu, Yi; Yigit, Mehmet Veysel; Mazumdar, Debapriya

    2013-10-29

    The present invention provides an MRI contrast agent, comprising: MRI contrast agent particles, and oligonucleotides, attached to the particles.

  15. High-throughput liquid-absorption preconcentrator sampling methods

    DOE Patents [OSTI]

    Zaromb, Solomon (95706 William Dr., Hinsdale, IL 60521)

    1994-01-01

    A system for detecting trace concentrations of an analyte in air includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container comprising a wettable material. The wettable material is continuously wetted with an analyte-sorbing liquid which flows from one part of the container to a lower end. Sampled air flows through the container in contact with the wetted material with a swirling motion which results in efficient transfer of analyte vapors or aerosol particles to the sorbing liquid and preconcentration of traces of analyte in the liquid. The preconcentrated traces of analyte may be either detected within the container or removed therefrom for injection into a separate detection means or for subsequent analysis.

  16. Methods and devices for high-throughput dielectrophoretic concentration

    DOE Patents [OSTI]

    Simmons, Blake A.; Cummings, Eric B.; Fiechtner, Gregory J.; Fintschenko, Yolanda; McGraw, Gregory J.; Salmi, Allen

    2010-02-23

    Disclosed herein are methods and devices for assaying and concentrating analytes in a fluid sample using dielectrophoresis. As disclosed, the methods and devices utilize substrates having a plurality of pores through which analytes can be selectively prevented from passing, or inhibited, on application of an appropriate electric field waveform. The pores of the substrate produce nonuniform electric field having local extrema located near the pores. These nonuniform fields drive dielectrophoresis, which produces the inhibition. Arrangements of electrodes and porous substrates support continuous, bulk, multi-dimensional, and staged selective concentration.

  17. High Throughput/Combinatorial Screening of Hydrogen Storage Materials (presentation)

    Broader source: Energy.gov [DOE]

    Presented at the U.S. Department of Energy's Hydrogen Storage Meeting held June 26, 2007 in Bethesda, Maryland.

  18. High throughput analysis of samples in flowing liquid

    DOE Patents [OSTI]

    Ambrose, W. Patrick; Grace, W. Kevin; Goodwin, Peter M.; Jett, James H.; Orden, Alan Van; Keller, Richard A.

    2001-01-01

    Apparatus and method enable imaging multiple fluorescent sample particles in a single flow channel. A flow channel defines a flow direction for samples in a flow stream and has a viewing plane perpendicular to the flow direction. A laser beam is formed as a ribbon having a width effective to cover the viewing plane. Imaging optics are arranged to view the viewing plane to form an image of the fluorescent sample particles in the flow stream, and a camera records the image formed by the imaging optics.

  19. High-throughput screening and device for photocatalysts

    DOE Patents [OSTI]

    Lewis, Nathan S.; Katz, Jordan; Gingrich, Todd

    2015-09-08

    The disclosure relates to compositions, devices and methods for screening of photocatalysts for water-splitting.

  20. Constant pressure high throughput membrane permeation testing system

    DOE Patents [OSTI]

    Albenze, Erik J.; Hopkinson, David P.; Luebke, David R.

    2014-09-02

    The disclosure relates to a membrane testing system for individual evaluation of a plurality of planar membranes subjected to a feed gas on one side and a sweep gas on a second side. The membrane testing system provides a pressurized flow of a feed and sweep gas to each membrane testing cell in a plurality of membrane testing cells while a stream of retentate gas from each membrane testing cell is ported by a retentate multiport valve for sampling or venting, and a stream of permeate gas from each membrane testing cell is ported by a permeate multiport valve for sampling or venting. Back pressure regulators and mass flow controllers act to maintain substantially equivalent gas pressures and flow rates on each side of the planar membrane throughout a sampling cycle. A digital controller may be utilized to position the retentate and permeate multiport valves cyclically, allowing for gas sampling of different membrane cells over an extended period of time.

  1. Robust, High-Throughput Analysis of Protein Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    three-dimensional shape. Although x-ray crystallography yields higher-resolution images, SAXS makes up for what it lacks in precision by providing fast, accurate...

  2. Robust, High-Throughput Analysis of Protein Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    applying SAXS to focused biological problems. Current directions include the analysis of DNA repair pathways, which, if malfunctioning, are a leading cause of cancer. An equally...

  3. Towards Experimental Annotation of Genes by High Throughput Sequencing

    SciTech Connect (OSTI)

    Bradbury, Andrew

    2010-06-03

    Andrew Bradbury of Los Alamos National Laboratory discusses turning annotation into a sequencing pipeline on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  4. Potential of High-Throughput Experimentation with Ammonia Borane...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US Department of Energy Energy Efficiency and Renewable Energy (Chemical) Hydrogen Storage ... (NH 2 BH 2 ) n + (n-1)H 2 (<120 o C) (Intramolecular) (NH 2 BH 2 ) n (NHBH) n + H 2 (> 150 ...

  5. Advanced method for high-throughput expression of mutated eukaryotic...

    Office of Scientific and Technical Information (OSTI)

    Project, ERATO, Japan Science and Technology Agency, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501 (Japan) Department of Medical Chemistry, Kyoto University, Faculty of Medicine, ...

  6. High-Throughput and Combinatorial Screening of Hydrogen Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Techniques in Hydrogen Storage Materials R&D Workshop Combinatorial Approaches for Hydrogen Storage Materials (presentation) FCTO Projects and the Materials Genome Initiative

  7. Robust, High-Throughput Analysis of Protein Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is sufficient to address key biological questions. For example, future synthetic biology efforts may involve taking a useful protein, or a network of proteins, from one...

  8. High mass throughput particle generation using multiple nozzle spraying

    DOE Patents [OSTI]

    Pui, David Y. H.; Chen, Da-Ren

    2015-06-09

    Spraying apparatus and methods that employ multiple nozzle structures for producing multiple sprays of particles, e.g., nanoparticles, for various applications, e.g., pharmaceuticals, are provided. For example, an electrospray dispensing device may include a plurality of nozzle structures, wherein each nozzle structure is separated from adjacent nozzle structures by an internozzle distance. Sprays of particles are established from the nozzle structures by creating a nonuniform electrical field between the nozzle structures and an electrode electrically isolated therefrom.

  9. High Efficiency 370kW Microturbine with Integral HeatRecovery

    Office of Environmental Management (EM)

    after treatment Improved Customer Value: 600kW Technical Challenges Higher Temperature Combustion ... Lean Combustion Low Emissions High ...

  10. The role of SEA in integrating and balancing high policy objectives in European cohesion funding programmes

    SciTech Connect (OSTI)

    Jiricka, Alexandra Proebstl, Ulrike

    2013-01-15

    Funding programmes for European cohesion policy are a crucial tool to support the sustainability goals of the European Union and national policies of its member states. All these funding programmes require a Strategic Environmental Assessment (SEA) to enhance sustainable development. This article compares five first SEA applications at cohesion policy level to discuss challenges, limitations and benefits of this instrument. In order to support the SEA-process a 'Handbook on SEA for Cohesion Policy 2007-13' (GRDP 2006) was developed. The paper examines the special requirements and challenges at the programme level given the special conditions for stakeholder involvement, integration of SEA in the programme development process and strategies to cope with uncertainties to ensure real compatibility with policy goals. Using action research and in-depth interviews with SEA planners and programme managers enabled us to analyse the suitability of the methodology proposed by the handbook. The results show that some recommendations of the handbook should be changed in order to increase the transparency and to enhance the standard and comparability of the SEA-documents. Overall the SEA proved to be a rather successful tool for the integration of sustainability goals at the EU and national policy levels. Its particular strengths emerged as the process makes uncertainties visible and leads to possible redefinitions while maintaining actual policy goals. - Highlights: Black-Right-Pointing-Pointer Comparing five case studies of first applications of SEA at cohesion policy level. Black-Right-Pointing-Pointer Overall the SEA proved to be a rather successful tool for the integration of sustainability goals. Black-Right-Pointing-Pointer The study makes uncertainties visible and shows how SEA could lead to possible redefinitions.

  11. NREL: Energy Systems Integration - Systems Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-level system integration New distribution scenarios such as household DC systems and residential-scale generation and storage integrated with home energy management systems. ...

  12. High-performance carbon-nanotube-based complementary field-effect-transistors and integrated circuits with yttrium oxide

    SciTech Connect (OSTI)

    Liang, Shibo; Zhang, Zhiyong Si, Jia; Zhong, Donglai; Peng, Lian-Mao

    2014-08-11

    High-performance p-type carbon nanotube (CNT) transistors utilizing yttrium oxide as gate dielectric are presented by optimizing oxidization and annealing processes. Complementary metal-oxide-semiconductor (CMOS) field-effect-transistors (FETs) are then fabricated on CNTs, and the p- and n-type devices exhibit symmetrical high performances, especially with low threshold voltage near to zero. The corresponding CMOS CNT inverter is demonstrated to operate at an ultra-low supply voltage down to 0.2?V, while displaying sufficient voltage gain, high noise margin, and low power consumption. Yttrium oxide is proven to be a competitive gate dielectric for constructing high-performance CNT CMOS FETs and integrated circuits.

  13. A High-Resolution Integrated Model of the National Ignition Campaign Cryogenic Layered Experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jones, O. S.; Callahan, D. A.; Cerjan, C. J.; Clark, D. S.; Dixit, S. M.; Dopppner, T.; Dylla-Spears, R. J.; Dzentitis, E. G.; Farley, D. R.; Glenn, S. M.; et al

    2012-05-29

    A detailed simulation-based model of the June 2011 National Ignition Campaign (NIC) cryogenic DT experiments is presented. The model is based on integrated hohlraum-capsule simulations that utilize the best available models for the hohlraum wall, ablator, and DT equations of state and opacities. The calculated radiation drive was adjusted by changing the input laser power to match the experimentally measured shock speeds, shock merger times, peak implosion velocity, and bangtime. The crossbeam energy transfer model was tuned to match the measured time-dependent symmetry. Mid-mode mix was included by directly modeling the ablator and ice surface perturbations up to mode 60.more » Simulated experimental values were extracted from the simulation and compared against the experiment. The model adjustments brought much of the simulated data into closer agreement with the experiment, with the notable exception of the measured yields, which were 15-40% of the calculated yields.« less

  14. Highly polarized light emission by isotropic quantum dots integrated with magnetically aligned segmented nanowires

    SciTech Connect (OSTI)

    Uran, Can; Erdem, Talha; Guzelturk, Burak; Perkgz, Nihan Kosku; Jun, Shinae; Jang, Eunjoo; Demir, Hilmi Volkan

    2014-10-06

    In this work, we demonstrate a proof-of-concept system for generating highly polarized light from colloidal quantum dots (QDs) coupled with magnetically aligned segmented Au/Ni/Au nanowires (NWs). Optical characterizations reveal that the optimized QD-NW coupled structures emit highly polarized light with an s-to p-polarization (s/p) contrast as high as 15:1 corresponding to a degree of polarization of 0.88. These experimental results are supported by the finite-difference time-domain simulations, which demonstrate the interplay between the inter-NW distance and the degree of polarization.

  15. Method for critical software event execution reliability in high integrity software

    SciTech Connect (OSTI)

    Kidd, M.E. [Sandia National Labs., Albuquerque, NM (United States)

    1997-11-01

    This report contains viewgraphs on a method called SEER, which provides a high level of confidence that critical software driven event execution sequences faithfully exceute in the face of transient computer architecture failures in both normal and abnormal operating environments.

  16. Policies and Programs to Integrate High Penetrations of Variable Renewable Energy (Presentation)

    SciTech Connect (OSTI)

    Cochran, J.

    2012-06-01

    The goals of this project are to highlight the diverse approaches for enabling high renewable energy penetration; synthesize lessons on effective policies and programs and present avenues for action to energy ministers and other stakeholders.

  17. Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors

    SciTech Connect (OSTI)

    Chakravarty, Swapnajit, E-mail: swapnajit.chakravarty@omegaoptics.com; Hosseini, Amir; Xu, Xiaochuan [Omega Optics, Inc., Austin, Texas 78757 (United States); Zhu, Liang; Zou, Yi [Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78758 (United States); Chen, Ray T., E-mail: raychen@uts.cc.utexas.edu [Omega Optics, Inc., Austin, Texas 78757 (United States); Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78758 (United States)

    2014-05-12

    We analyze the contributions of quality factor, fill fraction, and group index of chip-integrated resonance microcavity devices, to the detection limit for bulk chemical sensing and the minimum detectable biomolecule concentration in biosensing. We analyze the contributions from analyte absorbance, as well as from temperature and spectral noise. Slow light in two-dimensional photonic crystals provide opportunities for significant reduction of the detection limit below 1??10{sup ?7} RIU (refractive index unit) which can enable highly sensitive sensors in diverse application areas. We demonstrate experimentally detected concentration of 1 fM (67 fg/ml) for the binding between biotin and avidin, the lowest reported till date.

  18. Integrating atomic layer deposition and ultra-high vacuum physical vapor deposition for in situ fabrication of tunnel junctions

    SciTech Connect (OSTI)

    Elliot, Alan J. E-mail: jwu@ku.edu; Malek, Gary A.; Lu, Rongtao; Han, Siyuan; Wu, Judy Z. E-mail: jwu@ku.edu; Yu, Haifeng; Zhao, Shiping

    2014-07-15

    Atomic Layer Deposition (ALD) is a promising technique for growing ultrathin, pristine dielectrics on metal substrates, which is essential to many electronic devices. Tunnel junctions are an excellent example which require a leak-free, ultrathin dielectric tunnel barrier of typical thickness around 1 nm between two metal electrodes. A challenge in the development of ultrathin dielectric tunnel barriers using ALD is controlling the nucleation of dielectrics on metals with minimal formation of native oxides at the metal surface for high-quality interfaces between the tunnel barrier and metal electrodes. This poses a critical need for integrating ALD with ultra-high vacuum (UHV) physical vapor deposition. In order to address these challenges, a viscous-flow ALD chamber was designed and interfaced to an UHV magnetron sputtering chamber via a load lock. A sample transportation system was implemented for in situ sample transfer between the ALD, load lock, and sputtering chambers. Using this integrated ALD-UHV sputtering system, superconductor-insulator-superconductor (SIS) Nb-Al/Al{sub 2}O{sub 2}/Nb Josephson tunnel junctions were fabricated with tunnel barriers of thickness varied from sub-nm to ?1 nm. The suitability of using an Al wetting layer for initiation of the ALD Al{sub 2}O{sub 3} tunnel barrier was investigated with ellipsometry, atomic force microscopy, and electrical transport measurements. With optimized processing conditions, leak-free SIS tunnel junctions were obtained, demonstrating the viability of this integrated ALD-UHV sputtering system for the fabrication of tunnel junctions and devices comprised of metal-dielectric-metal multilayers.

  19. A Photo-Stimulated Low Electron Temperature High Current Diamond...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applications: Medical X-ray devices High through-put industrial electron sheet beam processing High volume electron beam food and material sterilization High power RF systems...

  20. A One System Integrated Approach to Simulant Selection for Hanford High Level Waste Mixing and Sampling Tests

    SciTech Connect (OSTI)

    Thien, Mike G.; Barnes, Steve M.

    2013-01-17

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capabilities using simulated Hanford High-Level Waste (HLW) formulations. This represents one of the largest remaining technical issues with the high-level waste treatment mission at Hanford. Previous testing has focused on very specific TOC or WTP test objectives and consequently the simulants were narrowly focused on those test needs. A key attribute in the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2 is to ensure testing is performed with a simulant that represents the broad spectrum of Hanford waste. The One System Integrated Project Team is a new joint TOC and WTP organization intended to ensure technical integration of specific TOC and WTP systems and testing. A new approach to simulant definition has been mutually developed that will meet both TOC and WTP test objectives for the delivery and receipt of HLW. The process used to identify critical simulant characteristics, incorporate lessons learned from previous testing, and identify specific simulant targets that ensure TOC and WTP testing addresses the broad spectrum of Hanford waste characteristics that are important to mixing, sampling, and transfer performance are described.

  1. An Integrated Study of a Novel Thermal Coating for Nb-Based High Temperature Alloy

    SciTech Connect (OSTI)

    Yang, Shizhong

    2015-01-31

    This report summarizes our recent works of ab initio density functional theory (DFT) method and molecular dynamics (MD) simulation on the interfaces between niobium substrate and coatings at atomic level. Potential oxidation barrier bond coat, Nb₂AlC and high entropy alloys, and top coat candidates were synthesized, characterized, and evaluated in our labs. The simulation methods, experimental validation techniques, achievements already reached, students and postdoc training, and future improvement are briefly introduced.

  2. Cost Effective, High Efficiency Integrated Systems Approach to Auxilliary Electric Motors

    SciTech Connect (OSTI)

    Roy Kessinger Jr.; Keith Seymour; Kanchan Angal; Jason Wolf; Steve Brewer; Leonard Schrank

    2003-09-26

    The CARAT program, carried out by Kinetic Art & Technology Corporation (KAT), has been one of the most commercially successful KAT R&D programs to date. Based on previous development of its technology, KAT designed, constructed and tested a highly efficient motor and controller system under this CARAT program with supplemental commercial funding. Throughout this CARAT effort, the technical objectives have been refined and refocused. Some objectives have been greatly expanded, while others have been minimized. The determining factor in all decisions to refocus the objectives was the commercial need, primarily the needs of KAT manufacturing partners. Several companies are employing the resulting CARAT motor and controller designs in prototypes for commercial products. Two of these companies have committed to providing cost share in order to facilitate the development. One of these companies is a major manufacturing company developing a revolutionary new family of products requiring the ultra-high system efficiency achievable by the KAT motor and controller technologies (known as Segmented ElectroMagnetic Array, or SEMA technology). Another company requires the high efficiency, quiet operation, and control characteristics afforded by the same basic motor and controller for an advanced air filtration product. The combined annual production requirement projected by these two companies exceeds one million units by 2005.

  3. THE INTEGRATION OF PROCESS HEAT APPLICATIONS TO HIGH TEMPERATURE GAS REACTORS

    SciTech Connect (OSTI)

    Michael G. McKellar

    2011-11-01

    A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 C produce no additional advantage for the production of steam.

  4. Integration of High Temperature Gas-cooled Reactor Technology with Oil Sands Processes

    SciTech Connect (OSTI)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation of siting an HTGR plant in a remote area supplying steam, electricity and high temperature gas for recovery and upgrading of unconventional crude oil from oil sands. The area selected for this evaluation is the Alberta Canada oil sands. This is a very fertile and active area for bitumen recovery and upgrading with significant quantities piped to refineries in Canada and the U.S Additionally data on the energy consumption and other factors that are required to complete the evaluation of HTGR application is readily available in the public domain. There is also interest by the Alberta oil sands producers (OSP) in identifying alternative energy sources for their operations. It should be noted, however, that the results of this evaluation could be applied to any similar oil sands area.

  5. NREL/SCE High Penetration PV Integration Project: FY13 Annual Report

    SciTech Connect (OSTI)

    Mather, B. A.; Shah, S.; Norris, B. L.; Dise, J. H.; Yu, L.; Paradis, D.; Katiraei, F.; Seguin, R.; Costyk, D.; Woyak, J.; Jung, J.; Russell, K.; Broadwater, R.

    2014-06-01

    In 2010, the National Renewable Energy Laboratory (NREL), Southern California Edison (SCE), Quanta Technology, Satcon Technology Corporation, Electrical Distribution Design (EDD), and Clean Power Research (CPR) teamed to analyze the impacts of high penetration levels of photovoltaic (PV) systems interconnected onto the SCE distribution system. This project was designed specifically to benefit from the experience that SCE and the project team would gain during the installation of 500 megawatts (MW) of utility-scale PV systems (with 1-5 MW typical ratings) starting in 2010 and completing in 2015 within SCE's service territory through a program approved by the California Public Utility Commission (CPUC). This report provides the findings of the research completed under the project to date.

  6. Maglev vehicles and superconductor technology: Integration of high-speed ground transportation into the air travel system

    SciTech Connect (OSTI)

    Johnson, L.R.; Rote, D.M.; Hull, J.R.; Coffey, H.T.; Daley, J.G.; Giese, R.F.

