Sample records for integrated environmental monitoring

  1. Integration of wireless sensor networks in environmental monitoring cyber infrastructure

    E-Print Network [OSTI]

    Huang, Yan

    Integration of wireless sensor networks in environmental monitoring cyber infrastructure Jue Yang √? to revolutionize many science and engineering domains. We present a novel environmental monitoring system collection, management, visualization, dissemination, and exchange, conforming to the new Sensor Web

  2. An Environmental Monitoring System with Integrated Wired and Wireless Sensors

    E-Print Network [OSTI]

    Huang, Yan

    environmental monitoring cyber infrastruc- ture that features (1) soil moisture monitoring with flexible spatial Environmental Observatory (TEO) infrastructure [9] for long-term operation. The new WSN-based soil moistureAn Environmental Monitoring System with Integrated Wired and Wireless Sensors Jue Yang, Chengyang

  3. Radiation protection instrumentation : passive integrating dosimetry systems for environmental and personal monitoring Part 1: general characteristics and performance requirements

    E-Print Network [OSTI]

    International Electrotechnical Commission. Geneva

    2007-01-01T23:59:59.000Z

    Radiation protection instrumentation : passive integrating dosimetry systems for environmental and personal monitoring

  4. Scientific Opportunities for Monitoring at Environmental Remediation Sites (SOMERS): Integrated Systems-Based Approaches to Monitoring

    SciTech Connect (OSTI)

    Bunn, Amoret L.; Wellman, Dawn M.; Deeb, Rula A.; Hawley, Elizabeth L.; Truex, Michael J.; Peterson, Mark; Freshley, Mark D.; Pierce, Eric M.; McCord, John; Young, Michael H.; Gilmore, Tyler J.; Miller, Rick; Miracle, Ann L.; Kaback, Dawn; Eddy-Dilek, Carol; Rossabi, Joe; Lee, Michelle H.; Bush, Richard P.; Beam , Paul; Chamberlain, G. M.; Marble, Justin; Whitehurst, Latrincy; Gerdes, Kurt D.; Collazo, Yvette

    2012-05-15T23:59:59.000Z

    Through an inter-disciplinary effort, DOE is addressing a need to advance monitoring approaches from sole reliance on cost- and labor-intensive point-source monitoring to integrated systems-based approaches such as flux-based approaches and the use of early indicator parameters. Key objectives include identifying current scientific, technical and implementation opportunities and challenges, prioritizing science and technology strategies to meet current needs within the DOE complex for the most challenging environments, and developing an integrated and risk-informed monitoring framework.

  5. Environmental Monitoring Plan, Revision 6

    SciTech Connect (OSTI)

    Gallegos, G M; Bertoldo, N A; Blake, R G; Campbell, C G; Grayson, A R; Nelson, J C; Revelli, M A; Rosene, C A; Wegrecki, T; Williams, R A; Wilson, K R; Jones, H E

    2012-03-02T23:59:59.000Z

    The purpose of environmental monitoring is to promote the early identification of, and response to, potential adverse environmental impacts associated with Lawrence Livermore National Laboratory (LLNL) operations. Environmental monitoring supports the Integrated Safety Management System (ISMS), International Organization for Standardization (ISO) 14001 Environmental Management Systems standard, and U. S. Department of Energy (DOE) Order 458.1, Radiation Protection of the Public and the Environment. Specifically, environmental monitoring enables LLNL to detect, characterize, and respond to releases from LLNL activities; assess impacts; estimate dispersal patterns in the environment; characterize the pathways of exposure to members of the public; characterize the exposures and doses to individuals and to the population; and to evaluate the potential impacts to the biota in the vicinity of LLNL. Environmental monitoring is also a major component of compliance demonstration for permits and other regulatory requirements. The Environmental Monitoring Plan (EMP) addresses the sample collection and analytical work supporting environmental monitoring to ensure the following: (1) A consistent system for collecting, assessing, and documenting environmental data of known and documented quality; (2) A validated and consistent approach for sampling and analysis of samples to ensure laboratory data meets program-specific needs and requirements within the framework of a performance-based approach for analytical laboratory work; and (3) An integrated sampling approach to avoid duplicative data collection. LLNL prepares the EMP because it provides an organizational framework for ensuring that environmental monitoring work, which is integral to the implementation of LLNL's Environmental Management System, is conducted appropriately. Furthermore, the Environmental Monitoring Plan helps LLNL ensure compliance with DOE Order 231.1 Change 2, Environment, Safety and Health Reporting, which require the publication of an annual report that characterizes the site's environmental management performance. To summarize, the general regulatory drivers for this environmental monitoring plan are ISO 14001, DOE Order 458.1, and DOE Order 231.1. The environmental monitoring addressed by this plan includes preoperational characterization and assessment, effluent and surveillance monitoring, and permit and regulatory compliance monitoring. Additional environmental monitoring is conducted at LLNL as part of compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, also known as Superfund). LLNL coordinates its ground water surveillance monitoring program with the CERCLA monitoring program to gain sampling efficiencies.

  6. Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Holland, R.C. [Science Applications International Corp., San Diego, CA (United States)

    1993-07-01T23:59:59.000Z

    This Environmental Monitoring Plan was written to fulfill the requirements of Department of Energy (DOE) Order 5400.1 and DOE Environmental Regulatory Guide DOE/EH 0173T. This Plan documents the background, organizational structure, and methods used for effluent monitoring and environmental surveillance at Sandia National Laboratories/California. The design, rationale, and historical results of the environmental monitoring system are discussed in detail. Throughout the Plan, recommendations for improvements to the monitoring system are made. This revision to the Environmental Monitoring Plan was written to document the changes made to the Monitoring Program during 1992. Some of the data (most notably the statistical analyses of past monitoring data) has not been changed.

  7. Environmental Monitoring Plan, Revision 5

    SciTech Connect (OSTI)

    Gallegos, G M; Blake, R G; Bertoldo, N A; Campbell, C G; Coty, J; Folks, K; Grayson, A R; Jones, H E; Nelson, J C; Revelli, M A; Wegrecki, T; Williams, R A; Wilson, K

    2010-01-27T23:59:59.000Z

    The purpose of environmental monitoring is to promote the early identification of, and response to, potential adverse environmental impacts associated with Lawrence Livermore National Laboratory (LLNL) operations. Environmental monitoring supports the Integrated Safety Management System (ISMS), International Organization for Standardization (ISO) 14001 Environmental Management Systems standard, and U. S. Department of Energy (DOE) Order 450.1A, Environmental Protection Program. Specifically, in conformance with DOE Order 450.1A, Attachment 1, paragraph 1(b)(5), environmental monitoring enables LLNL to detect, characterize, and respond to releases from LLNL activities; assess impacts; estimate dispersal patterns in the environment; characterize the pathways of exposure to members of the public; characterize the exposures and doses to individuals and to the population; and to evaluate the potential impacts to the biota in the vicinity of LLNL. Environmental monitoring also serves to demonstrate compliance with permits and other regulatory requirements. The Environmental Monitoring Plan (EMP) addresses the sample collection and analytical work supporting environmental monitoring to ensure the following: (1) A consistent system for collecting, assessing, and documenting environmental data of known and documented quality. (2) A validated and consistent approach for sampling and analysis of samples to ensure laboratory data meets program-specific needs and requirements within the framework of a performance-based approach for analytical laboratory work. (3) An integrated sampling approach to avoid duplicative data collection. Until its cancellation in January 2003, DOE Order 5400.1 required the preparation of an environmental monitoring plan. Neither DOE Order 450.1A nor the ISO 14001 standard are as prescriptive as DOE Order 5400.1, in that neither expressly requires an EMP. However, LLNL continues to prepare the EMP because it provides an organizational framework for ensuring that this work, which is integral to the implementation of LLNL's Environmental Management System, is conducted appropriately. Furthermore, the Environmental Monitoring Plan helps LLNL ensure compliance with DOE Order 5400.5, Radiation Protection of the Public and the Environment, and DOE Order 231.1 Change 2, Environment, Safety and Health Reporting, which require the publication of an annual report that characterizes the site's environmental management performance. To summarize, the general regulatory drivers for this environmental monitoring plan are ISO 14001, DOE Order 450.1A, DOE Order 5400.5, and DOE Order 231.1. The environmental monitoring addressed by this plan includes preoperational characterization and assessment, effluent and surveillance monitoring, and permit and regulatory compliance monitoring. Additional environmental monitoring is conducted at LLNL as part of compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, also known as Superfund). LLNL coordinates its ground water surveillance monitoring program with the CERCLA monitoring program to gain sampling efficiencies. (See LLNL [1992] and LLNL [2008] for information about LLNL's CERCLA activities).

  8. Environmental monitoring plan - environmental monitoring section. Revision 1

    SciTech Connect (OSTI)

    Wilt, G.C. [ed.; Tate, P.J.; Brigdon, S.L. [and others

    1994-11-01T23:59:59.000Z

    This report presents the environmental monitoring plan for the Lawrence Livermore National Laboratory. A site characterization is provided along with monitoring and measurement techniques and quality assurance measures.

  9. 2002 WIPP Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2002-09-30T23:59:59.000Z

    DOE Order 5400.1, General Environmental Protection Program, requires each DOE | facility to prepare an environmental management plan (EMP). This document is | prepared for WIPP in accordance with the guidance contained in DOE Order 5400.1; DOE Order 5400.5, Radiation Protection of the Public and Environment; applicable sections of Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T; DOE, 1991); and the Title 10 Code of Federal Regulations (CFR) Part 834, ''Radiation Protection of the Public and Environment'' (draft). Many sections of DOE Order 5400.1 have been replaced by DOE Order 231.1, which is the driver for the annual Site Environmental Report (SER) and the guidance source for preparing many environmental program documents. The WIPP Project is operated by Westinghouse TRU Solutions (WTS) for the DOE. This plan defines the extent and scope of WIPP's effluent and environmental | monitoring programs during the facility's operational life and also discusses WIPP's quality assurance/quality control (QA/QC) program as it relates to environmental monitoring. In addition, this plan provides a comprehensive description of environmental activities at WIPP including: A summary of environmental programs, including the status of environmental monitoring activities A description of the WIPP Project and its mission A description of the local environment, including demographics An overview of the methodology used to assess radiological consequences to the public, including brief discussions of potential exposure pathways, routine and accidental releases, and their consequences Responses to the requirements described in the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance.

  10. 1999 Environmental Monitoring Program Report

    SciTech Connect (OSTI)

    L. V. Street

    2000-09-01T23:59:59.000Z

    This report describes the calendar year 1999 compliance monitoring and environmental surveillance activities of the Idaho National Engineering and Environmental Laboratory management and operating contractor Environmental Monitoring Program. This report includes results of sampling performed by the Drinking Water, Effluent, Storm Water, Groundwater Monitoring, and Environmental Surveillance Programs. This report compares the 1999 results to program-specific regulatory guidelines and past data to evaluate trends. The primary purposes of the monitoring and surveillance activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standards, and to ensure protection of public health and the environment. Surveillance of environmental media did not identify any previously unknown environmental problems or trends, which would indicate a loss of control or unplanned releases from facility operations. The Idaho National Engineering and Environmental Laboratory complied with permits and applicable regulations, with the expectation of nitrogen in two disposal pond effluent streams iron and total coliform bacteria in groundwater downgradient from one disposal well, and coliform bacteria in drinking water systems at two facilities. Maintenance activities were performed on the two drinking water systems and tested prior to putting back into service. The monitoring and surveillance results demonstrate that the public health and environment were protected.

  11. WIPP Documents - Environmental Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEureka AnalyticsLarge file sizeMonitoring

  12. 1983 environmental monitoring report

    SciTech Connect (OSTI)

    Day, L.E.; Naidu, J.R. (eds.)

    1984-06-01T23:59:59.000Z

    The environmental levels of radioactivity and other pollutants found in the vicinity of BNL during 1983 are summarized. The amounts of radioactivity and other pollutants released in airborne and liquid effluents from Laboratory facilities to the environment are also indicated. The environmental data includes external radiation levels; radioactivity of air particulates; tritium concentrations; the amounts and concentrations of radioactivity in and the water quality of the stream into which liquid effluents are released; the concentrations of radioactivity in biota from the stream; the concentrations of radioactivity in and the water quality of ground waters underlying the Laboratory; and concentrations of radioactivity in milk samples obtained in the vicinity of the Laboratory. The amounts of radioactivity released in airborne and liquid effluents from laboratory facilities to the environment were within allowable standards as stipulated in DOE Order 5480.1. Other pollutants, such as metals, organic compounds, etc., in the effluents released from the Laboratory were well below federal, state and local standards as applied to site specific conditions. 34 references, 9 figures, 17 tables.

  13. Environmental Monitoring Plan: Environmental Monitoring Section. Appendix A, Procedures

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    This document presents information about the environmental monitoring program at Lawrence Livermore National Laboratory. Topics discussed include: air sampling; air tritium calibrations; storm water discharge; non-storm water discharge; sampling locations; ground water sampling; noise and blast forecasting; analytical laboratory auditing; document retention; procedure writing; quality assurance programs for sampling; soil and sediment sampling; sewage sampling; diversion facility tank sampling; vegetation and foodstuff sampling; and radiological dose assessments.

  14. Idaho National Laboratory Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Joanne L. Knight

    2008-04-01T23:59:59.000Z

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, ďEnvironmental Protection Program,Ē and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  15. Idaho National Laboratory Site Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Joanne L. Knight

    2010-10-01T23:59:59.000Z

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, ďEnvironmental Protection Program,Ē and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  16. Idaho National Laboratory Site Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Joanne L. Knight

    2012-08-01T23:59:59.000Z

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, ďEnvironmental Protection Program,Ē and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  17. Waste Isolation Pilot Plant Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2008-03-12T23:59:59.000Z

    U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problems; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) explains the rationale and design criteria for the environmental monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document changes in the environmental monitoring program. Guidance for preparation of EMPs is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance.

  18. An Infrared Spectral Library for Atmospheric Environmental Monitoring...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Infrared Spectral Library for Atmospheric Environmental Monitoring. An Infrared Spectral Library for Atmospheric Environmental Monitoring. Abstract: Infrared (IR) spectroscopy...

  19. ORR Environmental Monitoring Program 6-1 6. ORR Environmental Monitoring Program

    E-Print Network [OSTI]

    Pennycook, Steve

    are analyzed to assess the environmental impact of DOE operations on the entire reservation and the surroundingORR Environmental Monitoring Program 6-1 6. ORR Environmental Monitoring Program In addition to environmental monitoring conducted at the three major Oak Ridge DOE installations, reservation

  20. Waste Isolation Pilot Plant Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2004-02-19T23:59:59.000Z

    U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problem; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) has been written to contain the rationale and design criteria for the monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document any proposed changes in the environmental monitoring program. Guidance for preparation of Environmental Monitoring Plans is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance. The plan will be effective when it is approved by the appropriate Head of Field Organization or their designee. The plan discusses major environmental monitoring and hydrology activities at the WIPP and describes the programs established to ensure that WIPP operations do not have detrimental effects on the environment. This EMP is to be reviewed annually and updated every three years unless otherwise requested by the DOE or contractor.

  1. Radionuclide Sensors for Environmental Monitoring: From Flow...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abstract: The development of in situ sensors for ultratrace detection applications in process control and environmental monitoring remains a significant challenge. Such sensors...

  2. Idaho National Laboratory Site Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Jenifer Nordstrom

    2014-02-01T23:59:59.000Z

    This plan provides a high-level summary of environmental monitoring performed by various organizations within and around the Idaho National Laboratory (INL) Site as required by U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management, and DOE Order 458.1, Radiation Protection of the Public and the Environment, Guide DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance, and in accordance with 40 Code of Federal Regulations (CFR) 61, National Emission Standards for Hazardous Air Pollutants. The purpose of these orders is to 1) implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations, and 2) to establish standards and requirements for the operations of DOE and DOE contractors with respect to protection of the environment and members of the public against undue risk from radiation. This plan describes the organizations responsible for conducting environmental monitoring across the INL Site, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. Detailed monitoring procedures, program plans, or other governing documents used by contractors or agencies to implement requirements are referenced in this plan. This plan covers all planned monitoring and environmental surveillance. Nonroutine activities such as special research studies and characterization of individual sites for environmental restoration are outside the scope of this plan.

  3. Environmental monitoring report for calendar year 1984

    SciTech Connect (OSTI)

    Stencel, J.R.

    1985-05-01T23:59:59.000Z

    The results of the environmental monitoring program for CY84 for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The Princeton Large Torus (PLT), Princeton Beta Experiment (PBX), and PPPL's largest tokamak, the Tokamak Fusion Test Reactor (TFTR) had a complete year of run time. In addition, the S-1 Spheromak was in operation and the RF Test Facility came on-line. The phased approach of TFTR environmental monitoring continued with the addition of neutron monitors. During CY84 there were no adverse effects to the environment resulting from any operational program at PPPL, and the Laboratory was in compliance with all applicable Federal, State, and local environmental regulations.

  4. Environmental monitoring report for calendar year 1985

    SciTech Connect (OSTI)

    Stencel, J.R.

    1986-05-01T23:59:59.000Z

    The results of the environmental monitoring program for CY85 for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. All of the tokamak machines, the Princeton Large Torus (PLT), Princeton Beta Experiment (PBX), and the Tokamak Fusion Test Reactor (TFTR), has a full year of run time. In addition, the S-1 Spheromak and the RF Test Facility were in operation. The phased approach to TFTR environmental monitoring continued with the establishment of locations for off-site monitoring. An environmental committee established in December 1984 reviewed items of environmental importance. During CY85 no adverse effects to the environmental resulted from any operational program activities at PPPL, and the Laboratory was in compliance with all applicable Federal, State, and local environmental regulations.

  5. Waste Isolation Pilot Plant Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Westinghouse Electric Company Waste Isolation Division

    1999-09-29T23:59:59.000Z

    DOE Order 5400.1, General Environmental Protection Program Requirements (DOE, 1990a), requires each DOE facility to prepare an EMP. This document is prepared for WIPP in accordance with the guidance contained in DOE Order 5400.1; DOE Order 5400.5, Radiation Protection of the Public and Environment (DOE, 1990b); Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T; DOE, 1991); and the Title 10 Code of Federal Regulations (CFR) 834, Radiation Protection of the Public and Environment (Draft). Many sections of DOE Order 5400.1 have been replaced by DOE Order 231.1 (DOE, 1995), which is the driver for the Annual Site Environmental Report (ASER) and the guidance source for preparing many environmental program documents. The WIPP project is operated by Westinghouse Electric Company, Waste Isolation Division (WID), for the DOE. This plan defines the extent and scope of the WIPP's effluent and environmental monitoring programs during the facility's operational life and also discusses the WIPP's quality assurance/quality control (QA/QC) program as it relates to environmental monitoring. In addition, this plan provides a comprehensive description of environmental activities at WIPP including: A summary of environmental programs, including the status of environmental monitoring activities A description of the WIPP project and its mission A description of the local environment, including demographics An overview of the methodology used to assess radiological consequences to the public, including brief discussions of potential exposure pathways, routine and accidental releases, and their consequences Responses to the requirements described in the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE, 1991). This document references DOE orders and other federal and state regulations affecting environmental monitoring programs at the site. WIPP procedures, which implement the requirements of this program plan, are also referenced. The DOE regulates its own activities for radiation protection of the public under the authority of the Atomic Energy Act of 1954, as amended (42 U.S.C. 2011). The effluent and environmental monitoring activities prescribed by DOE Order 5400.5 and the DOE/EH-0173T guidance manual are designed to ensure that DOE facilities implement standards and regulations to protect members of the public and the environment against undue risk from radiation. Effluent and environmental monitoring also provide 1999 Environmental Monitoring Plan DOE/WIPP 99-2194 the data necessary to demonstrate compliance with applicable environmental protection regulations. Other federal agencies, such as the U.S. Environmental Protection Agency (EPA), are empowered through specific legislation to regulate certain aspects of DOE activities potentially affecting public health and safety or the environment. Presidential Executive Order 12088, Federal Compliance with Pollution Control Standards (43 FR 47707), requires the heads of executive agencies to ensure that all federal facilities and activities comply with applicable pollution control standards and to take all necessary actions for the prevention, control, and abatement of environmental pollution. Beyond statutory requirements, the DOE has established a general environmental protection policy. The Environmental Policy Statement (issued by then Secretary Herrington on January 8, 1986, and extended on January 7, 1987) describes the DOE's commitment to national environmental protection goals in that it conducts operations ''in an environmentally safe and sound manner . . . in compliance with the letter and spirit of applicable environmental statutes, regulations, and standards'' (DOE, 1986). This Environmental Policy Statement also states the DOE's commitment to ''good environmental management in all of its programs and at all of its facilities in order to correct existing environmental problems, to minimize risks to the environment or public health, and to anticipate and address pote

  6. Environmental monitoring plan, July 1--December 31, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    The Tennessee Department of Environment and Conservation, DOE Oversight Division (TDEC/DOE-O) under the terms of the Tennessee Oversight Agreement (TOA) are providing annual reports: reporting of State`s monitoring and analysis, and findings of DOE`s quality and effectiveness of DOE`s monitoring and surveillance. This report blends some of both of the required annual reports as described in the TOA section A.7.2.2. The Federal Facilities Agreement (FFA) integrates the Resource Conservation and Recovery Act (RCRA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for the Oak Ridge Reservation. This report presents the results of environmental monitoring in Tennessee in the following areas: surface waters; ground water; air; and fish and wildlife. In addition, radiation monitoring has been conducted in all of these areas.

  7. Environmental monitoring report for calendar year 1983

    SciTech Connect (OSTI)

    Stencel, J.R.

    1984-05-01T23:59:59.000Z

    The results of the environmental monitoring program for CY83 for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. Besides the Princeton Large Torus (PLT) and Poloidal Divertor Experiment (PDX), PPPL's largest tokamak, the Tokamak Fusion Test Reactor (TFTR) had a full year of operation. A phased approach has been planned to assure the proper level of monitoring to coincide with the TFTR program. During CY83 there were no adverse effects to the environment resulting from any operational program at PPPL and the Laboratory was in compliance with all applicable Federal, State, and local environmental regulations.

  8. Environmental monitoring report for calendar year 1988

    SciTech Connect (OSTI)

    Stencel, J.R.

    1989-05-01T23:59:59.000Z

    The results of the 1988 environmental monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. Two of three tokamak machines, the Princeton Beta Experiment Modification (PBX-M) and the Tokamak Fusion Test Reactor (TFTR), were in operation during the year. The Environmental Committee, which is a standing committee of the Executive Safety Board (ESB), continued to review items of environmental importance. During CY88 no adverse effects to the environment or public resulted from any operational program activities at PPPL, and the Laboratory was in compliance with all applicable federal, state, and local environmental regulations. Over the last two years the Department of Energy conducted major environmental audits at all of its facilities, including PPPL. No significant environmental concerns were noted as a result of the inspection and sampling at PPPL. 43 refs., 25 figs., 33 tabs.

  9. Integrated nuclear radiation detector and monitor

    SciTech Connect (OSTI)

    Biehl, B.L.; Lieberman, S.I.

    1982-06-22T23:59:59.000Z

    A battery powered device which can continuously monitor and detect nuclear radiation utilizing fully integrated circuitry and which is provided with an alarm which alerts persons when the radiation level exceeds a predetermined threshold.

  10. Brookhaven National Laboratory environmental monitoring plan for Calendar Year 1996

    SciTech Connect (OSTI)

    Naidu, J.R.; Paquette, D.; Lee, R. [and others

    1996-10-01T23:59:59.000Z

    As required by DOE Order 5400.1, each U.S. Department of Energy (DOE) site, facility, or activity that uses, generates, releases, or manages significant quantities of hazardous materials shall provide a written Environmental Monitoring Plan (EMP) covering effluent monitoring and environmental surveillance. DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance, provides specific guidance regarding environmental monitoring activities.

  11. forreading. Integrated Water Management for Environmental

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    : Environmental flows; Reservoir reoperation; Integrated water management; Adaptive management; Rio GrandeO nly forreading. D o notD ow nload. Integrated Water Management for Environmental Flows in the Rio the environment. This paper presents an integrated water management approach to meet current and future water

  12. Routine environmental monitoring schedule, calendar year 1998

    SciTech Connect (OSTI)

    McKinney, S.M.

    1997-11-24T23:59:59.000Z

    This document provides the Environmental Restorations Contractor (ERC) and the Project Hanford Management Contractor (PHMC) a schedule in accordance with the HNF-PRO-454, Inactive Waste Sites` HNF-PRO-455, Solid Waste 3 Management4 and BHI-EE-02, Environmental Requirements, of monitoring and sampling, routines for the near-facility environmental monitoring program during calendar year (CY) 1998. Every attempt will be made to consistently follow this schedule; any deviation from this schedule will be documented by an internal memorandum (DSI) explaining the reason for the deviation. The DSI will be issued by the scheduled performing organization and directed to Environmental Monitoring and Investigations. The survey frequencies for particular sites are determined by the technical judgment of Environmental Monitoring and investigations and may depend on the site history, radiological status, use, and general conditions. Additional surveys may be requested at irregular frequencies if conditions warrant. All radioactive wastes sites are scheduled to be surveyed at least annually. Any newly discovered wastes sites not documented by this schedule will be included in the revised schedule for CY 1999. The outside perimeter road surveys of 200 East and West Area and the rail survey from the 300 Area to Columbia Center will be performed in the year 2000 per agreement with Department of Energy, Richland Field Office. This schedule does not discuss staffing needs, nor does it list the monitoring equipment to be used in completing specific routines. Personnel performing routines to meet this schedule shall communicate any need for 1332 assistance in completing these routines to Radiological Control management and Environmental Monitoring and Investigations. After each routine survey is completed, a copy of the survey record, maps, and data sheets will be forwarded to Environmental Monitoring and Investigations. These routine surveys will not be considered complete until this documentation is received. At the end of each month, the ERC and PHMC radiological control organizations shall forward a copy of the Routine Signoff Sheet and a DSI validating the completion of the scheduled routine surveys for that month.

  13. Routine Operational Environmental Monitoring schedule, CY 1994

    SciTech Connect (OSTI)

    Schmidt, J.W.

    1993-12-01T23:59:59.000Z

    This document provides Health Physics (HP) a schedule in accordance with the Environmental Compliance Manual, WHC-CM-7-5, of monitoring and sampling routines for the Operational Environmental Monitoring (OEM) Program during calendar year (CY) 1994. The survey frequencies for particular sites are determined by the technical judgment of EES and may depend on the site history, radiological status, use, and general conditions. Additional surveys may be requested at irregular frequencies if conditions warrant. All radioactive waste sites are scheduled to be surveyed annually at a minimum. Any newly discovered waste sites not documented by this schedule will be included in the revised schedule for CY 1995. This schedule does not discuss the manpower needs nor does it list the monitoring equipment to be used in completing specific routines.

  14. Environmental radiation exposure: Regulation, monitoring, and assessment

    SciTech Connect (OSTI)

    Chen, S.Y.; Yu, C.; Hong, K.J.

    1991-01-01T23:59:59.000Z

    Radioactive releases to the environment from nuclear facilities constitute a public health concern. Protecting the public from such releases can be achieved through the establishment and enforcement of regulatory standards. In the United States, numerous standards have been promulgated to regulate release control at nuclear facilities. Most recent standards are more restrictive than those in the past and require that radioactivity levels be as low as reasonably achievable (ALARA). Environmental monitoring programs and radiological dose assessment are means of ensuring compliance with regulations. Environmental monitoring programs provide empirical information on releases, such as the concentrations of released radioactivity in environmental media, while radiological dose assessment provides the analytical means of quantifying dose exposures for demonstrating compliance.

  15. System specification for the integrated monitoring and surveillance system

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    This System Specification establishes the requirements for the Plutonium Focus Area (PFA) Integrated Monitoring and Surveillance System (IMSS). In this document, ``Integrated Monitoring and Surveillance System`` is used to describe the concept of integrated sensors, computers, personnel, and systems that perform the functions of sensing conditions, acquiring data, monitoring environmental safety and health, controlling and accounting for materials, monitoring material stability, monitoring container integrity, transferring data, and analyzing, reporting, and storing data. This concept encompasses systems (e.g. sensors, personnel, databases, etc.) that are already in place at the sites but may require modifications or additions to meet all identified surveillance requirements. The purpose of this System Specification is to provide Department of Energy (DOE) sites that store plutonium materials with a consolidation of all known requirements for the storage and surveillance of 3013 packages of stabilized plutonium metals and oxides. This compilation may be used (1) as a baseline for surveillance system design specifications where 3013 packages of stabilized plutonium metals and oxides will be stored and monitored; (2) as a checklist for evaluating existing surveillance systems to ensure that all requirements are met for the storage and surveillance of 3013 packages of stabilized plutonium metals and oxides; and (3) as a baseline for preparing procurement specifications tailored for site specific storage and surveillance of 3013 packages of stabilized plutonium metals and oxides.

  16. Alpha-environmental continuous air monitor inlet

    DOE Patents [OSTI]

    Rodgers, John C. (Santa Fe, NM)

    2003-01-01T23:59:59.000Z

    A wind deceleration and protective shroud that provides representative samples of ambient aerosols to an environmental continuous air monitor (ECAM) has a cylindrical enclosure mounted to an input on the continuous air monitor, the cylindrical enclosure having shrouded nozzles located radially about its periphery. Ambient air flows, often along with rainwater flows into the nozzles in a sampling flow generated by a pump in the continuous air monitor. The sampling flow of air creates a cyclonic flow in the enclosure that flows up through the cylindrical enclosure until the flow of air reaches the top of the cylindrical enclosure and then is directed downward to the continuous air monitor. A sloped platform located inside the cylindrical enclosure supports the nozzles and causes any moisture entering through the nozzle to drain out through the nozzles.

  17. Routine environmental monitoring schedule, calendar year 1995

    SciTech Connect (OSTI)

    Schmidt, J.W.; Markes, B.M.; McKinney, S.M.

    1994-12-01T23:59:59.000Z

    This document provides Bechtel Hanford, Inc. (BHI) and Westinghouse Hanford Company (WHC) a schedule of monitoring and sampling routines for the Operational Environmental Monitoring (OEM) program during calendar year (CY) 1995. Every attempt will be made to consistently follow this schedule; any deviation from this schedule will be documented by an internal memorandum (DSI) explaining the reason for the deviation. The DSI will be issued by the scheduled performing organization and directed to Near-Field Monitoring. The survey frequencies for particular sites are determined by the technical judgment of Near-Field Monitoring and may depend on the site history, radiological status, use and general conditions. Additional surveys may be requested at irregular frequencies if conditions warrant. All radioactive wastes sites are scheduled to be surveyed at least annually. Any newly discovered wastes sites not documented by this schedule will be included in the revised schedule for CY 1995.

  18. Near-Surface Engineered Environmental Barrier Integrity

    SciTech Connect (OSTI)

    Piet, S.J.; Breckenridge, R.P.

    2002-05-15T23:59:59.000Z

    The INEEL Environmental Systems Research and Analysis (ESRA) program has launched a new R and D project on Near-Surface Engineered Environmental Barrier Integrity to increase knowledge and capabilities for using engineering and ecological components to improve the integrity of near-surface barriers used to confine contaminants from the public and the environment. The knowledge gained and the capabilities built will help verify the adequacy of past remedial decisions and enable improved solutions for future cleanup decisions. The research is planned to (a) improve the knowledge of degradation mechanisms (weathering, biological, geological, chemical, radiological, and catastrophic) in times shorter than service life, (b) improve modeling of barrier degradation dynamics, (c) develop sensor systems to identify degradation prior to failure, and (d) provide a better basis for developing and testing of new barrier systems to increase reliability and reduce the risk of failure. Our project combine s selected exploratory studies (benchtop and field scale), coupled effects accelerated aging testing and the meso-scale, testing of new monitoring concepts, and modeling of dynamic systems. The performance of evapo-transpiration, capillary, and grout-based barriers will be examined.

