National Library of Energy BETA

Sample records for integrated forecasting model

  1. The Potential for Integrating GIS in Activity-Based Forecasting Models

    E-Print Network [OSTI]

    McNally, Michael G.

    1997-01-01

    3" (ENTERTAINMENT) Figure 4. A GIS-based Microsimulation ofDestinations Figure 5. A GIS-based Microsimulation ofPotential for Integrating GIS in Activity Based Forecasting

  2. Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model (Released in the STEO March 1998)

    Reports and Publications (EIA)

    1998-01-01

    The blending of oxygenates, such as fuel ethanol and methyl tertiary butyl ether (MTBE), into motor gasoline has increased dramatically in the last few years because of the oxygenated and reformulated gasoline programs. Because of the significant role oxygenates now have in petroleum product markets, the Short-Term Integrated Forecasting System (STIFS) was revised to include supply and demand balances for fuel ethanol and MTBE. The STIFS model is used for producing forecasts in the Short-Term Energy Outlook. A review of the historical data sources and forecasting methodology for oxygenate production, imports, inventories, and demand is presented in this report.

  3. Depositional sequences and integrated recovery efficiency forecast models for San Andres and Clearfork Units in the Central Basin Platform and the Northern Shelf, west Texas 

    E-Print Network [OSTI]

    Shao, Hongbin

    1994-01-01

    This paper develops depositional sequences of the carbonate ramp and the carbonate shelf models for an idealized cycle and multiple cycles of depositions. Based on the developed depositional sequences, the integrated recovery efficiency forecast...

  4. Forecasting 65+ travel : an integration of cohort analysis and travel demand modeling

    E-Print Network [OSTI]

    Bush, Sarah, 1973-

    2003-01-01

    Over the next 30 years, the Boomers will double the 65+ population in the United States and comprise a new generation of older Americans. This study forecasts the aging Boomers' travel. Previous efforts to forecast 65+ ...

  5. NREL: Transmission Grid Integration - Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTS -BeingFuture forForecasting NREL researchers

  6. Weather forecast-based optimization of integrated energy systems.

    SciTech Connect (OSTI)

    Zavala, V. M.; Constantinescu, E. M.; Krause, T.; Anitescu, M.

    2009-03-01

    In this work, we establish an on-line optimization framework to exploit detailed weather forecast information in the operation of integrated energy systems, such as buildings and photovoltaic/wind hybrid systems. We first discuss how the use of traditional reactive operation strategies that neglect the future evolution of the ambient conditions can translate in high operating costs. To overcome this problem, we propose the use of a supervisory dynamic optimization strategy that can lead to more proactive and cost-effective operations. The strategy is based on the solution of a receding-horizon stochastic dynamic optimization problem. This permits the direct incorporation of economic objectives, statistical forecast information, and operational constraints. To obtain the weather forecast information, we employ a state-of-the-art forecasting model initialized with real meteorological data. The statistical ambient information is obtained from a set of realizations generated by the weather model executed in an operational setting. We present proof-of-concept simulation studies to demonstrate that the proposed framework can lead to significant savings (more than 18% reduction) in operating costs.

  7. Operational forecasting based on a modified Weather Research and Forecasting model

    SciTech Connect (OSTI)

    Lundquist, J; Glascoe, L; Obrecht, J

    2010-03-18

    Accurate short-term forecasts of wind resources are required for efficient wind farm operation and ultimately for the integration of large amounts of wind-generated power into electrical grids. Siemens Energy Inc. and Lawrence Livermore National Laboratory, with the University of Colorado at Boulder, are collaborating on the design of an operational forecasting system for large wind farms. The basis of the system is the numerical weather prediction tool, the Weather Research and Forecasting (WRF) model; large-eddy simulations and data assimilation approaches are used to refine and tailor the forecasting system. Representation of the atmospheric boundary layer is modified, based on high-resolution large-eddy simulations of the atmospheric boundary. These large-eddy simulations incorporate wake effects from upwind turbines on downwind turbines as well as represent complex atmospheric variability due to complex terrain and surface features as well as atmospheric stability. Real-time hub-height wind speed and other meteorological data streams from existing wind farms are incorporated into the modeling system to enable uncertainty quantification through probabilistic forecasts. A companion investigation has identified optimal boundary-layer physics options for low-level forecasts in complex terrain, toward employing decadal WRF simulations to anticipate large-scale changes in wind resource availability due to global climate change.

  8. Application of a new phenomenological coronal mass ejection model to space weather forecasting

    E-Print Network [OSTI]

    Howard, Tim

    to space weather forecasting T. A. Howard1 and S. J. Tappin2 Received 15 October 2009; revised 27 April with the Earth. Hence the model can be used for space weather forecasting. We present a preliminary evaluation to fully validate it for integration with existing tools for space weather forecasting. Citation: Howard, T

  9. Nonparametric models for electricity load forecasting

    E-Print Network [OSTI]

    Genève, Université de

    Electricity consumption is constantly evolving due to changes in people habits, technological innovations1 Nonparametric models for electricity load forecasting JANUARY 23, 2015 Yannig Goude, Vincent at University Paris-Sud 11 Orsay. His research interests are electricity load forecasting, more generally time

  10. Nambe Pueblo Water Budget and Forecasting model.

    SciTech Connect (OSTI)

    Brainard, James Robert

    2009-10-01

    This report documents The Nambe Pueblo Water Budget and Water Forecasting model. The model has been constructed using Powersim Studio (PS), a software package designed to investigate complex systems where flows and accumulations are central to the system. Here PS has been used as a platform for modeling various aspects of Nambe Pueblo's current and future water use. The model contains three major components, the Water Forecast Component, Irrigation Scheduling Component, and the Reservoir Model Component. In each of the components, the user can change variables to investigate the impacts of water management scenarios on future water use. The Water Forecast Component includes forecasting for industrial, commercial, and livestock use. Domestic demand is also forecasted based on user specified current population, population growth rates, and per capita water consumption. Irrigation efficiencies are quantified in the Irrigated Agriculture component using critical information concerning diversion rates, acreages, ditch dimensions and seepage rates. Results from this section are used in the Water Demand Forecast, Irrigation Scheduling, and the Reservoir Model components. The Reservoir Component contains two sections, (1) Storage and Inflow Accumulations by Categories and (2) Release, Diversion and Shortages. Results from both sections are derived from the calibrated Nambe Reservoir model where historic, pre-dam or above dam USGS stream flow data is fed into the model and releases are calculated.

  11. Analysis and Synthesis of Load Forecasting Data for Renewable Integration Studies: Preprint

    SciTech Connect (OSTI)

    Steckler, N.; Florita, A.; Zhang, J.; Hodge, B. M.

    2013-11-01

    As renewable energy constitutes greater portions of the generation fleet, the importance of modeling uncertainty as part of integration studies also increases. In pursuit of optimal system operations, it is important to capture not only the definitive behavior of power plants, but also the risks associated with systemwide interactions. This research examines the dependence of load forecast errors on external predictor variables such as temperature, day type, and time of day. The analysis was utilized to create statistically relevant instances of sequential load forecasts with only a time series of historic, measured load available. The creation of such load forecasts relies on Bayesian techniques for informing and updating the model, thus providing a basis for networked and adaptive load forecast models in future operational applications.

  12. Univariate Modeling and Forecasting of Monthly Energy Demand Time Series

    E-Print Network [OSTI]

    Abdel-Aal, Radwan E.

    Univariate Modeling and Forecasting of Monthly Energy Demand Time Series Using Abductive and Neural networks, Neural networks, Modeling, Forecasting, Energy demand, Time series forecasting, Power system demand time series based only on data for six years to forecast the demand for the seventh year. Both

  13. TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY

    E-Print Network [OSTI]

    /Individuals Providing Comments California Natural Gas Vehicle Coalition/ Mike Eaves League of Women VotersCALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY POLICY AND TRANSPORTATION DIVISION B. B. Blevins Executive Director DISCLAIMER This report was prepared by a California

  14. Forecasting Turbulent Modes with Nonparametric Diffusion Models

    E-Print Network [OSTI]

    Tyrus Berry; John Harlim

    2015-01-27

    This paper presents a nonparametric diffusion modeling approach for forecasting partially observed noisy turbulent modes. The proposed forecast model uses a basis of smooth functions (constructed with the diffusion maps algorithm) to represent probability densities, so that the forecast model becomes a linear map in this basis. We estimate this linear map by exploiting a previously established rigorous connection between the discrete time shift map and the semi-group solution associated to the backward Kolmogorov equation. In order to smooth the noisy data, we apply diffusion maps to a delay embedding of the noisy data, which also helps to account for the interactions between the observed and unobserved modes. We show that this delay embedding biases the geometry of the data in a way which extracts the most predictable component of the dynamics. The resulting model approximates the semigroup solutions of the generator of the underlying dynamics in the limit of large data and in the observation noise limit. We will show numerical examples on a wide-range of well-studied turbulent modes, including the Fourier modes of the energy conserving Truncated Burgers-Hopf (TBH) model, the Lorenz-96 model in weakly chaotic to fully turbulent regimes, and the barotropic modes of a quasi-geostrophic model with baroclinic instabilities. In these examples, forecasting skills of the nonparametric diffusion model are compared to a wide-range of stochastic parametric modeling approaches, which account for the nonlinear interactions between the observed and unobserved modes with white and colored noises.

  15. Watt-Sun: A Multi-Scale, Multi-Model, Machine-Learning Solar Forecasting Technology

    Broader source: Energy.gov [DOE]

    As part of this project, new solar forecasting technology will be developed that leverages big data processing, deep machine learning, and cloud modeling integrated in a universal platform with an...

  16. A high-resolution, cloud-assimilating numerical weather prediction model for solar irradiance forecasting

    E-Print Network [OSTI]

    Mathiesen, Patrick; Collier, Craig; Kleissl, Jan

    2013-01-01

    of the WRF model solar irradiance forecasts in Andalusia (Beyer, H. , 2009.    Irradiance forecasting for the power dependent probabilistic irradiance  forecasts for coastal 

  17. Probabilistic Wind Vector Forecasting Using Ensembles and Bayesian Model Averaging

    E-Print Network [OSTI]

    Raftery, Adrian

    Probabilistic Wind Vector Forecasting Using Ensembles and Bayesian Model Averaging J. MCLEAN 2011, in final form 26 May 2012) ABSTRACT Probabilistic forecasts of wind vectors are becoming critical with univariate quantities, statistical approaches to wind vector forecasting must be based on bivariate

  18. Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging

    E-Print Network [OSTI]

    Raftery, Adrian

    Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging J. Mc in the context of wind power, where under- forecasting and overforecasting carry different financial penal- ties, calibrated and sharp probabilistic forecasts can help to make wind power a more financially competitive alter

  19. Modeling and Forecasting Electric Daily Peak Loads

    E-Print Network [OSTI]

    Abdel-Aal, Radwan E.

    for the same data. Two methods are described for forecasting daily peak loads up to one week ahead through, including generator unit commitment, hydro-thermal coordination, short-term maintenance, fuel allocation forecasting accuracies. STLF forecasting covers the daily peak load, total daily energy, and daily load curve

  20. Unit commitment with wind power generation: integrating wind forecast uncertainty and stochastic programming.

    SciTech Connect (OSTI)

    Constantinescu, E. M.; Zavala, V. M.; Rocklin, M.; Lee, S.; Anitescu, M.

    2009-10-09

    We present a computational framework for integrating the state-of-the-art Weather Research and Forecasting (WRF) model in stochastic unit commitment/energy dispatch formulations that account for wind power uncertainty. We first enhance the WRF model with adjoint sensitivity analysis capabilities and a sampling technique implemented in a distributed-memory parallel computing architecture. We use these capabilities through an ensemble approach to model the uncertainty of the forecast errors. The wind power realizations are exploited through a closed-loop stochastic unit commitment/energy dispatch formulation. We discuss computational issues arising in the implementation of the framework. In addition, we validate the framework using real wind speed data obtained from a set of meteorological stations. We also build a simulated power system to demonstrate the developments.

  1. A Deep Hybrid Model for Weather Forecasting Aditya Grover

    E-Print Network [OSTI]

    Horvitz, Eric

    @microsoft.com ABSTRACT Weather forecasting is a canonical predictive challenge that has depended primarily on model-based methods. We ex- plore new directions with forecasting weather as a data- intensive challenge that involves the joint statistics of a set of weather-related vari- ables. We show how the base model can be enhanced

  2. HOW ACCURATE ARE WEATHER MODELS IN ASSISTING AVALANCHE FORECASTERS? M. Schirmer, B. Jamieson

    E-Print Network [OSTI]

    Jamieson, Bruce

    HOW ACCURATE ARE WEATHER MODELS IN ASSISTING AVALANCHE FORECASTERS? M. Schirmer, B. Jamieson and decision makers strongly rely on Numerical Weather Prediction (NWP) models, for example on the forecasted on forecasted precipitation. KEYWORDS: Numerical weather prediction models, validation, precipitation 1

  3. ANEMOS: Development of a Next Generation Wind Power Forecasting System for the Large-Scale Integration of Onshore &

    E-Print Network [OSTI]

    Heinemann, Detlev

    -Scale Integration of Onshore & Offshore Wind Farms. G. Kariniotakis* , D. Mayer, J. Moussafir, R. Chevallaz-line operation at onshore and offshore wind farms for prediction at a local, regional and national scale, for onshore and offshore wind power forecasting, exploiting both statistical and physical modeling approaches

  4. Motivation Methods Model configuration Results Forecasting Summary & Outlook Retrieving direct and diffuse radiation with the

    E-Print Network [OSTI]

    Heinemann, Detlev

    Motivation Methods Model configuration Results Forecasting Summary & Outlook 1/ 14 Retrieving. 17, 2015 #12;Motivation Methods Model configuration Results Forecasting Summary & Outlook 2/ 14 Motivation Sky Imager based shortest-term solar irradiance forecasts for local solar energy applications

  5. Ramping Effect on Forecast Use: Integrated Ramping (Presentation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the shift from ramping. * the benefits - better use of forecast values (load or net load) - reduce the amount of variability that the regulation reserve must accommodate...

  6. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    SciTech Connect (OSTI)

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  7. TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY

    E-Print Network [OSTI]

    of transportation fuel and crude oil import requirements. The transportation energy demand forecasts make. The transportation fuel and crude oil import requirement assessments build on assumptions about California crude oil forecasts, transportation energy, gasoline, diesel, jet fuel, crude oil production, fuel imports, crude oil

  8. A high-resolution, cloud-assimilating numerical weather prediction model for solar irradiance forecasting

    E-Print Network [OSTI]

    Mathiesen, Patrick; Collier, Craig; Kleissl, Jan

    2013-01-01

    of numerical weather prediction solar irradiance forecasts numerical weather prediction model for solar irradiance weather prediction for intra?day solar  forecasting in the 

  9. Resource Information and Forecasting Group; Electricity, Resources, & Building Systems Integration (ERBSI) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-11-01

    Researchers in the Resource Information and Forecasting group at NREL provide scientific, engineering, and analytical expertise to help characterize renewable energy resources and facilitate the integration of these clean energy sources into the electricity grid.

  10. USING BOX-JENKINS MODELS TO FORECAST FISHERY DYNAMICS: IDENTIFICATION, ESTIMATION, AND CHECKING

    E-Print Network [OSTI]

    ~ is illustrated by developing a model that makes monthly forecasts of skipjack tuna, Katsuwonus pelamis, catches

  11. Short-Term Load Forecasting Error Distributions and Implications for Renewable Integration Studies: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2013-01-01

    Load forecasting in the day-ahead timescale is a critical aspect of power system operations that is used in the unit commitment process. It is also an important factor in renewable energy integration studies, where the combination of load and wind or solar forecasting techniques create the net load uncertainty that must be managed by the economic dispatch process or with suitable reserves. An understanding of that load forecasting errors that may be expected in this process can lead to better decisions about the amount of reserves necessary to compensate errors. In this work, we performed a statistical analysis of the day-ahead (and two-day-ahead) load forecasting errors observed in two independent system operators for a one-year period. Comparisons were made with the normal distribution commonly assumed in power system operation simulations used for renewable power integration studies. Further analysis identified time periods when the load is more likely to be under- or overforecast.

  12. Ensemble Kalman Filter Data Assimilation in a 1D Numerical Model Used for Fog Forecasting

    E-Print Network [OSTI]

    Ensemble Kalman Filter Data Assimilation in a 1D Numerical Model Used for Fog Forecasting SAMUEL RE, a need exists for accurate and updated fog and low-cloud forecasts. Couche Brouillard Eau Liquide (COBEL for the very short-term forecast of fog and low clouds. This forecast system assimilates local observations

  13. Bias Correction and Bayesian Model Averaging for Ensemble Forecasts of Surface Wind Direction

    E-Print Network [OSTI]

    Raftery, Adrian

    Bias Correction and Bayesian Model Averaging for Ensemble Forecasts of Surface Wind Direction LE proposes an effective bias correction technique for wind direction forecasts from numerical weather forecasts. These techniques are applied to 48-h forecasts of surface wind direction over the Pacific

  14. Short-Term Energy Outlook Model Documentation: Macro Bridge Procedure to Update Regional Macroeconomic Forecasts with National Macroeconomic Forecasts

    Reports and Publications (EIA)

    2010-01-01

    The Regional Short-Term Energy Model (RSTEM) uses macroeconomic variables such as income, employment, industrial production and consumer prices at both the national and regional1 levels as explanatory variables in the generation of the Short-Term Energy Outlook (STEO). This documentation explains how national macroeconomic forecasts are used to update regional macroeconomic forecasts through the RSTEM Macro Bridge procedure.

  15. CCPP-ARM Parameterization Testbed Model Forecast Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Klein, Stephen

    2008-01-15

    Dataset contains the NCAR CAM3 (Collins et al., 2004) and GFDL AM2 (GFDL GAMDT, 2004) forecast data at locations close to the ARM research sites. These data are generated from a series of multi-day forecasts in which both CAM3 and AM2 are initialized at 00Z every day with the ECMWF reanalysis data (ERA-40), for the year 1997 and 2000 and initialized with both the NASA DAO Reanalyses and the NCEP GDAS data for the year 2004. The DOE CCPP-ARM Parameterization Testbed (CAPT) project assesses climate models using numerical weather prediction techniques in conjunction with high quality field measurements (e.g. ARM data).

  16. CCPP-ARM Parameterization Testbed Model Forecast Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Klein, Stephen

    Dataset contains the NCAR CAM3 (Collins et al., 2004) and GFDL AM2 (GFDL GAMDT, 2004) forecast data at locations close to the ARM research sites. These data are generated from a series of multi-day forecasts in which both CAM3 and AM2 are initialized at 00Z every day with the ECMWF reanalysis data (ERA-40), for the year 1997 and 2000 and initialized with both the NASA DAO Reanalyses and the NCEP GDAS data for the year 2004. The DOE CCPP-ARM Parameterization Testbed (CAPT) project assesses climate models using numerical weather prediction techniques in conjunction with high quality field measurements (e.g. ARM data).

  17. Application of the Stretched Exponential Production Decline Model to Forecast Production in Shale Gas Reservoirs 

    E-Print Network [OSTI]

    Statton, James Cody

    2012-07-16

    . This study suggests a type curve is most useful when 24 months or less is available to forecast. The SEPD model generally provides more conservative forecasts and EUR estimates than Arps' model with a minimum decline rate of 5%....

  18. ARM Processes and Their Modeling and Forecasting Methodology Benjamin Melamed

    E-Print Network [OSTI]

    Chapter 73 ARM Processes and Their Modeling and Forecasting Methodology Benjamin Melamed Abstract The class of ARM (Autoregressive Modular) processes is a class of stochastic processes, defined by a non- linear autoregressive scheme with modulo-1 reduction and additional transformations. ARM processes

  19. Ecological Forecasting in Chesapeake Bay: Using a Mechanistic-Empirical Modelling Approach

    SciTech Connect (OSTI)

    Brown, C. W.; Hood, Raleigh R.; Long, Wen; Jacobs, John M.; Ramers, D. L.; Wazniak, C.; Wiggert, J. D.; Wood, R.; Xu, J.

    2013-09-01

    The Chesapeake Bay Ecological Prediction System (CBEPS) automatically generates daily nowcasts and three-day forecasts of several environmental variables, such as sea-surface temperature and salinity, the concentrations of chlorophyll, nitrate, and dissolved oxygen, and the likelihood of encountering several noxious species, including harmful algal blooms and water-borne pathogens, for the purpose of monitoring the Bay's ecosystem. While the physical and biogeochemical variables are forecast mechanistically using the Regional Ocean Modeling System configured for the Chesapeake Bay, the species predictions are generated using a novel mechanistic empirical approach, whereby real-time output from the coupled physical biogeochemical model drives multivariate empirical habitat models of the target species. The predictions, in the form of digital images, are available via the World Wide Web to interested groups to guide recreational, management, and research activities. Though full validation of the integrated forecasts for all species is still a work in progress, we argue that the mechanistic–empirical approach can be used to generate a wide variety of short-term ecological forecasts, and that it can be applied in any marine system where sufficient data exist to develop empirical habitat models. This paper provides an overview of this system, its predictions, and the approach taken.

  20. Assessing forecast uncertainties in a VECX model for Switzerland: an exercise in forecast combination across models and observation windows

    E-Print Network [OSTI]

    Assenmacher-Wesche, Katrin; Pesaran, M. Hashem

    horizons of up to eight quarters ahead since this is the rele- vant time horizon for central banks when setting interest rates. Table 6 shows the RMSFE, the bias and the hit rate of forecasts based on the VECX*(2,2) model for the longest estimation window...

  1. EWEC 2006 Scientific Track Advanced Forecast Systems for the Grid Integration of 25 GW

    E-Print Network [OSTI]

    Heinemann, Detlev

    forecasts, smoothing effects Abstract The economic success of offshore wind farms in liberalised electricity of offshore wind farms, their electricity production must be known well in advance to allow an efficient Oldenburg, Germany Key words: Offshore wind power, grid integration, short-term prediction, regional

  2. Review of Wind Energy Forecasting Methods for Modeling Ramping Events

    SciTech Connect (OSTI)

    Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

    2011-03-28

    Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

  3. A Comparison of Bayesian and Conditional Density Models in Probabilistic Ozone Forecasting

    E-Print Network [OSTI]

    Hsieh, William

    A Comparison of Bayesian and Conditional Density Models in Probabilistic Ozone Forecasting Song Cai to provide predictive distributions of daily maximum surface level ozone concentrations. Five forecast models forecasts for extreme events, namely poor air quality events defined as having ozone concentration 82 ppb

  4. Value of Wind Power Forecasting

    SciTech Connect (OSTI)

    Lew, D.; Milligan, M.; Jordan, G.; Piwko, R.

    2011-04-01

    This study, building on the extensive models developed for the Western Wind and Solar Integration Study (WWSIS), uses these WECC models to evaluate the operating cost impacts of improved day-ahead wind forecasts.

  5. Point-trained models in a grid environment: Transforming a potato late blight risk forecast for use with the National Digital Forecast Database

    E-Print Network [OSTI]

    Douches, David S.

    Point-trained models in a grid environment: Transforming a potato late blight risk forecast for use with the National Digital Forecast Database Kathleen Baker a, , Paul Roehsner a , Thomas Lake b , Douglas Rivet

  6. Very short-term wind speed forecasting with Bayesian structural break model , Zhe Song a,*, Andrew Kusiak b

    E-Print Network [OSTI]

    Kusiak, Andrew

    of the wind industry, such as wind turbine predictive control [2,3], wind power grid integration and economic July 2012 Available online Keywords: Time series Forecasting Wind power Wind speed Bayesian structural applications, such as wind turbine predictive control, wind power scheduling. The proposed model is tested

  7. Atmospheric Environment 39 (2005) 13731382 A hierarchical Bayesian model to estimate and forecast ozone

    E-Print Network [OSTI]

    Irwin, Mark E.

    2005-01-01

    conditional on observed (or forecasted) meteorology including temperature, humidity, pressure, and wind speed, defining the spatial­temporal extent of episodes of dangerous air quality, forecasting urban and areaAtmospheric Environment 39 (2005) 1373­1382 A hierarchical Bayesian model to estimate and forecast

  8. Traffic congestion forecasting model for the INFORM System. Final report

    SciTech Connect (OSTI)

    Azarm, A.; Mughabghab, S.; Stock, D.

    1995-05-01

    This report describes a computerized traffic forecasting model, developed by Brookhaven National Laboratory (BNL) for a portion of the Long Island INFORM Traffic Corridor. The model has gone through a testing phase, and currently is able to make accurate traffic predictions up to one hour forward in time. The model will eventually take on-line traffic data from the INFORM system roadway sensors and make projections as to future traffic patterns, thus allowing operators at the New York State Department of Transportation (D.O.T.) INFORM Traffic Management Center to more optimally manage traffic. It can also form the basis of a travel information system. The BNL computer model developed for this project is called ATOP for Advanced Traffic Occupancy Prediction. The various modules of the ATOP computer code are currently written in Fortran and run on PC computers (pentium machine) faster than real time for the section of the INFORM corridor under study. The following summarizes the various routines currently contained in the ATOP code: Statistical forecasting of traffic flow and occupancy using historical data for similar days and time (long term knowledge), and the recent information from the past hour (short term knowledge). Estimation of the empirical relationships between traffic flow and occupancy using long and short term information. Mechanistic interpolation using macroscopic traffic models and based on the traffic flow and occupancy forecasted (item-1), and the empirical relationships (item-2) for the specific highway configuration at the time of simulation (construction, lane closure, etc.). Statistical routine for detection and classification of anomalies and their impact on the highway capacity which are fed back to previous items.

  9. Log-normal distribution based EMOS models for probabilistic wind speed forecasting

    E-Print Network [OSTI]

    Baran, Sándor

    2014-01-01

    Ensembles of forecasts are obtained from multiple runs of numerical weather forecasting models with different initial conditions and typically employed to account for forecast uncertainties. However, biases and dispersion errors often occur in forecast ensembles, they are usually under-dispersive and uncalibrated and require statistical post-processing. We present an Ensemble Model Output Statistics (EMOS) method for calibration of wind speed forecasts based on the log-normal (LN) distribution, and we also show a regime-switching extension of the model which combines the previously studied truncated normal (TN) distribution with the LN. Both presented models are applied to wind speed forecasts of the eight-member University of Washington mesoscale ensemble, of the fifty-member ECMWF ensemble and of the eleven-member ALADIN-HUNEPS ensemble of the Hungarian Meteorological Service, and their predictive performances are compared to those of the TN and general extreme value (GEV) distribution based EMOS methods an...

  10. Global and multi-scale features of solar wind-magnetosphere coupling: From modeling to forecasting

    E-Print Network [OSTI]

    Sitnov, Mikhail I.

    Global and multi-scale features of solar wind-magnetosphere coupling: From modeling to forecasting issue. This paper presents a data-derived model of the solar wind-magnetosphere coupling that combines of solar wind-magnetosphere coupling: From modeling to forecasting, Geophys. Res. Lett., 31, L08802, doi:10

  11. FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2

    SciTech Connect (OSTI)

    Templeton, K.J.

    1996-05-23

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters. The range is primarily due to uncertainties associated with the Tank Waste Remediation System (TWRS) program, including uncertainties regarding retrieval of long-length equipment, scheduling, and tank retrieval technologies.

  12. Forthcoming: Journal of Applied Business and Economics (2011) Integrating Financial Statement Modeling

    E-Print Network [OSTI]

    2011-01-01

    Forthcoming: Journal of Applied Business and Economics (2011) Integrating Financial Statement Modeling and Sales Forecasting Using EViews John T. Cuddington Colorado School of Mines Irina Khindanova of the financial forecasts. INTRODUCTION In most business school programs students are exposed to financial

  13. Explicitly integrating parameter, input, and structure uncertainties into Bayesian Neural Networks for probabilistic hydrologic forecasting

    SciTech Connect (OSTI)

    Zhang, Xuesong; Liang, Faming; Yu, Beibei; Zong, Ziliang

    2011-11-09

    Estimating uncertainty of hydrologic forecasting is valuable to water resources and other relevant decision making processes. Recently, Bayesian Neural Networks (BNNs) have been proved powerful tools for quantifying uncertainty of streamflow forecasting. In this study, we propose a Markov Chain Monte Carlo (MCMC) framework to incorporate the uncertainties associated with input, model structure, and parameter into BNNs. This framework allows the structure of the neural networks to change by removing or adding connections between neurons and enables scaling of input data by using rainfall multipliers. The results show that the new BNNs outperform the BNNs that only consider uncertainties associated with parameter and model structure. Critical evaluation of posterior distribution of neural network weights, number of effective connections, rainfall multipliers, and hyper-parameters show that the assumptions held in our BNNs are not well supported. Further understanding of characteristics of different uncertainty sources and including output error into the MCMC framework are expected to enhance the application of neural networks for uncertainty analysis of hydrologic forecasting.

  14. Development and Evaluation of a Coupled Photosynthesis-Based Gas Exchange Evapotranspiration Model (GEM) for Mesoscale Weather Forecasting Applications

    E-Print Network [OSTI]

    Niyogi, Dev

    (GEM) for Mesoscale Weather Forecasting Applications DEV NIYOGI Department of Agronomy, and Department form 13 May 2008) ABSTRACT Current land surface schemes used for mesoscale weather forecast models use model (GEM) as a land surface scheme for mesoscale weather forecasting model applications. The GEM

  15. Extendedrange seasonal hurricane forecasts for the North Atlantic with a hybrid dynamicalstatistical model

    E-Print Network [OSTI]

    Webster, Peter J.

    Extendedrange seasonal hurricane forecasts for the North Atlantic with a hybrid 20 September 2010; published 9 November 2010. [1] A hybrid forecast model for seasonal hurricane between the number of seasonal hurricane and the large scale variables from ECMWF hindcasts. The increase

  16. AUTOMATION OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S.

    E-Print Network [OSTI]

    Povinelli, Richard J.

    AUTOMATION OF ENERGY DEMAND FORECASTING by Sanzad Siddique, B.S. A Thesis submitted to the Faculty OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S. Marquette University, 2013 Automation of energy demand of the energy demand forecasting are achieved by integrating nonlinear transformations within the models

  17. Uncertainty Reduction in Power Generation Forecast Using Coupled Wavelet-ARIMA

    SciTech Connect (OSTI)

    Hou, Zhangshuan; Etingov, Pavel V.; Makarov, Yuri V.; Samaan, Nader A.

    2014-10-27

    In this paper, we introduce a new approach without implying normal distributions and stationarity of power generation forecast errors. In addition, it is desired to more accurately quantify the forecast uncertainty by reducing prediction intervals of forecasts. We use automatically coupled wavelet transform and autoregressive integrated moving-average (ARIMA) forecasting to reflect multi-scale variability of forecast errors. The proposed analysis reveals slow-changing “quasi-deterministic” components of forecast errors. This helps improve forecasts produced by other means, e.g., using weather-based models, and reduce forecast errors prediction intervals.

  18. Multidimensional approaches to performance evaluation of competing forecasting models 

    E-Print Network [OSTI]

    Xu, Bing

    2009-01-01

    The purpose of my research is to contribute to the field of forecasting from a methodological perspective as well as to the field of crude oil as an application area to test the performance of my methodological contributions ...

  19. Radiation fog forecasting using a 1-dimensional model 

    E-Print Network [OSTI]

    Peyraud, Lionel

    2001-01-01

    weather patterns known to be favorable for producing fog and once it has formed, to state that it will persist unless the pattern changes. Unfortunately, while such methods have shown some success, many times they have led weather forecasters astray...

  20. Wind Power Forecasting Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Call 2012 Retrospective Reports 2012 Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email...

  1. Reverse supply chain forecasting and decision modeling for improved inventory management

    E-Print Network [OSTI]

    Petersen, Brian J. (Brian Jude)

    2013-01-01

    This thesis details research performed during a six-month engagement with Verizon Wireless (VzW) in the latter half of 2012. The key outcomes are a forecasting model and decision-support framework to improve management of ...

  2. Comparative forecasting performance of symmetric and asymmetric conditional volatility models of an exchange rate. 

    E-Print Network [OSTI]

    Balaban, Ercan

    2002-01-01

    The relative out-of-sample forecasting quality of symmetric and asymmetric conditional volatility models of an exchange rate differs according to the symmetric and asymmetric evaluation criteria as well as a regression-based ...

  3. Using multi-layer models to forecast gas flow rates in tight gas reservoirs 

    E-Print Network [OSTI]

    Jerez Vera, Sergio Armando

    2007-04-25

    USING MULTI-LAYER MODELS TO FORECAST GAS FLOW RATES IN TIGHT GAS RESERVOIRS A Thesis by SERGIO ARMANDO JEREZ VERA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 2006 Major Subject: Petroleum Engineering USING MULTI-LAYER MODELS TO FORECAST GAS FLOW RATES IN TIGHT GAS RESERVOIRS A Thesis by SERGIO ARMANDO JEREZ VERA Submitted...

  4. Intercomparison of mesoscale meteorological models for precipitation forecasting Hydrology and Earth System Sciences, 7(6), 799811 (2003) EGU

    E-Print Network [OSTI]

    Boyer, Edmond

    2003-01-01

    Intercomparison of mesoscale meteorological models for precipitation forecasting 799 Hydrology and Earth System Sciences, 7(6), 799811 (2003) © EGU Intercomparison of mesoscale meteorological models

  5. Integrated Assessment Modeling

    SciTech Connect (OSTI)

    Edmonds, James A.; Calvin, Katherine V.; Clarke, Leon E.; Janetos, Anthony C.; Kim, Son H.; Wise, Marshall A.; McJeon, Haewon C.

    2012-10-31

    This paper discusses the role of Integrated Assessment models (IAMs) in climate change research. IAMs are an interdisciplinary research platform, which constitutes a consistent scientific framework in which the large-scale interactions between human and natural Earth systems can be examined. In so doing, IAMs provide insights that would otherwise be unavailable from traditional single-discipline research. By providing a broader view of the issue, IAMs constitute an important tool for decision support. IAMs are also a home of human Earth system research and provide natural Earth system scientists information about the nature of human intervention in global biogeophysical and geochemical processes.

  6. FEBRUARY 1999 119O ' C O N N O R E T A L . Forecast Verification for Eta Model Winds Using Lake Erie

    E-Print Network [OSTI]

    FEBRUARY 1999 119O ' C O N N O R E T A L . Forecast Verification for Eta Model Winds Using Lake Forecasting System (GLCFS) can be used to validate wind forecasts for the Great Lakes using observed weather prediction step-coordinate Eta Model are able to forecast winds for the Great Lakes region, using

  7. Standardized Software for Wind Load Forecast Error Analyses and Predictions Based on Wavelet-ARIMA Models - Applications at Multiple Geographically Distributed Wind Farms

    SciTech Connect (OSTI)

    Hou, Zhangshuan; Makarov, Yuri V.; Samaan, Nader A.; Etingov, Pavel V.

    2013-03-19

    Given the multi-scale variability and uncertainty of wind generation and forecast errors, it is a natural choice to use time-frequency representation (TFR) as a view of the corresponding time series represented over both time and frequency. Here we use wavelet transform (WT) to expand the signal in terms of wavelet functions which are localized in both time and frequency. Each WT component is more stationary and has consistent auto-correlation pattern. We combined wavelet analyses with time series forecast approaches such as ARIMA, and tested the approach at three different wind farms located far away from each other. The prediction capability is satisfactory -- the day-ahead prediction of errors match the original error values very well, including the patterns. The observations are well located within the predictive intervals. Integrating our wavelet-ARIMA (‘stochastic’) model with the weather forecast model (‘deterministic’) will improve our ability significantly to predict wind power generation and reduce predictive uncertainty.

  8. A global aerosol model forecast for the ACE-Asia field experiment Mian Chin,1,2

    E-Print Network [OSTI]

    Chin, Mian

    layer. We attribute this ``missing'' dust source to desertification regions in the Inner Mongolia forecasting. After incorporating the desertification sources, the model is able to reproduce the observed

  9. Integration of Behind-the-Meter PV Fleet Forecasts into Utility...

    Broader source: Energy.gov (indexed) [DOE]

    the spatial and temporal resolution of SolarAnywhere, an online satellite-based irradiance dataset, and adding output variability and PV performance forecasts to the Web-based...

  10. Development and initial application of the global-through-urban weather research and forecasting model with chemistry

    E-Print Network [OSTI]

    Zhang, Yang

    Development and initial application of the global-through-urban weather research and forecasting application of the global-through-urban weather research and forecasting model with chemistry (GU-WRF/Chem), J. In this work, a global-through-urban WRF/Chem model (i.e., GU-WRF/Chem) has been developed to provide

  11. ENERGY DEMAND FORECAST METHODS REPORT

    E-Print Network [OSTI]

    ....................................................................................................1-16 Energy Consumption Data...............................................1-15 Data Sources for Energy Demand Forecasting ModelsCALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report

  12. An Investigation of the Limitations in Plume Rise Models used in Air Quality Forecast Systems

    E-Print Network [OSTI]

    Collins, Gary S.

    are important for predicting pollutants regulated by National Ambient Air Quality Standards (NAAQS). NAAQS pollutants, include CO, NO2, PM2.5, PM10, O3, and SO2, are considered deleterious to public health and airAn Investigation of the Limitations in Plume Rise Models used in Air Quality Forecast Systems 1

  13. Present and Future of Modeling Global Environmental Change: Toward Integrated Modeling, Eds., T. Matsuno and H. Kida, pp. 145172.

    E-Print Network [OSTI]

    Moorcroft, Paul R.

    145 Present and Future of Modeling Global Environmental Change: Toward Integrated Modeling, Eds., T, NH 03824, U.S.A. Abstract--Here we examine the cause, size and future of the U.S. carbon sink.4%, with the remainder due to land use. To forecast the future of the U.S. carbon sink, we used the Ecosystem Demography

  14. Modeling and forecasting the distribution of Vibrio vulnificus in Chesapeake Bay

    SciTech Connect (OSTI)

    Jacobs, John M.; Rhodes, M.; Brown, C. W.; Hood, Raleigh R.; Leight, A.; Long, Wen; Wood, R.

    2014-11-01

    The aim is to construct statistical models to predict the presence, abundance and potential virulence of Vibrio vulnificus in surface waters. A variety of statistical techniques were used in concert to identify water quality parameters associated with V. vulnificus presence, abundance and virulence markers in the interest of developing strong predictive models for use in regional oceanographic modeling systems. A suite of models are provided to represent the best model fit and alternatives using environmental variables that allow them to be put to immediate use in current ecological forecasting efforts. Conclusions: Environmental parameters such as temperature, salinity and turbidity are capable of accurately predicting abundance and distribution of V. vulnificus in Chesapeake Bay. Forcing these empirical models with output from ocean modeling systems allows for spatially explicit forecasts for up to 48 h in the future. This study uses one of the largest data sets compiled to model Vibrio in an estuary, enhances our understanding of environmental correlates with abundance, distribution and presence of potentially virulent strains and offers a method to forecast these pathogens that may be replicated in other regions.