    1989-04-01

    This study was undertaken to (1) evaluate the potential contribution of high-temperature superconductors (HTSCs) to the technical and economic feasibility of magnetically levitated (maglev) vehicles, (2) determine the status of maglev transportation research in the United States and abroad, (3) identify the likelihood of a significant transportation market for high-speed maglev vehicles, and (4) provide a preliminary assessment of the potential energy and economic benefits of maglev systems. HTSCs should be considered as an enhancing, rather than an enabling, development for maglev transportation because they should improve reliability and reduce energy and maintenance costs. Superconducting maglev transportation technologies were developed in the United States in the late 1960s and early 1970s. Federal support was withdrawn in 1975, but major maglev transportation programs were continued in Japan and West Germany, where full-scale prototypes now carry passengers at speeds of 250 mi/h in demonstration runs. Maglev systems are generally viewed as very-high-speed train systems, but this study shows that the potential market for maglev technology as a train system, e.g., from one downtown to another, is limited. Rather, aircraft and maglev vehicles should be seen as complementing rather than competing transportation systems. If maglev systems were integrated into major hub airport operations, they could become economical in many relatively high-density US corridors. Air traffic congestion and associated noise and pollutant emissions around airports would also be reduced. 68 refs., 26 figs., 16 tabs.

  7. Integration of atomic layer deposited high-k dielectrics on GaSb via hydrogen plasma exposure

    SciTech Connect (OSTI)

    Ruppalt, Laura B. Cleveland, Erin R.; Champlain, James G.; Bennett, Brian R.; Prokes, Sharka M.

    2014-12-15

    In this letter we report the efficacy of a hydrogen plasma pretreatment for integrating atomic layer deposited (ALD) high-k dielectric stacks with device-quality p-type GaSb(001) epitaxial layers. Molecular beam eptiaxy-grown GaSb surfaces were subjected to a 30 minute H{sub 2}/Ar plasma treatment and subsequently removed to air. High-k HfO{sub 2} and Al{sub 2}O{sub 3}/HfO{sub 2} bilayer insulating films were then deposited via ALD and samples were processed into standard metal-oxide-semiconductor (MOS) capacitors. The quality of the semiconductor/dielectric interface was probed by current-voltage and variable-frequency admittance measurements. Measurement results indicate that the H{sub 2}-plamsa pretreatment leads to a low density of interface states nearly independent of the deposited dielectric material, suggesting that pre-deposition H{sub 2}-plasma exposure, coupled with ALD of high-k dielectrics, may provide an effective means for achieving high-quality GaSb MOS structures for advanced Sb-based digital and analog electronics.

  8. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOE Patents [OSTI]

    Jansen, Kai W.; Maley, Nagi

    2000-01-01

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  9. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOE Patents [OSTI]

    Jansen, Kai W.; Maley, Nagi

    2001-01-01

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  10. High-performance broadband optical coatings on InGaN/GaN solar cells for multijunction device integration

    SciTech Connect (OSTI)

    Young, N. G. Farrell, R. M.; Iza, M.; Speck, J. S.; Perl, E. E.; Keller, S.; Bowers, J. E.; Nakamura, S.; DenBaars, S. P.

    2014-04-21

    We demonstrate InGaN/GaN multiple quantum well solar cells grown by metalorganic chemical vapor deposition on a bulk (0001) substrate with high-performance broadband optical coatings to improve light absorption. A front-side anti-reflective coating and a back-side dichroic mirror were designed to minimize front surface reflections across a broad spectral range and maximize rear surface reflections only in the spectral range absorbed by the InGaN, making the cells suitable for multijunction solar cell integration. Application of optical coatings increased the peak external quantum efficiency by 56% (relative) and conversion efficiency by 37.5% (relative) under 1 sun AM0 equivalent illumination.

  11. Disposal demonstration of a high integrity container (HIC) containing an EPICOR-II prefilter from Three Mile Island

    SciTech Connect (OSTI)

    McConnell, J.W. Jr.; Tyacke, M.J.; Schmitt, R.C.; Reno, H.W.

    1985-02-01

    A high integrity container (HIC) was developed, tested, and certified for use in disposing of unusual low-level radioactive waste from Three Mile Island Unit 2 (TMI-2). The work was coordinated by EG and G Idaho, Inc. and funded by the US Department of Energy. A disposal demonstration using an HIC containing an EPICOR-II prefilter from TMI-2 was completed at the commercial disposal facility in the State of Washington. A Certification of Compliance was issued by the Department of Social and Health Services of the State of Washington to use the HIC in disposing of up to 50 EPICOR-II prefilters. That Certification of Compliance was issued after rigorous review of the HIC design and test program by the State and by the US Nuclear Regulatory Commission. This report describes the processes of loading, transporting, and disposing of the demonstration HIC and briefly describes the design, testing, and approval effort leading up to the demonstration.

  12. NREL: Process Development and Integration Laboratory - Integrated

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements and Characterization Capabilities Integrated Measurements and Characterization Capabilities The Integrated Measurements and Characterization cluster tool in the Process Development and Integration Laboratory offers powerful capabilities with integrated tools for measuring and characterizing photovoltaic materials and devices. Contact Pete Sheldon for more details on these capabilities. Basic Cluster Tool Capabilities Sample Handling Ultra-high-vacuum robot Transport pod: allows

  13. New methods for tightly regulated gene expression and highly efficient chromosomal integration of cloned genes for Methanosarcina species

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guss, Adam M.; Rother, Michael; Zhang, Jun Kai; Kulkkarni, Gargi; Metcalf, William W.

    2008-01-01

    A highly efficient method for chromosomal integration of cloned DNA into Methanosarcina spp. was developed utilizing the site-specific recombination system from the Streptomyces phage φC31. Host strains expressing the φC31 integrase gene and carrying an appropriate recombination site can be transformed with non-replicating plasmids carrying the complementary recombination site at efficiencies similar to those obtained with self-replicating vectors. We have also constructed a series of hybrid promoters that combine the highly expressed M. barkeri P mcrB promoter with binding sites for the tetracycline-responsive, bacterial TetR protein. These promoters are tightly regulated by the presence or absence of tetracycline inmore » strains that express the tetR gene. The hybrid promoters can be used in genetic experiments to test gene essentiality by placing a gene of interest under their control. Thus, growth of strains with tetR -regulated essential genes becomes tetracycline-dependent. A series of plasmid vectors that utilize the site-specific recombination system for construction of reporter gene fusions and for tetracycline regulated expression of cloned genes are reported. These vectors were used to test the efficiency of translation at a variety of start codons. Fusions using an ATG start site were the most active, whereas those using GTG and TTG were approximately one half or one fourth as active, respectively. The CTG fusion was 95% less active than the ATG fusion.« less

  14. New methods for tightly regulated gene expression and highly efficient chromosomal integration of cloned genes forMethanosarcinaspecies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guss, Adam M.; Rother, Michael; Zhang, Jun Kai; Kulkkarni, Gargi; Metcalf, William W.

    2008-01-01

    A highly efficient method for chromosomal integration of cloned DNA intoMethanosarcina spp.was developed utilizing the site-specific recombination system from theStreptomycesphage ?C31. Host strains expressing the ?C31 integrase gene and carrying an appropriate recombination site can be transformed with non-replicating plasmids carrying the complementary recombination site at efficiencies similar to those obtained with self-replicating vectors. We have also constructed a series of hybrid promoters that combine the highly expressedM. barkeriPmcrBpromoter with binding sites for the tetracycline-responsive, bacterial TetR protein. These promoters are tightly regulated by the presence or absence of tetracycline in strains that express thetetRgene. The hybrid promoters can bemoreused in genetic experiments to test gene essentiality by placing a gene of interest under their control. Thus, growth of strains withtetR-regulated essential genes becomes tetracycline-dependent. A series of plasmid vectors that utilize the site-specific recombination system for construction of reporter gene fusions and for tetracycline regulated expression of cloned genes are reported. These vectors were used to test the efficiency of translation at a variety of start codons. Fusions using an ATG start site were the most active, whereas those using GTG and TTG were approximately one half or one fourth as active, respectively. The CTG fusion was 95% less active than the ATG fusion.less

  15. High performance organic integrated device with ultraviolet photodetective and electroluminescent properties consisting of a charge-transfer-featured naphthalimide derivative

    SciTech Connect (OSTI)

    Wang, Hanyu; Wang, Xu; Yu, Junsheng E-mail: jsyu@uestc.edu.cn; Zhou, Jie; Lu, Zhiyun E-mail: jsyu@uestc.edu.cn

    2014-08-11

    A high performance organic integrated device (OID) with ultraviolet photodetective and electroluminescent (EL) properties was fabricated by using a charge-transfer-featured naphthalimide derivative of 6-(3,5-bis-[9-(4-t-butylphenyl)-9H-carbazol-3-yl]-phenoxy)-2- (4-t-butylphenyl)-benzo[de]isoquinoline-1,3-dione (CzPhONI) as the active layer. The results showed that the OID had a high detectivity of 1.5 × 10{sup 11} Jones at −3 V under the UV-350 nm illumination with an intensity of 0.6 mW/cm{sup 2}, and yielded an exciplex EL light emission with a maximum brightness of 1437 cd/m{sup 2}. Based on the energy band diagram, both the charge transfer feature of CzPhONI and matched energy level alignment were responsible for the dual ultraviolet photodetective and EL functions of OID.

  16. NREL Analysis: Cost-Effective and Reliable Integration of High-Penetration Solar in the Western United States (Poster)

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Ibanez, E.; Hodge, B.; Lefton, S.; Kumar, N.; Agan, D.; Jordan, G.; Venkatataman, S.

    2012-07-01

    SunShot Initiative awardee posters describing the different technologies within the four subprograms of the DOE Solar Program (Photovoltaics, Concentrating Solar Power, Soft Costs, and Systems Integration).

  17. Radiotherapy and Nuclear Medicine Project for an Integral Oncology Center at the Oaxaca High Specialization Regional Hospital

    SciTech Connect (OSTI)

    De Jesus, M.; Trujillo-Zamudio, F. E.

    2010-12-07

    A building project of Radiotherapy and Nuclear Medicine services (diagnostic and therapy), within an Integral Oncology Center (IOC), requires interdisciplinary participation of architects, biomedical engineers, radiation oncologists and medical physicists. This report focus on the medical physicist role in designing, building and commissioning stages, for the final clinical use of an IOC at the Oaxaca High Specialization Regional Hospital (HRAEO). As a first step, during design stage, the medical physicist participates in discussions about radiation safety and regulatory requirements for the National Regulatory Agency (called CNSNS in Mexico). Medical physicists propose solutions to clinical needs and take decisions about installing medical equipment, in order to fulfill technical and medical requirements. As a second step, during the construction stage, medical physicists keep an eye on building materials and structural specifications. Meanwhile, regulatory documentation must be sent to CNSNS. This documentation compiles information about medical equipment, radioactivity facility, radiation workers and nuclear material data, in order to obtain the license for the linear accelerator, brachytherapy and nuclear medicine facilities. As a final step, after equipment installation, the commissioning stage takes place. As the conclusion, we show that medical physicists are essentials in order to fulfill with Mexican regulatory requirements in medical facilities.

  18. Fluidized-bed technology enabling the integration of high temperature solar receiver CSP systems with steam and advanced power cycles

    SciTech Connect (OSTI)

    Sakadjian, B.; Hu, S.; Maryamchik, M.; Flynn, T.; Santelmann, K.; Ma, Z.

    2015-05-01

    Solar Particle Receivers (SPR) are under development to drive concentrating solar plants (CSP) towards higher operating temperatures to support higher efficiency power conversion cycles. The novel high temperature SPR-based CSP system uses solid particles as the heat transfer medium (HTM) in place of the more conventional fluids such as molten salt or steam used in current state-of-the-art CSP plants. The solar particle receiver (SPR) is designed to heat the HTM to temperatures of 800 °C or higher which is well above the operating temperatures of nitrate-based molten salt thermal energy storage (TES) systems. The solid particles also help overcome some of the other challenges associated with molten salt-based systems such as freezing, instability and degradation. The higher operating temperatures and use of low cost HTM and higher efficiency power cycles are geared towards reducing costs associated with CSP systems. This paper describes the SPR-based CSP system with a focus on the fluidized-bed (FB) heat exchanger and its integration with various power cycles. The SPR technology provides a potential pathway to achieving the levelized cost of electricity (LCOE) target of $0.06/kWh that has been set by the U.S. Department of Energy's SunShot initiative.

  19. Fluidized-bed technology enabling the integration of high temperature solar receiver CSP systems with steam and advanced power cycles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sakadjian, B.; Hu, S.; Maryamchik, M.; Flynn, T.; Santelmann, K.; Ma, Z.

    2015-05-01

    Solar Particle Receivers (SPR) are under development to drive concentrating solar plants (CSP) towards higher operating temperatures to support higher efficiency power conversion cycles. The novel high temperature SPR-based CSP system uses solid particles as the heat transfer medium (HTM) in place of the more conventional fluids such as molten salt or steam used in current state-of-the-art CSP plants. The solar particle receiver (SPR) is designed to heat the HTM to temperatures of 800 °C or higher which is well above the operating temperatures of nitrate-based molten salt thermal energy storage (TES) systems. The solid particles also help overcome somemore » of the other challenges associated with molten salt-based systems such as freezing, instability and degradation. The higher operating temperatures and use of low cost HTM and higher efficiency power cycles are geared towards reducing costs associated with CSP systems. This paper describes the SPR-based CSP system with a focus on the fluidized-bed (FB) heat exchanger and its integration with various power cycles. The SPR technology provides a potential pathway to achieving the levelized cost of electricity (LCOE) target of $0.06/kWh that has been set by the U.S. Department of Energy's SunShot initiative.« less

  20. Emerging Issues and Challenges with Integrating High Levels of Solar into the Electrical Generation and Transmission Systems

    Broader source: Energy.gov [DOE]

    Increasing the use of grid-flexibility options (improved grid management, demand response, and energy storage) could enable 25% or higher penetration of PV at low costs (see Denholm et al. 2016). Considering the large-scale integration of solar into electric-power systems complicates the calculation of the value of solar. In fact a comprehensive examination reveals that the value of solar technologies—or any other power-system technology or operating strategy—can only be understood in the context of the generation system as a whole. This is well illustrated by analysis of curtailment at high PV penetrations within the bulk power and transmission systems. As the deployment of PV increases, it is possible that during some sunny midday periods due to limited flexibility of conventional generators, system operators would need to reduce (curtail) PV output in order to maintain the crucial balance between electric supply and demand. As a result, PV’s value and cost competitiveness would degrade. For example, for utility-scale PV with a baseline SunShot LCOE of 6¢/kWh, increasing the annual energy demand met by solar energy from 10% to 20% would increase the marginal LCOE of PV from 6¢/kWh to almost 11¢/kWh in a California grid system with limited flexibility. However, this loss of value could be stemmed by increasing system flexibility via enhanced control of variable-generation resources, added energy storage, and the ability to motivate more electricity consumers to shift consumption to lower-demand periods. The combination of these measures would minimize solar curtailment and keep PV cost-competitive at penetrations at least as high as 25%. Efficient deployment of the grid-flexibility options needed to maintain solar’s value will require various innovations, from the development of communication, control, and energy storage technologies to the implementation of new market rules and operating procedures.

  1. High

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    throughput spectrometer for fast localized Doppler measurements D. Craig, a͒ D. J. Den Hartog, D. A. Ennis, S. Gangadhara, and D. Holly The Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, 1150 University Avenue, University of Wisconsin-Madison, Madison, Wisconsin 53706 ͑Received 26 June 2006; accepted 27 November 2006; published online 4 January 2007͒ A new custom-built duo spectrometer has been commissioned for fast localized Doppler measurements of plasma ions

  2. How Do High Levels of Wind and Solar Impact the Grid? The Western Wind and Solar Integration Study

    SciTech Connect (OSTI)

    Lew, D.; Piwko, D.; Miller, N.; Jordan, G.; Clark, K.; Freeman, L.

    2010-12-01

    This paper is a brief introduction to the scope of the Western Wind and Solar Integration Study (WWSIS), inputs and scenario development, and the key findings of the study.

  3. High Efficiency Integrated Space Conditioning, Water Heating and Air Distribution System for HUD-Code Manufactured Housing

    SciTech Connect (OSTI)

    Henry DeLima; Joe Akin; Joseph Pietsch

    2008-09-14

    Recognizing the need for new space conditioning and water heating systems for manufactured housing, DeLima Associates assembled a team to develop a space conditioning system that would enhance comfort conditions while also reducing energy usage at the systems level. The product, Comboflair® was defined as a result of a needs analysis of project sponsors and industry stakeholders. An integrated system would be developed that would combine a packaged airconditioning system with a small-duct, high-velocity air distribution system. In its basic configuration, the source for space heating would be a gas water heater. The complete system would be installed at the manufactured home factory and would require no site installation work at the homesite as is now required with conventional split-system air conditioners. Several prototypes were fabricated and tested before a field test unit was completed in October 2005. The Comboflair® system, complete with ductwork, was installed in a 1,984 square feet, double-wide manufactured home built by Palm Harbor Homes in Austin, TX. After the home was transported and installed at a Palm Harbor dealer lot in Austin, TX, a data acquisition system was installed for remote data collection. Over 60 parameters were continuously monitored and measurements were transmitted to a remote site every 15 minutes for performance analysis. The Comboflair® system was field tested from February 2006 until April 2007. The cooling system performed in accordance with the design specifications. The heating system initially could not provide the needed capacity at peak heating conditions until the water heater was replaced with a higher capacity standard water heater. All system comfort goals were then met. As a result of field testing, we have identified improvements to be made to specific components for incorporation into production models. The Comboflair® system will be manufactured by Unico, Inc. at their new production facility in St. Louis, MO. The product will be initially launched in the hot-humid climates of the southern U.S.

  4. Tritium extraction throughput at Hanford, 1949--1954

    SciTech Connect (OSTI)

    Gydesen, S.P.

    1994-02-24

    Two tritium extraction campaigns were conducted at the 108 B facility. Both glass and metal extraction lines were utilized during the first campaign which began in February 1949 and was completed in March 1952. Five glass lines were constructed and made available for use as needed. Operation of the metal extraction line was begun on May 3, 1951. It continued in production until completion of the first campaign in March 1952. The second campaign used only the metal line. It was initiated in December 1953 and fulfilled in August 1954. Tritium production and extraction throughput information from Hanford operations was recently declassified. This document presents tritium extraction throughput information excerpted from monthly production reports which remain classified SECRET-RESTRICTED DATA because they contain information on weapon part fabrication, shipments, tritium technology and unit costs. Individuals with the appropriate level of clearance and need-to-know may request access to these reports through the DOE or appropriate Hanford contractor, following established written procedures. This data was collected for use by the Source Term Task Leader of the hanford Environmental Dose Reconstruction Project, to develop a source term for tritium to meet a 1994 milestone. The extraction quantities for the two campaigns are presented.

  5. An integrative computational approach for prioritization of genomic variants

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dubchak, Inna; Balasubramanian, Sandhya; Wang, Sheng; Meydan, Cem; Sulakhe, Dinanath; Poliakov, Alexander; Börnigen, Daniela; Xie, Bingqing; Taylor, Andrew; Ma, Jianzhu; et al

    2014-12-15

    An essential step in the discovery of molecular mechanisms contributing to disease phenotypes and efficient experimental planning is the development of weighted hypotheses that estimate the functional effects of sequence variants discovered by high-throughput genomics. With the increasing specialization of the bioinformatics resources, creating analytical workflows that seamlessly integrate data and bioinformatics tools developed by multiple groups becomes inevitable. Here we present a case study of a use of the distributed analytical environment integrating four complementary specialized resources, namely the Lynx platform, VISTA RViewer, the Developmental Brain Disorders Database (DBDB), and the RaptorX server, for the identification of high-confidence candidatemore » genes contributing to pathogenesis of spina bifida. The analysis resulted in prediction and validation of deleterious mutations in the SLC19A placental transporter in mothers of the affected children that causes narrowing of the outlet channel and therefore leads to the reduced folate permeation rate. The described approach also enabled correct identification of several genes, previously shown to contribute to pathogenesis of spina bifida, and suggestion of additional genes for experimental validations. The study demonstrates that the seamless integration of bioinformatics resources enables fast and efficient prioritization and characterization of genomic factors and molecular networks contributing to the phenotypes of interest.« less

  6. An integrative computational approach for prioritization of genomic variants

    SciTech Connect (OSTI)

    Dubchak, Inna; Balasubramanian, Sandhya; Wang, Sheng; Meydan, Cem; Sulakhe, Dinanath; Poliakov, Alexander; Börnigen, Daniela; Xie, Bingqing; Taylor, Andrew; Ma, Jianzhu; Paciorkowski, Alex R.; Mirzaa, Ghayda M.; Dave, Paul; Agam, Gady; Xu, Jinbo; Al-Gazali, Lihadh; Mason, Christopher E.; Ross, M. Elizabeth; Maltsev, Natalia; Gilliam, T. Conrad; Huang, Qingyang

    2014-12-15

    An essential step in the discovery of molecular mechanisms contributing to disease phenotypes and efficient experimental planning is the development of weighted hypotheses that estimate the functional effects of sequence variants discovered by high-throughput genomics. With the increasing specialization of the bioinformatics resources, creating analytical workflows that seamlessly integrate data and bioinformatics tools developed by multiple groups becomes inevitable. Here we present a case study of a use of the distributed analytical environment integrating four complementary specialized resources, namely the Lynx platform, VISTA RViewer, the Developmental Brain Disorders Database (DBDB), and the RaptorX server, for the identification of high-confidence candidate genes contributing to pathogenesis of spina bifida. The analysis resulted in prediction and validation of deleterious mutations in the SLC19A placental transporter in mothers of the affected children that causes narrowing of the outlet channel and therefore leads to the reduced folate permeation rate. The described approach also enabled correct identification of several genes, previously shown to contribute to pathogenesis of spina bifida, and suggestion of additional genes for experimental validations. The study demonstrates that the seamless integration of bioinformatics resources enables fast and efficient prioritization and characterization of genomic factors and molecular networks contributing to the phenotypes of interest.