  19. Near-Surface Engineered Environmental Barrier Integrity

    SciTech Connect (OSTI)

    Piet, Steven James; Breckenridge, Robert Paul; Beller, John Michael; Geesey, Gill Gregroy; Glenn, David Frankie; Jacobson, Jacob Jordan; Martian, Pete; Matthern, Gretchen Elise; Mattson, Earl Douglas; Porro, Indrek; Southworth, Finis Hio; Steffler, Eric Darwin; Stormberg, Angelica Isabel; Stormberg, Gregory John; Versteeg, Roelof Jan; White, Gregory J

    2002-08-01T23:59:59.000Z

    The INEEL Environmental Systems Research and Analysis (ESRA) program has launched a new R&D project on Near-Surface Engineered Environmental Barrier Integrity to increase knowledge and capabilities for using engineering and ecological components to improve the integrity of near-surface barriers used to confine contaminants from the public and the environment. The knowledge gained and the capabilities built will help verify the adequacy of past remedial decisions and enable improved solutions for future cleanup decisions. The research is planned to (a) improve the knowledge of degradation mechanisms (weathering, biological, geological, chemical, radiological, and catastrophic) in times shorter than service life, (b) improve modeling of barrier degradation dynamics, (c) develop sensor systems to identify degradation prior to failure, and (d) provide a better basis for developing and testing of new barrier systems to increase reliability and reduce the risk of failure. Our project combines selected exploratory studies (benchtop and field scale), coupled effects accelerated aging testing and the meso-scale, testing of new monitoring concepts, and modeling of dynamic systems. The performance of evapo- transpiration, capillary, and grout-based barriers will be examined.

  20. Environmental monitoring report for Calendar Year 1986

    SciTech Connect (OSTI)

    Stencel, J.R.

    1987-05-01T23:59:59.000Z

    The results of the 1986 environmental monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. Two of three large tokamak machines, the Princeton Large Torus (PLT) and the Tokamak Fusion Test Reactor (TFTR) were in operation during the year. The Princeton Beta Experiment (PBX) was shut down in December 1985 to undergo major modifications, and will recommence operations in 1987. PLT was shut down in December 1986. In addition, the S-1 Spheromak and the Radio-Frequency Test Facility (RFTF) were operated on a limited basis in 1986. The Environmental Committee became a standing committee of the Executive Safety Board (ESB) and continued to review items of environmental importance. During CY86 no adverse effects to the environment or public resulted from any operational program activities at PPPL, and the Laboratory was in compliance with all applicable federal, state, and local environmental regulations.

  1. Environmental monitoring report for calendar year 1987

    SciTech Connect (OSTI)

    Stencel, J.R.

    1988-05-01T23:59:59.000Z

    The results of the 1987 environmental monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. Two of three large tokamak machines, the Princeton Beta Experiment Modification (PBX-M) and the Tokamak Fusion Test Reactor (TFTR) were in operation during the year. In addition, the S-1 Spheromak and the Radio-Frequency Test Facility (RFTF) were operated on a limited basis in 1987. The Environmental Committee which is a standing committee of the Executive Safety Board (ESB) continued to review items of environmental importance. During CY87 no adverse effects to the environment or public resulted from any operational program activities at PPPL, and the Laboratory was in compliance with all applicable Federal, State, and local environmental regulations. 41 refs., 24 figs., 34 tabs.

  2. Environmental monitoring for nuclear safeguards. Background paper

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    To assure that states are not violating their Non-Proliferation Treaty commitments, the International Atomic Energy Agency (IAEA) must verify that states do not possess convert nuclear facilities-a mission that prior to the 1991 Gulf War, it had neither the political backing nor the resources to conduct. The IAEA recognizes the importance of this new mission and is in the process of assuming it. One of the tools it is exploring to provide some indication of the presence of secret, or undeclared, nuclear activities and facilities is environmental monitoring. Modern sampling and analysis technologies provide powerful tools to detect the presence of characteristic substances that are likely to be emitted by such illicit activities. This background paper examines the prospects for such technologies to improve nuclear safeguards. It concludes that environmental monitoring can greatly increase the ability to detect undeclared activity at declared, or known, sites, and it can significantly increase the chances of detecting and locating undeclared sites.

  3. ORR Environmental Monitoring Program 6-1 6. Oak Ridge Reservation Environmental

    E-Print Network [OSTI]

    Pennycook, Steve

    program are analyzed to assess the environmental impact of DOE operations on the entire reservationORR Environmental Monitoring Program 6-1 6. Oak Ridge Reservation Environmental Monitoring Program In addition to environmental monitoring conducted at the three major Oak Ridge DOE installations

  4. Environmental regulatory guide for radiological effluent monitoring and environmental surveillance

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    Under the Atomic Energy Act of 1954, as amended, the US Department of Energy (DOE) is obligated to regulate its own activities so as to provide radiation protection for both workers and the public.'' Presidential Executive Order 12088, Federal Compliance with Pollution Control Standards,'' further requires the heads of executive agencies to ensure that all Federal facilities and activities comply with applicable pollution control standards and to take all actions necessary for the prevention, control, and abatement of environmental pollution. This regulatory guide describes the elements of an acceptable effluent monitoring and environmental surveillance program for DOE sites involving radioactive materials. These elements are applicable to all DOE and contractor activities for which the DOE exercises environmental, safety, and health responsibilities, and are intended to be applicable over the broad range of DOE facilities and sites. In situations where the high-priority elements may not provide sufficient coverage of a specific monitoring or surveillance topic, the document provides additional guidance. The high-priority elements are written as procedures and activities that should'' be performed, and the guidance is written as procedures and activities that should'' be performed. The regulatory guide both incorporates and expands on requirements embodied in DOE 5400.5 and DOE 5400.1. 221 refs., 2 figs., 6 tabs.

  5. Method for monitoring environmental and corrosion

    DOE Patents [OSTI]

    Glass, Robert S. (Livermore, CA); Clarke, Jr., Willis L. (San Ramon, CA); Ciarlo, Dino R. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

  6. Method for monitoring environmental and corrosion

    DOE Patents [OSTI]

    Glass, R.S.; Clarke, W.L. Jr.; Ciarlo, D.R.

    1995-08-01T23:59:59.000Z

    A corrosion sensor array is described incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis. 7 figs.

  7. Integrating science, environmental education, public outreach, conservation, and capacity-building through hands-on bird ecology

    E-Print Network [OSTI]

    Tipple, Brett

    Integrating science, environmental education, public outreach, conservation, and capacity and conservation. We welcome and encourage participation by visitors to Rio Mesa in our bird banding operations environmental indicators, are relatively easy to monitor, and as charismatic flagship species, are met

  8. Optimal Location of a Mobile Sensor Continuum for Environmental Monitoring

    E-Print Network [OSTI]

    Boyer, Edmond

    air pollution monitoring, seismic monitoring, or monitoring of large infrastructures in civil is proposed for the goal of optimal location of a mobile sensor continuum. The monitoring of pollution on a 2D or track distributed environmental phenomena (weather, seismic events, wildfires, air, soil or river

  9. Integrated monitoring and surveillance system demonstration project

    SciTech Connect (OSTI)

    Aumeier, S.E.; Walters, G. [Argonne National Lab., Idaho Falls, ID (United States); Kotter, D.; Walrath, W.M.; Zamecnik, R.J. [Lockheed-Martin Idaho Technologies Company, Idaho Falls, ID (United States)

    1997-07-01T23:59:59.000Z

    We present a summary of efforts associated with the installation of an integrated system for the surveillance and monitoring of stabilized plutonium metals and oxides in long-term storage. The product of this effort will include a Pu storage requirements document, baseline integrated monitoring and surveillance system (IMSS) prototype and test bed that will be installed in the Fuel Manufacturing Facility (FMF) nuclear material vault at Argonne National Laboratory - West (ANL-W), and a Pu tracking database including data analysis capabilities. The prototype will be based on a minimal set of vault and package monitoring requirements as derived from applicable DOE documentation and guidelines, detailed in the requirements document, including DOE-STD-3013-96. The use of standardized requirements will aid individual sites in the selection of sensors that best suit their needs while the prototype IMSS, located at ANL-W, will be used as a test bed to compare and contrast sensor performance against a baseline integrated system (the IMSS), demonstrate system capabilities, evaluate potential technology gaps, and test new hardware and software designs using various storage configurations. With efforts currently underway to repackage and store a substantial quantity of plutonium and plutonium-bearing material within the DOE complex, this is an opportune time to undertake such a project. 4 refs.

  10. Sandia National Laboratories California Environmental Monitoring Program Annual Report.

    SciTech Connect (OSTI)

    Holland, Robert C.

    2007-03-01T23:59:59.000Z

    The annual program report provides detailed information about all aspects of the SNL/CA Environmental Monitoring Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The 2006 program report describes the activities undertaken during the past year, and activities planned in future years to implement the Environmental Monitoring Program, one of six programs that supports environmental management at SNL/CA.

  11. Environmental Monitoring Plan for the Oak Ridge Reservation, 2012

    SciTech Connect (OSTI)

    Thompson, Sharon D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2012-10-01T23:59:59.000Z

    The purpose of Oak Ridge Reservation (ORR) environmental surveillance is to characterize radiological and nonradiological conditions of the off-site environs and estimate public doses related to these conditions, confirm estimations of public dose based on effluent monitoring data, and, where appropriate, provide supplemental data to support compliance monitoring for applicable environmental regulations. This environmental monitoring plan (EMP) is intended to document the rationale, frequency, parameters, and analytical methods for the ORR environmental surveillance program and provides information on ORR site characteristics, environmental pathways, dose assessment methods, and quality management. ORR-wide environmental monitoring activities include a variety of media including air, surface water, vegetation, biota, and wildlife. In addition to these activities, site-specific effluent, groundwater, and best management monitoring programs are conducted at the Oak Ridge National Laboratory (ORNL), the Y-12 National Security Complex (Y-12), and the East Tennessee Technology Park (ETTP). This is revision 5.

  12. Environmental Monitoring and Assessment of Environmental Estrogens in Marine

    E-Print Network [OSTI]

    Schlenk, D

    2006-01-01T23:59:59.000Z

    of Orange County,CA. Environmental Toxicology and ChemistryCalifornia Flatfish. Society of Environmental Toxicology andOcean. Society of Environmental Toxicology and Chemistry. (

  13. Sustainability of Large Deployment of Photovoltaics: Environmental & Grid Integration Research

    E-Print Network [OSTI]

    Ohta, Shigemi

    1 Sustainability of Large Deployment of Photovoltaics: Environmental & Grid Integration Research Sustainability of Large Deployment of Photovoltaics: Environmental & Grid Integration Research www Photovoltaics Environmental Research Center Brookhaven National Laboratory #12;2 Source: PV Market Outlook

  14. Environmental Monitoring at the Savannah River Plant, Annual Report - 1981

    SciTech Connect (OSTI)

    Ashley, C.

    2001-07-26T23:59:59.000Z

    An environmental monitoring program has been in existence at SRP since 1951. The original preoperational surveys have evolved into an extensive environmental monitoring program in which sample types from approximately 500 locations are analyzed for radiological and/or nonradiological parameters. The results of these analyses for 1981 are presented in this report.

  15. Geomembrane barriers using integral fiber optics to monitor barrier integrity

    DOE Patents [OSTI]

    Staller, G.E.; Wemple, R.P.

    1996-10-22T23:59:59.000Z

    This invention provides a geomembrane or geotextile with embedded optical sensors that are used to monitor the status of containment site barriers. Fiber optic strands are used to form the sensors that can detect and monitor conditions at the sites such as breaches, slope creep, subsidence, leachate levels, fires, and types of materials present or leaking from the site. The strands are integral to the membrane or textile materials. The geosynthetic membrane is deployed at the site in a fashion similar to carpet laying. Edges of the membrane or textile are joined to form a liner and the ends of the membrane or textile become the connection zones for obtaining signals from the sensors. A connection interface with a control system to generate Optical Time Delay Response or other light signals for transmission to the optic fiber strands or sensors and also to receive reflected signals from the sensors is included in the system. Software to interpret the sensor signals can be used in the geosynthetic monitoring system. 6 figs.

  16. Geomembrane barriers using integral fiber optics to monitor barrier integrity

    DOE Patents [OSTI]

    Staller, George E. (Albuquerque, NM); Wemple, Robert P. (Albuquerque, NM)

    1996-01-01T23:59:59.000Z

    This invention provides a geomembrane or geotextile with embedded optical sensors that are used to monitor the status of containment site barriers. Fiber optic strands are used to form the sensors that can detect and monitor conditions at the sites such as breaches, slope creep, subsidence, leachate levels, fires, and types of materials present or leaking from the site. The strands are integral to the membrane or textile materials. The geosythetic membrane is deployed at the site in a fashion similar to carpet laying. Edges of the membrane or textile are joined to form a liner and the ends of the membrane or textile become the connection zones for obtaining signals from the sensors. A connection interface with a control system to generate Optical Time Delay Response or other light signals for transmission to the optic fiber strands or sensors and also to receive reflected signals from the sensors is included in the system. Software to interpret the sensor signals can be used in the geosythetic monitoring system.

  17. RESOURCE INVENTORY AND MONITORING CENTER FOR ENVIRONMENTAL MANAGEMENT OF MILITARY LANDS

    E-Print Network [OSTI]

    RESOURCE INVENTORY AND MONITORING CENTER FOR ENVIRONMENTAL MANAGEMENT OF MILITARY LANDS CEMML assessments · Rangeland health assessments #12;RESOURCE INVENTORY AND MONITORING CENTER FOR ENVIRONMENTAL

  18. Advanced Coal Conversion Process Demonstration Project. Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    Western Energy Company (WECO) was selected by the Department of Energy (DOE) to demonstrate the Advanced Coal Conversion Process (ACCP) which upgrades low rank coals into high Btu, low sulfur, synthetic bituminous coal. As specified in the Corporate Agreement, RSCP is required to develop an Environmental Monitoring Plan (EMP) which describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) identify monitoring activities that will be undertaken to show compliance to applicable regulations, (2) confirm the specific environmental impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base of the assessment of the environmental performance of the technology demonstrated by the project. The EMP specifies the streams to be monitored (e.g. gaseous, aqueous, and solid waste), the parameters to be measured (e.g. temperature, pressure, flow rate), and the species to be analyzed (e.g. sulfur compounds, nitrogen compounds, trace elements) as well as human health and safety exposure levels. The operation and frequency of the monitoring activities is specified, as well as the timing for the monitoring activities related to project phase (e.g. preconstruction, construction, commissioning, operational, post-operational). The EMP is designed to assess the environmental impacts and the environmental improvements resulting from construction and operation of the project.

  19. Implementation Guide for Integrating Pollution Prevention into Environmental Management Systems

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-05-27T23:59:59.000Z

    This Guide suggests approaches to integrating pollution prevention into Integrated Safety Management/Environmental Management Systems. Canceled by DOE N 251.82.

  20. Concepts for Environmental Radioactive Air Sampling and Monitoring

    SciTech Connect (OSTI)

    Barnett, J. M.

    2011-11-04T23:59:59.000Z

    Environmental radioactive air sampling and monitoring is becoming increasingly important as regulatory agencies promulgate requirements for the measurement and quantification of radioactive contaminants. While researchers add to the growing body of knowledge in this area, events such as earthquakes and tsunamis demonstrate how nuclear systems can be compromised. The result is the need for adequate environmental monitoring to assure the public of their safety and to assist emergency workers in their response. Two forms of radioactive air monitoring include direct effluent measurements and environmental surveillance. This chapter presents basic concepts for direct effluent sampling and environmental surveillance of radioactive air emissions, including information on establishing the basis for sampling and/or monitoring, criteria for sampling media and sample analysis, reporting and compliance, and continual improvement.

  1. FY 2002 Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    SciTech Connect (OSTI)

    Hartman, Mary J.; Dresel, P Evan; Lindberg, Jonathan W.; Newcomer, Darrell R.; Thornton, Edward C.

    2001-10-31T23:59:59.000Z

    This document is an integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders ("surveillance monitoring"); other, established monitoring plans by reference; and a master well/ constituent/frequency matrix for the entire Hanford Site.

  2. Environmental monitoring, restoration and assessment: What have we learned

    SciTech Connect (OSTI)

    Gray, R.H. (ed.)

    1990-01-01T23:59:59.000Z

    The Twenty-Eighth Hanford Symposium on Health and the Environment was held in Richland, Washington, October 16--19, 1989. The symposium was sponsored by the US Department of Energy and the Pacific Northwest Laboratory, operated by Battelle Memorial Institute. The symposium was organized to review and evaluate some of the monitoring and assessment programs that have been conducted or are currently in place. Potential health and environmental effects of energy-related and other industrial activities have been monitored and assessed at various government and private facilities for over three decades. Most monitoring is required under government regulations; some monitoring is implemented because facility operators consider it prudent practice. As a result of these activities, there is now a substantial radiological, physical, and chemical data base for various environmental components, both in the United States and abroad. Symposium participants, both platform and poster presenters, were asked to consider, among other topics, the following: Has the expenditure of millions of dollars for radiological monitoring and assessment activities been worth the effort How do we decide when enough monitoring is enough Can we adequately assess the impacts of nonradiological components -- both inorganic and organic -- of wastes Are current regulatory requirements too restrictive or too lenient Can monitoring and assessment be made more cost effective Papers were solicited in the areas of environmental monitoring; environmental regulations; remediation, restoration, and decommissioning; modeling and dose assessment; uncertainty, design, and data analysis; and data management and quality assurance. Individual reports are processed separately for the databases.

  3. DOE-HDBK-1216-2015-Environmental Radiological Effluent Monitoring and Environmental Surveillance

    Broader source: Energy.gov [DOE]

    DOE-HDBK-1216-2015; Environmental Radiological Effluent Monitoring and Environmental Surveillance. The Department of Energyís (DOE) radiation protection of the public and the environment is contained within DOE Order (O) 458.1, Radiation Protection of the Public and the Environment. This Handbook describes elements that may be used to implement the radiological effluent monitoring and environmental surveillance requirements in DOE O 458.1.

  4. Knolls Atomic Power Laboratory Environmental Monitoring Report, Calendar Year 2003

    SciTech Connect (OSTI)

    None

    2003-12-31T23:59:59.000Z

    The effluent and environmental monitoring programs conducted by KAPL at the Knolls and Kesselring Sites are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as environmental monitoring of air, water, sediment, and fish. Radiation measurements are also made around the perimeter of the Knolls and Kesselring Sites and at off-site background locations.

  5. Knolls Atomic Power Laboratory environmental monitoring report, calendar year 1999

    SciTech Connect (OSTI)

    None

    2000-12-01T23:59:59.000Z

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) Sites are summarized and assessed in this report. Operations at the three KAPL Sites [Knolls Site, Niskayuna, New York; Kesselring Site, West Milton, New York; S1C Site, Windsor, Connecticut] during calendar year 1999 resulted in no significant release of hazardous substances or radioactivity to the environment. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each Site and at off-site background locations.

  6. Statistical Methods for Environmental Pollution Monitoring

    Office of Scientific and Technical Information (OSTI)

    for the mean of a lognormal distribution (Section 13.2). Also, Appendix B lists a computer code that estimates and tests for trends over time at one or more monitoring stations...

  7. Annual Environmental Monitoring Report Released | Department...

    Office of Environmental Management (EM)

    radioactivity. Visit http:www.cemp.dri.edu for more information on the off-site air monitoring program. "Each year, we use this report as one of our tools to inform the...

  8. BNL ENVIRONMENTAL MONITORING PLAN TRIENNIAL UPDATE, JANUARY 2003.

    SciTech Connect (OSTI)

    BROOKHAVEN NATIONAL LABORATORY

    2003-01-01T23:59:59.000Z

    Brookhaven National Laboratory (BNL) is a multi-program national laboratory operated by Brookhaven Science Associates for the U.S. Department of Energy (DOE) and is located on a 5,265-acre site in Suffolk County, Long Island, New York. BNL has a comprehensive Environmental Management System (EMS) in place, which meets the requirements of the International Organization for Standardization 14001 EMS Standard, as described in the BNL EMS Manual. BNL's extensive environmental monitoring program is one component of the EMS, and the BNL Environmental Monitoring Plan (EMP) describes this program in detail. The data derived from systematically monitoring the various environmental media on site enable BNL to make informed decisions concerning the protection of human health and the environment and to be responsive to community concerns.

  9. The integration of process monitoring for safeguards.

    SciTech Connect (OSTI)

    Cipiti, Benjamin B.; Zinaman, Owen R.

    2010-09-01T23:59:59.000Z

    The Separations and Safeguards Performance Model is a reprocessing plant model that has been developed for safeguards analyses of future plant designs. The model has been modified to integrate bulk process monitoring data with traditional plutonium inventory balances to evaluate potential advanced safeguards systems. Taking advantage of the wealth of operator data such as flow rates and mass balances of bulk material, the timeliness of detection of material loss was shown to improve considerably. Four diversion cases were tested including both abrupt and protracted diversions at early and late times in the run. The first three cases indicated alarms before half of a significant quantity of material was removed. The buildup of error over time prevented detection in the case of a protracted diversion late in the run. Some issues related to the alarm conditions and bias correction will need to be addressed in future work. This work both demonstrates the use of the model for performing diversion scenario analyses and for testing advanced safeguards system designs.

  10. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    SciTech Connect (OSTI)

    Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies] [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)] [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01T23:59:59.000Z

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

  11. Global nuclear material monitoring with NDA and C/S data through integrated facility monitoring

    SciTech Connect (OSTI)

    Howell, J.A.; Menlove, H.O.; Argo, P.; Goulding, C.; Klosterbuer, S.; Halbig, J.

    1996-09-01T23:59:59.000Z

    This paper focuses on a flexible, integrated demonstration of a monitoring approach for nuclear material monitoring. This includes aspects of item signature identification, perimeter portal monitoring, advanced data analysis, and communication as a part of an unattended continuous monitoring system in an operating nuclear facility. Advanced analysis is applied to the integrated nondestructive assay and containment and surveillance data that are synchronized in time. End result will be the foundation for a cost-effective monitoring system that could provide the necessary transparency even in areas that are denied to foreign nationals of both US and Russia should these processes and materials come under full-scope safeguards or bilateral agreements. Monitoring systems of this kind have the potential to provide additional benefits including improved nuclear facility security and safeguards and lower personnel radiation exposures. Demonstration facilities in this paper include VTRAP-prototype, Los Alamos Critical Assemblies Facility, Kazakhstan BM-350 Reactor monitor, DUPIC radiation monitoring, and JOYO and MONJU radiation monitoring.

  12. Wireless sensor networks and environmental monitoring applications

    E-Print Network [OSTI]

    Le Borgne, Yann-A√ęl

    by the Human Resources and Mobility program of the European community (MEST-CT-2004-505079) #12;ULB Machine Radio: 4kbps, 180m Sensors: Light and accelerometer Energy: Solar powered Golem and deputy dust 16mm3 ­ Remote or non invasive monitoring ·... #12;Solbosch greenhouses ·Greenhouses used by different research

  13. Best practice techniques for environmental radiological monitoring

    E-Print Network [OSTI]

    tackling flooding and pollution incidents, reducing industry's impacts on the environment, cleaning up from nuclear sites in England and Wales under the Radioactive Substances Act 1993. The Environment Monitoring The Environment Agency is the leading public body protecting and improving the environment

  14. 1998 Environmental Monitoring Program Report for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    L. V. Street

    1999-09-01T23:59:59.000Z

    This report describes the calendar year 1998 compliance monitoring and environmental surveillance activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory. This report includes results of sampling performed by the Drinking Water, Effluent, Storm Water, Groundwater Monitoring, and Environmental Surveillance Programs. This report compares the 1998 results to program-specific regulatory guidelines and past data to evaluate trends. The primary purposes of the monitoring and surveillance activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standards, and to ensure protection of public health and the environment. Surveillance of environmental media did not identify any previously unknown environmental problems or trends, which would indicate a loss of control or unplanned releases from facility operations. The INEEL complied with permits and applicable regulations, with the exception of nitrogen samples in a disposal pond effluent stream and iron and total coliform bacteria in groundwater downgradient from one disposal pond. Data collected by the Environmental Monitoring Program demonstrate that the public health and environment were protected.

  15. Knolls Atomic Power Laboratory environmental monitoring report, calendar year 2001

    SciTech Connect (OSTI)

    NONE

    2002-12-31T23:59:59.000Z

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) Sites are summarized and assessed in this report. Operations at the Knolls and Kesselring Sites and Site closure activities at the S1C Site (also known as the KAPL Windsor Site) continue to have no adverse effect on human health and the quality of the environment. The effluent and environmental monitoring programs conducted by KAPL at the Knolls and Kesselring Sites are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as environmental monitoring of air, water, sediment, and fish. Radiation measurements are also made around the perimeter of the Knolls and Kesselring Sites and at off-site background locations. The environmental monitoring program for the S1C Site continues to be reduced in scope from previous years due to the completion of Site dismantlement activities during 1999 and a return to green field conditions during 2000.

  16. Naval Reactors Facility environmental monitoring report, calendar year 2001

    SciTech Connect (OSTI)

    NONE

    2002-12-31T23:59:59.000Z

    The results of the radiological and nonradiological environmental monitoring programs for 2001 at the Naval Reactors Facility are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with Federal and State regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the U. S. Environmental Protection Agency and the U. S. Department of Energy.

  17. Naval Reactors Facility Environmental Monitoring Report, Calendar Year 2003

    SciTech Connect (OSTI)

    None

    2003-12-31T23:59:59.000Z

    The results of the radiological and nonradiological environmental monitoring programs for 2003 at the Naval Reactors Facility are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with Federal and State regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the U.S. Environmental Protection Agency and the U.S. Department of Energy.

  18. 1997 environmental monitoring report for the Naval Reactors Facility

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The results of the radiological and nonradiological environmental monitoring programs for 1997 at the Naval Reactors Facility (NRF) are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with state and federal regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the Environmental Protection Agency (EPA) and the Department of Energy (DOE).

  19. Site-Wide Integrated Water Monitoring - Defining and Implementing Sampling Objectives to Support Site Closure - 13060

    SciTech Connect (OSTI)

    Wilborn, Bill; Knapp, Kathryn [U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (United States)] [U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (United States); Farnham, Irene; Marutzky, Sam [Navarro-Intera (United States)] [Navarro-Intera (United States)

    2013-07-01T23:59:59.000Z

    The Underground Test Area (UGTA) activity is responsible for assessing and evaluating the effects of the underground nuclear weapons tests on groundwater at the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), and implementing a corrective action closure strategy. The UGTA strategy is based on a combination of characterization, modeling studies, monitoring, and institutional controls (i.e., monitored natural attenuation). The closure strategy verifies through appropriate monitoring activities that contaminants of concern do not exceed the SDWA at the regulatory boundary and that adequate institutional controls are established and administered to ensure protection of the public. Other programs conducted at the NNSS supporting the environmental mission include the Routine Radiological Environmental Monitoring Program (RREMP), Waste Management, and the Infrastructure Program. Given the current programmatic and operational demands for various water-monitoring activities at the same locations, and the ever-increasing resource challenges, cooperative and collaborative approaches to conducting the work are necessary. For this reason, an integrated sampling plan is being developed by the UGTA activity to define sampling and analysis objectives, reduce duplication, eliminate unnecessary activities, and minimize costs. The sampling plan will ensure the right data sets are developed to support closure and efficient transition to long-term monitoring. The plan will include an integrated reporting mechanism for communicating results and integrating process improvements within the UGTA activity as well as between other U.S. Department of Energy (DOE) Programs. (authors)

  20. Site-Wide Integrated Water Monitoring -- Defining and Implementing Sampling Objectives to Support Site Closure

    SciTech Connect (OSTI)

    Wilborn, Bill [NNSA/NFO, Nevada Site Office (United States); Farnham, Irene [Navarro-Interra LLC, Las Vegas (United States); Marutzky, Sam [Navarro-Interra LLC, Las Vegas (United States); Knapp, Kathryn [NNSA/NFO, Nevada Site Office (United States)

    2013-02-24T23:59:59.000Z

    The Underground Test Area (UGTA) activity is responsible for assessing and evaluating the effects of the underground nuclear weapons tests on groundwater at the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), and implementing a corrective action closure strategy. The UGTA strategy is based on a combination of characterization, modeling studies, monitoring, and institutional controls (i.e., monitored natural attenuation). The closure strategy verifies through appropriate monitoring activities that contaminants of concern do not exceed the SDWA at the regulatory boundary and that adequate institutional controls are established and administered to ensure protection of the public. Other programs conducted at the NNSS supporting the environmental mission include the Routine Radiological Environmental Monitoring Program (RREMP), Waste Management, and the Infrastructure Program. Given the current programmatic and operational demands for various water-monitoring activities at the same locations, and the ever-increasing resource challenges, cooperative and collaborative approaches to conducting the work are necessary. For this reason, an integrated sampling plan is being developed by the UGTA activity to define sampling and analysis objectives, reduce duplication, eliminate unnecessary activities, and minimize costs. The sampling plan will ensure the right data sets are developed to support closure and efficient transition to long-term monitoring. The plan will include an integrated reporting mechanism for communicating results and integrating process improvements within the UGTA activity as well as between other U.S. Department of Energy (DOE) Programs.

  1. Embedded Sensor Array Development for Composite Structure Integrity Monitoring

    SciTech Connect (OSTI)

    Kumar, A.; Bryan, W. L.; Clonts, L. G.; Franks, S.

    2007-06-26T23:59:59.000Z

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC (the "Contractor") and Accellent Technologies, Inc. (the "Participant") was for the development of an embedded ultrasonic sensor system for composite structure integrity monitoring.

  2. Knolls Atomic Power Laboratory environmental monitoring report, calendar year 2000

    SciTech Connect (OSTI)

    None

    2001-12-01T23:59:59.000Z

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) Sites are summarized and assessed in this report. Operations at the Knolls Site, Niskayuna, New York and the Kesselring Site, West Milton, New York and site closure activities at the S1C Site, Windsor, Connecticut, continued to have no adverse effect on human health and the quality of the environment during calendar year 2000. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each Site and at off-site background locations. Monitoring programs at the S1C Site were reduced in scope during calendar year 2000 due to completion of site dismantlement activities during 1999.

  3. Use of ArcGIS in Environmental Monitoring at Idaho National Laboratory

    SciTech Connect (OSTI)

    oertel; giles

    2007-06-01T23:59:59.000Z

    The Idaho National Laboratory is a U.S. Department of Energy site located in southeastern Idaho. The INL is required to perform environmental monitoring of anthropogenically introduced contaminants. One primary contaminant of interest is radioactive Cs-137 which is resident in INL soils due to past operational activities and atmospheric weapons testing. Collection of field data is performed using vehicle mounted and portable radiation detector units. All data is combined in ArcGIS and displayed over georeferenced satellite images and digital elevation models. The use of the ArcGIS geostatistical analysis package enhances the ability to look for areas of higher Cs-137 concentration. Combining current monitoring results with meteorological wind pattern maps allows for siting of new and improved monitoring locations. Use of the ArcGIS package provides an integrated analysis and mapping protocol for use in radioactive contaminant monitoring.

  4. Knolls Atomic Power Laboratory environmental monitoring report, calendar year 1996

    SciTech Connect (OSTI)

    NONE

    1996-12-31T23:59:59.000Z

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) sites are summarized and assessed in this report. The principal function at KAPL sites (Knolls, Kesselring, and Windsor) is research and development in the design and operation of Naval nuclear propulsion plants. The Kesselring Site is also used for the training of personnel in the operation of these plants. The Naval nuclear propulsion plant at the Windsor Site is currently being dismantled. Operations at the three KAPL sites resulted in no significant release of hazardous substances or radioactivity to the environment. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each site and at off-site background locations.