  15. Grid Integration of Aggregated Demand Response, Part 2: Modeling Demand Response in a Production Cost Model

    Broader source: Energy.gov [DOE]

    Renewable integration studies have evaluated many challenges associated with deploying large amounts of variable wind and solar generation technologies. These studies can evaluate operational impacts associated with variable generation, benefits of improved wind and solar resource forecasting, and trade-offs between institutional changes, including increasing balancing area cooperation and technical changes such as installing new flexible generation. Demand response (DR) resources present a potentially important source of grid flexibility and can aid in integrating variable generation; however, integration analyses have not yet incorporated these resources explicitly into grid simulation models as part of a standard toolkit for resource planners.

  16. Why Models Don%3CU%2B2019%3Et Forecast.

    SciTech Connect (OSTI)

    McNamara, Laura A.

    2010-08-01

    The title of this paper, Why Models Don't Forecast, has a deceptively simple answer: models don't forecast because people forecast. Yet this statement has significant implications for computational social modeling and simulation in national security decision making. Specifically, it points to the need for robust approaches to the problem of how people and organizations develop, deploy, and use computational modeling and simulation technologies. In the next twenty or so pages, I argue that the challenge of evaluating computational social modeling and simulation technologies extends far beyond verification and validation, and should include the relationship between a simulation technology and the people and organizations using it. This challenge of evaluation is not just one of usability and usefulness for technologies, but extends to the assessment of how new modeling and simulation technologies shape human and organizational judgment. The robust and systematic evaluation of organizational decision making processes, and the role of computational modeling and simulation technologies therein, is a critical problem for the organizations who promote, fund, develop, and seek to use computational social science tools, methods, and techniques in high-consequence decision making.

  17. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-01-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. Currently, uncertainties associated with wind and load forecasts, as well as uncertainties associated with random generator outages and unexpected disconnection of supply lines, are not taken into account in power grid operation. Thus, operators have little means to weigh the likelihood and magnitude of upcoming events of power imbalance. In this project, funded by the U.S. Department of Energy (DOE), a framework has been developed for incorporating uncertainties associated with wind and load forecast errors, unpredicted ramps, and forced generation disconnections into the energy management system (EMS) as well as generation dispatch and commitment applications. A new approach to evaluate the uncertainty ranges for the required generation performance envelope including balancing capacity, ramping capability, and ramp duration has been proposed. The approach includes three stages: forecast and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence levels. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis, incorporating all sources of uncertainties of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the “flying brick” technique has been developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation algorithm has been developed to validate the accuracy of the confidence intervals.

  18. Air pollution forecasting by coupled atmosphere-fire model WRF and SFIRE with WRF-Chem

    E-Print Network [OSTI]

    Kochanski, Adam K; Mandel, Jan; Clements, Craig B

    2013-01-01

    Atmospheric pollution regulations have emerged as a dominant obstacle to prescribed burns. Thus, forecasting the pollution caused by wildland fires has acquired high importance. WRF and SFIRE model wildland fire spread in a two-way interaction with the atmosphere. The surface heat flux from the fire causes strong updrafts, which in turn change the winds and affect the fire spread. Fire emissions, estimated from the burning organic matter, are inserted in every time step into WRF-Chem tracers at the lowest atmospheric layer. The buoyancy caused by the fire then naturally simulates plume dynamics, and the chemical transport in WRF-Chem provides a forecast of the pollution spread. We discuss the choice of wood burning models and compatible chemical transport models in WRF-Chem, and demonstrate the results on case studies.

  19. Implementation of the Immersed Boundary Method in the Weather Research and Forecasting model

    SciTech Connect (OSTI)

    Lundquist, K A

    2006-12-07

    Accurate simulations of atmospheric boundary layer flow are vital for predicting dispersion of contaminant releases, particularly in densely populated urban regions where first responders must react within minutes and the consequences of forecast errors are potentially disastrous. Current mesoscale models do not account for urban effects, and conversely urban scale models do not account for mesoscale weather features or atmospheric physics. The ultimate goal of this research is to develop and implement an immersed boundary method (IBM) along with a surface roughness parameterization into the mesoscale Weather Research and Forecasting (WRF) model. IBM will be used in WRF to represent the complex boundary conditions imposed by urban landscapes, while still including forcing from regional weather patterns and atmospheric physics. This document details preliminary results of this research, including the details of three distinct implementations of the immersed boundary method. Results for the three methods are presented for the case of a rotation influenced neutral atmospheric boundary layer over flat terrain.

  20. A Distributed Modeling System for Short-Term to Seasonal Ensemble Streamflow Forecasting in Snowmelt Dominated Basins

    SciTech Connect (OSTI)

    Wigmosta, Mark S.; Gill, Muhammad K.; Coleman, Andre M.; Prasad, Rajiv; Vail, Lance W.

    2007-12-01

    This paper describes a distributed modeling system for short-term to seasonal water supply forecasts with the ability to utilize remotely-sensed snow cover products and real-time streamflow measurements. Spatial variability in basin characteristics and meteorology is represented using a raster-based computational grid. Canopy interception, snow accumulation and melt, and simplified soil water movement are simulated in each computational unit. The model is run at a daily time step with surface runoff and subsurface flow aggregated at the basin scale. This approach allows the model to be updated with spatial snow cover and measured streamflow using an Ensemble Kalman-based data assimilation strategy that accounts for uncertainty in weather forecasts, model parameters, and observations used for updating. Model inflow forecasts for the Dworshak Reservoir in northern Idaho are compared to observations and to April-July volumetric forecasts issued by the Natural Resource Conservation Service (NRCS) for Water Years 2000 – 2006. October 1 volumetric forecasts are superior to those issued by the NRCS, while March 1 forecasts are comparable. The ensemble spread brackets the observed April-July volumetric inflows in all years. Short-term (one and three day) forecasts also show excellent agreement with observations.

  1. Separations and safeguards model integration.

    SciTech Connect (OSTI)

    Cipiti, Benjamin B.; Zinaman, Owen

    2010-09-01

    Research and development of advanced reprocessing plant designs can greatly benefit from the development of a reprocessing plant model capable of transient solvent extraction chemistry. This type of model can be used to optimize the operations of a plant as well as the designs for safeguards, security, and safety. Previous work has integrated a transient solvent extraction simulation module, based on the Solvent Extraction Process Having Interaction Solutes (SEPHIS) code developed at Oak Ridge National Laboratory, with the Separations and Safeguards Performance Model (SSPM) developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The goal of this work was to strengthen the integration by linking more variables between the two codes. The results from this integrated model show expected operational performance through plant transients. Additionally, ORIGEN source term files were integrated into the SSPM to provide concentrations, radioactivity, neutron emission rate, and thermal power data for various spent fuels. This data was used to generate measurement blocks that can determine the radioactivity, neutron emission rate, or thermal power of any stream or vessel in the plant model. This work examined how the code could be expanded to integrate other separation steps and benchmark the results to other data. Recommendations for future work will be presented.

  2. Journal of Atmospheric and Solar-Terrestrial Physics 66 (2004) 14911497 Sun-to-magnetosphere modeling: CISM forecast model

    E-Print Network [OSTI]

    2004-01-01

    -to-magnetosphere modeling: CISM forecast model development using linked empirical methods D.N. Bakera,Ã, R.S. Weigela , E Space Weather Modeling (CISM) is to provide linked end-to- end models of the connected Sun­Earth system. It is envisioned that the ultimate product of the CISM effort will be a single, physics-based (i.e., ``forward

  3. Regional forecasting with global atmospheric models; Third year report

    SciTech Connect (OSTI)

    Crowley, T.J.; North, G.R.; Smith, N.R.

    1994-05-01

    This report was prepared by the Applied Research Corporation (ARC), College Station, Texas, under subcontract to Pacific Northwest Laboratory (PNL) as part of a global climate studies task. The task supports site characterization work required for the selection of a potential high-level nuclear waste repository and is part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work is under the overall direction of the Office of Civilian Radioactive Waste Management (OCRWM), US Department of Energy Headquarters, Washington, DC. The scope of the report is to present the results of the third year`s work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain several studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals.

  4. Forecasting Model for Crude Oil Price Using Artificial Neural Networks and Commodity Futures Prices

    E-Print Network [OSTI]

    Kulkarni, Siddhivinayak

    2009-01-01

    This paper presents a model based on multilayer feedforward neural network to forecast crude oil spot price direction in the short-term, up to three days ahead. A great deal of attention was paid on finding the optimal ANN model structure. In addition, several methods of data pre-processing were tested. Our approach is to create a benchmark based on lagged value of pre-processed spot price, then add pre-processed futures prices for 1, 2, 3,and four months to maturity, one by one and also altogether. The results on the benchmark suggest that a dynamic model of 13 lags is the optimal to forecast spot price direction for the short-term. Further, the forecast accuracy of the direction of the market was 78%, 66%, and 53% for one, two, and three days in future conclusively. For all the experiments, that include futures data as an input, the results show that on the short-term, futures prices do hold new information on the spot price direction. The results obtained will generate comprehensive understanding of the cr...

  5. New Forecasting Tools Enhance Wind Energy Integration In Idaho and Oregon

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImportsEnergyForecasting Tools Enhance Wind

  6. Evaluation of the Weather Research and Forecasting Model on

    E-Print Network [OSTI]

    Basu, Sukanta

    are thus needed for precise assessment of wind resources, reliable prediction of power generation and robust design of wind turbines. However, mesoscale numerical weather prediction models face a chal- lenge: Implications for Wind Energy Brandon Storm*, Wind Science and Engineering Research Center, Texas Tech

  7. Continuous Model Updating and Forecasting for a Naturally Fractured Reservoir 

    E-Print Network [OSTI]

    Almohammadi, Hisham

    2013-07-26

    . Such capabilities allow for a paradigm change in which reservoir management can be looked at as a strategy that enables a semi-continuous process of model updates and decision optimizations instead of being periodic or reactive. This is referred to as closed...

  8. Solid waste integrated forecast technical (SWIFT) report: FY1997 to FY 2070, Revision 1

    SciTech Connect (OSTI)

    Valero, O.J.; Templeton, K.J.; Morgan, J.

    1997-01-07

    This web site provides an up-to-date report on the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons with previous forecasts and with other national data sources. This web site does not include: liquid waste (current or future generation); waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); or waste that has been received by the WM Project to date (i.e., inventory waste). The focus of this web site is on low-level mixed waste (LLMW), and transuranic waste (both non-mixed and mixed) (TRU(M)). Some details on low-level waste and hazardous waste are also provided. Currently, this web site is reporting data th at was requested on 10/14/96 and submitted on 10/25/96. The data represent a life cycle forecast covering all reported activities from FY97 through the end of each program's life cycle. Therefore, these data represent revisions from the previous FY97.0 Data Version, due primarily to revised estimates from PNNL. There is some useful information about the structure of this report in the SWIFT Report Web Site Overview.

  9. Combining multi-objective optimization and bayesian model averaging to calibrate forecast ensembles of soil hydraulic models

    SciTech Connect (OSTI)

    Vrugt, Jasper A; Wohling, Thomas

    2008-01-01

    Most studies in vadose zone hydrology use a single conceptual model for predictive inference and analysis. Focusing on the outcome of a single model is prone to statistical bias and underestimation of uncertainty. In this study, we combine multi-objective optimization and Bayesian Model Averaging (BMA) to generate forecast ensembles of soil hydraulic models. To illustrate our method, we use observed tensiometric pressure head data at three different depths in a layered vadose zone of volcanic origin in New Zealand. A set of seven different soil hydraulic models is calibrated using a multi-objective formulation with three different objective functions that each measure the mismatch between observed and predicted soil water pressure head at one specific depth. The Pareto solution space corresponding to these three objectives is estimated with AMALGAM, and used to generate four different model ensembles. These ensembles are post-processed with BMA and used for predictive analysis and uncertainty estimation. Our most important conclusions for the vadose zone under consideration are: (1) the mean BMA forecast exhibits similar predictive capabilities as the best individual performing soil hydraulic model, (2) the size of the BMA uncertainty ranges increase with increasing depth and dryness in the soil profile, (3) the best performing ensemble corresponds to the compromise (or balanced) solution of the three-objective Pareto surface, and (4) the combined multi-objective optimization and BMA framework proposed in this paper is very useful to generate forecast ensembles of soil hydraulic models.

  10. A New Forecasting Model for USD/CNY Exchange Rate

    E-Print Network [OSTI]

    Cai, Zongwu; Chen, Linna; Fang, Ying

    2012-09-18

    hypothesis and using GARCH type models or their variants, most studies found evidence of nonlinearity in volatilities of exchange rates; see, for example, Bollerslev (1990), Brock, Hsieh and Lebaron (1991), Engle, Ito and Lin (1990), West and Cho (1995.... Alternatively, one might consider other smoothing variables used in the literature, such as the moving average technique trading rule (MATTR) Ut,MATTR = Yt?1 ?L j=1 Yt?j/L ? 1 for certain L (say, L = 21), as in Brock, Lakonishock and Lebaron (1992) and Hong...

  11. Solid Waste Integrated Forecast Technical (SWIFT) Report FY2001 to FY2046 Volume 1

    SciTech Connect (OSTI)

    BARCOT, R.A.

    2000-08-31

    This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons to previous forecasts and other national data sources. This report does not include: waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); waste that has been received by the WM Project to date (i.e., inventory waste); mixed low-level waste that will be processed and disposed by the River Protection Program; and liquid waste (current or future generation). Although this report currently does not include liquid wastes, they may be added as information becomes available.

  12. Integrated Nozzle Flow, Spray, Combustion, & Emission Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nozzle Flow, Spray, Combustion, & Emission Modeling using KH-ACT Primary Breakup Model & Detailed Chemistry Integrated Nozzle Flow, Spray, Combustion, & Emission Modeling using...

  13. Advancements in Wind Integration Study Data Modeling: The Wind Integration National Dataset (WIND) Toolkit; Preprint

    SciTech Connect (OSTI)

    Draxl, C.; Hodge, B. M.; Orwig, K.; Jones, W.; Searight, K.; Getman, D.; Harrold, S.; McCaa, J.; Cline, J.; Clark, C.

    2013-10-01

    Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather prediction model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.

  14. Hawaii Energy Strategy: Program guide. [Contains special sections on analytical energy forecasting, renewable energy resource assessment, demand-side energy management, energy vulnerability assessment, and energy strategy integration

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The Hawaii Energy Strategy program, or HES, is a set of seven projects which will produce an integrated energy strategy for the State of Hawaii. It will include a comprehensive energy vulnerability assessment with recommended courses of action to decrease Hawaii's energy vulnerability and to better prepare for an effective response to any energy emergency or supply disruption. The seven projects are designed to increase understanding of Hawaii's energy situation and to produce recommendations to achieve the State energy objectives of: Dependable, efficient, and economical state-wide energy systems capable of supporting the needs of the people, and increased energy self-sufficiency. The seven projects under the Hawaii Energy Strategy program include: Project 1: Develop Analytical Energy Forecasting Model for the State of Hawaii. Project 2: Fossil Energy Review and Analysis. Project 3: Renewable Energy Resource Assessment and Development Program. Project 4: Demand-Side Management Program. Project 5: Transportation Energy Strategy. Project 6: Energy Vulnerability Assessment Report and Contingency Planning. Project 7: Energy Strategy Integration and Evaluation System.

  15. Improving Groundwater Predictions Utilizing Seasonal Precipitation Forecasts from General Circulation Models

    E-Print Network [OSTI]

    Arumugam, Sankar

    Improving Groundwater Predictions Utilizing Seasonal Precipitation Forecasts from General. The research reported in this paper evaluates the potential in developing 6-month-ahead groundwater Surface Temperature forecasts. Ten groundwater wells and nine streamgauges from the USGS Groundwater

  16. A supply forecasting model for Zimbabwe's corn sector: a time series and structural analysis 

    E-Print Network [OSTI]

    Makaudze, Ephias

    1993-01-01

    Board's financial resource needs. Thus, the corn supply forecasts are important information used by the government for contingency planning, decision-making, policy-formulation and implementation. As such, the need for accurate forecasts is obvious...

  17. Distributed quantitative precipitation forecasts combining information from radar and numerical weather prediction model outputs

    E-Print Network [OSTI]

    Ganguly, Auroop Ratan

    2002-01-01

    Applications of distributed Quantitative Precipitation Forecasts (QPF) range from flood forecasting to transportation. Obtaining QPF is acknowledged to be one of the most challenging areas in hydrology and meteorology. ...

  18. Design of a next-generation regional weather research and forecast model.

    SciTech Connect (OSTI)

    Michalakes, J.

    1999-01-13

    The Weather Research and Forecast (WRF) model is a new model development effort undertaken jointly by the National Center for Atmospheric Research (NCAR), the National Oceanic and Atmospheric Administration (NOAA), and a number of collaborating institutions and university scientists. The model is intended for use by operational NWP and university research communities, providing a common framework for idealized dynamical studies, fill physics numerical weather prediction, air-quality simulation, and regional climate. It will eventually supersede large, well-established but aging regional models now maintained by the participating institutions. The WRF effort includes re-engineering the underlying software architecture to produce a modular, flexible code designed from the outset to provide portable performance across diverse computing architectures. This paper outlines key elements of the WRF software design.

  19. Weather Forecasting Spring 2014

    E-Print Network [OSTI]

    Hennon, Christopher C.

    ATMS 350 Weather Forecasting Spring 2014 Professor : Dr. Chris Hennon Office : RRO 236C Phone : 232 of atmospheric physics and the ability to include this understanding into modern numerical weather prediction agencies, forecast tools, numerical weather prediction models, model output statistics, ensemble

  20. Integrated Resource Planning Model (IRPM)

    SciTech Connect (OSTI)

    Graham, T. B.

    2010-04-01

    The Integrated Resource Planning Model (IRPM) is a decision-support software product for resource-and-capacity planning. Users can evaluate changing constraints on schedule performance, projected cost, and resource use. IRPM is a unique software tool that can analyze complex business situations from a basic supply chain to an integrated production facility to a distributed manufacturing complex. IRPM can be efficiently configured through a user-friendly graphical interface to rapidly provide charts, graphs, tables, and/or written results to summarize postulated business scenarios. There is not a similar integrated resource planning software package presently available. Many different businesses (from government to large corporations as well as medium-to-small manufacturing concerns) could save thousands of dollars and hundreds of labor hours in resource and schedule planning costs. Those businesses also could avoid millions of dollars of revenue lost from fear of overcommitting or from penalties and lost future business for failing to meet promised delivery by using IRPM to perform what-if business-case evaluations. Tough production planning questions that previously were left unanswered can now be answered with a high degree of certainty. Businesses can anticipate production problems and have solutions in hand to deal with those problems. IRPM allows companies to make better plans, decisions, and investments.

  1. Weather Research and Forecasting Model's Community Variational/Ensemble Data Assimilation System: WRFDA

    SciTech Connect (OSTI)

    Barker, D.; Huang, X. Y.; Liu, Z. Q.; Auligne, T.; Zhang, X.; Rugg, S.; Ajjaji, R.; Bourgeois, A.; Bray, J.; Chen, Y. S.; Demirtas, M.; Guo, Y. R.; Henderson, T.; Huang, W.; Lin, H. C.; Michalakes, J.; Rizvi, S.; Zhang, X. Y.

    2012-06-01

    Data assimilation is the process by which observations are combined with short-range NWP model output to produce an analysis of the state of the atmosphere at a specified time. Since its inception in the late 1990s, the multiagency Weather Research and Forecasting (WRF) model effort has had a strong data assimilation component, dedicating two working groups to the subject. This article documents the history of the WRF data assimilation effort, and discusses the challenges associated with balancing academic, research, and operational data assimilation requirements in the context of the WRF effort to date. The WRF Model's Community Variational/Ensemble Data Assimilation System (WRFDA) has evolved over the past 10 years, and has resulted in over 30 refereed publications to date, as well as implementation in a wide range of real-time and operational NWP systems.

  2. Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model

    SciTech Connect (OSTI)

    O'Hirok, W.; Ricchiazzi, P.; Gautier, C.

    2005-03-18

    A principal goal of the Atmospheric Radiation Measurement (ARM) Program is to understand the 3D cloud-radiation problem from scales ranging from the local to the size of global climate model (GCM) grid squares. For climate models using typical cloud overlap schemes, 3D radiative effects are minimal for all but the most complicated cloud fields. However, with the introduction of ''superparameterization'' methods, where sub-grid cloud processes are accounted for by embedding high resolution 2D cloud system resolving models within a GCM grid cell, the impact of 3D radiative effects on the local scale becomes increasingly relevant (Randall et al. 2003). In a recent study, we examined this issue by comparing the heating rates produced from a 3D and 1D shortwave radiative transfer model for a variety of radar derived cloud fields (O'Hirok and Gautier 2005). As demonstrated in Figure 1, the heating rate differences for a large convective field can be significant where 3D effects produce areas o f intense local heating. This finding, however, does not address the more important question of whether 3D radiative effects can alter the dynamics and structure of a cloud field. To investigate that issue we have incorporated a 3D radiative transfer algorithm into the Weather Research and Forecasting (WRF) model. Here, we present very preliminary findings of a comparison between cloud fields generated from a high resolution non-hydrostatic mesoscale numerical weather model using 1D and 3D radiative transfer codes.

  3. Fire weather simulation skill by the Weather Research and Forecasting (WRF) model over south-east Australia

    E-Print Network [OSTI]

    Evans, Jason

    Fire weather simulation skill by the Weather Research and Forecasting (WRF) model over south, Australia. D Corresponding author. Email: h.clarke@student.unsw.edu.au Abstract. The fire weather of south of the McArthur Forest Fire Danger Index (FFDI) using probability density function skill scores, annual

  4. The Quality of a 48-Hours Wind Power Forecast Using the German and Danish Weather Prediction Model

    E-Print Network [OSTI]

    Heinemann, Detlev

    In countries showing high wind energy shares in the elec- trical power supply grid, a "wind power weatherThe Quality of a 48-Hours Wind Power Forecast Using the German and Danish Weather Prediction Model Laboratory, P.O. box 49, DK-4000 Roskilde, Tel/Fax: +45 4677 5095 / 5970 Gregor.Giebel@Risoe.DK Wind power

  5. Waste Form Degradation Model Integration for Engineered Materials...

    Office of Environmental Management (EM)

    Waste Form Degradation Model Integration for Engineered Materials Performance Waste Form Degradation Model Integration for Engineered Materials Performance The collaborative...

  6. Limitations of integrated assessment models of climate change

    E-Print Network [OSTI]

    Ackerman, Frank; DeCanio, Stephen J.; Howarth, Richard B.; Sheeran, Kristen

    2009-01-01

    cost-effective technologies into climate models that yieldcosts of climate policy depend heavily on how technology andTechnology forecasts: not so bright IAMs simulate the macroeconomic impacts of climate

  7. Forecast of surface layer meteorological parameters at Cerro Paranal with a mesoscale atmospherical model

    E-Print Network [OSTI]

    Lascaux, Franck; Fini, Luca

    2015-01-01

    This article aims at proving the feasibility of the forecast of all the most relevant classical atmospherical parameters for astronomical applications (wind speed and direction, temperature) above the ESO ground-base site of Cerro Paranal with a mesoscale atmospherical model called Meso-Nh. In a precedent paper we have preliminarily treated the model performances obtained in reconstructing some key atmospherical parameters in the surface layer 0-30~m studying the bias and the RMSE on a statistical sample of 20 nights. Results were very encouraging and it appeared therefore mandatory to confirm such a good result on a much richer statistical sample. In this paper, the study was extended to a total sample of 129 nights between 2007 and 2011 distributed in different parts of the solar year. This large sample made our analysis more robust and definitive in terms of the model performances and permitted us to confirm the excellent performances of the model. Besides, we present an independent analysis of the model p...

  8. U.S. Regional Demand Forecasts Using NEMS and GIS

    SciTech Connect (OSTI)

    Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

    2005-07-01

    The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

  9. The Los Alamos dynamic radiation environment assimilation model (DREAM) for space weather specification and forecasting

    SciTech Connect (OSTI)

    Reeves, Geoffrey D [Los Alamos National Laboratory; Friedel, Reiner H W [Los Alamos National Laboratory; Chen, Yue [Los Alamos National Laboratory; Koller, Josef [Los Alamos National Laboratory; Henderson, Michael G [Los Alamos National Laboratory

    2008-01-01

    The Dynamic Radiation Environment Assimilation Model (DREAM) was developed at Los Alamos National Laboratory to assess, quantify, and predict the hazards from the natural space environment and the anthropogenic environment produced by high altitude nuclear explosions (HANE). DREAM was initially developed as a basic research activity to understand and predict the dynamics of the Earth's Van Allen radiation belts. It uses Kalman filter techniques to assimilate data from space environment instruments with a physics-based model of the radiation belts. DREAM can assimilate data from a variety of types of instruments and data with various levels of resolution and fidelity by assigning appropriate uncertainties to the observations. Data from any spacecraft orbit can be assimilated but DREAM was designed to function with as few as two spacecraft inputs: one from geosynchronous orbit and one from GPS orbit. With those inputs, DREAM can be used to predict the environment at any satellite in any orbit whether space environment data are available in those orbits or not. Even with very limited data input and relatively simple physics models, DREAM specifies the space environment in the radiation belts to a high level of accuracy. DREAM has been extensively tested and evaluated as we transition from research to operations. We report here on one set of test results in which we predict the environment in a highly-elliptical polar orbit. We also discuss long-duration reanalysis for spacecraft design, using DREAM for real-time operations, and prospects for 1-week forecasts of the radiation belt environment.

  10. Low-dimensional Models in Spatio-Temporal Wind Speed Forecasting Borhan M. Sanandaji, Akin Tascikaraoglu, , , Kameshwar Poolla, and Pravin Varaiya

    E-Print Network [OSTI]

    Sanandaji, Borhan M.

    Tascikaraoglu, , , Kameshwar Poolla, and Pravin Varaiya Abstract-- Integrating wind power into the grid to achieve the power balance needed for its integration into the grid [3], [4]. The use of ancillary services of wind power. The paper presents a spatio-temporal wind speed forecasting algorithm that incorporates

  11. Downscaling Extended Weather Forecasts for Hydrologic Prediction

    SciTech Connect (OSTI)

    Leung, Lai-Yung R.; Qian, Yun

    2005-03-01

    Weather and climate forecasts are critical inputs to hydrologic forecasting systems. The National Center for Environmental Prediction (NCEP) issues 8-15 days outlook daily for the U.S. based on the Medium Range Forecast (MRF) model, which is a global model applied at about 2? spatial resolution. Because of the relatively coarse spatial resolution, weather forecasts produced by the MRF model cannot be applied directly to hydrologic forecasting models that require high spatial resolution to represent land surface hydrology. A mesoscale atmospheric model was used to dynamically downscale the 1-8 day extended global weather forecasts to test the feasibility of hydrologic forecasting through this model nesting approach. Atmospheric conditions of each 8-day forecast during the period 1990-2000 were used to provide initial and boundary conditions for the mesoscale model to produce an 8-day atmospheric forecast for the western U.S. at 30 km spatial resolution. To examine the impact of initialization of the land surface state on forecast skill, two sets of simulations were performed with the land surface state initialized based on the global forecasts versus land surface conditions from a continuous mesoscale simulation driven by the NCEP reanalysis. Comparison of the skill of the global and downscaled precipitation forecasts in the western U.S. showed higher skill for the downscaled forecasts at all precipitation thresholds and increasingly larger differences at the larger thresholds. Analyses of the surface temperature forecasts show that the mesoscale forecasts generally reduced the root-mean-square error by about 1.5 C compared to the global forecasts, because of the much better resolved topography at 30 km spatial resolution. In addition, initialization of the land surface states has large impacts on the temperature forecasts, but not the precipitation forecasts. The improvements in forecast skill using downscaling could be potentially significant for improving hydrologic forecasts for managing river basins.

  12. Comparing Price Forecast Accuracy of Natural Gas Models and Futures Markets

    E-Print Network [OSTI]

    Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

    2005-01-01

    index.html. Appendix A.1 Natural Gas Price Data for FuturesError STEO Error A.1 Natural Gas Price Data for Futuresof forecasts for natural gas prices as reported by the

  13. Economic Evaluation of Short-Term Wind Power Forecasts in ERCOT: Preliminary Results; Preprint

    SciTech Connect (OSTI)

    Orwig, K.; Hodge, B. M.; Brinkman, G.; Ela, E.; Milligan, M.; Banunarayanan, V.; Nasir, S.; Freedman, J.

    2012-09-01

    Historically, a number of wind energy integration studies have investigated the value of using day-ahead wind power forecasts for grid operational decisions. These studies have shown that there could be large cost savings gained by grid operators implementing the forecasts in their system operations. To date, none of these studies have investigated the value of shorter-term (0 to 6-hour-ahead) wind power forecasts. In 2010, the Department of Energy and National Oceanic and Atmospheric Administration partnered to fund improvements in short-term wind forecasts and to determine the economic value of these improvements to grid operators, hereafter referred to as the Wind Forecasting Improvement Project (WFIP). In this work, we discuss the preliminary results of the economic benefit analysis portion of the WFIP for the Electric Reliability Council of Texas. The improvements seen in the wind forecasts are examined, then the economic results of a production cost model simulation are analyzed.

  14. Development of a next-generation regional weather research and forecast model.

    SciTech Connect (OSTI)

    Michalakes, J.; Chen, S.; Dudhia, J.; Hart, L.; Klemp, J.; Middlecoff, J.; Skamarock, W.

    2001-02-05

    The Weather Research and Forecast (WRF) project is a multi-institutional effort to develop an advanced mesoscale forecast and data assimilation system that is accurate, efficient, and scalable across a range of scales and over a host of computer platforms. The first release, WRF 1.0, was November 30, 2000, with operational deployment targeted for the 2004-05 time frame. This paper provides an overview of the project and current status of the WRF development effort in the areas of numerics and physics, software and data architecture, and single-source parallelism and performance portability.

  15. Integrated Market Modeling of Hydrogen Transition Scenarios with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Market Modeling of Hydrogen Transition Scenarios with HyTrans Integrated Market Modeling of Hydrogen Transition Scenarios with HyTrans Presentation by Paul Leiby of Oak...

  16. Issues in midterm analysis and forecasting 1998

    SciTech Connect (OSTI)

    1998-07-01

    Issues in Midterm Analysis and Forecasting 1998 (Issues) presents a series of nine papers covering topics in analysis and modeling that underlie the Annual Energy Outlook 1998 (AEO98), as well as other significant issues in midterm energy markets. AEO98, DOE/EIA-0383(98), published in December 1997, presents national forecasts of energy production, demand, imports, and prices through the year 2020 for five cases -- a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. The forecasts were prepared by the Energy Information Administration (EIA), using EIA`s National Energy Modeling System (NEMS). The papers included in Issues describe underlying analyses for the projections in AEO98 and the forthcoming Annual Energy Outlook 1999 and for other products of EIA`s Office of Integrated Analysis and Forecasting. Their purpose is to provide public access to analytical work done in preparation for the midterm projections and other unpublished analyses. Specific topics were chosen for their relevance to current energy issues or to highlight modeling activities in NEMS. 59 figs., 44 tabs.

  17. Solar Forecasting

    Broader source: Energy.gov [DOE]

    On December 7, 2012, DOE announced $8 million to fund two solar projects that are helping utilities and grid operators better forecast when, where, and how much solar power will be produced at U.S....

  18. Seasonal Maize Forecasting for South Africa and Zimbabwe Derived from an Agroclimatological Model

    E-Print Network [OSTI]

    Martin, Randall

    ) and sea level pressure (SLP) readings to anticipate water-stress six months prior to harvest-economic variability. Explored within is a new approach to seasonal crop forecasting, one derived from crop water, and other climatic factors over the period 1961-1994 are compared with calculated available water from

  19. Modeling, History Matching, Forecasting and Analysis of Shale Reservoirs Performance Using Artificial Intelligence

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    matching, forecasting and analyzing oil and gas production in shale reservoirs. In this new approach and analysis of oil and gas production from shale formations. Examples of three case studies in Lower Huron and New Albany shale formations (gas producing) and Bakken Shale (oil producing) is presented

  20. Improving Tropical Cyclogenesis Statistical Model Forecasts through the Application of a Neural Network Classifier

    E-Print Network [OSTI]

    Marzban, Caren

    /National Hurricane Center 11691 SW 17th Street Miami, FL 33165 Email: Christopher.Hennon@noaa.gov #12;2 ABSTRACT networks are able to detect nonlinear patterns in data and can be a very powerful tool for forecasting applications if they are designed and used properly. Although they are a more recent innovation than

  1. Modeling for System Integration Studies (Presentation)

    SciTech Connect (OSTI)

    Orwig, K. D.

    2012-05-01

    This presentation describes some the data requirements needed for grid integration modeling and provides real-world examples of such data and its format. Renewable energy integration studies evaluate the operational impacts of variable generation. Transmission planning studies investigate where new transmission is needed to transfer energy from generation sources to load centers. Both use time-synchronized wind and solar energy production and load as inputs. Both examine high renewable energy penetration scenarios in the future.

  2. ON THE IMPACT OF SUPER RESOLUTION WSR-88D DOPPLER RADAR DATA ASSIMILATION ON HIGH RESOLUTION NUMERICAL MODEL FORECASTS

    SciTech Connect (OSTI)

    Chiswell, S

    2009-01-11

    Assimilation of radar velocity and precipitation fields into high-resolution model simulations can improve precipitation forecasts with decreased 'spin-up' time and improve short-term simulation of boundary layer winds (Benjamin, 2004 & 2007; Xiao, 2008) which is critical to improving plume transport forecasts. Accurate description of wind and turbulence fields is essential to useful atmospheric transport and dispersion results, and any improvement in the accuracy of these fields will make consequence assessment more valuable during both routine operation as well as potential emergency situations. During 2008, the United States National Weather Service (NWS) radars implemented a significant upgrade which increased the real-time level II data resolution to 8 times their previous 'legacy' resolution, from 1 km range gate and 1.0 degree azimuthal resolution to 'super resolution' 250 m range gate and 0.5 degree azimuthal resolution (Fig 1). These radar observations provide reflectivity, velocity and returned power spectra measurements at a range of up to 300 km (460 km for reflectivity) at a frequency of 4-5 minutes and yield up to 13.5 million point observations per level in super-resolution mode. The migration of National Weather Service (NWS) WSR-88D radars to super resolution is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current operational mesoscale model domains utilize grid spacing several times larger than the legacy data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of super resolution reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution is investigated here to determine the impact of the improved data resolution on model predictions.

  3. SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2005 THRU FY2035 2005.0 VOLUME 2

    SciTech Connect (OSTI)

    BARCOT, R.A.

    2005-08-17

    This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: (1) an overview of Hanford-wide solid waste to be managed by the WM Project; (2) multi-level and waste class-specific estimates; (3) background information on waste sources; and (4) comparisons to previous forecasts and other national data sources. The focus of this report is low-level waste (LLW), mixed low-level waste (MLLW), and transuranic waste, both non-mixed and mixed (TRU(M)). Some details on hazardous waste are also provided, however, this information is not considered comprehensive. This report includes data requested in December, 2004 with updates through March 31,2005. The data represent a life cycle forecast covering all reported activities from FY2005 through the end of each program's life cycle and are an update of the previous FY2004.1 data version.

  4. SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2003 THRU FY2046 VERSION 2003.1 VOLUME 2 [SEC 1 & 2

    SciTech Connect (OSTI)

    BARCOT, R.A.

    2003-12-01

    This report includes data requested on September 10, 2002 and includes radioactive solid waste forecasting updates through December 31, 2002. The FY2003.0 request is the primary forecast for fiscal year FY 2003.

  5. Quiver gauge theories and integrable lattice models

    E-Print Network [OSTI]

    Junya Yagi

    2015-06-30

    We discuss connections between certain classes of supersymmetric quiver gauge theories and integrable lattice models from the point of view of topological quantum field theories (TQFTs). The relevant classes include 4d $\\mathcal{N} = 1$ theories known as brane box and brane tilling models, 3d $\\mathcal{N} = 2$ and 2d $\\mathcal{N} = (2,2)$ theories obtained from them by compactification, and 2d $\\mathcal{N} = (0,2)$ theories closely related to these theories. We argue that their supersymmetric indices carry structures of TQFTs equipped with line operators, and as a consequence, are equal to the partition functions of lattice models. The integrability of these models follows from the existence of extra dimension in the TQFTs, which emerges after the theories are embedded in M-theory. The Yang-Baxter equation expresses the invariance of supersymmetric indices under Seiberg duality and its lower-dimensional analogs.

  6. Integrability of the russian doll BCS model

    E-Print Network [OSTI]

    Clare Dunning; Jon Links

    2004-06-10

    We show that integrability of the BCS model extends beyond Richardson's model (where all Cooper pair scatterings have equal coupling) to that of the russian doll BCS model for which the couplings have a particular phase dependence that breaks time-reversal symmetry. This model is shown to be integrable using the quantum inverse scattering method, and the exact solution is obtained by means of the algebraic Bethe ansatz. The inverse problem of expressing local operators in terms of the global operators of the monodromy matrix is solved. This result is used to find a determinant formulation of a correlation function for fluctuations in the Cooper pair occupation numbers. These results are used to undertake exact numerical analysis for small systems at half-filling.