  7. Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations

    SciTech Connect (OSTI)

    Bylaska, Eric J.; Weare, Jonathan Q.; Weare, John H.

    2013-08-21

    Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f (e.g., Verlet algorithm), is available to propagate the system from time t{sub i} (trajectory positions and velocities x{sub i} = (r{sub i}, v{sub i})) to time t{sub i+1} (x{sub i+1}) by x{sub i+1} = f{sub i}(x{sub i}), the dynamics problem spanning an interval from t{sub 0}t{sub M} can be transformed into a root finding problem, F(X) = [x{sub i} ? f(x{sub (i?1})]{sub i} {sub =1,M} = 0, for the trajectory variables. The root finding problem is solved using a variety of root finding techniques, including quasi-Newton and preconditioned quasi-Newton schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed, and the effectiveness of various approaches to solving the root finding problem is tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations, such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl + 4H{sub 2}O AIMD simulation at the MP2 level. The maximum speedup ((serial execution time)/(parallel execution time) ) obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations, the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a distributed computing environment using very slow transmission control protocol/Internet protocol networks. Scripts written in Python that make calls to a precompiled quantum chemistry package (NWChem) are demonstrated to provide an actual speedup of 8.2 for a 2.5 ps AIMD simulation of HCl + 4H{sub 2}O at the MP2/6-31G* level. Implemented in this way these algorithms can be used for long time high-level AIMD simulations at a modest cost using machines connected by very slow networks such as WiFi, or in different time zones connected by the Internet. The algorithms can also be used with programs that are already parallel. Using these algorithms, we are able to reduce the cost of a MP2/6-311++G(2d,2p) simulation that had reached its maximum possible speedup in the parallelization of the electronic structure calculation from 32 s/time step to 6.9 s/time step.

  8. Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations

    SciTech Connect (OSTI)

    Bylaska, Eric J.; Weare, Jonathan Q.; Weare, John H.

    2013-08-21

    Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f , (e.g. Verlet algorithm) is available to propagate the system from time ti (trajectory positions and velocities xi = (ri; vi)) to time ti+1 (xi+1) by xi+1 = fi(xi), the dynamics problem spanning an interval from t0 : : : tM can be transformed into a root finding problem, F(X) = [xi - f (x(i-1)]i=1;M = 0, for the trajectory variables. The root finding problem is solved using a variety of optimization techniques, including quasi-Newton and preconditioned quasi-Newton optimization schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed and the effectiveness of various approaches to solving the root finding problem are tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl+4H2O AIMD simulation at the MP2 level. The maximum speedup obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a distributed computing environment using very slow TCP/IP networks. Scripts written in Python that make calls to a precompiled quantum chemistry package (NWChem) are demonstrated to provide an actual speedup of 8.2 for a 2.5 ps AIMD simulation of HCl+4H2O at the MP2/6-31G* level. Implemented in this way these algorithms can be used for long time high-level AIMD simulations at a modest cost using machines connected by very slow networks such as WiFi, or in different time zones connected by the Internet. The algorithms can also be used with programs that are already parallel. By using these algorithms we are able to reduce the cost of a MP2/6-311++G(2d,2p) simulation that had reached its maximum possible speedup in the parallelization of the electronic structure calculation from 32 seconds per time step to 6.9 seconds per time step.

  9. Power Integrations Inc | Open Energy Information

    Open Energy Info (EERE)

    Integrations Inc Jump to: navigation, search Name: Power Integrations Inc Place: San Jose, California Zip: 95138 Product: Supplier of high-voltage analog integrated circuits used...

  10. Integration of geophysics within the Argonne expedited site characterization Program at a site in the southern High Plains

    SciTech Connect (OSTI)

    Hastings, B.; Hildebrandt, G.; Meyer, T.; Saunders, W.; Burton, J.C.

    1995-05-01

    An Argonne National Laboratory Expedited Site Characterization (ESC) program was carried out at a site in the central United States. The Argonne ESC process emphasizes an interdisciplinary approach in which all available information is integrated to produce as complete a picture as possible of the geologic and hydrologic controls on contaminant distribution and transport. As part of this process, all pertinent data that have been collected from previous investigations are thoroughly analyzed before a decision is made to collect additional information. A seismic reflection program recently concluded at the site had produced inconclusive results. Before we decided whether another acquisition program was warranted, we examined the existing data set to evaluate the quality of the raw data, the appropriateness of the processing sequence, and the integrity of the interpretation. We decided that the field data were of sufficient quality to warrant reprocessing and reinterpretation. The main thrust of the reprocessing effort was to enhance the continuity of a shallow, low-frequency reflection identified as a perching horizon within the Ogallala formation. The reinterpreted seismic data were used to locate the boundaries of the perched aquifer, which helped to guide the Argonne ESC drilling and sampling program. In addition, digitized geophysical well log data from previous drilling programs were reinterpreted and integrated into the geologic and hydrogeologic model.

  11. PROJECT PROFILE: An Integrated Tool for Improving Grid Performance and Reliability of Combined Transmission-Distribution with High Solar Penetration (SuNLaMP)

    Broader source: Energy.gov [DOE]

    High penetration of solar photovoltaics (PV) in electric power grids has created a need for changes to power system planning and operations analysis. Important technical issues such as two-way power flow, coordination of protection devices, transmission-distribution interaction, and reduction in inertia need to be resolved to enable a greater deployment of solar generation. To overcome these technical barriers, this project will develop a suite of software tools that creates a holistic understanding of the steady-state and transient behavior of transmission-distribution networks’ interaction under high PV penetration levels, along with the capability of real-time monitoring of the distribution systems and integration of system protection.

  12. High throughput parallel backside contacting and periodic texturing for high-efficiency solar cells

    DOE Patents [OSTI]

    Daniel, Claus; Blue, Craig A.; Ott, Ronald D.

    2014-08-19

    Disclosed are configurations of long-range ordered features of solar cell materials, and methods for forming same. Some features include electrical access openings through a backing layer to a photovoltaic material in the solar cell. Some features include textured features disposed adjacent a surface of a solar cell material. Typically the long-range ordered features are formed by ablating the solar cell material with a laser interference pattern from at least two laser beams.

  13. Eastern Renewable Generation Integration Study: Flexibility and High Penetrations of Wind and Solar; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Bloom, Aaron; Townsend, Aaron; Palchak, David

    2015-07-29

    Balancing wind and solar in a model is relatively easy. All you need to do is assume a very large system with infinite flexibility! But what if you don't have an infinitely flexible system? What if there are thousands of generators nestled in a handful of regions that are unlikely to change their operational practices? Would you still have enough flexibility to balance hundreds of gigawatts of wind and solar at a 5 minute level? At NREL, we think we can, and our industry partners agree. This presentation was presented at the IEEE Power and Energy Society General Meeting by Aaron Bloom, highlighting results of the Eastern Renewable Generation Integration Study.

  14. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors

    SciTech Connect (OSTI)

    Liu, Chao; Cai, Yuefei; Liu, Zhaojun; Ma, Jun; Lau, Kei May

    2015-05-04

    We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrown n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme.

  15. Accompanying coordinate expansion and recurrence relation method using a transfer relation scheme for electron repulsion integrals with high angular momenta and long contractions

    SciTech Connect (OSTI)

    Hayami, Masao; Seino, Junji; Nakai, Hiromi

    2015-05-28

    An efficient algorithm for the rapid evaluation of electron repulsion integrals is proposed. The present method, denoted by accompanying coordinate expansion and transferred recurrence relation (ACE-TRR), is constructed using a transfer relation scheme based on the accompanying coordinate expansion and recurrence relation method. Furthermore, the ACE-TRR algorithm is extended for the general-contraction basis sets. Numerical assessments clarify the efficiency of the ACE-TRR method for the systems including heavy elements, whose orbitals have long contractions and high angular momenta, such as f- and g-orbitals.

  16. Preparation of sorbent pellets with high integrity for sorption of CO.sub.2 from gas streams

    DOE Patents [OSTI]

    Siriwardane, Ranjani V.

    2016-05-10

    Method for the production of a CO.sub.2 sorbent prepared by integrating a clay substrate, basic alkali salt, amine liquid, hydraulic binder, and a liquid binder. The basic alkali salt is present relative to the clay substrate in a weight ratio of from about 1 part to about 50 parts per 100 parts of the clay substrate. The amine liquid is present relative to a clay-alkali combination in a weight ratio of from about 1 part to about 10 parts per 10 parts of the clay-alkali combination. The clay substrate and basic alkali salt may be combined in a solid-solid heterogeneous mixture and followed by introduction of the amine liquid. Alternatively, an alkaline solution may be blended with the amine solution prior to contacting the clay substrate. The clay-alkali-amine CO.sub.2 sorbent is particularly advantageous for low temperature CO.sub.2 removal cycles in a gas stream having a CO.sub.2 concentration less than around 2000 ppm and an oxygen concentration around 21%, such as air.

  17. Marine High Voltage Power Conditioning and Transmission System with Integrated Storage DE-EE0003640 Final Report

    SciTech Connect (OSTI)

    Frank Hoffmann, PhD; Aspinall, Rik

    2012-12-10

    Design, Development, and test of the three-port power converter for marine hydrokinetic power transmission. Converter provides ports for AC/DC conversion of hydrokinetic power, battery storage, and a low voltage to high voltage DC port for HVDC transmission to shore. The report covers the design, development, implementation, and testing of a prototype built by PPS.

  18. Development of an Integrated Raman and Turbidity Fiber Optic Sensor for the In-Situ Analysis of High Level Nuclear Waste

    SciTech Connect (OSTI)

    Gasbarro, Christina; Bello, Job M.; Bryan, Samuel A.; Lines, Amanda M.; Levitskaia, Tatiana G.

    2013-02-24

    Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fiber optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source.

  19. Development of an Integrated Raman and Turbidity Fiber Optic Sensor for the In-Situ Analysis of High Level Nuclear Waste - 13532

    SciTech Connect (OSTI)

    Gasbarro, Christina; Bello, Job [EIC Laboratories, Inc., 111 Downey St., Norwood, MA, 02062 (United States)] [EIC Laboratories, Inc., 111 Downey St., Norwood, MA, 02062 (United States); Bryan, Samuel; Lines, Amanda; Levitskaia, Tatiana [Pacific Northwest National Laboratory, PO Box 999, Richland, WA, 99352 (United States)] [Pacific Northwest National Laboratory, PO Box 999, Richland, WA, 99352 (United States)

    2013-07-01

    Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fiber optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source. (authors)

  20. Highly-enhanced reflow characteristics of sputter deposited Cu alloy thin films for large scale integrated interconnections

    SciTech Connect (OSTI)

    Onishi, Takashi; Mizuno, Masao; Yoshikawa, Tetsuya; Munemasa, Jun; Mizuno, Masataka; Kihara, Teruo; Araki, Hideki; Shirai, Yasuharu

    2011-08-01

    An attempt to improve the reflow characteristics of sputtered Cu films was made by alloying the Cu with various elements. We selected Y, Sb, Nd, Sm, Gd, Dy, In, Sn, Mg, and P for the alloys, and ''the elasto-plastic deformation behavior at high temperature'' and ''the filling level of Cu into via holes'' were estimated for Cu films containing each of these elements. From the results, it was found that adding a small amount of Sb or Dy to the sputtered Cu was remarkably effective in improve the reflow characteristics. The microstructure and imperfections in the Cu films before and after high-temperature high-pressure annealing were investigated by secondary ion micrographs and positron annihilation spectroscopy. The results imply that the embedding or deformation mechanism is different for the Cu-Sb alloy films compared to the Cu-Dy alloy films. We consider that the former is embedded by softening or deformation of the Cu matrix, which has a polycrystalline structure, and the latter is embedded by grain boundary sliding.

  1. Development of integrated mechanistically-based degradation-mode models for performance assessment of high-level waste containers

    SciTech Connect (OSTI)

    Bedrossian, P; Estill, J; Farmer, J; Hopper, R; Horn, J; Huang, J S; McCright, D; Roy, A; Wang, F; Wilfinger, K

    1999-02-08

    A key component of the Engineered Barrier System (EBS) being designed for containment of spent-fuel and high-level waste at the proposed geological repository at Yucca Mountain, Nevada is a two-layer canister. In this particular design, the inner barrier is made of a corrosion resistant material (CRM) such as Alloy 825, 625 or C-22, while the outer barrier is made of a corrosion-allowance material (CAM) such as A516 Gr 55, a carbon steel, or Monel 400. At the present time, Alloy C-22 and A516 G4 55 are favored.

  2. Data-driven integration of genome-scale regulatory and metabolic network

    SciTech Connect (OSTI)

    Imam, S; Schauble, S; Brooks, AN; Baliga, NS; Price, ND

    2015-05-05

    Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription, and signaling) have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or more network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. In this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.

  3. Integrated Operation of INL HYTEST System and High-Temperature Steam Electrolysis for Synthetic Natural Gas Production

    SciTech Connect (OSTI)

    Carl Marcel Stoots; Lee Shunn; James O'Brien

    2010-06-01

    The primary feedstock for synthetic fuel production is syngas, a mixture of carbon monoxide and hydrogen. Current hydrogen production technologies rely upon fossil fuels and produce significant quantities of greenhouse gases as a byproduct. This is not a sustainable means of satisfying future hydrogen demands, given the current projections for conventional world oil production and future targets for carbon emissions. For the past six years, the Idaho National Laboratory has been investigating the use of high-temperature steam electrolysis (HTSE) to produce the hydrogen feedstock required for synthetic fuel production. High-temperature electrolysis water-splitting technology, combined with non-carbon-emitting energy sources, can provide a sustainable, environmentally-friendly means of large-scale hydrogen production. Additionally, laboratory facilities are being developed at the INL for testing hybrid energy systems composed of several tightly-coupled chemical processes (HYTEST program). The first such test involved the coupling of HTSE, CO2 separation membrane, reverse shift reaction, and methanation reaction to demonstrate synthetic natural gas production from a feedstock of water and either CO or a simulated flue gas containing CO2. This paper will introduce the initial HTSE and HYTEST testing facilities, overall coupling of the technologies, testing results, and future plans.

  4. Photovoltaic manufacturing cost and throughput improvements for thin-film CIGS-based modules: Phase 1 technical report, July 1998--July 1999

    SciTech Connect (OSTI)

    Wiedeman, S.; Wendt, R.G.

    2000-03-01

    The primary objectives of the Global Solar Energy (GSE) Photovoltaic Manufacturing Technology (PVMaT) subcontract are directed toward reducing cost and expanding the production rate of thin-film CuInGaSe{sub 2} (CIGS)-based PV modules on flexible substrates. Improvements will be implemented in monolithic integration, CIGS deposition, contact deposition, and in-situ CIGS control and monitoring. In Phase 1, GSE has successfully attacked many of the highest risk aspects of each task. All-laser, selective scribing processes for CIGS have been developed, and many end-of-contract goals for scribing speed have been exceeded in the first year. High-speed ink-jet deposition of insulating material in the scribes now appears to be a viable technique, again exceeding some end-of-contract goals in the first year. Absorber deposition of CIGS was reduced corresponding to throughput speeds of up to 24-in/min, also exceeding an end-of-contract goal. Alternate back-contact materials have been identified that show potential as candidates for replacement of higher-cost molybdenum, and a novel, real-time monitoring technique (parallel-detector spectroscopic ellipsometry) has shown remarkable sensitivity to relevant properties of the CIGS absorber layer for use as a diagnostic tool. Currently, one of the bilayers has been baselined by GSE for flexible CIGS on polymeric substrates. Resultant back-contacts meet sheet-resistance goals and exhibit much less intrinsic stress than Mo. CIGS has been deposited, and resultant devices are comparable in performance to pure Mo back-contacts. Debris in the chamber has been substantially reduced, allowing longer roll-length between system cleaning.

  5. Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC) : gap analysis for high fidelity and performance assessment code development.

    SciTech Connect (OSTI)

    Lee, Joon H.; Siegel, Malcolm Dean; Arguello, Jose Guadalupe, Jr.; Webb, Stephen Walter; Dewers, Thomas A.; Mariner, Paul E.; Edwards, Harold Carter; Fuller, Timothy J.; Freeze, Geoffrey A.; Jove-Colon, Carlos F.; Wang, Yifeng

    2011-03-01

    This report describes a gap analysis performed in the process of developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with rigorous verification, validation, and software quality requirements. The gap analyses documented in this report were are performed during an initial gap analysis to identify candidate codes and tools to support the development and integration of the Waste IPSC, and during follow-on activities that delved into more detailed assessments of the various codes that were acquired, studied, and tested. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. The gap analysis indicates that significant capabilities may already exist in the existing THC codes although there is no single code able to fully account for all physical and chemical processes involved in a waste disposal system. Large gaps exist in modeling chemical processes and their couplings with other processes. The coupling of chemical processes with flow transport and mechanical deformation remains challenging. The data for extreme environments (e.g., for elevated temperature and high ionic strength media) that are needed for repository modeling are severely lacking. In addition, most of existing reactive transport codes were developed for non-radioactive contaminants, and they need to be adapted to account for radionuclide decay and in-growth. The accessibility to the source codes is generally limited. Because the problems of interest for the Waste IPSC are likely to result in relatively large computational models, a compact memory-usage footprint and a fast/robust solution procedure will be needed. A robust massively parallel processing (MPP) capability will also be required to provide reasonable turnaround times on the analyses that will be performed with the code. A performance assessment (PA) calculation for a waste disposal system generally requires a large number (hundreds to thousands) of model simulations to quantify the effect of model parameter uncertainties on the predicted repository performance. A set of codes for a PA calculation must be sufficiently robust and fast in terms of code execution. A PA system as a whole must be able to provide multiple alternative models for a specific set of physical/chemical processes, so that the users can choose various levels of modeling complexity based on their modeling needs. This requires PA codes, preferably, to be highly modularized. Most of the existing codes have difficulties meeting these requirements. Based on the gap analysis results, we have made the following recommendations for the code selection and code development for the NEAMS waste IPSC: (1) build fully coupled high-fidelity THCMBR codes using the existing SIERRA codes (e.g., ARIA and ADAGIO) and platform, (2) use DAKOTA to build an enhanced performance assessment system (EPAS), and build a modular code architecture and key code modules for performance assessments. The key chemical calculation modules will be built by expanding the existing CANTERA capabilities as well as by extracting useful components from other existing codes.

  6. Grid Integration

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its grid integration subprogram.

  7. Procurement Integrity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ------------------------------Chapter 3.1 (Dec 2015) 1 Procurement Integrity [Reference: 41 U.S.C. 423, FAR 3.104, DEAR 903.104] Overview This section discusses the requirements of the Procurement Integrity Act and its impact on Federal employees. Background The Department of Energy (DOE), like most federal agencies, purchases many products and services from the private sector. To preserve the integrity of the Federal procurement process and assure fair treatment of bidders, offerors and

  8. Procurement Integrity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    To preserve the integrity of the Federal procurement process and assure fair treatment of bidders, offerors and contractors, laws govern the procurement process and the manner in ...