  5. 1992 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect (OSTI)

    Culp, T.; Cox, W.; Hwang, H.; Irwin, M.; Jones, A.; Matz, B.; Molley, K.; Rhodes, W.; Stermer, D.; Wolff, T.

    1993-09-01T23:59:59.000Z

    This 1992 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, envirorunental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0034 millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.019 person-rem during 1992 from the laboratories` operations. As in the previous year, the 1992 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment.

  6. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1991

    SciTech Connect (OSTI)

    Chaloud, D.J.; Dicey, B.B.; Mullen, A.A.; Neale, A.C.; Sparks, A.R.; Fontana, C.A.; Carroll, L.D.; Phillips, W.G.; Smith, D.D.; Thome, D.J.

    1992-01-01T23:59:59.000Z

    This report describes the Offsite Radiation Safety Program conducted during 1991 by the Environmental Protection Agency`s (EPA`s) Environmental Monitoring Systems Laboratory-Las Vegas. This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of animals, food crops, and humans. Personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each nuclear weapons test to implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any occurrence of radioactivity release. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no radioactivity detected offsite by the various EPA monitoring networks and no exposure above natural background to the population living in the vicinity of the NTS that could be attributed to current NTS activities. Annual and long-term trends were evaluated in the Noble Gas, Tritium, Milk Surveillance, Biomonitoring, TLD, PIC networks, and the Long-Term Hydrological Monitoring Program.

  7. 1996 environmental monitoring report for the Naval Reactors Facility

    SciTech Connect (OSTI)

    NONE

    1996-12-31T23:59:59.000Z

    The results of the radiological and nonradiological environmental monitoring programs for 1996 at the Naval Reactors Facility (NRF) are presented in this report. The NRF is located on the Idaho National Engineering and Environmental Laboratory and contains three naval reactor prototypes and the Expended Core Facility, which examines developmental nuclear fuel material samples, spent naval fuel, and irradiated reactor plant components/materials. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with state and federal regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the Environmental Protection Agency (EPA) and the Department of Energy (DOE).

  8. Use of Continuous Integration Tools for Application Performance Monitoring

    SciTech Connect (OSTI)

    Vergara Larrea, Veronica G [ORNL; Joubert, Wayne [ORNL; Fuson, Christopher B [ORNL

    2015-01-01T23:59:59.000Z

    High performance computing systems are becom- ing increasingly complex, both in node architecture and in the multiple layers of software stack required to compile and run applications. As a consequence, the likelihood is increasing for application performance regressions to occur as a result of routine upgrades of system software components which interact in complex ways. The purpose of this study is to evaluate the effectiveness of continuous integration tools for application performance monitoring on HPC systems. In addition, this paper also describes a prototype system for application perfor- mance monitoring based on Jenkins, a Java-based continuous integration tool. The monitoring system described leverages several features in Jenkins to track application performance results over time. Preliminary results and lessons learned from monitoring applications on Cray systems at the Oak Ridge Leadership Computing Facility are presented.

  9. Monitoring DNAPL pumping using integrated geophysical techniques

    SciTech Connect (OSTI)

    Newmark, R.L.

    1997-01-01T23:59:59.000Z

    The removal of DNAPL during pumping was monitored. At Hill AFB in Utah, a free-product DNAPL plume (predominantly TCE, with some TCA, PCE, methylene chloride) is pooled in water-wet soil on a thick clay aquitard. Groundwater pumping at Operable Unit 2 began in 1994; to date, nearly 30,000 gal DNAPL have been recovered. From Sept. 1994 through Sept. 1995, changes in the basin during DNAPL pumping were monitored using fiber optic chemical sensors, neutron logs, and electrical resistance tomography (ERT). The first two sensor types verify the presence of DNAPL in vicinity of 3 boreholes which form a cross section from the perimeter of the basin to its center. Cross borehole ERT images the changes in formation electrical properties due to removal of DNAPL, extending the understanding of DNAPL removal between the boreholes. During pumping, electrical resistivities decreased; we suggest these decreases are directly caused by the reduction in DNAPL. During ground water pumping, water with relatively low resistivity replaces some of the DNAPL pockets as the highly insulating DNAPL is removed. Results suggest that, as DNAPL is pumped from a nearby well, product slowly drains along the top of an aquitard and into the pump well, where it collects.

  10. Monitored retrievable storage submission to Congress: Volume 2, Environmental assessment for a monitored retrievable storage facility. [Contains glossary

    SciTech Connect (OSTI)

    none,

    1986-02-01T23:59:59.000Z

    This Environmental Assessment (EA) supports the DOE proposal to Congress to construct and operate a facility for monitored retrievable storage (MRS) of spent fuel at a site on the Clinch River in the Roane County portion of Oak Ridge, Tennessee. The first part of this document is an assessment of the value of, need for, and feasibility of an MRS facility as an integral component of the waste management system. The second part is an assessment and comparison of the potential environmental impacts projected for each of six site-design combinations. The MRS facility would be centrally located with respect to existing reactors, and would receive and canister spent fuel in preparation for shipment to and disposal in a geologic repository. 207 refs., 57 figs., 132 tabs.

  11. Fully integrated safeguards and security for reprocessing plant monitoring.

    SciTech Connect (OSTI)

    Duran, Felicia Angelica; Ward, Rebecca; Cipiti, Benjamin B.; Middleton, Bobby D.

    2011-10-01T23:59:59.000Z

    Nuclear fuel reprocessing plants contain a wealth of plant monitoring data including material measurements, process monitoring, administrative procedures, and physical protection elements. Future facilities are moving in the direction of highly-integrated plant monitoring systems that make efficient use of the plant data to improve monitoring and reduce costs. The Separations and Safeguards Performance Model (SSPM) is an analysis tool that is used for modeling advanced monitoring systems and to determine system response under diversion scenarios. This report both describes the architecture for such a future monitoring system and present results under various diversion scenarios. Improvements made in the past year include the development of statistical tests for detecting material loss, the integration of material balance alarms to improve physical protection, and the integration of administrative procedures. The SSPM has been used to demonstrate how advanced instrumentation (as developed in the Material Protection, Accounting, and Control Technologies campaign) can benefit the overall safeguards system as well as how all instrumentation is tied into the physical protection system. This concept has the potential to greatly improve the probability of detection for both abrupt and protracted diversion of nuclear material.

  12. Characterization, Monitoring, and Sensor Technology Integrated Program (CMST-IP). Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    The Characterization, Monitoring, and Sensor Technology Integrated Program seeks to deliver needed technologies, timely and cost-effectively, to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The scope of characterizations monitoring, and sensor technology needs that are required by those organizations encompass: (1) initial location and characterization of wastes and waste environments - prior to treatment; (2) monitoring of waste retrieval, remediation and treatment processes; (3) characterization of the co-position of final waste treatment forms to evaluate the performance of waste treatments processes; and (4) site closure and compliance monitoring. Wherever possible, the CMST-IP fosters technology transfer and commercialization of technologies that it sponsors.

  13. Structural and environmental monitoring of tracker and vertex systems using Fiber Optic Sensors

    E-Print Network [OSTI]

    Moya, David

    2012-01-01T23:59:59.000Z

    Fibre optic sensors (FOS) are an established technique for environmental and deformation monitoring in several areas like civil engineering, aerospace, and energy. Their immunity to electromagnetic and magnetic fields and nuclear environments, its small size, multiplexing capability and the possibility to be embedded make them an attractive technology for the structural and environmental monitoring of collider particle physics experiments. Between all the possible Fibre Optic sensors FBGs (Fiber Bragg Grating) seems to be the best solution for HEP applications. The first step was to characterize FBG sensors for it use in High Energy Physics environment. During last two years we have checked the resistance of the Fibre Bragg Grating sensors to radiation. Two irradiation campaigns with protons have been done at CNA (Centro Nacional de Aceleradores). In the near future these sensors are being planned to be used in detectors (the closest one Belle II.). Several work on integration issues in Belle II PXD-SVD, and ...

  14. Integrated Water Management for Environmental Flows in the Rio Grande

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    flows; Reservoir reoperation; Integrated water management; Adaptive management; Rio Grande. IntroductionIntegrated Water Management for Environmental Flows in the Rio Grande S. Sandoval-Solis, A.M.ASCE1 the environment. This paper presents an integrated water management approach to meet current and future water

  15. Environmental monitoring at Argonne National Laboratory. Annual report for 1984

    SciTech Connect (OSTI)

    Golchert, N.W.; Duffy, T.L.; Sedlet, J.

    1985-03-01T23:59:59.000Z

    The results of the environmental monitoring program at Argonne National Laboratory for 1984 are presented and discussed. To evaluate the effect of Argonne operations on the environment, measurements were made for a variety of radionuclides in air, surface water, ground water, soil, grass, bottom sediment, and milk; for a variety of chemical constituents in surface water, ground water, and Argonne effluent water; and of the environmental penetrating radiation dose. Sample collections and measurements were made on the site, at the site boundary, and off the Argonne site for comparison purposes. The potential radiation dose to off-site population groups is also estimated. The results of the program are interpreted in terms of the sources and origin of the radioactive and chemical substances (natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. 20 refs., 8 figs., 46 tabs.

  16. Environmental monitoring at Argonne National Laboratory. Annual report, 1981

    SciTech Connect (OSTI)

    Golchert, N.W.; Duffy, T.L.; Sedlet, J.

    1982-03-01T23:59:59.000Z

    The results of the environmental monitoring program at Argonne National Laboratory for 1981 are presented and discussed. To evaluate the effect of Argonne operations on the environment, measurements were made for a variety of radionuclides in air, surface water, soil, grass, bottom sediment, and milk; for a variety of chemical constituents in air, surface water, and Argonne effluent water; and of the environmental penetrating radiation dose. Sample collections and measurements were made at the site boundary and off the Argonne site for comparison purposes. Some on-site measurements were made to aid in the interpretation of the boundary and off-site data. The results of the program are interpreted in terms of the sources and origin of the radioactive and chemical substances (natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. The potential radiation dose to off-site population groups is also estimated.

  17. Implementation Guide for Integrating Environmental Management Systems into Integrated Safety Management Systems

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-08-20T23:59:59.000Z

    This Guide provides guidance to assist DOE sites in identifying those missing environmental management systems elements and integrating them into the site's integrated safety management system. Canceled by DOE N 251.96.

  18. Environmental Monitoring Plan, United States Department of Energy, Richland Operations Office. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-11-09T23:59:59.000Z

    This report describes environmental monitoring activities at Hanford Reservation. Attention is focused on effluent monitoring and environmental surveillance. All Hanford contractors reviewed potential sources of contamination. A facility effluent monitoring plan was written for each facility with the potential to release significant quantities of hazardous materials, addressing both radiological and nonradiological effluent monitoring. The environmental surveillance program assesses onsite and offsite environmental impacts and offsite human health exposures. The program monitors air, surface water, sediment, agricultural products, vegetation, soil, and wildlife. In addition, independent onsite surveillance is conducted to evaluate the effectiveness of Hanford Site effluent controls in order to comply with applicable environmental standards and regulations.

  19. Y-12 Environmental Monitoring Programs 6-1 6. Y-12 Environmental Monitoring Programs

    E-Print Network [OSTI]

    Pennycook, Steve

    Complex Radiological Airborne Effluent Monitoring The release of radiological contaminants, primarily. Uranium and other radionuclides are han- dled in millicurie quantities at facilities within the boundary laboratory is operated in a leased facility that is not within the ORR boundary; it is located approximately

  20. Y-12 Environmental Monitoring Programs 6-1 6. Y-12 ENVIRONMENTAL MONITORING

    E-Print Network [OSTI]

    Pennycook, Steve

    RADIOLOGICAL AIRBORNE EFFLUENT MONITORING The release of radiological contaminants, primarily uranium are handled in millicurie quantities at facilities within the boundary of the Y-12 Plant as part of ORNL and Y on Union Valley Road. The laboratory is operated in a leased facility that is not within the ORR boundary

  1. ORNL Environmental Monitoring Programs 5-1 5. ORNL Environmental Monitoring Programs

    E-Print Network [OSTI]

    Pennycook, Steve

    , which includes 3500 and 4500 areas' cell ven- tilation system, isotope solid-state ventilation system, 3025 and 3026 areas' cell ventilation system, 3042 ventilation system, and 3092 central off-gas system Monitoring Programs source is composed of any ventilation system or component such as a vent, a laboratory

  2. Y-12 Environmental Monitoring Programs 6-1 6. Y-12 Environmental Monitoring Programs

    E-Print Network [OSTI]

    Pennycook, Steve

    , which alert operations personnel to process-upset conditions or to a decline in filtration-system. Emissions from Y-12 Complex room ventilation systems are estimated from radiation control data collected at the Y-12 National Security Complex for air, water, and groundwater environmental media. 6.1 Y-12 COMPLEX

  3. Y-12 Environmental Monitoring Programs 6-1 6. Y-12 Environmental Monitoring Programs

    E-Print Network [OSTI]

    Pennycook, Steve

    , which alert operations personnel to process-upset conditions or to a decline in filtration-system. Emissions from Y-12 Complex room ventila- tion systems are estimated from radiation control at the Y-12 National Security Complex for air, water, and groundwater environmental media. 6.1 Y-12 COMPLEX

  4. The Community Environmental Monitoring Program in the 21st Century: The Evolution of a Monitoring Network

    SciTech Connect (OSTI)

    Hartwell, W.T.; Tappen, J.; Karr, L.

    2007-01-19T23:59:59.000Z

    This paper focuses on the evolution of the various operational aspects of the Community Environmental Monitoring Program (CEMP) network following the transfer of program administration from the U.S. Environmental Protection Agency (EPA) to the Desert Research Institute (DRI) of the Nevada System of Higher Education in 1999-2000. The CEMP consists of a network of 29 fixed radiation and weather monitoring stations located in Nevada, Utah, and California. Its mission is to involve stakeholders directly in monitoring for airborne radiological releases to the off site environment as a result of past or ongoing activities on the Nevada Test Site (NTS) and to make data as transparent and accessible to the general public as feasible. At its inception in 1981, the CEMP was a cooperative project of the U.S. Department of Energy (DOE), DRI, and EPA. In 1999-2000, technical administration of the CEMP transitioned from EPA to DRI. Concurrent with and subsequent to this transition, station and program operations underwent significant enhancements that furthered the mission of the program. These enhancements included the addition of a full suite of meteorological instrumentation, state-of-the-art electronic data collectors, on-site displays, and communications hardware. A public website was developed. Finally, the DRI developed a mobile monitoring station that can be operated entirely on solar power in conjunction with a deep-cell battery, and includes all meteorological sensors and a pressurized ion chamber for detecting background gamma radiation. Final station configurations have resulted in the creation of a platform that is well suited for use as an in-field multi-environment test-bed for prototype environmental sensors and in interfacing with other scientific and educational programs. Recent and near-future collaborators have included federal, state, and local agencies in both the government and private sectors. The CEMP also serves as a model for other programs wishing to involve stakeholders with a meaningful role in the process of monitoring and data collection.

  5. Structural and environmental monitoring of tracker and vertex systems using Fiber Optic Sensors

    E-Print Network [OSTI]

    David Moya; IvŠn Vila

    2012-03-01T23:59:59.000Z

    Fibre optic sensors (FOS) are an established technique for environmental and deformation monitoring in several areas like civil engineering, aerospace, and energy. Their immunity to electromagnetic and magnetic fields and nuclear environments, its small size, multiplexing capability and the possibility to be embedded make them an attractive technology for the structural and environmental monitoring of collider particle physics experiments. Between all the possible Fibre Optic sensors FBGs (Fiber Bragg Grating) seems to be the best solution for HEP applications. The first step was to characterize FBG sensors for it use in High Energy Physics environment. During last two years we have checked the resistance of the Fibre Bragg Grating sensors to radiation. Two irradiation campaigns with protons have been done at CNA (Centro Nacional de Aceleradores). In the near future these sensors are being planned to be used in detectors (the closest one Belle II.). Several work on integration issues in Belle II PXD-SVD, and checking for environmental and deformation monitoring in the detectors inner part has been done.

  6. Westinghouse Hanford Company operational environmental monitoring annual report, CY 1992

    SciTech Connect (OSTI)

    Schmidt, J.W.; Johnson, A.R.; McKinney, S.M.; Perkins, C.J.

    1993-07-01T23:59:59.000Z

    This document presents the results of the Westinghouse Hanford Company near-facility operational environmental monitoring for 1992 in the 100, 200/600, and 300/400 Areas of the Hanford Site, in south-central Washington State in 1992. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, sediments, soil, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and to control the impacts of nuclear facilities and waste sites on the workers and the local environment. Additionally, diffuse sources were monitored to determine compliance with Federal, State, and/or local regulations. In general, although impacts from nuclear facilities are still seen on the Hanford Site and are slightly elevated when compared to offsite, these impacts are less than in previous years.

  7. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1997

    SciTech Connect (OSTI)

    Davis, M.G.; Flotard, R.D.; Fontana, C.A.; Hennessey, P.A.; Maunu, H.K.; Mouck, T.L.; Mullen, A.A.; Sells, M.D.

    1999-01-01T23:59:59.000Z

    This report describes the Offsite Radiological Environmental Monitoring Program (OREMP) conducted during 1997 by the US Environmental Protection Agency`s (EPAs), Radiation and Indoor Environments National Laboratory, Las Vegas, Nevada. This laboratory operated an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling and analyzing milk, water, and air; by deploying and reading thermoluminescent dosimeters (TLDs); and using pressurized ionization chambers (PICs) to measure ambient gamma exposure rates with a sensitivity capable of detecting low level exposures not detected by other monitoring methods.

  8. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1993

    SciTech Connect (OSTI)

    Chaloud, D.J; Daigler, D.M.; Davis, M.G. [and others

    1996-06-01T23:59:59.000Z

    This report describes the Offsite Radiation Safety Program conducted during 1993 by the Environmental Protection Agency`s (EPA`s) Environmental Monitoring Systems Laboratory - Las Vegas (EMSL-LV). This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ionization chambers (PICs); by biological monitoring of foodstuffs including animal tissues and food crops; and by measurement of radioactive material deposited in humans.

  9. Environmental monitoring and surveillance on the Oak Ridge Reservation: 1993 Data

    SciTech Connect (OSTI)

    Koncinski, W.S. [ed.] [Oak Ridge National Lab., TN (United States)

    1994-12-01T23:59:59.000Z

    Environmental monitoring and surveillance are conducted on the Oak Ridge Reservation and its environs throughout the year. Environmental monitoring ensures that (1) the reservation is a safe place to work, (2) activities on the reservation do not adversely affect the neighboring communities, and (3) compliance is made with federal and state regulations. This document is a compilation of the monitoring and surveillance data for calendar year 1993. It is a tool for analysts in the fields of environmental monitoring and environmental restoration. The summary information found in the annual site environmental report was drawn from the contents of summary in this document.

  10. Environmental monitoring and surveillance on the Oak Ridge Reservation: 1995 data

    SciTech Connect (OSTI)

    Hamilton, L.V. [and others] [and others

    1996-10-01T23:59:59.000Z

    Environmental monitoring and surveillance are conducted on the Oak Ridge Reservation and its environs throughout the year. Environmental monitoring ensures that (1) the reservation is a safe place to work, (2) activities on the reservation do not adversely affect the neighboring communities, and (3) compliance is made with federal and state regulations. This document is a compilation of the monitoring and surveillance data for calendar year 1995. It is a tool for analysts in the fields of environmental monitoring and environmental restoration. The summary information found in the annual site environmental report was drawn from the contents of this document.

  11. Integration of Environmental Compliance at the Savannah River Site - 13024

    SciTech Connect (OSTI)

    Hoel, David [United States Department of Energy - Savannah River Operations Office (United States)] [United States Department of Energy - Savannah River Operations Office (United States); Griffith, Michael [Savannah River Nuclear Solutions, LLC (United States)] [Savannah River Nuclear Solutions, LLC (United States)

    2013-07-01T23:59:59.000Z

    The Savannah River Site (SRS) is a large federal installation hosting diverse missions and multiple organizations with competing regulatory needs. Accordingly, there was a need to integrate environmental compliance strategies to ensure the consistent flow of information between Department of Energy-Savannah River (DOE-SR), the regulatory agencies and other interested parties. In order to meet this objective, DOE and major SRS contractors and tenants have committed to a strategy of collaboratively working together to ensure that a consistent, integrated, and fully coordinated approach to environmental compliance and regulator relationships is maintained. DOE-SR and Savannah River Nuclear Solutions, LLC, the SRS management and operations contractor, have established an environmental compliance integration process that provides for the consistent flow down of requirements to projects, facilities, SRS contractors, and subcontractors as well as the upward flow of information to assist in the early identification and resolution of environmental regulatory issues and enhancement of compliance opportunities. In addition, this process strongly fosters teamwork to collaboratively resolve complex regulatory challenges, promote pollution prevention and waste minimization opportunities to advance site missions in a manner that balances near-term actions with the long-term site vision, while being protective of human health and the environment. Communication tools are being utilized, some with enhancements, to ensure appropriate information is communicated to all levels with environmental responsibility at SRS. SRS internal regulatory integration is accomplished through a variety of informational exchange forums (e.g., Challenges, Opportunities and Resolution (COR) Team, DOE's Joint Site Regulatory Integration Team, and the Senior Environmental Managers Council (SEMC)). SRS communications and problem-solving with the regulatory agencies have been enhanced through formation of an interagency 'SRS Regulatory Integration Team (SRIT)'. The SRIT is a partnership comprised of representatives from DOE-SR (with contractor support), EPA Region 4 and the South Carolina Department of Health and Environmental Control (SCDHEC) and is chartered to develop a consensus understanding of SRS regulatory issues and activities. These forums and a formal environmental compliance integration process improve timely cross-functional decision making, problem solving, information sharing, and issue resolution. The SRS internal process has been formally documented in an Environmental Regulatory Integration Program Description, which is linked to the SRS Environmental Policy and agreed upon by all major contractors, subcontractors and tenants. (authors)

  12. Environmental monitoring at the Lawrence Livermore National Laboratory. 1982 annual report

    SciTech Connect (OSTI)

    Griggs, K.S.; Gonzalez, M.A.; Buddemeier, R.W.

    1983-03-14T23:59:59.000Z

    Environmental monitoring efforts spanned air, water, vegetation and foodstuffs, and radiation doses. Monitoring data collection, analysis, and evaluation are presented for air, soils, sewage, water, vegetation and foodstuffs, milk, and general environmental radioactivity. Non-radioactive monitoring addresses beryllium, chemical effluents in sewage, noise pollution, and storm runoff and liquid discharge site pollutants. Quality assurance efforts are addressed. Five appendices present tabulated data; environmental activity concentration; dose calculation method; discharge limits to sanitary sewer systems of Livermore; and sampling and analytical procedures for environmental monitoring. (PSB)

  13. EA-1081: Carlsbad Environmental Monitoring and Research Center Facility, Carlsbad, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to continue U.S. Department of Energy funding of the Carlsbad Environmental Monitoring & Research Center in the Waste Isolation Pilot...

  14. Sandia National Laboratories, California Environmental Monitoring Program annual report for 2011.

    SciTech Connect (OSTI)

    Holland, Robert C.

    2011-03-01T23:59:59.000Z

    The annual program report provides detailed information about all aspects of the SNL/California Environmental Monitoring Program. It functions as supporting documentation to the SNL/California Environmental Management System Program Manual. The 2010 program report describes the activities undertaken during the previous year, and activities planned in future years to implement the Environmental Monitoring Program, one of six programs that supports environmental management at SNL/California.

  15. Sandia National Laboratories California Environmental Monitoring Program Annual Report for Calendar Year 2005.

    SciTech Connect (OSTI)

    Holland, Robert C.

    2006-02-01T23:59:59.000Z

    The annual program report provides detailed information about all aspects of the SNL/CA Environmental Monitoring Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The 2005 Update program report describes the activities undertaken during the past year, and activities planned in future years to implement the Environmental Monitoring Program, one of six programs that supports environmental management at SNL/CA.

  16. Integrated Omics in Systems Biology: The New Frontier for Environmental Biotechnology

    SciTech Connect (OSTI)

    Hazen, Terry C.

    2008-08-12T23:59:59.000Z

    Environmental biotechnology encompasses a wide range of characterization, monitoring and control for bioenergy and bioremediation technologies that are based on biological processes. Recent breakthroughs in our understanding of biogeochemical processes and genomics are leading to exciting new and cost effective ways to monitor and manipulate the environment and potentially produce bioenergy fuels as we also cleanup the environment. Indeed, our ability to sequence an entire microbial genome in just a few hours is leading to similar breakthroughs in characterizing proteomes, metabolomes, phenotypes, and fluxes for organisms, populations, and communities. Understanding and modeling functional microbial community structure and stress responses in subsurface environments has tremendous implications for our fundamental understanding of biogeochemistry and the potential for making biofuel breakthroughs. Monitoring techniques that inventory and monitor terminal electron acceptors and electron donors, enzyme probes that measure functional activity in the environment, functional genomic microarrays, phylogenetic microarrays, metabolomics, proteomics, and quantitative PCR are also being rapidly adapted for studies in environmental biotechnology. Integration of all of these new high throughput techniques using the latest advances in bioinformatics and modeling will enable break-through science in environmental biotechnology. A review of these techniques with examples from field studies and lab simulations will be discussed.

  17. Technical Report on Preliminary Methodology for Enhancing Risk Monitors with Integrated Equipment Condition Assessment

    SciTech Connect (OSTI)

    Ramuhalli, Pradeep; Coles, Garill A.; Coble, Jamie B.; Hirt, Evelyn H.

    2013-09-17T23:59:59.000Z

    Small modular reactors (SMRs) generally include reactors with electric output of ~350 MWe or less (this cutoff varies somewhat but is substantially less than full-size plant output of 700 MWe or more). Advanced SMRs (AdvSMRs) refer to a specific class of SMRs and are based on modularization of advanced reactor concepts. AdvSMRs may provide a longer-term alternative to traditional light-water reactors (LWRs) and SMRs based on integral pressurized water reactor concepts currently being considered. Enhancing affordability of AdvSMRs will be critical to ensuring wider deployment. AdvSMRs suffer from loss of economies of scale inherent in small reactors when compared to large (~greater than 600 MWe output) reactors. Some of this loss can be recovered through reduced capital costs through smaller size, fewer components, modular fabrication processes, and the opportunity for modular construction. However, the controllable day-to-day costs of AdvSMRs will be dominated by operation and maintenance (O&M) costs. Technologies that help characterize real-time risk are important for controlling O&M costs. Risk monitors are used in current nuclear power plants to provide a point-in-time estimate of the system risk given the current plant configuration (e.g., equipment availability, operational regime, and environmental conditions). However, current risk monitors are unable to support the capability requirements listed above as they do not take into account plant-specific normal, abnormal, and deteriorating states of active components and systems. This report documents technology developments that are a step towards enhancing risk monitors that, if integrated with supervisory plant control systems, can provide the capability requirements listed and meet the goals of controlling O&M costs. The report describes research results from an initial methodology for enhanced risk monitors by integrating real-time information about equipment condition and POF into risk monitors.

  18. An Updated Methodology for Enhancing Risk Monitors with Integrated Equipment Condition Assessment

    SciTech Connect (OSTI)

    Ramuhalli, Pradeep; Hirt, Evelyn H.; Coles, Garill A.; Bonebrake, Christopher A.; Ivans, William J.; Wootan, David W.; Mitchell, Mark R.

    2014-07-18T23:59:59.000Z

    Small modular reactors (SMRs) generally include reactors with electric output of ~350 MWe or less (this cutoff varies somewhat but is substantially less than full-size plant output of 700 MWe or more). Advanced SMRs (AdvSMRs) refer to a specific class of SMRs and are based on modularization of advanced reactor concepts. Enhancing affordability of AdvSMRs will be critical to ensuring wider deployment, as AdvSMRs suffer from loss of economies of scale inherent in small reactors when compared to large (~greater than 600 MWe output) reactors and the controllable day-to-day costs of AdvSMRs will be dominated by operation and maintenance (O&M) costs. Technologies that help characterize real-time risk are important for controlling O&M costs. Risk monitors are used in current nuclear power plants to provide a point-in-time estimate of the system risk given the current plant configuration (e.g., equipment availability, operational regime, and environmental conditions). However, current risk monitors are unable to support the capability requirements listed above as they do not take into account plant-specific normal, abnormal, and deteriorating states of active components and systems. This report documents technology developments towards enhancing risk monitors that, if integrated with supervisory plant control systems, can provide the capability requirements listed and meet the goals of controlling O&M costs. The report describes research results on augmenting an initial methodology for enhanced risk monitors that integrate real-time information about equipment condition and POF into risk monitors. Methods to propagate uncertainty through the enhanced risk monitor are evaluated. Available data to quantify the level of uncertainty and the POF of key components are examined for their relevance, and a status update of this data evaluation is described. Finally, we describe potential targets for developing new risk metrics that may be useful for studying trade-offs for economic operation while maintaining adequate safety margins.

  19. Mid-Infrared Laser based Gas Sensor Technologies for Environmental Monitoring,

    E-Print Network [OSTI]

    , quantification and monitoring of trace gas species and their applications in environmental and industrial process performing sensitive trace gas measurements in gas samples of a few mm3 in volume. QEPAS employs readilyChapter XX Mid-Infrared Laser based Gas Sensor Technologies for Environmental Monitoring, Medical

  20. WiSARDNET: A SYSTEM SOLUTION FOR HIGH PERFORMANCE IN SITU ENVIRONMENTAL MONITORING

    E-Print Network [OSTI]

    WiSARDNET: A SYSTEM SOLUTION FOR HIGH PERFORMANCE IN SITU ENVIRONMENTAL MONITORING Zijiang Yang-temporal monitoring of environmental and ecosystems processes. WiSARDNet is a complete distributed sensing system, as well as careful energy management in a weatherproof package, allow high-performance data collection

  1. Knolls Atomic Power Laboratory annual environmental monitoring report, calendar year 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) sites are summarized and assessed in this report. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each site and at off-site background locations.

  2. Innovative coke oven gas cleaning system for retrofit applications. Quarterly environmental monitoring report No. 3, January 1, 1991--December 31, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-10-16T23:59:59.000Z

    Bethlehem Steel Corporation (BSC), in conjunction with the Department of Energy (DOE) is conducting a Clean Coal Technology (CCT) project at its Sparrows Point, Maryland Coke Oven Plant. This project combines several existing technologies into an integrated system for removing impurities from Coke Oven Gas (COG) to make it an acceptable fuel. DOE is providing cost-sharing under a Cooperative Agreement with BSC. This Cooperative Agreement requires BSC to develop and conduct an Environmental Monitoring Plan (EMP) for the Clean Coal Technology project and to report the status of the EMP on a quarterly basis. This report is the third quarterly status report of the EMP. It covers the Environmental Monitoring Plan activities for the full year of 1991 from January 1, 1991 through December 31, 1991, including the forth quarter. See Sections 2, 3 and 4 for status reports of the Project Installation and Commissioning, the Environmental Monitoring activities and the Compliance Monitoring results for the period. Section 5 contains a list of Compliance Reports submitted to regulatory agencies during the period. The EMP describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) document the extent of compliance of monitoring activities, i.e. those monitoring required to meet permit requirements, (2) confirm the specific impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base for the assessment of the environmental performance of the technology demonstrated by the project.

  3. Offsite environmental monitoring report. Radiation monitoring around United States nuclear test areas, calendar year 1981

    SciTech Connect (OSTI)

    Black, S.C.; Grossman, R.F.; Mullen, A.A.; Potter, G.D.; Smith, D.D.; Hopper, J.L. (comps.)