  7. Agent Modeling for Integrated Power Systems

    E-Print Network [OSTI]

    effective market power mitigation rules, how to incorporate ancillary service markets, and how to properly implement a retail electricity market to encourage customer participation. Although valuable experience hasAgent Modeling for Integrated Power Systems Final Project Report Power Systems Engineering Research

  8. Development of an Immersed Boundary Method to Resolve Complex Terrain in the Weather Research and Forecasting Model

    SciTech Connect (OSTI)

    Lunquist, K A; Chow, F K; Lundquist, J K; Mirocha, J D

    2007-09-04

    Flow and dispersion processes in urban areas are profoundly influenced by the presence of buildings which divert mean flow, affect surface heating and cooling, and alter the structure of turbulence in the lower atmosphere. Accurate prediction of velocity, temperature, and turbulent kinetic energy fields are necessary for determining the transport and dispersion of scalars. Correct predictions of scalar concentrations are vital in densely populated urban areas where they are used to aid in emergency response planning for accidental or intentional releases of hazardous substances. Traditionally, urban flow simulations have been performed by computational fluid dynamics (CFD) codes which can accommodate the geometric complexity inherent to urban landscapes. In these types of models the grid is aligned with the solid boundaries, and the boundary conditions are applied to the computational nodes coincident with the surface. If the CFD code uses a structured curvilinear mesh, then time-consuming manual manipulation is needed to ensure that the mesh conforms to the solid boundaries while minimizing skewness. If the CFD code uses an unstructured grid, then the solver cannot be optimized for the underlying data structure which takes an irregular form. Unstructured solvers are therefore often slower and more memory intensive than their structured counterparts. Additionally, urban-scale CFD models are often forced at lateral boundaries with idealized flow, neglecting dynamic forcing due to synoptic scale weather patterns. These CFD codes solve the incompressible Navier-Stokes equations and include limited options for representing atmospheric processes such as surface fluxes and moisture. Traditional CFD codes therefore posses several drawbacks, due to the expense of either creating the grid or solving the resulting algebraic system of equations, and due to the idealized boundary conditions and the lack of full atmospheric physics. Meso-scale atmospheric boundary layer simulations, on the other hand, are performed by numerical weather prediction (NWP) codes, which cannot handle the geometry of the urban landscape, but do provide a more complete representation of atmospheric physics. NWP codes typically use structured grids with terrain-following vertical coordinates, include a full suite of atmospheric physics parameterizations, and allow for dynamic synoptic scale lateral forcing through grid nesting. Terrain following grids are unsuitable for urban terrain, as steep terrain gradients cause extreme distortion of the computational cells. In this work, we introduce and develop an immersed boundary method (IBM) to allow the favorable properties of a numerical weather prediction code to be combined with the ability to handle complex terrain. IBM uses a non-conforming structured grid, and allows solid boundaries to pass through the computational cells. As the terrain passes through the mesh in an arbitrary manner, the main goal of the IBM is to apply the boundary condition on the interior of the domain as accurately as possible. With the implementation of the IBM, numerical weather prediction codes can be used to explicitly resolve urban terrain. Heterogeneous urban domains using the IBM can be nested into larger mesoscale domains using a terrain-following coordinate. The larger mesoscale domain provides lateral boundary conditions to the urban domain with the correct forcing, allowing seamless integration between mesoscale and urban scale models. Further discussion of the scope of this project is given by Lundquist et al. [2007]. The current paper describes the implementation of an IBM into the Weather Research and Forecasting (WRF) model, which is an open source numerical weather prediction code. The WRF model solves the non-hydrostatic compressible Navier-Stokes equations, and employs an isobaric terrain-following vertical coordinate. Many types of IB methods have been developed by researchers; a comprehensive review can be found in Mittal and Iaccarino [2005]. To the authors knowledge, this is the first IBM approach that is able to

  9. Integration of GIS with Activity-Based Model in ATIS

    E-Print Network [OSTI]

    Kwan, Mei-Po; Golledge, Reginald

    1995-01-01

    Integration of GIS with Activity-Based Model in ATIS Mei-Poregulation. Integration of GIS with Activity-Based Model inGrant UCTC Grant DTRS92-G-0009: GIS Data Model for DOT "A

  10. Tracking tropical cloud systems for the diagnosis of simulations by the weather research and forecasting (WRF) model

    SciTech Connect (OSTI)

    Vogelmann, A.M.; Lin, W.; Cialella, A.; Luke, E. P.; Jensen, M. P.; Zhang, M. H.; Boer, E.

    2010-06-27

    To aid in improving model parameterizations of clouds and convection, we examine the capability of models, using explicit convection, to simulate the life cycle of tropical cloud systems in the tropical warm pool. The cloud life cycle is determined using a satellite cloud tracking algorithm (Boer and Ramanathan, J. Geophys. Res., 1997), and the statistics are compared to those of simulations using the Weather Research and Forecasting (WRF) Model. Using New York Blue, a Blue Gene/L supercomputer that is co-operated by Brookhaven and Stony Brook, simulations are run at a resolution comparable to the observations. Initial results suggest that the organization of the mesoscale convective systems is particularly sensitive to the cloud microphysics parameterization used.

  11. Tracking tropical cloud systems - Observations for the diagnosis of simulations by the Weather Research and Forecasting (WRF) Model

    SciTech Connect (OSTI)

    Vogelmann, A.M.; Lin, W.; Cialella, A.; Luke, E.; Jensen, M.; Zhang, M.

    2010-03-15

    To aid in improving model parameterizations of clouds and convection, we examine the capability of models, using explicit convection, to simulate the life cycle of tropical cloud systems in the vicinity of the ARM Tropical Western Pacific sites. The cloud life cycle is determined using a satellite cloud tracking algorithm (Boer and Ramanathan, 1997), and the statistics are compared to those of simulations using the Weather Research and Forecasting (WRF) Model. Using New York Blue, a Blue Gene/L supercomputer that is co-operated by Brookhaven and Stony Brook, simulations are run at a resolution comparable to the observations. Initial results suggest a computational paradox where, even though the size of the simulated systems are about half of that observed, their longevities are still similar. The explanation for this seeming incongruity will be explored.

  12. Comparison of integral equation and physical scale modelling of the electromagnetic response of models

    E-Print Network [OSTI]

    Farquharson, Colin G.

    Comparison of integral equation and physical scale modelling of the electromagnetic response history of EM numerical modelling in geophysics. · Another integral equation modelling program;Introduction: a brief history · Two main approaches to numerical modelling: integral equation; finite

  13. Simulations of Clouds and Sensitivity Study by Weather Research and Forecast Model for Atmospheric Radiation Measurement Case 4

    SciTech Connect (OSTI)

    Wu, J.; Zhang, M.

    2005-03-18

    One of the large errors in general circulation models (GCMs) cloud simulations is from the mid-latitude, synoptic-scale frontal cloud systems. Now, with the availability of the cloud observations from Atmospheric Radiation Measurement (ARM) 2000 cloud Intensive Operational Period (IOP) and other observational datasets, the community is able to document the model biases in comparison with the observations and make progress in development of better cloud schemes in models. Xie et al. (2004) documented the errors in midlatitude frontal cloud simulations for ARM Case 4 by single-column models (SCMs) and cloud resolving models (CRMs). According to them, the errors in the model simulated cloud field might be caused by following reasons: (1) lacking of sub-grid scale variability; (2) lacking of organized mesoscale cyclonic advection of hydrometeors behind a moving cyclone which may play important role to generate the clouds there. Mesoscale model, however, can be used to better under stand these controls on the subgrid variability of clouds. Few studies have focused on applying mesoscale models to the forecasting of cloud properties. Weaver et al. (2004) used a mesoscale model RAMS to study the frontal clouds for ARM Case 4 and documented the dynamical controls on the sub-GCM-grid-scale cloud variability.

  14. Community Page Putting the Pieces Together: Integrative Modeling

    E-Print Network [OSTI]

    Sali, Andrej

    Community Page Putting the Pieces Together: Integrative Modeling Platform Software for Structure that evaluates candidate models. We describe our software suite, Integrated Modeling Platform, and invite members car- bon copy) [3]. The value of integrative modeling is illustrated by its application to the yeast

  15. Integrating systems biology models and biomedical ontologies

    E-Print Network [OSTI]

    Hoehndorf, Robert; Dumontier, Michel; Gennari, John H.; Wimalaratne, Sarala; de Bono, Bernard; Cook, Daniel L.; Gkoutos, Georgios V.

    2011-08-11

    Integrating systems biology models and biomedical ontologies Robert Hoehndorf1*, Michel Dumontier2,3, John H Gennari4, Sarala Wimalaratne5, Bernard de Bono5, Daniel L Cook6,7 and Georgios V Gkoutos1 Abstract Background: Systems biology is an approach... in yeast [19] and includes a compartment anno- tated with Nucleus that contains, among others, the spe- cies G1, G2, S and M annotated with G1 phase, G2 phase, S phase and M phase, respectively. Within the model, the amounts of these species can be either 0...

  16. ModelBased Information Integration in a Neuroscience Mediator System

    E-Print Network [OSTI]

    Ludäscher, Bertram

    Model­Based Information Integration in a Neuroscience Mediator System Bertram Lud¨ascher ? Amarnath

  17. A SOLAR WARMING MODEL (SWarm) TO ESTIMATE DIURNAL CHANGES IN NEAR-SURFACE SNOWPACK TEMPERATURES FOR BACK-COUNTRY AVALANCHE FORECASTING

    E-Print Network [OSTI]

    Jamieson, Bruce

    be used to measure incoming solar radiation, but they are not common due to cost and maintenance issuesA SOLAR WARMING MODEL (SWarm) TO ESTIMATE DIURNAL CHANGES IN NEAR-SURFACE SNOWPACK TEMPERATURES. To facilitate use in large forecast areas where representative meteorological data are typically scarce

  18. Development and Initial Application of the Global-Through-Urban Weather Research1 and Forecasting Model with Chemistry (GU-WRF/Chem)2

    E-Print Network [OSTI]

    Nenes, Athanasios

    1 Development and Initial Application of the Global-Through-Urban Weather Research1 and Forecasting-cloud-radiation-precipitation-climate interactions. In this work, a global-through-urban33 WRF/Chem model (i.e., GU-WRF/Chem) has been developed photolysis rate, near-surface temperature, wind speed at 10-m, planetary boundary layer height,40

  19. Integrated Mathematical Modeling Software Series of Vehicle Propulsion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mathematical Modeling Software Series of Vehicle Propulsion System: (1) Tractive Effort (T sub ew) of Vehicle Road WheelTrack Sprocket Integrated Mathematical Modeling Software...

  20. Error Control of Iterative Linear Solvers for Integrated Groundwater Models

    E-Print Network [OSTI]

    California at Davis, University of

    Error Control of Iterative Linear Solvers for Integrated Groundwater Models by Matthew F. Dixon1 for integrated groundwater models, which are implicitly coupled to another model, such as surface water models in legacy groundwater modeling packages, resulting in the overall simulation speedups as large as 7

  1. Funding Opportunity Announcement for Wind Forecasting Improvement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that take place in complex terrain, this funding opportunity will improve foundational weather models by developing short-term wind forecasts for use by industry professionals,...

  2. Upcoming Funding Opportunity for Wind Forecasting Improvement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    processes that take place in complex terrain, this funding would improve foundational weather models by developing short-term wind forecasts for use by industry professionals,...

  3. Radiolysis Model Formulation for Integration with the Mixed Potential Model

    SciTech Connect (OSTI)

    Buck, Edgar C.; Wittman, Richard S.

    2014-07-10

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development activities related to storage, transportation, and disposal of used nuclear fuel (UNF) and high-level radioactive waste. Within the UFDC, the components for a general system model of the degradation and subsequent transport of UNF is being developed to analyze the performance of disposal options [Sassani et al., 2012]. Two model components of the near-field part of the problem are the ANL Mixed Potential Model and the PNNL Radiolysis Model. This report is in response to the desire to integrate the two models as outlined in [Buck, E.C, J.L. Jerden, W.L. Ebert, R.S. Wittman, (2013) “Coupling the Mixed Potential and Radiolysis Models for Used Fuel Degradation,” FCRD-UFD-2013-000290, M3FT-PN0806058

  4. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    and forecasting of solar radiation data: a review,”forecasting of solar- radiation data,” Solar Energy, vol.sequences of global solar radiation data for isolated sites:

  5. Wind Speed Forecasting for Power System Operation 

    E-Print Network [OSTI]

    Zhu, Xinxin

    2013-07-22

    In order to support large-scale integration of wind power into current electric energy system, accurate wind speed forecasting is essential, because the high variation and limited predictability of wind pose profound challenges to the power system...

  6. Electric Grid - Forecasting system licensed | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Grid - Forecasting system licensed Location Based Technologies has signed an agreement to integrate and market an Oak Ridge National Laboratory technology that provides...

  7. Hawaii demand-side management resource assessment. Final report, Reference Volume 5: The DOETRAN user`s manual; The DOE-2/DBEDT DSM forecasting model interface

    SciTech Connect (OSTI)

    1995-04-01

    The DOETRAN model is a DSM database manager, developed to act as an intermediary between the whole building energy simulation model, DOE-2, and the DBEDT DSM Forecasting Model. DOETRAN accepts output data from DOE-2 and TRANslates that into the format required by the forecasting model. DOETRAN operates in the Windows environment and was developed using the relational database management software, Paradox 5.0 for Windows. It is not necessary to have any knowledge of Paradox to use DOETRAN. DOETRAN utilizes the powerful database manager capabilities of Paradox through a series of customized user-friendly windows displaying buttons and menus with simple and clear functions. The DOETRAN model performs three basic functions, with an optional fourth. The first function is to configure the user`s computer for DOETRAN. The second function is to import DOE-2 files with energy and loadshape data for each building type. The third main function is to then process the data into the forecasting model format. As DOETRAN processes the DOE-2 data, graphs of the total electric monthly impacts for each DSM measure appear, providing the user with a visual means of inspecting DOE-2 data, as well as following program execution. DOETRAN provides three tables for each building type for the forecasting model, one for electric measures, gas measures, and basecases. The optional fourth function provided by DOETRAN is to view graphs of total electric annual impacts by measure. This last option allows a comparative view of how one measure rates against another. A section in this manual is devoted to each of the four functions mentioned above, as well as computer requirements and exiting DOETRAN.

  8. NREL: Transmission Grid Integration - Generator Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTS -BeingFuture forForecasting NREL

  9. Diagnosis of the summertime warm and dry bias over the U. S. Southern Great Plains in the GFDL climate model using a weather forecasting approach

    SciTech Connect (OSTI)

    Klein, S A; Jiang, X; Boyle, J; Malyshev, S; Xie, S

    2006-07-11

    Weather forecasts started from realistic initial conditions are used to diagnose the large warm and dry bias over the United States Southern Great Plains simulated by the GFDL climate model. The forecasts exhibit biases in surface air temperature and precipitation within 3 days which appear to be similar to the climate bias. With the model simulating realistic evaporation but underestimated precipitation, a deficit in soil moisture results which amplifies the initial temperature bias through feedbacks with the land surface. The underestimate of precipitation is associated with an inability of the model to simulate the eastward propagation of convection from the front-range of the Rocky Mountains and is insensitive to an increase of horizontal resolution from 2{sup o} to 0.5{sup o} latitude.

  10. Orphan drugs : future viability of current forecasting models, in light of impending changes to influential market factors

    E-Print Network [OSTI]

    Gottlieb, Joshua

    2011-01-01

    Interviews were conducted to establish a baseline for how orphan drug forecasting is currently undertaken by financial market and industry analysts with the intention of understanding the variables typically accounted for ...

  11. Reducing the demand forecast error due to the bullwhip effect in the computer processor industry

    E-Print Network [OSTI]

    Smith, Emily (Emily C.)

    2010-01-01

    Intel's current demand-forecasting processes rely on customers' demand forecasts. Customers do not revise demand forecasts as demand decreases until the last minute. Intel's current demand models provide little guidance ...

  12. Supplementary Information: The Grid ENabled Integrated Earth system modelling (GENIE)

    E-Print Network [OSTI]

    Edwards, Neil

    Supplementary Information: The Grid ENabled Integrated Earth system modelling (GENIE) framework T Integrated Earth system modelling (GENIE) frame- work supports modularity (i.e. interchangeable components to produce a range of com- putationally efficient Earth system models (ESMs) that span a spectrum from

  13. Data models for an integrated thesaurus database Dagobert Soergel

    E-Print Network [OSTI]

    Soergel, Dagobert

    Data models for an integrated thesaurus database Dagobert Soergel College of Library the nature of thesaurus data and a relational data structure for such data, which is flexible and -- through data models for structuring an integrated thesaurus database. In both models, general data on terms

  14. Comparing Price Forecast Accuracy of Natural Gas Models and Futures Markets

    E-Print Network [OSTI]

    Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

    2005-01-01

    Update on Petroleum, Natural Gas, Heating Oil and Gasoline.of the Market for Natural Gas Futures. Energy Journal 16 (Modeling Forum. 2003. Natural Gas, Fuel Diversity and North

  15. Hydrologic modeling using triangulated irregular networks : terrain representation, flood forecasting and catchment response

    E-Print Network [OSTI]

    Vivoni, Enrique R. (Enrique Rafael), 1975-

    2003-01-01

    Numerical models are modern tools for capturing the spatial and temporal variability in the land-surface hydrologic response to rainfall and understanding the physical relations between internal watershed processes and ...

  16. Efficient market model: within-sample fit versus out-of-sample forecasts 

    E-Print Network [OSTI]

    Cheng, Chi

    1993-01-01

    In this paper, we study whether the pricing of index futures and the underlying cash prices are efficient. Price efficiency per se is not testable. It must be tested jointly with a maintained model. The topic of time ...

  17. Continuous reservoir simulation model updating and forecasting using a markov chain monte carlo method 

    E-Print Network [OSTI]

    Liu, Chang

    2009-05-15

    better estimate. The PUNQ-S3 reservoir model is used to test two methods in this thesis. The methods are: STATIC (traditional) SIMULATION PROCESS and CONTINUOUS SIMULATION PROCESS. The continuous process provides continuously updated probabilistic...

  18. Calibrated Probabilistic Mesoscale Weather Field Forecasting: The Geostatistical Output Perturbation

    E-Print Network [OSTI]

    Raftery, Adrian

    Calibrated Probabilistic Mesoscale Weather Field Forecasting: The Geostatistical Output. This is typically not feasible for mesoscale weather prediction carried out locally by organizations without by simulating realizations of the geostatistical model. The method is applied to 48-hour mesoscale forecasts

  19. New Insight into Integrated Reservoir Management using Top-Down, Intelligent Reservoir Modeling

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    geological models base on stochastic modeling techniques for HM and production forecasting ­ This model Modeling · A large volume of data that is representative of the reservoir behavior in both space and time is generated · Fusing a large number of discrete data and single-well models into a cohesive and continuous

  20. Can Fully Accounting for Clouds in Data Assimilation Improve Short-Term Forecasts by Global Models?

    E-Print Network [OSTI]

    Robert, Pincus

    ? ROBERT PINCUS AND ROBERT J. PATRICK HOFMANN University of Colorado and NOAA/Earth System Research for Atmospheric Research, Boulder, Colorado JEFFREY S. WHITAKER NOAA/Earth Systems Research Laboratory using a single ensemble data assimilation system coupled to two present-generation climate models

  1. ReseaRch at the University of Maryland The Chesapeake Bay Forecast Modeling System

    E-Print Network [OSTI]

    Hill, Wendell T.

    . The impact of industry, fishing, agriculture, development, and climate change raise significant devastate fragile fish stocks. Rita Colwell uses bioinformatics methods to model the emergence of pathogens color to detect the presence of fish species and to estimate their numbers. This information is useful

  2. Integral Model of a Multiphase Plume in Quiescent Stratification

    E-Print Network [OSTI]

    Crounse, B. C.

    The writers present a one-dimensional integral model to describe multiphase plumes discharged to quiescent stratified receiving waters. The model includes an empirical submodel for detrainment, and the capability to include ...

  3. Fair Internet traffic integration: network flow models and analysis

    E-Print Network [OSTI]

    Kelly, Frank

    Fair Internet traffic integration: network flow models and analysis Peter Key, Laurent Massoulié the integration of two types of Internet traffic, elastic file transfers and streaming traffic. Previous studies have concentrated on just one type of traffic, such as the flow level models of Internet congestion

  4. Integrated Modeling and Simulation of Lunar Exploration Campaign Logistics

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Integrated Modeling and Simulation of Lunar Exploration Campaign Logistics by Sarah A. Shull B #12;Integrated Modeling and Simulation of Lunar Exploration Campaign Logistics by Sarah A. Shull to establish a manned outpost on the lunar surface, it is essential to consider the logistics of both

  5. Integrated Modeling and Simulation of Lunar Exploration Campaign Logistics

    E-Print Network [OSTI]

    Integrated Modeling and Simulation of Lunar Exploration Campaign Logistics Sarah A. Shull, Olivier Campaign Logistics by Sarah A. Shull B.S.E. Aerospace Engineering (2001) The University of Michigan) #12;4 Integrated Modeling and Simulation of Lunar Exploration Campaign Logistics by Sarah A. Shull

  6. Forecastability as a Design Criterion in Wind Resource Assessment: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.

    2014-04-01

    This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

  7. Extreme wave events during hurricanes can seriously jeopardize the integrity and safety of offshore oil and gas operations in the Gulf of Mexico. Validation of wave forecast for

    E-Print Network [OSTI]

    oil and gas operations in the Gulf of Mexico. Validation of wave forecast for significant wave heights the storm track with daily (0000 UTC) positions marked. Katrina caused extensive damage to offshore oil and gas production facilities; 46 platforms and four jack-uprigsweredestroyed. Perhapsmost remarkably

  8. INTELLIGENT HANDLING OF WEATHER FORECASTS Stephan Kerpedjiev

    E-Print Network [OSTI]

    , discourse and semantic. They are based on a conceptual model underlying weather forecasts as well situations represented in the form of texts in NL, weather maps, data tables or combined information objectsINTELLIGENT HANDLING OF WEATHER FORECASTS Stephan Kerpedjiev I n s t i t u t e of Mathematics Acad

  9. Integrated decision support model for global sourcing

    E-Print Network [OSTI]

    Mroczkowski, Victor A. (Victor Adam)

    2008-01-01

    Over the last decade, the U.S. aircraft industry has experienced increasing levels of international integration as companies seek to access global talent and resources, cut production costs, spread financial risk, and ...

  10. Implementation and assessment of turbine wake models in the Weather Research and Forecasting model for both mesoscale and large-eddy simulation

    SciTech Connect (OSTI)

    Singer, M; Mirocha, J; Lundquist, J; Cleve, J

    2010-03-03

    Flow dynamics in large wind projects are influenced by the turbines located within. The turbine wakes, regions characterized by lower wind speeds and higher levels of turbulence than the surrounding free stream flow, can extend several rotor diameters downstream, and may meander and widen with increasing distance from the turbine. Turbine wakes can also reduce the power generated by downstream turbines and accelerate fatigue and damage to turbine components. An improved understanding of wake formation and transport within wind parks is essential for maximizing power output and increasing turbine lifespan. Moreover, the influence of wakes from large wind projects on neighboring wind farms, agricultural activities, and local climate are all areas of concern that can likewise be addressed by wake modeling. This work describes the formulation and application of an actuator disk model for studying flow dynamics of both individual turbines and arrays of turbines within wind projects. The actuator disk model is implemented in the Weather Research and Forecasting (WRF) model, which is an open-source atmospheric simulation code applicable to a wide range of scales, from mesoscale to large-eddy simulation. Preliminary results demonstrate the applicability of the actuator disk model within WRF to a moderately high-resolution large-eddy simulation study of a small array of turbines.

  11. Essays on Forecasting and Hedging Models in the Oil Market and Causality Analysis in the Korean Stock Market 

    E-Print Network [OSTI]

    Choi, Hankyeung

    2012-10-19

    , the nature of forecasting crude oil prices based on financial data for the oil and oil product market is examined. As crack spread and oil-related Exchange-Traded Funds (ETFs) have enabled more consumers and investors to gain access to the crude oil...

  12. Preprints, 15th AMS Conference on Weather Analysis and Forecasting

    E-Print Network [OSTI]

    Doswell III, Charles A.

    ) models have substantially improved forecast skill. Recent and planned changes along these lines (e to delivering two kinds of weather products. The first is a day-to-day forecast of weather elements, e by the private sector. Improvements in automated techniques for the forecasting of basic weather elements

  13. Influences of soil moisture and vegetation on convective precipitation forecasts

    E-Print Network [OSTI]

    Robock, Alan

    Influences of soil moisture and vegetation on convective precipitation forecasts over the United and vegetation on 30 h convective precipitation forecasts using the Weather Research and Forecasting model over, the complete removal of vegetation produced substantially less precipitation, while conversion to forest led

  14. CIMS: An Integrated US-Canadian Model 

    E-Print Network [OSTI]

    Nyboer, J.

    2006-01-01

    stream_source_info ESL-IE-06-05-18.pdf.txt stream_content_type text/plain stream_size 640 Content-Encoding ISO-8859-1 stream_name ESL-IE-06-05-18.pdf.txt Content-Type text/plain; charset=ISO-8859-1 CIMS: An Integrated...

  15. WATER DATA MANAGEMENT SYSTEMS INTEGRATIONS WITH MODELS

    E-Print Network [OSTI]

    Rhode Island, University of

    Acquisition (SCADA) system that can control operations in treatment plants, as well as continuously check and SCADA interfaces for even more integrated analyses, which is important since many suppliers are implementing SCADA systems. However, only about thirty-five (35) percent of the suppliers have a functioning

  16. Solid waste integrated forecast technical (SWEFT) report: FY1997 to FY 2070 - Document number changed to HNF-0918 at revision 1 - 1/7/97

    SciTech Connect (OSTI)

    Valero, O.J.

    1996-10-03

    This web site provides an up-to-date report on the radioactive solid waste expected to be managed at Hanford`s Solid Waste (SW) Program from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the SW Program; program- level and waste class-specific estimates; background information on waste sources; and Li comparisons with previous forecasts and with other national data sources. The focus of this web site is on low- level mixed waste (LLMW), and transuranic waste (both non-mixed and mixed) (TRU(M)). Some details on low-level waste and hazardous waste are also provided. Currently, this site is reporting data current as of 9/96. The data represent a life cycle forecast covering all reported activities from FY97 through the end of each program`s life cycle.

  17. LOAD FORECASTING Eugene A. Feinberg

    E-Print Network [OSTI]

    Feinberg, Eugene A.

    , regression, artificial intelligence. 1. Introduction Accurate models for electric power load forecasting to make important decisions including decisions on pur- chasing and generating electric power, load for different operations within a utility company. The natures 269 #12;270 APPLIED MATHEMATICS FOR POWER SYSTEMS

  18. Forecasting wind speed financial return

    E-Print Network [OSTI]

    D'Amico, Guglielmo; Prattico, Flavio

    2013-01-01

    The prediction of wind speed is very important when dealing with the production of energy through wind turbines. In this paper, we show a new nonparametric model, based on semi-Markov chains, to predict wind speed. Particularly we use an indexed semi-Markov model that has been shown to be able to reproduce accurately the statistical behavior of wind speed. The model is used to forecast, one step ahead, wind speed. In order to check the validity of the model we show, as indicator of goodness, the root mean square error and mean absolute error between real data and predicted ones. We also compare our forecasting results with those of a persistence model. At last, we show an application of the model to predict financial indicators like the Internal Rate of Return, Duration and Convexity.

  19. Testing the Integrated Emotions Systems Model of Psychopahty 

    E-Print Network [OSTI]

    McIntosh, John

    2009-07-20

    This study attempted to test the predictions of the Integrated Emotions System model as a candidate neurological mechanism behind the symptoms of Psychopathy. The experiment compared scores of the PPI to performance on a ...

  20. Scalable computational architecture for integrating biological pathway models

    E-Print Network [OSTI]

    Shiva, V. A

    2007-01-01

    A grand challenge of systems biology is to model the cell. The cell is an integrated network of cellular functions. Each cellular function, such as immune response, cell division, metabolism or apoptosis, is defined by an ...

  1. Dynamical many-body localization in an integrable model

    E-Print Network [OSTI]

    Aydin Cem Keser; Sriram Ganeshan; Gil Refael; Victor Galitski

    2015-06-17

    We investigate dynamical many-body localization and delocalization in an integrable system of periodically-kicked, interacting linear rotors. The Hamiltonian we investigate is linear in momentum, and its Floquet evolution operator is analytically tractable for arbitrary interaction strengths. One of the hallmarks of this model is that depending on certain parameters, it manifest both localization and delocalization in momentum space. We explicitly show that, for this model, the energy being bounded at long times is not a sufficient condition for dynamical localization. Besides integrals of motion associated to the integrability, this model manifests additional integrals of motion, which are the exclusive consequence of dynamical many-body localization. We also propose an experimental scheme, involving voltage-biased Josephson junctions, to realize such many-body kicked models.

  2. Integration of engineering models in computer-aided preliminary design

    E-Print Network [OSTI]

    Lajoie, Ronnie M.

    The problems of the integration of engineering models in computer-aided preliminary design are reviewed. This paper details the research, development, and testing of modifications to Paper Airplane, a LISP-based computer ...

  3. A design tool for reusing integration knowledge in simulation models

    E-Print Network [OSTI]

    Han, Sangmok

    2006-01-01

    In the academic field of computer-aided product development, the role of the design tool is to support engineering designers to develop and integrate simulation models. Used to save time and costs in product development ...

  4. Software Maintainability Improvement: Integrating Standards and Models William C. Chu,

    E-Print Network [OSTI]

    Chung, Yeh-Ching

    Software Maintainability Improvement: Integrating Standards and Models William C. Chu, Dpt Science and Engineering, Southeast University, China National Key Laboratory of Software Engineering, Wuhan University, China Abstract Software standards are highly recommended because they promise faster

  5. Studio Education for Integrated Practice Using Building Information Modeling 

    E-Print Network [OSTI]

    O?zener, Ozan O?zener

    2011-02-22

    This research study posits that an altered educational approach to design studio can produce future professionals who apply Building Information Modeling (BIM) in the context of Integrated Project Delivery (IPD) to execute ...

  6. Integrable double deformation of the principal chiral model

    E-Print Network [OSTI]

    Francois Delduc; Marc Magro; Benoit Vicedo

    2014-10-29

    We define a two-parameter family of integrable deformations of the principal chiral model on an arbitrary compact group. The Yang-Baxter sigma-model and the principal chiral model with a Wess-Zumino term both correspond to limits in which one of the two parameters vanishes.

  7. Integrable Models of Interaction of Matter with Radiation

    E-Print Network [OSTI]

    Vladimir I. Inozemtsev; Natalia G. Inozemtseva

    2006-10-13

    The simplified models of interaction of charged matter with resonance modes of radiation generalizing the well-known Jaynes-Cummings and Dicke models are considered. It is found that these new models are integrable for arbitrary numbers of dipole sources and resonance modes of the radiation field. The problem of explicit diagonalisation of corresponding Hamiltonians is discussed.

  8. Multimedia-modeling integration development environment

    SciTech Connect (OSTI)

    Pelton, Mitchell A.; Hoopes, Bonnie L.

    2002-09-02

    There are many framework systems available; however, the purpose of the framework presented here is to capitalize on the successes of the Framework for Risk Analysis in Multimedia Environmental Systems (FRAMES) and Multi-media Multi-pathway Multi-receptor Risk Assessment (3MRA) methodology as applied to the Hazardous Waste Identification Rule (HWIR) while focusing on the development of software tools to simplify the module developer?s effort of integrating a module into the framework.

  9. Path Integral of Bianchi I models in Loop Quantum Cosmology

    E-Print Network [OSTI]

    Xiao Liu; Fei Huang; Jian-Yang Zhu

    2013-02-01

    A path integral formulation of the Bianchi I models containing a massless scalar field in loop quantum cosmology is constructed. Following the strategy used in the homogenous and isotropic case, the calculation is extended to the simplest non-isotropic models according to the $\\bar{\\mu}$ and $\\bar{\\mu}^{\\prime}$ scheme. It is proved from the path integral angle that the quantum dynamic lacks the full invariance with respect to fiducial cell scaling in the $\\bar{\\mu}$ scheme, but it does not in the $\\bar{\\mu}^{\\prime}$ scheme. The investigation affirms the equivalence of the canonical approach and the path integral approach in loop quantum cosmology.

  10. MOSE: a feasibility study for optical turbulence forecasts with the Meso-Nh mesoscale model to support AO facilities at ESO sites (Paranal and Armazones)

    E-Print Network [OSTI]

    Masciadri, E; 10.1117/12.925924

    2012-01-01

    We present very encouraging preliminary results obtained in the context of the MOSE project, an on-going study aiming at investigating the feasibility of the forecast of the optical turbulence and meteorological parameters (in the free atmosphere as well as in the boundary and surface layer) at Cerro Paranal (site of the Very Large Telescope - VLT) and Cerro Armazones (site of the European Extremely Large Telescope - E-ELT), both in Chile. The study employs the Meso-Nh atmospheric mesoscale model and aims at supplying a tool for optical turbulence forecasts to support the scheduling of the scientific programs and the use of AO facilities at the VLT and the E-ELT. In this study we take advantage of the huge amount of measurements performed so far at Paranal and Armazones by ESO and the TMT consortium in the context of the site selection for the E-ELT and the TMT to constraint/validate the model. A detailed analysis of the model performances in reproducing the atmospheric parameters (T, V, p, H, ...) near the g...

  11. Model choice considerations and information integration using analytical hierarchy process

    SciTech Connect (OSTI)

    Langenbrunner, James R [Los Alamos National Laboratory; Hemez, Francois M [Los Alamos National Laboratory; Booker, Jane M [BOOKER SCIENTIFIC; Ross, Timothy J. [UNM

    2010-10-15

    Using the theory of information-gap for decision-making under severe uncertainty, it has been shown that model output compared to experimental data contains irrevocable trade-offs between fidelity-to-data, robustness-to-uncertainty and confidence-in-prediction. We illustrate a strategy for information integration by gathering and aggregating all available data, knowledge, theory, experience, similar applications. Such integration of information becomes important when the physics is difficult to model, when observational data are sparse or difficult to measure, or both. To aggregate the available information, we take an inference perspective. Models are not rejected, nor wasted, but can be integrated into a final result. We show an example of information integration using Saaty's Analytic Hierarchy Process (AHP), integrating theory, simulation output and experimental data. We used expert elicitation to determine weights for two models and two experimental data sets, by forming pair-wise comparisons between model output and experimental data. In this way we transform epistemic and/or statistical strength from one field of study into another branch of physical application. The price to pay for utilizing all available knowledge is that inferences drawn for the integrated information must be accounted for and the costs can be considerable. Focusing on inferences and inference uncertainty (IU) is one way to understand complex information.

  12. Ramp Forecasting Performance from Improved Short-Term Wind Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Florita, A.; Hodge, B. M.; Freedman, J.

    2014-05-01

    The variable and uncertain nature of wind generation presents a new concern to power system operators. One of the biggest concerns associated with integrating a large amount of wind power into the grid is the ability to handle large ramps in wind power output. Large ramps can significantly influence system economics and reliability, on which power system operators place primary emphasis. The Wind Forecasting Improvement Project (WFIP) was performed to improve wind power forecasts and determine the value of these improvements to grid operators. This paper evaluates the performance of improved short-term wind power ramp forecasting. The study is performed for the Electric Reliability Council of Texas (ERCOT) by comparing the experimental WFIP forecast to the current short-term wind power forecast (STWPF). Four types of significant wind power ramps are employed in the study; these are based on the power change magnitude, direction, and duration. The swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental short-term wind power forecasts improve the accuracy of the wind power ramp forecasting, especially during the summer.

  13. Integrating Building Information Modeling with Object-Oriented Physical Modeling for Building Thermal Simulation 

    E-Print Network [OSTI]

    Jeong, Woon Seong

    2014-09-05

    This study presents a Building Information Modeling (BIM) to Building Energy Modeling (BEM) translation framework (BIM2BEM) through the integration of BIM with Object-Oriented Physical Modeling (OOPM) for building thermal simulation to support...

  14. An Integrative Framework of Model Evaluation

    E-Print Network [OSTI]

    Bonifay, Wesley

    2015-01-01

    log-odds ratio differences between the 11 PISA mathematicsfit plots of each of the PISA mathematics items. The redunidimensional 3PL model of the PISA data . . . 112 Bayesian

  15. Use of wind power forecasting in operational decisions.

    SciTech Connect (OSTI)

    Botterud, A.; Zhi, Z.; Wang, J.; Bessa, R.J.; Keko, H.; Mendes, J.; Sumaili, J.; Miranda, V.

    2011-11-29

    The rapid expansion of wind power gives rise to a number of challenges for power system operators and electricity market participants. The key operational challenge is to efficiently handle the uncertainty and variability of wind power when balancing supply and demand in ths system. In this report, we analyze how wind power forecasting can serve as an efficient tool toward this end. We discuss the current status of wind power forecasting in U.S. electricity markets and develop several methodologies and modeling tools for the use of wind power forecasting in operational decisions, from the perspectives of the system operator as well as the wind power producer. In particular, we focus on the use of probabilistic forecasts in operational decisions. Driven by increasing prices for fossil fuels and concerns about greenhouse gas (GHG) emissions, wind power, as a renewable and clean source of energy, is rapidly being introduced into the existing electricity supply portfolio in many parts of the world. The U.S. Department of Energy (DOE) has analyzed a scenario in which wind power meets 20% of the U.S. electricity demand by 2030, which means that the U.S. wind power capacity would have to reach more than 300 gigawatts (GW). The European Union is pursuing a target of 20/20/20, which aims to reduce greenhouse gas (GHG) emissions by 20%, increase the amount of renewable energy to 20% of the energy supply, and improve energy efficiency by 20% by 2020 as compared to 1990. Meanwhile, China is the leading country in terms of installed wind capacity, and had 45 GW of installed wind power capacity out of about 200 GW on a global level at the end of 2010. The rapid increase in the penetration of wind power into power systems introduces more variability and uncertainty in the electricity generation portfolio, and these factors are the key challenges when it comes to integrating wind power into the electric power grid. Wind power forecasting (WPF) is an important tool to help efficiently address this challenge, and significant efforts have been invested in developing more accurate wind power forecasts. In this report, we document our work on the use of wind power forecasting in operational decisions.