  9. Insolation integrator

    DOE Patents [OSTI]

    Dougherty, John J.; Rudge, George T.

    1980-01-01

    An electric signal representative of the rate of insolation is integrated to determine if it is adequate for operation of a solar energy collection system.

  10. NREL: Transmission Grid Integration - Western Wind and Solar Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study Western Wind and Solar Integration Study The Western Wind and Solar Integration Study, one of the largest regional solar and wind integration studies to date, explores the question: Can we integrate large amounts of wind and solar energy into the electric power system of the West? Released December 2014-Phase 3 Research Report Says Western Grid Can Weather Disturbances Under High Renewable Penetrations With good system planning, sound engineering practices, and commercially available

  11. Characteristics of high-rate energy spectroscopy systems using HPGe coaxial detectors and time-variant filters

    SciTech Connect (OSTI)

    Britton, C.L.; Becker, T.H.; Paulus, T.J.; Trammell, R.C.

    1984-02-01

    A high-rate, high-resolution gamma spectrometer system is described. The system consists of a reverse electrode HPGe coaxial detector, a transistor reset preamplifier, an active, semi-Gaussian prefilter, a gated integrator, and a unique data acquisition system consisting of a 10 ..mu..s, 13 bit ADC, fast FIFO memory, 8k by 23 bit data memory, and computer interface circuitry under the control of a Z-80A ..mu..P. The effects of the various components on the throughput are described and throughput data is presented. The resolution and peak shift for various shaping times are presented for count rates up to 1 Mcps input rate using a mixed /sup 22/Na and /sup 60/Co source. The low rate resolutions of /sup 57/Co and /sup 60/Co for various shaping times using either the semi-Gaussian or gated integrator output are discussed as well as the low energy resolution and peak shifts in the presence of high energy events.

  12. High-Throughput and Combinatorial Screening of Hydrogen Storage Materials (presentation)

    Broader source: Energy.gov [DOE]

    Presented at the U.S. Department of Energy's Hydrogen Storage Meeting held June 26, 2007 in Bethesda, Maryland.

  13. Identification of GPR65, a novel regulator of matrix metalloproteinases using high through-put screening

    SciTech Connect (OSTI)

    Xu, Hongbo; Chen, Xiaohong; Huang, Junwei [Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing (China)] [Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing (China); Deng, Weiwei [Functional Genomics Group, Chinese National Human Genome Center (CHGB) at Beijing (China)] [Functional Genomics Group, Chinese National Human Genome Center (CHGB) at Beijing (China); Zhong, Qi [Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing (China)] [Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing (China); Yue, Changli [Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing (China)] [Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing (China); Wang, Pingzhang, E-mail: wangpzh@bjmu.edu.cn [Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University Center for Human Disease Genomics, Key Laboratory of Medical Immunology, Ministry of Health (China) [Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University Center for Human Disease Genomics, Key Laboratory of Medical Immunology, Ministry of Health (China); Functional Genomics Group, Chinese National Human Genome Center (CHGB) at Beijing (China); Huang, Zhigang, E-mail: enthuangzhigang@sohu.com [Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing (China)] [Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing (China)

    2013-06-21

    Highlights: A novel mechanism of MMP3 regulation by proton-sensing G-protein-coupled receptors was defined. GPR65 was identified to induce the MMP3 expression. GPR65 mediated MMP induction under acidic conditions. AP-1 binding site in MMP3 promoter was crucial for MMP3 induction. GPR65 overexpression can accelerate the invision of A549 cells. -- Abstract: Matrix metalloproteinases (MMPs) are over-expressed in nearly all cancers. To study novel regulatory factors of MMP expression in head and neck cancer (HNC), we screened a total of 636 candidate genes encoding putative human transmembrane proteins using MMP promoter reporter in a dual luciferase assay system. Three genes GPR65, AXL and TNFRSF10B dramatically activated the induction of MMP3 expression. The induction of MMP expression by GPR65 was further confirmed in A549 and/or FaDu cells. GPR65 mediated MMP induction under acidic conditions. The AP-1 binding site in MMP3 promoter was crucial for MMP3 induction. Moreover, the A549 cells infected by recombinant adenovirus of GPR65 showed accelerated cell invasion. In conclusion, we validate that GPR65 is vital regulatory genes upstream of MMP3, and define a novel mechanism of MMP3 regulation by proton-sensing G-protein-coupled receptors.

  14. Potential of High-Throughput Experimentation with Ammonia Borane Solid Hydrogen Storage Materials (presentation)

    Broader source: Energy.gov [DOE]

    Presented at the U.S. Department of Energy's Hydrogen Storage Meeting held June 26, 2007 in Bethesda, Maryland.

  15. High-throughput beamline for attosecond pulses based on toroidal mirrors with microfocusing capabilities

    SciTech Connect (OSTI)

    Frassetto, F.; Poletto, L.; Trabattoni, A.; Anumula, S.; Sansone, G.; Calegari, F.; Nisoli, M.

    2014-10-15

    We have developed a novel attosecond beamline designed for attosecond-pump/attosecond probe experiments. Microfocusing of the Extreme-ultraviolet (XUV) radiation is obtained by using a coma-compensated optical configuration based on the use of three toroidal mirrors controlled by a genetic algorithm. Trains of attosecond pulses are generated with a measured peak intensity of about 3 × 10{sup 11} W/cm{sup 2}.

  16. High-Throughput Program for the Discovery of NOx Reduction Catalysts |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 04 Diesel Engine Emissions Reduction (DEER) Conference Presentation: General Motors Corporation PDF icon 2004_deer_blint.pdf More Documents & Publications WA_02_042_GENERAL_MOTORS_POWER_TRAIN_DIV_Waiver_of_Domestic_.pdf Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis Lean-NOx Catalyst Development for Diesel Engine Applications

  17. High-Throughput/Combinatorial Techniques in Hydrogen Storage Materials R&D (presentation)

    Broader source: Energy.gov [DOE]

    Meeting Background, Purpose and Agenda presented at the U.S. Department of Energy's Hydrogen Storage Meeting held June 26, 2007 in Bethesda, Maryland.

  18. Multichannel microscale system for high throughput preparative separation with comprehensive collection and analysis

    DOE Patents [OSTI]

    Karger, Barry L.; Kotler, Lev; Foret, Frantisek; Minarik, Marek; Kleparnik, Karel

    2003-12-09

    A modular multiple lane or capillary electrophoresis (chromatography) system that permits automated parallel separation and comprehensive collection of all fractions from samples in all lanes or columns, with the option of further on-line automated sample fraction analysis, is disclosed. Preferably, fractions are collected in a multi-well fraction collection unit, or plate (40). The multi-well collection plate (40) is preferably made of a solvent permeable gel, most preferably a hydrophilic, polymeric gel such as agarose or cross-linked polyacrylamide.

  19. Development of High Throughput Process for Constructing 454 Titanium and Illumina Libraries

    SciTech Connect (OSTI)

    Deshpande, Shweta; Hack, Christopher; Tang, Eric; Malfatti, Stephanie; Ewing, Aren; Lucas, Susan; Cheng, Jan-Fang

    2010-05-28

    We have developed two processes with the Biomek FX robot to construct 454 titanium and Illumina libraries in order to meet the increasing library demands. All modifications in the library construction steps were made to enable the adaptation of the entire processes to work with the 96-well plate format. The key modifications include the shearing of DNA with Covaris E210 and the enzymatic reaction cleaning and fragment size selection with SPRI beads and magnetic plate holders. The construction of 96 Titanium libraries takes about 8 hours from sheared DNA to ssDNA recovery. The processing of 96 Illumina libraries takes less time than that of the Titanium library process. Although both processes still require manual transfer of plates from robot to other work stations such as thermocyclers, these robotic processes represent about 12- to 24-folds increase of library capacity comparing to the manual processes. To enable the sequencing of many libraries in parallel, we have also developed sets of molecular barcodes for both library types. The requirements for the 454 library barcodes include 10 bases, 40-60percent GC, no consecutive same base, and no less than 3 bases difference between barcodes. We have used 96 of the resulted 270 barcodes to construct libraries and pool to test the ability of accurately assigning reads to the right samples. When allowing 1 base error occurred in the 10 base barcodes, we could assign 99.6percent of the total reads and 100percent of them were uniquely assigned. As for the Illumina barcodes, the requirements include 4 bases, balanced GC, and at least 2 bases difference between barcodes. We have begun to assess the ability to assign reads after pooling different number of libraries. We will discuss the progress and the challenges of these scale-up processes.

  20. Algorithms and tools for high-throughput geometry-based analysis...

    Office of Scientific and Technical Information (OSTI)

    of Minnesota; National Energy Technology Laboratory; Texas A&M University ... Subject: membrane, carbon capture, materials and chemistry by design, synthesis (novel ...

  1. Automated high-throughput flow-through real-time diagnostic system

    DOE Patents [OSTI]

    Regan, John Frederick

    2012-10-30

    An automated real-time flow-through system capable of processing multiple samples in an asynchronous, simultaneous, and parallel fashion for nucleic acid extraction and purification, followed by assay assembly, genetic amplification, multiplex detection, analysis, and decontamination. The system is able to hold and access an unlimited number of fluorescent reagents that may be used to screen samples for the presence of specific sequences. The apparatus works by associating extracted and purified sample with a series of reagent plugs that have been formed in a flow channel and delivered to a flow-through real-time amplification detector that has a multiplicity of optical windows, to which the sample-reagent plugs are placed in an operative position. The diagnostic apparatus includes sample multi-position valves, a master sample multi-position valve, a master reagent multi-position valve, reagent multi-position valves, and an optical amplification/detection system.

  2. Experimental Approach of a High Performance Control of Two PermanentMagnet Synchronous Machines in an Integrated Drive for Automotive Applications

    SciTech Connect (OSTI)

    Tang, Lixin; Su, Gui-Jia

    2006-01-01

    The close-loop digital signal processor (DSP) control of an integrated-dual inverter, which is able to drive two permanent magnet (PM) motors independently, is presented and evaluated experimentally. By utilizing the neutral point of the main traction motor, only two inverter poles are needed for the two-phase auxiliary motor. The modified field-oriented control scheme for this integrated inverter was introduced and employed in real-time control. The experimental results show the inverter is able to control two drives independently. An integrated, component count reduced drive is achieved.

  3. Mapping intra-field yield variation using high resolution satellite imagery to integrate bioenergy and environmental stewardship in an agricultural watershed

    SciTech Connect (OSTI)

    Hamada, Yuki; Ssegane, Herbert; Negri, Maria Cristina

    2015-07-31

    Biofuels are important alternatives for meeting our future energy needs. Successful bioenergy crop production requires maintaining environmental sustainability and minimum impacts on current net annual food, feed, and fiber production. The objectives of this study were to: (1) determine under-productive areas within an agricultural field in a watershed using a single date; high resolution remote sensing and (2) examine impacts of growing bioenergy crops in the under-productive areas using hydrologic modeling in order to facilitate sustainable landscape design. Normalized difference indices (NDIs) were computed based on the ratio of all possible two-band combinations using the RapidEye and the National Agricultural Imagery Program images collected in summer 2011. A multiple regression analysis was performed using 10 NDIs and five RapidEye spectral bands. The regression analysis suggested that the red and near infrared bands and NDI using red-edge and near infrared that is known as the red-edge normalized difference vegetation index (RENDVI) had the highest correlation (R2 = 0.524) with the reference yield. Although predictive yield map showed striking similarity to the reference yield map, the model had modest correlation; thus, further research is needed to improve predictive capability for absolute yields. Forecasted impact using the Soil and Water Assessment Tool model of growing switchgrass (Panicum virgatum) on under-productive areas based on corn yield thresholds of 3.1, 4.7, and 6.3 Mg·ha-1 showed reduction of tile NO3-N and sediment exports by 15.9%–25.9% and 25%–39%, respectively. Corresponding reductions in water yields ranged from 0.9% to 2.5%. While further research is warranted, the study demonstrated the integration of remote sensing and hydrologic modeling to quantify the multifunctional value of projected future landscape patterns in a context of sustainable bioenergy crop production.

  4. Mapping intra-field yield variation using high resolution satellite imagery to integrate bioenergy and environmental stewardship in an agricultural watershed

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hamada, Yuki; Ssegane, Herbert; Negri, Maria Cristina

    2015-07-31

    Biofuels are important alternatives for meeting our future energy needs. Successful bioenergy crop production requires maintaining environmental sustainability and minimum impacts on current net annual food, feed, and fiber production. The objectives of this study were to: (1) determine under-productive areas within an agricultural field in a watershed using a single date; high resolution remote sensing and (2) examine impacts of growing bioenergy crops in the under-productive areas using hydrologic modeling in order to facilitate sustainable landscape design. Normalized difference indices (NDIs) were computed based on the ratio of all possible two-band combinations using the RapidEye and the National Agriculturalmore » Imagery Program images collected in summer 2011. A multiple regression analysis was performed using 10 NDIs and five RapidEye spectral bands. The regression analysis suggested that the red and near infrared bands and NDI using red-edge and near infrared that is known as the red-edge normalized difference vegetation index (RENDVI) had the highest correlation (R2 = 0.524) with the reference yield. Although predictive yield map showed striking similarity to the reference yield map, the model had modest correlation; thus, further research is needed to improve predictive capability for absolute yields. Forecasted impact using the Soil and Water Assessment Tool model of growing switchgrass (Panicum virgatum) on under-productive areas based on corn yield thresholds of 3.1, 4.7, and 6.3 Mg·ha-1 showed reduction of tile NO3-N and sediment exports by 15.9%–25.9% and 25%–39%, respectively. Corresponding reductions in water yields ranged from 0.9% to 2.5%. While further research is warranted, the study demonstrated the integration of remote sensing and hydrologic modeling to quantify the multifunctional value of projected future landscape patterns in a context of sustainable bioenergy crop production.« less

  5. Procurement Integrity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ---...Chapter 3.1 (Dec 2015) 1 Procurement Integrity Reference: 41 U.S.C. 423, FAR 3.104, DEAR 903.104 Overview This section discusses the requirements ...

  6. IntegrityGuide_2006.qxd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrity Guide for Suppliers, Contractors and Consultants rev. April 2013 1 A Message from GE The General Electric Company ("GE") is committed to unyielding Integrity and high standards of business conduct in everything we do, especially in our dealings with GE suppliers, contractors and consultants (collectively "Suppliers"). For well over a century, GE people have created an asset of incalculable value: the company's worldwide reputation for integrity and high standards of

  7. HLW System Integrated Project Team

    Office of Environmental Management (EM)

    l W S Hi h l W S High Level Waste System High Level Waste System Integrated Project Team ... and skilled kf Developing and deploying t h l i This document is intended for planning ...

  8. Eastern Renewable Generation Integration Study (Presentation)

    SciTech Connect (OSTI)

    Bloom, A.

    2014-05-01

    This presentation provides a high-level overview of the Eastern Renewable Generation Integration Study process, scenarios, tools, and goals.

  9. Crevice corrosion and pitting of high-level waste containers: a first step towards the integration of deterministic and probabilistic models

    SciTech Connect (OSTI)

    Farmer, J. C., LLNL

    1997-07-01

    An integrated predictive model is being developed to account for the effects of localized environmental conditions in crevices on pit initiation and propagation. A deterministic calculation is used to estimate the accumulation of hydrogen ions in the crevice solution due to equilibrium hydrolysis reactions of dissolved metal. Pit initiation and growth within the crevice is dealt with by either a stochastic probability model, or an equivalent deterministic model. While the strategy presented here is very promising, the integrated model is not yet ready for accurate quantitative predictions. Empirical expressions for the rate of penetration based upon experimental crevice corrosion data should be used in the interim period, until the integrated model can be refined. Both approaches are discussed.

  10. RECENT PROCESS IMPROVEMENTS TO INCREASE HLW THROUGHPUT AT THE DWPF

    SciTech Connect (OSTI)

    Herman, C

    2007-02-14

    The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF), the world's largest operating high level waste (HLW) vitrification plant, began stabilizing about 35 million gallons of SRS liquid radioactive waste by-product in 1996. The DWPF has since filled over 2000 canisters with about 4000 pounds of radioactive glass in each canister. In the past few years there have been several process and equipment improvements at the DWPF to increase the rate at which the waste can be stabilized. These improvements have either directly increased waste processing rates or have desensitized the process and therefore minimized process upsets and thus downtime. These improvements, which include glass former optimization, increased waste loading of the glass, the melter heated bellows liner, and glass surge protection software, will be discussed in this paper.

  11. Increasing throughput of multiplexed electrical bus in pipe-lined architecture

    DOE Patents [OSTI]

    Asaad, Sameh; Brezzo, Bernard V; Kapur, Mohit

    2014-05-27

    Techniques are disclosed for increasing the throughput of a multiplexed electrical bus by exploiting available pipeline stages of a computer or other system. For example, a method for increasing a throughput of an electrical bus that connects at least two devices in a system comprises introducing at least one signal hold stage in a signal-receiving one of the two devices, such that a maximum frequency at which the two devices are operated is not limited by a number of cycles of an operating frequency of the electrical bus needed for a signal to propagate from a signal-transmitting one of the two devices to the signal-receiving one of the two devices. Preferably, the signal hold stage introduced in the signal-receiving one of the two devices is a pipeline stage re-allocated from the signal-transmitting one of the two devices.

  12. "Changing Natural Gas Pipeline Throughputs in Canada"

    U.S. Energy Information Administration (EIA) Indexed Site

    Changing Natural Gas Pipeline Throughputs in Canada" Presented at 2015 EIA Energy Conference June 15, 2015 Margaret Skwara, National Energy Board Abha Bhargava, National Energy Board * National Energy Board Act * LNG Export and Import Licence Applications (summary and links to LNG export licence applications) * Market Snapshots (energy information updates; weekly updates) * Energy Futures Report (long term projections of supply and demand; Nov 2015 new release) * Regulatory Document Index

  13. RADIATION INTEGRATOR

    DOE Patents [OSTI]

    Glass, F.M.; Wilson, H.N.

    1959-02-17

    Radiation detecting and measuring systems, particularly a compact, integrating, background monitor, are discussed. One of the principal features of the system is the use of an electrometer tube where the input of the tube is directly connected to an electrode of the radiation detector and a capacitor is coupled to the tube input. When a predetermined quantity of radiation has been integrated, a trigger signal is fed to a recorder and a charge is delivered to the capacitor to render the tube inoperative. The capacitor is then recharged for the next period of operation. With this arrangement there is a substantial reduction in lead lengths and the principal components may be enclosed and hermetically sealed to insure low leakage.

  14. Virtual Design Studio (VDS) - Development of an Integrated Computer Simulation Environment for Performance Based Design of Very-Low Energy and High IEQ Buildings

    SciTech Connect (OSTI)

    Chen, Yixing; Zhang, Jianshun; Pelken, Michael; Gu, Lixing; Rice, Danial; Meng, Zhaozhou; Semahegn, Shewangizaw; Feng, Wei; Ling, Francesca; Shi, Jun; Henderson, Hugh

    2013-09-01

    Executive Summary The objective of this study was to develop a “Virtual Design Studio (VDS)”: a software platform for integrated, coordinated and optimized design of green building systems with low energy consumption, high indoor environmental quality (IEQ), and high level of sustainability. This VDS is intended to assist collaborating architects, engineers and project management team members throughout from the early phases to the detailed building design stages. It can be used to plan design tasks and workflow, and evaluate the potential impacts of various green building strategies on the building performance by using the state of the art simulation tools as well as industrial/professional standards and guidelines for green building system design. Engaged in the development of VDS was a multi-disciplinary research team that included architects, engineers, and software developers. Based on the review and analysis of how existing professional practices in building systems design operate, particularly those used in the U.S., Germany and UK, a generic process for performance-based building design, construction and operation was proposed. It distinguishes the whole process into five distinct stages: Assess, Define, Design, Apply, and Monitoring (ADDAM). The current VDS is focused on the first three stages. The VDS considers building design as a multi-dimensional process, involving multiple design teams, design factors, and design stages. The intersection among these three dimensions defines a specific design task in terms of “who”, “what” and “when”. It also considers building design as a multi-objective process that aims to enhance the five aspects of performance for green building systems: site sustainability, materials and resource efficiency, water utilization efficiency, energy efficiency and impacts to the atmospheric environment, and IEQ. The current VDS development has been limited to energy efficiency and IEQ performance, with particular focus on evaluating thermal performance, air quality and lighting environmental quality because of their strong interaction with the energy performance of buildings. The VDS software framework contains four major functions: 1) Design coordination: It enables users to define tasks using the Input-Process-Output flow approach, which specifies the anticipated activities (i.e., the process), required input and output information, and anticipated interactions with other tasks. It also allows task scheduling to define the work flow, and sharing of the design data and information via the internet. 2) Modeling and simulation: It enables users to perform building simulations to predict the energy consumption and IEQ conditions at any of the design stages by using EnergyPlus and a combined heat, air, moisture and pollutant simulation (CHAMPS) model. A method for co-simulation was developed to allow the use of both models at the same time step for the combined energy and indoor air quality analysis. 3) Results visualization: It enables users to display a 3-D geometric design of the building by reading BIM (building information model) file generated by design software such as SketchUp, and the predicted results of heat, air, moisture, pollutant and light distributions in the building. 4) Performance evaluation: It enables the users to compare the performance of a proposed building design against a reference building that is defined for the same type of buildings under the same climate condition, and predicts the percent of improvements over the minimum requirements specified in ASHRAE Standard 55-2010, 62.1-2010 and 90.1-2010. An approach was developed to estimate the potential impact of a design factor on the whole building performance, and hence can assist the user to identify areas that have most pay back for investment. The VDS software was developed by using C++ with the conventional Model, View and Control (MVC) software architecture. The software has been verified by using a simple 3-zone case building. The application of the VDS concepts and framework for building design and performance analysis has been illustrated by using a medium-sized, five story office building that received LEED Platinum Certification from USGBC.