    1982-08-01T23:59:59.000Z

    This report, prepared in accordance with the guidelines in DOE/E-0023 (DOE 1981), covers the program activities conducted around Nevada Test Site (NTS) for calendar year 1981. It contains descriptions of pertinent features of the NTS and its environs, summaries of the dosimetry and sampling methods, analytical procedures, and the analytical results from environmental measurements. Where applicable, dosimetry and sampling data are compared to appropriate guides for external and internal exposures of humans to ionizing radiation. The monitoring networks detected no radioactivity in the various media which could be attributed to US nuclear testing. Small amounts of fission products were detected in air samples as a result of the People's Republic of China nuclear test and atmospheric krypton-85 increased, following the trend beginning in 1960, due to increased use of nuclear technology. Strontium-90 in milk and cesium-137 in meat samples continued the slow decline as observed for the last several years.

  4. Monitoring individual human cells during exposure to environmental organic toxins: Synchrotron FTIR spectromicroscopy

    E-Print Network [OSTI]

    for Environmental Biotechnology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 b Dept. of MaterialMonitoring individual human cells during exposure to environmental organic toxins: Synchrotron FTIR) are ubiquitous environmental toxins that are known rodent carcinogens and suspected human carcinogens. Human

  5. Uranium Mill Tailings Remedial Action Project Annual Environmental Monitoring Report calendar year 1992: Volume 2

    SciTech Connect (OSTI)

    none,

    1993-12-31T23:59:59.000Z

    This report contains environmental monitoring information for the following UMTRA sites for the 1992 Calendar Year: Lakeview, OR; Lowman, ID; Mexican Hat, UT; Monument Valley, AZ; Rifle, CO; Riverton, WY; Shiprock, NM; Spook, WY; Tuba City, AZ. Each site report contains a site description, compliance summary, environmental program information, environmental radiological and non-radiological program information, water resources protection, and quality assurance information.

  6. Offsite environmental monitoring report; radiation monitoring around United States nuclear test areas, Calendar Year 1996

    SciTech Connect (OSTI)

    Davis, M.G.; Flotard, R.D.; Fontana, C.A.; Huff, P.A.; Maunu, H.K.; Mouck, T.L.; Mullen, A.A.; Sells, M.D.

    1997-08-01T23:59:59.000Z

    This report describes the Offsite Radiation Safety Program. This laboratory operated an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs); and using pressurized ionization chambers (PICs). No nuclear weapons testing was conducted in 1996 due to the continuing nuclear test moratorium. During this period, R and IE personnel maintained readiness capability to provide direct monitoring support if testing were to be resumed and ascertained compliance with applicable EPA, DOE, state, and federal regulations and guidelines. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no airborne radioactivity from diffusion or resuspension detected by the various EPA monitoring networks surrounding the NTS. There was no indication of potential migration of radioactivity to the offsite area through groundwater and no radiation exposure above natural background was received by the offsite population. All evaluated data were consistent with previous data history.

  7. Environmental Monitoring Plan United States Department of Energy Richland Operations Office. Revision 2

    SciTech Connect (OSTI)

    NONE

    1997-11-10T23:59:59.000Z

    This Environmental Monitoring Plan was prepared for the US Department of Energy`s (DOE`s) Richland Operations Office (RL) to implement the requirements of DOE Order 5400.1. According to the Order, each DOE site, facility, or activity that uses, generates, releases, or manages significant pollutants or hazardous materials shall prepare a written environmental monitoring plan covering two major activities: (1) effluent monitoring and (2) environmental surveillance. The plan is to contain information discussing the rationale and design criteria for the monitoring programs, sampling locations and schedules, quality assurance requirements, program implementation procedures, analytical procedures, and reporting requirements. The plan`s purpose is to assist DOE in the management of environmental activities at the Hanford Site and to help ensure that operations on the site are conducted in an environmentally safe and sound manner.

  8. The Community Environmental Monitoring Program: Reducing Public Perception of Risk through Stakeholder Involvement

    SciTech Connect (OSTI)

    William T. Hartwell

    2007-05-21T23:59:59.000Z

    The Community Environmental Monitoring Program (CEMP) has promoted stakeholder involvement, awareness, and understanding of radiological surveillance in communities surrounding the Nevada Test Site (NTS) since 1981. It involves stakeholders in the operation, data collection, and dissemination of information obtained from a network of 29 stations across a wide area of Nevada, Utah and California. It is sponsored by the U.S. Department of Energy, National Nuclear Security Administrationís Nevada Site Office (NNSA/NSO) and administered by the Desert Research Institute (DRI) of the Nevada System of Higher Education. Integration of a near real-time communications system, a public web site, training workshops for involved stakeholders, and educational programs all help to alleviate public perception of risk of health effects from past activities conducted at the NTS.

  9. Sandia National Laboratories, California Quality Assurance Project Plan for Environmental Monitoring Program.

    SciTech Connect (OSTI)

    Holland, Robert C.

    2005-09-01T23:59:59.000Z

    This Quality Assurance Project Plan (QAPP) applies to the Environmental Monitoring Program at the Sandia National Laboratories/California. This QAPP follows DOE Quality Assurance Management System Guide for Use with 10 CFR 830 Subpart A, Quality Assurance Requirements, and DOE O 414.1C, Quality Assurance (DOE G 414.1-2A June 17, 2005). The Environmental Monitoring Program is located within the Environmental Operations Department. The Environmental Operations Department is responsible for ensuring that SNL/CA operations have minimal impact on the environment. The Department provides guidance to line organizations to help them comply with applicable environmental regulations and DOE orders. To fulfill its mission, the department has groups responsible for waste management; pollution prevention, air quality; environmental planning; hazardous materials management; and environmental monitoring. The Environmental Monitoring Program is responsible for ensuring that SNL/CA complies with all Federal, State, and local regulations and with DOE orders regarding the quality of wastewater and stormwater discharges. The Program monitors these discharges both visually and through effluent sampling. The Program ensures that activities at the SNL/CA site do not negatively impact the quality of surface waters in the vicinity, or those of the San Francisco Bay. The Program verifies that wastewater and stormwater discharges are in compliance with established standards and requirements. The Program is also responsible for compliance with groundwater monitoring, and underground and above ground storage tanks regulatory compliance. The Program prepares numerous reports, plans, permit applications, and other documents that demonstrate compliance.

  10. Integrated monitoring and surveillance system demonstration project: Phase I accomplishments

    SciTech Connect (OSTI)

    Aumeier, S.E.; Walters, B.G.; Crawford, D.C. [and others

    1997-01-15T23:59:59.000Z

    The authors present the results of the Integrated Monitoring and Surveillance System (IMSS) demonstration project Phase I efforts. The rationale behind IMSS development is reviewed and progress in each of the 5 basic tasks is detailed. Significant results include decisions to use Echelon LonWorks networking protocol and Microsoft Access for the data system needs, a preliminary design for the plutonium canning system glovebox, identification of facilities and materials available for the demonstration, determination of possibly affected facility documentation, and a preliminary list of available sensor technologies. Recently imposed changes in the overall project schedule and scope are also discussed and budgetary requirements for competition of Phase II presented. The results show that the IMSS demonstration project team has met and in many cases exceeded the commitments made for Phase I deliverables.

  11. Environmental Monitoring Plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    This document presents the Environmental Monitoring Plan (EMP) for Waste Area Grouping (WAG) 6 at the Oak Ridge National Laboratory (ORNL). Based on the results of the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) and on subsequent discussions with regulators, a decision was made to defer implementing source control remedial measures at the WAG. The alternative selected to address the risks associated with WAG 6 involves maintenance of site access controls prevent public exposure to on-site contaminants, continued monitoring of contaminant releases determine if source control measures are required, and development of technologies that could support the final remediation of WAG 6. Although active source control measures are not being implemented at WAG 6, environmental monitoring is necessary to ensure that any potential changes in contaminant release from the WAG are identified early enough to take appropriate action. Two types of environmental monitoring will be conducted: baseline monitoring and annual routine monitoring. The baseline monitoring will be conducted to establish the baseline contaminant release conditions at the WAG, confirm the site-related chemicals of concern (COCs), and gather data to confirm the site hydrologic model. The baseline monitoring is expected to begin in 1994 and last for 12--18 months. The annual routine monitoring will consist of continued sampling and analyses of COCs to determine off-WAG contaminant flux and risk, identify mills in releases, and confirm the primary contributors to risk. The annual routine monitoring will continue for {approximately} 4 years after completion of the baseline monitoring.

  12. U.S. EPA Environmental Technology Verification (ETV) Program Advanced Monitoring Systems (AMS) Center

    E-Print Network [OSTI]

    for Microcystins in Freshwater Sources Monitoring Technologies for Measuring Stored Carbon Dioxide from Sequestration Applications. These technology categories have been priorities for the AMS Center stakeholders, Nebraska Department of Environmental Quality (NDEQ) for microcystins, and EPA Region 7 for carbon

  13. Establishment of a Background Environmental Monitoring Station for the PNNL Campus

    SciTech Connect (OSTI)

    Fritz, Brad G.; Snyder, Sandra F.; Barnett, J. M.; Bisping, Lynn E.; Rishel, Jeremy P.

    2014-12-18T23:59:59.000Z

    The environmental surveillance of background levels of radionuclides and, in particular, the siting of a background environmental surveillance (monitoring) station are examined. Many published works identify and stress the need for background monitoring; however, little definitive and comprehensive information for siting a station exists. A definition of an ideal background monitoring location and the generic criteria recommended for use in establishing such a background monitoring location are proposed. There are seven primary (mandatory) criteria described with two additional, optional criteria. The criteria are applied to the Richland, Washington (WA), Pacific Northwest National Laboratory (PNNL) Campus, which currently uses background monitoring data from the nearby Hanford Site. Eleven potential background monitoring sites were identified, with one location in Benton City, WA found to meet all of the mandatory and optional criteria. It is expected that the new sampler will be installed and operating by the end of June, 2015.

  14. Hanford Site Near-Facility Environmental Monitoring Data Report for Calendar Year 2008

    SciTech Connect (OSTI)

    Perkins, Craig J.; Dorsey, Michael C.; Mckinney, Stephen M.; Wilde, Justin W.; Poston, Ted M.

    2009-09-15T23:59:59.000Z

    Near-facility environmental monitoring is defined as monitoring near facilities that have the potential to discharge or have discharged, stored, or disposed of radioactive or hazardous materials. Monitoring locations are associated with nuclear facilities such as the Plutonium Finishing Plant, Canister Storage Building, and the K Basins; inactive nuclear facilities such as N Reactor and the Plutonium-Uranium Extraction (PUREX) Facility; and waste storage or disposal facilities such as burial grounds, cribs, ditches, ponds, tank farms, and trenches. Much of the monitoring consists of collecting and analyzing environmental samples and methodically surveying areas near facilities. The program is also designed to evaluate acquired analytical data, determine the effectiveness of facility effluent monitoring and controls, assess the adequacy of containment at waste disposal units, and detect and monitor unusual conditions.

  15. Autonomous Adaptive Resource Management in Sensor Network Systems for Environmental Monitoring

    E-Print Network [OSTI]

    Panangadan, Anand

    1 Autonomous Adaptive Resource Management in Sensor Network Systems for Environmental Monitoring rates, and routing of data) that impact the utilization of the system resources (such as energy reserves is illustrated on a coastal monitoring and forecast system that is in operation in the New York harbor

  16. Sensorcam: An Energy-Efficient Smart Wireless Camera for Environmental Monitoring

    E-Print Network [OSTI]

    Vetterli, Martin

    and the "intelligence" of the camera it- self, we demonstrate an energy-efficient wireless monitoring system in a realSensorcam: An Energy-Efficient Smart Wireless Camera for Environmental Monitoring Zichong Chen camera running a Linux-base open system. Through better power manage- ment in idle period

  17. A Cyberinfrastructure for Integrated Monitoring and Life-Cycle Management of Wind Turbines

    E-Print Network [OSTI]

    Stanford University

    A Cyberinfrastructure for Integrated Monitoring and Life-Cycle Management of Wind Turbines Kay Abstract. Integrating structural health monitoring into life-cycle management strategies for wind turbines data) can effectively be used to capture the operational and structural behavior of wind turbines

  18. Routine Radiological Environmental Monitoring Plan, Volume 2 Appendices

    SciTech Connect (OSTI)

    Bechtel Nevada

    1998-12-31T23:59:59.000Z

    Supporting material for the plan includes: QUALITY ASSURANCE, ANALYSIS, AND SAMPLING PLAN FOR NTS AIR; QUALITY ASSURANCE, ANALYSIS, AND SAMPLING PLAN FOR WATER ON AND OFF THE NEVADA TEST SITE; QUALITY ASSURANCE, ANALYSIS, AND SAMPLING PLAN FOR NTS BIOTA; QUALITY ASSURANCE, ANALYSIS, AND SAMPLING PLAN FOR DIRECT RADIATION MONITORING; DATA QUALITY OBJECTIVES PROCESS; VADOSE ZONE MONITORING PLAN CHECKLIST.

  19. Annual Radiological Environmental Monitoring Program Report for the Fort St. Vrain Independent Spent Fuel Storage Installation

    SciTech Connect (OSTI)

    Hall, Gregory Graham; Newkirk, Jay Ronald; Borst, Frederick Jon

    2002-02-01T23:59:59.000Z

    This report presents the results of the 2001 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Fort St. Vrain Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the predominant radiation exposure pathway, direct and scattered radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  20. advanced environmental monitoring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    environmental issues: deforestation, desertification, biodiversity use and climate change. These discourses are analysed in terms of their messages, narrative structures and...

  1. ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM AT POTENTIAL OTEC SITES

    E-Print Network [OSTI]

    Wilde, P.

    2010-01-01T23:59:59.000Z

    Environmental assessment Ocean Thermal Energy Conversion (the 6th Annual Ocean Thermal Energy Conversion Conference,of projected Ocean Thermal Energy Conversion (OTEC) plants

  2. ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM AT POTENTIAL OTEC SITES

    E-Print Network [OSTI]

    Wilde, P.

    2010-01-01T23:59:59.000Z

    Environmental assessment Ocean Thermal Energy Conversion (Plan (EDP) 1978. Ocean Thermal Energy Conversion. U.S. Dept.the 6th Annual Ocean Thermal Energy Conversion Conference,

  3. Standard Guide for Environmental Monitoring Plans for Decommissioning of Nuclear Facilities

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01T23:59:59.000Z

    1.1 This guide covers the development or assessment of environmental monitoring plans for decommissioning nuclear facilities. This guide addresses: (1) development of an environmental baseline prior to commencement of decommissioning activities; (2) determination of release paths from site activities and their associated exposure pathways in the environment; and (3) selection of appropriate sampling locations and media to ensure that all exposure pathways in the environment are monitored appropriately. This guide also addresses the interfaces between the environmental monitoring plan and other planning documents for site decommissioning, such as radiation protection, site characterization, and waste management plans, and federal, state, and local environmental protection laws and guidance. This guide is applicable up to the point of completing D&D activities and the reuse of the facility or area for other purposes.

  4. Exploring an Integrated Data Base Structure for Building Energy Monitoring Data†

    E-Print Network [OSTI]

    Haberl, J.; Jagannathan, V.; Lopez, R.; Sparks, R.; Kissock, K.; Willis, D.; Claridge, D.

    1991-01-01T23:59:59.000Z

    One of the inherent problems with monitoring hourly energy use and environmental conditions in commercial buildings is efficiently processing the "sea" of data that accumulates into an easily understood form. Even when ...

  5. 182 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 12, NO. 2, MARCH 2013 Monitoring the Environmental Impact of TiO2

    E-Print Network [OSTI]

    Parker, Lynne E.

    the potential environmental impact of these nanoparticles. The goal of this research was to de- velop a plant-based sensor network for characterizing, monitoring, and understanding the environmental impact of TiO2 impact of nanomaterials. Index Terms--Biosystems, environmental monitoring, nanobio- science

  6. annual environmental monitoring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from DOE sources released. Environmental surveillance consists of the collection and analysis of samples of air, water, soil with permit limits was better than 99%. 4.1 ETTP...

  7. Community Environmental Monitoring Program (CEMP) Data related to Air, Soil, and Water Monitoring around the Nevada Test Site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Community Environmental Monitoring Program (CEMP) is a network of 29 monitoring stations located in communities surrounding and downwind of the Nevada Test Site (NTS) that monitor the airborne environment for manmade radioactivity that could result from NTS activities. The network stations, located in Nevada, Utah, and California are comprised of instruments that collect a variety of environmental radiological and meteorological data. The emphasis of the CEMP is to monitor airborne radioactivity and weather conditions, and make the results available to the public. Instrumentation that records these data is connected to a datalogger, and real-time radiation levels or weather conditions can immediately and easily be seen on a display at each station. These data are transmitted via direct or wireless internet connection, landline or cellular phone, or satellite transmission to DRI's Western Regional Climate Center in Reno, Nevada, and are updated as frequently as every 10 minutes on the World Wide Web at http://www.cemp.dri.edu. DOE and DRI also publish the results of the monitoring program and distribute these reports throughout the network community. The reports provide summaries of average values for each station and the entire network, and show deviations from the expected range values. [Copied from the CEMP website (Introduction) at http://www.cemp.dri.edu/cemp/moreinfo.html

  8. Inventory of current environmental monitoring projects in the US-Canadian transboundary region

    SciTech Connect (OSTI)

    Glantz, C.S.; Ballinger, M.Y.; Chapman, E.G.

    1986-05-01T23:59:59.000Z

    This document presents the results of a study commissioned to survey and summarize major environmental monitoring projects in the US-Canadian transboundary region. Projects with field sites located within 400 km (250 mi) of the border and active after 1980 were reviewed. The types of projects included: ambient air-quality monitoring, ambient water-quality monitoring, deposition monitoring, forest/vegetation monitoring and research, soil studies, and ecosystem studies. Ecosystem studies included projects involving the measurement of parameters from more than one monitoring category (e.g., studies that measured both water and soil chemistry). Individual descriptions were formulated for 184 projects meeting the spatial and temporal criteria. Descriptions included the official title for the project, its common abbreviation, program emphasis, monitoring site locations, time period conducted, parameters measured, protocols employed, frequency of sample collection, data storage information, and the principal contact for the project. A summary inventory subdivided according to the six monitoring categories was prepared using a computerized data management system. Information on major centralized data bases in the field of environmental monitoring was also obtained, and summary descriptions were prepared. The inventory and data base descriptions are presented in appendices to this document.

  9. Integrating the principles of strategic environmental assessment into local comprehensive land use plans in California

    E-Print Network [OSTI]

    Tang, Zhenghong

    2009-05-15T23:59:59.000Z

    The lack of early integration with the planning and decision-making process has been a major problem in environmental assessment. Traditional project-based environmental impact assessment has inadequate incentives and capacities to incorporate...

  10. Integrating the principles of strategic environmental assessment into local comprehensive land use plans in California†

    E-Print Network [OSTI]

    Tang, Zhenghong

    2009-05-15T23:59:59.000Z

    The lack of early integration with the planning and decision-making process has been a major problem in environmental assessment. Traditional project-based environmental impact assessment has inadequate incentives and capacities to incorporate...

  11. Environmental Monitoring and An International Journal Devoted to

    E-Print Network [OSTI]

    Florida, University of

    . Osborne, Gregory L. Bruland, Susan Newman, K. Ramesh Reddy & Sabine Grunwald #12;1 23 Your article-partitioning of soil biogeochemical properties in the Everglades National Park Todd Z. Osborne ∑ Gregory L. Bruland-0510, USA e-mail: osbornet@ufl.edu G. L. Bruland Department of Natural Resources and Environmental

  12. Novel biosensors for environmental monitoring of phenolic compounds

    SciTech Connect (OSTI)

    Chen, O.; Wang, J. [New Mexico State Univ., Las Cruces, NM (United States)

    1995-12-01T23:59:59.000Z

    This presentation will describe new strategies for amperometric biosensing of phenolic compounds. The class enzyme tyrosinase is employed in connection with these biosensing schemes. The enzyme can tolerate the high temperature of screen-printing/drying processes used for fabricating disposable sensor strips. In addition to single-use electrodes, we will describe the characteristic of a remote enzyme electrode for field monitoring of phenolic compounds. Finally, a novel bioamplification scheme for enhancing the sensitivity of phenol biosensing will be reported.

  13. Environmental monitoring at Hanford for 1987: Surface and Columbia River data

    SciTech Connect (OSTI)

    Jaquish, R.E.

    1988-08-01T23:59:59.000Z

    Environmental monitoring at the Hanford Site, located in southeastern Washington State is conducted for the US Department of Energy. The data collected provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor the status of chemicals on the site and in the Columbia River. This volume contains the actual raw data used to create the summaries in PNL--6464.

  14. 1993 Effluent and environmental monitoring report for the Bettis Atomic Power Laboratory, Pittsburgh Site

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    The results of the radiological and non-radiological environmental monitoring programs for 1993 at the Bettis-Pittsburgh Site are presented. The results obtained from the monitoring programs demonstrate that the existing procedures ensured that environmental releases during 1993 were in accordance with applicable Federal and State regulations. Evaluation of the environmental data indicates that the current operations at the Site continue to have no adverse effect on the quality of the environment. A conservative assessment of radiation exposure to the general public as a result of Site operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits established by the US Environmental Protection Agency and the US Department of Energy.

  15. Addendum to Environmental Monitoring Plan, Nevada Test Site and Support Facilities; Addendum 2

    SciTech Connect (OSTI)

    NONE

    1993-11-01T23:59:59.000Z

    This 1993 Addendum to the ``Environmental Monitoring Plan Nevada Test Site and Support Facilities -- 1991,`` Report No. DOE/NV/10630-28 (EMP) applies to the US Department of Energy`s (DOE`s) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Operations Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this 1993 Addendum to the EMP brings together, in one document, updated information and/or new sections to the description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA) originally published in the EMP. The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US. All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards.

  16. Addendum to environmental monitoring plan Nevada Test Site and support facilities

    SciTech Connect (OSTI)

    NONE

    1992-11-01T23:59:59.000Z

    This 1992 Addendum to the ``Environmental Monitoring Plan Nevada Test Site and Support Facilities -- 1991,`` Report No. DOE/NV/1 0630-28 (EMP) applies to the US Department of Energy`s (DOE`s) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Field Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this 1992 Addendum to the EMP brings together, in one document, updated information and/or new sections to the description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA) originally published in the EMP. The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards.

  17. Environmental monitoring for the DOE coolside and LIMB demonstration extension projects

    SciTech Connect (OSTI)

    White, T.; Contos, L.; Furr, A. (Radian Corp., Research Triangle Park, NC (United States))

    1991-05-01T23:59:59.000Z

    The purpose of this document is to present environmental monitoring data collected during the U.S. Department of Energy Limestone Injection Multistage Burner (DOE LIMB) Demonstration Project Extension at the Ohio Edison Edgewater Generating Station in Lorain, Ohio. The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system was operated this reporting period to evaluate two types of lime-based sorbents with two different sulfur content coals. The air quality monitoring data presented in this report are based on emission data that are specific to the coal/sorbent combination utilized during a specific injection period and the combination of combustion and air pollution control equipment used at the Lorain facility. To determine LIMB operating efficiencies and environmental impacts, monitoring data collected during the sorbent/coal injection periods were compared to Baseline data. For this reporting period, wastewaters monitoring and fly ash sampling were undertaken; the environmental impact of fly ash disposal was also investigated. Air dispersion modeling was conducted using Coolside data, Baseline data, and data generated during the two sorbents/nominal 3.0 percent sulfur coal combinations. Employee health and safety monitoring was conducted. The facility's compliance monitoring status was received for this period. 5 figs.,16 tabs.

  18. Visual Data Analysis as an Integral Part of Environmental Management

    SciTech Connect (OSTI)

    Meyer, Joerg; Bethel, E. Wes; Horsman, Jennifer L.; Hubbard, Susan S.; Krishnan, Harinarayan; Romosan,, Alexandru; Keating, Elizabeth H.; Monroe, Laura; Strelitz, Richard; Moore, Phil; Taylor, Glenn; Torkian, Ben; Johnson, Timothy C.; Gorton, Ian

    2012-10-01T23:59:59.000Z

    The U.S. Department of Energy's (DOE) Office of Environmental Management (DOE/EM) currently supports an effort to understand and predict the fate of nuclear contaminants and their transport in natural and engineered systems. Geologists, hydrologists, physicists and computer scientists are working together to create models of existing nuclear waste sites, to simulate their behavior and to extrapolate it into the future. We use visualization as an integral part in each step of this process. In the first step, visualization is used to verify model setup and to estimate critical parameters. High-performance computing simulations of contaminant transport produces massive amounts of data, which is then analyzed using visualization software specifically designed for parallel processing of large amounts of structured and unstructured data. Finally, simulation results are validated by comparing simulation results to measured current and historical field data. We describe in this article how visual analysis is used as an integral part of the decision-making process in the planning of ongoing and future treatment options for the contaminated nuclear waste sites. Lessons learned from visually analyzing our large-scale simulation runs will also have an impact on deciding on treatment measures for other contaminated sites.

  19. Weldon Spring, Missouri: Annual environmental monitoring report, calendar year 1987

    SciTech Connect (OSTI)

    Not Available

    1987-01-01T23:59:59.000Z

    Radiological monitoring at the WSS during 1987 measured uranium, Radium-226, and Thorium-230 concentrations in surface water, groundwater, and sediment; radon gas concentrations in air; all long-lived natural series isotopes in air particulates; and external gamma radiation exposure rates. Potential radiation doses to the public were calculated based on assumed exposure periods and the above measurements. Radon concentrations, external gamma exposure rates, and radionuclide concentrations in groundwater and surface water at the site were generally equivalent to previous years' levels. The maximum calculated annual radiation dose to a hypothetically exposed individual at the WSRP and WSCP area was 1 mrem, or 1 percent of the DOE radiation protection standard of 100 mrem. The maximum calculated annual radiation dose to a hypothetically exposed individual at the WSQ was 14 mrem, or about 14 percent of the standard. Thus the WSS currently complies with DOE Off-site Dose Standards. Chemical contamination monitoring at the WSS during 1987 measured nitroaromatics, total organic carbon and the inorganic anions chloride, nitrate, fluoride and sulfate in surface water, groundwater and sediment. 22 refs., 26 figs., 21 tabs.

  20. Solar-powered WirelessMesh Networksfor Environmental Monitoring Torsten Braun, Thomas Staub, Benjamin Nyffenegger

    E-Print Network [OSTI]

    Braun, Torsten

    Solar-powered WirelessMesh Networksfor Environmental Monitoring Torsten Braun, Thomas Staub the development and experiencesof a solar-power driven wirelessmesh network for connectingsensorsin rural is available. II. SOLAR-POWER DRIVEN WIRELESS MESH NETWORK DEPLYOMENT AND OPERATION In a technology project

  1. CitiSense Adaptive Services for Community-Driven Behavioral and Environmental Monitoring to Induce

    E-Print Network [OSTI]

    Simunic, Tajana

    times nor at equal risk for asthma or other harmful consequences of air pollution. What if everyday RI≥FLWL]HQ LQIUDVWUXFWXUHī for the monitoring of pollution and environmental conditions that users by users, data about pollutants such as ozone and carbon monoxide is collected and used to provide real

  2. Environmental Monitoring, Mapping, Analysis, and Planning Systems Lab University of North Florida

    E-Print Network [OSTI]

    Asaithambi, Asai

    measurements ∑Low cost, but survivable, buoy structure of easily obtained materials ∑Self sufficient on solar Florida Buoy Overview Power-managed solar panel/ Lead-acid battery Spread spectrum 900 MHz radio & textEnvironmental Monitoring Mapping Analysis and Planning Systems LaboratorySystems Laboratory ONR Buoy Conference Monterey

  3. Cumulative environmental impacts and integrated coastal management: the case of Xiamen, China

    E-Print Network [OSTI]

    Charles, Anthony

    Cumulative environmental impacts and integrated coastal management: the case of Xiamen, China, Environmental Science Research Center, Xiamen University, Xiamen, China b Management Science and the implementation of integrated coastal management within the harbour of Xiamen, China, an urban region in which

  4. A bipolar integrator for secondary emission profile monitors at the SSCL

    SciTech Connect (OSTI)

    Datte, P.; Beechy, D.; Webber, R.

    1994-01-01T23:59:59.000Z

    Many invasive techniques for monitoring beam profile and intensity require secondary emission signals in order to make the measurement. Signal acquisition and processing can take many forms. This paper describes a bipolar integration technique which uses the Burr-Brown ACF2101 Dual Switched Integrator chip and applications for accelerator beam instrumentation.

  5. Innovative environmental monitoring technologists developed by the Department of Energy

    SciTech Connect (OSTI)

    Roelant, D. [BDM Federal, Inc., Gaithersburg, MD (United States); Purdy, C. [Department of Energy, Germantown, MD (United States). Office of Environmental Management

    1995-12-31T23:59:59.000Z

    The US Department of Energy (DOE) is required to characterize approximately 3,700 contaminated sites, 1.5 million barrels of stored waste, 385,000 m{sup 3} of high-level radioactive waste in tanks, and between 1,700 and 7,000 facilities before site remediation, waste treatment, and facility deactivation and decontamination (D and D) operations commence. Specifically, characterization technologies are being developed to address five major problem areas: mixed waste treatment, facility D and D, mapping and treatment of contaminant plumes in soil and groundwater, landfill stabilization, retrieval and remediation, and retrieval and treatment of high-level radioactive waste from underground storage tanks. DOE`s Office of Technology Development (OTD) within the Office of Environmental Management is entirely focused on projects to address these five areas.

  6. Environmental Monitoring and the Gas Industry: Program Manager Handbook

    SciTech Connect (OSTI)

    Gregory D. Gillispie

    1997-12-01T23:59:59.000Z

    This document has been developed for the nontechnical gas industry manager who has the responsibility for the development of waste or potentially contaminated soil and groundwater data or must make decisions based on such data for the management or remediation of these materials. It explores the pse of common analytical chemistry instrumentation and associated techniques for identification of environmentally hazardous materials. Sufficient detail is given to familiarize the nontechnical reader with the principles behind the operation of each technique. The scope and realm of the techniques and their constituent variations are portrayed through a discussion of crucial details and, where appropriate, the depiction of real-life data. It is the author's intention to provide an easily understood handbook for gas industry management. Techniques which determine the presence, composition, and quantification of gas industry wastes are discussed. Greater focus is given to traditional techniques which have been the mainstay of modem analytical benchwork. However, with the continual advancement of instrumental principles and design, several techniques have been included which are likely to receive greater attention in fiture considerations for waste-related detection. Definitions and concepts inherent to a thorough understanding of the principles common to analytical chemistry are discussed. It is also crucial that gas industry managers understand the effects of the various actions which take place before, during, and after the actual sampling step. When a series of sample collection, storage, and transport activities occur, new or inexperienced project managers may overlook or misunderstand the importance of the sequence. Each step has an impact on the final results of the measurement process; errors in judgment or decision making can be costly. Specific techniques and methodologies for the collection, storage, and transport of environmental media samples are not described or discussed in detail in thk handbook. However, the underlying philosophy regarding the importance of proper collection, storage, and transport practices, as well as pertinent references, are presented.

  7. Integrated Environmental Assessment Part III: ExposureAssessment

    SciTech Connect (OSTI)

    McKone, Thomas E.; Small, Mitchell J.