  16. EUROfusion effort in code development for integrated modelling

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    of electric power by DEMO by 2050: importance of IM EUROfusion (29 EU Research Units (RUs)): - ITER Physics, ...) Mission 2: Heat Exhaust System (detachment control, PFC, divertor/SOL modelling, ...) Mission 8EUROfusion effort in code development for integrated modelling Presented by Irina Voitsekhovitch

  17. Integrated models of capital adequacy Why banks are undercapitalised

    E-Print Network [OSTI]

    McNeil, Alexander J.

    applied to the design of financial regulation...the crisis which began in the US sub-prime mortgage market sheet of a representative Eurobank using an economic scenario generation model calibrated to conditions. The introduction of integrated economic-scenario-based models in future can improve capital adequacy, enhance

  18. Integrative modeling of the pancreatic -cell Arthur Sherman

    E-Print Network [OSTI]

    1 Integrative modeling of the pancreatic -cell Arthur Sherman Laboratory of Biological Modeling Published in: Wiley Interscience Encyclopedia of Genetics, Genomics, Proteomics, and Bioinformatics, Part 3 Proteomics, M. Dunn, ed., Section 3.8 Systems Biology, R. L. Winslow, ed., John Wiley & Sons, Ltd. DOI: 10

  19. Integration of Groundwater Transport Models with Wireless Sensor Networks

    E-Print Network [OSTI]

    Han, Qi "Chee"

    Integration of Groundwater Transport Models with Wireless Sensor Networks Kevin Barnhart1 , I.jayasumana@colostate.edu, Fort Collins, CO, USA ABSTRACT Groundwater transport modeling is intended to aid in remediation be conceptualized in the WSN context. INTRODUCTION As groundwater contamination is an established problem with many

  20. Integrating a discrete motion model into GMM based background subtraction

    E-Print Network [OSTI]

    Wolf, Christian

    consecutive frames minimizing a global energy function taking into account spatial and temporal re- lationships. A discrete approximative optical-flow like motion model is integrated into the energy function, for instance for track- ing algorithms. Most existing methods build an explicit background model either using

  1. Impact of a Revised Convective Triggering Mechanism on CAM2 Model Simulations: Results from Short-Range Weather Forecasts

    SciTech Connect (OSTI)

    Xie, S; Boyle, J S; Cederwall, R T; Potter, G L; Zhang, M; Lin, W

    2004-02-19

    This study implements a revised convective triggering condition in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM2) model to reduce its excessive warm season daytime precipitation over land. The new triggering mechanism introduces a simple dynamic constraint on the initiation of convection that emulates the collective effects of lower level moistening and upward motion of the large-scale circulation. It requires a positive contribution from the large-scale advection of temperature and moisture to the existing positive Convective Available Potential Energy (CAPE) for model convection to start. In contrast, the original convection triggering function in CAM2 assumes that convection is triggered whenever there is positive CAPE, which results in too frequent warm season convection over land arising from strong diurnal variation of solar radiation. We examine the impact of the new trigger on CAM2 simulations by running the climate model in Numerical Weather Prediction (NWP) mode so that more available observations and high-frequency NWP analysis data can be used to evaluate model performance. We show that the modified triggering mechanism has led to considerable improvements in the simulation of precipitation, temperature, moisture, clouds, radiations, surface temperature, and surface sensible and latent heat fluxes when compared to the data collected from the Atmospheric Radiation Measurement (ARM) program at its South Great Plains (SGP) site. Similar improvements are also seen over other parts of the globe. In particular, the surface precipitation simulation has been significantly improved over both the continental United States and around the globe; the overestimation of high clouds in the equatorial tropics has been substantially reduced; and the temperature, moisture, and zonal wind are more realistically simulated. Results from this study also show that some systematic errors in the CAM2 climate simulations can be detected in the early stage of model integration. Examples are the extremely overestimated high clouds in the tropics in the vicinity of ITCZ and the spurious precipitation maximum in the east of the Rockies. This has important implications in studies of these model errors since running the climate model in NWP mode allows us to perform a more in-depth analysis during a short time period where more observations are available and different model errors from various processes have not compensated for the systematic errors.

  2. Towards a Science of Tumor Forecast for Clinical Oncology

    SciTech Connect (OSTI)

    Yankeelov, Tom; Quaranta, Vito; Evans, Katherine J; Rericha, Erin

    2015-01-01

    We propose that the quantitative cancer biology community make a concerted effort to apply the methods of weather forecasting to develop an analogous theory for predicting tumor growth and treatment response. Currently, the time course of response is not predicted, but rather assessed post hoc by physical exam or imaging methods. This fundamental limitation of clinical oncology makes it extraordinarily difficult to select an optimal treatment regimen for a particular tumor of an individual patient, as well as to determine in real time whether the choice was in fact appropriate. This is especially frustrating at a time when a panoply of molecularly targeted therapies is available, and precision genetic or proteomic analyses of tumors are an established reality. By learning from the methods of weather and climate modeling, we submit that the forecasting power of biophysical and biomathematical modeling can be harnessed to hasten the arrival of a field of predictive oncology. With a successful theory of tumor forecasting, it should be possible to integrate large tumor specific datasets of varied types, and effectively defeat cancer one patient at a time.

  3. Integration of Nonlinear CDU Models in Refinery

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Hydrotreatment Distillate blending Gas oil blending Cat Crack CDU Crude1, ... Crude2, .... butane Fuel gas Prem configuration: Process units Cases: Processing 2,3 & 4 crude oils Objective Select crude oils and quantities Model 2 Crude Oils Case 3 Crude Oils Case 4 Crude Oils Case FI 245 249 247 LP-SC 195 195 191 LP-FY 51 62

  4. Gulf Cooperation Council: Arabia's model of integration

    SciTech Connect (OSTI)

    Etaibi, G.T.

    1984-01-01

    This study is an analysis of the foundations and emergence in 1981 of the Gulf Cooperation Council (GCC), which consists of six traditional Arab Gulf states (the United Arab Emirates, Bahrain, Saudi Arabia, Oman, Qatar, and Kuwait). It finds the GCC to be a unique case among twentieth-century integrative schemes. The study also identifies and analyzes relevant local, regional, and international forces. Among the local forces are traditional religio-political systems, economic dependence on a depletable resource, and the presence of a large number of foreign residents. On the regional level, this study takes into consideration such issues as the Arab League, Arab Nationalism, and the Islamic revolutionary movement in Iran. On the international level, the influence of the superpowers and the major industrialized nations on the emergence and future of the GCC Community are analyzed. Throughout the past decade there has been a growing scholarly interest in the Gulf region. In preparation for this study, the author relied heavily on the literature generated by this new research, as well as on documents and official publications, mostly in Arabic. A survey was conducted among a limited number of GCC graduate students during the summer of 1983. In addition, interviews with selected members of the GCC Secretariat-General and various member-state officials were conducted during a research trip in the region in the spring of 1984.

  5. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    2.1.2 European Solar Radiation Atlas (ESRA)2.4 Evaluation of Solar Forecasting . . . . . . . . .2.4.1 Solar Variability . . . . . . . . . . . . .

  6. Forecasting Water Quality & Biodiversity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecasting Water Quality & Biodiversity March 25, 2015 Cross-cutting Sustainability Platform Review Principle Investigator: Dr. Henriette I. Jager Organization: Oak Ridge National...

  7. APT Blanket System Model Based on Initial Conceptual Design - Integrated 1D TRAC System Model

    SciTech Connect (OSTI)

    Hamm, L.L.

    1998-10-07

    This report documents the approaches taken in establishing a 1-dimensional integrated blanket system model using the TRAC code, developed by Los Alamos National Laboratory.

  8. Weather-based yield forecasts developed for 12 California crops

    E-Print Network [OSTI]

    Lobell, David; Cahill, Kimberly Nicholas; Field, Christopher

    2006-01-01

    RESEARCH ARTICLE Weather-based yield forecasts developed fordepend largely on the weather, measurements from existingpredictions. We developed weather-based models of statewide

  9. Hybrid classical integrability in squashed sigma models

    E-Print Network [OSTI]

    Io Kawaguchi; Kentaroh Yoshida

    2012-11-13

    We show that SU(2)_L Yangian and q-deformed SU(2)_R symmetries are realized in a two-dimensional sigma model defined on a three-dimensional squashed sphere. These symmetries enable us to develop the two descriptions to describe its classical dynamics, 1) rational and 2) trigonometric descriptions. The former 1) is based on the SU(2)_L symmetry and the latter 2) comes from the broken SU(2)_R symmetry. Each of the Lax pairs constructed in both ways leads to the same equations of motion. The two descriptions are related one another through a non-local map.

  10. Integration of Facility Modeling Capabilities for Nuclear Nonproliferation Analysis

    SciTech Connect (OSTI)

    Humberto E. Garcia

    2012-01-01

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

  11. INTEGRATION OF FACILITY MODELING CAPABILITIES FOR NUCLEAR NONPROLIFERATION ANALYSIS

    SciTech Connect (OSTI)

    Gorensek, M.; Hamm, L.; Garcia, H.; Burr, T.; Coles, G.; Edmunds, T.; Garrett, A.; Krebs, J.; Kress, R.; Lamberti, V.; Schoenwald, D.; Tzanos, C.; Ward, R.

    2011-07-18

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

  12. Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis: Preprint

    SciTech Connect (OSTI)

    Cheung, WanYin; Zhang, Jie; Florita, Anthony; Hodge, Bri-Mathias; Lu, Siyuan; Hamann, Hendrik F.; Sun, Qian; Lehman, Brad

    2015-12-08

    Uncertainties associated with solar forecasts present challenges to maintain grid reliability, especially at high solar penetrations. This study aims to quantify the errors associated with the day-ahead solar forecast parameters and the theoretical solar power output for a 51-kW solar power plant in a utility area in the state of Vermont, U.S. Forecasts were generated by three numerical weather prediction (NWP) models, including the Rapid Refresh, the High Resolution Rapid Refresh, and the North American Model, and a machine-learning ensemble model. A photovoltaic (PV) performance model was adopted to calculate theoretical solar power generation using the forecast parameters (e.g., irradiance, cell temperature, and wind speed). Errors of the power outputs were quantified using statistical moments and a suite of metrics, such as the normalized root mean squared error (NRMSE). In addition, the PV model's sensitivity to different forecast parameters was quantified and analyzed. Results showed that the ensemble model yielded forecasts in all parameters with the smallest NRMSE. The NRMSE of solar irradiance forecasts of the ensemble NWP model was reduced by 28.10% compared to the best of the three NWP models. Further, the sensitivity analysis indicated that the errors of the forecasted cell temperature attributed only approximately 0.12% to the NRMSE of the power output as opposed to 7.44% from the forecasted solar irradiance.

  13. Combinatorial Evolution and Forecasting of Communication Protocol ZigBee

    E-Print Network [OSTI]

    Levin, Mark Sh; Kistler, Rolf; Klapproth, Alexander

    2012-01-01

    The article addresses combinatorial evolution and forecasting of communication protocol for wireless sensor networks (ZigBee). Morphological tree structure (a version of and-or tree) is used as a hierarchical model for the protocol. Three generations of ZigBee protocol are examined. A set of protocol change operations is generated and described. The change operations are used as items for forecasting based on combinatorial problems (e.g., clustering, knapsack problem, multiple choice knapsack problem). Two kinds of preliminary forecasts for the examined communication protocol are considered: (i) direct expert (expert judgment) based forecast, (ii) computation of the forecast(s) (usage of multicriteria decision making and combinatorial optimization problems). Finally, aggregation of the obtained preliminary forecasts is considered (two aggregation strategies are used).

  14. Short-Term Load Forecasting at the Local Level using Smart Meter Data

    E-Print Network [OSTI]

    Tronci, Enrico

    ]; electric vehicle integration [8]; and microgrid and virtual power plant applications [7], [11]. In addition, forecast uncertainty, power demand. I. INTRODUCTION Short-Term Load Forecasting (STLF) is the forecasting is considered to be critical for power system operation, particularly for energy balancing, energy market

  15. Error Control of Iterative Linear Solvers for Integrated Groundwater Models

    E-Print Network [OSTI]

    Dixon, Matthew; Brush, Charles; Chung, Francis; Dogrul, Emin; Kadir, Tariq

    2010-01-01

    An open problem that arises when using modern iterative linear solvers, such as the preconditioned conjugate gradient (PCG) method or Generalized Minimum RESidual method (GMRES) is how to choose the residual tolerance in the linear solver to be consistent with the tolerance on the solution error. This problem is especially acute for integrated groundwater models which are implicitly coupled to another model, such as surface water models, and resolve both multiple scales of flow and temporal interaction terms, giving rise to linear systems with variable scaling. This article uses the theory of 'forward error bound estimation' to show how rescaling the linear system affects the correspondence between the residual error in the preconditioned linear system and the solution error. Using examples of linear systems from models developed using the USGS GSFLOW package and the California State Department of Water Resources' Integrated Water Flow Model (IWFM), we observe that this error bound guides the choice of a prac...

  16. Fuel Price Forecasts INTRODUCTION

    E-Print Network [OSTI]

    Fuel Price Forecasts INTRODUCTION Fuel prices affect electricity planning in two primary ways and water heating, and other end-uses as well. Fuel prices also influence electricity supply and price turbines. This second effect is the primary use of the fuel price forecast for the Council's Fifth Power

  17. Error growth in poor ECMWF forecasts over the contiguous United States 

    E-Print Network [OSTI]

    Modlin, Norman Ray

    1993-01-01

    Successive improvements to the European Center for Medium-range Weather Forecasting model have resulted in improved forecast performance over the Contiguous United States (CONUS). While the overall performance of the model ...

  18. Verification of the Equilibrium and MHD Stability Codes within the Integrated Tokamak Modeling Task Force

    E-Print Network [OSTI]

    Verification of the Equilibrium and MHD Stability Codes within the Integrated Tokamak Modeling Task Force

  19. Improving Inventory Control Using Forecasting

    E-Print Network [OSTI]

    Balandran, Juan

    2005-12-16

    and encouragement. I am very grateful to Lucille and Michael Hobbs for their friendship, understanding and financial support. Finally, thank you to Tom Decker, Pat Jackson and Brian Zellar for all their contributions and hard work on this project... below: 1. Na?ve 2. Linear Regression 3. Moving Average 4. Exponential 5. Double exponential The na?ve forecasting method assumes that more recent data values are the best predictors of future values. The model is ? t+1 = Y t . Where ? t...

  20. Agent-based model forecasts aging of the population of people who inject drugs in metropolitan Chicago and changing prevalence of hepatitis C infections

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gutfraind, Alexander; Boodram, Basmattee; Prachand, Nikhil; Hailegiorgis, Atesmachew; Dahari, Harel; Major, Marian E.; Kaderali, Lars

    2015-09-30

    People who inject drugs (PWID) are at high risk for blood-borne pathogens transmitted during the sharing of contaminated injection equipment, particularly hepatitis C virus (HCV). HCV prevalence is influenced by a complex interplay of drug-use behaviors, social networks, and geography, as well as the availability of interventions, such as needle exchange programs. To adequately address this complexity in HCV epidemic forecasting, we have developed a computational model, the Agent-based Pathogen Kinetics model (APK). APK simulates the PWID population in metropolitan Chicago, including the social interactions that result in HCV infection. We used multiple empirical data sources on Chicago PWID tomore »build a spatial distribution of an in silico PWID population and modeled networks among the PWID by considering the geography of the city and its suburbs. APK was validated against 2012 empirical data (the latest available) and shown to agree with network and epidemiological surveys to within 1%. For the period 2010–2020, APK forecasts a decline in HCV prevalence of 0.8% per year from 44(±2)% to 36(±5)%, although some sub-populations would continue to have relatively high prevalence, including Non-Hispanic Blacks, 48(±5)%. The rate of decline will be lowest in Non-Hispanic Whites and we find, in a reversal of historical trends, that incidence among non-Hispanic Whites would exceed incidence among Non-Hispanic Blacks (0.66 per 100 per years vs 0.17 per 100 person years). APK also forecasts an increase in PWID mean age from 35(±1) to 40(±2) with a corresponding increase from 59(±2)% to 80(±6)% in the proportion of the population >30 years old. Our research highlight the importance of analyzing sub-populations in disease predictions, the utility of computer simulation for analyzing demographic and health trends among PWID and serve as a tool for guiding intervention and prevention strategies in Chicago, and other major cities.« less

  1. An integrated assessment modeling framework for uncertainty studies in global and regional

    E-Print Network [OSTI]

    environmental changes. Being data-driven, the Program uses extensive Earth system and economic data and models System Model (IGSM), an integrated assessment model that couples an Earth system model of intermediate's Integrated Global System Model. Through this integrated model, the Program seeks to: discover new

  2. Integrated Baseline System (IBS) Version 2.0: Models guide

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The Integrated Baseline System (IBS) is an emergency management planning and analysis tool being developed under the direction of the US Army Nuclear and Chemical Agency. This Models Guide summarizes the IBS use of several computer models for predicting the results of emergency situations. These include models for predicting dispersion/doses of airborne contaminants, traffic evacuation, explosion effects, heat radiation from a fire, and siren sound transmission. The guide references additional technical documentation on the models when such documentation is available from other sources. The audience for this manual is chiefly emergency management planners and analysts, but also data managers and system managers.

  3. Diagnostic indicators for integrated assessment models of climate policy

    SciTech Connect (OSTI)

    Kriegler, Elmar; Petermann, Nils; Krey, Volker; Schwanitz, Jana; Luderer, Gunnar; Ashina, Shuichi; Bosetti, Valentina; Eom, Jiyong; Kitous, Alban; Mejean, Aurelie; Paroussos, Leonidas; Sano, Fuminori; Turton, Hal; Wilson, Charlie; Van Vuuren, Detlef

    2015-01-01

    Integrated assessments of how climate policy interacts with energy-economic systems can be performed by a variety of models with different functional structures. This article proposes a diagnostic scheme that can be applied to a wide range of integrated assessment models to classify differences among models based on their carbon price responses. Model diagnostics can uncover patterns and provide insights into why, under a given scenario, certain types of models behave in observed ways. Such insights are informative since model behavior can have a significant impact on projections of climate change mitigation costs and other policy-relevant information. The authors propose diagnostic indicators to characterize model responses to carbon price signals and test these in a diagnostic study with 11 global models. Indicators describe the magnitude of emission abatement and the associated costs relative to a harmonized baseline, the relative changes in carbon intensity and energy intensity and the extent of transformation in the energy system. This study shows a correlation among indicators suggesting that models can be classified into groups based on common patterns of behavior in response to carbon pricing. Such a classification can help to more easily explain variations among policy-relevant model results.

  4. GeoVSM: An Integrated Retrieval Model For Geographical Information

    E-Print Network [OSTI]

    Klippel, Alexander

    maps, images, and texts. Effective retrieval systems for geographical information are currently studied retrieval (IR) systems in dealing with multimedia geographical information, and proposes a new retrievalGeoVSM: An Integrated Retrieval Model For Geographical Information Guoray Cai School of Information

  5. Data integration and reconciliation in Data Warehousing: Conceptual modeling and

    E-Print Network [OSTI]

    Calvanese, Diego

    RESEARCH Data integration and reconciliation in Data Warehousing: Conceptual modeling and reasoning of the most important aspects of a Data Warehouse. When data passes from the sources of the application­oriented operational environment to the Data Warehouse, possible inconsistencies and redundancies should be resolved

  6. innovati nNREL Computer Models Integrate Wind Turbines with

    E-Print Network [OSTI]

    innovati nNREL Computer Models Integrate Wind Turbines with Floating Platforms Far off the shores for today's seabed-mounted offshore wind turbines. For the United States to tap into these vast offshore wind energy resources, wind turbines must be mounted on floating platforms to be cost effective

  7. Using Tropos Methodology to Model an Integrated Health Assessment System

    E-Print Network [OSTI]

    health assessment of health and social care needs of older people is used as the case study throughoutUsing Tropos Methodology to Model an Integrated Health Assessment System Haralambos Mouratidis 1 of Trento, Italy pgiorgini@dit.unit.it Abstract. This paper presents a case study to illustrate the features

  8. Comparison of Bottom-Up and Top-Down Forecasts: Vision Industry Energy Forecasts with ITEMS and NEMS 

    E-Print Network [OSTI]

    Roop, J. M.; Dahowski, R. T

    2000-01-01

    Comparisons are made of energy forecasts using results from the Industrial module of the National Energy Modeling System (NEMS) and an industrial economic-engineering model called the Industrial Technology and Energy Modeling System (ITEMS), a model...

  9. Integrable modification of the critical Chalker-Coddington network model

    SciTech Connect (OSTI)

    Ikhlef, Yacine; Fendley, Paul; Cardy, John

    2011-10-01

    We consider the Chalker-Coddington network model for the integer quantum Hall effect, and examine the possibility of solving it exactly. In the supersymmetric path integral framework, we introduce a truncation procedure, leading to a series of well-defined two-dimensional loop models with two loop flavors. In the phase diagram of the first-order truncated model, we identify four integrable branches related to the dilute Birman-Wenzl-Murakami braid-monoid algebra and parameterized by the loop fugacity n. In the continuum limit, two of these branches (1,2) are described by a pair of decoupled copies of a Coulomb-gas theory, whereas the other two branches (3,4) couple the two loop flavors, and relate to an SU(2){sub r}xSU(2){sub r}/SU(2){sub 2r} Wess-Zumino-Witten (WZW) coset model for the particular values n=-2cos[{pi}/(r+2)], where r is a positive integer. The truncated Chalker-Coddington model is the n=0 point of branch 4. By numerical diagonalization, we find that its universality class is neither an analytic continuation of the WZW coset nor the universality class of the original Chalker-Coddington model. It constitutes rather an integrable, critical approximation to the latter.

  10. Value of Probabilistic Weather Forecasts: Assessment by Real-Time Optimization of Irrigation Scheduling

    SciTech Connect (OSTI)

    Cai, Ximing; Hejazi, Mohamad I.; Wang, Dingbao

    2011-09-29

    This paper presents a modeling framework for real-time decision support for irrigation scheduling using the National Oceanic and Atmospheric Administration's (NOAA's) probabilistic rainfall forecasts. The forecasts and their probability distributions are incorporated into a simulation-optimization modeling framework. In this study, modeling irrigation is determined by a stochastic optimization program based on the simulated soil moisture and crop water-stress status and the forecasted rainfall for the next 1-7 days. The modeling framework is applied to irrigated corn in Mason County, Illinois. It is found that there is ample potential to improve current farmers practices by simply using the proposed simulation-optimization framework, which uses the present soil moisture and crop evapotranspiration information even without any forecasts. It is found that the values of the forecasts vary across dry, normal, and wet years. More significant economic gains are found in normal and wet years than in dry years under the various forecast horizons. To mitigate drought effect on crop yield through irrigation, medium- or long-term climate predictions likely play a more important role than short-term forecasts. NOAA's imperfect 1-week forecast is still valuable in terms of both profit gain and water saving. Compared with the no-rain forecast case, the short-term imperfect forecasts could lead to additional 2.4-8.5% gain in profit and 11.0-26.9% water saving. However, the performance of the imperfect forecast is only slightly better than the ensemble weather forecast based on historical data and slightly inferior to the perfect forecast. It seems that the 1-week forecast horizon is too limited to evaluate the role of the various forecast scenarios for irrigation scheduling, which is actually a seasonal decision issue. For irrigation scheduling, both the forecast quality and the length of forecast time horizon matter. Thus, longer forecasts might be necessary to evaluate the role of forecasts for irrigation scheduling in a more effective way.

  11. Techniques to Access Databases and Integrate Data for Hydrologic Modeling

    SciTech Connect (OSTI)

    Whelan, Gene; Tenney, Nathan D.; Pelton, Mitchell A.; Coleman, Andre M.; Ward, Duane L.; Droppo, James G.; Meyer, Philip D.; Dorow, Kevin E.; Taira, Randal Y.

    2009-06-17

    This document addresses techniques to access and integrate data for defining site-specific conditions and behaviors associated with ground-water and surface-water radionuclide transport applicable to U.S. Nuclear Regulatory Commission reviews. Environmental models typically require input data from multiple internal and external sources that may include, but are not limited to, stream and rainfall gage data, meteorological data, hydrogeological data, habitat data, and biological data. These data may be retrieved from a variety of organizations (e.g., federal, state, and regional) and source types (e.g., HTTP, FTP, and databases). Available data sources relevant to hydrologic analyses for reactor licensing are identified and reviewed. The data sources described can be useful to define model inputs and parameters, including site features (e.g., watershed boundaries, stream locations, reservoirs, site topography), site properties (e.g., surface conditions, subsurface hydraulic properties, water quality), and site boundary conditions, input forcings, and extreme events (e.g., stream discharge, lake levels, precipitation, recharge, flood and drought characteristics). Available software tools for accessing established databases, retrieving the data, and integrating it with models were identified and reviewed. The emphasis in this review was on existing software products with minimal required modifications to enable their use with the FRAMES modeling framework. The ability of four of these tools to access and retrieve the identified data sources was reviewed. These four software tools were the Hydrologic Data Acquisition and Processing System (HDAPS), Integrated Water Resources Modeling System (IWRMS) External Data Harvester, Data for Environmental Modeling Environmental Data Download Tool (D4EM EDDT), and the FRAMES Internet Database Tools. The IWRMS External Data Harvester and the D4EM EDDT were identified as the most promising tools based on their ability to access and retrieve the required data, and their ability to integrate the data into environmental models using the FRAMES environment.

  12. The addition of a US Rare Earth Element (REE) supply-demand model improves the characterization and scope of the United States Department of Energy's effort to forecast US REE Supply and Demand

    E-Print Network [OSTI]

    Mancco, Richard

    2012-01-01

    This paper presents the development of a new US Rare Earth Element (REE) Supply-Demand Model for the explicit forecast of US REE supply and demand in the 2010 to 2025 time period. In the 2010 Department of Energy (DOE) ...

  13. Comment on `Testing earthquake prediction methods: "The West Pacific short-term forecast of earthquakes with magnitude MwHRV >= 5.8"' by V. G. Kossobokov

    E-Print Network [OSTI]

    Kagan, Yan Y; Jackson, David D

    2006-01-01

    tensor solutions for 1087 earthquakes, Phys. Earth Planet.and time-independent earthquake forecast models for southernKagan, 1999. Testable earthquake forecasts for 1999, Seism.

  14. AMFIBIA: A Meta-Model for the Integration of Business Process Modelling Aspects

    E-Print Network [OSTI]

    Kindler, Ekkart

    AMFIBIA: A Meta-Model for the Integration of Business Process Modelling Aspects Bj¨orn Axenath that formalizes the essential as- pects and concepts of business process modelling. Though AMFIBIA is not the first approach to formalizing the aspects and concepts of busi- ness process modelling, it is more

  15. Inclusion of In-Situ Velocity Measurements into the UCSD Time-Dependent Tomography to Constrain and Better-Forecast Remote-Sensing Observations

    E-Print Network [OSTI]

    Jackson, B. V.; Hick, P. P.; Bisi, M. M.; Clover, J. M.; Buffington, A.

    2010-01-01

    time”. The solar-wind velocity forecast 24 hours ahead of72-hour forecast volume using the extant solar-wind model.forecast. In-situ data have been the primary measurements available for study of solar-wind

  16. Algebraic constructive quantum field theory: Integrable models and deformation techniques

    E-Print Network [OSTI]

    Gandalf Lechner

    2015-03-12

    Several related operator-algebraic constructions for quantum field theory models on Minkowski spacetime are reviewed. The common theme of these constructions is that of a Borchers triple, capturing the structure of observables localized in a Rindler wedge. After reviewing the abstract setting, we discuss in this framework i) the construction of free field theories from standard pairs, ii) the inverse scattering construction of integrable QFT models on two-dimensional Minkowski space, and iii) the warped convolution deformation of QFT models in arbitrary dimension, inspired from non-commutative Minkowski space.

  17. Human Trajectory Forecasting In Indoor Environments Using Geometric Context

    E-Print Network [OSTI]

    . In addressing this problem, we have built a model to estimate the occupancy behavior of humans based enhancement in the accuracy of trajectory forecasting by incorporating the occupancy behavior model. Keywords Trajectory forecasting, human occupancy behavior, 3D ge- ometric context 1. INTRODUCTION Given a human

  18. CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST

    E-Print Network [OSTI]

    . Mitch Tian prepared the peak demand forecast. Ted Dang prepared the historic energy consumption data Office. Andrea Gough ran the summary energy model and supervised data preparation. Glen Sharp prepared models. Both the staff revised energy consumption and peak forecasts are slightly higher than

  19. Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime at wind energy sites are becoming paramount. Regime-switching space-time (RST) models merge meteorological forecast regimes at the wind energy site and fits a conditional predictive model for each regime

  20. A Unit Commitment Model with Demand Response for the Integration of Renewable Energies

    E-Print Network [OSTI]

    Ikeda, Yuichi; Kataoka, Kazuto; Ogimoto, Kazuhiko

    2011-01-01

    The output of renewable energy fluctuates significantly depending on weather conditions. We develop a unit commitment model to analyze requirements of the forecast output and its error for renewable energies. Our model obtains the time series for the operational state of thermal power plants that would maximize the profits of an electric power utility by taking into account both the forecast of output its error for renewable energies and the demand response of consumers. We consider a power system consisting of thermal power plants, photovoltaic systems (PV), and wind farms and analyze the effect of the forecast error on the operation cost and reserves. We confirm that the operation cost was increases with the forecast error. The effect of a sudden decrease in wind power is also analyzed. More thermal power plants need to be operated to generate power to absorb this sudden decrease in wind power. The increase in the number of operating thermal power plants within a short period does not affect the total opera...

  1. Solar Forecast Improvement Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    For the Solar Forecast Improvement Project (SFIP), the Earth System Research Laboratory (ESRL) is partnering with the National Center for Atmospheric Research (NCAR) and IBM to develop more...

  2. Integrated reservoir characterization: Improvement in heterogeneities stochastic modelling by integration of additional external constraints

    SciTech Connect (OSTI)

    Doligez, B.; Eschard, R.; Geffroy, F.

    1997-08-01

    The classical approach to construct reservoir models is to start with a fine scale geological model which is informed with petrophysical properties. Then scaling-up techniques allow to obtain a reservoir model which is compatible with the fluid flow simulators. Geostatistical modelling techniques are widely used to build the geological models before scaling-up. These methods provide equiprobable images of the area under investigation, which honor the well data, and which variability is the same than the variability computed from the data. At an appraisal phase, when few data are available, or when the wells are insufficient to describe all the heterogeneities and the behavior of the field, additional constraints are needed to obtain a more realistic geological model. For example, seismic data or stratigraphic models can provide average reservoir information with an excellent areal coverage, but with a poor vertical resolution. New advances in modelisation techniques allow now to integrate this type of additional external information in order to constrain the simulations. In particular, 2D or 3D seismic derived information grids, or sand-shale ratios maps coming from stratigraphic models can be used as external drifts to compute the geological image of the reservoir at the fine scale. Examples are presented to illustrate the use of these new tools, their impact on the final reservoir model, and their sensitivity to some key parameters.

  3. Integrated Baseline Bystem (IBS) Version 1.03: Models guide

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Integrated Baseline System)(IBS), operated by the Federal Emergency Management Agency (FEMA), is a system of computerized tools for emergency planning and analysis. This document is the models guide for the IBS and explains how to use the emergency related computer models. This document provides information for the experienced system user, and is the primary reference for the computer modeling software supplied with the system. It is designed for emergency managers and planners, and others familiar with the concepts of computer modeling. Although the IBS manual set covers basic and advanced operations, it is not a complete reference document set. Emergency situation modeling software in the IBS is supported by additional technical documents. Some of the other IBS software is commercial software for which more complete documentation is available. The IBS manuals reference such documentation where necessary.

  4. Web Services-Enhanced Agile Modeling and Integrating Business Processes

    E-Print Network [OSTI]

    Belouadha, Fatima-Zahra; Roudiès, Ounsa

    2012-01-01

    In a global business context with continuous changes, the enterprises have to enhance their operational efficiency, to react more quickly, to ensure the flexibility of their business processes, and to build new collaboration pathways with external partners. To achieve this goal, they must use e-business methods, mechanisms and techniques while capitalizing on the potential of new information and communication technologies. In this context, we propose a standards, model and Web services-based approach for modeling and integrating agile enterprise business processes. The purpose is to benefit from Web services characteristics to enhance the processes design and realize their dynamic integration. The choice of focusing on Web services is essentially justified by their broad adoption by enterprises as well as their capability to warranty interoperability between both intra and inter-enterprises systems. Thereby, we propose in this chapter a metamodel for describing business processes, and discuss their dynamic in...

  5. Bias reduction in the Sea Surface Temperature (SST) forecasts based on GOES satellite data

    E-Print Network [OSTI]

    Kurapov, Alexander

    Bias reduction in the Sea Surface Temperature (SST) forecasts based on GOES satellite data Based on comparisons with infrared (GOES) and microwave (AMSE-R) satellite data, our coastal ocean forecast model set circulation model and satellite data helps to improve forecasting of ocean conditions (esp. currents and SST

  6. Efficient Topological Compilation for Weakly-Integral Anyon Model

    E-Print Network [OSTI]

    Alex Bocharov; Xingshan Cui; Vadym Kliuchnikov; Zhenghan Wang

    2015-04-13

    In a recent series of two research papers Cui, Wang and Hong proposed a class of anyonic models for universal quantum computation based on weakly-integral anyons. While universal set of gates cannot be obtained in this context by anyon braiding alone, designing a certain type of sector charge measurement provides universality. From the mathematical standpoint the underlying unitary bases arising in various versions of the weakly-integral anyonic models are defined over a certain ring of Eisenstein rationals, that has useful number-theoretic properties. In this paper we develop a compilation algorithm to approximate arbitrary $n$-qutrit unitaries with asymptotically efficient circuits over the metaplectic anyon model, the most recent instance of the weakly-integral anyonic class. One flavor of our algorithm produces efficient circuits with upper complexity bound asymptotically in $O(3^{2\\,n} \\, \\log{1/\\varepsilon})$ and entanglement cost that is exponential in $n$. Another flavor of the algorithm produces efficient circuits with upper complexity bound in $O(n\\,3^{2\\,n} \\, \\log{1/\\varepsilon})$ and no additional entanglement cost.

  7. Solid waste integrated cost analysis model: 1991 project year report

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The purpose of the City of Houston's 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA's Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

  8. The integrated Earth system model version 1: formulation and functionality

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Collins, W. D.; Craig, A. P.; Truesdale, J. E.; Di Vittorio, A. V.; Jones, A. D.; Bond-Lamberty, B.; Calvin, K. V.; Edmonds, J. A.; Kim, S. H.; Thomson, A. M.; et al

    2015-07-23

    The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore »iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less

  9. MIT Integrated Global System Model (IGSM) Version 2: Model Description and Baseline Evaluation

    E-Print Network [OSTI]

    Sokolov, Andrei P.

    The MIT Integrated Global System Model (IGSM) is designed for analyzing the global environmental changes that may result from anthropogenic causes, quantifying the uncertainties associated with the projected changes, and ...

  10. Segmenting Time Series for Weather Forecasting

    E-Print Network [OSTI]

    Reiter, Ehud

    summarisation. We found three alternative ways in which we could model data summarisation. One approach is based turbines. In the domain of meteorology, time series data produced by numerical weather prediction (NWP) models is summarised as weather forecast texts. In the domain of gas turbines, sensor data from

  11. Integration of facility modeling capabilities for nuclear nonproliferation analysis

    SciTech Connect (OSTI)

    Burr, Tom [Los Alamos National Laboratory (LANL); Gorensek, M. B. [Savannah River National Laboratory (SRNL); Krebs, John [Argonne National Laboratory (ANL); Kress, Reid L [ORNL; Lamberti, Vincent [Y-12 National Security Complex; Schoenwald, David [ORNL; Ward, Richard C [ORNL

    2012-01-01

    Developing automated methods for data collection and analysis that can facilitate nuclearnonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facilitymodeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facilitymodeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facilitymodelingcapabilities and illustrates how they could be integrated and utilized for nonproliferationanalysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facilitymodeling tools. After considering a representative sampling of key facilitymodelingcapabilities, the proposed integration framework is illustrated with several examples.

  12. Process modeling for the Integrated Thermal Treatment System (ITTS) study

    SciTech Connect (OSTI)

    Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

    1995-09-01

    This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios.

  13. Data Integration for the Generation of High Resolution Reservoir Models

    SciTech Connect (OSTI)

    Albert Reynolds; Dean Oliver; Gaoming Li; Yong Zhao; Chaohui Che; Kai Zhang; Yannong Dong; Chinedu Abgalaka; Mei Han

    2009-01-07

    The goal of this three-year project was to develop a theoretical basis and practical technology for the integration of geologic, production and time-lapse seismic data in a way that makes best use of the information for reservoir description and reservoir performance predictions. The methodology and practical tools for data integration that were developed in this research project have been incorporated into computational algorithms that are feasible for large scale reservoir simulation models. As the integration of production and seismic data require calibrating geological/geostatistical models to these data sets, the main computational tool is an automatic history matching algorithm. The following specific goals were accomplished during this research. (1) We developed algorithms for calibrating the location of the boundaries of geologic facies and the distribution of rock properties so that production and time-lapse seismic data are honored. (2) We developed and implemented specific procedures for conditioning reservoir models to time-lapse seismic data. (3) We developed and implemented algorithms for the characterization of measurement errors which are needed to determine the relative weights of data when conditioning reservoir models to production and time-lapse seismic data by automatic history matching. (4) We developed and implemented algorithms for the adjustment of relative permeability curves during the history matching process. (5) We developed algorithms for production optimization which accounts for geological uncertainty within the context of closed-loop reservoir management. (6) To ensure the research results will lead to practical public tools for independent oil companies, as part of the project we built a graphical user interface for the reservoir simulator and history matching software using Visual Basic.

  14. Hydrological Forecasting Improvements Primary Investigator: Thomas Croley -NOAA GLERL (Emeritus)

    E-Print Network [OSTI]

    multiple data streams in a near-real-time manner and incorporate them into the AHPS data base, run for matching weather forecasts with historical data, and prepare extensive forecasts of hydrology probabilities maximum use of all available information and be based on efficient and true hydrological process models

  15. Scenario Generation for Price Forecasting in Restructured Wholesale Power Markets

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    markets could aid in the design of appropriate price forecasting tools for such markets. Scenario1 Scenario Generation for Price Forecasting in Restructured Wholesale Power Markets Qun Zhou, restructured wholesale power markets, scenario generation, ARMA model, moment-matching method I. INTRODUCTION

  16. THE DESIRE TO ACQUIRE: FORECASTING THE EVOLUTION OF HOUSEHOLD

    E-Print Network [OSTI]

    THE DESIRE TO ACQUIRE: FORECASTING THE EVOLUTION OF HOUSEHOLD ENERGY SERVICES by Steven Groves BASc of Research Project: The Desire to Acquire: Forecasting the Evolution of Household Energy Services Report No, and gasoline. A fixed effects panel model was used to examine the relationship of demand for energy

  17. AN INTEGRATED MODELING FRAMEWORK FOR CARBON MANAGEMENT TECHNOLOGIES

    SciTech Connect (OSTI)

    Anand B. Rao; Edward S. Rubin; Michael B. Berkenpas

    2004-03-01

    CO{sub 2} capture and storage (CCS) is gaining widespread interest as a potential method to control greenhouse gas emissions from fossil fuel sources, especially electric power plants. Commercial applications of CO{sub 2} separation and capture technologies are found in a number of industrial process operations worldwide. Many of these capture technologies also are applicable to fossil fuel power plants, although applications to large-scale power generation remain to be demonstrated. This report describes the development of a generalized modeling framework to assess alternative CO{sub 2} capture and storage options in the context of multi-pollutant control requirements for fossil fuel power plants. The focus of the report is on post-combustion CO{sub 2} capture using amine-based absorption systems at pulverized coal-fired plants, which are the most prevalent technology used for power generation today. The modeling framework builds on the previously developed Integrated Environmental Control Model (IECM). The expanded version with carbon sequestration is designated as IECM-cs. The expanded modeling capability also includes natural gas combined cycle (NGCC) power plants and integrated coal gasification combined cycle (IGCC) systems as well as pulverized coal (PC) plants. This report presents details of the performance and cost models developed for an amine-based CO{sub 2} capture system, representing the baseline of current commercial technology. The key uncertainties and variability in process design, performance and cost parameters which influence the overall cost of carbon mitigation also are characterized. The new performance and cost models for CO{sub 2} capture systems have been integrated into the IECM-cs, along with models to estimate CO{sub 2} transport and storage costs. The CO{sub 2} control system also interacts with other emission control technologies such as flue gas desulfurization (FGD) systems for SO{sub 2} control. The integrated model is applied to study the feasibility and cost of carbon capture and sequestration at both new and existing PC plants as well as new NGCC plants. The cost of CO{sub 2} avoidance using amine-based CO{sub 2} capture technology is found to be sensitive to assumptions about the reference plant design and operation, as well as assumptions about the CO{sub 2} capture system design. The case studies also reveal multi-pollutant interactions and potential tradeoffs in the capture of CO{sub 2}, SO{sub 2}, NO{sub 2} and NH{sub 3}. The potential for targeted R&D to reduce the cost of CO{sub 2} capture also is explored using the IECM-cs in conjunction with expert elicitations regarding potential improvements in key performance and cost parameters of amine-based systems. The results indicate that the performance of amine-based CO{sub 2} capture systems can be improved significantly, and the cost of CO{sub 2} capture reduced substantially over the next decade or two, via innovations such as new or improved sorbents with lower regeneration heat requirements, and improvements in power plant heat integration to reduce the (currently large) energy penalty of CO{sub 2} capture. Future work will explore in more detail a broader set of advanced technology options to lower the costs of CO{sub 2} capture and storage. Volume 2 of this report presents a detailed User's Manual for the IECM-cs computer model as a companion to the technical documentation in Volume 1.