  15. NREL: Energy Systems Integration - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Photo of a group of men in front of a computer visualization screen. NREL's energy systems integration research capabilities include high-resolution data visualization. Here, Secretary of Energy Ernest Moniz experiences a 3D wind turbine model during a tour of the Energy Systems Integration Facility. Photo by Dennis Schroeder, NREL NREL has unique research capabilities, experienced staff, and state-of-the-art equipment to find solutions to the challenges of effectively integrating

  16. A Semiautomated Framework for Integrating Expert Knowledge into Disease Marker Identification

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Jing; Webb-Robertson, Bobbie-Jo M.; Matzke, Melissa M.; Varnum, Susan M.; Brown, Joseph N.; Riensche, Roderick M.; Adkins, Joshua N.; Jacobs, Jon M.; Hoidal, John R.; Scholand, Mary Beth; et al

    2013-01-01

    Background . The availability of large complex data sets generated by high throughput technologies has enabled the recent proliferation of disease biomarker studies. However, a recurring problem in deriving biological information from large data sets is how to best incorporate expert knowledge into the biomarker selection process. Objective . To develop a generalizable framework that can incorporate expert knowledge into data-driven processes in a semiautomated way while providing a metric for optimization in a biomarker selection scheme. Methods . The framework was implemented as a pipeline consisting of five components for the identification of signatures from integrated clustering (ISIC).more » Expert knowledge was integrated into the biomarker identification process using the combination of two distinct approaches; a distance-based clustering approach and an expert knowledge-driven functional selection. Results . The utility of the developed framework ISIC was demonstrated on proteomics data from a study of chronic obstructive pulmonary disease (COPD). Biomarker candidates were identified in a mouse model using ISIC and validated in a study of a human cohort. Conclusions . Expert knowledge can be introduced into a biomarker discovery process in different ways to enhance the robustness of selected marker candidates. Developing strategies for extracting orthogonal and robust features from large data sets increases the chances of success in biomarker identification.« less

  17. A Semiautomated Framework for Integrating Expert Knowledge into Disease Marker Identification

    SciTech Connect (OSTI)

    Wang, Jing; Webb-Robertson, Bobbie-Jo M.; Matzke, Melissa M.; Varnum, Susan M.; Brown, Joseph N.; Riensche, Roderick M.; Adkins, Joshua N.; Jacobs, Jon M.; Hoidal, John R.; Scholand, Mary Beth; Pounds, Joel G.; Blackburn, Michael R.; Rodland, Karin D.; McDermott, Jason E.

    2013-10-01

    Background. The availability of large complex data sets generated by high throughput technologies has enabled the recent proliferation of disease biomarker studies. However, a recurring problem in deriving biological information from large data sets is how to best incorporate expert knowledge into the biomarker selection process. Objective. To develop a generalizable framework that can incorporate expert knowledge into data-driven processes in a semiautomated way while providing a metric for optimization in a biomarker selection scheme. Methods. The framework was implemented as a pipeline consisting of five components for the identification of signatures from integrated clustering (ISIC). Expert knowledge was integrated into the biomarker identification process using the combination of two distinct approaches; a distance-based clustering approach and an expert knowledge-driven functional selection. Results. The utility of the developed framework ISIC was demonstrated on proteomics data from a study of chronic obstructive pulmonary disease (COPD). Biomarker candidates were identified in a mouse model using ISIC and validated in a study of a human cohort. Conclusions. Expert knowledge can be introduced into a biomarker discovery process in different ways to enhance the robustness of selected marker candidates. Developing strategies for extracting orthogonal and robust features from large data sets increases the chances of success in biomarker identification.

  18. NREL: Distributed Grid Integration - Technology Development Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Development Projects NREL works on several distributed energy integration technology development projects, including the following: High Penetration Photovoltaics Hydrogen Systems Research Metering Solutions Mobile Electric Power Printable Version Distributed Grid Integration Home Capabilities Projects Codes & Standards Data Collection & Visualization Hawaii Clean Energy Initiative Microgrids Power Systems Modeling Solar Distributed Grid Integration Technology Development High

  19. An integrated top-down and bottom-up strategy for characterization protein isoforms and modifications

    SciTech Connect (OSTI)

    Wu, Si; Tolic, Nikola; Tian, Zhixin; Robinson, Errol W.; Pasa-Tolic, Ljiljana

    2011-04-15

    Bottom-up and top-down strategies are two commonly used methods for mass spectrometry (MS) based protein identification; each method has its own advantages and disadvantages. In this chapter, we describe an integrated top-down and bottom-up approach facilitated by concurrent liquid chromatography-mass spectrometry (LC-MS) analysis and fraction collection for comprehensive high-throughput intact protein profiling. The approach employs a high resolution reversed phase (RP) LC separation coupled with LC eluent fraction collection and concurrent on-line MS with a high field (12 Tesla) Fourier-transform ion cyclotron resonance (FTICR) mass spectrometer. Protein elusion profiles and tentative modified protein identification are made using detected intact protein mass in conjunction with bottom-up protein identifications from the enzymatic digestion and analysis of corresponding LC fractions. Specific proteins of biological interest are incorporated into a target ion list for subsequent off-line gas-phase fragmentation that uses an aliquot of the original collected LC fraction, an aliquot of which was also used for bottom-up analysis.

  20. ACCELERATION INTEGRATOR

    DOE Patents [OSTI]

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  1. Integrating mechanistic and polymorphism data to characterize human genetic susceptibility for environmental chemical risk assessment in the 21st century

    SciTech Connect (OSTI)

    Mortensen, Holly M.; Euling, Susan Y.

    2013-09-15

    Response to environmental chemicals can vary widely among individuals and between population groups. In human health risk assessment, data on susceptibility can be utilized by deriving risk levels based on a study of a susceptible population and/or an uncertainty factor may be applied to account for the lack of information about susceptibility. Defining genetic susceptibility in response to environmental chemicals across human populations is an area of interest in the NAS' new paradigm of toxicity pathway-based risk assessment. Data from high-throughput/high content (HT/HC), including -omics (e.g., genomics, transcriptomics, proteomics, metabolomics) technologies, have been integral to the identification and characterization of drug target and disease loci, and have been successfully utilized to inform the mechanism of action for numerous environmental chemicals. Large-scale population genotyping studies may help to characterize levels of variability across human populations at identified target loci implicated in response to environmental chemicals. By combining mechanistic data for a given environmental chemical with next generation sequencing data that provides human population variation information, one can begin to characterize differential susceptibility due to genetic variability to environmental chemicals within and across genetically heterogeneous human populations. The integration of such data sources will be informative to human health risk assessment.

  2. Commercial Buildings Integration (CBI)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arah Schuur Program Manager Commercial Buildings Integration (CBI) April 22, 2014 Commercial Buildings Integration (CBI) 2 Commercial Buildings Integration (CBI) Mission...

  3. High-Tech Means High-Efficiency: The Business Case for EnergyManagement in High-Tech Industries

    SciTech Connect (OSTI)

    Shanshoian, Gary; Blazek, Michele; Naughton, Phil; Seese, RobertS.; Mills, Evan; Tschudi, William

    2005-11-15

    In the race to apply new technologies in ''high-tech'' facilities such as data centers, laboratories, and clean rooms, much emphasis has been placed on improving service, building capacity, and increasing speed. These facilities are socially and economically important, as part of the critical infrastructure for pharmaceuticals,electronics, communications, and many other sectors. With a singular focus on throughput, some important design issues can be overlooked, such as the energy efficiency of individual equipment (e.g., lasers, routers and switches) as well as the integration of high-tech equipment into the power distribution system and the building envelope. Among technology-based businesses, improving energy efficiency presents an often untapped opportunity to increase profits, enhance process control,maximize asset value, improve the work place environment, and manage a variety of business risks. Oddly enough, the adoption of energy efficiency improvements in this sector lags behind many others. As a result, millions of dollars are left on the table with each year ofoperation.

  4. Residential Buildings Integration Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April 2, 2013 Residential Buildings Integration Program Building Technologies Office ... Overview of the Residential Integration Program Research Implementation tools ...

  5. Impact of sensitivity and throughput on optimum selection of a low-background alpha/beta gross counting system

    SciTech Connect (OSTI)

    Seymour, R.; Sergent, F.; Knight, K.; Kyker, B.

    1992-12-31

    Selection of the appropriate low-background counting system is determined by the laboratory`s measurement requirements including the radionuclide activities being measured, required sensitivity, sample volume, sample throughput, operator skill, automation, reporting requirements, budget, reliability, service, and upgrade capability. These requirements are ranked differently by each user. Nevertheless, any selection requires that the sensitivity and sample throughput be evaluated first because these parameters are instrument-specific, cannot be changed after the equipment is purchased and are easily quantified beforehand. Many of the other criteria are also related to sensitivity and affect the choice of instrument. Mathematical expressions, useful in evaluating sensitivity and throughput, are reviewed, extended, and applied to selecting a low-background alpha/beta counting system.

  6. Final report for %22High performance computing for advanced national electric power grid modeling and integration of solar generation resources%22, LDRD Project No. 149016.

    SciTech Connect (OSTI)

    Reno, Matthew J.; Riehm, Andrew Charles; Hoekstra, Robert John; Munoz-Ramirez, Karina; Stamp, Jason Edwin; Phillips, Laurence R.; Adams, Brian M.; Russo, Thomas V.; Oldfield, Ron A.; McLendon, William Clarence, III; Nelson, Jeffrey Scott; Hansen, Clifford W.; Richardson, Bryan T.; Stein, Joshua S.; Schoenwald, David Alan; Wolfenbarger, Paul R.

    2011-02-01

    Design and operation of the electric power grid (EPG) relies heavily on computational models. High-fidelity, full-order models are used to study transient phenomena on only a small part of the network. Reduced-order dynamic and power flow models are used when analysis involving thousands of nodes are required due to the computational demands when simulating large numbers of nodes. The level of complexity of the future EPG will dramatically increase due to large-scale deployment of variable renewable generation, active load and distributed generation resources, adaptive protection and control systems, and price-responsive demand. High-fidelity modeling of this future grid will require significant advances in coupled, multi-scale tools and their use on high performance computing (HPC) platforms. This LDRD report demonstrates SNL's capability to apply HPC resources to these 3 tasks: (1) High-fidelity, large-scale modeling of power system dynamics; (2) Statistical assessment of grid security via Monte-Carlo simulations of cyber attacks; and (3) Development of models to predict variability of solar resources at locations where little or no ground-based measurements are available.

  7. Engineering High Performance Service-Oriented Pipeline Applications with MeDICi

    SciTech Connect (OSTI)

    Gorton, Ian; Wynne, Adam S.; Liu, Yan

    2011-01-07

    The pipeline software architecture pattern is commonly used in many application domains to structure a software system. A pipeline comprises a sequence of processing steps that progressively transform data to some desired outputs. As pipeline-based systems are required to handle increasingly large volumes of data and provide high throughput services, simple scripting-based technologies that have traditionally been used for constructing pipelines do not scale. In this paper we describe the MeDICI Integration Framework (MIF), which is specifically designed for building flexible, efficient and scalable pipelines that exploit distributed services as elements of the pipeline. We explain the core runtime and development infrastructures that MIF provides, and demonstrate how MIF has been used in two complex applications to improve performance and modifiability.

  8. Wind Integration National Dataset (WIND) Toolkit

    Broader source: Energy.gov [DOE]

    For utility companies, grid operators and other stakeholders interested in wind energy integration, collecting large quantities of high quality data on wind energy resources is vitally important....

  9. NREL: Energy Systems Integration Facility - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research capabilities include: Systems integration Prototype and component development Manufacturing and material diagnostics High-performance computing and analytics. Photo of...

  10. Overview of Integrated Waste Treatment Unit

    Office of Environmental Management (EM)

    Integrated Waste Treatment Unit Overview Overview for the DOE High Level Waste Corporate Board March 5, 2009 safety performance cleanup closure M E Environmental ...

  11. NREL: Transmission Grid Integration - Hawaii Solar Integration Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hawaii Solar Integration Study The Hawaii Solar Integration Study was a detailed technical examination of the effects of high penetrations of solar and wind energy on the operations of the electric grids of two Hawaiian islands: Maui and Oahu. Carried out under the auspices of the Hawaii Clean Energy Initiative, the study was jointly sponsored by the Hawaii Natural Energy Institute, the U.S. Department of Energy, and the Hawaiian Electric Company. Unlike mainland power grids, island power grids

  12. Integrated Genome-Based Studies of Shewanella Echophysiology

    SciTech Connect (OSTI)

    Margrethe H. Serres

    2012-06-29

    Shewanella oneidensis MR-1 is a motile, facultative {gamma}-Proteobacterium with remarkable respiratory versatility; it can utilize a range of organic and inorganic compounds as terminal electronacceptors for anaerobic metabolism. The ability to effectively reduce nitrate, S0, polyvalent metals andradionuclides has established MR-1 as an important model dissimilatory metal-reducing microorganism for genome-based investigations of biogeochemical transformation of metals and radionuclides that are of concern to the U.S. Department of Energy (DOE) sites nationwide. Metal-reducing bacteria such as Shewanella also have a highly developed capacity for extracellular transfer of respiratory electrons to solid phase Fe and Mn oxides as well as directly to anode surfaces in microbial fuel cells. More broadly, Shewanellae are recognized free-living microorganisms and members of microbial communities involved in the decomposition of organic matter and the cycling of elements in aquatic and sedimentary systems. To function and compete in environments that are subject to spatial and temporal environmental change, Shewanella must be able to sense and respond to such changes and therefore require relatively robust sensing and regulation systems. The overall goal of this project is to apply the tools of genomics, leveraging the availability of genome sequence for 18 additional strains of Shewanella, to better understand the ecophysiology and speciation of respiratory-versatile members of this important genus. To understand these systems we propose to use genome-based approaches to investigate Shewanella as a system of integrated networks; first describing key cellular subsystems - those involved in signal transduction, regulation, and metabolism - then building towards understanding the function of whole cells and, eventually, cells within populations. As a general approach, this project will employ complimentary "top-down" - bioinformatics-based genome functional predictions, high-throughput expression analyses, and functional genomics approaches to uncover key genes as well as metabolic and regulatory networks. The "bottom-up" component employs more traditional approaches including genetics, physiology and biochemistry to test or verify predictions. This information will ultimately be linked to analyses of signal transduction and transcriptional regulatory systems and used to develop a linked model that will contribute to understanding the ecophysiology of Shewanella in redox stratified environments. A central component of this effort is the development of a data and knowledge integration environment that will allow investigators to query across the individual research domains, link to analysis applications, visualize data in a cell systems context, and produce new knowledge, while minimizing the effort, time and complexity to participating institutions.

  13. Post service examination of turbomolecular pumps after stress testing with Kg-scale tritium throughput

    SciTech Connect (OSTI)

    Priester, F.; Roelling, M.

    2015-03-15

    Turbomolecular pumps (TMP) will be used with large amounts of tritium in future fusion machines like ITER, DEMO and in the KATRIN Experiment. In this work, a stress test of a large, magnetically levitated TMP (Leybold MAG W2800) with a tritium throughput of 1.1 kg over 384 days of operation was performed at TLK. After this, the pump was dismantled and the tritium uptake in several parts was deter-mined. Especially the non-metallic parts of the pump have absorbed large amounts of tritium and are most likely responsible for the observed pollution of the process gas. The total tritium uptake of the TMP was estimated with 0.1-1.1 TBq. No radiation-induced damages were found on the inner parts of the pump. The TMP showed no signs of functional limitations during the 384 days of operation. (authors)

  14. Integrated Waste Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consent-Based Siting » Integrated Waste Management Integrated Waste Management The Department envisions an integrated waste management system with storage, transportation, and disposal capabilities in order to safely and effectively manage our nation's spent nuclear fuel and high-level radioactive waste. The Department envisions an integrated waste management system with storage, transportation, and disposal capabilities in order to safely and effectively manage our nation's spent nuclear fuel

  15. Demonstration of a Novel, Integrated, Multi-Scale Procedure for High-Resolution 3D Reservoir Characterization and Improved CO2-EOR/Sequestration Management, SACROC Unit

    SciTech Connect (OSTI)

    Scott R. Reeves

    2007-09-30

    The primary goal of this project was to demonstrate a new and novel approach for high resolution, 3D reservoir characterization that can enable better management of CO{sub 2} enhanced oil recovery (EOR) projects and, looking to the future, carbon sequestration projects. The approach adopted has been the subject of previous research by the DOE and others, and relies primarily upon data-mining and advanced pattern recognition approaches. This approach honors all reservoir characterization data collected, but accepts that our understanding of how these measurements relate to the information of most interest, such as how porosity and permeability vary over a reservoir volume, is imperfect. Ideally the data needed for such an approach includes surface seismic to provide the greatest amount of data over the entire reservoir volume of interest, crosswell seismic to fill the resolution gap between surface seismic and wellbore-scale measurements, geophysical well logs to provide the vertical resolution sought, and core data to provide the tie to the information of most interest. These data are combined via a series of one or more relational models to enable, in its most successful application, the prediction of porosity and permeability on a vertical resolution similar to logs at each surface seismic trace location. In this project, the procedure was applied to the giant (and highly complex) SACROC unit of the Permian basin in West Texas, one of the world's largest CO{sub 2}-EOR projects and a potentially world-class geologic sequestration site. Due to operational scheduling considerations on the part of the operator of the field, the crosswell data was not obtained during the period of project performance (it is currently being collected however as part of another DOE project). This compromised the utility of the surface seismic data for the project due to the resolution gap between it and the geophysical well logs. An alternative approach was adopted that utilized a relational model to predict porosity and permeability profiles from well logs at each well location, and a 3D geostatistical variogram to generate the reservoir characterization over the reservoir volume of interest. A reservoir simulation model was built based upon this characterization and history-matched without making significant changes to it, thus validating the procedure. While not the same procedure as originally planned, the procedure ultimately employed proved successful and demonstrated that the general concepts proposed (i.e., data mining and advanced pattern recognition methods) have the flexibility to achieve the reservoir characterization objectives sought even with imperfect or incomplete data.

  16. NREL: Energy Systems Integration Facility - Systems Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Integration Systems integration considers the relationships among electricity, thermal, and fuel systems and data and information networks to ensure optimal interoperability across the energy spectrum. The Energy Systems Integration Facility's suite of systems integration laboratories provides advanced capabilities for research, development, and demonstration of key components of future energy systems. Photo of a man and a power quality meter system in a laboratory. The Energy Systems

  17. High performance hybrid magnetic structure for biotechnology applications

    DOE Patents [OSTI]

    Humphries, David E.; Pollard, Martin J.; Elkin, Christopher J.

    2006-12-12

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are: a method of assembling the hybrid magnetic plates, a high throughput protocol featuring the hybrid magnetic structure, and other embodiments of the ferromagnetic pole shape, attachment and adapter interfaces for adapting the use of the hybrid magnetic structure for use with liquid handling and other robots for use in high throughput processes.