    2006-06-01T23:59:59.000Z

    Human exposure assessment is a key step in estimating the environmental and public health burdens that result chemical emissions in the life cycle of an industrial product or service. This column presents the third in a series of overviews of the state of the art in integrated environmental assessment - earlier columns described emissions estimation (Frey and Small, 2003) and fate and transport modeling (Ramaswami, et al., 2004). When combined, these first two assessment elements provide estimates of ambient concentrations in the environment. Here we discuss how both models and measurements are used to translate ambient concentrations into metrics of human and ecological exposure, the necessary precursors to impact assessment. Exposure assessment is the process of measuring and/or modeling the magnitude, frequency and duration of contact between a potentially harmful agent and a target population, including the size and characteristics of that population (IPCS, 2001; Zartarian, et al., 2005). Ideally the exposure assessment process should characterize the sources, routes, pathways, and uncertainties in the assessment. Route of exposure refers to the way that an agent enters the receptor during an exposure event. Humans contact pollutants through three routes--inhalation, ingestion, and dermal uptake. Inhalation occurs in both outdoor environments and indoor environments where most people spend the majority of their time. Ingestion includes both water and food, as well as soil and dust uptake due to hand-to-mouth activity. Dermal uptake occurs through contacts with consumer products; indoor and outdoor surfaces; the water supply during washing or bathing; ambient surface waters during swimming or boating; soil during activities such as work, gardening, and play; and, to a lesser extent, from the air that surrounds us. An exposure pathway is the course that a pollutant takes from an ambient environmental medium (air, soil, water, biota, etc), to an exposure medium (indoor air, food, tap water, etc.) and to an exposed individual. Exposure scenarios are used to define plausible pathways for human contact. Recognition of the multiple pathways possible for exposure highlights the importance of a multimedia, multipathway exposure framework.

  8. Environmental monitoring plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This document presents an Environmental Monitoring Plan (EMP) for Waste Area Grouping (WAG 6) at Oak Ridge National Laboratory (ORNL). This document updates a draft monitoring plan developed in 1993. The draft plan was never finalized awaiting resolution of the mechanisms for addressing RCRA concerns at a site where the CERCLA process resulted in a decision to defer action, i.e., postpone closure indefinitely. Over the past two years the Tennessee Department of Environment and Conservation (TDEC), US Department of Energy (DOE), and US Environmental Protection Agency (EPA) Region IV, have agreed that RCRA authority at the site will be maintained through a post- closure permit; ``closure`` in this case referring to deferred action. Both a Revised Closure Plan (DOE 1995a) and a Post-Closure Permit Application (DOE 1995b) have been developed to document this agreement; relevant portions of the EMP will be included in the RCRA Post-Closure Permit Application. As the RCRA issues were being negotiated, DOE initiated monitoring at WAG 6. The purpose of the monitoring activities was to (1) continue to comply with RCRA groundwater quality assessment requirements, (2) install new monitoring equipment, and (3) establish the baseline conditions at WAG 6 against which changes in contaminant releases could be measured. Baseline monitoring is scheduled to end September 30, 1995. Activities that have taken place over the past two years are summarized in this document.

  9. Environmental Applications of Stable Xenon and Radioxenon Monitoring

    SciTech Connect (OSTI)

    Dresel, P. Evan; Olsen, Khris B.; Hayes, James C.; McIntyre, Justin I.; Waichler, Scott R.; Kennedy, B. M.

    2008-06-01T23:59:59.000Z

    Improved detection capabilities are needed at several Department of Energy sites to make remedial decisions about facilities and landfill cleanup. For facility monitoring air samples can be collected from within a facility and analyzed for short lived radioxenons to estimate inventories of residual plutonium holdup within the facility. For landfill cleanup activities soil gas sampling for xenon isotopes can be used to define the locations of spent fuel and transuranic wastes. Short-lived radioxenon isotopes are continuously produced by spontaneous fission of plutonium-240 in transuranic wastes. Large volume soil-gas samples provide extremely sensitive measurement of radioxenon in the subsurface; a characteristic of transuranic waste. The analysis employs a modified Automated Radioxenon Sampling and Analysis (ARSA) system. Proof of principle measurements at a Hanford Site liquid waste disposal site showed xenon-133 at levels in soil gas are approximately 16,000 times the detection limit and lower levels of xenon-135 from the spontaneous fission of plutonium-240 were also measured. Stable xenon isotopes are also produced by spontaneous fission but are subject to background concentrations in ambient air samples (facilities) but less so in soil gas where free exchange with ambient air is restricted. Rare gas mass spectrometry is used for highly precise stable xenon isotopic measurements. Stable xenon isotopic ratios from fission are distinct from natural xenon background ratios. Neutron capture on xenon-135 produces an excess of xenon-136 above fission ratios and thus provides a means of distinguishing reactor sources (e.g. spent fuel) from separated transuranic materials (plutonium).

  10. ENVIRONMENTAL RADIATION MONITORING IN THE CHERNOBYL EXCLUSION ZONE - HISTORY AND RESULTS 25 YEARS AFTER

    SciTech Connect (OSTI)

    Farfan, E.; Jannik, T.

    2011-10-01T23:59:59.000Z

    This article describes results of the radiation environmental monitoring performed in the Chernobyl Exclusion Zone (ChEZ) during the period following the 1986 Chernobyl Nuclear Power Plant accident. This article presents a brief overview of five comprehensive reports generated under Contract No. DE-AC09-96SR18500 (Washington Savannah River Company LLC, Subcontract No. AC55559N, SOW No. ON8778) and summarizes characteristics of the ChEZ and its post-accident status and the history of development of the radiation monitoring research in the ChEZ is described. This article addresses characteristics of the radiation monitoring in the ChEZ, its major goals and objectives, and changes of these goals and objectives in the course of time, depending on the tasks associated with the phase of mitigation of the ChNPP accident consequences. The results of the radiation monitoring in the ChEZ during the last 25 years are also provided.

  11. The status and prospective of environmental radiation monitoring stations in Saudi Arabia

    SciTech Connect (OSTI)

    Al-Kheliewi, Abdullah S. [National Center for Radiation Protection, King Abdulaziz City for Science and Technology, 11442 Riyadh (Saudi Arabia); Holzheimer, Clous [ENVINET GmbH, Environmental Radiation Detection, Hans-Pinsel-StraŖe 4, 85540 Haar (Munich) (Germany)

    2014-09-30T23:59:59.000Z

    The use of nuclear technology requires an environmental monitoring program to ensure the safety of the environment, and to protect people from the hazards of radioactive materials, and nuclear accidents. Nuclear accidents are unique, for they incur effects that surpass international frontiers, and can even have a long lasting impact on Earth. Such was the case of the Chernobyl accident in the Ukraine on April 6, 1986. For that purpose, international and national efforts come together to observe for any nuclear or radioactive accident. Many states, including Saudi Arabia which oversees the operation of the National Radiation, Environmental and Early Monitoring Stations, The Radiation Monitoring Stations(RMSís) are currently scattered across 35 cities in the country,. These locations are evaluated based on various technological criteria such as border cities, cities of high population density, wind direction, etc. For new nuclear power plants hovering around, it is strongly recommended to increase the number of radiation monitoring stations to warn against any threat that may arise from a nuclear leak or accident and to improve the performance of the existing RMSís. SARA (Spectroscopic Monitoring Station for air) should be implemented due to the high sensitivity to artificial radiation, automatic isotope identification, free of maintenance, and fully independent due to solar power supply (incl. battery backup) and wireless communication (GPRS)

  12. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    SciTech Connect (OSTI)

    None

    1985-09-01T23:59:59.000Z

    In April 1985, the Department of Energy (DOE) selected the Clinch River site as its preferred site for the construction and operation of the monitored retrievable storage (MRS) facility (USDOE, 1985). In support of the DOE MRS conceptual design activity, available data describing the site have been gathered and analyzed. A composite geotechnical description of the Clinch River site has been developed and is presented herein. This report presents Clinch River site description data in the following sections: general site description, surface hydrologic characteristics, groundwater characteristics, geologic characteristics, vibratory ground motion, surface faulting, stability of subsurface materials, slope stability, and references. 48 refs., 35 figs., 6 tabs.

  13. Radiation environment along the INTEGRAL orbit measured with the IREM monitor

    E-Print Network [OSTI]

    W. Hajdas; P. BŁhler; C. Eggel; P. Favre; A. Mchedlishvili; A. Zehnder

    2003-08-15T23:59:59.000Z

    The INTEGRAL Radiation Environment Monitor (IREM) is a payload supporting instrument on board the INTEGRAL satellite. The monitor continually measures electron and proton fluxes along the orbit and provides this information to the spacecraft on board data handler. The mission alert system broadcasts it to the payload instruments enabling them to react accordingly to the current radiation level. Additionally, the IREM conducts its autonomous research mapping the Earth radiation environment for the space weather program. Its scientific data are available for further analysis almost without delay.

  14. Integrating environmental considerations in technology selections under uncertainty

    E-Print Network [OSTI]

    Chen, Yue (Yue Nina)

    2005-01-01T23:59:59.000Z

    Competition requires companies to make decisions that satisfy multiple criteria. Considering profitability alone is no longer sufficient. Ignoring environmental considerations will not only expose a company to potential ...

  15. Environmental Assessment for the Center for Integrated Nanotechnologie...

    Broader source: Energy.gov (indexed) [DOE]

    Environmental Assessment March 2003 1 1.0 PURPOSE AND NEED FOR AGENCY ACTION In 1999, the United States government announced the National Nanotechnology Initiative (NNI)...

  16. Environmental Assessment for the Center for Integrated Nanotechnologie...

    Broader source: Energy.gov (indexed) [DOE]

    IMPACT CENTER FOR INTEGRATED NANOTECHNOLOGIES AT SANDIA NATIONAL LABORATORIESNEW MEXICO The United States Department of Energy (DOE), National Nuclear Security...

  17. Environmental monitoring for the DOE coolside and LIMB demonstration extension projects

    SciTech Connect (OSTI)

    White, T.; Contos, L.; Adams, L. (Radian Corp., Research Triangle Park, NC (United States). Progress Center)

    1992-02-01T23:59:59.000Z

    The purpose of this document is to present environmental monitoring data collected during the US DOE Limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators. (VC)

  18. Molecular controls of the plant cell cycle must integrate environmental signals within developmental contexts. Recent

    E-Print Network [OSTI]

    Murray, J.A.H.

    440 Molecular controls of the plant cell cycle must integrate environmental signals within of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK *e-mail: rph1000@hermes

  19. 2001 environmental monitoring report for the Bettis Atomic Power Laboratory, West Mifflin Site

    SciTech Connect (OSTI)

    NONE

    2002-12-01T23:59:59.000Z

    The 2001 results for the Bettis-Pittsburgh radiological and nonradiological environmental monitoring programs are presented. The results demonstrate that the existing procedures ensured that releases to the environment during 2001 were in accordance with applicable Federal, State, County, and local regulations. Evaluation of the environmental data indicates that current operations at the Site continue to have no adverse effect on human health and the quality of the environment. A conservative assessment of radiation exposure to the general public as a result of Site operations demonstrates that the dose received by any member of the public was well below the most restrictive dose limits established by the Environmental Protection Agency, the Nuclear Regulatory Commission, and the U.S. Department of Energy. A risk assessment of potentially exposed populations to chemical residues in the environment at the Site demonstrates that any potential risk posed by these residues is much less than the risks encountered in normal everyday life.

  20. 2003 Environmental Monitoring Report for the Bettis Atomic Power Laboratory Pittsburgh Site

    SciTech Connect (OSTI)

    None

    2003-12-31T23:59:59.000Z

    The 2003 results for the Bettis-Pittsburgh radiological and nonradiological environmental monitoring programs are presented. The results demonstrate that the existing procedures ensured that releases to the environment during 2003 were in accordance with applicable Federal, State, County, and local regulations. Evaluation of the environmental data indicates that current operations at the Site continue to have no adverse effect on human health and the quality of the environment. A conservative assessment of radiation exposure to the general public as a result of Site operations demonstrates that the dose received by any member of the public was well below the most restrictive dose limits established by the Environmental Protection Agency, the Nuclear Regulatory Commission, and the U.S. Department of Energy. A risk assessment of potentially exposed populations to chemical residues in the environment at the Site demonstrates that any potential risk posed by these residues in much less than the risks encountered in normal everyday life.

  1. 1999 environmental monitoring report for the Bettis Atomic Power Laboratory, Pittsburgh Site

    SciTech Connect (OSTI)

    None

    2000-12-01T23:59:59.000Z

    The 1999 results for the Bettis-Pittsburgh radiological and nonradiological environmental monitoring programs are presented. The results demonstrate that the existing procedures ensured that releases to the environment during 1999 were in accordance with applicable Federal, State, County, and local regulations. Evaluation of the environmental data indicates that current operations at the Site continue to have no adverse effect on human health and the quality of the environment. A conservative assessment of radiation exposure to the general public as a result of Site operations demonstrates that the dose received by any member of the public was well below the most restrictive dose limits established by the Environmental Protection Agency, the Nuclear Regulatory Commission, and the US Department of Energy. A risk assessment of potentially exposed populations to chemical residues in the environment at the Site demonstrates that these residues do not pose any significant risk to human health or the environment.

  2. 1997 environmental monitoring report for the Bettis Atomic Power Laboratory, Pittsburgh Site

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The 1997 results for the Bettis-Pittsburgh radiological and nonradiological environmental monitoring programs are presented. The results demonstrate that the existing procedures ensured that releases to the environment during 1997 were in accordance with applicable Federal, State, County, and local regulations. Evaluation of the environmental data indicates tat current operations at the Site continue to have no adverse effect on human health and the quality of the environment. A conservative assessment of radiation exposure to the general public as a result of Site operations demonstrates that the dose received by any member of the public was well below the most restrictive dose limits established by the Environmental Protection Agency, the Nuclear Regulatory Commission, and the US Department of Energy. A risk assessment of potentially exposed populations to chemical residues in the environment at the Site demonstrates that these residues do not pose any significant risk to human health or the environment.

  3. Extended Community: An Oral History of the Community Environmental Monitoring Program (CEMP), 1989 - 2003

    SciTech Connect (OSTI)

    Susan DeSilva

    2004-07-01T23:59:59.000Z

    Studying the Community Environmental Monitoring Program (CEMP) provides a unique opportunity to trace a concept created by two nuclear industry originators from inception, as it transitioned through several stewardship agencies, to management by a non-profit organization. This transition is informed not only by changes over two decades in the views of the general populace toward nuclear testing but also by changing political climates and public policies. Several parallel histories accompanied the development of the CEMP: an administrative history, an environmental history, and a history of changing public perception of not only nuclear testing, but other activities involving radiation such as waste transportation, as well. Although vital, those histories will be provided only as background to the subject of this study, the oral histories gathered in this project. The oral histories collected open a window into the nuclear testing history of Nevada and Utah that has not heretofore been opened. The nuclear industry has generated a great deal of positive and negative reaction since its inception. The CEMP emerged with specific objectives. It was designed to provide information to potential downwind communities and counter negative perceptions by creating more community involvement and education about the testing. The current objectives of the program are to: (1) Manage and maintain the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) offsite monitoring program including 26 radiation and environmental monitoring stations with associated equipment. Provide air sample collection and analysis, radiological and meteorological data collection, interpretation and reporting. (2) Facilitate independent operation of radiological monitoring stations and data verification by private citizens living in communities in proximity to the Nevada Test Site (NTS). (3) Hire and initiate training of local citizens to serve as Community Environmental Monitors (CEMs) in designated communities. (4) Provide relevant training by qualified instructors to the CEMs as necessary. (5) Assist and manage CEMs in accomplishing their duties, and ensure that contracts and paychecks are issued on schedule. (6) Provide CEMs and Emeriti monthly materials to facilitate public awareness. This project explores how those objectives evolved over time with changes in the nuclear testing program. How similar are today's objectives to those originally established for the program? Do those objectives reflect a changing political landscape as well as changes in testing needs? Those questions and more will be addressed as we follow the program from its inception, through earlier versions administered first by the Public Health Service (PHS), then by the U.S. Environmental Protection Agency (EPA) to the current administrator, the Desert Research Institute (DRI).

  4. NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing Integrated ESH Assessment

    E-Print Network [OSTI]

    Rubloff, Gary W.

    NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing 1 Integrated ESH Assessment: Cu CVD and ALD Unit Process Optimization (Thrust C, Task C-5) Wei Lei, Soon Cho for System Research University of Maryland, College Park Department of Chemical and Environmental

  5. Integrated Toxicology and Environmental Health Program (ITEHP) Spring 2014 Seminar Series

    E-Print Network [OSTI]

    Ferrari, Silvia

    University Impacts of mountaintop removal coal mining on the Mud River, West Virginia: Selenium accumulationIntegrated Toxicology and Environmental Health Program (ITEHP) Spring 2014 Seminar Series Fridays in laboratory suspension and complex environmental media in Caenorhabditis elegans Feb 7 Gregory Goss, Ph

  6. Automated Monitoring and Control Using New Data Integration Paradigm Mladen Kezunovic, Tanja Djokic Tatjana Kostic

    E-Print Network [OSTI]

    the three types of IEDs, namely Digital Protective Relays (DPRs), Digital Fault Recorders (DFRs) and Circuit integration where the substation field data recorded by monitoring and protection Intelligent Electronic be used to significantly enhance the ability of SCADA to capture transient operation involving protective

  7. The Feasibility of Using Electrical Means for Monitoring Barrier Integrity in Natural Rubber Latex Gloves

    E-Print Network [OSTI]

    Bennett, John K.

    The Feasibility of Using Electrical Means for Monitoring Barrier Integrity in Natural Rubber Latex Gloves: Hydration, Conductivity, and Protein Content in Natural Rubber Latex Gloves John K. Bennett, Ph by the U.S. Center for Disease Control, have resulted in a dramatic increase in the use of natural rubber

  8. A Self-Aware Processor SoC using Energy Monitors Integrated into Power Converters for Self-Adaptation

    E-Print Network [OSTI]

    Devadas, Srinivas

    A Self-Aware Processor SoC using Energy Monitors Integrated into Power Converters for Self,USA Abstract This paper presents a self-aware processor with energy monitoring circuits that can measure actual. This paper presents a self-aware processor SoC with energy monitoring circuits that can measure actual energy

  9. Annual Radiological Environmental Monitoring Program Report for the Fort St. Vrain Independent Spent Fuel Storage Installation (2003)

    SciTech Connect (OSTI)

    J. R. Newkirk; F. J. Borst, CHP

    2004-02-01T23:59:59.000Z

    This report presents the results of the 2003 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Fort St. Vrain Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the predominant radiation exposure pathway, direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  10. Environmental monitoring for the DOE coolside and LIMB demonstration extension projects

    SciTech Connect (OSTI)

    White, T.; Contos, L.

    1991-09-01T23:59:59.000Z

    The purpose of this document is to present environmental monitoring data collected during the US Department of Energy Limestone Injection Multistage Burner (DOE LIMB) Demonstration Project Extension at the Ohio Edison Edgewater Generating Station in Lorain, Ohio. These data were collected by implementing the Environmental Monitoring Plan (EMP) for the DOE LIMB Demonstration Project Extension, dated August 1988. This document is the fifth EMP status report to be published and presents the data generated during November and December 1990, and January 1991. These reports review a three or four month period and have been published since the project's start in October 1989. The DOE project is an extension of the US Environmental Protection Agency's (EPA) original LIMB Demonstration. The program is operated under DOE's Clean Coal Technology Program of emerging clean coal technologies'' under the categories of in boiler control of oxides of sulfur and nitrogen'' as well as post-combustion clean-up.'' The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators (ESPs). 5 figs., 12 tabs.

  11. The Departments of Biological Sciences and Geography jointly offer instruction leading to a post-diploma major in Environmental Science for students who have completed the Diploma in

    E-Print Network [OSTI]

    Seldin, Jonathan P.

    ) Lakeland College Environmental Conservation and Reclamation Environmental Monitoring and Compliance Fish Classification and Reclamation Soil and Water Conservation Selkirk College Integrated Environmental Planning- diploma major in Environmental Science for students who have completed the Diploma in Renewable Resource

  12. Westinghouse Hanford Company operational environmental monitoring annual report, calendar year 1994

    SciTech Connect (OSTI)

    Schmidt, J.; Fassett, J.W.; Johnson, A.R.; Johnson, V.G.; Markes, B.M.; McKinney, S.M.; Moss, K.J.; Perkins, C.J.; Richterich, L.R.

    1995-08-01T23:59:59.000Z

    This document presents the results of the Westinghouse Hanford Company near-facility operational environmental monitoring for 1994 in the 100, 200/600, and 300/400 Areas of the Hanford Site, in south-central Washington State. Surveillance activities included sampling and analyses of ambient air surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with Federal, State, and/or local regulations. In general, although effects from nuclear facilities are still seen on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years.

  13. Westinghouse Hanford Company operational environmental monitoring annual report - calendar year 1995

    SciTech Connect (OSTI)

    Schmidt, J.W., Westinghouse Hanford

    1996-07-30T23:59:59.000Z

    This document summarizes the results of the Westinghouse Hanford Company (WHC) near-facility operational environmental monitoring for 1995 in the 100, 200/600, and 300/400 Areas of the Hanford Site, in south-central Washington State. Surveillance activities included sampling and analyses of ambient air, surface water,groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with Federal, State, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years.

  14. CARLSBAD ENVIRONMENTAL MONITORING & RESEARCH CENTER NEW MEXICO STATE UNIVERSITY TELEPHONE (575) 887-2759

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r k C o . C lENVIRONMENTAL MONITORING

  15. Environmental monitoring for the DOE coolside and LIMB demonstration extension projects

    SciTech Connect (OSTI)

    White, T.; Contos, L.; Adams, L. (Radian Corp., Research Triangle Park, NC (United States))

    1992-03-01T23:59:59.000Z

    The purpose of this document is to present environmental monitoring data collected during the US Department of Energy Limestone Injection Multistage Burner (DOE LIMB) Demonstration Project Extension at the Ohio Edison Edgewater Generating Station in Lorain, Ohio. The DOE project is an extension of the US Environmental Protection Agency's (EPA's) original LIMB Demonstration. The program is operated nuclear DOE's Clean Coal Technology Program of emerging clean coal technologies'' under the categories of in boiler control of oxides of sulfur and nitrogen'' as well as post-combustion clean-up.'' The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators (ESPs).

  16. Radiological environmental monitoring report for Brookhaven National Laboratory 1967--1970

    SciTech Connect (OSTI)

    Meinhold, C.B.; Hull, A.P.

    1998-10-01T23:59:59.000Z

    Brookhaven National Laboratory (BNL) was established in 1947 on the former Army Camp Upton site located in central Long Island, New York. From the very beginning, BNL has monitored the environment on and around the Laboratory site to assess the effects of its operations on the environment. This document summarizes the environmental data collected for the years 1967, 1968, 1969, and 1970. Thus, it fills a gap in the series of BNL annual environmental reports beginning in 1962. The data in this document reflect measurements for those four years of concentrations and/or amounts of airborne radioactivity, radioactivity in streams and ground water, and external radiation levels in the vicinity of BNL. Also included are estimates, made at that time, of BNL`s contribution to radioactivity in the environment. Among the major scientific facilities operated at BNL are the High Flux Beam Reactor, Medical Research Reactor, Brookhaven Graphite Research Reactor, Alternating Gradient Synchrotron, and the 60-inch Cyclotron.

  17. ENVIRONMENTAL SAMPLING USING LOCATION SPECIFIC AIR MONITORING IN BULK HANDLING FACILITIES

    SciTech Connect (OSTI)

    Sexton, L.; Hanks, D.; Degange, J.; Brant, H.; Hall, G.; Cable-Dunlap, P.; Anderson, B.

    2011-06-07T23:59:59.000Z

    Since the introduction of safeguards strengthening measures approved by the International Atomic Energy Agency (IAEA) Board of Governors (1992-1997), international nuclear safeguards inspectors have been able to utilize environmental sampling (ES) (e.g. deposited particulates, air, water, vegetation, sediments, soil and biota) in their safeguarding approaches at bulk uranium/plutonium handling facilities. Enhancements of environmental sampling techniques used by the IAEA in drawing conclusions concerning the absence of undeclared nuclear materials or activities will soon be able to take advantage of a recent step change improvement in the gathering and analysis of air samples at these facilities. Location specific air monitoring feasibility tests have been performed with excellent results in determining attribute and isotopic composition of chemical elements present in an actual test-bed sample. Isotopic analysis of collected particles from an Aerosol Contaminant Extractor (ACE) collection, was performed with the standard bulk sampling protocol used throughout the IAEA network of analytical laboratories (NWAL). The results yielded bulk isotopic values expected for the operations. Advanced designs of air monitoring instruments such as the ACE may be used in gas centrifuge enrichment plants (GCEP) to detect the production of highly enriched uranium (HEU) or enrichments not declared by a State. Researchers at Savannah River National Laboratory in collaboration with Oak Ridge National Laboratory are developing the next generation of ES equipment for air grab and constant samples that could become an important addition to the international nuclear safeguards inspector's toolkit. Location specific air monitoring to be used to establish a baseline environmental signature of a particular facility employed for comparison of consistencies in declared operations will be described in this paper. Implementation of air monitoring will be contrasted against the use of smear ES when used during unannounced inspections, design information verification, limited frequency unannounced access, and complementary access visits at bulk handling facilities. Analysis of technical features required for tamper indication and resistance will demonstrate the viability of successful application of the system in taking ES within a bulk handling location. Further exploration of putting this technology into practice is planned to include mapping uranium enrichment facilities for the identification of optimal for installation of air monitoring devices.

  18. NEPA/CERCLA/RCRA integration strategy for Environmental Restoration Program, Sandia National Laboratories, Albuquerque

    SciTech Connect (OSTI)

    Hansen, R.P. (International Technology Corp., Englewood, CO (United States))

    1992-10-01T23:59:59.000Z

    This report addresses an overall strategy for complying with DOE Order 5400.4 which directs that DOE offices and facilities integrate the procedural and documentation requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the National Environmental Policy Act (NEPA) wherever practical and appropriate. Integration of NEPA and Resource Conservation and Recovery Act (RCRA) processes is emphasized because RCRA applies to most of the potential release sites at SNL, Albuquerque. NEPA, CERCLA, and RCRA precesses are comparatively analyzed and special integration issues are discussed. Three integration strategy options are evaluated and scheduling and budgeting needs are identified. An annotated outline of an integrated project- or site-specific NEPA/RCRA RFI/CMS EIS or EA is included as an appendix.

  19. Quality Assurance Project Plan for the Environmental Monitoring Program in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    Waste Area Grouping (WAG) 6 is a hazardous and low-level radioactive waste disposal site at Oak Ridge National Laboratory (ORNL). Extensive site investigations have revealed contaminated surface water, sediments, groundwater, and soils. Based on the results of the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) conducted from 1989--1991 and on recent interactions with the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC), a decision was made to defer implementing source control remedial measures at the WAG. The information shows WAG 6 contributes < 2% of the total off-site contaminant risk released over White Oak Dam (WOD). The alternative selected to address hazards at WAG 6 involves maintenance of site access controls to prevent public exposure to on-site contaminants, continued monitoring of contaminant releases to determine if source control measures will be required in the future, and development of technologies to support final remediation of WAG 6. This Quality Assurance Project Plan (QAPjP) has been developed as part of the Environmental Monitoring Plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee (DOE/OR/01-1192&D1). Environmental monitoring will be conducted in two phases: the baseline monitoring phase and the routine annual monitoring phase. The baseline monitoring phase will be conducted to establish the baseline contaminant release conditions at the Waste Area Grouping (WAG), to confirm the site-related chemicals of concern (COC), and to gather data to confirm the site hydrologic model. The baseline monitoring phase is expected to begin in 1994 and continue for 12-18 months. The routine annual monitoring phase will consist of continued sampling and analyses of COC to determine off-WAG contaminant flux, to identify trends in releases, and to confirm the COC. The routine annual monitoring phase will continue for {approximately}4 years.

  20. Integrated farm sustainability assessment for the environmental management of rural activities

    SciTech Connect (OSTI)

    Stachetii Rodrigues, Geraldo, E-mail: stacheti@cnpma.embrapa.b [Embrapa Labex Europe, Agropolis International, Avenue Agropolis, 34394, Montpellier (France); Aparecida Rodrigues, Izilda, E-mail: isis@cnpma.embrapa.b [Environmental Management Laboratory, Embrapa Environment, Rodovia SP340, km 127.5, Jaguariuna (SP), CEP 13820-000 (Brazil); Almeida Buschinelli, Claudio Cesar de, E-mail: buschi@cnpma.embrapa.b [Environmental Management Laboratory, Embrapa Environment, Rodovia SP340, km 127.5, Jaguariuna (SP), CEP 13820-000 (Brazil); Barros, Inacio de, E-mail: indebarros@antilles.inra.f [INRA, Unite de Recherche Agropedoclimatique da la Zone Caraibe, Domaine Duclos, 97170 Petit-Bourg (France)

    2010-07-15T23:59:59.000Z

    Farmers have been increasingly called upon to respond to an ongoing redefinition in consumers' demands, having as a converging theme the search for sustainable production practices. In order to satisfy this objective, instruments for the environmental management of agricultural activities have been sought out. Environmental impact assessment methods are appropriate tools to address the choice of technologies and management practices to minimize negative effects of agricultural development, while maximizing productive efficiency, sound usage of natural resources, conservation of ecological assets and equitable access to wealth generation means. The 'system for weighted environmental impact assessment of rural activities' (APOIA-NovoRural) presented in this paper is organized to provide integrated farm sustainability assessment according to quantitative environmental standards and defined socio-economic benchmarks. The system integrates sixty-two objective indicators in five sustainability dimensions - (i) Landscape ecology, (ii) Environmental quality (atmosphere, water and soil), (iii) Sociocultural values, (iv) Economic values, and (v) Management and administration. Impact indices are expressed in three integration levels: (i) specific indicators, that offer a diagnostic and managerial tool for farmers and rural administrators, by pointing out particular attributes of the rural activities that may be failing to comply with defined environmental performance objectives; (ii) integrated sustainability dimensions, that show decision-makers the major contributions of the rural activities toward local sustainable development, facilitating the definition of control actions and promotion measures; and (iii) aggregated sustainability index, that can be considered a yardstick for eco-certification purposes. Nine fully documented case studies carried out with the APOIA-NovoRural system, focusing on different scales, diverse rural activities/farming systems, and contrasting spatial/territorial contexts, attest to the malleability of the method and its applicability as an integrated farm environmental management tool.

  1. Improving Rangeland Monitoring and Assessment: Integrating Remote Sensing, GIS, and Unmanned Aerial Vehicle Systems

    SciTech Connect (OSTI)

    Robert Paul Breckenridge

    2007-05-01T23:59:59.000Z

    Creeping environmental changes are impacting some of the largest remaining intact parcels of sagebrush steppe ecosystems in the western United States, creating major problems for land managers. The Idaho National Laboratory (INL), located in southeastern Idaho, is part of the sagebrush steppe ecosystem, one of the largest ecosystems on the continent. Scientists at the INL and the University of Idaho have integrated existing field and remotely sensed data with geographic information systems technology to analyze how recent fires on the INL have influenced the current distribution of terrestrial vegetation. Three vegetation mapping and classification systems were used to evaluate the changes in vegetation caused by fires between 1994 and 2003. Approximately 24% of the sagebrush steppe community on the INL was altered by fire, mostly over a 5-year period. There were notable differences between methods, especially for juniper woodland and grasslands. The Anderson system (Anderson et al. 1996) was superior for representing the landscape because it includes playa/bare ground/disturbed area and sagebrush steppe on lava as vegetation categories. This study found that assessing existing data sets is useful for quantifying fire impacts and should be helpful in future fire and land use planning. The evaluation identified that data from remote sensing technologies is not currently of sufficient quality to assess the percentage of cover. To fill this need, an approach was designed using both helicopter and fixed wing unmanned aerial vehicles (UAVs) and image processing software to evaluate six cover types on field plots located on the INL. The helicopter UAV provided the best system compared against field sampling, but is more dangerous and has spatial coverage limitations. It was reasonably accurate for dead shrubs and was very good in assessing percentage of bare ground, litter and grasses; accuracy for litter and shrubs is questionable. The fixed wing system proved to be feasible and can collect imagery for very large areas in a short period of time. It was accurate for bare ground and grasses. Both UAV systems have limitations, but these will be reduced as the technology advances. In both cases, the UAV systems collected data at a much faster rate than possible on the ground. The study concluded that improvements in automating the image processing efforts would greatly improve use of the technology. In the near future, UAV technology may revolutionize rangeland monitoring in the same way Global Positioning Systems have affected navigation while conducting field activities.