  18. Online short-term solar power forecasting

    SciTech Connect (OSTI)

    Bacher, Peder; Madsen, Henrik [Informatics and Mathematical Modelling, Richard Pedersens Plads, Technical University of Denmark, Building 321, DK-2800 Lyngby (Denmark); Nielsen, Henrik Aalborg [ENFOR A/S, Lyngsoe Alle 3, DK-2970 Hoersholm (Denmark)

    2009-10-15

    This paper describes a new approach to online forecasting of power production from PV systems. The method is suited to online forecasting in many applications and in this paper it is used to predict hourly values of solar power for horizons of up to 36 h. The data used is 15-min observations of solar power from 21 PV systems located on rooftops in a small village in Denmark. The suggested method is a two-stage method where first a statistical normalization of the solar power is obtained using a clear sky model. The clear sky model is found using statistical smoothing techniques. Then forecasts of the normalized solar power are calculated using adaptive linear time series models. Both autoregressive (AR) and AR with exogenous input (ARX) models are evaluated, where the latter takes numerical weather predictions (NWPs) as input. The results indicate that for forecasts up to 2 h ahead the most important input is the available observations of solar power, while for longer horizons NWPs are the most important input. A root mean square error improvement of around 35% is achieved by the ARX model compared to a proposed reference model. (author)

  19. Information Infrastructure for Publishing and Integrating Water Resource Data from Pacific Rim Universities in Support of Hydrologic Modeling and Integrated Water Resource Management

    E-Print Network [OSTI]

    Zaslavsky, Ilya

    2010-01-01

    Publishing and Integrating Water Resource Data from PacificModeling and Integrated Water Resource Management Finalin publishing and analyzing local water data, configuring a

  20. Enhanced Short-Term Wind Power Forecasting and Value to Grid Operations: Preprint

    SciTech Connect (OSTI)

    Orwig, K.; Clark, C.; Cline, J.; Benjamin, S.; Wilczak, J.; Marquis, M.; Finley, C.; Stern, A.; Freedman, J.

    2012-09-01

    The current state of the art of wind power forecasting in the 0- to 6-hour time frame has levels of uncertainty that are adding increased costs and risk on the U.S. electrical grid. It is widely recognized within the electrical grid community that improvements to these forecasts could greatly reduce the costs and risks associated with integrating higher penetrations of wind energy. The U.S. Department of Energy has sponsored a research campaign in partnership with the National Oceanic and Atmospheric Administration (NOAA) and private industry to foster improvements in wind power forecasting. The research campaign involves a three-pronged approach: 1) a 1-year field measurement campaign within two regions; 2) enhancement of NOAA's experimental 3-km High-Resolution Rapid Refresh (HRRR) model by assimilating the data from the field campaign; and 3) evaluation of the economic and reliability benefits of improved forecasts to grid operators. This paper and presentation provides an overview of the regions selected, instrumentation deployed, data quality and control, assimilation of data into HRRR, and preliminary results of HRRR performance analysis.

  1. Dimer Models, Integrable Systems and Quantum Teichmuller Space

    E-Print Network [OSTI]

    Sebastian Franco

    2011-07-05

    We introduce a correspondence between dimer models (and hence superconformal quivers) and the quantum Teichmuller space of the Riemann surfaces associated to them by mirror symmetry. Via the untwisting map, every brane tiling gives rise to a tiling of the Riemann surface with faces surrounding punctures. We explain how to obtain an ideal triangulation by dualizing this tiling. In order to do so, tiling nodes of valence greater than 3 (equivalently superpotential terms of order greater than 3 in the corresponding quiver gauge theories) must be decomposed by the introduction of 2-valent nodes. From a quiver gauge theory perspective, this operation corresponds to integrating-in massive fields. Fock coordinates in Teichmuller space are in one-to-one correspondence with chiral fields in the quiver. We present multiple explicit examples, including infinite families of theories, illustrating how the right number of Fock coordinates is generated by this procedure. Finally, we explain how Chekhov and Fock commutation relations between coordinates give rise to the commutators associated to dimer models by Goncharov and Kenyon in the context of quantum integrable systems. For generic dimer models (i.e. those containing nodes that are not 3-valent), this matching requires the introduction of a natural generalization of Chekhov and Fock rules. We also explain how urban renewal in the original brane tiling (Seiberg duality for the quivers) is mapped to flips of the ideal triangulation.

  2. Connection between GRW "spontaneous collapse" and Mensky's "restricted path integral" models

    E-Print Network [OSTI]

    Roman Sverdlov

    2015-02-09

    In this paper we will show how Mensky's model of "restricted path integrals" can be derived from GRW "spontaneous collapse" model.

  3. Improving automotive battery sales forecast

    E-Print Network [OSTI]

    Bulusu, Vinod

    2015-01-01

    Improvement in sales forecasting allows firms not only to respond quickly to customers' needs but also to reduce inventory costs, ultimately increasing their profits. Sales forecasts have been studied extensively to improve ...

  4. Ontologies for the Integration of Air Quality Models and 3D City Models

    E-Print Network [OSTI]

    Genève, Université de

    -city densification may limit air pollution, carbon emissions, and energy use through reduced transportation of the most important environmental problems is air pollution, mostly induced by vehicle traffic1 Ontologies for the Integration of Air Quality Models and 3D City Models Claudine Metral Institut

  5. Appendix A: Fuel Price Forecast Introduction..................................................................................................................................... 1

    E-Print Network [OSTI]

    Appendix A: Fuel Price Forecast Introduction................................................................................................................................. 3 Price Forecasts ............................................................................................................................ 5 U.S. Natural Gas Commodity Prices

  6. Managing Wind Power Forecast Uncertainty in Electric Grids Submitted in partial fulfillment of the requirements for

    E-Print Network [OSTI]

    Instituto de Sistemas e Robotica

    Managing Wind Power Forecast Uncertainty in Electric Grids Submitted in partial fulfillment;iii Abstract Electricity generated from wind power is both variable and uncertain. Wind forecasts prices. Wind power forecast errors for aggregated wind farms are often modeled with Gaussian

  7. Ozone ensemble forecast with machine learning Vivien Mallet,1,2

    E-Print Network [OSTI]

    Mallet, Vivien

    Ozone ensemble forecast with machine learning algorithms Vivien Mallet,1,2 Gilles Stoltz,3; published 13 March 2009. [1] We apply machine learning algorithms to perform sequential aggregation of ozone forecasts. The latter rely on a multimodel ensemble built for ozone forecasting with the modeling system

  8. Short Term Electricity Price Forecasting in the Nordic Region Anders Lund Eriksrud

    E-Print Network [OSTI]

    Lavaei, Javad

    Short Term Electricity Price Forecasting in the Nordic Region Anders Lund Eriksrud May 11, 2014 Abstract This paper presents a survey of electricity price forecasting for the Nordic region, and performs that time series models more appropriate for forecasting electricity prices, compared to machine learning

  9. Detrending Daily Natural Gas Consumption Series to Improve Short-Term Forecasts

    E-Print Network [OSTI]

    Povinelli, Richard J.

    Detrending Daily Natural Gas Consumption Series to Improve Short-Term Forecasts Ronald H. Brown1 that allows long-term natural gas demand signals to be used effect- ively to generate high quality short-term natural gas demand forecasting models. Short data sets in natural gas forecasting inadequately represent

  10. Diagnosis of the Marine Low Cloud Simulation in the NCAR Community Earth System Model (CESM) and the NCEP Global Forecast System (GFS)-Modular Ocean Model v4 (MOM4) coupled model

    SciTech Connect (OSTI)

    Xiao, Heng; Mechoso, C. R.; Sun, Rui; Han, J.; Pan, H. L.; Park, S.; Hannay, Cecile; Bretherton, Christopher S.; Teixeira, J.

    2014-07-25

    We present a diagnostic analysis of the marine low cloud climatology simulated by two state-of-the-art coupled atmosphere-ocean models: the NCAR Community Earth System Model (CESM) and the NCEP Global Forecasting System (GFS). In both models, the shallow convection and boundary layer turbulence parameterizations have been recently updated: both models now use a mass-flux scheme for the parameterization of shallow convection, and a turbulence parameterization capable of handling Stratocumulus (Sc)-topped Planetary Boundary Layers (PBLs). For shallow convection, both models employ a convective trigger function based on the concept of convective inhibition and both include explicit convective overshooting/penetrative entrainment formulation. For Sc-topped PBL, both models treat explicitly turbulence mixing and cloud-top entrainment driven by cloud-top radiative cooling. Our focus is on the climatological transition from Sc to shallow Cumulus (Cu)-topped PBL in the subtropical eastern oceans. We show that in the CESM the coastal Sc-topped PBLs in the subtropical Eastern Pacific are well-simulated but the climatological transition from Sc to shallow Cu is too abrupt and happens too close to the coast. By contrast, in the GFS coupled simulation the coastal Sc amount and PBL depth are severely underestimated while the transition from Sc to shallow Cu is ³delayed² and offshore Sc cover is too extensive in the subtropical Eastern Pacific. We discuss the possible connections between such differences in the simulations and differences in the parameterizations of shallow convection and boundary layer turbulence in the two models.

  11. Analysis of Variability and Uncertainty in Wind Power Forecasting: An International Comparison: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Gomez-Lazaro, E.; Lovholm, A. L.; Berge, E.; Miettinen, J.; Holttinen, H.; Cutululis, N.; Litong-Palima, M.; Sorensen, P.; Dobschinski, J.

    2013-10-01

    One of the critical challenges of wind power integration is the variable and uncertain nature of the resource. This paper investigates the variability and uncertainty in wind forecasting for multiple power systems in six countries. An extensive comparison of wind forecasting is performed among the six power systems by analyzing the following scenarios: (i) wind forecast errors throughout a year; (ii) forecast errors at a specific time of day throughout a year; (iii) forecast errors at peak and off-peak hours of a day; (iv) forecast errors in different seasons; (v) extreme forecasts with large overforecast or underforecast errors; and (vi) forecast errors when wind power generation is at different percentages of the total wind capacity. The kernel density estimation method is adopted to characterize the distribution of forecast errors. The results show that the level of uncertainty and the forecast error distribution vary among different power systems and scenarios. In addition, for most power systems, (i) there is a tendency to underforecast in winter; and (ii) the forecasts in winter generally have more uncertainty than the forecasts in summer.

  12. Demand Forecast INTRODUCTION AND SUMMARY

    E-Print Network [OSTI]

    Demand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required in electricity demand is, of course, crucial to determining the need for new electricity resources and helping of any forecast of electricity demand and developing ways to reduce the risk of planning errors

  13. Consensus Coal Production Forecast for

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Consensus Coal Production Forecast for West Virginia 2009-2030 Prepared for the West Virginia Summary 1 Recent Developments 2 Consensus Coal Production Forecast for West Virginia 10 Risks References 27 #12;W.Va. Consensus Coal Forecast Update 2009 iii List of Tables 1. W.Va. Coal Production

  14. Residential Sector End-Use Forecasting with EPRI-REEPS 2.1: Summary Input Assumptions and Results

    E-Print Network [OSTI]

    Koomey, Jonathan G.

    2010-01-01

    System (REEPS 2.1) , developed by the Electric Power Research Institute (EPRI), is a forecasting model

  15. METEOROLOGICAL Weather and Forecasting

    E-Print Network [OSTI]

    Rutledge, Steven

    AMERICAN METEOROLOGICAL SOCIETY Weather and Forecasting EARLY ONLINE RELEASE This is a preliminary microbursts than in many previously documented microbursts. Alignment of Doppler radar data to reports of wind-related damage to electrical power infrastructure in Phoenix allowed a comparison of microburst wind damage

  16. METEOROLOGICAL Weather and Forecasting

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    AMERICAN METEOROLOGICAL SOCIETY Weather and Forecasting EARLY ONLINE RELEASE This is a preliminary and interpretation of information from National Weather Service watches and warnings by10 decision makers such an outlier to the regional severe weather climatology. An analysis of the synoptic and13 mesoscale

  17. Modeling renewable energy resources in integrated resource planning

    SciTech Connect (OSTI)

    Logan, D.; Neil, C.; Taylor, A. [RCG/Hagler, Bailly, Inc., Boulder, CO (United States)

    1994-06-01

    Including renewable energy resources in integrated resource planning (IRP) requires that utility planning models properly consider the relevant attributes of the different renewable resources in addition to conventional supply-side and demand-side options. Otherwise, a utility`s resource plan is unlikely to have an appropriate balance of the various resource options. The current trend toward regulatory set-asides for renewable resources is motivated in part by the perception that the capabilities of current utility planning models are inadequate with regard to renewable resources. Adequate modeling capabilities and utility planning practices are a necessary prerequisite to the long-term penetration of renewable resources into the electric utility industry`s resource mix. This report presents a review of utility planning models conducted for the National Renewable Energy Laboratory (NREL). The review examines the capabilities of utility planning models to address key issues in the choice between renewable resources and other options. The purpose of this review is to provide a basis for identifying high priority areas for advancing the state of the art.

  18. Particle-hole duality, integrability, and Russian doll BCS model

    E-Print Network [OSTI]

    L. V. Bork; W. V. Pogosov

    2015-05-04

    We address a generalized Richardson model (Russian doll BCS model), which is characterized by the breaking of time-reversal symmetry. This model is known to be exactly solvable and integrable. We point out that the Russian doll BCS model, on the level of Hamiltonian, is also particle-hole symmetric. This implies that the same state can be expressed both in the particle and hole representations with two different sets of Bethe roots. We then derive exact relations between Bethe roots in the two representations, which can hardly be obtained staying on the level of Bethe equations. In a quasi-classical limit, similar identities for usual Richardson model, known from literature, are recovered from our results. We also show that these relations for Richardson roots take a remarkably simple form at half-filling and for a symmetric with respect to the middle of the interaction band distribution of one-body energy levels, since, in this special case, the rapidities in the particle and hole representations up to the translation satisfy the same system of equations.

  19. Issues in midterm analysis and forecasting, 1996

    SciTech Connect (OSTI)

    1996-08-01

    This document consists of papers which cover topics in analysis and modeling that underlie the Annual Energy Outlook 1996. Topics include: The Potential Impact of Technological Progress on U.S. Energy Markets; The Outlook for U.S. Import Dependence; Fuel Economy, Vehicle Choice, and Changing Demographics, and Annual Energy Outlook Forecast Evaluation.

  20. Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, Jie; Hodge, Bri-Mathias; Lu, Siyuan; Hamann, Hendrik F.; Lehman, Brad; Simmons, Joseph; Campos, Edwin; Banunarayanan, Venkat

    2015-08-05

    Accurate solar power forecasting allows utilities to get the most out of the solar resources on their systems. To truly measure the improvements that any new solar forecasting methods can provide, it is important to first develop (or determine) baseline and target solar forecasting at different spatial and temporal scales. This paper aims to develop baseline and target values for solar forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of solar power output. forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of solar power output.

  1. Comparison of integral equation and physical scale modeling of the electromagnetic responses of models with large conductivity contrasts

    E-Print Network [OSTI]

    Oldenburg, Douglas W.

    Comparison of integral equation and physical scale modeling of the electromagnetic responses geophysical electromagnetic responses: a numerical approach based upon the electric-field integral equa- tion and the physical scale modeling approach. The particular implementation of the integral-equation solution

  2. Enduse Global Emissions Mitigation Scenarios (EGEMS): A New Generation of Energy Efficiency Policy Planning Models

    E-Print Network [OSTI]

    McNeil, Michael A.

    2010-01-01

    driver for the energy demand forecast. The basic assumptionglobal bottom-up energy demand forecasts, and a frameworkin modelling energy demand is to forecast activity. Activity

  3. Groundwater Modeling in ArcView: by integrating ArcView, MODFLOW and

    E-Print Network [OSTI]

    Sengupta, Raja

    Groundwater Modeling in ArcView: by integrating ArcView, MODFLOW and MODPATH Abstract Modeling. This paper addresses groundwater modeling which is one of the many entities in environmental modeling in ArcView 3.2a. The objective was to create an integrated system where a user could do groundwater

  4. Electrical conductivity of continental lithospheric mantle from integrated geophysical and petrological modeling

    E-Print Network [OSTI]

    Jones, Alan G.

    Electrical conductivity of continental lithospheric mantle from integrated geophysical; published 11 October 2011. [1] The electrical conductivity of mantle minerals is highly sensitive, and compositional variations. The bulk electrical conductivity model has been integrated into the software package

  5. Schema Integration Methodologies for Multidatabases and the Relational Integration Model -Candidacy document

    E-Print Network [OSTI]

    Lawrence, Ramon

    in building a multidatabase is determining and integrating the data from the component database systems collection and integration are rapidly becoming the mostimportant issues in the information systems area into a coherent global view. Automating the extraction and integration of this data is difficult because

  6. Prototype of Automated PLC Model Checking Using Continuous Integration Tools

    E-Print Network [OSTI]

    Lettrich, Michael

    2015-01-01

    To deal with the complexity of operating and supervising large scale industrial installations at CERN, often Programmable Logic Controllers (PLCs) are used. A failure in these control systems can cause a disaster in terms of economic loses, environmental damages or human losses. Therefore the requirements to software quality are very high. To provide PLC developers with a way to verify proper functionality against requirements, a Java tool named PLCverif has been developed which encapsulates and thus simplifies the use of third party model checkers. One of our goals in this project is to integrate PLCverif in development process of PLC programs. When the developer changes the program, all the requirements should be verified again, as a change on the code can produce collateral effects and violate one or more requirements. For that reason, PLCverif has been extended to work with Jenkins CI in order to trigger automatically the verication cases when the developer changes the PLC program. This prototype has been...

  7. Science and Engineering of an Operational Tsunami Forecasting System

    SciTech Connect (OSTI)

    Gonzalez, Frank

    2009-04-06

    After a review of tsunami statistics and the destruction caused by tsunamis, a means of forecasting tsunamis is discussed as part of an overall program of reducing fatalities through hazard assessment, education, training, mitigation, and a tsunami warning system. The forecast is accomplished via a concept called Deep Ocean Assessment and Reporting of Tsunamis (DART). Small changes of pressure at the sea floor are measured and relayed to warning centers. Under development is an international modeling network to transfer, maintain, and improve tsunami forecast models.

  8. Science and Engineering of an Operational Tsunami Forecasting System

    ScienceCinema (OSTI)

    Gonzalez, Frank

    2010-01-08

    After a review of tsunami statistics and the destruction caused by tsunamis, a means of forecasting tsunamis is discussed as part of an overall program of reducing fatalities through hazard assessment, education, training, mitigation, and a tsunami warning system. The forecast is accomplished via a concept called Deep Ocean Assessment and Reporting of Tsunamis (DART). Small changes of pressure at the sea floor are measured and relayed to warning centers. Under development is an international modeling network to transfer, maintain, and improve tsunami forecast models.

  9. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    SciTech Connect (OSTI)

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  10. Integrability vs exact solvability in the quantum Rabi and Dicke models

    E-Print Network [OSTI]

    Murray T. Batchelor; Huan-Qiang Zhou

    2015-01-05

    The Rabi model describes the simplest interaction between light and matter via a two-level quantum system interacting with a bosonic field. We demonstrate that the fully quantised version of the Rabi model is integrable in the Yang-Baxter sense at two parameter values. The model is argued to be not Yang-Baxter integrable in general. This is in contrast to the claim that the quantum Rabi model is integrable based on a phenomenological criterion of quantum integrability not presupposing the existence of a set of commuting operators. Similar Yang-Baxter integrable points are identified for the generalised Rabi model and the fully quantised Dicke model. The integrable points have particular implications for the level statistics of the Dicke model.

  11. Integration of Water Resource Models with Fayetteville Shale Decision Support and Information System

    SciTech Connect (OSTI)

    Cothren, Jackson; Thoma, Greg; DiLuzio, Mauro; Limp, Fred

    2013-06-30

    Significant issues can arise with the timing, location, and volume of surface water withdrawals associated with hydraulic fracturing of gas shale reservoirs as impacted watersheds may be sensitive, especially in drought years, during low flow periods, or during periods of the year when activities such as irrigation place additional demands on the surface supply of water. Significant energy production and associated water withdrawals may have a cumulative impact to watersheds over the short-term. Hence, hydraulic fracturing based on water withdrawal could potentially create shifts in the timing and magnitude of low or high flow events or change the magnitude of river flow at daily, monthly, seasonal, or yearly time scales. These changes in flow regimes can result in dramatically altered river systems. Currently little is known about the impact of fracturing on stream flow behavior. Within this context the objective of this study is to assess the impact of the hydraulic fracturing on the water balance of the Fayetteville Shale play area and examine the potential impacts of hydraulic fracturing on river flow regime at subbasin scale. This project addressed that need with four unique but integrated research and development efforts: 1) Evaluate the predictive reliability of the Soil and Water Assessment Tool (SWAT) model based at a variety of scales (Task/Section 3.5). The Soil and Water Assessment Tool (SWAT) model was used to simulate the across-scale water balance and the respective impact of hydraulic fracturing. A second hypothetical scenario was designed to assess the current and future impacts of water withdrawals for hydraulic fracturing on the flow regime and on the environmental flow components (EFCs) of the river. The shifting of these components, which present critical elements to water supply and water quality, could influence the ecological dynamics of river systems. For this purpose, we combined the use of SWAT model and Richter et al.’s (1996) methodology to assess the shifting and alteration of the flow regime within the river and streams of the study area. 2) Evaluate the effect of measurable land use changes related to gas development (well-pad placement, access road completion, etc.) on surface water flow in the region (Task/Section 3.7). Results showed that since the upsurge in shale-gas related activities in the Fayetteville Shale Play (between 2006 and 2010), shale-gas related infrastructure in the region have increase by 78%. This change in land-cover in comparison with other land-cover classes such as forest, urban, pasture, agricultural and water indicates the highest rate of change in any land-cover category for the study period. A Soil and Water Assessment Tool (SWAT) flow model of the Little Red River watershed simulated from 2000 to 2009 showed a 10% increase in storm water runoff. A forecast scenario based on the assumption that 2010 land-cover does not see any significant change over the forecast period (2010 to 2020) also showed a 10% increase in storm water runoff. Further analyses showed that this change in the stream-flow regime for the forecast period is attributable to the increase in land-cover as introduced by the shale-gas infrastructure. 3) Upgrade the Fayetteville Shale Information System to include information on watershed status. (Tasks/Sections 2.1 and 2.2). This development occurred early in the project period, and technological improvements in web-map API’s have made it possible to further improve the map. The current sites (http://lingo.cast.uark.edu) is available but is currently being upgraded to a more modern interface and robust mapping engine using funds outside this project. 4) Incorporate the methodologies developed in Tasks/Sections 3.5 and 3.7 into a Spatial Decision Support System for use by regulatory agencies and producers in the play. The resulting system is available at http://fayshale.cast.uark.edu and is under review the Arkansas Natural Resources Commission.

  12. Forecasting Stock Market Volatility: Evidence from Fourteen Countries. 

    E-Print Network [OSTI]

    Balaban, Ercan; Bayar, Asli; Faff, Robert

    2002-01-01

    This paper evaluates the out-of-sample forecasting accuracy of eleven models for weekly and monthly volatility in fourteen stock markets. Volatility is defined as within-week (within-month) standard deviation of continuously ...

  13. FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007

    E-Print Network [OSTI]

    ......................................................................... 11 3. Demand Side Management (DSM) Program Impacts................................... 13 4. Demand Sylvia Bender Manager DEMAND ANALYSIS OFFICE Scott W. Matthews Chief Deputy Director B.B. Blevins Forecast Methods and Models ....................................................... 14 5. Demand-Side

  14. RIVERWARE'S INTEGRATED MODELING AND ANALYSIS TOOLS FOR LONG-TERM PLANNING UNDER UNCERTAINTY

    E-Print Network [OSTI]

    RIVERWARE'S INTEGRATED MODELING AND ANALYSIS TOOLS FOR LONG- TERM PLANNING UNDER UNCERTAINTY and reservoir operations under hydrologic uncertainty benefits from modeling capabilities that include 1-objective river and reservoir modeling tool that can represent various planning alternatives and easily run

  15. The Wind Forecast Improvement Project (WFIP). A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations -- the Northern Study Area

    SciTech Connect (OSTI)

    Finley, Cathy

    2014-04-30

    This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements in wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the individual wind plant and at the system-wide aggregate level over the one year study period showed that the research weather model-based power forecasts (all types) had lower overall error rates than the current operational weather model-based power forecasts, both at the individual wind plant level and at the system aggregate level. The bulk error statistics of the various model-based power forecasts were also calculated by season and model runtime/forecast hour as power system operations are more sensitive to wind energy forecast errors during certain times of year and certain times of day. The results showed that there were significant differences in seasonal forecast errors between the various model-based power forecasts. The results from the analysis of the various wind power forecast errors by model runtime and forecast hour showed that the forecast errors were largest during the times of day that have increased significance to power system operators (the overnight hours and the morning/evening boundary layer transition periods), but the research weather model-based power forecasts showed improvement over the operational weather model-based power forecasts at these times.

  16. An integrated life cycle quality model for general public market software products

    E-Print Network [OSTI]

    Suryn, Witold

    An integrated life cycle quality model for general public market software products Witold Suryn1 of the software product results from its ultimate quality seen by both acquirers and end users. An integrated life cycle quality model, further called complement model for software product quality combines high level

  17. A FLEXIBLE, MODULAR APPROACH TO INTEGRATED SPACE EXPLORATION CAMPAIGN LOGISTICS MODELING, SIMULATION, AND ANALYSIS

    E-Print Network [OSTI]

    de Weck, Olivier L.

    A FLEXIBLE, MODULAR APPROACH TO INTEGRATED SPACE EXPLORATION CAMPAIGN LOGISTICS MODELING Students #12;2 A FLEXIBLE, MODULAR APPROACH TO INTEGRATED SPACE EXPLORATION CAMPAIGN LOGISTICS MODELING in Aeronautics and Astronautics #12;3 Abstract A space logistics modeling framework to support space exploration

  18. Solar Wind Forecasting with Coronal Holes

    E-Print Network [OSTI]

    S. Robbins; C. J. Henney; J. W. Harvey

    2007-01-09

    An empirical model for forecasting solar wind speed related geomagnetic events is presented here. The model is based on the estimated location and size of solar coronal holes. This method differs from models that are based on photospheric magnetograms (e.g., Wang-Sheeley model) to estimate the open field line configuration. Rather than requiring the use of a full magnetic synoptic map, the method presented here can be used to forecast solar wind velocities and magnetic polarity from a single coronal hole image, along with a single magnetic full-disk image. The coronal hole parameters used in this study are estimated with Kitt Peak Vacuum Telescope He I 1083 nm spectrograms and photospheric magnetograms. Solar wind and coronal hole data for the period between May 1992 and September 2003 are investigated. The new model is found to be accurate to within 10% of observed solar wind measurements for its best one-month periods, and it has a linear correlation coefficient of ~0.38 for the full 11 years studied. Using a single estimated coronal hole map, the model can forecast the Earth directed solar wind velocity up to 8.5 days in advance. In addition, this method can be used with any source of coronal hole area and location data.

  19. Integrated Deployment Model: A Comprehensive Approach to Transforming the Energy Economy

    SciTech Connect (OSTI)

    Werner, M.

    2010-11-01

    This paper describes the Integrated Deployment model to accelerate market adoption of alternative energy solutions to power homes, businesses, and vehicles through a comprehensive and aggressive approach.

  20. "Modeling the Integrated Expansion of the Canadian and U.S. Power...

    Broader source: Energy.gov (indexed) [DOE]

    The National Renewable Energy Laboratory (NREL) has released a study entitled "Modeling the Integrated Expansion of the Canadian and U.S. Power Sectors with the Regional Energy...

  1. Earthquake Forecast via Neutrino Tomography

    E-Print Network [OSTI]

    Bin Wang; Ya-Zheng Chen; Xue-Qian Li

    2011-03-29

    We discuss the possibility of forecasting earthquakes by means of (anti)neutrino tomography. Antineutrinos emitted from reactors are used as a probe. As the antineutrinos traverse through a region prone to earthquakes, observable variations in the matter effect on the antineutrino oscillation would provide a tomography of the vicinity of the region. In this preliminary work, we adopt a simplified model for the geometrical profile and matter density in a fault zone. We calculate the survival probability of electron antineutrinos for cases without and with an anomalous accumulation of electrons which can be considered as a clear signal of the coming earthquake, at the geological region with a fault zone, and find that the variation may reach as much as 3% for $\\bar \

  2. UWIG Forecasting Workshop -- Albany (Presentation)

    SciTech Connect (OSTI)

    Lew, D.

    2011-04-01

    This presentation describes the importance of good forecasting for variable generation, the different approaches used by industry, and the importance of validated high-quality data.

  3. European Wind Energy Conference & Exhibition EWEC 2003, Madrid, Spain. Forecasting of Regional Wind Generation by a Dynamic

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    European Wind Energy Conference & Exhibition EWEC 2003, Madrid, Spain. Forecasting of Regional Wind. Abstract-Short-term wind power forecasting is recognized nowadays as a major requirement for a secure and economic integration of wind power in a power system. In the case of large-scale integration, end users

  4. Methods to Register Models and Input/Output Parameters for Integrated Modeling

    SciTech Connect (OSTI)

    Droppo, James G.; Whelan, Gene; Tryby, Michael E.; Pelton, Mitchell A.; Taira, Randal Y.; Dorow, Kevin E.

    2010-07-10

    Significant resources can be required when constructing integrated modeling systems. In a typical application, components (e.g., models and databases) created by different developers are assimilated, requiring the framework’s functionality to bridge the gap between the user’s knowledge of the components being linked. The framework, therefore, needs the capability to assimilate a wide range of model-specific input/output requirements as well as their associated assumptions and constraints. The process of assimilating such disparate components into an integrated modeling framework varies in complexity and difficulty. Several factors influence the relative ease of assimilating components, including, but not limited to, familiarity with the components being assimilated, familiarity with the framework and its tools that support the assimilation process, level of documentation associated with the components and the framework, and design structure of the components and framework. This initial effort reviews different approaches for assimilating models and their model-specific input/output requirements: 1) modifying component models to directly communicate with the framework (i.e., through an Application Programming Interface), 2) developing model-specific external wrappers such that no component model modifications are required, 3) using parsing tools to visually map pre-existing input/output files, and 4) describing and linking models as dynamic link libraries. Most of these approaches are illustrated using the widely distributed modeling system called Framework for Risk Analysis in Multimedia Environmental Systems (FRAMES). The review concludes that each has its strengths and weakness, the factors that determine which approaches work best in a given application.

  5. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (IPSC) : FY10 development and integration.

    SciTech Connect (OSTI)

    Criscenti, Louise Jacqueline; Sassani, David Carl; Arguello, Jose Guadalupe, Jr.; Dewers, Thomas A.; Bouchard, Julie F.; Edwards, Harold Carter; Freeze, Geoffrey A.; Wang, Yifeng; Schultz, Peter Andrew

    2011-02-01

    This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.

  6. Wind Power Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubicthe FOIA?ResourceMeasurement BuoyForecasting Sign

  7. Analysis of Mesoscale Model Data for Wind Integration (Poster)

    SciTech Connect (OSTI)

    Schwartz, M.; Elliott, D.; Lew, D.; Corbus, D.; Scott, G.; Haymes, S.; Wan, Y. H.

    2009-05-01

    Supports examination of implications of national 20% wind vision, and provides input to integration and transmission studies for operational impact of large penetrations of wind on the grid.

  8. FORECASTING THE ROLE OF RENEWABLES IN HAWAII

    E-Print Network [OSTI]

    Sathaye, Jayant

    2013-01-01

    s economy. Demand Forecasts The three energy futures wereto meet the forecast demand in each energy futurE2. e e1£~energy saved through improved appliance efficiencies. Also icit in our demand forecasts

  9. A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China

    SciTech Connect (OSTI)

    Xu, Lilai; Gao, Peiqing; Cui, Shenghui; Liu, Chun

    2013-06-15

    Highlights: ? We propose a hybrid model that combines seasonal SARIMA model and grey system theory. ? The model is robust at multiple time scales with the anticipated accuracy. ? At month-scale, the SARIMA model shows good representation for monthly MSW generation. ? At medium-term time scale, grey relational analysis could yield the MSW generation. ? At long-term time scale, GM (1, 1) provides a basic scenario of MSW generation. - Abstract: Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 – 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 – 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to develop integrated policies and measures for waste management over the long term.

  10. Grid-scale Fluctuations and Forecast Error in Wind Power

    E-Print Network [OSTI]

    G. Bel; C. P. Connaughton; M. Toots; M. M. Bandi

    2015-03-29

    The fluctuations in wind power entering an electrical grid (Irish grid) were analyzed and found to exhibit correlated fluctuations with a self-similar structure, a signature of large-scale correlations in atmospheric turbulence. The statistical structure of temporal correlations for fluctuations in generated and forecast time series was used to quantify two types of forecast error: a timescale error ($e_{\\tau}$) that quantifies the deviations between the high frequency components of the forecast and the generated time series, and a scaling error ($e_{\\zeta}$) that quantifies the degree to which the models fail to predict temporal correlations in the fluctuations of the generated power. With no $a$ $priori$ knowledge of the forecast models, we suggest a simple memory kernel that reduces both the timescale error ($e_{\\tau}$) and the scaling error ($e_{\\zeta}$).

  11. Grid-scale Fluctuations and Forecast Error in Wind Power

    E-Print Network [OSTI]

    Bel, G; Toots, M; Bandi, M M

    2015-01-01

    The fluctuations in wind power entering an electrical grid (Irish grid) were analyzed and found to exhibit correlated fluctuations with a self-similar structure, a signature of large-scale correlations in atmospheric turbulence. The statistical structure of temporal correlations for fluctuations in generated and forecast time series was used to quantify two types of forecast error: a timescale error ($e_{\\tau}$) that quantifies the deviations between the high frequency components of the forecast and the generated time series, and a scaling error ($e_{\\zeta}$) that quantifies the degree to which the models fail to predict temporal correlations in the fluctuations of the generated power. With no $a$ $priori$ knowledge of the forecast models, we suggest a simple memory kernel that reduces both the timescale error ($e_{\\tau}$) and the scaling error ($e_{\\zeta}$).

  12. Integration of an Energy Balance Snowmelt Model into an Open Source Modeling Framework A. Sen Gupta1

    E-Print Network [OSTI]

    Tarboton, David

    1 Integration of an Energy Balance Snowmelt Model into an Open Source Modeling Framework A. Sen model for organizing the inputs and outputs of an energy balance snowmelt model (the Utah Energy Balance; data model; energy balance; snow melt; glacier melt #12;3 Software Availability Name of software: Utah

  13. Global disease monitoring and forecasting with Wikipedia

    SciTech Connect (OSTI)

    Generous, Nicholas; Fairchild, Geoffrey; Deshpande, Alina; Del Valle, Sara Y.; Priedhorsky, Reid; Salathé, Marcel

    2014-11-13

    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: access logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.

  14. Global disease monitoring and forecasting with Wikipedia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Generous, Nicholas; Fairchild, Geoffrey; Deshpande, Alina; Del Valle, Sara Y.; Priedhorsky, Reid; Salathé, Marcel

    2014-11-13

    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: accessmore »logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.« less

  15. A survey on wind power ramp forecasting.

    SciTech Connect (OSTI)

    Ferreira, C.; Gama, J.; Matias, L.; Botterud, A.; Wang, J.

    2011-02-23

    The increasing use of wind power as a source of electricity poses new challenges with regard to both power production and load balance in the electricity grid. This new source of energy is volatile and highly variable. The only way to integrate such power into the grid is to develop reliable and accurate wind power forecasting systems. Electricity generated from wind power can be highly variable at several different timescales: sub-hourly, hourly, daily, and seasonally. Wind energy, like other electricity sources, must be scheduled. Although wind power forecasting methods are used, the ability to predict wind plant output remains relatively low for short-term operation. Because instantaneous electrical generation and consumption must remain in balance to maintain grid stability, wind power's variability can present substantial challenges when large amounts of wind power are incorporated into a grid system. A critical issue is ramp events, which are sudden and large changes (increases or decreases) in wind power. This report presents an overview of current ramp definitions and state-of-the-art approaches in ramp event forecasting.

  16. Identi cation Tasking and Networking (ITN) Model For The FBI's Integrated Automated

    E-Print Network [OSTI]

    Murphy, John

    Identi cation Tasking and Networking (ITN) Model For The FBI's Integrated Automated Fingerprint September 29, 1994 Abstract This document describes the model developed for the ITN/FBI using the SES

  17. Methodologies for statistical behavioral modeling and simulation of complex analog integrated circuits 

    E-Print Network [OSTI]

    Swidzinski, Jan

    1997-01-01

    The objective of this thesis is to develop efficient methodologies for statistical behavioral modeling of analog integrated circuits and apply them to practical problems. Through appropriate statistical modeling, the Design for Quality (DFQ...

  18. Price forecasting for notebook computers 

    E-Print Network [OSTI]

    Rutherford, Derek Paul

    1997-01-01

    of individual features are estimated. A time series analysis is used to forecast and can be used, for example, to forecast (1) notebook computer price at introduction, and (2) rate of price erosion for a notebook's life cycle. Results indicate that this approach...