  18. High performance hybrid magnetic structure for biotechnology applications

    DOE Patents [OSTI]

    Humphries, David E; Pollard, Martin J; Elkin, Christopher J

    2005-10-11

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetizable molecular structures and targets. Also disclosed are: a method of assembling the hybrid magnetic plates, a high throughput protocol featuring the hybrid magnetic structure, and other embodiments of the ferromagnetic pole shape, attachment and adapter interfaces for adapting the use of the hybrid magnetic structure for use with liquid handling and other robots for use in high throughput processes.

  19. Dual Phase Li4 Ti5O12TiO2 Nanowire Arrays As Integrated Anodes For High-rate Lithium-ion Batteries

    SciTech Connect (OSTI)

    Liao, Jin; Chabot, Victor; Gu, Meng; Wang, Chong M.; Xiao, Xingcheng; Chen, Zhongwei

    2014-08-19

    Lithium titanate (Li4Ti5O12) is well known as a zero strain material inherently, which provides excellent long cycle stability as a negative electrode for lithium ion batteries. However, the low specific capacity (175 mA h g?1) limits it to power batteries although the low electrical conductivity is another intrinsic issue need to be solved. In this work, we developed a facile hydrothermal and ion-exchange route to synthesize the self-supported dual-phase Li4Ti5O12TiO2 nanowire arrays to further improve its capacity as well as rate capability. The ratio of Li4Ti5O12 to TiO2 in the dual phase Li4Ti5O12TiO2 nanowire is around 2:1. The introduction of TiO2 into Li4Ti5O12 increases the specific capacity. More importantly, by interface design, it creates a dual-phase nanostructure with high grain boundary density that facilitates both electron and Li ion transport. Compared with phase-pure nanowire Li4Ti5O12 and TiO2 nanaowire arrays, the dual-phase nanowire electrode yielded superior rate capability (135.5 at 5 C, 129.4 at 10 C, 120.2 at 20 C and 115.5 mA h g?1 at 30 C). In-situ transmission electron microscope clearly shows the near zero deformation of the dual phase structure, which explains its excellent cycle stability.

  20. Integrated Omics in Systems Biology: The New Frontier for Environmental Biotechnology

    SciTech Connect (OSTI)

    Hazen, Terry C.

    2008-08-12

    Environmental biotechnology encompasses a wide range of characterization, monitoring and control for bioenergy and bioremediation technologies that are based on biological processes. Recent breakthroughs in our understanding of biogeochemical processes and genomics are leading to exciting new and cost effective ways to monitor and manipulate the environment and potentially produce bioenergy fuels as we also cleanup the environment. Indeed, our ability to sequence an entire microbial genome in just a few hours is leading to similar breakthroughs in characterizing proteomes, metabolomes, phenotypes, and fluxes for organisms, populations, and communities. Understanding and modeling functional microbial community structure and stress responses in subsurface environments has tremendous implications for our fundamental understanding of biogeochemistry and the potential for making biofuel breakthroughs. Monitoring techniques that inventory and monitor terminal electron acceptors and electron donors, enzyme probes that measure functional activity in the environment, functional genomic microarrays, phylogenetic microarrays, metabolomics, proteomics, and quantitative PCR are also being rapidly adapted for studies in environmental biotechnology. Integration of all of these new high throughput techniques using the latest advances in bioinformatics and modeling will enable break-through science in environmental biotechnology. A review of these techniques with examples from field studies and lab simulations will be discussed.

  1. Integrative Bioengineering Institute

    SciTech Connect (OSTI)

    Eddington, David; Magin,L,Richard; Hetling, John; Cho, Michael

    2009-01-09

    Microfabrication enables many exciting experimental possibilities for medicine and biology that are not attainable through traditional methods. However, in order for microfabricated devices to have an impact they must not only provide a robust solution to a current unmet need, but also be simple enough to seamlessly integrate into standard protocols. Broad dissemination of bioMEMS has been stymied by the common aim of replacing established and well accepted protocols with equally or more complex devices, methods, or materials. The marriage of a complex, difficult to fabricate bioMEMS device with a highly variable biological system is rarely successful. Instead, the design philosophy of my lab aims to leverage a beneficial microscale phenomena (e.g. fast diffusion at the microscale) within a bioMEMS device and adapt to established methods (e.g. multiwell plate cell culture) and demonstrate a new paradigm for the field (adapt instead of replace). In order for the field of bioMEMS to mature beyond novel proof-of-concept demonstrations, researchers must focus on developing systems leveraging these phenomena and integrating into standard labs, which have largely been ignored. Towards this aim, the Integrative Bioengineering Institute has been established.

  2. High Sensitivity Proteomics Assisted Discovery of a Novel Operon Involved in the Assembly of Photosystem II, a Membrane Protein Complex

    SciTech Connect (OSTI)

    Wegener, Kimberly M.; Welsh, Eric A.; Thornton, Leeann E.; Keren, Nir S.; Jacobs, Jon M.; Hixson, Kim K.; Monroe, Matthew E.; Camp, David G.; Smith, Richard D.; Pakrasi, Himadri B.

    2008-10-10

    Photosystem II (PSII) is a large membrane protein complex that performs the water oxidation reactions of the photosynthetic electron transport chain in plants, algae, and cyanobacteria. Utilizing a high-throughput proteomic analysis of isolated PSII complexes from the cyanobacterium Synechocystis sp. PCC 6803, we have identified four PSII associated proteins that are encoded by the cofactor integration operon (cio). This operon contains genes with putative binding domains for chlorophyll, iron-sulfur centers, and bilins. Protein levels of this operon are more abundant in several PSII lumenal mutants, suggesting an accumulation of cio products in partially assembled PSII complexes. This provides a rare example of a bacterial operon whose protein products are translationally coordinated and associated with a single protein complex. Genetic deletion of cio results in decreased oxygen evolution by PSII, suggesting that cio products may function as regulators of PSII complex assembly or degradation, maybe facilitating an uncharacterized step in PSII assembly.

  3. Integrated Safety Management Policy

    Broader source: Energy.gov [DOE]

    This Integrated Safety Management (ISM) System Description (ISMSD) defines how the U.S. Department of Energy (DOE) Office of Environmental Management (EM) integrates environment, safety, and health...

  4. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  5. Integrating Environmental Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stewardship Many Laboratory functions are integrated with environmental stewardship. This Strategy cannot be effective without systematic integration with other related Laboratory...

  6. Distribution Grid Integration

    Broader source: Energy.gov [DOE]

    The DOE Systems Integration team funds distribution grid integration research and development (R&D) activities to address the technical issues that surround distribution grid planning,...

  7. Residential Buildings Integration (RBI)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    David Lee Program Manager Residential Buildings Integration (RBI) April 22, 2014 Residential Buildings Integration (RBI) MissionVision The Residential Buildings ...

  8. Commercial Buildings Integration Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Integration Program Arah Schuur Program Manager arah.schuur@ee.doe.gov April 2, ... Commercial Buildings Integration Program Mission Accelerate voluntary uptake of ...

  9. Energy Systems Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration Ben Kroposki, PhD, PE Director, Energy Systems Integration National Renewable Energy Laboratory 2 Reducing investment risk and optimizing systems in a rapidly ...

  10. The BTeV DAQ and Trigger System - Some throughput, usability and fault tolerance aspects

    SciTech Connect (OSTI)

    Erik Edward Gottschalk et al.

    2001-08-20

    As presented at the last CHEP conference, the BTeV triggering and data collection pose a significant challenge in construction and operation, generating 1.5 Terabytes/second of raw data from over 30 million detector channels. We report on facets of the DAQ and trigger farms. We report on the current design of the DAQ, especially its partitioning features to support commissioning of the detector. We are exploring collaborations with computer science groups experienced in fault tolerant and dynamic real-time and embedded systems to develop a system to provide the extreme flexibility and high availability required of the heterogeneous trigger farm ({approximately} ten thousand DSPs and commodity processors). We describe directions in the following areas: system modeling and analysis using the Model Integrated Computing approach to assist in the creation of domain-specific modeling, analysis, and program synthesis environments for building complex, large-scale computer-based systems; System Configuration Management to include compilable design specifications for configurable hardware components, schedules, and communication maps; Runtime Environment and Hierarchical Fault Detection/Management--a system-wide infrastructure for rapidly detecting, isolating, filtering, and reporting faults which will be encapsulated in intelligent active entities (agents) to run on DSPs, L2/3 processors, and other supporting processors throughout the system.

  11. Systems Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration Systems Integration Hawaii DREAMS of New Solar Technologies Hawaii DREAMS of New Solar Technologies Read more Plug and Play Solar PV for American Homes Plug and Play Solar PV for American Homes Read more Watt-Sun: A Multi-Scale, Multi-Modal, Machine-Learning Solar Forecasting Technology Watt-Sun: A Multi-Scale, Multi-Modal, Machine-Learning Solar Forecasting Technology Read more High PV Penetration with Energy Storage in Flagstaff, AZ High PV Penetration with Energy Storage

  12. NREL: Energy Systems Integration Facility - Specialized Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Specialized Laboratories The Energy Systems Integration Facility has more than 51,000 ft2 of laboratory space and numerous specialized laboratories. Its specialized laboratories include: Large high-bay laboratories Simulation and visualization laboratories The Systems Performance Laboratory Class 1, Division 2-approved test laboratories The Energy Systems High-Pressure Test Laboratory Outdoor test areas. Large High-Bay Laboratories The Energy Systems Integration Facility has multiple high-bay

  13. Sandia Energy - Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Transmission Grid Integration Transmission Grid...

  14. Sandia Energy - Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Distribution Grid Integration Distribution Grid...

  15. Integrating Federal Resources for High Performance Hospitals

    SciTech Connect (OSTI)

    2008-08-01

    A postcard describing DOE and EPA resources targeted to hospital architects, facility managers, and corporate leadership at each stage of the hospital design and operation process.

  16. High Efficiency Microturbine with Integral Heat Recovery

    SciTech Connect (OSTI)

    2010-10-01

    Fact sheet: this project will develop a clean, cost-effective 370 kW microturbine with 42% net electrical efficiency and 85% total CHP efficiency.

  17. High Power Density Integrated Traction Machine Drive

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  18. High Power Density Integrated Traction Machine Drive

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  19. Residential Buildings Integration Program

    Broader source: Energy.gov [DOE]

    Residential Buildings Integration Program Presentation for the 2013 Building Technologies Office's Program Peer Review

  20. Procurement Integrity Brochure What is Procurement Integrity?

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procurement Integrity Brochure What is Procurement Integrity? The Department of Energy, like most federal agencies, purchases many products and services from the private sector. To preserve the integrity of the Federal procurement process and assure fair treatment of bidders, offerors, and contractors, laws govern the procurement process and the manner in which federal and contractor personnel conduct business with each other. One of these statutes is Section 27 of the Office of Federal

  1. Integrated Powertrain and Vehicle Technologies for Fuel Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Heavy-Duty Engine Technology for High Thermal Efficiency at EPA 2010 Emissions Regulations Navistar-Driving efficiency with integrated technology High Fuel Economy Heavy-Duty Truck ...

  2. Fast lithium-ion conducting thin film electrolytes integrated...

    Office of Scientific and Technical Information (OSTI)

    integrated directly on flexible substrates for high power solid-state batteries. ... on flexible substrates for high power solid-state batteries. Abstract not provided. ...

  3. The development of a high-throughput gradient array apparatus for the study of porous polymer networks.

    SciTech Connect (OSTI)

    Majumdar, Partha; Lee, Elizabeth; Chisholm, Bret J.; Dirk, Shawn M.; Weisz, Michael; Bahr, James; Schiele, Kris

    2010-01-01

    A gradient array apparatus was constructed for the study of porous polymers produced using the process of chemically-induced phase separation (CIPS). The apparatus consisted of a 60 element, two-dimensional array in which a temperature gradient was placed in the y-direction and composition was varied in the x-direction. The apparatus allowed for changes in opacity of blends to be monitored as a function of temperature and cure time by taking images of the array with time. The apparatus was validated by dispense a single blend composition into all 60 wells of the array and curing them for 24 hours and doing the experiment in triplicate. Variations in micron scale phase separation were readily observed as a function of both curing time and temperature and there was very good well-to-well consistency as well as trial-to-trial consistency. Poragen of samples varying with respect to cure temperature was removed and SEM images were obtained. The results obtained showed that cure temperature had a dramatic affect on sample morphology, and combining data obtained from visual observations made during the curing process with SEM data can enable a much better understanding of the CIPS process and provide predictive capability through the relatively facile generation of composition-process-morphology relationships. Data quality could be greatly enhanced by making further improvements in the apparatus. The primary improvements contemplated include the use of a more uniform light source, an optical table, and a CCD camera with data analysis software. These improvements would enable quantification of the amount of scattered light generated from individual elements as a function of cure time. In addition to the gradient array development, porous composites were produced by incorporating metal particles into a blend of poragen, epoxy resin, and crosslinker. The variables involved in the experiment were metal particle composition, primary metal particle size, metal concentration, and poragen composition. A total of 16 different porous composites were produced and characterized using SEM. In general, the results showed that pore morphology and the distribution of metal particles was dependent on multiple factors. For example, the use of silver nanoparticles did not significantly affect pore morphology for composites derived from decanol as the poragen, but exceptionally large pores were obtained with the use of decane as the poragen. With regard to the effect of metal particle size, silver nanoparticles were essentially exclusively dispered in the polymer matrix while silver microparticles were found in pores. For nickel particles, both nanoparticles and microparticles were largely dispersed in the polymer matrix and not in the pores.

  4. EM-21 HIGHER WASTE LOADING GLASSES FOR ENHANCED DOE HIGH-LEVEL WASTE MELTER THROUGHPUT STUDIES - 10194

    SciTech Connect (OSTI)

    Raszewski, F.; Peeler, D.; Edwards, T.

    2009-11-18

    Supplemental validation data has been generated that will be used to determine the applicability of the current Defense Waste Processing Facility (DWPF) liquidus temperature (T{sub L}) model to expanded DWPF glass regions of interest based on higher waste loadings. For those study glasses which had very close compositional overlap with the model development and/or model validation ranges (except TiO{sub 2} and MgO concentrations), there was very little difference in the predicted and measured TL values, even though the TiO{sub 2} contents were above the 2 wt% upper limit. The results indicate that the current T{sub L} model is applicable in these compositional regions. As the compositional overlap between the model validation ranges diverged from the target glass compositions, the T{sub L} data suggest that the model under-predicted the measured values. These discrepancies imply that there are individual oxides or their combinations that were outside of the model development and/or validation range over which the model was previously assessed. These oxides include B{sub 2}O{sub 3}, SiO{sub 2}, MnO, TiO{sub 2} and/or their combinations. More data is required to fill in these anticipated DWPF compositional regions so that the model coefficients could be refit to account for these differences.

  5. Development of High-Throughput Screens to Target SAM-I Riboswitches (2014 DOE JGI Genomics of Energy & Environment Meeting)

    SciTech Connect (OSTI)

    Hickey, Scott [UC Berkely

    2014-03-19

    Scott Hickey of the University of California Berkeley speaks at the 9th Annual Genomics of Energy & Environment Meeting on March 20, 2014 in Walnut Creek, Calif.

  6. Conversion of forest residues to a methane-rich gas in a high-throughput gasifier. Summary report

    SciTech Connect (OSTI)

    Feldmann, H.F.; Paisley, M.A.; Folsom, D.W.; Kim, B.C.

    1981-10-31

    Results of the experimental work conducted thus far have shown that wood can be readily gasified in a steam environment into a hydrocarbon rich fuel gas that can be used as a replacement for petroleum-based fuels or natural gas with minimal boiler retrofit. Further, this conversion can be achieved in a compact gasification reactor with heat supplied by a circulating entrained phase, thereby eliminating the need for an oxygen plant. Tars have not been found except at the lowest gasifier temperatures employed, and therefore heat recovery from the product gas should be much simpler than that from commercially available fixed-bed gasification systems where product gas contains significant quantities of tar. The data generated have been used in a preliminary conceptual design. Evaluation of this design has shown that a medium-Btu gas can be produced from wood at a cost competitive with natural gas or petroleum-based fuels.

  7. Ambient-atmosphere glow discharge for determination of elemental concentration in solutions in a high-throughput or transient fashion

    DOE Patents [OSTI]

    Webb, Michael R.; Hieftje, Gary M.; Andrade, Francisco

    2011-04-19

    An ambient atmosphere glow discharge spectrometer is disclosed having a capillary, two electrodes and a means for recording the atomic emissions.

  8. Integrated Distribution Planning Concept Paper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Planning Concept Paper www.irecusa.org A Proactive Approach for Accommodating High Penetrations of Distributed Generation Resources May 2013 Integrated Distribution Planning Concept Paper A Proactive Approach for Accommodating High Penetrations of Distributed Generation Resources Tim Lindl and Kevin Fox Interstate Renewable Energy Council, Inc. Abraham Ellis and Robert Broderick Sandia National Laboratories May 2013 IREC enables greater use of clean energy in a sustainable way by

  9. NREL: Water Power Research - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration High-voltage transmission lines and towers silouetted against a blue sky with the first glow of the rising sun on the horizon behind them. The national need for transmission improvements will have a direct impact on the effective use of renewable energy sources. For marine and hydrokinetic technologies to play a larger role in supplying the nation's energy needs, integration into the U.S. power grid is an important challenge to address. Efficient integration of variable power

  10. Gated integrator with signal baseline subtraction

    DOE Patents [OSTI]

    Wang, Xucheng

    1996-01-01

    An ultrafast, high precision gated integrator includes an opamp having differential inputs. A signal to be integrated is applied to one of the differential inputs through a first input network, and a signal indicative of the DC offset component of the signal to be integrated is applied to the other of the differential inputs through a second input network. A pair of electronic switches in the first and second input networks define an integrating period when they are closed. The first and second input networks are substantially symmetrically constructed of matched components so that error components introduced by the electronic switches appear symmetrically in both input circuits and, hence, are nullified by the common mode rejection of the integrating opamp. The signal indicative of the DC offset component is provided by a sample and hold circuit actuated as the integrating period begins. The symmetrical configuration of the integrating circuit improves accuracy and speed by balancing out common mode errors, by permitting the use of high speed switching elements and high speed opamps and by permitting the use of a small integrating time constant. The sample and hold circuit substantially eliminates the error caused by the input signal baseline offset during a single integrating window.

  11. Gated integrator with signal baseline subtraction

    DOE Patents [OSTI]

    Wang, X.

    1996-12-17

    An ultrafast, high precision gated integrator includes an opamp having differential inputs. A signal to be integrated is applied to one of the differential inputs through a first input network, and a signal indicative of the DC offset component of the signal to be integrated is applied to the other of the differential inputs through a second input network. A pair of electronic switches in the first and second input networks define an integrating period when they are closed. The first and second input networks are substantially symmetrically constructed of matched components so that error components introduced by the electronic switches appear symmetrically in both input circuits and, hence, are nullified by the common mode rejection of the integrating opamp. The signal indicative of the DC offset component is provided by a sample and hold circuit actuated as the integrating period begins. The symmetrical configuration of the integrating circuit improves accuracy and speed by balancing out common mode errors, by permitting the use of high speed switching elements and high speed opamps and by permitting the use of a small integrating time constant. The sample and hold circuit substantially eliminates the error caused by the input signal baseline offset during a single integrating window. 5 figs.

  12. High Temperature, High Voltage Fully Integrated Gate Driver Circuit

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  13. High Temperature, High Voltage Fully Integrated Gate Driver Circuit

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  14. NREL: Transmission Grid Integration - Wind Integration Datasets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Integration Datasets The datasets below provide energy professionals with a consistent set of wind profiles for the United States. Eastern and Western Wind Datasets The Eastern and Western Wind Datasets provide 10-minute time-series wind data for 2004, 2005, and 2006. These datasets were designed to help energy professionals perform wind integration studies and estimate power production from hypothetical wind plants. For the Eastern dataset, more than 1,326 simulated wind plant data points

  15. Development and Integration of Genome-Enabled Techniques to Track and Predict the Cycling of Carbon in Model Microbial Communities

    SciTech Connect (OSTI)

    Banfield, Jillian

    2014-11-26

    The primary objective of this project was to establish widely applicable, high-throughput omics methods for tracking carbon flow in microbial communities at a strain-resolved molecular level. We developed and applied these methods to study a well-established microbial community model system with a long history of omics innovation: chemoautotrophic biofilms grown in an acid mine drainage (AMD) environment. The methods are now being transitioned (in a new project) to study soil. Using metagenomics, stable-isotope proteomics, stable-isotope metabolomics, transcriptomics, and microscopy, we tracked carbon flow during initial biofilm growth involving CO2 fixation, through the maturing biofilm community consisting of multiple trophic levels, and during an anaerobic degradative phase after biofilms sink. This work included explicit consideration of the often overlooked roles of archaea and microbial eukaryotes (fungi) in carbon turnover. We also analyzed where the eosystem begins to fail in response to thermal perturbation, and how perturbation propagates through a carbon cycle. We investigated the form of strain variation in microbial communities, the importance of strain variants, and the rate and form of strain evolution. Overall, the project generated an array of new, integrated omics approaches and provided unprecedented insight into the functioning of a natural ecosystem. This project supported graduate training for five Ph.D. students and three post doctoral fellows and contributed directly to at least 26 publications (two in Science).