  2. Hanford site near-facility environmental monitoring annual report, calendar year 1996

    SciTech Connect (OSTI)

    Perkins, C.J.

    1997-08-05T23:59:59.000Z

    This document summarizes the results of the near-facility environmental monitoring results for 1996 in the 100, 200/600, and 300/400 areas of the Hanford Site in south-central Washington State. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. The monitoring implements applicable portions of DOE Orders 5400.1 (DOE 1988a), 5400.5 (DOE 1990), and 5820.2A (DOE 1988b); Washington Administrative Code (WAC) 246-247; and Title 40 Code of Federal Regulations (CFR) Part 61, Subpart H (EPA 1989). In addition, diffuse sources were monitored to determine compliance with federal, state, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels were slightly elevated when compared to offsite locations, the differences are less than in previous years.

  3. The future of gas turbine compliance monitoring: The integration of PEMS and CEMS for regulatory compliance

    SciTech Connect (OSTI)

    Macak, J.J. III

    1999-07-01T23:59:59.000Z

    When the New Source Performance Standards (NSPS) for Stationary Gas Turbines were first promulgated in 1979 (40 CFR 60, Subpart GG), continuous compliance monitoring for gas turbines was simply a parametric monitoring approach where a unit was tested at four load conditions. For those units where water or steam injection was used for NO{sub x} control, testing consisted of establishing a water (or steam injection) versus fuel flow curve to achieve permitted NO{sub x} emission levels across the load range. Since 1979, the growth in gas turbine popularity has encouraged the development of Predictive Emissions Monitoring Systems (PEMS) where gas turbine operating parameters and ambient conditions are fed into a prediction algorithm to predict, rather than monitor, emissions. However, permitting requirements and technological advances now have gas turbines emitting NO{sub x} in the single digits while the overall combined-cycle thermal efficiency has improved dramatically. The combination of supplemental duct-firing in heat recovery steam generators, pollution prevention technology, post-combustion emission controls, and EPA Continuous Emissions Monitoring System (CEMS) regulations for the power industry, resulted in a shift towards CEMS due to the complexity of the overall process. Yet, CEMS are often considered to be a maintenance nightmare with significant amounts of downtime. CEMS and PEMS have their own advantages and disadvantages. Thus evolved the need to find the optimum balance between CEMS and PEMS for gas turbine projects. To justify the cost of both PEMS and CEMS in the same installation, there must be an economic incentive to do so. This paper presents the application of a PEMS/CEMS monitoring system that integrates both PEMS and CEMS in order to meet, and exceed, all emissions monitoring requirements.

  4. Groundwater level monitoring sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    This Sampling and Analysis Plan addresses groundwater level monitoring activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Groundwater level monitoring will be conducted at 129 sites within the WAG. All of the sites will be manually monitored on a semiannual basis. Forty-five of the 128 wells, plus one site in White Oak Lake, will also be equipped with automatic water level monitoring equipment. The 46 sites are divided into three groups. One group will be equipped for continuous monitoring of water level, conductivity, and temperature. The other two groups will be equipped for continuous monitoring of water level only. The equipment will be rotated between the two groups. The data collected from the water level monitoring will be used to support determination of the contaminant flux at WAG 6.

  5. Integrated Safety & Environmental Management System | Stanford Synchrotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National Nuclear Security Administration Facebook

  6. A fully-integrated aptamer-based affinity assay platform for monitoring astronaut health in space.

    SciTech Connect (OSTI)

    Yang, Xianbin (AM Biotechnologies LLC, Houston, TX); Durland, Ross H. (AM Biotechnologies LLC, Houston, TX); Hecht, Ariel H.; Singh, Anup K.; Sommer, Gregory Jon; Hatch, Anson V.

    2010-07-01T23:59:59.000Z

    Here we demonstrate the suitability of robust nucleic acid affinity reagents in an integrated point-of-care diagnostic platform for monitoring proteomic biomarkers indicative of astronaut health in spaceflight applications. A model thioaptamer targeting nuclear factor-kappa B (NF-{kappa}B) is evaluated in an on-chip electrophoretic gel-shift assay for human serum. Key steps of (i) mixing sample with the aptamer, (ii) buffer exchange, and (iii) preconcentration of sample were successfully integrated upstream of fluorescence-based detection. Challenges due to (i) nonspecific interactions with serum, and (ii) preconcentration at a nanoporous membrane are discussed and successfully resolved to yield a robust, rapid, and fully-integrated diagnostic system.

  7. Integration of Life Cycle Assessment into Environmental Process Engineering Practices

    E-Print Network [OSTI]

    Tamas Benko

    I would like to thank my supervisor Prof. Dr. Peter Mizsey for his guidance and support during the course of this research. I am grateful for his encouragement and for giving me an opportunity to use all the facilities available at the Department of Chemical and Environmental Process Engineering. I would like to thank Dr. Daniela Jacob and the colleagues at the Max-Planck Institute for Meteorology for their help and support in the field of atmospheric simulations and modelling during my visit at the Institute in Hamburg, Germany. I also would like to thank Professor Sandor Kemeny for his help with statistical problems. Moreover, I would like to thank all the colleagues at the department, especially to Mrs. Gabriella Ling-Mihalovics, for helping me even with technical, scientific, and intellectual questions, and for maintaining a friendly and family atmosphere at the department. I am forever indebted to my parents, my brother Peter, and Viola for encouraging and supporting my studies and helping me get through the difficulties I encountered.

  8. Evaluation of the EIA system on the Island of Mauritius and development of an environmental monitoring plan framework

    SciTech Connect (OSTI)

    Ramjeawon, T.; Beedassy, R

    2004-07-01T23:59:59.000Z

    The Environment Protection Act (EPA) in Mauritius provides for the application of an EIA license in respect of undertakings listed in its first schedule. Following the promulgation of the Act in June 1993, the Department of Environment (DOE) is issuing an average of 125 EIA licenses yearly. In general, the review exercise of an environmental impact assessment (EIA) is terminated once the license has been granted. The aim of this project was to evaluate the EIA system in Mauritius and to identify its weaknesses and strengths. One of the main weaknesses, besides the lack of EIA audits, is the absence of EIA follow-up monitoring. It is necessary to distinguish between monitoring done for regulatory purposes (compliance monitoring) and environmental monitoring related to the EIA. With the growth of the tourism industry on the island, coastal development projects have the potential to cause significant environmental impacts . A sample of EIA reports pertaining to this sector was assessed for its quality and follow-up mechanisms. Proposals for the contents of EIA Prediction Audits, Environmental Monitoring Plans (EMP) and the format for an EMP report are made.

  9. An Integrated Framework for Optimizing Automatic Monitoring Systems in Large IT Infrastructures

    E-Print Network [OSTI]

    Li, Tao

    and cost. IT Infrastructure Library (ITIL) addresses monitoring as a con- tinual cycle of monitoring

  10. Depleted uranium risk assessment for Jefferson Proving Ground using data from environmental monitoring and site characterization. Final report

    SciTech Connect (OSTI)

    Ebinger, M.H.; Hansen, W.R.

    1996-10-01T23:59:59.000Z

    This report documents the third risk assessment completed for the depleted uranium (DU) munitions testing range at Jefferson Proving Ground (JPG), Indiana, for the U.S. Army Test and Evaluation command. Jefferson Proving Ground was closed in 1995 under the Base Realignment and Closure Act and the testing mission was moved to Yuma Proving Ground. As part of the closure of JPG, assessments of potential adverse health effects to humans and the ecosystem were conducted. This report integrates recent information obtained from site characterization surveys at JPG with environmental monitoring data collected from 1983 through 1994 during DU testing. Three exposure scenarios were evaluated for potential adverse effects to human health: an occasional use scenario and two farming scenarios. Human exposure was minimal from occasional use, but significant risk were predicted from the farming scenarios when contaminated groundwater was used by site occupants. The human health risk assessments do not consider the significant risk posed by accidents with unexploded ordnance. Exposures of white-tailed deer to DU were also estimated in this study, and exposure rates result in no significant increase in either toxicological or radiological risks. The results of this study indicate that remediation of the DU impact area would not substantially reduce already low risks to humans and the ecosystem, and that managed access to JPG is a reasonable model for future land use options.

  11. INTEGRATED CODES FOR ESTIMATING ENVIRONMENTAL ACCUMULATION ANd INDIVIDUAL DOSE FROM PAST HANFORD ATMOSPHERIC RELEASES Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Ikenberry, T. A.; Burnett, R. A.; Napier, B. A.; Reitz, N. A.; Shipler, D. B.

    1992-02-01T23:59:59.000Z

    Preliminary radiation doses were estimated and reported during Phase I of the Hanford Environmental Dose Reconstruction (HEDR) Project. As the project has progressed, additional information regarding the magnitude and timing of past radioactive releases has been developed, and the general scope of the required calculations has been enhanced. The overall HEDR computational model for computing doses attributable to atmospheric releases from Hanford Site operations is called HEDRIC (Hanford Environmental Dose Reconstruction Integrated Codes). It consists of four interrelated models: source term, atmospheric transport, environmental accumulation, and individual dose. The source term and atmospheric transport models are documented elsewhere. This report describes the initial implementation of the design specifications for the environmental accumulation model and computer code, called DESCARTES (Dynamic EStimates of Concentrations and Accumulated Radionuclides in Terrestrial Environments), and the individual dose model and computer code, called CIDER (Calculation of Individual Doses from Environmental Radionuclides). The computations required of these models and the design specifications for their codes were documented in Napier et al. (1992). Revisions to the original specifications and the basis for modeling decisions are explained. This report is not the final code documentation but gives the status of the model and code development to date. Final code documentation is scheduled to be completed in FY 1994 following additional code upgrades and refinements. The user's guide included in this report describes the operation of the environmental accumulation and individual dose codes and associated pre- and post-processor programs. A programmer's guide describes the logical structure of the programs and their input and output files.

  12. Environmental monitoring at the Lawrence Livermore National Laboratory: Annual report, 1987

    SciTech Connect (OSTI)

    Holland, R.C.; Brekke, D.D.

    1988-04-01T23:59:59.000Z

    This report documents the results of the Environmental Monitoring Program at the Lawrence Livermore Laboratory (LLNL) for 1987. To evaluate the effect of LLNL operations on the local environment, measurements were made of direct radiation and a variety of radionuclides and chemical pollutants in ambient air, soil, sewage effluents, surface water, groundwater, vegetation, foodstuff, and milk at both the Livermore site and nearby Site 300. Evaluations were made of LLNL's compliance with the applicable guides, standards, and limits for radiological and nonradiological releases to the environment. The data indicates that the only releases in excess of applicable standards were four releases to the sanitary sewer. LLNL operations had no adverse impact on the environment during 1987. 65 refs., 24 figs.

  13. Overview of the Environmental and Water Resources Institute's "Guidelines For Integrated Water Resources Management" Project

    SciTech Connect (OSTI)

    Gerald Sehlke

    2005-03-01T23:59:59.000Z

    Integrated Water Resources Management is a systematic approach to optimizing our understanding, control and management of water resources within a basin to meet multiple objectives. Recognition of the need for integrating water resources within basins is not unique to the Environmental and Water Resources Instituteís Integrated Water Resources Management Task Committee. Many individuals, governments and other organizations have attempted to develop holistic water resources management programs. In some cases, the results have been very effective and in other cases, valiant attempts have fallen far short of their initial goals. The intent of this Task Committee is to provide a set of guidelines that discusses the concepts, methods and tools necessary for integrating and optimizing the management of the physical resources and to optimize and integrate programs, organizations, infrastructure, and socioeconomic institutions into comprehensive water resources management programs.

  14. Annual Report of the Integrated Status and Effectiveness Monitoring Program: Fiscal Year 2008

    SciTech Connect (OSTI)

    Terraqua, Inc. (Wauconda, WA)

    2009-07-20T23:59:59.000Z

    This document was created as an annual report detailing the accomplishments of the Integrated Status and Effectiveness Monitoring Program (ISEMP) in the Upper Columbia Basin in fiscal year 2008. The report consists of sub-chapters that reflect the various components of the program. Chapter 1 presents a report on programmatic coordination and accomplishments, and Chapters 2 through 4 provide a review of how ISEMP has progressed during the 2008 fiscal year in each of the pilot project subbasins: the John Day (Chapter 2), Wenatchee/Entiat (Chapter 3) and Salmon River (Chapter 4). Chapter 5 presents a report on the data management accomplishments in 2008.

  15. Environmental monitoring for detection of uranium enrichment operations: Comparison of LEU and HEU facilities

    SciTech Connect (OSTI)

    Hembree, D.M. Jr.; Carter, J.A.; Ross, H.H.

    1995-03-01T23:59:59.000Z

    In 1994, the International Atomic Energy Agency (IAEA) initiated an ambitious program of worldwide field trials to evaluate the utility of environmental monitoring for safeguards. Part of this program involved two extensive United States field trials conducted at the large uranium enrichment facilities. The Paducah operation involves a large low-enriched uranium (LEU) gaseous diffusion plant while the Portsmouth facilities include a large gaseous diffusion plant that has produced both LEU and high-enriched uranium (HEU) as well as an LEU centrifuge facility. As a result of the Energy Policy Act of 1992, management of the uranium enrichment operations was assumed by the US Enrichment Corporation (USEC). The facilities are operated under contract by Martin Marietta Utility Services. Martin Marietta Energy Systems manages the environmental restoration and waste management programs at Portsmouth and Paducah for DOE. These field trials were conducted. Samples included swipes from inside and outside process buildings, vegetation and soil samples taken from locations up to 8 km from main sites, and hydrologic samples taken on the sites and at varying distances from the sites. Analytical results from bulk analysis were obtained using high abundance sensitivity thermal ionization mm spectrometers (TIMS). Uranium isotopics altered from the normal background percentages were found for all the sample types listed above, even on vegetation 5 km from one of the enrichment facilities. The results from these field trials demonstrate that dilution by natural background uranium does not remove from environmental samples the distinctive signatures that are characteristic of enrichment operations. Data from swipe samples taken within the enrichment facilities were particularly revealing. Particulate analysis of these swipes provided a detailed ``history`` of both facilities, including the assays of the end product and tails for both facilities.

  16. Issues and methods in incorporating environmental externalities into the integrated resource planning process

    SciTech Connect (OSTI)

    Fang, J.M.; Galen, P.S.

    1994-11-01T23:59:59.000Z

    This report is a review of current practices and policies in considering environmental externalities in the integrated resource planning and performance based regulation (IRP/PBR) process. The following issues are presented and examined: What are the pros and cons of treating environmental externalities in the IRP process? How are potential future environmental regulations being treated? Are externalities being qualitatively or quantitatively considered, or monetized? Are offsets being allowed? How are externality policies being coordinated among different levels and branches of governments? Should environmental externalities be considered in dispatching a utility`s existing resources? What are the procedures for addressing uncertainty in incorporating environmental externalities into IRP? How are externalities valued? What are other approaches to addressing environmental externalities. This report describes seven major approaches for addressing environmental externalities in the IRP process: qualitative treatment, weighting and ranking, cost of control, damage function, percentage adders, monetization by emission, and multiattribute trade-off analysis. The discussion includes a taxonomy of the full range of alternative methods for addressing environmental externalities, a summary of state PUC actions, the role of state laws, the debate on environmental adders, and the choice of methodologies. In addition, this report characterizes the interests of stakeholders such as the electric industry, fuel suppliers, energy consumers, governmental agencies, public interest groups, consultants, and others. It appears that the views, positions, and interests of these stakeholders are affected by their perceptions of the potential impacts on their economic interests or the viability of their position on environmental policy, by the societal perspective they take, and by the orientation of the analysts toward market competition and their respective accumulated expertise.

  17. Development and implementation of an integrated framework for structural health monitoring

    E-Print Network [OSTI]

    Fraser, Michael Swain

    2006-01-01T23:59:59.000Z

    Workshop on Structural Health Monitoring, Stanford, CA,Workshop on Structural Health Monitoring, Stanford, CA,Networks in Structural Health Monitoring." Proc. of the 3rd

  18. Integrated environmental/energy policy analysis for the U.K.

    SciTech Connect (OSTI)

    Smith, A.E.; Haas, S.M. [Decision Focus, Inc., Washington, DC (United States)

    1994-12-31T23:59:59.000Z

    Environmental issues being tackled in recent years are increasing in scope and magnitude, making linkages with economic considerations pressing to understand. In the case of greenhouse gas emissions, for example, control efforts need to be designed to integrate the goals of both energy and environmental policy, rather than treat them as separable issues. The GEMINI models of the US and the U.K. have been developed specifically to allow integrated environmental-energy system analyses over time horizon of up to 50 years. Insights using the GEMINI-U.K. model to assess carbon emissions goals show that a range of energy policies are needed to aid in achieving environmental goals without disruptive forms over economic impact. Specifically: (1) Gradual implementation of carbon or energy taxes is not compatible with steadily increasing emissions reductions. (2) Serious consideration should be given to the merits of advancing the availability of biogas on a commercial scale, particularly in face of the current ``dash to gas`` within the U.K. energy system. (3) Policies to effectuate transportation mode shifts are important in addition to promoting more efficient or less carbon-intensive transportation technologies. (4) Allowing new nuclear generation is one of the cost-effective components of an environmentally sound energy policy in the period through 2020.

  19. Meteorological monitoring sampling and analysis plan for the environmental monitoring plan at Waste Area Grouping 6, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This Sampling and Analysis Plan addresses meteorological monitoring activities that wall be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Lockheed Martin Energy Systems, Inc. Meteorological monitoring of various climatological parameters (e.g., temperature, wind speed, humidity) will be collected by instruments installed at WAG 6. Data will be recorded electronically at frequencies varying from 5-min intervals to 1-h intervals, dependent upon parameter. The data will be downloaded every 2 weeks, evaluated, compressed, and uploaded into a WAG 6 data base for subsequent use. The meteorological data will be used in water balance calculations in support of the WAG 6 hydrogeological model.

  20. Meteorological Monitoring Sampling and Analysis Plan for Environmental Monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    This Sampling and Analysis Plan addresses meteorological monitoring activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory (ORNL). Meterological monitoring of various climatological parameters (eg., temperature, wind speed, humidity) will be collected by instruments installed at WAG 6. Data will be recorded electronically at frequencies varying from 5-min intervals to 1-h intervals, dependent upon parameter. The data will be downloaded every 2 weeks, evaluated, compressed, and uploaded into a WAG 6 data base for subsequent use. The meteorological data will be used in water balance calculations in support of the WAG 6 hydrogeological model.

  1. 4. Transition to integrated regional monitoring and evaluation framework The Fish and Wildlife Program calls for a monitoring program to evaluate whether the

    E-Print Network [OSTI]

    4. Transition to integrated regional monitoring and evaluation framework The Fish and Wildlife for Program funding and plan for a transition for currently funded methods over a specific period of time of the individual project without specific justification. This transition should be accomplished within three years

  2. Statement of work for services provided by the waste sampling and characterization facility for the effluent and environmental monitoring program - Calendar year 1999

    SciTech Connect (OSTI)

    DIEDIKER, L.P.

    1999-06-03T23:59:59.000Z

    This document defines the services that the Waste Sampling and Characterization Facility (WSCF) shall provide the Environmental Compliance Program (ECP) throughout the calendar year for effluent and environmental monitoring (EEM) analysis. One of the purposes of EEM is to monitor liquid and gaseous effluents and the environment immediately around facilities that might contain radioactive and hazardous materials. Monitoring data are collected, evaluated, and reported to determine the degree of compliance with applicable federal and state regulations and permits.

  3. Groundwater Quality Sampling and Analysis Plan for Environmental Monitoring Waste Area Grouping 6 at Oak Ridge National Laboratory. Environmental Restoration Program

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This Sampling and Analysis Plan addresses groundwater quality sampling and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. (Energy Systems). Groundwater sampling will be conducted by Energy Systems at 45 wells within WAG 6. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the groundwater quality monitoring, sampling, and analysis will aid in evaluating relative risk associated with contaminants migrating off-WAG, and also will fulfill Resource Conservation and Recovery Act (RCRA) interim permit monitoring requirements. The sampling steps described in this plan are consistent with the steps that have previously been followed by Energy Systems when conducting RCRA sampling.

  4. Integrating Natural Resource Damage Assessment and environmental restoration activities at DOE facilities

    SciTech Connect (OSTI)

    Bascietto, J.J. [Dept. of Energy, Washington, DC (US). RCRA/CERCLA Div.; Dunford, R.W. [Research Triangle Inst., Research Triangle Park, NC (US); Sharples, F.E.; Suter, G.W. II [Oak Ridge National Lab., TN (US)

    1993-06-01T23:59:59.000Z

    Environmental restoration activities are currently under way at several sites owned by the US Department of Energy (DOE) under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE is the CERCLA lead response agency for these activities. Section 120(a) of the Superfund Amendments and Reauthorization Act also subjects DOE to liability under Section 107 of CERCLA for natural resource damages resulting from hazardous substance releases at its sites. The Natural Resource Damage Assessment (NRDA) process, by which natural resource injuries are determined and compensatory monetary damages are calculated, is not well known or understood by DOE staff and contractors involved in environmental restoration activities. Nevertheless, natural resource liabilities are potentially a significant source of additional monetary claims for CERCLA hazardous substance releases. This paper describes the requirements of NRDA and explains how to integrate the NRDA and CERCLA Remedial Investigation/Feasibility Study processes, in order to more quickly restore environmental services at the lowest total cost to the public. The first section of the paper explains the statutory and regulatory mandates for the NRDA process. The second section briefly describes the four phases of the NRDA process, while the third section examines the three steps in the assessment phase in considerable detail. Finally, the last section focuses on the integration of the CERCLA and NRDA processes.

  5. APPLICATION OF BAYESIAN AND GEOSTATISTICAL MODELING TO THE ENVIRONMENTAL MONITORING OF CS-137 AT THE IDAHO NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Kara G. Eby

    2010-08-01T23:59:59.000Z

    At the Idaho National Laboratory (INL) Cs-137 concentrations above the U.S. Environmental Protection Agency risk-based threshold of 0.23 pCi/g may increase the risk of human mortality due to cancer. As a leader in nuclear research, the INL has been conducting nuclear activities for decades. Elevated anthropogenic radionuclide levels including Cs-137 are a result of atmospheric weapons testing, the Chernobyl accident, and nuclear activities occurring at the INL site. Therefore environmental monitoring and long-term surveillance of Cs-137 is required to evaluate risk. However, due to the large land area involved, frequent and comprehensive monitoring is limited. Developing a spatial model that predicts Cs-137 concentrations at unsampled locations will enhance the spatial characterization of Cs-137 in surface soils, provide guidance for an efficient monitoring program, and pinpoint areas requiring mitigation strategies. The predictive model presented herein is based on applied geostatistics using a Bayesian analysis of environmental characteristics across the INL site, which provides kriging spatial maps of both Cs-137 estimates and prediction errors. Comparisons are presented of two different kriging methods, showing that the use of secondary information (i.e., environmental characteristics) can provide improved prediction performance in some areas of the INL site.

  6. Environmental continuous air monitor inlet with combined preseparator and virtual impactor

    DOE Patents [OSTI]

    Rodgers, John C. (Santa Fe, NM)

    2007-06-19T23:59:59.000Z

    An inlet for an environmental air monitor is described wherein a pre-separator interfaces with ambient environment air and removes debris and insects commonly associated with high wind outdoors and a deflector plate in communication with incoming air from the pre-separator stage, that directs the air radially and downward uniformly into a plurality of accelerator jets located in a manifold of a virtual impactor, the manifold being cylindrical and having a top, a base, and a wall, with the plurality of accelerator jets being located in the top of the manifold and receiving the directed air and accelerating directed air, thereby creating jets of air penetrating into the manifold, where a major flow is deflected to the walls of the manifold and extracted through ports in the walls. A plurality of receiver nozzles are located in the base of the manifold coaxial with the accelerator jets, and a plurality of matching flow restrictor elements are located in the plurality of receiver nozzles for balancing and equalizing the total minor flow among all the plurality of receiver nozzles, through which a lower, fractional flow extracts large particle constituents of the air for collection on a sample filter after passing through the plurality of receiver nozzles and the plurality of matching flow restrictor elements.

  7. Innovative coke oven gas cleaning system for retrofit applications. Environmental Monitoring program. Volume 1 - sampling progrom report. Baseline Sampling Program report

    SciTech Connect (OSTI)

    Stuart, L.M.

    1994-05-27T23:59:59.000Z

    Bethlehem Steel Corporation (BSC), in conjunction with the Department of Energy (DOE) is conducting a Clean Coal Technology (CCT) project at its Sparrows Point, Maryland Coke Oven Plant. This innovative coke oven gas cleaning system combines several existing technologies into an integrated system for removing impurities from Coke Oven Gas (COG) to make it an acceptable fuel. DOE provided cost-sharing under a Cooperative Agreement with BSC. This Cooperative Agreement requires BSC to develop and conduct and Environmental Monitoring Plan for the Clean Coal Technology project and to report the status of the EMP on a quarterly basis. It also requires the preparation of a final report on the results of the Baseline Compliance and Supplemental Sampling Programs that are part of the EMP and which were conducted prior to the startup of the innovative coke oven gas cleaning system. This report is the Baseline Sampling Program report.

  8. Invited Article: Radon and thoron intercomparison experiments for integrated monitors at NIRS, Japan

    SciTech Connect (OSTI)

    Janik, M., E-mail: mirek@fml.nirs.go.jp; Ishikawa, T.; Omori, Y.; Kavasi, N. [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, 263-8555 Chiba (Japan)] [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, 263-8555 Chiba (Japan)

    2014-02-15T23:59:59.000Z

    Inhalation of radon ({sup 222}Rn) and its short-lived decay products and of products of the thoron ({sup 220}Rn) series accounts for more than half of the effective dose from natural radiation sources. At this time, many countries have begun large-scale radon and thoron surveys and many different measurement methods and instruments are used in these studies. Consequently, it is necessary to improve and standardize technical methods of measurements and to verify quality assurance by intercomparisons between laboratories. Four international intercomparisons for passive integrating radon and thoron monitors were conducted at the NIRS (National Institute of Radiological Sciences, Japan). Radon exercises were carried out in the 24.4 m{sup 3} inner volume walk-in radon chamber that has systems to control radon concentration, temperature, and humidity. Moreover, the NIRS thoron chamber with a 150 dm{sup 3} inner volume was utilized to provide three thoron intercomparisons. At present, the NIRS is the only laboratory world-wide that has carried out periodic thoron intercomparison of passive monitors. Fifty laboratories from 26 countries participated in the radon intercomparison, using six types of detectors (charcoal, CR-39, LR 115, polycarbonate film, electret plate, and silicon photodiode). Eighteen laboratories from 12 countries participated in the thoron intercomparisons, using two etch-track types (CR-39 and polycarbonate) detectors. The tests were made under one to three different exposures to radon and thoron. The data presented in this paper indicated that the performance quality of laboratories for radon measurement has been gradually increasing. Results of thoron exercises showed that the quality for thoron measurements still needs further development and additional studies are needed to improve its measuring methods. The present paper provides a summary of all radon and thoron international intercomparisons done at NIRS from 2007 to date and it describes the present status on radon and thoron passive, one-time cycle monitors.

  9. Proceedings of the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration

    SciTech Connect (OSTI)

    Warren, N. Jill [Editor

    2002-09-17T23:59:59.000Z

    These proceedings contain papers prepared for the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration, held 17-19 September, 2002 in Ponte Vedra Beach, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  10. Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site

    SciTech Connect (OSTI)

    Bechtel Nevada

    2005-06-01T23:59:59.000Z

    This document is an integrated plan for closing and monitoring two low-level radioactive waste disposal sites at the Nevada Test Site.

  11. Development of self-monitoring structural composites with integrated sensing networks

    E-Print Network [OSTI]

    Huang, Yi

    2008-01-01T23:59:59.000Z

    A review of structural health monitoring literature: 1996-A Review", Structural Health Monitoring, Vol.3 (4), 355-377.Web-based structural health monitoring of a FRP composite

  12. Groundwater level monitoring sampling and analysis plan for the environmental monitoring plan at waste area grouping 6, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This document is the Groundwater Level Monitoring Sampling and Analysis Plan (SAP) for Waste Area Grouping (WAG) 6 at Oak Ridge National Laboratory (ORNL). Note that this document is referred to as a SAP even though no sampling and analysis will be conducted. The term SAP is used for consistency. The procedures described herein are part of the Environmental Monitoring Plan (EMP) for WAG 6, which also includes monitoring tasks for seeps and springs, groundwater quality, surface water, and meteorological parameters. Separate SAPs are being issued concurrently to describe each of these monitoring programs. This SAP has been written for the use of the field personnel responsible for implementation of the EMP, with the intent that the field personnel will be able to take these documents to the field and quickly find the appropriate steps required to complete a specific task. In many cases, Field Operations Procedures (FOPs) will define the steps required for an activity. The FOPs for the EMP are referenced and briefly described in the relevant sections of the SAPs, and are contained within the FOP Manual. Both these documents (the SAP and the FOP Manual) will be available to personnel in the field.

  13. Underground reconnaissance and environmental monitoring related to geologic CO2 sequestration studies at the DUSEL Facility, Homestake Mine, South Dakota

    SciTech Connect (OSTI)

    Dobson, Patrick F.; Salve, Rohit

    2009-11-20T23:59:59.000Z

    Underground field reconnaissance was carried out in the Deep Underground Science and Engineering Laboratory (DUSEL) to identify potential locations for the planned geologic carbon sequestration experimental facility known as DUSEL CO{sub 2}. In addition, instrumentation for continuous environmental monitoring of temperature, pressure, and relative humidity was installed at various locations within the Homestake mine. The motivation for this work is the need to locate and design the DUSEL CO{sub 2} facility currently being planned to host CO{sub 2} and water flow and reaction experiments in long column pressure vessels over large vertical length scales. Review of existing geologic data and reconnaissance underground revealed numerous potential locations for vertical experimental flow columns, with limitations of existing vertical boreholes arising from limited vertical extent, poor continuity between drifts, and small diameter. Results from environmental monitoring over 46 days reveal spatial and temporal variations related to ventilation, weather, and ongoing dewatering of the mine.

  14. Improved Decision Making through the Integration of Program and Project Management with National Environmental Policy Act Compliance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-06-12T23:59:59.000Z

    Recommendations from the DOE Field Management Council (FMC), NEPA Improvement Team, and the Council on Environmental Quality (CEQ) for improving NEPA compliance through the integration of Program ad Project Management

  15. Development of software architecture for environmental monitoring using wireless sensor networks

    E-Print Network [OSTI]

    Hari, Piyush

    2006-01-01T23:59:59.000Z

    In this thesis, I describe the development of the software architecture for temperature monitoring using Wireless Sensor Networks (WSN). The goal of the software is to provide a means to remotely monitor and analyze ...

  16. HANFORD SITE NEAR-FACILITY ENVIRONMENTAL MONITORING DATA REPORT FOR CALENDAR YEAR 2003

    SciTech Connect (OSTI)

    Perkins, Craig J.; Coffman, Randy T.; Mckinney, Stephen M.; Mitchell, Ronald M.; Roos, Richard C.

    2004-09-01T23:59:59.000Z

    This document presents the results of near-facility monitoring on the Hanford Site for calendar year 2003.

  17. Status of the flora and fauna on the Nevada Test Site, 1988. Results of continuing basic environmental monitoring, January--December 1988

    SciTech Connect (OSTI)

    Hunter, R.B. [comp.