  19. Multivariate Forecast Evaluation And Rationality Testing

    E-Print Network [OSTI]

    Komunjer, Ivana; OWYANG, MICHAEL

    2007-01-01

    Economy, 95(5), 1062—1088. MULTIVARIATE FORECASTS Chaudhuri,Notion of Quantiles for Multivariate Data,” Journal of thePress, United Kingdom. MULTIVARIATE FORECASTS Kirchgässner,

  20. Integrated Modeling of Process-and Data-Centric Software Systems with PHILharmonicFlows

    E-Print Network [OSTI]

    Ulm, Universität

    Integrated Modeling of Process- and Data-Centric Software Systems with PHILharmonicFlows Carolina--Process- and data-centric software systems require a tight integration of processes, functions, data, and users methodological guidance for modeling large process- and data-centric software systems based on PHILharmonic

  1. Model-Integrated Embedded Systems Akos Ledeczi, Arpad Bakay, and Miklos Maroti

    E-Print Network [OSTI]

    Maróti, Miklós

    Model-Integrated Embedded Systems Akos Ledeczi, Arpad Bakay, and Miklos Maroti Institute embedded systems. This paper describes a paradigm-independent, gen- eral infrastructure for the design and implementation of model-integrated embedded systems that is highly applicable to self-adaptive systems. 1

  2. Integrating biomechanics into developmental plant models expressed using L-systems

    E-Print Network [OSTI]

    Prusinkiewicz, Przemyslaw

    Integrating biomechanics into developmental plant models expressed using L-systems Catherine the biomechanical model of the bending of branch axes introduced by Schaffer and Fournier et al. into developmental-system, biomechanics, elasticity, rod, gravity, tropism. Reference Integrating biomechanics into developmental plant

  3. Integrated modelling of water availability and water use in the semi-arid Northeast of Brazil

    E-Print Network [OSTI]

    Bronstert, Axel

    Integrated modelling of water availability and water use in the semi-arid Northeast of Brazil A: Bronstert 1 Integrated modelling of water availability and water use in the semi-arid Northeast of Brazil A con- straint for development in the semi-arid Northeast of Brazil. Quanti cation of natural water

  4. An integrated hot-rolling and microstructure model for dual-phase steels

    E-Print Network [OSTI]

    Cambridge, University of

    An integrated hot-rolling and microstructure model for dual-phase steels D. Bombaca, , M. J. Peeta as a function of the hot rolling and cooling conditions is proposed for dual phase steels. An integrated tool proposed for final phase constitution of dual-phase steel has been developed, modelling recrystallization

  5. Integrated Assessment Modeling of Carbon Sequestration and Land Use Emissions Using Detailed Model Results and Observations

    SciTech Connect (OSTI)

    Dr. Atul Jain

    2005-04-17

    This report outlines the progress on the development and application of Integrated Assessment Modeling of Carbon Sequestrations and Land Use Emissions supported by the DOE Office of Biological and Environmental Research (OBER), U.S. Department of Energy, Grant No. DOE-DE-FG02-01ER63069. The overall objective of this collaborative project between the University of Illinois at Urbana-Champaign (UIUC), Oak Ridge National Laboratory (ORNL), Lawrence Livermore National Laboratory (LLNL), and Pacific Northwest National Laboratory (PNNL) was to unite the latest advances in carbon cycle research with scientifically based models and policy-related integrated assessment tools that incorporate computationally efficient representations of the latest knowledge concerning science and emission trajectories, and their policy implications. As part of this research we accomplished the following tasks that we originally proposed: (1) In coordination with LLNL and ORNL, we enhanced the Integrated Science Assessment Model's (ISAM) parametric representation of the ocean and terrestrial carbon cycles that better represent spatial and seasonal variations, which are important to study the mechanisms that influence carbon sequestration in the ocean and terrestrial ecosystems; (2) Using the MiniCAM modeling capability, we revised the SRES (IPCC Special Report on Emission Scenarios; IPCC, 2000) land use emission scenarios; and (3) On the application front, the enhanced version of ISAM modeling capability is applied to understand how short- and long-term natural carbon fluxes, carbon sequestration, and human emissions contribute to the net global emissions (concentrations) trajectories required to reach various concentration (emission) targets. Under this grant, 21 research publications were produced. In addition, this grant supported a number of graduate and undergraduate students whose fundamental research was to learn a disciplinary field in climate change (e.g., ecological dynamics and ocean circulations) and then complete research on how this field could be linked to the other factors we need to consider in its dynamics (e.g., land use, ocean and terrestrial carbon sequestration and climate change).

  6. Optimal Bidding Strategies for Wind Power Producers with Meteorological Forecasts

    E-Print Network [OSTI]

    Garulli, Andrea

    profiles, raise major challenges to wind power integration into the electricity grid. In this work we studyOptimal Bidding Strategies for Wind Power Producers with Meteorological Forecasts Antonio that the inherent variability in wind power generation and the related difficulty in predicting future generation

  7. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    SciTech Connect (OSTI)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan

    2014-09-12

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.

  8. The FIT Model - Fuel-cycle Integration and Tradeoffs

    SciTech Connect (OSTI)

    Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Candido Pereira; Layne F. Pincock; Eric L. Shaber; Meliisa C Teague; Gregory M Teske; Kurt G Vedros

    2010-09-01

    All mass streams from fuel separation and fabrication are products that must meet some set of product criteria – fuel feedstock impurity limits, waste acceptance criteria (WAC), material storage (if any), or recycle material purity requirements such as zirconium for cladding or lanthanides for industrial use. These must be considered in a systematic and comprehensive way. The FIT model and the “system losses study” team that developed it [Shropshire2009, Piet2010] are an initial step by the FCR&D program toward a global analysis that accounts for the requirements and capabilities of each component, as well as major material flows within an integrated fuel cycle. This will help the program identify near-term R&D needs and set longer-term goals. The question originally posed to the “system losses study” was the cost of separation, fuel fabrication, waste management, etc. versus the separation efficiency. In other words, are the costs associated with marginal reductions in separations losses (or improvements in product recovery) justified by the gains in the performance of other systems? We have learned that that is the wrong question. The right question is: how does one adjust the compositions and quantities of all mass streams, given uncertain product criteria, to balance competing objectives including cost? FIT is a method to analyze different fuel cycles using common bases to determine how chemical performance changes in one part of a fuel cycle (say used fuel cooling times or separation efficiencies) affect other parts of the fuel cycle. FIT estimates impurities in fuel and waste via a rough estimate of physics and mass balance for a set of technologies. If feasibility is an issue for a set, as it is for “minimum fuel treatment” approaches such as melt refining and AIROX, it can help to make an estimate of how performances would have to change to achieve feasibility.

  9. Integrating repositories with fuel cycles: The airport authority model

    SciTech Connect (OSTI)

    Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States)

    2012-07-01

    The organization of the fuel cycle is a legacy of World War II and the cold war. Fuel cycle facilities were developed and deployed without consideration of the waste management implications. This led to the fuel cycle model of a geological repository site with a single owner, a single function (disposal), and no other facilities on site. Recent studies indicate large economic, safety, repository performance, nonproliferation, and institutional incentives to collocate and integrate all back-end facilities. Site functions could include geological disposal of spent nuclear fuel (SNF) with the option for future retrievability, disposal of other wastes, reprocessing with fuel fabrication, radioisotope production, other facilities that generate significant radioactive wastes, SNF inspection (navy and commercial), and related services such as SNF safeguards equipment testing and training. This implies a site with multiple facilities with different owners sharing some facilities and using common facilities - the repository and SNF receiving. This requires a different repository site institutional structure. We propose development of repository site authorities modeled after airport authorities. Airport authorities manage airports with government-owned runways, collocated or shared public and private airline terminals, commercial and federal military facilities, aircraft maintenance bases, and related operations - all enabled and benefiting the high-value runway asset and access to it via taxi ways. With a repository site authority the high value asset is the repository. The SNF and HLW receiving and storage facilities (equivalent to the airport terminal) serve the repository, any future reprocessing plants, and others with needs for access to SNF and other wastes. Non-public special-built roadways and on-site rail lines (equivalent to taxi ways) connect facilities. Airport authorities are typically chartered by state governments and managed by commissions with members appointed by the state governor, county governments, and city governments. This structure (1) enables state and local governments to work together to maximize job and tax benefits to local communities and the state, (2) provides a mechanism to address local concerns such as airport noise, and (3) creates an institutional structure with large incentives to maximize the value of the common asset, the runway. A repository site authority would have a similar structure and be the local interface to any national waste management authority. (authors)

  10. web page: http://w3.pppl.gov/~ zakharov At the ground level of integrated modeling1

    E-Print Network [OSTI]

    Zakharov, Leonid E.

    web page: http://w3.pppl.gov/~ zakharov At the ground level of integrated modeling1 Leonid E-independent environment and integrating them with its capabilities (e.g., java). (f) . . . of other integrations (WEB of D

  11. Development and testing of improved statistical wind power forecasting methods.

    SciTech Connect (OSTI)

    Mendes, J.; Bessa, R.J.; Keko, H.; Sumaili, J.; Miranda, V.; Ferreira, C.; Gama, J.; Botterud, A.; Zhou, Z.; Wang, J. (Decision and Information Sciences); (INESC Porto)

    2011-12-06

    Wind power forecasting (WPF) provides important inputs to power system operators and electricity market participants. It is therefore not surprising that WPF has attracted increasing interest within the electric power industry. In this report, we document our research on improving statistical WPF algorithms for point, uncertainty, and ramp forecasting. Below, we provide a brief introduction to the research presented in the following chapters. For a detailed overview of the state-of-the-art in wind power forecasting, we refer to [1]. Our related work on the application of WPF in operational decisions is documented in [2]. Point forecasts of wind power are highly dependent on the training criteria used in the statistical algorithms that are used to convert weather forecasts and observational data to a power forecast. In Chapter 2, we explore the application of information theoretic learning (ITL) as opposed to the classical minimum square error (MSE) criterion for point forecasting. In contrast to the MSE criterion, ITL criteria do not assume a Gaussian distribution of the forecasting errors. We investigate to what extent ITL criteria yield better results. In addition, we analyze time-adaptive training algorithms and how they enable WPF algorithms to cope with non-stationary data and, thus, to adapt to new situations without requiring additional offline training of the model. We test the new point forecasting algorithms on two wind farms located in the U.S. Midwest. Although there have been advancements in deterministic WPF, a single-valued forecast cannot provide information on the dispersion of observations around the predicted value. We argue that it is essential to generate, together with (or as an alternative to) point forecasts, a representation of the wind power uncertainty. Wind power uncertainty representation can take the form of probabilistic forecasts (e.g., probability density function, quantiles), risk indices (e.g., prediction risk index) or scenarios (with spatial and/or temporal dependence). Statistical approaches to uncertainty forecasting basically consist of estimating the uncertainty based on observed forecasting errors. Quantile regression (QR) is currently a commonly used approach in uncertainty forecasting. In Chapter 3, we propose new statistical approaches to the uncertainty estimation problem by employing kernel density forecast (KDF) methods. We use two estimators in both offline and time-adaptive modes, namely, the Nadaraya-Watson (NW) and Quantilecopula (QC) estimators. We conduct detailed tests of the new approaches using QR as a benchmark. One of the major issues in wind power generation are sudden and large changes of wind power output over a short period of time, namely ramping events. In Chapter 4, we perform a comparative study of existing definitions and methodologies for ramp forecasting. We also introduce a new probabilistic method for ramp event detection. The method starts with a stochastic algorithm that generates wind power scenarios, which are passed through a high-pass filter for ramp detection and estimation of the likelihood of ramp events to happen. The report is organized as follows: Chapter 2 presents the results of the application of ITL training criteria to deterministic WPF; Chapter 3 reports the study on probabilistic WPF, including new contributions to wind power uncertainty forecasting; Chapter 4 presents a new method to predict and visualize ramp events, comparing it with state-of-the-art methodologies; Chapter 5 briefly summarizes the main findings and contributions of this report.

  12. Valuing Climate Impacts in Integrated Assessment Models: The MIT IGSM

    E-Print Network [OSTI]

    Reilly, John

    2012-05-22

    We discuss a strategy for investigating the impacts of climate change on Earth’s physical, biological and human resources and links to their socio-economic consequences. The features of the integrated global system framework ...

  13. Weather-based forecasts of California crop yields

    SciTech Connect (OSTI)

    Lobell, D B; Cahill, K N; Field, C B

    2005-09-26

    Crop yield forecasts provide useful information to a range of users. Yields for several crops in California are currently forecast based on field surveys and farmer interviews, while for many crops official forecasts do not exist. As broad-scale crop yields are largely dependent on weather, measurements from existing meteorological stations have the potential to provide a reliable, timely, and cost-effective means to anticipate crop yields. We developed weather-based models of state-wide yields for 12 major California crops (wine grapes, lettuce, almonds, strawberries, table grapes, hay, oranges, cotton, tomatoes, walnuts, avocados, and pistachios), and tested their accuracy using cross-validation over the 1980-2003 period. Many crops were forecast with high accuracy, as judged by the percent of yield variation explained by the forecast, the number of yields with correctly predicted direction of yield change, or the number of yields with correctly predicted extreme yields. The most successfully modeled crop was almonds, with 81% of yield variance captured by the forecast. Predictions for most crops relied on weather measurements well before harvest time, allowing for lead times that were longer than existing procedures in many cases.

  14. FORECASTING OF ATLANTIC TROPICAL CYCLONES USING A KILO-MEMBER ENSEMBLE

    E-Print Network [OSTI]

    Schubert, Wayne H.

    system using an efficient multigrid barotropic vorticity equation model (MBAR). Five perturbation classes Advisor Department Head ii #12;ABSTRACT OF THESIS FORECASTING OF ATLANTIC TROPICAL CYCLONES USING A KILO forecasts. These increases have been largely driven by improved numerical weather prediction models

  15. Integration of stream and watershed data for hydrologic modeling 

    E-Print Network [OSTI]

    Koka, Srikanth

    2004-09-30

    ....................................................................................45 4.9 Rank Attribute .....................................................................................................51 4.10 Outlet Segments...- dimensional diffusion wave model. Though this model offers a strong physical base for hydrologic modeling, can be applied only to areas where runoff production mainly assumes Hortonian patterns. A model which is based on 1 dimensional kinematic...

  16. A Stochastic Unit Commitment Model for Integrating Renewable Supply

    E-Print Network [OSTI]

    Oren, Shmuel S.

    from the large-scale integration of renewable energy sources and deferrable demand in power systems. We introduced by renewable energy supply. A fully decentralized approach for coordinating demand response is coupling the operations of renewable resources with deferrable demand. The motivation of coupling renewable

  17. Forecasting the 2013–2014 influenza season using Wikipedia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hickmann, Kyle S.; Fairchild, Geoffrey; Priedhorsky, Reid; Generous, Nicholas; Hyman, James M.; Deshpande, Alina; Del Valle, Sara Y.; Salathé, Marcel

    2015-05-14

    Infectious diseases are one of the leading causes of morbidity and mortality around the world; thus, forecasting their impact is crucial for planning an effective response strategy. According to the Centers for Disease Control and Prevention (CDC), seasonal influenza affects 5% to 20% of the U.S. population and causes major economic impacts resulting from hospitalization and absenteeism. Understanding influenza dynamics and forecasting its impact is fundamental for developing prevention and mitigation strategies. We combine modern data assimilation methods with Wikipedia access logs and CDC influenza-like illness (ILI) reports to create a weekly forecast for seasonal influenza. The methods are appliedmore »to the 2013-2014 influenza season but are sufficiently general to forecast any disease outbreak, given incidence or case count data. We adjust the initialization and parametrization of a disease model and show that this allows us to determine systematic model bias. In addition, we provide a way to determine where the model diverges from observation and evaluate forecast accuracy. Wikipedia article access logs are shown to be highly correlated with historical ILI records and allow for accurate prediction of ILI data several weeks before it becomes available. The results show that prior to the peak of the flu season, our forecasting method produced 50% and 95% credible intervals for the 2013-2014 ILI observations that contained the actual observations for most weeks in the forecast. However, since our model does not account for re-infection or multiple strains of influenza, the tail of the epidemic is not predicted well after the peak of flu season has passed.« less

  18. Forecasting the 2013–2014 influenza season using Wikipedia

    SciTech Connect (OSTI)

    Hickmann, Kyle S.; Fairchild, Geoffrey; Priedhorsky, Reid; Generous, Nicholas; Hyman, James M.; Deshpande, Alina; Del Valle, Sara Y.; Salathé, Marcel

    2015-05-14

    Infectious diseases are one of the leading causes of morbidity and mortality around the world; thus, forecasting their impact is crucial for planning an effective response strategy. According to the Centers for Disease Control and Prevention (CDC), seasonal influenza affects 5% to 20% of the U.S. population and causes major economic impacts resulting from hospitalization and absenteeism. Understanding influenza dynamics and forecasting its impact is fundamental for developing prevention and mitigation strategies. We combine modern data assimilation methods with Wikipedia access logs and CDC influenza-like illness (ILI) reports to create a weekly forecast for seasonal influenza. The methods are applied to the 2013-2014 influenza season but are sufficiently general to forecast any disease outbreak, given incidence or case count data. We adjust the initialization and parametrization of a disease model and show that this allows us to determine systematic model bias. In addition, we provide a way to determine where the model diverges from observation and evaluate forecast accuracy. Wikipedia article access logs are shown to be highly correlated with historical ILI records and allow for accurate prediction of ILI data several weeks before it becomes available. The results show that prior to the peak of the flu season, our forecasting method produced 50% and 95% credible intervals for the 2013-2014 ILI observations that contained the actual observations for most weeks in the forecast. However, since our model does not account for re-infection or multiple strains of influenza, the tail of the epidemic is not predicted well after the peak of flu season has passed.

  19. LETTER Communicated by Daniel Bush Oscillator-Interference Models of Path Integration

    E-Print Network [OSTI]

    Orchard, Jeffery J.

    and long-range inhibition connectivity can spontaneously gen- erate grid-cell-like activity patterns of Technology doi:10.1162/NECO_a_00701 #12;Oscillator-Based Path Integration Without Theta 549 and long-rangeLETTER Communicated by Daniel Bush Oscillator-Interference Models of Path Integration Do

  20. PhD Position Available: integrative biomechanics, computational modeling, nonlinear dynamics

    E-Print Network [OSTI]

    Clewley, Robert

    PhD Position Available: integrative biomechanics, computational modeling, nonlinear dynamics and mathematical analysis of biomechanical and neural control systems. We are looking for an excellent and highly.edu/~biodhe/#Research). These are being used to study the Crayfish swim escape mechanism as a case study in integrative biomechanical

  1. A Mobility Model for Cost Analysis in Integrated Cellular/WLANs

    E-Print Network [OSTI]

    Shenoy, Nirmala

    A Mobility Model for Cost Analysis in Integrated Cellular/WLANs Nirmala Shenoy, Bruce Hartpence, Information Technology Department, Rochester Institute of Technology, Rochester NY 14623, USA Rafael Mantilla that can be used to study the costs and benefits of integrating cellular and Wireless LANs, from a vendor

  2. Be Migration Studies at JET and their Interpretation by an Integrated Model for Plasma Impurity Transport and Wall Composition Dynamics

    E-Print Network [OSTI]

    Be Migration Studies at JET and their Interpretation by an Integrated Model for Plasma Impurity Transport and Wall Composition Dynamics

  3. Utility system integration and optimization models for nuclear power management

    E-Print Network [OSTI]

    Deaton, Paul Ferris

    1973-01-01

    A nuclear power management model suitable for nuclear utility systems optimization has been developed for use in multi-reactor fuel management planning over periods of up to ten years. The overall utility planning model ...

  4. Weather forecasting : the next generation : the potential use and implementation of ensemble forecasting

    E-Print Network [OSTI]

    Goto, Susumu

    2007-01-01

    This thesis discusses ensemble forecasting, a promising new weather forecasting technique, from various viewpoints relating not only to its meteorological aspects but also to its user and policy aspects. Ensemble forecasting ...

  5. A comparison of Bayesian versus deterministic formulation for dynamic data integration into reservoir models 

    E-Print Network [OSTI]

    Rojas Paico, Danny H.

    2001-01-01

    The integration of dynamic data into reservoir models is known as automatic history matching, and it requires the solution of an inverse problem through the minimization of an objective function. The objective function to ...

  6. Integrating Multiple Geographic Information Systems to Create a Versatile Land Evaluation Site Assessment Model

    E-Print Network [OSTI]

    Morrison, Grady

    2008-11-19

    GIS in Urban Planning Integrating Multiple Geographic Information Systems to Create a Versatile Land Suitability Analysis Model Grady Morrison Undergraduate Department of Geography University of Kansas gmorrisn@ku.edu Impervious Surface...

  7. Final technical report for DOE Computational Nanoscience Project: Integrated Multiscale Modeling of Molecular Computing Devices

    SciTech Connect (OSTI)

    Cummings, P. T.

    2010-02-08

    This document reports the outcomes of the Computational Nanoscience Project, "Integrated Multiscale Modeling of Molecular Computing Devices". It includes a list of participants and publications arising from the research supported.

  8. Integrated environmental degradation model for Fe-Ni-Cr alloys in irradiated aqueous solutions

    E-Print Network [OSTI]

    Pleune, Thomas Todd, 1974-

    1999-01-01

    An integrated model has been developed to evaluate the effect of reactor flux, fluence, and other operating conditions on crack growth rates in austenitic stainless steels in boiling water reactor (BWR) environments. The ...

  9. Coupling of Integrated Biosphere Simulator to Regional Climate Model Version 3

    E-Print Network [OSTI]

    Winter, Jonathan (Jonathan Mark)

    A description of the coupling of Integrated Biosphere Simulator (IBIS) to Regional Climate Model version 3 (RegCM3) is presented. IBIS introduces several key advantages to RegCM3, most notably vegetation dynamics, the ...

  10. A physically based model for dielectric charging in an integrated optical MEMS wavelength selective switch.

    SciTech Connect (OSTI)

    Nielson, Gregory N.; Barbastathis, George (Massachusetts Institute of Technology)

    2005-07-01

    A physical parameter based model for dielectric charge accumulation is proposed and used to predict the displacement versus applied voltage and pull-in response of an electrostatic MEMS wavelength selective integrated optical switch.

  11. Introducing WISDEM:An Integrated System Modeling for Wind Turbines and Plant (Presentation)

    SciTech Connect (OSTI)

    Dykes, K.; Graf, P.; Scott, G.; Ning, A.; King, R.; Guo, Y.; Parsons, T.; Damiani, R.; Felker, F.; Veers, P.

    2015-01-01

    The National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. This work illustrates a few case studies with WISDEM that focus on the design and analysis of wind turbines and plants at different system levels.

  12. Production Performance Modeling Through Integration of Reservoir and Production Network with Asphaltene Deposition 

    E-Print Network [OSTI]

    Valbuena Olivares, Ernesto

    2015-05-05

    This study proposes the development of a new integrated reservoir-network compositional simulator with asphaltene modeling in production pipelines. Reservoir and network simulators are developed with a fully-implicit formulation, allowing stand...

  13. Equation-Based Power Model Integration in ESESC

    E-Print Network [OSTI]

    Sinha, Meeta

    2013-01-01

    3.1 Power Equation . . . . . . . . . . . . . . . . . .3.1.1for the power model equation . . . . . . . . . . . .cache energy equations . . . . . . . . . . . . vi Abstract

  14. On Languages for the Specification of Integrity Constraints in Spatial Conceptual Models

    E-Print Network [OSTI]

    Independent Model (PIM) and Platform Specific Model (PSM) in MDA. A conceptual model includes two components level with the client's point of view, and then translated for the PIM and PSM levels. Integrity the PIM and PSM. Each of these levels may require a different language to express these ICs. In this paper

  15. Lecture Notes in Computer Science 1 Data Reduction Using Multiple Models Integration

    E-Print Network [OSTI]

    Obradovic, Zoran

    Lecture Notes in Computer Science 1 Data Reduction Using Multiple Models Integration Aleksandar the models constructed on previously considered data samples. In addition to random sampling, controllable sampling based on the boosting algorithm is proposed, where the models are combined using a weighted voting

  16. Integrating Models and Simulations of Continuous Dynamics into SysML

    E-Print Network [OSTI]

    In this paper, we combine modeling constructs from SysML and Modelica to improve the support for Model, structures, functions, and behaviors. Complementing these SysML constructs, the Modelica language has emerged and the corresponding Modelica models; and the integration of simulation experiments with other SysML constructs

  17. Integrating sensor and motion models to localize an autonomous AR.Drone

    E-Print Network [OSTI]

    Visser, Arnoud

    Integrating sensor and motion models to localize an autonomous AR.Drone Nick Dijkshoorn and Arnoud competition: the Parrot AR.Drone. Our development is partly based on simulation, which requires both a realistic sensor and motion model. The AR.Drone simulation model is described and validated. Furthermore

  18. Updated Eastern Interconnect Wind Power Output and Forecasts for ERGIS: July 2012

    SciTech Connect (OSTI)

    Pennock, K.

    2012-10-01

    AWS Truepower, LLC (AWST) was retained by the National Renewable Energy Laboratory (NREL) to update wind resource, plant output, and wind power forecasts originally produced by the Eastern Wind Integration and Transmission Study (EWITS). The new data set was to incorporate AWST's updated 200-m wind speed map, additional tall towers that were not included in the original study, and new turbine power curves. Additionally, a primary objective of this new study was to employ new data synthesis techniques developed for the PJM Renewable Integration Study (PRIS) to eliminate diurnal discontinuities resulting from the assimilation of observations into mesoscale model runs. The updated data set covers the same geographic area, 10-minute time resolution, and 2004?2006 study period for the same onshore and offshore (Great Lakes and Atlantic coast) sites as the original EWITS data set.

  19. Value of medium range weather forecasts in the improvement of seasonal hydrologic prediction skill

    SciTech Connect (OSTI)

    Shukla, Shraddhanand; Voisin, Nathalie; Lettenmaier, D. P.

    2012-08-15

    We investigated the contribution of medium range weather forecasts with lead times up to 14 days to seasonal hydrologic prediction skill over the Conterminous United States (CONUS). Three different Ensemble Streamflow Prediction (ESP)-based experiments were performed for the period 1980-2003 using the Variable Infiltration Capacity (VIC) hydrology model to generate forecasts of monthly runoff and soil moisture (SM) at lead-1 (first month of the forecast period) to lead-3. The first experiment (ESP) used a resampling from the retrospective period 1980-2003 and represented full climatological uncertainty for the entire forecast period. In the second and third experiments, the first 14 days of each ESP ensemble member were replaced by either observations (perfect 14-day forecast) or by a deterministic 14-day weather forecast. We used Spearman rank correlations of forecasts and observations as the forecast skill score. We estimated the potential and actual improvement in baseline skill as the difference between the skill of experiments 2 and 3 relative to ESP, respectively. We found that useful runoff and SM forecast skill at lead-1 to -3 months can be obtained by exploiting medium range weather forecast skill in conjunction with the skill derived by the knowledge of initial hydrologic conditions. Potential improvement in baseline skill by using medium range weather forecasts, for runoff (SM) forecasts generally varies from 0 to 0.8 (0 to 0.5) as measured by differences in correlations, with actual improvement generally from 0 to 0.8 of the potential improvement. With some exceptions, most of the improvement in runoff is for lead-1 forecasts, although some improvement in SM was achieved at lead-2.

  20. Integrating Empirical-Modeling Approaches to Improve Understanding of Terrestrial Ecology Processes

    SciTech Connect (OSTI)

    McCarthy, Heather [University of Oklahoma; Luo, Yiqi [University of Oklahoma; Wullschleger, Stan D [ORNL

    2012-01-01

    Recent decades have seen tremendous increases in the quantity of empirical ecological data collected by individual investigators, as well as through research networks such as FLUXNET (Baldocchi et al., 2001). At the same time, advances in computer technology have facilitated the development and implementation of large and complex land surface and ecological process models. Separately, each of these information streams provides useful, but imperfect information about ecosystems. To develop the best scientific understanding of ecological processes, and most accurately predict how ecosystems may cope with global change, integration of empirical and modeling approaches is necessary. However, true integration - in which models inform empirical research, which in turn informs models (Fig. 1) - is not yet common in ecological research (Luo et al., 2011). The goal of this workshop, sponsored by the Department of Energy, Office of Science, Biological and Environmental Research (BER) program, was to bring together members of the empirical and modeling communities to exchange ideas and discuss scientific practices for increasing empirical - model integration, and to explore infrastructure and/or virtual network needs for institutionalizing empirical - model integration (Yiqi Luo, University of Oklahoma, Norman, OK, USA). The workshop included presentations and small group discussions that covered topics ranging from model-assisted experimental design to data driven modeling (e.g. benchmarking and data assimilation) to infrastructure needs for empirical - model integration. Ultimately, three central questions emerged. How can models be used to inform experiments and observations? How can experimental and observational results be used to inform models? What are effective strategies to promote empirical - model integration?

  1. Wind Forecast Improvement Project Southern Study Area Final Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study...

  2. Advanced Numerical Weather Prediction Techniques for Solar Irradiance Forecasting : : Statistical, Data-Assimilation, and Ensemble Forecasting

    E-Print Network [OSTI]

    Mathiesen, Patrick James

    2013-01-01

    weather prediction solar irradiance forecasts in the US.2013: Review of solar irradiance forecasting methods and asatellite-derived irradiances: Description and validation.

  3. On the breakdown of perturbative integrability in large N matrix models

    E-Print Network [OSTI]

    Thomas Klose

    2005-07-21

    We study the perturbative integrability of the planar sector of a massive SU(N) matrix quantum mechanical theory with global SO(6) invariance and Yang-Mills-like interaction. This model arises as a consistent truncation of maximally supersymmetric Yang-Mills theory on a three-sphere to the lowest modes of the scalar fields. In fact, our studies mimic the current investigations concerning the integrability properties of this gauge theory. Like in the field theory we can prove the planar integrability of the SO(6) model at first perturbative order. At higher orders we restrict ourselves to the widely studied SU(2) subsector spanned by two complexified scalar fields of the theory. We show that our toy model satisfies all commonly studied integrability requirements such as degeneracies in the spectrum, existence of conserved charges and factorized scattering up to third perturbative order. These are the same qualitative features as the ones found in super Yang-Mills theory, which were enough to conjecture the all-loop integrability of that theory. For the SO(6) model, however, we show that these properties are not sufficient to predict higher loop integrability. In fact, we explicitly demonstrate the breakdown of perturbative integrability at fourth order.

  4. Integrating Numerical Computation into the Modeling Instruction Curriculum

    E-Print Network [OSTI]

    Caballero, Marcos D; Aiken, John M; Douglas, Scott S; Scanlon, Erin M; Thoms, Brian; Schatz, Michael F

    2012-01-01

    We describe a way to introduce physics high school students with no background in programming to computational problem-solving experiences. Our approach builds on the great strides made by the Modeling Instruction reform curriculum. This approach emphasizes the practices of "Developing and using models" and "Computational thinking" highlighted by the NRC K-12 science standards framework. We taught 9th-grade students in a Modeling-Instruction-based physics course to construct computational models using the VPython programming environment. Numerical computation within the Modeling Instruction curriculum provides coherence among the curriculum's different force and motion models, links the various representations which the curriculum employs, and extends the curriculum to include real-world problems that are inaccessible to a purely analytic approach.

  5. Final Report for Integrated Multiscale Modeling of Molecular Computing Devices

    SciTech Connect (OSTI)

    Glotzer, Sharon C.

    2013-08-28

    In collaboration with researchers at Vanderbilt University, North Carolina State University, Princeton and Oakridge National Laboratory we developed multiscale modeling and simulation methods capable of modeling the synthesis, assembly, and operation of molecular electronics devices. Our role in this project included the development of coarse-grained molecular and mesoscale models and simulation methods capable of simulating the assembly of millions of organic conducting molecules and other molecular components into nanowires, crossbars, and other organized patterns.

  6. Numerical Weather Forecasting at the Savannah River Site

    SciTech Connect (OSTI)

    Buckley, R.L.

    1999-01-26

    Facilities such as the Savannah River Site (SRS), which contain the potential for hazardous atmospheric releases, rely on the predictive capabilities of dispersion models to assess possible emergency response actions. The operational design in relation to domain size and forecast time is presented, along with verification of model results over extended time periods with archived surface observations.

  7. Integrated 3D Acid Fracturing Model for Carbonate Reservoir Stimulation 

    E-Print Network [OSTI]

    Wu, Xi

    2014-06-23

    and illustrates the application of the approach with examples. The results from this study show that the new model can successfully design and optimize acid fracturing treatments....

  8. Basic Integrative Models for Offshore Wind Turbine Systems 

    E-Print Network [OSTI]

    Aljeeran, Fares

    2012-07-16

    were modeled using apparent fixity level, Randolph elastic continuum, and modified cone models. The offshore wind turbine structures were developed using a finite element formulation. A two-bladed 3.0 megawatt (MW) and a three-bladed 1.5 MW capacity...

  9. Integrated Modeling and Design of Nonlinear Control Systems

    E-Print Network [OSTI]

    Kwatny, Harry G.

    numerical processes. Our view is that symbolic computing has matured to a point that does enable computing tools we have implemented in Mathematica enable the efficient assembly of mathematical models (numerical) models for design and analysis using MATLAB's extensive facilities. Symbolic Computing

  10. INTEGRAL EQUATIONS FOR KINEMATIC DYNAMO MODELS Max-Planck-Institut fur Aeronomie, Katlenburg-Lindau, Germany1

    E-Print Network [OSTI]

    Dobler, Wolfgang

    INTEGRAL EQUATIONS FOR KINEMATIC DYNAMO MODELS W. Dobler Max-Planck-Institut f¨ur Aeronomie of the induction equation and boundary conditions at infinity into an integral equation. We show that the integral of integration by parts and shows that an arbitrary gradient can be added to or subtracted from j(x) 1 Address

  11. FORECASTING THE ROLE OF RENEWABLES IN HAWAII

    E-Print Network [OSTI]

    Sathaye, Jayant

    2013-01-01

    basis of data from the Energy Supply Planning Model [9] andeconomic resources will energy supply system. r role in diconstructed an integrated energy supply~demand November 18,

  12. MM5 Contrail Forecasting in Alaska Martin Stuefer, Xiande Meng and Gerd Wendler

    E-Print Network [OSTI]

    Stuefer, Martin

    MM5 Contrail Forecasting in Alaska Martin Stuefer, Xiande Meng and Gerd Wendler Geophysical Institute, University of Alaska, Fairbanks 1. Abstract Fifth-generation mesoscale model (MM5) is being used air. Algorithm input data are MM5 forecasted temperature and humidity values at defined pressure

  13. Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime-Switching

    E-Print Network [OSTI]

    Genton, Marc G.

    Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime at a wind energy site and fits a conditional predictive model for each regime. Geographically dispersed was applied to 2-hour-ahead forecasts of hourly average wind speed near the Stateline wind energy center

  14. Ensemble-based air quality forecasts: A multimodel approach applied to ozone

    E-Print Network [OSTI]

    Mallet, Vivien

    Ensemble-based air quality forecasts: A multimodel approach applied to ozone Vivien Mallet1 21 September 2006. [1] The potential of ensemble techniques to improve ozone forecasts ozone-monitoring networks. We found that several linear combinations of models have the potential

  15. Biennial Assessment of the Fifth Power Plan Interim Report on Electric Price Forecasts

    E-Print Network [OSTI]

    Biennial Assessment of the Fifth Power Plan Interim Report on Electric Price Forecasts Electricity prices in the Council's Power Plan are forecast using the AURORATM Electricity Market Model of the entire prices at several pricing points in the West, four of which are in the Pacific Northwest. The one most

  16. Improving Energy Use Forecast for Campus Micro-grids using Indirect Indicators Department of Computer Science

    E-Print Network [OSTI]

    Hwang, Kai

    peak demand periods using pricing incentives. Reliable building energy forecast models can help predictImproving Energy Use Forecast for Campus Micro-grids using Indirect Indicators Saima Aman prasanna@usc.edu Abstract--The rising global demand for energy is best addressed by adopting and promoting

  17. Human Growth and Body Weight Dynamics: An Integrative Systems Model

    E-Print Network [OSTI]

    Rahmandad, Hazhir

    Quantifying human weight and height dynamics due to growth, aging, and energy balance can inform clinical practice and policy analysis. This paper presents the first mechanism-based model spanning full individual life and ...

  18. Mussels as a model system for integrative ecomechanics

    E-Print Network [OSTI]

    Carrington, E; Waite, JH; Sarà, G; Sebens, KP

    2015-01-01

    a dynamic energy budget model of marine ecosystem size-energy budget-based comparison of North Atlantic marineenergy budget, ?tness, mussel foot proteins, tenacity The Annual Review of Marine

  19. Integral equation models for thermoacoustic imaging of dissipative tissue

    E-Print Network [OSTI]

    Kowar, Richard

    2010-01-01

    In case of non-dissipative tissue the inverse problem of thermoacoustic imaging basically consists of two inverse problems. First, a function $\\phi$ depending on the \\emph{electromagnetic absorption function}, is estimated from one of three types of projections (spherical, circular or planar) and secondly, the \\emph{electromagnetic absorption function} is estimated from $\\phi$. In case of dissipative tissue, it is no longer possible to calculate explicitly the projection of $\\phi$ from the respective pressure data (measured by point, planar or line detectors). The goal of this paper is to derive for each of the three types of pressure data, an integral equation that allows estimating the respective projection of $\\phi$. The advantage of this approach is that all known reconstruction formulas for $\\phi$ from the respective projection can be exploited.

  20. An Integrated Approach to Modeling and Mitigating SOFC Failure

    SciTech Connect (OSTI)

    Jianmin Qu; Andrei Fedorov; Comas Haynes

    2006-05-15

    The specific objectives of this project were: (1) To develop and demonstrate the feasibility of an integrated predictive computer-based tool for fuel cell design and reliability/durability analysis, (2) To generate new scientific and engineering knowledge to better enable SECA Industry Teams to develop reliable, low-cost solid-oxide fuel cell power generation systems, (3) To create technology breakthroughs to address technical risks and barriers that currently limit achievement of the SECA performance and cost goals for solidoxide fuel cell systems, and (4) To transfer new science and technology developed in the project to the SECA Industry Teams. Through this three-year project, the Georgia Tech's team has demonstrated the feasibility of the solution proposed and the merits of the scientific path of inquiry, and has developed the technology to a sufficient level such that it can be utilized by the SECA Industry Teams. This report summarizes the project's results and achievements.