  16. MEDIUM VOLTAGE INTEGRATED DRIVE AND MOTOR

    Broader source: Energy.gov [DOE]

    Calnetix Technologies – Cerritos, CA This project will focus on integrating a high voltage SiC device with advanced high-speed machine technology, medium voltage stators, high efficiency magnetic bearings and sensor high frequency drive technology that can work directly with high voltages, switch at high frequencies for low machine losses, and do so very efficiently. The new medium voltage motors are expected to achieve up to eight times the power density of similar traditional systems. Fact sheet coming soon.

  17. Operating Reserves and Wind Power Integration: An International Comparison; Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Donohoo, P.; Lew, D.; Ela, E.; Kirby, B.; Holttinen, H.; Lannoye, E.; Flynn, D.; O'Malley, M.; Miller, N.; Eriksen, P. B.; Gottig, A.; Rawn, B.; Gibescu, M.; Lazaro, E. G.; Robitaille, A.; Kamwa, I.

    2010-10-01

    This paper provides a high-level international comparison of methods and key results from both operating practice and integration analysis, based on an informal International Energy Agency Task 25: Large-scale Wind Integration.

  18. Integrated rural energy planning

    SciTech Connect (OSTI)

    El Mahgary, Y.; Biswas, A.K.

    1985-01-01

    This book presents papers on integrated community energy systems in developing countries. Topics considered include an integrated rural energy system in Sri Lanka, rural energy systems in Indonesia, integrated rural food-energy systems and technology diffusion in India, bringing energy to the rural sector in the Philippines, the development of a new energy village in China, the Niaga Wolof experimental rural energy center, designing a model rural energy system for Nigeria, the Basaisa village integrated field project, a rural energy project in Tanzania, rural energy development in Columbia, and guidelines for the planning, development and operation of integrated rural energy projects.

  19. Integration of alternative feedstreams for biomass treatment and utilization

    DOE Patents [OSTI]

    Hennessey, Susan Marie; Friend, Julie; Dunson, Jr., James B.; Tucker, III, Melvin P.; Elander, Richard T.; Hames, Bonnie

    2011-03-22

    The present invention provides a method for treating biomass composed of integrated feedstocks to produce fermentable sugars. One aspect of the methods described herein includes a pretreatment step wherein biomass is integrated with an alternative feedstream and the resulting integrated feedstock, at relatively high concentrations, is treated with a low concentration of ammonia relative to the dry weight of biomass. In another aspect, a high solids concentration of pretreated biomass is integrated with an alternative feedstream for saccharifiaction.

  20. NREL: Biomass Research - Integrated Biorefinery Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The IBRF's 27,000-ft2, high-bay biochemical conversion pilot ... into end-to-end process integration and evaluation tests ... for staged feedstock pre-processing operations in one vessel ...

  1. Advanced Integrated Traction System

    SciTech Connect (OSTI)

    Greg Smith; Charles Gough

    2011-08-31

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step towards enabling a smart-grid application. GM under this work assessed 29 technologies; investigated 36 configurations/types power electronics and electric machines, filed 41 invention disclosures; and ensured technology compatibility with vehicle production. Besides the development of a high temperature ETS the development of industrial suppliers took place because of this project. Suppliers of industrial power electronic components are numerous, but there are few that have traction drive knowledge. This makes it difficult to achieve component reliability, durability, and cost requirements necessary of high volume automotive production. The commercialization of electric traction systems for automotive industry requires a strong diverse supplier base. Developing this supplier base is dependent on a close working relationship between the OEM and supplier so that appropriate component requirements can be developed. GM has worked closely with suppliers to develop components for electric traction systems. Components that have been the focus of this project are power modules, capacitors, heavy copper boards, current sensors, and gate drive and controller chip sets. Working with suppliers, detailed component specifications have been developed. Current, voltage, and operation environment during the vehicle drive cycle were evaluated to develop higher resolution/accurate component specifications.

  2. Integrating Environmental Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy Integrated Waste Management and Consent-Based Siting Booklet Integrated Waste Management and Consent-Based Siting Booklet This booklet provides an overview of issues involved in the Department's vision of an integrated waste management system and its consent-based approach to siting the facilities needed to manage nuclear waste. It briefly discusses the history of waste management efforts in the United States, key features of a consent-based approach, siting efforts in other

  3. Wind Energy Integration: Slides

    Wind Powering America (EERE)

    information about integrating wind energy into the electricity grid. Wind Energy Integration Photo by Dennis Schroeder, NREL 25907 Wind energy currently contributes significant power to energy portfolios around the world. *U.S. Department of Energy. (August 2015). 2014 Wind Technologies Market Report. Wind Energy Integration In 2014, Denmark led the way with wind power supplying roughly 39% of the country's electricity demand. Ireland, Portugal, and Spain provided more than 20% of their

  4. Integrated Project Team RM

    Office of Environmental Management (EM)

    DOE-STD-1189-2008, Integration of Safety into the Design Process, and EM's internal business management practices. The SRP follows the Critical Decision (CD) process and...

  5. Commercial Buildings Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Integration Images courtesy CREE, True Manufacturing, A.O. Smith, Bernstein Associates, Cambridge Engineering, Alliance Laundry Systems, NREL 2 Strategic Fit within ...

  6. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Sandia's larger portfolio of renewable energy technology programs (Wind, Solar Power, Geothermal, and Energy Systems Analysis). Transmission Grid Integration The goal of...

  7. Renewables and Grid Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Workshop Renewables and Grid Integration February 28, 2014 Kevin Harrison National Renewable Energy Laboratory This presentation does not contain any proprietary, ...

  8. Integrated Solar Thermochemical Reaction System

    Broader source: Energy.gov [DOE]

    This fact sheet describes an integrated solar thermochemical reaction system project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pacific Northwest National Laboratory, is working to develop and demonstrate a high-performance solar thermochemical reaction system in an end-to-end demonstration that produces electricity. A highly efficient solar thermochemical reaction system would allow for 24-hour operation without the need for storage technology, and reductions in total system costs while providing a relatively low-risk deployment option for CSP systems.

  9. NREL: Transmission Grid Integration - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Want updates about future transmission grid integration webinars and publications? Join our mailing list. NREL has an extensive collection of publications related to transmission integration research. Explore the resources below to learn more. Selected Project Publications Read selected publications related to these transmission integration projects: Western Wind and Solar Integration Study Eastern Renewable Generation Integration Study Oahu Wind Integration and Transmission Study

  10. Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    The Systems Integration (SI) subprogram works closely with industry, universities, and the national laboratories to overcome technical barriers to the large-scale deployment of solar technologies. To support these goals, the subprogram invests primarily in four areas: grid integration, technology validation, solar resource assessment, and balance of system development.

  11. Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2011-10-13

    The Systems Integration (SI) subprogram works closely with industry, universities, and the national laboratories to overcome technical barriers to the large-scale deployment of solar technologies. To support these goals, the subprogram invests primarily in four areas: grid integration, technology validation, solar resource assessment, and balance of system development.

  12. Integrating Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

  13. Gold-doped graphene: A highly stable and active electrocatalysts for the oxygen reduction reaction

    SciTech Connect (OSTI)

    Stolbov, Sergey Alcntara Ortigoza, Marisol

    2015-04-21

    In addressing the growing need of renewable and sustainable energy resources, hydrogen-fuel-cells stand as one of the most promising routes to transform the current energy paradigm into one that integrally fulfills environmental sustainability. Nevertheless, accomplishing this technology at a large scale demands to surpass the efficiency and enhance the cost-effectiveness of platinum-based cathodes, which catalyze the oxygen reduction reaction (ORR). In this work, our first-principles calculations show that Au atoms incorporated into graphene di-vacancies form a highly stable and cost-effective electrocatalyst that is, at the same time, as or more (dependently of the dopant concentration) active toward ORR than the best-known Pt-based electrocatalysts. We reveal that partial passivation of defected-graphene by gold atoms reduces the reactivity of C dangling bonds and increases that of Au, thus optimizing them for catalyzing the ORR and yielding a system of high thermodynamic and electrochemical stabilities. We also demonstrate that the linear relation among the binding energies of the reaction intermediates assumed in computational high-throughput material screening does not hold, at least for this non-purely transition-metal material. We expect Au-doped graphene to finally overcome the cathode-related challenge hindering the realization of hydrogen-fuel cells as the leading means of powering transportation and portable devices.

  14. Integrated Microinverters for Enabling True ACPV Modules | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    module that consists of an integrated "Universal PV-Dock" and a high-reliability, ... In 2011, the Universal PV Interface (UPVI) Alliance was formed as an open, ...

  15. Composite membrane with integral rim (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high ...

  16. Low power integrated pumping and valving arrays for microfluidic...

    Office of Scientific and Technical Information (OSTI)

    This approach integrates a lower power, high-pressure source with a polymer, ceramic, or metal plug enclosed within a microchannel, analogous to a microsyringe. When the pressure ...

  17. OLED Luminaire with Panel Integrated Drivers and Advanced Controls...

    Broader source: Energy.gov (indexed) [DOE]

    DC current drivers integrated with each panel, and a base station that interfaces with ... More Documents & Publications High-Performance OLED Panel and Luminaire Luminaires for ...

  18. Building-Integrated Heat & Moisture Exchange (STTR Phase 1 and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Current energy recovery ventilators (ERVs) offer low humidity exchange with high attendant pressure, resulting in low market penetration and limited impact. By integrating the two ...

  19. Vertically Integrated Circuits at Fermilab

    SciTech Connect (OSTI)

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2009-01-01

    The exploration of the vertically integrated circuits, also commonly known as 3D-IC technology, for applications in radiation detection started at Fermilab in 2006. This paper examines the opportunities that vertical integration offers by looking at various 3D designs that have been completed by Fermilab. The emphasis is on opportunities that are presented by through silicon vias (TSV), wafer and circuit thinning and finally fusion bonding techniques to replace conventional bump bonding. Early work by Fermilab has led to an international consortium for the development of 3D-IC circuits for High Energy Physics. The consortium has submitted over 25 different designs for the Fermilab organized MPW run organized for the first time.

  20. High-Throughput Methodology for Discovery of Metal-Organic Frameworks with a High Binding Energy (New Joint UC-Berkeley/Symyx DoD/DLA Project) (presentation)

    Broader source: Energy.gov [DOE]

    Presented at the U.S. Department of Energy's Hydrogen Storage Meeting held June 26, 2007 in Bethesda, Maryland.

  1. NREL: Energy Systems Integration - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Stay up-to-date with the latest energy systems integration news from NREL with the following resources. Energy Systems Integration Newsletter Read a monthly recap of NREL's energy systems integration news and subscribe to our mailing list. NREL Energy Systems Integration News Stories See the most recent energy systems integration news and announcements from NREL. Energy Systems Integration Research Highlights Learn about NREL's latest research in energy systems integration. Printable

  2. Integrated assessment briefs

    SciTech Connect (OSTI)

    1995-04-01

    Integrated assessment can be used to evaluate and clarify resource management policy options and outcomes for decision makers. The defining characteristics of integrated assessment are (1) focus on providing information and analysis that can be understood and used by decision makers rather than for merely advancing understanding and (2) its multidisciplinary approach, using methods, styles of study, and considerations from a broader variety of technical areas than would typically characterize studies produced from a single disciplinary standpoint. Integrated assessment may combine scientific, social, economic, health, and environmental data and models. Integrated assessment requires bridging the gap between science and policy considerations. Because not everything can be valued using a single metric, such as a dollar value, the integrated assessment process also involves evaluating trade-offs among dissimilar attributes. Scientists at Oak Ridge National Laboratory (ORNL) recognized the importance and value of multidisciplinary approaches to solving environmental problems early on and have pioneered the development of tools and methods for integrated assessment over the past three decades. Major examples of ORNL`s experience in the development of its capabilities for integrated assessment are given.

  3. Modeling for System Integration Studies (Presentation)

    SciTech Connect (OSTI)

    Orwig, K. D.

    2012-05-01

    This presentation describes some the data requirements needed for grid integration modeling and provides real-world examples of such data and its format. Renewable energy integration studies evaluate the operational impacts of variable generation. Transmission planning studies investigate where new transmission is needed to transfer energy from generation sources to load centers. Both use time-synchronized wind and solar energy production and load as inputs. Both examine high renewable energy penetration scenarios in the future.

  4. Integrated Biorefinery Research Facility | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Biorefinery Research Facility NREL's Integrated Biorefinery Research Facility (IBRF) enables researchers and industry partners to develop, test, evaluate, and demonstrate processes and technologies for the production of bio-based products and fuels. Interior of industrial, two-story building with high-bay, piping, and large processing equipment. Three workers in hard hats. In addition to the facility itself, NREL's world-renowned expert staff works with IBRF partners at every stage of

  5. Integrated Project Team RM

    Broader source: Energy.gov [DOE]

    The Integrated Project Team (IPT) is an essential element of the Department’s acquisition process and will be utilized during all phases of a project life cycle. The IPT is a team of professionals...

  6. Systems Integration Competitive Awards

    Broader source: Energy.gov [DOE]

    Through the SunShot Systems Integration efforts, DOE is funding a range of research and development (R&D) projects to advance technology in four broad, inter-related areas:Grid Performance and...

  7. Systems Integration Competitive Awards

    Broader source: Energy.gov [DOE]

    Through the SunShot Systems Integration efforts, DOE is funding a range of research and development (R&D) projects to advance balance of system hardware technologies, such as racking systems...

  8. ELECTRONIC INTEGRATING CIRCUIT

    DOE Patents [OSTI]

    Englemann, R.H.

    1963-08-20

    An electronic integrating circuit using a transistor with a capacitor connected between the emitter and collector through which the capacitor discharges at a rate proportional to the input current at the base is described. Means are provided for biasing the base with an operating bias and for applying a voltage pulse to the capacitor for charging to an initial voltage. A current dividing diode is connected between the base and emitter of the transistor, and signal input terminal means are coupled to the juncture of the capacitor and emitter and to the base of the transistor. At the end of the integration period, the residual voltage on said capacitor is less by an amount proportional to the integral of the input signal. Either continuous or intermittent periods of integration are provided. (AEC)

  9. Wellbore Integrity Network

    SciTech Connect (OSTI)

    Carey, James W.; Bachu, Stefan

    2012-06-21

    In this presentation, we review the current state of knowledge on wellbore integrity as developed in the IEA Greenhouse Gas Programme's Wellbore Integrity Network. Wells are one of the primary risks to the successful implementation of CO{sub 2} storage programs. Experimental studies show that wellbore materials react with CO{sub 2} (carbonation of cement and corrosion of steel) but the impact on zonal isolation is unclear. Field studies of wells in CO{sub 2}-bearing fields show that CO{sub 2} does migrate external to casing. However, rates and amounts of CO{sub 2} have not been quantified. At the decade time scale, wellbore integrity is driven by construction quality and geomechanical processes. Over longer time-scales (> 100 years), chemical processes (cement degradation and corrosion) become more important, but competing geomechanical processes may preserve wellbore integrity.

  10. NREL: Energy Systems Integration - Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Events Through seminars, tours, and other educational opportunities, NREL hosts events that promote understanding and collaboration on energy systems integration. Energy Systems Integration Events See our full listing of upcoming energy systems integration events. Seminar Series Learn about energy systems integration in our seminar series archive. Printable Version Energy Systems Integration Home Capabilities Research & Development Facilities Working with Us Publications News Events Energy

  11. PEV Integration with Renewables (Presentation)

    SciTech Connect (OSTI)

    Markel, T.

    2014-06-18

    This presentation discusses current research at NREL on integrating plug-in electric vehicles with the grid and using renewable energy to charge the grid. The Electric Vehicle Grid Integration (EVGI) and Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) are addressing the opportunities and technical requirements for vehicle grid integration that will increase marketability and lead to greater petroleum reduction.

  12. Advanced High-Level Waste Glass Research and Development Plan

    SciTech Connect (OSTI)

    Peeler, David K.; Vienna, John D.; Schweiger, Michael J.; Fox, Kevin M.

    2015-07-01

    The U.S. Department of Energy Office of River Protection (ORP) has implemented an integrated program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. The integrated ORP program is focused on providing a technical, science-based foundation from which key decisions can be made regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities. The fundamental data stemming from this program will support development of advanced glass formulations, key process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste (HLW) vitrification facilities with an appreciation toward reducing overall mission life. The purpose of this advanced HLW glass research and development plan is to identify the near-, mid-, and longer-term research and development activities required to develop and validate advanced HLW glasses and their associated models to support facility operations at WTP, including both direct feed and full pretreatment flowsheets. This plan also integrates technical support of facility operations and waste qualification activities to show the interdependence of these activities with the advanced waste glass (AWG) program to support the full WTP mission. Figure ES-1 shows these key ORP programmatic activities and their interfaces with both WTP facility operations and qualification needs. The plan is a living document that will be updated to reflect key advancements and mission strategy changes. The research outlined here is motivated by the potential for substantial economic benefits (e.g., significant increases in waste throughput and reductions in glass volumes) that will be realized when advancements in glass formulation continue and models supporting facility operations are implemented. Developing and applying advanced glass formulations will reduce the cost of Hanford tank waste management by reducing the schedule for tank waste treatment and reducing the amount of HLW glass for storage, transportation, and disposal. Additional benefits will be realized if advanced glasses are developed that demonstrate more tolerance for key components in the waste (such as Al2O3, Cr2O3, SO3 and Na2O) above the currently defined WTP constraints. Tolerating these higher concentrations of key waste loading limiters may reduce the burden on (or even eliminate the need for) leaching to remove Cr and Al and washing to remove excess S and Na from the HLW fraction. Advanced glass formulations may also make direct vitrification of the HLW fraction without significant pretreatment more cost effective. Finally, the advanced glass formulation efforts seek not only to increase waste loading in glass, but also to increase glass production rate. When coupled with higher waste loading, ensuring that all of the advanced glass formulations are processable at or above the current contract processing rate leads to significant improvements in waste throughput (the amount of waste being processed per unit time),which could significantly reduce the overall WTP mission life. The integration of increased waste loading, reduced leaching/washing requirements, and improved melting rates provides a system-wide approach to improve the effectiveness of the WTP process.