    1992-06-01T23:59:59.000Z

    In 1987 the US Department of Energy (DOE) initiated a program to monitor the health of the Nevada Test Site (NTS) plants and animals in support of the National Environmental Protection Act. The program, part of DOE`s Basic Environmental Compliance and Monitoring Program (BECAMP), monitors perennial and ephemeral plants, the more common species of rodents and lizards, and the horses, deer, raptors and other large animals on the NTS. This is a report of data collected on these flora and fauna for the year 1988, the second year of monitoring.

  18. Cooperative Monitoring Center Occasional Paper/11: Cooperative Environmental Monitoring in the Coastal Regions of India and Pakistan

    SciTech Connect (OSTI)

    Rajen, Gauray

    1999-06-01T23:59:59.000Z

    The cessation of hostilities between India and Pakistan is an immediate need and of global concern, as these countries have tested nuclear devices, and have the capability to deploy nuclear weapons and long-range ballistic missiles. Cooperative monitoring projects among neighboring countries in South Asia could build regional confidence, and, through gradual improvements in relations, reduce the threat of war and the proliferation of weapons of mass destruction. This paper discusses monitoring the trans-border movement of flow and sediment in the Indian and Pakistani coastal areas. Through such a project, India and Pakistan could initiate greater cooperation, and engender movement towards the resolution of the Sir Creek territorial dispute in their coastal region. The Joint Working Groups dialogue being conducted by India and Pakistan provides a mechanism for promoting such a project. The proposed project also falls within a regional framework of cooperation agreed to by several South Asian countries. This framework has been codified in the South Asian Seas Action Plan, developed by Bangladesh, India, Maldives, Pakistan and Sri Lanka. This framework provides a useful starting point for Indian and Pakistani cooperative monitoring in their trans-border coastal area. The project discussed in this paper involves computer modeling, the placement of in situ sensors for remote data acquisition, and the development of joint reports. Preliminary computer modeling studies are presented in the paper. These results illustrate the cross-flow connections between Indian and Pakistani coastal regions and strengthen the argument for cooperation. Technologies and actions similar to those suggested for the coastal project are likely to be applied in future arms control and treaty verification agreements. The project, therefore, serves as a demonstration of cooperative monitoring technologies. The project will also increase people-to-people contacts among Indian and Pakistani policy makers and scientists. In the perceptions of the general public, the project will crystallize the idea that the two countries share ecosystems and natural resources, and have a vested interest in increased collaboration.

  19. Site Environmental Report for 2007 Volume I

    SciTech Connect (OSTI)

    Lackner, Regina E.; Baskin, David; Fox, Robert; Jelinski, John; Pauer, Ron; Thorson, Patrick; Wahl, Linnea

    2008-09-15T23:59:59.000Z

    The Site Environmental Report is an integrated report on Berkeley Lab's environmental programs to satisfy the requirements of DOE Order 231.1A, Environment, Safety, and Health Reporting. It summarizes Berkeley Lab's environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2007. Volume I is organized into an executive summary followed by six chapters that contain an overview of the Laboratory, a discussion of the Laboratory's environmental management system, the status of environmental programs, and summarized results from surveillance and monitoring activities.

  20. Monitoring

    DOE Patents [OSTI]

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

    2004-11-23T23:59:59.000Z

    The invention provides apparatus and methods which facilitate movement of an instrument relative to an item or location being monitored and/or the item or location relative to the instrument, whilst successfully excluding extraneous ions from the detection location. Thus, ions generated by emissions from the item or location can successfully be monitored during movement. The technique employs sealing to exclude such ions, for instance, through an electro-field which attracts and discharges the ions prior to their entering the detecting location and/or using a magnetic field configured to repel the ions away from the detecting location.

  1. OpenIR [Open Infrared] : enhancing environmental monitoring through accessible remote sensing, in Indonesia and beyond

    E-Print Network [OSTI]

    Ducao, Arlene (Arlene Brigoli)

    2013-01-01T23:59:59.000Z

    As the human landscape changes ever more rapidly, environmental change accelerates. Much environmental information is publicly available as infrared satellite data. However, for the general user, this information is difficult ...

  2. Use of Remote Technology in the Surface Water Environmental Monitoring Program at SRS Reducing Measurements in the Field - 13336

    SciTech Connect (OSTI)

    Eddy, T.; Terry, B.; Meyer, A.; Hall, J.; Allen, P.; Hughey, D.; Hartley, T. [Savannah River Nuclear Solutions, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River Nuclear Solutions, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    There are a wide range of sensor and remote technology applications available for use in environmental monitoring programs. Each application has its own set of limitations and can be challenging when attempting to utilize it under diverse environmental field conditions. The Savannah River Site Environmental Monitoring Program has implemented several remote sensing and surface water flow technologies that have increased the quality of the data while reducing the number of field measurements. Implementation of this technology reduced the field time for personnel that commute across the Savannah River Site (SRS) over a span of 310 square miles. The wireless surface water flow technology allows for immediate notification of changing field conditions or equipment failure thus reducing data-loss or erroneous field data and improving data-quality. This wireless flow technology uses the stage-to-flow methodology coupled with implementation of a robust highly accurate Acoustic Doppler Profiler system for measuring discharge under various field conditions. Savings for implementation of the wireless flow application and Flowlink{sup R} technology equates to approximately 1175 hours annually for the radiological liquid effluent and surveillance programs. The SonTek River Suveyor and Flowtracker technologies are utilized for calibration of the wireless flow monitoring devices in the site streams and validation of effluent flows at the SRS. Implementation of similar wireless devices is also planned in the National Pollutant Discharge Elimination System (NPDES) Storm-water Monitoring Program. SRS personnel have been developing a unique flow actuator device. This device activates an ISCO{sup TM} automated sampler under flowing conditions at storm-water outfall locations across the site. This technology is unique in that it was designed to be used under field conditions with rapid changes in flow and sedimentation where traditional actuators have been unsuccessful in tripping the automated sampler. In addition, automated rain gauges will be tied into this technology for immediate notification of rain at storm-water locations further enhancing the automation of environmental data collection. These technological improvements at SRS have led to data-quality improvements while reducing the field technician time in the field and costs for maintaining the traditional environmental monitoring applications. (authors)

  3. ENVIRONMENTAL FLOWS IN A HUMAN-DOMINATED SYSTEM: INTEGRATED WATER MANAGEMENT STRATEGIES FOR THE RIO GRANDE/BRAVO BASIN

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    Wiley & Sons, Ltd. key words: integrated water management; environmental flows; reservoir re Reach of the RGB. This study addresses the need for integrated water management in Big Bend by devel­2009), water allocation, and reservoir operations, and key human water management objectives (water supply

  4. The interrelationship between environmental goals, productivity improvement, and increased energy efficiency in integrated paper and steel plants

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    This report presents the results of an investigation into the interrelationships between plant-level productivity, energy efficiency, and environmental improvements for integrated pulp and paper mills and integrated steel mills in the US. Integrated paper and steel plants are defined as those facilities that use some form of onsite raw material to produce final products (for example, paper and paperboard or finished steel). Fully integrated pulp and paper mills produce onsite the pulp used to manufacture paper from virgin wood fiber, secondary fiber, or nonwood fiber. Fully integrated steel mills process steel from coal, iron ore, and scrap inputs and have onsite coke oven facilities.

  5. Development of the integrated environmental control model. Quarterly progress report, April 1995--June 1995

    SciTech Connect (OSTI)

    Kalagnanam, J.R.; Rubin, E.S.

    1995-06-01T23:59:59.000Z

    The purpose of this contract is to develop and refine the Integrated Environmental Control Model (IECM). In its current configuration, the IECM provides a capability to model various conventional and advanced processes for controlling air pollutant emissions from coal-fired power plants before, during, or after combustion. The principal purpose of the model is to calculate the performance, emissions, and cost of power plant configurations employing alternative environmental control methods. The model consists of various control technology modules, which may be integrated into a complete utility plant in any desired combination. In contrast to conventional deterministic models, the IECM offers the unique capability to assign probabilistic values to all model input parameters, and to obtain probabilistic outputs in the form of cumulative distribution functions indicating the likelihood of different costs and performance results. The work in this contract is divided into two phases. Phase I deals with further developing the existing version of the IECM and training PETC personnel on the effective use of the model. Phase H deals with creating new technology modules, linking the IECM with PETC databases, and training PETC personnel on the effective use of the updated model. The present report summarizes recent progress on the Phase I effort during the period April 1, 1995 through June 30, 1995. This report presents additional revisions to the new cost models of flue gas desulfurization (FGD) technology initially reported in our fourth quarterly report. For convenience, the complete description of the revised FGD models are presented here.

  6. Statement of Work (SOW) for services provided by the Waste Sampling and Characterization Facility for the Effluent and Environmental Monitoring Program during calendar year 1998

    SciTech Connect (OSTI)

    GLECKLER, B.P.

    1998-10-22T23:59:59.000Z

    This document defines the services the Waste Sampling and Characterization Facility (WSCF) shall provide the Effluent and Environmental Monitoring Program (EEM) throughout the calendar year for analysis. The purpose of the EEM Program is to monitor liquid and gaseous effluents, and the environment immediately around the facilities which may contain radioactive and hazardous materials. Monitoring data are collected, evaluated, and reported to determine their degree of compliance with applicable federal and state regulations and permits.

  7. Integration of Environmental Restoration and Decontamination and Dismantlement Requirements at the INEEL

    SciTech Connect (OSTI)

    C. L. Reese; D. J. Kuhns

    1999-02-01T23:59:59.000Z

    In 1997, the Environmental Restoration Program at the Idaho National Engineering and Environmental Laboratory (INEEL) determined that it was necessary to remediate a Comprehensive Environmental Response and Liability Act (CERCLA) site to address the risk of subsurface petroleum contamination to human health and the environment. This cleanup project was conducted utilizing the Non-time Critical Removal Action process. Due to the close proximity (above the contaminated soil) of a number of above ground storage tanks and a building, the CERCLA project team worked closely with the D&D group to ensure all requirements for each program were met. Lessons learned and regulatory requirements are discussed in the paper, including the factors unknown to many ER personnel regarding the steps required to be completed prior to the dismantlement of structures. The paper summarizes the background associated with the site, why the removal action was conducted, the scope of the removal action, and the results. The emphasis of the paper is to discuss the integration between ER and D&D requirements and processes. In the current environment where ER and D&D activities are commingled, it is imperative that ER and D&D personnel are aware of the requirements imposed upon each program. By working together and building upon the strengths of each program, the INEEL?s 1997 removal action was a tremendous success.

  8. Integration of Environmental Restoration and Decontamination and Dismantlement Requirements at the INEEL

    SciTech Connect (OSTI)

    Kuhns, Douglass Jack; Reese, Craig Lyle

    1999-03-01T23:59:59.000Z

    In 1997, the Environmental Restoration Program at the Idaho National Engineering and Environmental Laboratory (INEEL) determined that it was necessary to remediate a Comprehensive Environmental Response and Liability Act (CERCLA) site to address the risk of subsurface petroleum contamination to human health and the environment. This cleanup project was conducted utilizing the Non-time Critical Removal Action process. Due to the close proximity (above the contaminated soil) of a number of above ground storage tanks and a building, the CERCLA project team worked closely with the D&D group to ensure all requirements for each program were met. Lessons learned and regulatory requirements will be discussed in the paper, including the factors unknown to many ER personnel regarding the steps required to be completed prior to the dismantlement of structures. The paper will summarize the background associated with the site, why the removal action was conducted, the scope of the removal action, and the results. The emphasis of the paper will discuss the integration between ER and D&D requirements and processes. In the current environment where ER and D&D activities are commingled, it is imperative that ER and D&D personnel are aware of the requirements imposed upon each program. By working together and building upon the strengths of each program, the INEELís 1997 removal action was a tremendous success.

  9. Integrating natural resource damage assessment and environmental restoration activities at DOE facilities

    SciTech Connect (OSTI)

    NONE

    1993-10-01T23:59:59.000Z

    Environmental restoration activities are currently under way at many U.S. Department of Energy (DOE) sites under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE is the CERCLA lead response agency for these activities. Section 120 of CERCLA also could subject DOE to liability for natural resource damages resulting from hazardous substance releases at its sites. A Natural Resource Damage Assessment (NRDA) process is used to determine whether natural resources have been injured and to calculate compensatory monetary damages to be used to restore the natural resources. In addition to restoration costs, damages may include costs of conducting the damage assessment and compensation for interim losses of natural resource services that occur before resource restoration is complete. Natural resource damages represent a potentially significant source of additional monetary claims under CERCLA, but are not well known or understood by many DOE staff and contractors involved in environmental restoration activities. This report describes the requirements and procedures of NRDA in order to make DOE managers aware of what the process is designed to do. It also explains how to integrate the NRDA and CERCLA Remedial Investigation/Feasibility Study processes, showing how the technical and cost analysis concepts of NRDA can be borrowed at strategic points in the CERCLA process to improve decisionmaking and more quickly restore natural resource services at the lowest total cost to the public.

  10. Integrating Natural Resource Damage Assessment and environmental restoration activities at DOE facilities

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    Environmental restoration activities are currently under way at many US Department of Energy (DOE) sites under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). DOE is the CERCLA lead response agency for these activities. Section 120 of CERCLA also could subject DOE to liability for natural resource damages resulting from hazardous substance releases at its sites. A Natural Resource Damage Assessment (NRDA) process is used to determine whether natural resources have been injured and to calculate compensatory monetary damages to be used to restore the natural resources. In addition to restoration costs, damages may include costs of conducting the damage assessment and compensation for interim losses of natural resource services that occur before resource restoration is complete. Natural resource damages represent a potentially significant source of additional monetary claims under CERCLA, but are not well known or understood by many DOE staff and contractors involved in environmental restoration activities. This report describes the requirements and procedures of NRDA in order to make DOE managers aware of what the process is designed to do. It also explains how to integrate the NRDA and CERCLA Remedial Investigation/Feasibility Study processes, showing how the technical and cost analysis concepts of NRDA can be borrowed at strategic points in the CERCLA process to improve decisionmaking and more quickly restore natural resource services at the lowest total cost to the public.

  11. Groundwater Protection 7 2003 SITE ENVIRONMENTAL REPORT7-1

    E-Print Network [OSTI]

    Homes, Christopher C.

    that plans for groundwater protection, management, monitoring, and restoration are fully defined, integrated's program helps to fulfill the environmental monitoring requirements outlined in U.S. Department of Energy and implement an Environmental Management System (EMS), which was finalized when BNL received ISO 14001

  12. Environmental Survey preliminary report, Idaho National Engineering Laboratory, Idaho Falls, Idaho and Component Development and Integration Facility, Butte, Montana

    SciTech Connect (OSTI)

    Not Available

    1988-09-01T23:59:59.000Z

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Idaho National Engineering Laboratory (INEL) and Component Development and Integration Facility (CDIF), conducted September 14 through October 2, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the INEL and CDIF. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations' carried on at the INEL and the CDIF, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory. When completed, the S A results will be incorporated into the INEL/CDIF Survey findings for inclusion into the Environmental Survey Summary Report. 90 refs., 95 figs., 77 tabs.

  13. The development of a robust, autonomous sensor network platform for environmental monitoring.

    E-Print Network [OSTI]

    Marshall, Ian W.

    advantages in applications covering large, hostile environments such as: glaciers, volcanoes or off-shore sea of environmental impact on a coastal sea bed of a wind farm. Wind farms are seen as a key feature negative, environmental impacts. The complex interplay between the: oceans currents; wind; coast line

  14. Letter Report: Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Pahranagat National Wildlife Refuge, Lincoln County, Nevada

    SciTech Connect (OSTI)

    J. Englebrecht; I. Kavouras; D. Campbell; S. Campbell; S. Kohl; D. Shafer

    2008-08-01T23:59:59.000Z

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Pahranagat NWR, Beatty, Rachel, Caliente, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data on completion of the site's sampling program.

  15. Letter Report Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Pahranagat National Wildlife Refuge, Lincoln County, Nevada

    SciTech Connect (OSTI)

    J. Engelbrecht; I. Kavouras; D. Campbell; S. Campbell; S. Kohl; D. Shafer

    2009-04-02T23:59:59.000Z

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Pahranagat NWR, Beatty, Rachel, Caliente, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data on completion of the site's sampling program.

  16. Letter Report: Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Tonopah Airport, Nye County, Nevada

    SciTech Connect (OSTI)

    J. Engelbrecht; I. Kavouras; D Campbell; S. Campbell; S. Kohl, D. Shafer

    2008-08-01T23:59:59.000Z

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Tonopah Airport, Beatty, Rachel, Caliente, Pahranagat NWR, Crater Flat, and the Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program.

  17. Letter Report: Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Crater Flat, Nye County, Nevada

    SciTech Connect (OSTI)

    J. Engelbrecht; I. Kavouras; D. Campbell; S. Campbell; S. Kohl; D. Shafer

    2008-08-01T23:59:59.000Z

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) (cover page figure) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Beatty, Sarcobatus Flats, Rachel, Caliente, Pahranagat NWR, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program.

  18. Letter Report Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Crater Flat, Nye County, Nevada

    SciTech Connect (OSTI)

    J. Engelbrecht; I. Kavouras; D. Campbell; S.Campbell; S. Kohl; D. Shafer

    2009-04-02T23:59:59.000Z

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) (cover page figure) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Beatty, Sarcobatus Flats, Rachel, Caliente, Pahranagat NWR, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program.

  19. Letter Report Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Tonopah Airport, Nye County, Nevada

    SciTech Connect (OSTI)

    J. Engelbrecht; I. Kavouras; D. Campbell; S. Campbell; S. Kohl; D. Shafer

    2009-04-02T23:59:59.000Z

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Tonopah Airport, Beatty, Rachel, Caliente, Pahranagat NWR, Crater Flat, and the Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program.

  20. Letter Report: Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Caliente, Lincoln County, Nevada

    SciTech Connect (OSTI)

    J. Englebrecht; I. Kavouras; D. Campbell; S. Campbell; S. Kohl; D. Shafer

    2008-08-01T23:59:59.000Z

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Beatty, Sarcobatus Flats, Rachel, Caliente, Pahranagat NWR, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program.

  1. User's guide to a data base of current environmental monitoring projects in the US-Canadian transboundary region

    SciTech Connect (OSTI)

    Ballinger, M.Y.; Defferding, J.; Chapman, E.G.; Bettinson, M.D.; Glantz, C.S.

    1987-11-01T23:59:59.000Z

    This document describes how to use a data base of current transboundary region environmental monitoring projects. The data base was prepared from data provided by Glantz et al. (1986) and Concord Scientific Corporation (1985), and contains information on 226 projects with monitoring stations located within 400 km (250 mi) of the US-Canadian border. The data base is designed for use with the dBASE III PLUS data management systems on IBM-compatible personal computers. Data-base searches are best accomplished using an accompanying command file called RETRIEVE or the dBASE command LIST. The user must carefully select the substrings on which the search is to be based. Example search requests and subsequent output are presented to illustrate substring selections and applications of the data base. 4 refs., 15 figs., 4 tabs.

  2. Environmental radiological monitoring of air, rain, and snow on and near the Hanford Site, 1945-1957

    SciTech Connect (OSTI)

    Hanf, R.W.; Thiede, M.E.

    1994-03-01T23:59:59.000Z

    This report is a result of the Hanford Environmental Dose Reconstruction (HEDR) Project. The goal of the HEDR Project is to estimate the radiation dose that individuals could have received from emissions since 1944 at the Hanford Site near Richland, Washington. Members of the HEDR Project`s Environmental Monitoring Data Task have developed databases of historical environmental measurements of such emissions. Hanford documents were searched for information on the radiological monitoring of air, rain, and snow at and near the Hanford Site in Richland, Washington. The monitoring information was reviewed and summarized. The end product is a yearly overview of air, rain, and snow samples as well as ambient radiation levels in the air that were measured from 1945 through 1957. The following information is provided in each annual summary: the media sampled, the constituents (radionuclides) measured/reported, the sampling locations, the sampling frequencies, the sampling methods, and the document references. For some years a notes category is included that contains additional useful information. For the years 1948 through 1957, tables summarizing the sampling locations for the various sample media are also included in the appendix. A large number of documents were reviewed to obtain the information in this report. A reference list is attached to the end of each annual summary. All of the information summarized here was obtained from reports originating at Hanford. These reports are all publicly available and can be found in the Richland Operations Office (RL) public reading room. The information in this report has been compiled without analysis and should only be used as a guide to the original documents.

  3. Integrated Process Monitoring based on Systems of Sensors for Enhanced Nuclear Safeguards Sensitivity and Robustness

    SciTech Connect (OSTI)

    Humberto E. Garcia

    2014-07-01T23:59:59.000Z

    This paper illustrates safeguards benefits that process monitoring (PM) can have as a diversion deterrent and as a complementary safeguards measure to nuclear material accountancy (NMA). In order to infer the possible existence of proliferation-driven activities, the objective of NMA-based methods is often to statistically evaluate materials unaccounted for (MUF) computed by solving a given mass balance equation related to a material balance area (MBA) at every material balance period (MBP), a particular objective for a PM-based approach may be to statistically infer and evaluate anomalies unaccounted for (AUF) that may have occurred within a MBP. Although possibly being indicative of proliferation-driven activities, the detection and tracking of anomaly patterns is not trivial because some executed events may be unobservable or unreliably observed as others. The proposed similarity between NMA- and PM-based approaches is important as performance metrics utilized for evaluating NMA-based methods, such as detection probability (DP) and false alarm probability (FAP), can also be applied for assessing PM-based safeguards solutions. To this end, AUF count estimates can be translated into significant quantity (SQ) equivalents that may have been diverted within a given MBP. A diversion alarm is reported if this mass estimate is greater than or equal to the selected value for alarm level (AL), appropriately chosen to optimize DP and FAP based on the particular characteristics of the monitored MBA, the sensors utilized, and the data processing method employed for integrating and analyzing collected measurements. To illustrate the application of the proposed PM approach, a protracted diversion of Pu in a waste stream was selected based on incomplete fuel dissolution in a dissolver unit operation, as this diversion scenario is considered to be problematic for detection using NMA-based methods alone. Results demonstrate benefits of conducting PM under a system-centric strategy that utilizes data collected from a system of sensors and that effectively exploits known characterizations of sensors and facility operations in order to significantly improve anomaly detection, reduce false alarm, and enhance assessment robustness under unreliable partial sensor information.

  4. Environmental monitoring for the DOE coolside and LIMB demonstration extension projects. Final report, May--August 1991

    SciTech Connect (OSTI)

    White, T.; Contos, L.; Adams, L. [Radian Corp., Research Triangle Park, NC (United States)

    1992-03-01T23:59:59.000Z

    The purpose of this document is to present environmental monitoring data collected during the US Department of Energy Limestone Injection Multistage Burner (DOE LIMB) Demonstration Project Extension at the Ohio Edison Edgewater Generating Station in Lorain, Ohio. The DOE project is an extension of the US Environmental Protection Agency`s (EPA`s) original LIMB Demonstration. The program is operated nuclear DOE`s Clean Coal Technology Program of ``emerging clean coal technologies`` under the categories of ``in boiler control of oxides of sulfur and nitrogen`` as well as ``post-combustion clean-up.`` The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators (ESPs).

  5. ENVIRONMENTAL SUSTAINABILITY

    E-Print Network [OSTI]

    27 ICT AND ENVIRONMENTAL SUSTAINABILITY T he environment is a large complex sys- tem. Managing. Environmental Monitoring and Associated Resource Management and Risk Mitigation ICTimprovestheabilitytoobtain,storeandinte- grate large volumes of environmental data and to conductsimulationandanalysisinrealtime

  6. Groundwater and Leachate Monitoring and Sampling at the Environmental Restoration Disposal Facility, Calendar Year 2005

    SciTech Connect (OSTI)

    D.A. St. John, R.L. Weiss

    2006-05-04T23:59:59.000Z

    The purpose of this annual monitoring report is to evaluate the conditions of and identify trends for groundwater beneath the ERDF and to report leachate results in accordance with the requirements specified in the ERDF ROD.

  7. Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTIONES2008-54174 This manuscript has

  8. Integration plan required by performance agreement SM 7.2.1

    SciTech Connect (OSTI)

    Diediker, L.P.

    1997-03-28T23:59:59.000Z

    Fluor Daniel Hanford, Inc. and its major subcontractors are in agreement that environmental monitoring performed under the Project Hanford Management Contract is to be done in accordance with a single, integrated program. The purpose of this Integration Plan for Environmental Monitoring is to document the policies, systems, and processes being put in place to meet one key objective: manage and integrate a technically competent, multi-media ambient environmental monitoring program, in an efficient, cost effective manner. Fluor Daniel Hanford, Inc. and its major subcontractors also commit to conducting business in a manner consistent with the International Standards Organization 14000 Environmental Management System concepts. Because the integration of sitewide groundwater monitoring activities is managed by the Environmental Restoration Contractor, groundwater monitoring it is outside the scope of this document. Therefore, for the purpose of this Integration Plan for Environmental Monitoring, the Integrated Environmental Monitoring Program is defined as applicable to all environmental media except groundwater. This document provides recommendations on future activities to better integrate the overall environmental monitoring program, with emphasis on the near-field program. In addition, included is the Fluor Daniel Hanford, Inc. team review of the environmental monitoring activities on the Hanford Site, with concurrence of Pacific Northwest National Laboratory and Bechtel Hanford, Inc. (The narrative provided later in the Discussion Section describes the review and consideration given to each topic.) This document was developed to meet the requirements of the Project Hanford Management Contract performance agreement (SM7.2) and the tenets of the U.S. Department of Energy's Effluent and Environmental Monitoring Planning Process. This Plan is prepared for the U.S. Department of Energy, Richland Operations Office, Environmental Assurance, Permits, and Policy Division to complete the requirements specified in the Performance Expectation 7.2.1, within the SM7 Environmental, Safety, and Health section of the Project Hanford Management Contract.

  9. U.S. EPA Environmental Technology Verification (ETV) Program Advanced Monitoring Systems (AMS) Center

    E-Print Network [OSTI]

    Carbon Dioxide from Sequestration Applications. These technology categories have been priorities evaluation, Nebraska Department of Environmental Quality (NDEQ) for microcystins, and EPA Region 7 for carbon sequestration. Climate change technology verification ideas Dr. McKernan also presented several ideas

  10. Modeling of integrated environmental control systems for coal-fired power plants

    SciTech Connect (OSTI)

    Rubin, E.S.

    1988-06-01T23:59:59.000Z

    This is the third quarterly report of DOE Contract No. DE-AC22- 87PC79864, entitled Modeling of Integrated Environmental Control Systems for Coal-Fired Power Plants.'' This report summarizes accomplishments during the period April 1, 1988 to June 30, 1988. Our efforts during the last quarter focused on, (1) completion of a sulfuric acid plant model (used in conjunction with by-product recovery processes for SO{sub 2}/NO{sub x} removal) and, (2) an update the NOXSO process model. Other accomplishments involved revision and expansion of the enthalpy data algorithms used for process energy balances. The sections below present the details of these developments. References are included at the end of each section.

  11. CULTURAL RESOURCES SERVICES CENTER FOR ENVIRONMENTAL MANAGEMENT OF MILITARY LANDS

    E-Print Network [OSTI]

    D installations. SERVICES ∑ Planning level surveys for archaeological resources, traditional cultural properties and structures ∑ Integrated Cultural Resource Management Plans (ICRMPs) ∑ Archaeological resource monitoringCULTURAL RESOURCES SERVICES CENTER FOR ENVIRONMENTAL MANAGEMENT OF MILITARY LANDS CEMML | 1490

  12. Integration

    E-Print Network [OSTI]

    Koschorke, Albrecht; Musanovic, Emina

    2013-01-01T23:59:59.000Z

    Integration By Albrecht Koschorkeby Emina Musanovic [Integration (from Lat. integrare, ďtoa social unity. Social integration is distinct from systemic

  13. Environmental effects of dredging: Predicting and monitoring dredge-induced dissolved oxygen reduction. Technical notes

    SciTech Connect (OSTI)

    Houston, L.; LaSalle, M.W.; Lunz, J.D.

    1989-11-01T23:59:59.000Z

    This note summarizes the results of research into the potential for dissolved oxygen (DO) reduction associated with dredging operations. Efforts toward development of a simple computational model for predicting the degree of dredge-induced DO reduction are described along with results of a monitoring program around a bucket dredge operation.

  14. Integrated Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration

    SciTech Connect (OSTI)

    John Rogers

    2011-12-31T23:59:59.000Z

    The US DOE/NETL CCS MVA program funded a project with Fusion Petroleum Technologies Inc. (now SIGMA) to model the proof of concept of using sparse seismic data in the monitoring of CO{sub 2} injected into saline aquifers. The goal of the project was to develop and demonstrate an active source reflection seismic imaging strategy based on deployment of spatially sparse surface seismic arrays. The primary objective was to test the feasibility of sparse seismic array systems to monitor the CO{sub 2} plume migration injected into deep saline aquifers. The USDOE/RMOTC Teapot Dome (Wyoming) 3D seismic and reservoir data targeting the Crow Mountain formation was used as a realistic proxy to evaluate the feasibility of the proposed methodology. Though the RMOTC field has been well studied, the Crow Mountain as a saline aquifer has not been studied previously as a CO{sub 2} sequestration (storage) candidate reservoir. A full reprocessing of the seismic data from field tapes that included prestack time migration (PSTM) followed by prestack depth migration (PSDM) was performed. A baseline reservoir model was generated from the new imaging results that characterized the faults and horizon surfaces of the Crow Mountain reservoir. The 3D interpretation was integrated with the petrophysical data from available wells and incorporated into a geocellular model. The reservoir structure used in the geocellular model was developed using advanced inversion technologies including Fusion's ThinMAN{trademark} broadband spectral inversion. Seal failure risk was assessed using Fusion's proprietary GEOPRESS{trademark} pore pressure and fracture pressure prediction technology. CO{sub 2} injection was simulated into the Crow Mountain with a commercial reservoir simulator. Approximately 1.2MM tons of CO{sub 2} was simulated to be injected into the Crow Mountain reservoir over 30 years and subsequently let 'soak' in the reservoir for 970 years. The relatively small plume developed from this injection was observed migrating due to gravity to the apexes of the double anticline in the Crow Mountain reservoir of the Teapot dome. Four models were generated from the reservoir simulation task of the project which included three saturation models representing snapshots at different times during and after simulated CO{sub 2} injection and a fully saturated CO{sub 2} fluid substitution model. The saturation models were used along with a Gassmann fluid substitution model for CO{sub 2} to perform fluid volumetric substitution in the Crow Mountain formation. The fluid substitution resulted in a velocity and density model for the 3D volume at each saturation condition that was used to generate a synthetic seismic survey. FPTI's (Fusion Petroleum Technologies Inc.) proprietary SeisModelPRO{trademark} full acoustic wave equation software was used to simulate acquisition of a 3D seismic survey on the four models over a subset of the field area. The simulated acquisition area included the injection wells and the majority of the simulated plume area.

  15. Integrated Omics in Systems Biology: The New Frontier for Environmental Biotechnology

    E-Print Network [OSTI]

    Hazen, Terry C.

    2008-01-01T23:59:59.000Z

    biology Comparative Genomics Metabolomics DNA Microarraysand Environmental Research, Genomics Program:GTL throughINSTITUTE FOR ENVIRONMENTAL GENOMICS UNIVERSITY OF OKLAHOMA

  16. Bioluminescent bioreporter integrated circuit

    DOE Patents [OSTI]

    Simpson, Michael L. (Knoxville, TN); Sayler, Gary S. (Blaine, TN); Paulus, Michael J. (Knoxville, TN)

    2000-01-01T23:59:59.000Z

    Disclosed are monolithic bioelectronic devices comprising a bioreporter and an OASIC. These bioluminescent bioreporter integrated circuit are useful in detecting substances such as pollutants, explosives, and heavy-metals residing in inhospitable areas such as groundwater, industrial process vessels, and battlefields. Also disclosed are methods and apparatus for environmental pollutant detection, oil exploration, drug discovery, industrial process control, and hazardous chemical monitoring.