  1. Analyzing water supply in future energy systems using the TIMES Integrated Assessment Model (TIAM-FR)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Analyzing water supply in future energy systems using the TIMES Integrated Assessment Model (TIAM Mathematics, MINES ParisTech Sophia Antipolis, France ABSTRACT Even though policies related to water is required to maintain water supplies while water is essential to produce energy. However, the models

  2. Integrated Modeling, Finite-Element Analysis, and Engineering Design for Thin-Shell

    E-Print Network [OSTI]

    Schroeder, Peter

    Integrated Modeling, Finite-Element Analysis, and Engineering Design for Thin-Shell Structures transfer between the geometric design and finite-element anal- ysis tools. No cumbersome remodeling.S.A. Abstract Many engineering design applications require geometric modeling and mechanical simulation of thin

  3. An Integrated Optical and Thermal Model of Cavity Receivers for Paraboloidal Dish Concentrators

    E-Print Network [OSTI]

    presents an integrated numerical model of the heat transfer in axi-symmetrical cavity receivers powered the heat to thermal energy storage and eventually to a power cycle for generation of electricity. With high of a receiver in steady state, combining ray tracing, hydrodynamic and CFD simulations. The model provides

  4. Developing a Regional Integrated Assessment Model (RIAM) Framework PRINCIPAL INVESTIGATOR: Benjamin L. Preston

    E-Print Network [OSTI]

    responses of human systems. This project seeks to apply a regional IAM framework to the Gulf Coast region issues, and energy supply issues are all occurring simultaneous- ly, but for which integrated modeling regionalized to develop a new regional IAM capability (Regional Global Change Assessment Model *RCGAM+). RCGAM

  5. Integrating Context and Occlusion for Car Detection by Hierarchical And-Or Model

    E-Print Network [OSTI]

    Zhu, Song Chun

    Integrating Context and Occlusion for Car Detection by Hierarchical And-Or Model Bo Li, , Tianfu Wu context and occlusion for car detec- tion. The And-Or model represents the regularities of car-to-car context and occlusion patterns at three levels: (i) layouts of spatially-coupled N cars, (ii) single cars

  6. Coupling of Integrated Biosphere Simulator to Regional Climate Model version 3

    E-Print Network [OSTI]

    Winter, Jonathan (Jonathan Mark)

    2006-01-01

    Presented in this thesis is a description of the coupling of Integrated Biosphere Simulator (IBIS) to Regional Climate Model version 3 (RegCM3), and an assessment of the coupled model (RegCM3-IBIS). RegCM3 is a 3-dimensional, ...

  7. Geosciences: Integrated Analysis for Development of 3D Models of Earth

    E-Print Network [OSTI]

    Ward, Karen

    Geosciences: Integrated Analysis for Development of 3D Models of Earth Structure PI: Aaron A Potrillo Seismic Experiment Gravity and Magnetics #12; Joint inversion of several datasets allows Employ optimization schemes to improve current methods Single inversion dataset #2 Improved model

  8. A Flexible Climate Model For Use In Integrated Assessments Andrei P. Sokolov and Peter H. Stone

    E-Print Network [OSTI]

    penetration into the deep ocean is comparable with that of other significant uncertainties. 1. Introduction with coupled atmosphere ocean general circulation models (AOGCMs) because of their tremendous computer resource with a diffusive ocean model developed for use in the integrated framework of the MIT Joint Program on the Science

  9. VIRTUAL REALITY DRIVING SIMULATION: Integrating Infrastructure Plans, Traffic Models, and Driving Behaviors

    E-Print Network [OSTI]

    to include 3D models, animated traffic and human characters, as well as functions that allow users to take-1- VIRTUAL REALITY DRIVING SIMULATION: Integrating Infrastructure Plans, Traffic Models@forum8.co.jp Summary: This paper presents a virtual reality (VR) system that enables large

  10. A FLEXIBLE, MODULAR APPROACH TO INTEGRATED SPACE EXPLORATION CAMPAIGN LOGISTICS MODELING, SIMULATION, AND ANALYSIS

    E-Print Network [OSTI]

    de Weck, Olivier L.

    A FLEXIBLE, MODULAR APPROACH TO INTEGRATED SPACE EXPLORATION CAMPAIGN LOGISTICS MODELING Students #12;#12;3 Abstract A space logistics modeling framework to support space exploration to remote environments is the target of research within the MIT Space Logistics Project. This thesis presents a revised

  11. Integrated modeling and control of a load-connected SOFC-GT autonomous power system

    E-Print Network [OSTI]

    Foss, Bjarne A.

    Integrated modeling and control of a load-connected SOFC-GT autonomous power system Rambabu Kandepu-relevant models of all the components of the SOFC-GT hybrid system which is connected to a load through a bus bar reliability. One of the most promising fuel cell technologies is the Solid Oxide Fuel Cell (SOFC), due to its

  12. Florida Public Hurricane Loss Model (FPHLM): Research Experience in System Integration

    E-Print Network [OSTI]

    Chen, Shu-Ching

    Florida Public Hurricane Loss Model (FPHLM): Research Experience in System Integration 1 Shu International University, Miami, FL 33199, USA hamids@fiu.edu ABSTRACT The Florida Public Hurricane Loss Model on probabilistic assessment of insured hurricane wind risk to residential properties and has successfully passed

  13. Aspects of integrability in a classical model for non-interacting fermionic fields

    E-Print Network [OSTI]

    Simon Grosse-Holz; Thomas Engl; Klaus Richter; Juan Diego Urbina

    2015-08-26

    In this work we investigate the issue of integrability in a classical model for noninteracting fermionic fields. This model is constructed via classical-quantum correspondence obtained from the semiclassical treatment of the quantum system. Our main finding is that the classical system, contrary to the quantum system, is not integrablein general. Regarding this contrast it is clear that in general classical models for fermionic quantum systems have to be handled with care. Further numerical investigation of the system showed that there may be islands of stability in the phase space. We also investigated a similar model that is used in theoretical chemistry and found this one to be most probably integrable, although also here the integrability is not assured by the quantum-classical correspondence principle.

  14. Aspects of integrability in a classical model for non-interacting fermionic fields

    E-Print Network [OSTI]

    Grosse-Holz, Simon; Richter, Klaus; Urbina, Juan Diego

    2015-01-01

    In this work we investigate the issue of integrability in a classical model for noninteracting fermionic fields. This model is constructed via classical-quantum correspondence obtained from the semiclassical treatment of the quantum system. Our main finding is that the classical system, contrary to the quantum system, is not integrablein general. Regarding this contrast it is clear that in general classical models for fermionic quantum systems have to be handled with care. Further numerical investigation of the system showed that there may be islands of stability in the phase space. We also investigated a similar model that is used in theoretical chemistry and found this one to be most probably integrable, although also here the integrability is not assured by the quantum-classical correspondence principle.

  15. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    and operation of solar power plants and the model- ing offor application to solar ther- mal power plants energy

  16. Massachusetts state airport system plan forecasts.

    E-Print Network [OSTI]

    Mathaisel, Dennis F. X.

    This report is a first step toward updating the forecasts contained in the 1973 Massachusetts State System Plan. It begins with a presentation of the forecasting techniques currently available; it surveys and appraises the ...

  17. Management Forecast Quality and Capital Investment Decisions

    E-Print Network [OSTI]

    Goodman, Theodore H.

    Corporate investment decisions require managers to forecast expected future cash flows from potential investments. Although these forecasts are a critical component of successful investing, they are not directly observable ...

  18. Forecasting consumer products using prediction markets

    E-Print Network [OSTI]

    Trepte, Kai

    2009-01-01

    Prediction Markets hold the promise of improving the forecasting process. Research has shown that Prediction Markets can develop more accurate forecasts than polls or experts. Our research concentrated on analyzing Prediction ...

  19. FORECASTING THE ROLE OF RENEWABLES IN HAWAII

    E-Print Network [OSTI]

    Sathaye, Jayant

    2013-01-01

    FORECASTING THE ROLE OF RENEWABLES IN HAWAII Jayant SathayeFORECASTING THE ROLF OF RENEWABLES IN HAWAII J Sa and Henrythe Conservation Role of Renewables November 18, 1980 Page 2

  20. Silvya Dewi Rahmawati Integrated Field Modeling and Optimization

    E-Print Network [OSTI]

    Foss, Bjarne A.

    Technology, Mathematics and Electrical Engineering Department of Engineering Cybernetics #12;ii Summary Oil of philosophiae doctor Trondheim, March 2012 Norwegian University of Science and Technology Faculty of Information with optimization presents many technological challenges in terms efficient algorithms to couple models, as well

  1. Integrated biomechanical model of cells embedded in extracellular matrix 

    E-Print Network [OSTI]

    Muddana, Hari Shankar

    2009-05-15

    of cells, which in turn gives rise to the characteristic form for the organism. Morphogenesis is a multi-scale modeling problem that can be studied at the molecular, cellular, and tissue levels. Here, we study the problem of morphogenesis at the cellular...

  2. A Process Model of Applicant Faking on Overt Integrity Tests 

    E-Print Network [OSTI]

    Yu, Janie

    2010-01-14

    between cognitions and intentions??????????... 62 Hypothesis tests??????????????????????.... 65 DISCUSSION??????????????????????????.. 71 Implications????????????????????????. 79 Limitations and future directions????????????????. 82...??????????????????????????????. 100 vii LIST OF FIGURES FIGURE Page 1 Theory of Planned Behavior ????????????????.. 23 2 Overall model of proposed relationships and associated hypotheses ?????????????????.. 35 3 Applicant faking (SR) x...

  3. NATIONAL AND GLOBAL FORECASTS WEST VIRGINIA PROFILES AND FORECASTS

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    income 7 Figure 1.14: United States inflation Rate 8 Figure 1.15: Select United States interest Rates 8 2014 TABLE OF CONTENTS EXECUTiVE SUMMARY 1 CHAPTER 1: THE UNiTED STATES ECONOMY 3 Recent Trends Forecast Summary 2 CHAPTER 1: THE UNiTED STATES ECONOMY Figure 1.1: United States Real GDP Growth 3 Figure

  4. The Role of Multimodel Climate Forecasts in Improving Water and Energy Management over the Tana River Basin, Kenya

    E-Print Network [OSTI]

    Arumugam, Sankar

    - logical ensembles are used in a reservoir model to allocate water for power generation by ensuring clima. Retrospective reservoir analysis shows that inflow forecasts developed from single GCM and multiple GCMs perform the single- model inflow forecasts by reducing uncertainty and the overconfidence of individual model

  5. CASTING DEFECT MODELING IN AN INTEGRATED COMPUTATIONAL MATERIALS ENGINEERING APPROACH

    SciTech Connect (OSTI)

    Sabau, Adrian S [ORNL

    2015-01-01

    To accelerate the introduction of new cast alloys, the simultaneous modeling and simulation of multiphysical phenomena needs to be considered in the design and optimization of mechanical properties of cast components. The required models related to casting defects, such as microporosity and hot tears, are reviewed. Three aluminum alloys are considered A356, 356 and 319. The data on calculated solidification shrinkage is presented and its effects on microporosity levels discussed. Examples are given for predicting microporosity defects and microstructure distribution for a plate casting. Models to predict fatigue life and yield stress are briefly highlighted here for the sake of completion and to illustrate how the length scales of the microstructure features as well as porosity defects are taken into account for modeling the mechanical properties. Thus, the data on casting defects, including microstructure features, is crucial for evaluating the final performance-related properties of the component. ACKNOWLEDGEMENTS This work was performed under a Cooperative Research and Development Agreement (CRADA) with the Nemak Inc., and Chrysler Co. for the project "High Performance Cast Aluminum Alloys for Next Generation Passenger Vehicle Engines. The author would also like to thank Amit Shyam for reviewing the paper and Andres Rodriguez of Nemak Inc. Research sponsored by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office, as part of the Propulsion Materials Program under contract DE-AC05-00OR22725 with UT-Battelle, LLC. Part of this research was conducted through the Oak Ridge National Laboratory's High Temperature Materials Laboratory User Program, which is sponsored by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program.

  6. Consensus Coal Production And Price Forecast For

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Consensus Coal Production And Price Forecast For West Virginia: 2011 Update Prepared for the West December 2011 © Copyright 2011 WVU Research Corporation #12;#12;W.Va. Consensus Coal Forecast Update 2011 i Table of Contents Executive Summary 1 Recent Developments 3 Consensus Coal Production And Price Forecast

  7. Forecasting phenology under global warming

    E-Print Network [OSTI]

    Silander Jr., John A.

    Forecasting phenology under global warming Ine´s Iba´n~ez1,*, Richard B. Primack2, Abraham J in phenology. Keywords: climate change; East Asia, global warming; growing season, hierarchical Bayes; plant is shifting, and these shifts have been linked to recent global warming (Parmesan & Yohe 2003; Root et al

  8. Short-Term Solar Energy Forecasting Using Wireless Sensor Networks

    E-Print Network [OSTI]

    Cerpa, Alberto E.

    Short-Term Solar Energy Forecasting Using Wireless Sensor Networks Stefan Achleitner, Tao Liu an advantage for output power prediction. Solar Energy Prediction System Our prediction model is based variability of more then 100 kW per minute. For practical usage of solar energy, predicting times of high

  9. 3D cloud detection and tracking system for solar forecast using multiple sky imagers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; Heiser, John; Yoo, Shinjae; Kalb, Paul

    2015-06-23

    We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together intomore »larger views, which are then used for solar forecasting. We examine the system’s ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.« less

  10. Mathematical model of testing of pipeline integrity by thermal fields

    SciTech Connect (OSTI)

    Vaganova, Nataliia

    2014-11-18

    Thermal fields testing at the ground surface above a pipeline are considered. One method to obtain and investigate an ideal thermal field in different environments is a direct numerical simulation of heat transfer processes taking into account the most important physical factors. In the paper a mathematical model of heat propagation from an underground source is described with accounting of physical factors such as filtration of water in soil and solar radiation. Thermal processes are considered in 3D origin where the heat source is a pipeline with constant temperature and non-uniform isolated shell (with 'damages'). This problem leads to solution of heat diffusivity equation with nonlinear boundary conditions. Approaches to analysis of thermal fields are considered to detect damages.

  11. Numerical Weather Forecasting at the Savannah River Site

    SciTech Connect (OSTI)

    Buckley, R.L. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1998-11-01

    Weather forecasts at the Savannah River Site (SRS) are important for applications to emergency response. The fate of accidentally-released radiological materials and toxic chemicals can be determined by providing wind and turbulence input to atmospheric transport models. This operation has been routinely performed at SRS using the WIND System, a system of computer models and monitors which collect data from towers situated throughout the SRS. However, the information provided to these models is spatially homogeneous (in one or two dimensions) with an elementary forecasting capability. This paper discusses the use of an advanced three-dimensional prognostic numerical model to provide space and time-dependent meteorological data for use in the WIND System dispersion models. The extensive meteorological data collection at SRS serves as a ground truth for further model development as well as for use in other applications.

  12. A modeling study of the PMK-NVH integral test facility

    SciTech Connect (OSTI)

    Mavko, B.; Parzer, I.; Petelin, S. (Jozef Stefan Inst., Ljubljana (Slovenia))

    1994-02-01

    A way of modeling the PMK-NVH integral test facility with RELAP5 thermal-hydraulic code is presented. Two code versions, MOD2/36.05 and MOD3 5m5, are compared and assessed. Modeling is demonstrated for the International Atomic Energy Agency standard problem exercise no. 2, a small-break loss-of-coolant accident, performed on the PMK-NVH integral test facility. Three parametric studies of the break vicinity modeling are outlined, testing different ways of connecting the cold leg and hydroaccumulator to the downcomer and determining proper energy loss discharge coefficients at the break. Further, the nodalization study compared four different RELAP5 models, varying from a detailed one with more than 100 nodes, down to the miniature one, with only [approximately] 30 nodes. Modeling of some VVER-440 features, such as horizontal steam generators and hot-leg loop seal, is discussed.

  13. The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations. The Southern Study Area, Final Report

    SciTech Connect (OSTI)

    Freedman, Jeffrey M.; Manobianco, John; Schroeder, John; Ancell, Brian; Brewster, Keith; Basu, Sukanta; Banunarayanan, Venkat; Hodge, Bri-Mathias; Flores, Isabel

    2014-04-30

    This Final Report presents a comprehensive description, findings, and conclusions for the Wind Forecast Improvement Project (WFIP) -- Southern Study Area (SSA) work led by AWS Truepower (AWST). This multi-year effort, sponsored by the Department of Energy (DOE) and National Oceanographic and Atmospheric Administration (NOAA), focused on improving short-term (15-minute - 6 hour) wind power production forecasts through the deployment of an enhanced observation network of surface and remote sensing instrumentation and the use of a state-of-the-art forecast modeling system. Key findings from the SSA modeling and forecast effort include: 1. The AWST WFIP modeling system produced an overall 10 - 20% improvement in wind power production forecasts over the existing Baseline system, especially during the first three forecast hours; 2. Improvements in ramp forecast skill, particularly for larger up and down ramps; 3. The AWST WFIP data denial experiments showed mixed results in the forecasts incorporating the experimental network instrumentation; however, ramp forecasts showed significant benefit from the additional observations, indicating that the enhanced observations were key to the model systems’ ability to capture phenomena responsible for producing large short-term excursions in power production; 4. The OU CAPS ARPS simulations showed that the additional WFIP instrument data had a small impact on their 3-km forecasts that lasted for the first 5-6 hours, and increasing the vertical model resolution in the boundary layer had a greater impact, also in the first 5 hours; and 5. The TTU simulations were inconclusive as to which assimilation scheme (3DVAR versus EnKF) provided better forecasts, and the additional observations resulted in some improvement to the forecasts in the first 1 - 3 hours.

  14. Numerical weather forecasting at the Savannah River Site

    SciTech Connect (OSTI)

    Buckley, R.L. [Westinghouse Savannah River Site, Aiken, SC (United States)

    1998-12-31

    Weather forecasts at the Savannah River Site (SRS) are important for applications to emergency response. The fate of accidentally released radiological materials and toxic chemicals can be determined by providing wind and turbulence input to atmospheric transport models. This operation has been routinely performed at SRS using the WIND system, a system of computer models and monitors that collects data from towers situated throughout the SRS. However, the information provided to these models is spatially homogeneous (in one or two dimensions) with an elementary forecasting capability. This paper discusses the use of an advanced three-dimensional prognostic numerical model to provide space- and time-dependent meteorological data for use in the WIND system dispersion models. The extensive meteorological data collection at SRS serves as a ground truth for further model development as well as for use in other applications. A prognostic mesoscale model, the regional atmospheric modeling system (RAMS), is used to provide these forecasts. Use of RAMS allows for incorporation of mesoscale features such as the sea breeze, which has been shown to affect local weather conditions. This paper discusses the mesoscale model and its configuration for the operational simulation, as well as an application using a dispersion model at the SRS.

  15. Forecasting Recovery Opportunities for the Red-cockaded Woodpecker on Private Lands in Eastern North Carolina Using a Spatial Model of Tree Age 

    E-Print Network [OSTI]

    Dube, Amanda M

    2014-11-21

    age model for pines on private lands in eastern North Carolina. Modeling provided a means to spatially and temporally identify recovery opportunities over the next 10 to 40 years, predict locations for potential recruitment clusters within the next 10...

  16. Development of the integrated environmental control model. Quarterly progress report, April 1995--June 1995

    SciTech Connect (OSTI)

    Kalagnanam, J.R.; Rubin, E.S.

    1995-06-01

    The purpose of this contract is to develop and refine the Integrated Environmental Control Model (IECM). In its current configuration, the IECM provides a capability to model various conventional and advanced processes for controlling air pollutant emissions from coal-fired power plants before, during, or after combustion. The principal purpose of the model is to calculate the performance, emissions, and cost of power plant configurations employing alternative environmental control methods. The model consists of various control technology modules, which may be integrated into a complete utility plant in any desired combination. In contrast to conventional deterministic models, the IECM offers the unique capability to assign probabilistic values to all model input parameters, and to obtain probabilistic outputs in the form of cumulative distribution functions indicating the likelihood of different costs and performance results. The work in this contract is divided into two phases. Phase I deals with further developing the existing version of the IECM and training PETC personnel on the effective use of the model. Phase H deals with creating new technology modules, linking the IECM with PETC databases, and training PETC personnel on the effective use of the updated model. The present report summarizes recent progress on the Phase I effort during the period April 1, 1995 through June 30, 1995. This report presents additional revisions to the new cost models of flue gas desulfurization (FGD) technology initially reported in our fourth quarterly report. For convenience, the complete description of the revised FGD models are presented here.

  17. Integrating Security and Systems Engineering: Towards the Modelling of Secure Information Systems

    E-Print Network [OSTI]

    Integrating Security and Systems Engineering: Towards the Modelling of Secure Information Systems for information systems. Traditionally, security is considered after the definition of the system. However the health sector to military. As the use of Information Systems arises, the demand to secure those systems

  18. Integrated Model for Production-Distribution Coordination in an Industrial Gases Supply-chain

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    and their demand/consumption profiles Max/Min inventory at production sites and customer locations Max and Respective Production limits Daily Electricity Prices (off-peak and peak) Customers and their demand/consumptionIntegrated Model for Production-Distribution Coordination in an Industrial Gases Supply-chain Pablo

  19. A long-term investment planning model for mixed energy infrastructure integrated with renewable

    E-Print Network [OSTI]

    A long-term investment planning model for mixed energy infrastructure integrated with renewable- mental friendly. Compared with fossil energy, it is expensive to transport renewable energy for a long distance. Another problem of renewable energy is fluctuation and it is not so stable as fossil energy

  20. Integration of an Aggregate Flow Model with a Traffic Flow Simulator

    E-Print Network [OSTI]

    Integration of an Aggregate Flow Model with a Traffic Flow Simulator Robert Hoffman , Dengfeng Sun restrictions to aircraft movement are applied by air traffic controllers and traffic managers in response to demand overages or capacity shortfalls in sectors of airspace. To estimate and assess the efficiency

  1. Model-Driven Integration for a Service Placement Optimizer in a Sustainable Cloud of Clouds

    E-Print Network [OSTI]

    Suzuki, Jun

    --"Cloud of clouds" (or federated cloud) is an emerg- ing style of software deployment and execution to interoperate, federated clouds, model-driven system integration and sustainable clouds I. INTRODUCTION Cloud computing, cost effective (e.g., energy effi- cient) service/data placement and avoidance of "lock

  2. An Exact Modeling of Signal Statistics in Energy-integrating X-ray Computed Tomography

    E-Print Network [OSTI]

    used by modern computed tomography (CT) scanners and has been an interesting research topicAn Exact Modeling of Signal Statistics in Energy-integrating X-ray Computed Tomography Yi Fan1.i.d.), such as Gamma, Gaussian, etc, would be valid. A comparison study was performed to estimate the introduced errors

  3. Attorneys Interacting with Legal Information Systems: Tools for Mental Model Building and Task Integration

    E-Print Network [OSTI]

    Soergel, Dagobert

    Attorneys Interacting with Legal Information Systems: Tools for Mental Model Building and Task Integration Anita Komlodi Department of Information Systems, UMBC 1000 Hilltop Circle, Baltimore, MD 21250, +1-410-455-3212, komlodi@umbc.edu Dagobert Soergel College of Information Studies, University of Maryland 4105 Hornbake

  4. 1 | P a g e Implementing an Integrated Distributed Model in Finance

    E-Print Network [OSTI]

    Ollivier-Gooch, Carl

    1 | P a g e Implementing an Integrated Distributed Model in Finance There are significant changes taking place, effective today, across the University's Finance function. These changes reflect some key opportunities for our finance professionals through mentoring, talent development, career laddering, mobility

  5. Integrated Cellular and Gene Interaction Model for Cell Migration in Embryonic Development

    E-Print Network [OSTI]

    Song, Joe

    Integrated Cellular and Gene Interaction Model for Cell Migration in Embryonic Development Hien Nguyen and Mingzhou (Joe) Song Department of Computer Science New Mexico State University Las Cruces, NM, cells have their own operations, including mitosis, migration, communication with other cells, and death

  6. Extended Model Variety Analysis for Integrated Processing and Understanding of Signals

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Extended Model Variety Analysis for Integrated Processing and Understanding of Signals E. Dorken, S processing algorithm with respect to the class of all input signals that may po- tentially arise in a given each signal is correctly or incorrectly pro- cessed by the signal processing algorithm under consid

  7. Extended Model Variety Analysis for Integrated Processing and Understanding of Signals \\Lambda

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Extended Model Variety Analysis for Integrated Processing and Understanding of Signals \\Lambda E processing algorithm with respect to the class of all input signals that may po­ tentially arise in a given each signal is correctly or incorrectly pro­ cessed by the signal processing algorithm under consid

  8. CliCrop: a Crop Water-Stress and Irrigation Demand Model for an Integrated

    E-Print Network [OSTI]

    CliCrop: a Crop Water-Stress and Irrigation Demand Model for an Integrated Global Assessment Blanc and C. Adam Schlosser Report No. 214 April 2012 #12;The MIT Joint Program on the Science Change Science (CGCS) and the Center for Energy and Environmental Policy Research (CEEPR). These two

  9. Integrated Product Line Model for Semi-Automated Product Derivation Using Non-Functional Properties

    E-Print Network [OSTI]

    Kaestner, Christian

    Integrated Product Line Model for Semi-Automated Product Derivation Using Non-Functional Properties product lines (SPLs) allow to generate tailor- made software products by selecting and composing reusable an appro- priate support for semi-automated product derivation. We envision this derivation to be extended

  10. On-line economic optimization of energy systems using weather forecast information.

    SciTech Connect (OSTI)

    Zavala, V. M.; Constantinescu, E. M.; Krause, T.; Anitescu, M.

    2009-01-01

    We establish an on-line optimization framework to exploit weather forecast information in the operation of energy systems. We argue that anticipating the weather conditions can lead to more proactive and cost-effective operations. The framework is based on the solution of a stochastic dynamic real-time optimization (D-RTO) problem incorporating forecasts generated from a state-of-the-art weather prediction model. The necessary uncertainty information is extracted from the weather model using an ensemble approach. The accuracy of the forecast trends and uncertainty bounds are validated using real meteorological data. We present a numerical simulation study in a building system to demonstrate the developments.

  11. Model documentation Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    1996-02-26

    The Natural Gas Transmission and Distribution Model (NGTDM) of the National Energy Modeling System is developed and maintained by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting. This report documents the archived version of the NGTDM that was used to produce the natural gas forecasts presented in the Annual Energy Outlook 1996, (DOE/EIA-0383(96)). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic approach, and provides detail on the methodology employed. Previously this report represented Volume I of a two-volume set. Volume II reported on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.

  12. Reference wind farm selection for regional wind power prediction models

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Reference wind farm selection for regional wind power prediction models Nils Siebert George.siebert@ensmp.fr, georges.kariniotakis@ensmp.fr Abstract Short-term wind power forecasting is recognized today as a major requirement for a secure and economic integration of wind generation in power systems. This paper deals

  13. Wind Power Forecasting Error Frequency Analyses for Operational Power System Studies: Preprint

    SciTech Connect (OSTI)

    Florita, A.; Hodge, B. M.; Milligan, M.

    2012-08-01

    The examination of wind power forecasting errors is crucial for optimal unit commitment and economic dispatch of power systems with significant wind power penetrations. This scheduling process includes both renewable and nonrenewable generators, and the incorporation of wind power forecasts will become increasingly important as wind fleets constitute a larger portion of generation portfolios. This research considers the Western Wind and Solar Integration Study database of wind power forecasts and numerical actualizations. This database comprises more than 30,000 locations spread over the western United States, with a total wind power capacity of 960 GW. Error analyses for individual sites and for specific balancing areas are performed using the database, quantifying the fit to theoretical distributions through goodness-of-fit metrics. Insights into wind-power forecasting error distributions are established for various levels of temporal and spatial resolution, contrasts made among the frequency distribution alternatives, and recommendations put forth for harnessing the results. Empirical data are used to produce more realistic site-level forecasts than previously employed, such that higher resolution operational studies are possible. This research feeds into a larger work of renewable integration through the links wind power forecasting has with various operational issues, such as stochastic unit commitment and flexible reserve level determination.

  14. Integration of Feedstock Assembly System and Cellulosic Ethanol Conversion Models to Analyze Bioenergy System Performance

    SciTech Connect (OSTI)

    Jared M. Abodeely; Douglas S. McCorkle; Kenneth M. Bryden; David J. Muth; Daniel Wendt; Kevin Kenney

    2010-09-01

    Research barriers continue to exist in all phases of the emerging cellulosic ethanol biorefining industry. These barriers include the identification and development of a sustainable and abundant biomass feedstock, the assembly of viable assembly systems formatting the feedstock and moving it from the field (e.g., the forest) to the biorefinery, and improving conversion technologies. Each of these phases of cellulosic ethanol production are fundamentally connected, but computational tools used to support and inform analysis within each phase remain largely disparate. This paper discusses the integration of a feedstock assembly system modeling toolkit and an Aspen Plus® conversion process model. Many important biomass feedstock characteristics, such as composition, moisture, particle size and distribution, ash content, etc. are impacted and most effectively managed within the assembly system, but generally come at an economic cost. This integration of the assembly system and the conversion process modeling tools will facilitate a seamless investigation of the assembly system conversion process interface. Through the integrated framework, the user can design the assembly system for a particular biorefinery by specifying location, feedstock, equipment, and unit operation specifications. The assembly system modeling toolkit then provides economic valuation, and detailed biomass feedstock composition and formatting information. This data is seamlessly and dynamically used to run the Aspen Plus® conversion process model. The model can then be used to investigate the design of systems for cellulosic ethanol production from field to final product.

  15. Machine Learning Enhancement of Storm-Scale Ensemble Probabilistic Quantitative Precipitation Forecasts

    E-Print Network [OSTI]

    Xue, Ming

    Machine Learning Enhancement of Storm-Scale Ensemble Probabilistic Quantitative Precipitation uncertainty. Machine learning methods can produce calibrated probabilistic forecasts from the raw ensemble and machine learning are working to address these challenges. Numerical weather prediction (NWP) models

  16. An adaptive nonlinear MOS scheme for precipitation forecasts using neural networks

    E-Print Network [OSTI]

    Hsieh, William

    An adaptive nonlinear MOS scheme for precipitation forecasts using neural networks Yuval, William W A novel neural network (NN) based scheme performs nonlinear Model Output Statistics (MOS) for generating

  17. Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States

    E-Print Network [OSTI]

    Mathiesen, Patrick; Kleissl, Jan

    2011-01-01

    transport and  numerical weather modeling.   J.  Applied cross correlations.    Weather and Forecasting, 8:4, 401?of radiation for numerical weather prediction and climate 

  18. New modeling and control solutions for integrated microgrid system with respect to thermodynamics properties of generation and demand

    E-Print Network [OSTI]

    Liu, Fang-Yu, S.M. Massachusetts Institute of Technology

    2014-01-01

    This thesis investigates microgrid control stability with respect to thermodynamics behaviors of generation and demand. First, a new integrated microgrid model is introduced. This model consists of a combined cycle power ...

  19. Models for the Configuration and Integrity of Partially Oxidized Fuel Rod Cladding at High Temperatures

    SciTech Connect (OSTI)

    Siefken, L.J.

    1999-01-01

    Models were designed to resolve deficiencies in the SCDAP/RELAP5/MOD3.2 calculations of the configuration and integrity of hot, partially oxidized cladding. These models are expected to improve the calculations of several important aspects of fuel rod behavior. First, an improved mapping was established from a compilation of PIE results from severe fuel damage tests of the configuration of melted metallic cladding that is retained by an oxide layer. The improved mapping accounts for the relocation of melted cladding in the circumferential direction. Then, rules based on PIE results were established for calculating the effect of cladding that has relocated from above on the oxidation and integrity of the lower intact cladding upon which it solidifies. Next, three different methods were identified for calculating the extent of dissolution of the oxidic part of the cladding due to its contact with the metallic part. The extent of dissolution effects the stress and thus the integrity of the oxidic part of the cladding. Then, an empirical equation was presented for calculating the stress in the oxidic part of the cladding and evaluating its integrity based on this calculated stress. This empirical equation replaces the current criterion for loss of integrity which is based on temperature and extent of oxidation. Finally, a new rule based on theoretical and experimental results was established for identifying the regions of a fuel rod with oxidation of both the inside and outside surfaces of the cladding. The implementation of these models is expected to eliminate the tendency of the SCDAP/RELAP5 code to overpredict the extent of oxidation of the upper part of fuel rods and to underpredict the extent of oxidation of the lower part of fuel rods and the part with a high concentration of relocated material. This report is a revision and reissue of the report entitled, Improvements in Modeling of Cladding Oxidation and Meltdown.

  20. An Integrated Modeling and Data Management Strategy for Cellulosic Biomass Production Decisions

    SciTech Connect (OSTI)

    David J. Muth Jr.; K. Mark Bryden; Joshua B. Koch

    2012-07-01

    Emerging cellulosic bioenergy markets can provide land managers with additional options for crop production decisions. Integrating dedicated bioenergy crops such as perennial grasses and short rotation woody species within the agricultural landscape can have positive impacts on several environmental processes including increased soil organic matter in degraded soils, reduced sediment loading in watersheds, lower green house gas (GHG) fluxes, and reduced nutrient loading in watersheds. Implementing this type of diverse bioenergy production system in a way that maximizes potential environmental benefits requires a dynamic integrated modeling and data management strategy. This paper presents a strategy for designing diverse bioenergy cropping systems within the existing row crop production landscape in the midwestern United States. The integrated model developed quantifies a wide range environmental processes including soil erosion from wind and water, soil organic matter changes, and soil GHG fluxes within a geospatial data management framework. This framework assembles and formats information from multiple spatial and temporal scales. The data assembled includes yield and productivity data from harvesting equipment at the 1m scale, surface topography data from LiDAR mapping at the less than 1m scale, soil data from US soil survey databases at the 10m to 100m scale, and climate data at the county scale. These models and data tools are assembled into an integrated computational environment that is used to determine sustainable removal rates for agricultural residues for bioenergy production at the sub-field scale under a wide range of land management practices. Using this integrated model, innovative management practices including cover cropping are then introduced and evaluated for their impact on bioenergy production and important environmental processes. The impacts of introducing dedicated energy crops onto high-risk landscape positions currently being manage in row crop production are also investigated.

  1. The use of MAVIS II to integrate the modeling and analysis of explosive valve interactions

    SciTech Connect (OSTI)

    Ng, R.; Kwon, D.M.

    1998-12-31

    The MAVIS II computer program provides for the modeling and analysis of explosive valve interactions. This report describes the individual components of the program and how MAVIS II is used with other available tools to integrate the design and understanding of explosive valves. The rationale and model used for each valve interaction is described. Comparisons of the calculated results with available data have demonstrated the feasibility and accuracy of using MAVIS II for analytical studies of explosive valve interactions. The model used for the explosive or pyrotechnic used as the driving force in explosive valves is the most critical to be understood and modeled. MAVIS II is an advanced version that incorporates a plastic, as well as elastic, modeling of the deformations experienced when plungers are forced into a bore. The inclusion of a plastic model has greatly expanded the use of MAVIS for all categories (opening, closure, or combined) of valves, especially for the closure valves in which the sealing operation requires the plastic deformation of either a plunger or bore over a relatively large area. In order to increase its effectiveness, the use of MAVIS II should be integrated with the results from available experimental hardware. Test hardware such as the Velocity Interferometer System for Any Reflector (VISAR) and Velocity Generator test provide experimental data for accurate comparison of the actual valve functions. Variable Explosive Chamber (VEC) and Constant Explosive Volume (CEV) tests are used to provide the proper explosive equation-of-state for the MAVIS calculations of the explosive driving forces. The rationale and logistics of this integration is demonstrated through an example. A recent valve design is used to demonstrate how MAVIS II can be integrated with experimental tools to provide an understanding of the interactions in this valve.

  2. Wind power forecasting : state-of-the-art 2009.

    SciTech Connect (OSTI)

    Monteiro, C.; Bessa, R.; Miranda, V.; Botterud, A.; Wang, J.; Conzelmann, G.; Decision and Information Sciences; INESC Porto

    2009-11-20

    Many countries and regions are introducing policies aimed at reducing the environmental footprint from the energy sector and increasing the use of renewable energy. In the United States, a number of initiatives have been taken at the state level, from renewable portfolio standards (RPSs) and renewable energy certificates (RECs), to regional greenhouse gas emission control schemes. Within the U.S. Federal government, new energy and environmental policies and goals are also being crafted, and these are likely to increase the use of renewable energy substantially. The European Union is pursuing implementation of its ambitious 20/20/20 targets, which aim (by 2020) to reduce greenhouse gas emissions by 20% (as compared to 1990), increase the amount of renewable energy to 20% of the energy supply, and reduce the overall energy consumption by 20% through energy efficiency. With the current focus on energy and the environment, efficient integration of renewable energy into the electric power system is becoming increasingly important. In a recent report, the U.S. Department of Energy (DOE) describes a model-based scenario, in which wind energy provides 20% of the U.S. electricity demand in 2030. The report discusses a set of technical and economic challenges that have to be overcome for this scenario to unfold. In Europe, several countries already have a high penetration of wind power (i.e., in the range of 7 to 20% of electricity consumption in countries such as Germany, Spain, Portugal, and Denmark). The rapid growth in installed wind power capacity is expected to continue in the United States as well as in Europe. A large-scale introduction of wind power causes a number of challenges for electricity market and power system operators who will have to deal with the variability and uncertainty in wind power generation when making their scheduling and dispatch decisions. Wind power forecasting (WPF) is frequently identified as an important tool to address the variability and uncertainty in wind power and to more efficiently operate power systems with large wind power penetrations. Moreover, in a market environment, the wind power contribution to the generation portofolio becomes important in determining the daily and hourly prices, as variations in the estimated wind power will influence the clearing prices for both energy and operating reserves. With the increasing penetration of wind power, WPF is quickly becoming an important topic for the electric power industry. System operators (SOs), generating companies (GENCOs), and regulators all support efforts to develop better, more reliable and accurate forecasting models. Wind farm owners and operators also benefit from better wind power prediction to support competitive participation in electricity markets against more stable and dispatchable energy sources. In general, WPF can be used for a number of purposes, such as: generation and transmission maintenance planning, determination of operating reserve requirements, unit commitment, economic dispatch, energy storage optimization (e.g., pumped hydro storage), and energy trading. The objective of this report is to review and analyze state-of-the-art WPF models and their application to power systems operations. We first give a detailed description of the methodologies underlying state-of-the-art WPF models. We then look at how WPF can be integrated into power system operations, with specific focus on the unit commitment problem.

  3. An integral manifold approach to reduced order dynamic modeling of synchronous machines

    SciTech Connect (OSTI)

    Sauer, P.W.; Ahmed-Zaid, S.; Kokotovic, P.V.

    1988-02-01

    The concept of integral manifolds is used to systematically create improved reduced order models of synchronous machines. The approach is illustrated through a detailed example of a single machine connected to an infinite bus. The example shows the advantages of the manifold approach and also clarifies several issues about reduced order models of synchronous machines. The basic objective of the method is to include the effects of more complex models without actually including the additional differential equations. This is illustrated by including the effects of stator transients and damper windings on the swing equation without including the differential equations.