  13. high thruput queue now available on Hopper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high thruput queue now available on Hopper high thruput queue now available on Hopper August 30, 2012 by Helen He A new batch queue named "thruput" has been implemented on Hopper to support the increased high throughput computing needs from the user community. The queue limits for this queue are as follows: -- max wall time is 168 hrs -- max node count is 2 (max core count is 48) -- max queue-able jobs per user is 500 -- max running jobs from all users in this queue is 500 -- has same

  14. Integrating Program Component Executables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrating Program Component Executables on Distributed Memory Architectures via MPH Chris Ding and Yun He Computational Research Division, Lawrence Berkeley National Laboratory University of California, Berkeley, CA 94720, USA chqding@lbl.gov, yhe@lbl.gov Abstract A growing trend in developing large and complex ap- plications on today's Teraflop computers is to integrate stand-alone and/or semi-independent program components into a comprehensive simulation package. One example is the climate

  15. Integrative Genomics Building

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrative Genomics Building Community Berkeley Global Campus Environmental Documents Tours Community Programs Friends of Berkeley Lab ⇒ Navigate Section Community Berkeley Global Campus Environmental Documents Tours Community Programs Friends of Berkeley Lab Project Description The Integrative Genomics Building (IGB) is proposed to be an approximately 77,000 gsf, four-story research and office building constructed in the former Bevatron area - a fully developed site in the geographic

  16. Integrated Biorefinery Process

    Energy Savers [EERE]

    Int'l Smart Grid Action Network Int'l Smart Grid Action Network International PDF icon Int'l Smart Grid Action Network More Documents & Publications Clean Energy Ministerial Press Fact Sheet IEA: Tracking Clean Energy Progress: Energy Technology Perspectives 2012 Joint Statement by Energy Ministers of G8, The People's Republic of China, India and The Republic of Korea (June 2008) of Energy

    Integrated Biorefineries:Biofuels, Biopower, and Bioproducts Integrated Biorefineries:Biofuels,

  17. Center for Integrated Nanotechnologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADEPS » MPA » MPA-CINT Center for Integrated Nanotechnologies Nanomaterials integration is one of many approaches we take in addressing a range of challenges, from human health to national defense. Contact Us CINT Co-Director Quanxi Jia Email Deputy Group Leader (acting) Alex Lacerda Email Group Office (505) 667-9243 First in-situ images of void collapse in explosives Los Alamos researchers and collaborators demonstrated a crucial diagnostic for studying how voids affect explosives under shock

  18. Integrated and Engineered Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated and Engineered Systems Integrated and Engineered Systems National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Contact thumbnail of Business Development Executive Miranda Intrator Business Development Executive Richard P. Feynmnan Center for Innovation (505) 665-8315 Email Engineers at Los Alamos create, design, and build the

  19. integrated-transportation-models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Archive Integrated Transportation Models Workshop at ITM 2012 April 29, 2012 Hyatt Regency Tampa Hosted by: The Transportation Research and Analysis Computing Center at Argonne National Laboratory This email address is being protected from spambots. You need JavaScript enabled to view it. The aim of the workshop was to provide an opportunity for researchers and practitioners to discuss recent research results that can support a wider application of integrated transportation models,

  20. IDC Integrated Master Plan.

    SciTech Connect (OSTI)

    Clifford, David J.; Harris, James M.

    2014-12-01

    This is the IDC Re-Engineering Phase 2 project Integrated Master Plan (IMP). The IMP presents the major accomplishments planned over time to re-engineer the IDC system. The IMP and the associate Integrated Master Schedule (IMS) are used for planning, scheduling, executing, and tracking the project technical work efforts. REVISIONS Version Date Author/Team Revision Description Authorized by V1.0 12/2014 IDC Re- engineering Project Team Initial delivery M. Harris

  1. NREL: Transmission Grid Integration - Solar Power Data for Integration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Data for Integration Studies The Solar Power Data for Integration Studies are synthetic ... 2006. The data are intended for use by energy professionals such as transmission ...

  2. DIRECTIONS AND TIPS FOR USING INTEGRITY Accessing Integrity:

    Energy Savers [EERE]

    DIRECTIONS AND TIPS FOR USING INTEGRITY Accessing Integrity: The website address for Integrity is www.integrity.gov. When you get to the website, click on the yellow box labeled "Login to Integrity." Integrity is connected to the OMB MAX Central Authentication Service. Employees who have previously used OMB MAX should use their MAX user ID and password. Do not use the CIC or PIV login option. This is not enabled for DOE Integrity filers. If you used Integrity last year, you have an OMB

  3. Integrated Resource Planning Model (IRPM)

    SciTech Connect (OSTI)

    Graham, T. B.

    2010-04-01

    The Integrated Resource Planning Model (IRPM) is a decision-support software product for resource-and-capacity planning. Users can evaluate changing constraints on schedule performance, projected cost, and resource use. IRPM is a unique software tool that can analyze complex business situations from a basic supply chain to an integrated production facility to a distributed manufacturing complex. IRPM can be efficiently configured through a user-friendly graphical interface to rapidly provide charts, graphs, tables, and/or written results to summarize postulated business scenarios. There is not a similar integrated resource planning software package presently available. Many different businesses (from government to large corporations as well as medium-to-small manufacturing concerns) could save thousands of dollars and hundreds of labor hours in resource and schedule planning costs. Those businesses also could avoid millions of dollars of revenue lost from fear of overcommitting or from penalties and lost future business for failing to meet promised delivery by using IRPM to perform what-if business-case evaluations. Tough production planning questions that previously were left unanswered can now be answered with a high degree of certainty. Businesses can anticipate production problems and have solutions in hand to deal with those problems. IRPM allows companies to make better plans, decisions, and investments.

  4. Composite membrane with integral rim

    DOE Patents [OSTI]

    Routkevitch, Dmitri; Polyakov, Oleg G

    2015-01-27

    Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.

  5. Thermal Strategies for High Efficiency Thermoelectric Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies for High Efficiency Thermoelectric Power Generation Thermal Strategies for High Efficiency Thermoelectric Power Generation Developing integrated TE system configurations ...

  6. Thermal Strategies for High Efficiency Thermoelectric Power Generation

    Broader source: Energy.gov [DOE]

    Developing integrated TE system configurations that can achieve high heat exchange effectiveness and thus, high TE system efficiency

  7. Integrated electrical connector (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Integrated electrical connector Title: Integrated electrical connector An electrical ... The opening is also smaller than the diameter of an electrically conductive contact pin. ...

  8. Integrity Automotive | Open Energy Information

    Open Energy Info (EERE)

    Product: Joint venture between Kentucky businessman Randal Waldman of Integrity Manufacturing and California-based electric car maker Zap. References: Integrity Automotive1...

  9. Washington: Integrated Transportation Programs & Coordinated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Transportation Programs & Coordinated Regional Planning Washington: Integrated Transportation Programs & Coordinated Regional Planning November 6, 2013 - 5:42pm Addthis ...

  10. Western Wind and Solar Integration Study Phase 2 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01

    This is one-page, two-sided fact sheet presents high-level summary results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  11. PANTHER. Pattern ANalytics To support High-performance Exploitation and Reasoning.

    SciTech Connect (OSTI)

    Czuchlewski, Kristina Rodriguez; Hart, William E.

    2015-09-01

    Sandia has approached the analysis of big datasets with an integrated methodology that uses computer science, image processing, and human factors to exploit critical patterns and relationships in large datasets despite the variety and rapidity of information. The work is part of a three-year LDRD Grand Challenge called PANTHER (Pattern ANalytics To support High-performance Exploitation and Reasoning). To maximize data analysis capability, Sandia pursued scientific advances across three key technical domains: (1) geospatial-temporal feature extraction via image segmentation and classification; (2) geospatial-temporal analysis capabilities tailored to identify and process new signatures more efficiently; and (3) domain- relevant models of human perception and cognition informing the design of analytic systems. Our integrated results include advances in geographical information systems (GIS) in which we discover activity patterns in noisy, spatial-temporal datasets using geospatial-temporal semantic graphs. We employed computational geometry and machine learning to allow us to extract and predict spatial-temporal patterns and outliers from large aircraft and maritime trajectory datasets. We automatically extracted static and ephemeral features from real, noisy synthetic aperture radar imagery for ingestion into a geospatial-temporal semantic graph. We worked with analysts and investigated analytic workflows to (1) determine how experiential knowledge evolves and is deployed in high-demand, high-throughput visual search workflows, and (2) better understand visual search performance and attention. Through PANTHER, Sandia's fundamental rethinking of key aspects of geospatial data analysis permits the extraction of much richer information from large amounts of data. The project results enable analysts to examine mountains of historical and current data that would otherwise go untouched, while also gaining meaningful, measurable, and defensible insights into overlooked relationships and patterns. The capability is directly relevant to the nation's nonproliferation remote-sensing activities and has broad national security applications for military and intelligence- gathering organizations.

  12. Integrated injection-locked semiconductor diode laser

    DOE Patents [OSTI]

    Hadley, G. Ronald; Hohimer, John P.; Owyoung, Adelbert

    1991-01-01

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet.

  13. Integrated injection-locked semiconductor diode laser

    DOE Patents [OSTI]

    Hadley, G.R.; Hohimer, J.P.; Owyoung, A.

    1991-02-19

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet. 18 figures.

  14. High resolution, high rate x-ray spectrometer

    DOE Patents [OSTI]

    Goulding, F.S.; Landis, D.A.

    1983-07-14

    It is an object of the invention to provide a pulse processing system for use with detected signals of a wide dynamic range which is capable of very high counting rates, with high throughput, with excellent energy resolution and a high signal-to-noise ratio. It is a further object to provide a pulse processing system wherein the fast channel resolving time is quite short and substantially independent of the energy of the detected signals. Another object is to provide a pulse processing system having a pile-up rejector circuit which will allow the maximum number of non-interfering pulses to be passed to the output. It is also an object of the invention to provide new methods for generating substantially symmetrically triangular pulses for use in both the main and fast channels of a pulse processing system.

  15. Partially integrated exhaust manifold

    DOE Patents [OSTI]

    Hayman, Alan W; Baker, Rodney E

    2015-01-20

    A partially integrated manifold assembly is disclosed which improves performance, reduces cost and provides efficient packaging of engine components. The partially integrated manifold assembly includes a first leg extending from a first port and terminating at a mounting flange for an exhaust gas control valve. Multiple additional legs (depending on the total number of cylinders) are integrally formed with the cylinder head assembly and extend from the ports of the associated cylinder and terminate at an exit port flange. These additional legs are longer than the first leg such that the exit port flange is spaced apart from the mounting flange. This configuration provides increased packaging space adjacent the first leg for any valving that may be required to control the direction and destination of exhaust flow in recirculation to an EGR valve or downstream to a catalytic converter.

  16. Integrated heterodyne terahertz transceiver

    DOE Patents [OSTI]

    Lee, Mark; Wanke, Michael C.

    2009-06-23

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. An antenna connected to the Schottky diode receives a terahertz signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  17. Integrated heterodyne terahertz transceiver

    DOE Patents [OSTI]

    Wanke, Michael C.; Lee, Mark; Nordquist, Christopher D.; Cich, Michael J.

    2012-09-25

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. A terahertz signal can be received by an antenna connected to the mixer, an end facet or sidewall of the laser, or through a separate active section that can amplify the incident signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  18. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Troxell, Wade

    2011-12-22

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU's overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory's focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

  19. Bayesian Integrated Microbial Forensics

    SciTech Connect (OSTI)

    Jarman, Kristin H.; Kreuzer-Martin, Helen W.; Wunschel, David S.; Valentine, Nancy B.; Cliff, John B.; Petersen, Catherine E.; Colburn, Heather A.; Wahl, Karen L.

    2008-06-01

    In the aftermath of the 2001 anthrax letters, researchers have been exploring ways to predict the production environment of unknown source microorganisms. Different mass spectral techniques are being developed to characterize components of a microbes culture medium including water, carbon and nitrogen sources, metal ions added, and the presence of agar. Individually, each technique has the potential to identify one or two ingredients in a culture medium recipe. However, by integrating data from multiple mass spectral techniques, a more complete characterization is possible. We present a Bayesian statistical approach to integrated microbial forensics and illustrate its application on spores grown in different culture media.

  20. Integrated genome-based studies of Shewanella ecophysiology

    SciTech Connect (OSTI)

    Segre Daniel; Beg Qasim

    2012-02-14

    This project was a component of the Shewanella Federation and, as such, contributed to the overall goal of applying the genomic tools to better understand eco-physiology and speciation of respiratory-versatile members of Shewanella genus. Our role at Boston University was to perform bioreactor and high throughput gene expression microarrays, and combine dynamic flux balance modeling with experimentally obtained transcriptional and gene expression datasets from different growth conditions. In the first part of project, we designed the S. oneidensis microarray probes for Affymetrix Inc. (based in California), then we identified the pathways of carbon utilization in the metal-reducing marine bacterium Shewanella oneidensis MR-1, using our newly designed high-density oligonucleotide Affymetrix microarray on Shewanella cells grown with various carbon sources. Next, using a combination of experimental and computational approaches, we built algorithm and methods to integrate the transcriptional and metabolic regulatory networks of S. oneidensis. Specifically, we combined mRNA microarray and metabolite measurements with statistical inference and dynamic flux balance analysis (dFBA) to study the transcriptional response of S. oneidensis MR-1 as it passes through exponential, stationary, and transition phases. By measuring time-dependent mRNA expression levels during batch growth of S. oneidensis MR-1 under two radically different nutrient compositions (minimal lactate and nutritionally rich LB medium), we obtain detailed snapshots of the regulatory strategies used by this bacterium to cope with gradually changing nutrient availability. In addition to traditional clustering, which provides a first indication of major regulatory trends and transcription factors activities, we developed and implemented a new computational approach for Dynamic Detection of Transcriptional Triggers (D2T2). This new method allows us to infer a putative topology of transcriptional dependencies, with special emphasis on the nodes at which external stimuli are expected to affect the internal dynamics. In parallel, we addressed the question of how to compare transcriptional profiles across different time-course experiments. Our growth derivative mapping (GDM) method makes it possible to relate with each other points that correspond to the same relative growth rate in different media sets. This mapping allowed us to discriminate between genes that display an environment-independent behavior, and genes whose transcription seems to be tuned by specific environmental factors. Our analysis highlighted the importance of some specific pathways, whose metabolic relevance was confirmed by dynamic flux balance analysis (dFBA) calculations. In particular, we found that oxygen limitation potentially triggers the activation of genes previously shown to be relevant for anaerobic respiration, and that nitrogen limitation is coupled to storage of glycogen. Both observations have been corroborated by measurement of relevant intracellular and extracellular metabolites, as well as by complementary analyses of literature information and competitive fitness assay data. The pipeline of experimental and computational approaches applied and developed for this work could be extended to other microbes and additional conditions.

  1. Transportation and Stationary Power Integration: Workshop Proceedings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration: Workshop Proceedings Transportation and Stationary Power Integration: Workshop Proceedings Proceedings for the Transportation and Stationary Power Integration Workshop ...

  2. NREL: Transmission Grid Integration - Solar Integration National Dataset

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Toolkit Integration National Dataset Toolkit The Solar Integration National Dataset (SIND) Toolkit enables researchers to perform regional solar generation integration studies by providing modeled, coherent sub-hour solar power data, information, and tools. Sub-hour solar power data are used in the Western Wind and Solar Integration Study Phase 2 and the Eastern Renewable Generation Integration Study. Graph of global horizontal irradiance for July 7, 2008. Over the course of the day,

  3. Integrating Electricity Subsector

    Energy Savers [EERE]

    Integrating Electricity Subsector Failure Scenarios into a Risk Assessment Methodology 3002001181 | DEC 2013 Program Leads Jason D. Christopher Technical Lead, Cyber Security Capabilities & Risk Management Department of Energy (DOE), Office of Electricity Delivery and Energy Reliability (OE) Annabelle Lee Senior Technical Executive, Cyber Security Electric Power Research Institute (EPRI) For more information on the DOE's cyber security risk management programs, please contact

  4. Biochemical Platform Processing Integration

    SciTech Connect (OSTI)

    2006-06-01

    The objective of this project is to facilitate deployment of enzyme-based biomass conversion technology. The immediate goal is to explore integration issues that impact process performance and to demonstrate improved performance of the lower-cost enzymes being developed by Genencor and Novozymes.

  5. Integrated Safety Management Policy

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25

    The policy establishes DOE's expectation for safety, including integrated safety management that will enable the Department’s mission goals to be accomplished efficiently while ensuring safe operations at all departmental facilities and activities. Supersedes DOE P 450.4, DOE P 411.1, DOE P 441.1, DOE P 450.2A, and DOE P 450.7

  6. Integrated Safety Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25

    The order ensures that DOE/NNSA, systematically integrates safety into management and work practices at all levels, so that missions are accomplished efficiently while protecting the workers, the public, and the environment. Supersedes DOE M 450.4-1 and DOE M 411.1-1C

  7. Bioluminescent bioreporter integrated circuit

    DOE Patents [OSTI]

    Simpson, Michael L.; Sayler, Gary S.; Paulus, Michael J.

    2000-01-01

    Disclosed are monolithic bioelectronic devices comprising a bioreporter and an OASIC. These bioluminescent bioreporter integrated circuit are useful in detecting substances such as pollutants, explosives, and heavy-metals residing in inhospitable areas such as groundwater, industrial process vessels, and battlefields. Also disclosed are methods and apparatus for environmental pollutant detection, oil exploration, drug discovery, industrial process control, and hazardous chemical monitoring.

  8. Building America Webinar: High Performance Enclosure Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Gen Advanced Framing for High Performance Homes Integrated System Solutions Building ... New Construction - August 13, 2014 - Next Gen Advanced Framing for High Performance Homes ...

  9. Building America Webinar: High Performance Enclosure Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar: High Performance Enclosure Strategies: Part II, New Construction - August 13, 2014 - Next Gen Advanced Framing for High Performance Homes Integrated System Solutions

  10. Systems Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration Systems Integration The breadth and complexity of the overall Hydrogen and Fuel Cells Program RD&D effort, as well as the interaction of program elements, requires an integrated approach to reduce risk and maximize the potential for success. The focus of systems integration is to understand the complex interactions among program areas, components, and the tradeoffs between them. Systems Integration ensures all requirements are being addressed, tracks and measures the

  11. OPTIMIZATION OF COMMINUTION CIRCUIT THROUGHPUT AND PRODUCT SIZE DISTRIBUTION BY SIMULATION AND CONTROL

    SciTech Connect (OSTI)

    H.J. Walqui; T.C. Eisele; S.K. Kawatra

    2003-07-01

    The goal of this project is to improve energy efficiency of industrial crushing and grinding operations (comminution). Mathematical models of the comminution process are being used to study methods for optimizing the product size distribution, so that the amount of excessively fine material produced can be minimized. The goal is to save energy by reducing the amount of material that is ground below the target size, while simultaneously reducing the quantity of materials wasted as ''slimes'' that are too fine to be useful. This will be accomplished by: (1) modeling alternative circuit arrangements to determine methods for minimizing overgrinding, and (2) determining whether new technologies, such as high-pressure roll crushing, can be used to alter particle breakage behavior to minimize fines production.

  12. Integrated turbomachine oxygen plant

    SciTech Connect (OSTI)

    Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

    2014-06-17

    An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

  13. Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Grid Integration - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  14. Renewable Energy Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integration - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  15. NREL: Energy Systems Integration Facility - Supervisory Control and Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acquisition System Supervisory Control and Data Acquisition System Integrated throughout the Energy Systems Integration Facility, a supervisory control and data acquisition (SCADA) system monitors and controls experimental operations and gathers real-time, time-synchronized, high-resolution data for collaboration and visualization. Photo of two men in a control room in front of a large computer screen. The Energy Systems Integration Facility's SCADA system supports a large visualization

  16. Novel in situ mechanical testers to enable integrated metal surface

    Office of Scientific and Technical Information (OSTI)

    micro-machines. (Technical Report) | SciTech Connect Novel in situ mechanical testers to enable integrated metal surface micro-machines. Citation Details In-Document Search Title: Novel in situ mechanical testers to enable integrated metal surface micro-machines. The ability to integrate metal and semiconductor micro-systems to perform highly complex functions, such as RF-MEMS, will depend on developing freestanding metal structures that offer improved conductivity, reflectivity, and

  17. ClearFuels-Rentech Integrated Biorefinery Final Report

    SciTech Connect (OSTI)

    Pearson, Joshua

    2014-02-26

    The project Final Report describes the validation of the performance of the integration of two technologies that were proven individually on a pilot scale and were demonstrated as a pilot scale integrated biorefinery. The integrated technologies were a larger scale ClearFuels’ (CF) advanced flexible biomass to syngas thermochemical high efficiency hydrothermal reformer (HEHTR) technology with Rentech’s (RTK) existing synthetic gas to liquids (GTL) technology.

  18. High temperature electronic gain device

    DOE Patents [OSTI]

    McCormick, J. Byron; Depp, Steven W.; Hamilton, Douglas J.; Kerwin, William J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube.

  19. DIRECTIONS AND TIPS FOR USING INTEGRITY Accessing Integrity:

    Energy Savers [EERE]

    After creating or resetting your password, close your browser window, open a new browser window, and return to www.integrity.gov. Integrity can be accessed from your work computer ...

  20. NREL: Energy Systems Integration - Energy Systems Integration News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Systems Integration News Read the latest news and announcements about energy systems integration from NREL. Subscribe to the RSS feed RSS . Learn about RSS. April 28, 2016 INTEGRATE Partner Demonstrates Active Network Management of Distributed Energy Resources at NREL New York-based Smarter Grid Solutions has employed its Active Network Management system at the Energy Systems Integration Facility to manage and maintain a modeled distribution grid within normal operating limits through the