  4. Development of the Integrated Biomass Supply Analysis and Logistics Model (IBSAL)

    SciTech Connect (OSTI)

    Sokhansanj, Shahabaddine [ORNL; Webb, Erin [ORNL; Turhollow Jr, Anthony F [ORNL

    2008-06-01

    The Integrated Biomass Supply & Logistics (IBSAL) model is a dynamic (time dependent) model of operations that involve collection, harvest, storage, preprocessing, and transportation of feedstock for use at a biorefinery. The model uses mathematical equations to represent individual unit operations. These unit operations can be assembled by the user to represent the working rate of equipment and queues to represent storage at facilities. The model calculates itemized costs, energy input, and carbon emissions. It estimates resource requirements and operational characteristics of the entire supply infrastructure. Weather plays an important role in biomass management and thus in IBSAL, dictating the moisture content of biomass and whether or not it can be harvested on a given day. The model calculates net biomass yield based on a soil conservation allowance (for crop residue) and dry matter losses during harvest and storage. This publication outlines the development of the model and provides examples of corn stover harvest and logistics.

  5. Three Essays on Energy Economics and Forecasting 

    E-Print Network [OSTI]

    Shin, Yoon Sung

    2012-02-14

    and producer surplus in the transport fuel market will decrease. In the third essay, the Regression - Seasonal Autoregressive Integrated Moving Average (REGSARIMA) model is employed to predict the impact of air temperature on daily peak load demand...

  6. Integrating digital human modeling into virtual environment for ergonomic oriented design

    E-Print Network [OSTI]

    Ma, Liang; Bennis, Fouad; Hu, Bo; Zhang, Wei

    2010-01-01

    Virtual human simulation integrated into virtual reality applications is mainly used for virtual representation of the user in virtual environment or for interactions between the user and the virtual avatar for cognitive tasks. In this paper, in order to prevent musculoskeletal disorders, the integration of virtual human simulation and VR application is presented to facilitate physical ergonomic evaluation, especially for physical fatigue evaluation of a given population. Immersive working environments are created to avoid expensive physical mock-up in conventional evaluation methods. Peripheral motion capture systems are used to capture natural movements and then to simulate the physical operations in virtual human simulation. Physical aspects of human's movement are then analyzed to determine the effort level of each key joint using inverse kinematics. The physical fatigue level of each joint is further analyzed by integrating a fatigue and recovery model on the basis of physical task parameters. All the pr...

  7. Boundary integral solution of potential problems arising in the modelling of electrified oil films

    E-Print Network [OSTI]

    Chappell, David J

    2014-01-01

    We consider a class of potential problems on a periodic half-space for the modelling of electrified oil films, which are used in the development of novel switchable liquid optical devices (diffraction gratings). A boundary integral formulation which reduces the problem to the study of the oil-air interface alone is derived and solved in a highly efficient manner using the Nystr\\"{o}m method. The oil films encountered experimentally are typically very thin and thus an interface-only integral representation is important for avoiding the near-singularity problems associated with boundary integral methods for long slender domains. The super-algebraic convergence of the proposed methods is discussed and demonstrated via appropriate numerical experiments.

  8. The impact of social integration on student persistence in introductory Modeling Instruction courses

    E-Print Network [OSTI]

    Zwolak, Justyna P

    2015-01-01

    Increasing student retention and persistence -- in particular classes or in their major area of study -- is a challenge for universities. Students' academic and social integration into an institution seems to be vital for student retention, yet, research on the effect of interpersonal interactions is rare. Social network analysis is an approach that can be used to identify patterns of interaction that contribute to integration into the university. We analyze how students position within a social network in a Modeling Instruction (MI) course that strongly emphasizes interactive learning impacts their persistence in taking a subsequent MI course. We find that students with higher centrality at the end of the first semester of MI are more likely to enroll in a second semester of MI. While the correlation with increased persistence is an ongoing study, these findings suggest that student social integration influences persistence.

  9. Optimal combined wind power forecasts using exogeneous variables

    E-Print Network [OSTI]

    Optimal combined wind power forecasts using exogeneous variables Fannar ¨Orn Thordarson Kongens to the Klim wind farm using three WPPT forecasts based on different weather forecasting systems. It is shown of the thesis is combined wind power forecasts using informations from meteorological forecasts. Lyngby, January

  10. Weather Forecasts are for Wimps: Why Water Resource Managers Do Not Use Climate Forecasts

    E-Print Network [OSTI]

    Rayner, Steve; Lach, Denise; Ingram, Helen

    2005-01-01

    and Winter, S. G. : 1960, Weather Information and EconomicThe ENSO Signal 7, 4–6. WEATHER FORECASTS ARE FOR WIMPSWEATHER FORECASTS ARE FOR WIMPS ? : WHY WATER RESOURCE

  11. Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets

    SciTech Connect (OSTI)

    Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

    2005-02-09

    This paper evaluates the accuracy of two methods to forecast natural gas prices: using the Energy Information Administration's ''Annual Energy Outlook'' forecasted price (AEO) and the ''Henry Hub'' compared to U.S. Wellhead futures price. A statistical analysis is performed to determine the relative accuracy of the two measures in the recent past. A statistical analysis suggests that the Henry Hub futures price provides a more accurate average forecast of natural gas prices than the AEO. For example, the Henry Hub futures price underestimated the natural gas price by 35 cents per thousand cubic feet (11.5 percent) between 1996 and 2003 and the AEO underestimated by 71 cents per thousand cubic feet (23.4 percent). Upon closer inspection, a liner regression analysis reveals that two distinct time periods exist, the period between 1996 to 1999 and the period between 2000 to 2003. For the time period between 1996 to 1999, AEO showed a weak negative correlation (R-square = 0.19) between forecast price by actual U.S. Wellhead natural gas price versus the Henry Hub with a weak positive correlation (R-square = 0.20) between forecasted price and U.S. Wellhead natural gas price. During the time period between 2000 to 2003, AEO shows a moderate positive correlation (R-square = 0.37) between forecasted natural gas price and U.S. Wellhead natural gas price versus the Henry Hub that show a moderate positive correlation (R-square = 0.36) between forecast price and U.S. Wellhead natural gas price. These results suggest that agencies forecasting natural gas prices should consider incorporating the Henry Hub natural gas futures price into their forecasting models along with the AEO forecast. Our analysis is very preliminary and is based on a very small data set. Naturally the results of the analysis may change, as more data is made available.

  12. Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models

    SciTech Connect (OSTI)

    Cetiner, Mustafa Sacit; none,; Flanagan, George F.; Poore III, Willis P.; Muhlheim, Michael David

    2014-07-30

    An integrated simulation platform that couples probabilistic analysis-based tools with model-based simulation tools can provide valuable insights for reactive and proactive responses to plant operating conditions. The objective of this work is to demonstrate the benefits of a partial implementation of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Framework Specification through the coupling of advanced PRA capabilities and accurate multi-physics plant models. Coupling a probabilistic model with a multi-physics model will aid in design, operations, and safety by providing a more accurate understanding of plant behavior. This represents the first attempt at actually integrating these two types of analyses for a control system used for operations, on a faster than real-time basis. This report documents the development of the basic communication capability to exchange data with the probabilistic model using Reliability Workbench (RWB) and the multi-physics model using Dymola. The communication pathways from injecting a fault (i.e., failing a component) to the probabilistic and multi-physics models were successfully completed. This first version was tested with prototypic models represented in both RWB and Modelica. First, a simple event tree/fault tree (ET/FT) model was created to develop the software code to implement the communication capabilities between the dynamic-link library (dll) and RWB. A program, written in C#, successfully communicates faults to the probabilistic model through the dll. A systems model of the Advanced Liquid-Metal Reactor–Power Reactor Inherently Safe Module (ALMR-PRISM) design developed under another DOE project was upgraded using Dymola to include proper interfaces to allow data exchange with the control application (ConApp). A program, written in C+, successfully communicates faults to the multi-physics model. The results of the example simulation were successfully plotted.

  13. A New Method for History Matching and Forecasting Shale Gas/Oil Reservoir Production Performance with Dual and Triple Porosity Models 

    E-Print Network [OSTI]

    Samandarli, Orkhan

    2012-10-19

    Different methods have been proposed for history matching production of shale gas/oil wells which are drilled horizontally and usually hydraulically fractured with multiple stages. These methods are simulation, analytical models, and empirical...

  14. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).

    SciTech Connect (OSTI)

    Schultz, Peter Andrew

    2011-12-01

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

  15. Modeling Framework and Validation of a Smart Grid and Demand Response System for Wind Power Integration

    SciTech Connect (OSTI)

    Broeer, Torsten; Fuller, Jason C.; Tuffner, Francis K.; Chassin, David P.; Djilali, Ned

    2014-01-31

    Electricity generation from wind power and other renewable energy sources is increasing, and their variability introduces new challenges to the power system. The emergence of smart grid technologies in recent years has seen a paradigm shift in redefining the electrical system of the future, in which controlled response of the demand side is used to balance fluctuations and intermittencies from the generation side. This paper presents a modeling framework for an integrated electricity system where loads become an additional resource. The agent-based model represents a smart grid power system integrating generators, transmission, distribution, loads and market. The model incorporates generator and load controllers, allowing suppliers and demanders to bid into a Real-Time Pricing (RTP) electricity market. The modeling framework is applied to represent a physical demonstration project conducted on the Olympic Peninsula, Washington, USA, and validation simulations are performed using actual dynamic data. Wind power is then introduced into the power generation mix illustrating the potential of demand response to mitigate the impact of wind power variability, primarily through thermostatically controlled loads. The results also indicate that effective implementation of Demand Response (DR) to assist integration of variable renewable energy resources requires a diversity of loads to ensure functionality of the overall system.

  16. The Preservation of Physical Fashion Forecasts

    E-Print Network [OSTI]

    Kosztowny, Alexander John

    2015-01-01

    schools and their libraries, which use trend forecastingin archives and libraries would be that the trend forecastsin a library or archive, not exclusively to trend forecasts.

  17. Project Profile: Forecasting and Influencing Technological Progress...

    Energy Savers [EERE]

    R&D translates into improved performance and reduced costs for energy technologies. Motivation Technological forecasts, which plot the anticipated performance and costs of...

  18. Promotional forecasting in the grocery retail business

    E-Print Network [OSTI]

    Koottatep, Pakawkul

    2006-01-01

    Predicting customer demand in the highly competitive grocery retail business has become extremely difficult, especially for promotional items. The difficulty in promotional forecasting has resulted from numerous internal ...

  19. Wholesale Electricity Price Forecast This appendix describes the wholesale electricity price forecast of the Fifth Northwest Power

    E-Print Network [OSTI]

    to the electricity price forecast. This resource mix is used to forecast the fuel consumption and carbon dioxide (CO2Wholesale Electricity Price Forecast This appendix describes the wholesale electricity price forecast of the Fifth Northwest Power Plan. This forecast is an estimate of the future price of electricity

  20. 1Bureau of Meteorology | Water Information > INFORMATION SHEET 6 > Flood Forecasting and Warning Services Flood Forecasting

    E-Print Network [OSTI]

    Greenslade, Diana

    SHEET 6 1Bureau of Meteorology | Water Information > INFORMATION SHEET 6 > Flood Forecasting and Warning Services Flood Forecasting and Warning Services The Bureau of Meteorology (the Bureau) is responsible for providing an effective flood forecasting and warning service in each Australian state

  1. Subtask 2.4 - Integration and Synthesis in Climate Change Predictive Modeling

    SciTech Connect (OSTI)

    Jaroslav Solc

    2009-06-01

    The Energy & Environmental Research Center (EERC) completed a brief evaluation of the existing status of predictive modeling to assess options for integration of our previous paleohydrologic reconstructions and their synthesis with current global climate scenarios. Results of our research indicate that short-term data series available from modern instrumental records are not sufficient to reconstruct past hydrologic events or predict future ones. On the contrary, reconstruction of paleoclimate phenomena provided credible information on past climate cycles and confirmed their integration in the context of regional climate history is possible. Similarly to ice cores and other paleo proxies, acquired data represent an objective, credible tool for model calibration and validation of currently observed trends. It remains a subject of future research whether further refinement of our results and synthesis with regional and global climate observations could contribute to improvement and credibility of climate predictions on a regional and global scale.

  2. Forecast Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlex Fuels Energy JumpVyncke Jump to:Forecast

  3. Application of WRF/Chem-MADRID for real-time air quality forecasting over the Southeastern United States

    E-Print Network [OSTI]

    Zhang, Yang

    States Ming-Tung Chuang a , Yang Zhang a,*, Daiwen Kang b a Air Quality Forecasting Lab, North Carolina on a three-dimensional air quality model provides a powerful tool to forecast air quality and advise, inaccuracies in simulated meteorological variables such as 2-m temperature, 10-m wind speed, and precipitation

  4. Electronic copy available at: http://ssrn.com/abstract=2046853 Can Agent-Based Models Forecast Spot Prices in Electricity Markets? Evidence from the New

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    Spot Prices in Electricity Markets? Evidence from the New Zealand Electricity Market David Young1 , Stephen Poletti2 , Oliver Browne2 24th January 2012 Abstract Modelling price formation in electricity markets is a notoriously difficult process, due to physical constraints on electricity generation and flow

  5. Forecasting Market Demand for New Telecommunications Services: An Introduction

    E-Print Network [OSTI]

    Parsons, Simon

    Forecasting Market Demand for New Telecommunications Services: An Introduction Peter Mc in demand forecasting for new communication services. Acknowledgments: The writing of this paper commenced employers or consultancy clients. KEYWORDS: Demand Forecasting, New Product Marketing, Telecommunica- tions

  6. Dynamic Filtering and Mining Triggers in Mesoscale Meteorology Forecasting

    E-Print Network [OSTI]

    Plale, Beth

    Dynamic Filtering and Mining Triggers in Mesoscale Meteorology Forecasting Nithya N. Vijayakumar {rramachandran, xli}@itsc.uah.edu Abstract-- Mesoscale meteorology forecasting as a data driven application Triggers, Data Mining, Stream Processing, Meteorology Forecasting I. INTRODUCTION Mesoscale meteorologists

  7. Combining Spatial Statistical and Ensemble Information in Probabilistic Weather Forecasts

    E-Print Network [OSTI]

    Raftery, Adrian

    Combining Spatial Statistical and Ensemble Information in Probabilistic Weather Forecasts VERONICA ensembles that generates calibrated probabilistic forecast products for weather quantities at indi- vidual perturbation (GOP) method, and extends BMA to generate calibrated probabilistic forecasts of whole weather

  8. Solid waste integrated cost analysis model: 1991 project year report. Part 2

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    The purpose of the City of Houston`s 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA`s Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

  9. The integrated Earth System Model (iESM): formulation and functionality

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Collins, W. D.; Craig, A. P.; Truesdale, J. E.; Di Vittorio, A. V.; Jones, A. D.; Bond-Lamberty, B.; Calvin, K. V.; Edmonds, J. A.; Kim, S. H.; Thomson, A. M.; et al

    2015-01-21

    The integrated Earth System Model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an Integrated Assessment Model (IAM) and an Earth System Model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species, land use and land cover change, and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. The iESM projectmore »integrates the economic and human dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less

  10. Integrate-and-fire neurons with threshold noise: A tractable model of how interspike interval correlations affect neuronal signal transmission

    E-Print Network [OSTI]

    Chacron, Maurice

    transmission properties. For this purpose, we employ two simple firing models, one of which generates a renewal exclusively at high frequencies, the renewal model can transfer more information than the nonrenewal modelIntegrate-and-fire neurons with threshold noise: A tractable model of how interspike interval

  11. A transmission matrix for a fused pair of integrable defects in the sine-Gordon model

    E-Print Network [OSTI]

    E. Corrigan; C. Zambon

    2010-06-04

    Within the quantum sine-Gordon model a transmission matrix describing the scattering of a soliton with a fused pair of integrable defects is proposed. The result is consistent with the classical picture of scattering and highlights the differences between two defects located at separated points and two defects fused at the same point. Moreover, the analysis reveals how, for certain choices of parameters, both the soliton-soliton and the lightest-breather-soliton S-matrices of the sine-Gordon model are embedded within the transmission matrix, supporting an interpretation in which defects may be regarded as soliton constituents.

  12. A Hydro-Economic Approach to Representing Water Resources Impacts in Integrated Assessment Models

    SciTech Connect (OSTI)

    Kirshen, Paul H.; Strzepek, Kenneth, M.

    2004-01-14

    Grant Number DE-FG02-98ER62665 Office of Energy Research of the U.S. Department of Energy Abstract Many Integrated Assessment Models (IAM) divide the world into a small number of highly aggregated regions. Non-OECD countries are aggregated geographically into continental and multiple-continental regions or economically by development level. Current research suggests that these large scale aggregations cannot accurately represent potential water resources-related climate change impacts. In addition, IAMs do not explicitly model the flow regulation impacts of reservoir and ground water systems, the economics of water supply, or the demand for water in economic activities. Using the International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT) model of the International Food Policy Research Institute (IFPRI) as a case study, this research implemented a set of methodologies to provide accurate representation of water resource climate change impacts in Integrated Assessment Models. There were also detailed examinations of key issues related to aggregated modeling including: modeling water consumption versus water withdrawals; ground and surface water interactions; development of reservoir cost curves; modeling of surface areas of aggregated reservoirs for estimating evaporation losses; and evaluating the importance of spatial scale in river basin modeling. The major findings include: - Continental or national or even large scale river basin aggregation of water supplies and demands do not accurately capture the impacts of climate change in the water and agricultural sector in IAMs. - Fortunately, there now exist gridden approaches (0.5 X 0.5 degrees) to model streamflows in a global analysis. The gridded approach to hydrologic modeling allows flexibility in aligning basin boundaries with national boundaries. This combined with GIS tools, high speed computers, and the growing availability of socio-economic gridded data bases allows assignment of demands to river basins to create hydro-economic zones that respect as much as possible both political and hydrologic integrity in different models. - To minimize pre-processing of data and add increased flexibility to modeling water resources and uses, it is recommended that water withdrawal demands be modeled, not consumptive requirements even though this makes the IAM more complex. - IAMs must consider changes in water availability for irrigation under climate change; ignoring them is more inaccurate than ignoring yield changes in crops under climate change. - Determining water availability and cost in river basins must include modeling streamflows, reservoirs and their operations, and ground water and its interaction with surface water. - Scale issues are important. The results from condensing demands and supplies in a large complex river basin to one node can be misleading for all uses under low flow conditions and instream flow uses under all conditions. Monthly is generally the most accurate scale for modeling river flows and demands. Challenges remain in integrating hydrologic units with political boundaries but the gridded approach to hydrologic modeling allows flexibility in aligning basin boundaries with political boundaries. - Using minimal reservoir cost data, it is possible to use basin topography to estimate reservoir storage costs. - Reservoir evaporation must be considered when assessing the usable water in a watershed. Several methods are available to estimate the relationship between aggregated storage surface area and storage volume. - For existing or future IAMs that can not use the appropriate aggregation for water, a water preprocessor may be required due the finer scale of hydrologic impacts.

  13. Oceanic stochastic parametrizations in a seasonal forecast system

    E-Print Network [OSTI]

    Andrejczuk, M; Juricke, S; Palmer, T N; Weisheimer, A; Zanna, L

    2015-01-01

    We study the impact of three stochastic parametrizations in the ocean component of a coupled model, on forecast reliability over seasonal timescales. The relative impacts of these schemes upon the ocean mean state and ensemble spread are analyzed. The oceanic variability induced by the atmospheric forcing of the coupled system is, in most regions, the major source of ensemble spread. The largest impact on spread and bias came from the Stochastically Perturbed Parametrization Tendency (SPPT) scheme - which has proven particularly effective in the atmosphere. The key regions affected are eddy-active regions, namely the western boundary currents and the Southern Ocean. However, unlike its impact in the atmosphere, SPPT in the ocean did not result in a significant decrease in forecast error. Whilst there are good grounds for implementing stochastic schemes in ocean models, our results suggest that they will have to be more sophisticated. Some suggestions for next-generation stochastic schemes are made.

  14. Smooth Calibration, Leaky Forecasts, and Finite Recall

    E-Print Network [OSTI]

    Hart, Sergiu

    Smooth Calibration, Leaky Forecasts, and Finite Recall Sergiu Hart October 2015 SERGIU HART c 2015 ­ p. #12;Smooth Calibration, Leaky Forecasts, and Finite Recall Sergiu Hart Center for the Study of Rationality Dept of Mathematics Dept of Economics The Hebrew University of Jerusalem hart@huji.ac.il http://www.ma.huji.ac.il/hart

  15. Multivariate Time Series Forecasting in Incomplete Environments

    E-Print Network [OSTI]

    Roberts, Stephen

    Multivariate Time Series Forecasting in Incomplete Environments Technical Report PARG 08-03 Seung of Oxford December 2008 #12;Seung Min Lee and Stephen J. Roberts Technical Report PARG 08-03 Multivariate missing observations and forecasting future values in incomplete multivariate time series data. We study

  16. Weather and Forecasting EARLY ONLINE RELEASE

    E-Print Network [OSTI]

    Weather and Forecasting EARLY ONLINE RELEASE This is a preliminary PDF of the author, Guangzhou 510301, China9 2. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological10, China20 21 22 23 24 Submitted to Weather and Forecasting25 2014. 12. 2826 27 Corresponding author: Dr

  17. Weather and Forecasting EARLY ONLINE RELEASE

    E-Print Network [OSTI]

    Johnson, Richard H.

    Weather and Forecasting EARLY ONLINE RELEASE This is a preliminary PDF of the author Fort Collins, Colorado7 October 20128 (submitted to Weather and Forecasting)9 1 Corresponding author address: Rebecca D. Adams-Selin, HQ Air Force Weather Agency 16th Weather Squadron, 101 Nelson Dr., Offutt

  18. Short-term load forecasting using generalized regression and probabilistic neural networks in the electricity market

    SciTech Connect (OSTI)

    Tripathi, M.M.; Upadhyay, K.G.; Singh, S.N.

    2008-11-15

    For the economic and secure operation of power systems, a precise short-term load forecasting technique is essential. Modern load forecasting techniques - especially artificial neural network methods - are particularly attractive, as they have the ability to handle the non-linear relationships between load, weather temperature, and the factors affecting them directly. A test of two different ANN models on data from Australia's Victoria market is promising. (author)

  19. U.S. Department of Energy Workshop Report: Solar Resources and Forecasting

    SciTech Connect (OSTI)

    Stoffel, T.

    2012-06-01

    This report summarizes the technical presentations, outlines the core research recommendations, and augments the information of the Solar Resources and Forecasting Workshop held June 20-22, 2011, in Golden, Colorado. The workshop brought together notable specialists in atmospheric science, solar resource assessment, solar energy conversion, and various stakeholders from industry and academia to review recent developments and provide input for planning future research in solar resource characterization, including measurement, modeling, and forecasting.

  20. The Wind Forecast Improvement Project (WFIP): A Public/Private...

    Office of Environmental Management (EM)

    The Wind Forecast Improvement Project (WFIP): A PublicPrivate Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations The...

  1. Bidding wind energy exploiting wind speed forecasts Antonio Giannitrapani, Simone Paoletti,

    E-Print Network [OSTI]

    Garulli, Andrea

    -ahead generation profile for a wind power producer by exploiting wind speed forecasts provided by a meteorological service. In the con- sidered framework, the wind power producer is called to take part integration in the grid is causing serious problems to transmission and distribution system operators [2]. One

  2. Integrated system modeling analysis of a cryogenic multi-cell deflecting-mode cavity resonator

    SciTech Connect (OSTI)

    Shin, Young-Min [Department of Physics, Northern Illinois University, Dekalb, Illinois 60115 (United States) [Department of Physics, Northern Illinois University, Dekalb, Illinois 60115 (United States); Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States); Church, Michael [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States)] [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States)

    2013-09-15

    A deflecting mode cavity is the integral element for six-dimensional phase-space beam control in bunch compressors and emittance transformers at high energy beam test facilities. RF performance of a high-Q device is, however, highly sensitive to operational conditions, in particular in a cryo-cooling environment. Using analytic calculations and RF simulations, we examined cavity parameters and deflecting characteristics of TM{sub 110,?} mode of a 5 cell resonator in a liquid nitrogen cryostat, which has long been used at the Fermilab A0 Photoinjector (A0PI). The sensitivity analysis indicated that the cavity could lose 30%–40% of deflecting force due to defective input power coupling accompanying non-uniform field distribution across the cells with 40 ? 50 MeV electron beam and 70–80 kW klystron power. Vacuum-cryomodules of the 5 cell cavity are planned to be installed at the Fermilab Advanced Superconducting Test Accelerator facility. Comprehensive modeling analysis integrated with multi-physics simulation tools showed that RF loading of 1 ms can cause a ?5 K maximum temperature increase, corresponding to a ?4.3 ?m/ms deformation and a 1.32 MHz/K maximum frequency shift. The integrated system modeling analysis will improve design process of a high-Q cavity with more accurate prediction of cryogenic RF performance under a high power pulse operation.

  3. An Interactive Dynamic Model for Integrating Knowledge Management Methods and Knowledge Sharing Technology in a Traditional Classroom

    E-Print Network [OSTI]

    Phoha, Vir V.

    An Interactive Dynamic Model for Integrating Knowledge Management Methods and Knowledge Sharing Technology in a Traditional Classroom Vir V. Phoha Computer Science Louisiana Tech University Ruston, LA Management methods and Knowledge Sharing technology to integrate the acquisition of skills and relevant

  4. A Case Study on the Model-Based Design and Integration of Automotive Cyber-Physical Systems

    E-Print Network [OSTI]

    Koutsoukos, Xenofon D.

    A Case Study on the Model-Based Design and Integration of Automotive Cyber-Physical Systems Di--Cyber-physical systems (CPS), such as automotive systems, are very difficult to design due to the tight interactions of an integrated automotive control system. The system is composed of two independently designed controllers

  5. NASA's new modeling framework for integrating cloud processes explicitly within each grid column of a general circulation model can improve realism over the conventional model that

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    NASA's new modeling framework for integrating cloud processes explicitly within each grid column, AND SIMPSON--Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland; CHERN--Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, and Goddard Earth Sciences and Technology Center

  6. An integrated model for the post-solidification shape and grain morphology of fusion welds

    E-Print Network [OSTI]

    Kidess, Anton; Duggan, Gregory; Browne, David J; Kenjereš, Saša; Richardson, Ian; Kleijn, Chris R

    2015-01-01

    Through an integrated macroscale/mesoscale computational model, we investigate the developing shape and grain morphology during the melting and solidification of a weld. In addition to macroscale surface tension driven fluid flow and heat transfer, we predict the solidification progression using a mesoscale model accounting for realistic solidification kinetics, rather than quasi-equilibrium thermodynamics. The tight coupling between the macroscale and the mesoscale distinguishes our results from previously published studies. The inclusion of Marangoni driven fluid flow and heat transfer, both during heating and cooling, was found to be crucial for accurately predicting both weld pool shape and grain morphology. However, if only the shape of the weld pool is of interest, a thermodynamic quasi-equilibrium solidification model, neglecting solidification kinetics, was found to suffice when including fluid flow and heat transfer. We demonstrate that the addition of a sufficient concentration of approximately 1 $\\...

  7. Integrated canopy, building energy and radiosity model for 3D urban design

    E-Print Network [OSTI]

    Burdet, Etienne; Morand, Denis; Diab, Youssef

    2014-01-01

    We present an integrated, three dimensional, model of urban canopy, building energy and radiosity, for early stage urban designs and test it on four urban morphologies. All sub-models share a common descriptions of the urban morphology, similar to 3D urban design master plans and have simple parameters. The canopy model is a multilayer model, with a new discrete layer approach that does not rely on simplified geometry such as canyon or regular arrays. The building energy model is a simplified RC equivalent model, with no hypotheses on internal zoning or wall composition. We use the CitySim software for the radiosity model. We study the effects of convexity, the number of buildings and building height, at constant density and thermal characteristics. Our results suggest that careful three dimensional morphology design can reduce heat demand by a factor of 2, especially by improving insolation of lower levels. The most energy efficient morphology in our simulations has both the highest surface/volume ratio and ...

  8. An Integrated Model for Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    SciTech Connect (OSTI)

    D. Muth; K. M. Bryden

    2003-12-01

    Agricultural residues have been identified as a significant potential resource for bioenergy production, but serious questions remain about the sustainability of harvesting residues. Agricultural residues play an important role in limiting soil erosion from wind and water and in maintaining soil organic carbon. Because of this, multiple factors must be considered when assessing sustainable residue harvest limits. Validated and accepted modeling tools for assessing these impacts include the Revised Universal Soil Loss Equation Version 2 (RUSLE2), the Wind Erosion Prediction System (WEPS), and the Soil Conditioning Index. Currently, these models do not work together as a single integrated model. Rather, use of these models requires manual interaction and data transfer. As a result, it is currently not feasible to use these computational tools to perform detailed sustainable agricultural residue availability assessments across large spatial domains or to consider a broad range of land management practices. This paper presents an integrated modeling strategy that couples existing datasets with the RUSLE2 water erosion, WEPS wind erosion, and Soil Conditioning Index soil carbon modeling tools to create a single integrated residue removal modeling system. This enables the exploration of the detailed sustainable residue harvest scenarios needed to establish sustainable residue availability. Using this computational tool, an assessment study of residue availability for the state of Iowa was performed. This study included all soil types in the state of Iowa, four representative crop rotation schemes, variable crop yields, three tillage management methods, and five residue removal methods. The key conclusions of this study are that under current management practices and crop yields nearly 26.5 million Mg of agricultural residue are sustainably accessible in the state of Iowa, and that through the adoption of no till practices residue removal could sustainably approach 40 million Mg. However, when considering the economics and logistics of residue harvest, yields below 2.25 Mg ha-1 are generally considered to not be viable for a commercial bioenergy system. Applying this constraint, the total agricultural residue resource available in Iowa under current management practices is 19 million Mg. Previously published results have shown residue availability from 22 million Mg to over 50 million Mg in Iowa.

  9. Development of Probabilistic Risk Assessment Model for BWR Shutdown Modes 4 and 5 Integrated in SPAR Model

    SciTech Connect (OSTI)

    S. T. Khericha; S. Sancakter; J. Mitman; J. Wood

    2010-06-01

    Nuclear plant operating experience and several studies show that the risk from shutdown operation during modes 4, 5, and 6 can be significant This paper describes development of the standard template risk evaluation models for shutdown modes 4, and 5 for commercial boiling water nuclear power plants (BWR). The shutdown probabilistic risk assessment model uses full power Nuclear Regulatory Commission’s (NRC’s) Standardized Plant Analysis Risk (SPAR) model as the starting point for development. The shutdown PRA models are integrated with their respective internal events at-power SPAR model. This is accomplished by combining the modified system fault trees from SPAR full power model with shutdown event tree logic. For human reliability analysis (HRA), the SPAR HRA (SPAR-H) method is used which requires the analysts to complete relatively straight forward worksheet, including the performance shaping factors (PSFs). The results are then used to estimate HEP of interest. The preliminary results indicate the risk is dominated by the operator’s ability to diagnose the events and provide long term cooling.

  10. LANL JOWOG 31 2012 Forecast

    SciTech Connect (OSTI)

    Vidlak, Anton J. II [Los Alamos National Laboratory

    2012-08-08

    Joint Working Group (JOWOG) 31, Nuclear Weapons Engineering, has a particularly broad scope of activities within its charter which emphasizes systems engineering. JOWOG 31 brings together experts from AWE and the national laboratories to address engineering issues associated with warhead design and certification. Some of the key areas of interaction, as addressed by the HOCWOGs are: (1) Engineering Analysis, (2) Hydrodynamic Testing, (3) Environmental Testing, and (4) Model Based Integrated Toolkit (MBIT). Gas Transfer Systems and Condition Monitoring interaction has been moved back to JOWOG 31. The regularly scheduled JOWOG 31 activities are the General Sessions, Executive Sessions, Focused Exchanges and HOCWOGs. General Sessions are scheduled every 12-18 months and are supported by the four design laboratories (AWE, LANL, LLNL, and SNL). Beneficial in educating the next generation of weapons engineers and establishing contacts between AWE and the US laboratory personnel. General Sessions are based on a blend of presentations and workshops centered on various themed subjects directly related to Stockpile Stewardship. HOCWOG meetings are more narrowly focused than the General Sessions. They feature presentations by experts in the field with a greater emphasis on round table discussions. Typically about 20 people attend. Focused exchanges are generally the result of interactions within JOWOG general sessions or HOCWOG meetings. They generally span a very specific topic of current interest within the US and UK.

  11. Upstream Measurements of Wind Profiles with Doppler Lidar for Improved Wind Energy Integration

    SciTech Connect (OSTI)

    Rodney Frehlich

    2012-10-30

    New upstream measurements of wind profiles over the altitude range of wind turbines will be produced using a scanning Doppler lidar. These long range high quality measurements will provide improved wind power forecasts for wind energy integration into the power grid. The main goal of the project is to develop the optimal Doppler lidar operating parameters and data processing algorithms for improved wind energy integration by enhancing the wind power forecasts in the 30 to 60 minute time frame, especially for the large wind power ramps. Currently, there is very little upstream data at large wind farms, especially accurate wind profiles over the full height of the turbine blades. The potential of scanning Doppler lidar will be determined by rigorous computer modeling and evaluation of actual Doppler lidar data from the WindTracer system produced by Lockheed Martin Coherent Technologies, Inc. of Louisville, Colorado. Various data products will be investigated for input into numerical weather prediction models and statistically based nowcasting algorithms. Successful implementation of the proposed research will provide the required information for a full cost benefit analysis of the improved forecasts of wind power for energy integration as well as the added benefit of high quality wind and turbulence information for optimal control of the wind turbines at large wind farms.

  12. Modeling the Integrated Performance of Dispersion and Monolithic U-Mo Based Fuels

    SciTech Connect (OSTI)

    Daniel M. Wachs; Douglas E. Burkes; Steven L. Hayes; Karen Moore; Greg Miller; Gerard Hofman; Yeon Soo Kim

    2006-10-01

    The evaluation and prediction of integrated fuel performance is a critical component of the Reduced Enrichment for Research and Test Reactors (RERTR) program. The PLATE code is the primary tool being developed and used to perform these functions. The code is being modified to incorporate the most recent fuel/matrix interaction correlations as they become available for both aluminum and aluminum/silicon matrices. The code is also being adapted to treat cylindrical and square pin geometries to enhance the validation database by including the results gathered from various international partners. Additional modeling work has been initiated to evaluate the thermal and mechanical performance requirements unique to monolithic fuels during irradiation.

  13. Inclusion of biomass burning in WRF-Chem: Impact of wildfires on weather forecasts

    SciTech Connect (OSTI)

    Grell, G. A.; Freitas, Saulo; Stuefer, Martin; Fast, Jerome D.

    2011-06-06

    A plume rise algorithm for wildfires was included in WRF-Chem, and applied to look at the impact of intense wildfires during the 2004 Alaska wildfire season on weather forecasts using model resolutions of 10km and 2km. Biomass burning emissions were estimated using a biomass burning emissions model. In addition, a 1-D, time-dependent cloud model was used online in WRF-Chem to estimate injection heights as well as the final emission rates. It was shown that with the inclusion of the intense wildfires of the 2004 fire season in the model simulations, the interaction of the aerosols with the atmospheric radiation led to significant modifications of vertical profiles of temperature and moisture in cloud-free areas. On the other hand, when clouds were present, the high concentrations of fine aerosol (PM2.5) and the resulting large numbers of Cloud Condensation Nuclei (CCN) had a strong impact on clouds and microphysics, with decreased precipitation coverage and precipitation amounts during the first 12 hours of the integration, but significantly stronger storms during the afternoon hours.

  14. Forecasting Random Walks Under Drift Instability

    E-Print Network [OSTI]

    Pesaran, M Hashem; Pick, Andreas

    will yield a biased forecast but will continue to have the least variance. On the other hand a forecast based on the sub-sample {yTi , yTi+1, . . . , yT }, where Ti > 1 is likely to have a lower bias but could be inefficient due to a higher variance... approach considered in Pesaran and Timmermann (2007) is to use different sub-windows to forecast and then average the outcomes, either by means of cross-validated weights or by simply using equal weights. To this end consider the sample {yTi , yTi+1...

  15. 1993 Solid Waste Reference Forecast Summary

    SciTech Connect (OSTI)

    Valero, O.J.; Blackburn, C.L. [Westinghouse Hanford Co., Richland, WA (United States); Kaae, P.S.; Armacost, L.L.; Garrett, S.M.K. [Pacific Northwest Lab., Richland, WA (United States)

    1993-08-01

    This report, which updates WHC-EP-0567, 1992 Solid Waste Reference Forecast Summary, (WHC 1992) forecasts the volumes of solid wastes to be generated or received at the US Department of Energy Hanford Site during the 30-year period from FY 1993 through FY 2022. The data used in this document were collected from Westinghouse Hanford Company forecasts as well as from surveys of waste generators at other US Department of Energy sites who are now shipping or plan to ship solid wastes to the Hanford Site for disposal. These wastes include low-level and low-level mixed waste, transuranic and transuranic mixed waste, and nonradioactive hazardous waste.

  16. Integration of Nonlinear CDU Models in RefineryCDU Models in Refinery

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    naphtha Swing cut model Refinery Production LPG 18 20 Light Naphtha 6 6 Premium Gasoline 20 20 Offers lower net cost & different feed quantities Reg. Gasoline 80 92 Gas Oil 163 170 Fuel Oil 148 160 Net Cost of the refinery Crude distillation unit (CDU) 5 #12;CDU & C d d C lCDU & Cascaded Columns Cascaded Columns

  17. Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Ela, E.; Milligan, M.

    2011-10-01

    This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.

  18. Wind-Wave Probabilistic Forecasting based on Ensemble

    E-Print Network [OSTI]

    Wind-Wave Probabilistic Forecasting based on Ensemble Predictions Maxime FORTIN Kongens Lyngby 2012.imm.dtu.dk IMM-PhD-2012-86 #12;Summary Wind and wave forecasts are of a crucial importance for a number weather forecasts and do not take any possible correlation into ac- count. Since wind and wave forecasts

  19. Metrics for Evaluating the Accuracy of Solar Power Forecasting (Presentation)

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B.; Florita, A.; Lu, S.; Hamann, H.; Banunarayanan, V.

    2013-10-01

    This presentation proposes a suite of metrics for evaluating the performance of solar power forecasting.

  20. CIM-EARTH: Community integrated model of economic and resource trajectories for humankind.

    SciTech Connect (OSTI)

    Elliott, J.; Foster, I.; Judd, K.; Moyer, E.; Munson, T.; Univ. of Chicago; Hoover Inst.

    2010-01-01

    Climate change is a global problem with local climatic and economic impacts. Mitigation policies can be applied on large geographic scales, such as a carbon cap-and-trade program for the entire U.S., on medium geographic scales, such as the NOx program for the northeastern U.S., or on smaller scales, such as statewide renewable portfolio standards and local gasoline taxes. To enable study of the environmental benefits, transition costs, capitalization effects, and other consequences of mitigation policies, we are developing dynamic general equilibrium models capable of incorporating important climate impacts. This report describes the economic framework we have developed and the current Community Integrated Model of Economic and Resource Trajectories for Humankind (CIM-EARTH) instance.