  17. Ambient Radon-222 Monitoring in Amargosa Valley, Nevada

    SciTech Connect (OSTI)

    L.H. Karr; J.J. Tappen; D. Shafer; K.J. Gray

    2008-06-05T23:59:59.000Z

    As part of a program to characterize and baseline selected environmental parameters in the region around the proposed repository at Yucca Mountain, Nevada, ambient radon-222 monitoring was conducted in the rural community of Amargosa Valley, the community closest to the proposed repository site. Passive integrating radon monitors and a continuous radon monitoring instrument were deployed adjacent to the Community Environmental Monitoring Program (CEMP) (http://www.cemp.dri.edu/index.html) station located in the Amargosa Valley Community Center near the library. The CEMP station provided real-time ambient gamma exposure and meteorological data used to correct the integrated radon measurements as well as verify meteorological data collected by the continuous radon monitoring instrument. Additionally, different types of environmental enclosures that housed the monitors and instrument were used to determine if particular designs influenced the ambient radon measurements.

  18. Switchgrass as an Alternate Feedstock for Power Generation: Integrated Environmental, Energy, and Economic Life-Cycle Analysis

    E-Print Network [OSTI]

    McCarl, Bruce A.

    virgatum) as a replacement for coal in power generation. To examine the effects of such a substitution1 Switchgrass as an Alternate Feedstock for Power Generation: Integrated Environmental, Energy into modules. The greenhouse gas (GHG) mitigation during co-firing of switchgrass with coal is found

  19. Site Environmental Report for 2008, Volume 1

    SciTech Connect (OSTI)

    Lackner, Regina; Baskin, David; Fox, Robert; Jelinski, John; Pauer, Ron; Thorson, Patrick; Wahl, Linnea; Xu, Suying

    2009-09-21T23:59:59.000Z

    The Site Environmental Report for 2008 is an integrated report on the environmental programs at Lawrence Berkeley National Laboratory and satisfies the requirements of DOE order 231.1A, Environment, Safety, and Health Reporting. Volume II contains individual data results from surveillance and monitoring activities

  20. Integrating mechanistic and polymorphism data to characterize human genetic susceptibility for environmental chemical risk assessment in the 21st century

    SciTech Connect (OSTI)

    Mortensen, Holly M., E-mail: mortensen.holly@epa.gov [Office of Research and Development, US Environmental Protection Agency, National Center for Computational Toxicology, US EPA, 109 TW Alexander Dr., Mailcode B205-01, Research Triangle Park, NC 27711 (United States); Euling, Susan Y. [Office of Research and Development, US Environmental Protection Agency, National Center for Environmental Assessment, US EPA, 1200 Pennsylvania Ave., NW, Mail Code 8623P, Washington, DC 20460 (United States)

    2013-09-15T23:59:59.000Z

    Response to environmental chemicals can vary widely among individuals and between population groups. In human health risk assessment, data on susceptibility can be utilized by deriving risk levels based on a study of a susceptible population and/or an uncertainty factor may be applied to account for the lack of information about susceptibility. Defining genetic susceptibility in response to environmental chemicals across human populations is an area of interest in the NAS' new paradigm of toxicity pathway-based risk assessment. Data from high-throughput/high content (HT/HC), including -omics (e.g., genomics, transcriptomics, proteomics, metabolomics) technologies, have been integral to the identification and characterization of drug target and disease loci, and have been successfully utilized to inform the mechanism of action for numerous environmental chemicals. Large-scale population genotyping studies may help to characterize levels of variability across human populations at identified target loci implicated in response to environmental chemicals. By combining mechanistic data for a given environmental chemical with next generation sequencing data that provides human population variation information, one can begin to characterize differential susceptibility due to genetic variability to environmental chemicals within and across genetically heterogeneous human populations. The integration of such data sources will be informative to human health risk assessment.

  1. Integrated Safety Management System Phase 1 and 2 Verification for the Environmental Restoration Contractor Volumes 1 and 2

    SciTech Connect (OSTI)

    CARTER, R.P.

    2000-04-04T23:59:59.000Z

    DOE Policy 450.4 mandates that safety be integrated into all aspects of the management and operations of its facilities. The goal of an institutionalized Integrated Safety Management System (ISMS) is to have a single integrated system that includes Environment, Safety, and Health requirements in the work planning and execution processes to ensure the protection of the worker, public, environment, and the federal property over the life cycle of the Environmental Restoration (ER) Project. The purpose of this Environmental Restoration Contractor (ERC) ISMS Phase MI Verification was to determine whether ISMS programs and processes were institutionalized within the ER Project, whether these programs and processes were implemented, and whether the system had promoted the development of a safety conscious work culture.

  2. Statement of work for services provided by the waste sampling and characterization facility for the effluent and environmental monitoring program during calendar year 1998

    SciTech Connect (OSTI)

    Greager, E.M.

    1998-01-29T23:59:59.000Z

    This document defines the services the Waste Sampling and Characterization Facility (WSCF) shall provide the Effluent and Environmental Monitoring Program (EEM) throughout the calendar year for analysis. The purpose of the EEM Program is to monitor liquid and gaseous effluents, and the environment immediately around the facilities which may contain radioactive and hazardous materials. Monitoring data are collected, evaluated, and reported to determine their degree of compliance with applicable federal and state regulations and permits. The Appendix identifies the samples EEM plans to submit for analysis in CY-1998. Analysis of effluent (liquid and air discharges) and environmental (air, liquid, animal, and vegetative) samples is required using standard laboratory procedures, in accordance with regulatory and control requirements cited in Quality Assurance Program Plan for Radionuclide Airborne Emissions Monitoring (especially Appendix G) (WHC 1995a), Effluent Monitoring Quality Assurance Project Plan for Radionuclide Airborne Emissions Data (WHC 1995b), Near-Facility Environmental Monitoring Quality Assurance Project Plan (WMNW 1997), and Hanford Analytical Services Quality Assurance Requirements Documents (DOE 1996). Should changes to this document be necessary, WSCF or the Waste Management Federal Services, Inc. (WMH) Air and Water Services (AWS) Organization may amend it at any time with a jointly approved internal memo.

  3. Statement of work for services provided by the waste sampling and characterization facility for the effluent and environmental monitoring program during calendar year 1997

    SciTech Connect (OSTI)

    Gleckler, B.P., Fluor Daniel Hanford

    1997-02-28T23:59:59.000Z

    This document defines the services the Waste Sampling & Characterization Facility (WSCF) shall provide the Effluent and Environmental Monitoring Program (EEM) throughout the calendar year for analysis. The purpose of the EEM Program is to monitor liquid and gaseous effluents, and the environment immediately around the facilities which may contain radioactive and hazardous materials. Monitoring data are collected, evaluated, and reported to determine their degree of compliance with applicable federal and state regulations and permits. The Appendix identifies the samples EEM plans to submit for analysis in CY-1997. Analysis of effluent (liquid and air discharges) and environmental (air, liquid, animal, and vegetative) samples is required using standard laboratory procedures, in accordance with regulatory and control requirements cited in Quality Assurance Program Plan for Radionuclide Airborne Emissions Monitoring (especially Appendix G) (VTHC 1995a), Effluent Monitoring Quality Assurance Project Plan for Radionuclide Airborne Emissions Data (WHC 1995b), Operational Environmental Monitoring Program Quality Assurance Project Plan (WHC 1994b), and Hanford Analytical Services Quality Assurance Requirements Documents (DOE 1996). Should changes to this document be necessary, WSCF or the Air & Water Services (A&WS) Organization may amend it at any time with a jointly approved internal memo.

  4. Published in J. Becvar and M. Kokine (eds.), Role of Economic Instruments in Integrating Environmental Policy with Sectoral Policies. New-York and

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    Environmental Policy with Sectoral Policies. New-York and Geneva, Economic commission for Europe, United Nations for environmental policy in countries in transition to market1 Olivier Godard2 1. Introduction Economic instruments on the Role of Economic Instruments in Integrating Environmental Policy with Sectoral Policies, held

  5. The Integrated Cloud-based Environmental Data Management System at Los Alamos National Laboratory - 13391

    SciTech Connect (OSTI)

    Schultz Paige, Karen; Gomez, Penny; Patel, Nita P.; EchoHawk, Chris; Dorries, Alison M. [Los Alamos National Laboratory, MS M996, Los Alamos, NM, 87544 (United States)] [Los Alamos National Laboratory, MS M996, Los Alamos, NM, 87544 (United States)

    2013-07-01T23:59:59.000Z

    In today's world, instant access to information is taken for granted. The national labs are no exception; our data users expect immediate access to their data. Los Alamos National Laboratory (LANL) has collected over ten million records, and the data needs to be accessible to scientists as well as the public. The data span a wide range of media, analytes, time periods, formats, and quality and have traditionally existed in scattered databases, making comprehensive work with the data impossible. Recently, LANL has successfully integrated all their environmental data into a single, cloud-based, web-accessible data management system. The system combines data transparency to the public with immediate access required by the technical staff. The use of automatic electronic data validation has been critical to immediate data access while saving millions of dollars and increasing data consistency and quality. The system includes a Google Maps based GIS tool that is simple enough for people to locate potentially contaminated sites near their home or workplace, and complex enough to allow scientists to plot and trend their data at the surface and at depth as well as over time. A variety of formatted reports can be run at any desired frequency to report the most current data available in the data base. The advanced user can also run free form queries of the data base. This data management system has saved LANL time and money, an increasingly important accomplishment during periods of budget cuts with increasing demand for immediate electronic services. (authors)

  6. Methods for environmental monitoring of DOE waste disposal and storage sites. Semiannual progress report, April 1, 1988--September 30, 1988

    SciTech Connect (OSTI)

    Hadden, C.T.; Benson, S.B.; Osborne, T.R.; Revis, N.W.

    1988-12-31T23:59:59.000Z

    Perchloroethylene (PCE) is a persistent environmental contaminant whose chemical stability and hydrophobicity have made it difficult to remove from contaminated groundwater. PCE is also toxic and has been implicated as a carcinogen. This study was aimed at assessing methods for biological degradation of PCE. As a part of the study, the authors have characterized possible products of the degradation of PCE, and have determined the effects of detergents and solvents on the water solubility of PCE and on the toxic effects of PCE on bacteria. The authors have also isolated PCE-resistant microorganisms from monitoring wells at Y-12. To date all of the PCE-resistant bacteria isolated from the monitoring wells have been of the genus Bacillus. One of these isolates appears to be able to degrade PCE, as indicated by the disappearance of PCE from cultures of growing cells. The organism does not grow on PCE as the sole carbon source, so degradation of the solvent must occur by cometabolism.

  7. Investigation of Techniques to Improve Continuous Air Monitors Under Conditions of High Dust Loading in Environmental Settings

    SciTech Connect (OSTI)

    Suilou Huang; Stephen D. Schery; John C. Rodgers

    2002-07-23T23:59:59.000Z

    A number of DOE facilities, such as the Los Alamos National Laboratory (LANL) and the Waste Isolation Pilot Plant (WIPP), use alpha-particle environmental continuous air monitors (ECAMs) to monitor air for unwanted releases of radioactive aerosols containing such materials as plutonium and uranium. High sensitivity, ease of operation, and lack of false alarms are all important for ECAMs. The object of the project was to conduct investigations to improve operation of ECAMs, particularly under conditions where a lot of nonradioactive dust may be deposited on the filters (conditions of high dust loading). The presence of such dust may increase the frequency with which filters must be changed and can lead to an increased incidence of false alarms due to deteriorated energy resolution and response specificity to the radionuclides of interest. A major finding of the investigation, not previously documented, was that under many conditions thick layers of underlying nonradioactive dust do not decrease energy resolution and specificity for target radionuclides if the radioactive aerosol arrives as a sudden thin burst deposit, as commonly occurs in the early-warning alarm mode. As a result, operators of ECAMs may not need to change filters as often as previously thought and have data upon which to base more reliable operating procedures.

  8. ENVIRONMENTAL MONITORING OF LEAKS USING TIME LAPSED LONG ELECTRODE ELECTRICAL RESISTIVITY

    SciTech Connect (OSTI)

    RUCKER DF; FINK JB; LOKE MH; MYERS DA

    2009-11-05T23:59:59.000Z

    Highly industrialized areas pose significant challenges for surface based electrical resistivity characterization and monitoring due to the high degree of metallic infrastructure. The infrastructure is typically several orders of magnitude more conductive than the desired targets, preventing the geophysicist from obtaining a clear picture of the subsurface. These challenges may be minimized if steel-cased wells are used as long electrodes. We demonstrate a method of using long electrodes in a complex nuclear waste facility to monitor a simulated leak from an underground storage tank. The leak was simulated by injecting high conductivity fluid in a perforated well and the resistivity measurements were made before and after the leak test. The data were processed in four dimensions, where a regularization procedure was applied in both the time and space domains. The results showed a lowered resistivity feature develop south of the injection site. The time lapsed regularization parameter had a strong influence on the differences in inverted resistivity between the pre and post datasets, potentially making calibration of the results to specific hydrogeologic parameters difficult.

  9. Integral window/photon beam position monitor and beam flux detectors for x-ray beams

    DOE Patents [OSTI]

    Shu, Deming (Darien, IL); Kuzay, Tuncer M. (Naperville, IL)

    1995-01-01T23:59:59.000Z

    A monitor/detector assembly in a synchrotron for either monitoring the position of a photon beam or detecting beam flux may additionally function as a vacuum barrier between the front end and downstream segment of the beamline in the synchrotron. A base flange of the monitor/detector assembly is formed of oxygen free copper with a central opening covered by a window foil that is fused thereon. The window foil is made of man-made materials, such as chemical vapor deposition diamond or cubic boron nitrate and in certain configurations includes a central opening through which the beams are transmitted. Sensors of low atomic number materials, such as aluminum or beryllium, are laid on the window foil. The configuration of the sensors on the window foil may be varied depending on the function to be performed. A contact plate of insulating material, such as aluminum oxide, is secured to the base flange and is thereby clamped against the sensor on the window foil. The sensor is coupled to external electronic signal processing devices via a gold or silver lead printed onto the contact plate and a copper post screw or alternatively via a copper screw and a copper spring that can be inserted through the contact plate and coupled to the sensors. In an alternate embodiment of the monitor/detector assembly, the sensors are sandwiched between the window foil of chemical vapor deposition diamond or cubic boron nitrate and a front foil made of similar material.

  10. Weldon Spring storage site environmental-monitoring report for 1979 and 1980

    SciTech Connect (OSTI)

    Weidner, R B; Boback, M W

    1982-04-19T23:59:59.000Z

    The US Department of Energy (DOE) Weldon Spring Site consists of two separate radioactive waste storage properties: a 52-acre site which is a remnant of the Weldon Spring Feed Materials Plant; and a 9-acre abandoned rock quarry. The larger property has four pits which contain settled sludge from uranium and thorium processing operations. At the quarry, part of the excavation contains contaminated building rubble, scrap, and various residues. During 1979 and 1980 these storage locations were managed by NLO, Inc., contract operator of the DOE Feed Materials Production Center. Air and water samples were collected to provide information about the transfer of radionuclides in the offsite environment. Monitoring results show that uranium and radium concentrations in offsite surface and well water were within DOE Guide values for uncontrolled areas. At offsite locations, radon-222 concentrations in air were well within the Guide value.

  11. ENVIRONMENTAL MONITORING OF LEAKS USING TIME LAPSED LONG ELECTRODE ELECTRICAL RESISTIVITY

    SciTech Connect (OSTI)

    MYERS DA; RUCKER DF; FINK JB; LOKE MH

    2009-12-16T23:59:59.000Z

    Highly industrialized areas pose challenges for surface electrical resistivity characterization due to metallic infrastructure. The infrastructure is typically more conductive than the desired targets and will mask the deeper subsurface information. These challenges may be minimized if steel-cased wells are used as long electrodes in the area near the target. We demonstrate a method of using long electrodes to electrically monitor a simulated leak from an underground storage tank with both synthetic examples and a field demonstration. The synthetic examples place a simple target of varying electrical properties beneath a very low resistivity layer. The layer is meant to replicate the effects of infrastructure. Both surface and long electrodes are tested on the synthetic domain. The leak demonstration for the field experiment is simulated by injecting a high conductivity fluid in a perforated well within the S tank farm at Hanford, and the resistivity measurements are made before and after the leak test. All data are processed in four dimensions, where a regularization procedure is applied in both the time and space domains. The synthetic test case shows that the long electrode ERM could detect relative changes in resistivity that are commensurate with the differing target properties. The surface electrodes, on the other hand, had a more difficult time matching the original target's footprint. The field results shows a lowered resistivity feature develop south of the injection site after cessation of the injections. The time lapsed regularization parameter has a strong influence on the differences in inverted resistivity between the pre and post injection datasets, but the interpretation of the target is consistent across all values of the parameter. The long electrode ERM method may provide a tool for near real-time monitoring of leaking underground storage tanks.

  12. Integrated Microfluidics/Electrochemical Sensor System for Field-Monitoring of Toxic Metals

    SciTech Connect (OSTI)

    Lin, Yuehe; Matson, Dean W.; Bennett, Wendy D.; Thrall, K D.; Timchalk, Chuck; W. Ehrfeld

    2000-01-01T23:59:59.000Z

    Discusses a miniaturized analytical system based on a microfluidics/electrochemical detection scheme. Individual modules, such as microfabricated piezoelectrically actuated pumps, a micro-membrane separator and a microelectrochemical cell will be integrated onto a portable platform.

  13. Status of the flora and fauna on the Nevada Test Site, 1992. Results of continuing basic environmental monitoring, January through December 1992

    SciTech Connect (OSTI)

    Hunter, R.B. [comp.

    1994-03-01T23:59:59.000Z

    This report documents changes in the populations of plants and animals on the Nevada Test Site (NTS) for calendar year 1992. It is part of a Department of Energy (DOE) program (Basic Environmental Compliance and Monitoring Program -- BECAMP) that also includes monitoring DOE compliance with the Endangered Species Act, the Historic Preservation Act, and the American Indian Freedom of Religion Act. Ecological studies were to comply with the National Environmental Policy Act and DOE Order 5400.1, ``General Environmental Protection Program.`` These studies focused on the following: status of ephemeral plants on the Nevada Test Site, 1992; status of reptile and amphibian populations on the Nevada Test Site, 1992; trends in small mammal populations on the Nevada Test Site, 1992; status of large mammals and birds at Nevada Test Site, 1992; and status of perennial plants on the Nevada Test Site, 1992.

  14. Innovative coke oven gas cleaning system for retrofit applications. Quarterly environmental monitoring report No. 2, July 1, 1991--September 30, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-09-21T23:59:59.000Z

    The EMP consists of a Compliance Monitoring Sampling Program and a Supplemental monitoring Sampling Program. The Compliance Monitoring Sampling Program will be conducted during a summer and a winter Baseline periods during the Pre-Construction/Construction phases of the Project and during a summer and a winter period following the successful Startup and Operational phase of the completed Project. compliance monitoring consist of conducting all the sampling and observation programs associated with existing required Federal, State, and Local Regulations, Permits and Orders. These include air, water, and waste monitoring and OSHA and NESHAP monitoring. The Supplemental Monitoring Program will also be conducted during a summer and a winter Baseline periods during the Pre-Construction/Construction phases of the Demonstration Facility and during a summer and a winter period following the successful startup and Operational phase of the completed Facility. Supplemental Monitoring includes sampling of 27 additional streams that are important to measure operational or environmental performance and impacts of the installation of the new COG treatment facilities.

  15. Integrating and automating the software environment for the Beam and Radiation Monitoring for CMS

    E-Print Network [OSTI]

    Filyushkina, Olga; Juslin, J

    2010-01-01T23:59:59.000Z

    The real-time online visualization framework used by the Beam and Radiation Monitoring group at the Compact Muon Solenoid at Large Hadron Collider, CERN. The purpose of the visualization framework is to provide real-time diagnostic of beam conditions, which defines the set of the requirements to be met by the framework. Those requirements include data quality assurance, vital safety issues, low latency, data caching, etc. The real-time visualization framework is written in the Java programming language and based on JDataViewer--a plotting package developed at CERN. At the current time the framework is run by the Beam and Radiation Monitoring, Pixel, Tracker groups, Run Field Manager and others. It contributed to real-time data analysis during 2009-2010 runs as a stable monitoring tool. The displays reflect the beam conditions in a real-time with the low latency level, thus it is the first place at the CMS detector where the beam collisions are observed.

  16. United States Department of Energy Paducah Gaseous Diffusion Plant. Environmental monitoring report, calendar year 1984

    SciTech Connect (OSTI)

    Not Available

    1985-07-01T23:59:59.000Z

    Air, water, soil, sediments, grass, and groundwater in the vicinity of the Paducah Gaseous Diffusion Plant were continuously or periodically sampled during 1984. Analyses for materials known to be in plant effluents were made to provide effluent control information and to determine compliance with applicable environmental standards. Low sulfur coal is burned in the steam plant to meet Kentucky emission limits for sulfur dioxide. Air analyses for radioactivity indicated concentrations at each off-site sampling station averaged less than 1% of the DOE Radioactivity Concentration Guide (RCG). Offsite analyses for fluorides in grass met the Kentucky Air Quality Requirements. All onsite and offsite airborne fluoride samples met the Kentucky one-week and one-month standards for gaseous HF. Soil samples were analyzed for uranium and showed no significant deviation from normal background concentrations. There was no detectable change in chemical, physical, or radioactive characteristics of the Ohio River attributable to Paducah Gaseous Diffusion Plant operations. The results of water sample analyses of the Ohio River show the chromium and fluoride concentrations to be in compliance with the requirements of the applicable Kentucky regulations. 7 figs., 26 tabs.

  17. Status of the flora and fauna on the Nevada Test Site, 1994: Results of continuing Basic Environmental Monitoring January through December 1994

    SciTech Connect (OSTI)

    Hunter, R.B. [comp.

    1995-09-01T23:59:59.000Z

    This is the final progress report of a Department of Energy (DOE), Nevada operations Office (NV), program to monitor the ecology of the Nevada Test Site (NTS). The eight-year Basic Environmental Compliance and Monitoring Program (BECAMP) included meeting goals of understanding the spatial and temporal changes of plants and animals on the NTS, and determining the effects of DOE operations on those plants and animals. Determination of the changes was addressed through monitoring the most common plant and animal species at undisturbed (baseline) plots located in the major NTS valleys and mesas. One plot in Yucca Flat, the site of most nuclear weapons tests, was monitored annually, while other baseline plots were censused on a three- or four-year cycle. Effects of DOE operations were examined at sites of major disturbances, related to both DOE operations and natural disturbance mechanisms, censused on a three-year cycle. This report concentrates on work completed in 1994.

  18. Phoenix Area Social Survey: Long Term Monitoring of Social Interaction and Environmental Change in Urban Neighborhoods Amy Nelson, Sharon Harlan, Edward Hackett, Andrew Kirby, Robert Bolin, David Pijawka, Tom Rex

    E-Print Network [OSTI]

    Hall, Sharon J.

    a sustainable urban environment and for mitigating environmental damage? 3. How do neighborhood characteristicsPhoenix Area Social Survey: Long Term Monitoring of Social Interaction and Environmental Change, and how changing environmental conditions, in turn, affect the quality of human life. 1. How do

  19. The Department of Energy`s Rocky Flats Plant: A guide to record series useful for health-related research. Volume VI, workplace and environmental monitoring

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    This is the sixth in a series of seven volumes which constitute a guide to records of the Rocky Flats Plant useful for conducting health-related research. The primary purpose of Volume VI is to describe record series pertaining to workplace and environmental monitoring activities at the Department of Energy`s (DOE) Rocky Flats Plant, now named the Rocky Flats Environmental Technology Site, near Denver, Colorado. History Associates Incorporated (HAI) prepared this guide as part of its work as the support services contractor for DOE`s Epidemiologic Records Inventory Project. This introduction briefly describes the Epidemiologic Records Inventory Project and HAI`s role in the project, provides a history of workplace and environmental monitoring practices at Rocky Flats, and identifies organizations contributing to workplace and environmental monitoring policies and activities. Other topics include the scope and arrangement of this volume and the organization to contact for access to these records. Comprehensive introductory and background information is available in Volume I. Other volumes in the guide pertain to administrative and general subjects, facilities and equipment, production and materials handling, waste management, and employee health. In addition, HAI has produced a subject-specific guide, titled The September 1957 Rocky Flats Fire. A Guide to Record Series of the Department of Energy and Its Contractors, which researchers should consult for further information about records related to this incident.

  20. Environmental Engineering GRADUATE STUDIES

    E-Print Network [OSTI]

    Wang, Yuhang

    . The principal focus areas include: environmental biotechnology; water quality and treatment; wastewaterEnvironmental Engineering GRADUATE STUDIES ENVIRONMENTAL ENGINEERING (EnvE) at Georgia Tech quality monitoring, pollution control and model- ing; environmental sciences; and industrial ecology

  1. Fissile Mass Flow Monitor Implementation for Transparency in HEU Blenddown at the URAL Electrochemical Integrated Plant (UEIP) in Novouralsk

    SciTech Connect (OSTI)

    March-Leuba, J.; Mastal, E.; Powell, D.; Sumner, J.; Uckan, T.; Vines, B.

    1999-07-25T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) Fissile Mass Flow Monitor (FMFM) was deployed at the Ural Electrochemical Integrated Plant (UEIP) highly enriched uranium (HEU) blending facility in January and February 1999 at Novouralsk in Russia for the DOE HEU Transparency Program. The FMFM provides unattended monitoring of the fissile mass flow of the uranium hexafluoride (UF{sub 6}) gas in the process lines of HEU, the low enriched uranium (LEU) blend stock, and the product LEU (P-LEU) of the blending tee non-intrusively. To do this, uranium-235 (U-235) fissions are induced in the UF{sub 6} by a thermalized and modulated californium-252 (Cf-252) neutron source placed on each process line. A set of detectors, located downstream of source, measure delayed gamma rays emitted by the resulting fission fragments. The observed delay in the time correlated measurement between the source and the detector signal provides the velocity of UF{sub 6} and its amplitude is related to the U- 235 content in UF{sub 6}. An on-line computer controls the source modulator, processes the collected detector data, and displays the results. The UEIP Main and the Reserved process lines were implemented with minor modifications. The FMFM monitors the HEU blending operation by measuring UF{sub 6} flows in the process blending lines, and the traceability of the HEU flow from the blend point to the P-LEU. The detail operational characteristics of the FMFM software (FM2) and the measurement methodology used are presented.

  2. Method and apparatus for monitoring the integrity of a geomembrane liner using time domain reflectometry

    DOE Patents [OSTI]

    Morrison, John L. (Idaho Falls, ID)

    2001-04-24T23:59:59.000Z

    Leaks are detected in a multi-layered geomembrane liner by a two-dimensional time domain reflectometry (TDR) technique. The TDR geomembrane liner is constructed with an electrically conductive detection layer positioned between two electrically non-conductive dielectric layers, which are each positioned between the detection layer and an electrically conductive reference layer. The integrity of the TDR geomembrane liner is determined by generating electrical pulses within the detection layer and measuring the time delay for any reflected electrical energy caused by absorption of moisture by a dielectric layer.

  3. Environmental and Economical Evaluation of Integrating NGL Extraction and LNG Liquefaction Technology in Iran LNG Project†

    E-Print Network [OSTI]

    Manesh, M. H. K.; Mazhari, V.

    2009-01-01T23:59:59.000Z

    LNG and NGL for comparable compression schemes as compared to stand-alone LNG liquefaction and NGL extraction facilities. In addition, there are potential enhancements to the overall facility availability and project economics and environmental impacts...

  4. An integrated cyberinfrastructure for real-time data acquisition and decision making in smart buildings and coral reef monitoring

    E-Print Network [OSTI]

    Shin, Peter Hongsuck

    2010-01-01T23:59:59.000Z

    6.2 Coral reef monitoring . . . . . . . . . . . . . . .This figure illustrates the coral reef monitoring systemMCR09] Moorea Coral Reef (MCR) Long Term Ecological

  5. A proposed tool to integrate environmental and economical assessments of products

    SciTech Connect (OSTI)

    Senthil, Kumaran D.; Ong, S.K.; Nee, A.Y.C.; Tan, Reginald B.H

    2003-01-01T23:59:59.000Z

    An attempt has been made to interpret the outcomes of a Life Cycle Assessment (LCA) in terms of environmental costs. This attempt ensures the environmental accountability of the products while LCA ensures their eco-friendly nature. Keeping this as an objective, a Life Cycle Environmental Cost Analysis (LCECA) model was developed. This new tool incorporates costing into the LCA practice. This model prescribes a life cycle environmental cost model to estimate and correlate the effects of these costs in all the life cycle stages of the product. The newly developed categories of eco-costs are: costs of effluent treatment/control/disposal, environmental management systems, eco-taxes, rehabilitation, energy and savings of recycling and reuse strategies. The mathematical model of LCECA determines quantitative expressions between the total cost of products and the various eco-costs. The eco-costs of the alternatives are compared with the computational LCECA model. This method enables the environmental as well as the economic assessment of products, which leads to cost-effective, eco-friendly design of products.

  6. Environmental monitoring for the DOE coolside and LIMB demonstration extension projects. Quarterly report for the period of February, March and April 1991

    SciTech Connect (OSTI)

    White, T.; Contos, L.; Adams, L. [Radian Corp., Research Triangle Park, NC (United States). Progress Center

    1992-02-01T23:59:59.000Z

    The purpose of this document is to present environmental monitoring data collected during the US DOE Limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators. (VC)

  7. Groundwater quality sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    This Sampling and Analysis Plan addresses groundwater quality sampling and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of energy and managed by martin Marietta Energy Systems, Inc. (Energy Systems). Groundwater sampling will be conducted by Energy Systems at 45 wells within WAG 6. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the groundwater quality monitoring, sampling, and analysis will aid in evaluating relative risk associated with contaminants migrating off-WAG, and also will fulfill Resource Conservation and Recovery Act (RCRA) interim permit monitoring requirements. The sampling steps described in this plan are consistent with the steps that have previously been followed by Energy Systems when conducting RCRA sampling.

  8. INSTRUMENTATION FOR ENVIRONMENTAL MONITORING

    E-Print Network [OSTI]

    McLaughlin, R.D.

    2010-01-01T23:59:59.000Z

    Nuclear Weapons Advancing Technology Nuclear Power U.Th cosmic rays Diagnostic x-rays (medical, dental) U.S. , Russian tests (

  9. Environmental Groundwater Monitoring Report

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell: GasEPA-600/4-82-061?a/71yoD Oak Ridge

  10. United States Environmental Monitoring

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V4100 DOE/EA-1452D E P A R TEPA

  11. Environmental and Economical Evaluation of Integrating NGL Extraction and LNG Liquefaction Technology in Iran LNG Project

    E-Print Network [OSTI]

    Manesh, M. H. K.; Mazhari, V.

    The combination of changing global markets for natural gas liquids (NGL) with the simultaneous increase in global demand for liquefied natural gas (LNG) has stimulated an interest in the integration of NGL recovery technology with LNG liquefaction...

  12. Integrated environmental degradation model for Fe-Ni-Cr alloys in irradiated aqueous solutions

    E-Print Network [OSTI]

    Pleune, Thomas Todd, 1974-

    1999-01-01T23:59:59.000Z

    An integrated model has been developed to evaluate the effect of reactor flux, fluence, and other operating conditions on crack growth rates in austenitic stainless steels in boiling water reactor (BWR) environments. The ...

  13. Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site

    SciTech Connect (OSTI)

    S. E. Rawlinson

    2001-09-01T23:59:59.000Z

    Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) (one site is in Area 3 and the other is in Area 5) at the Nevada Test Site (NTS) for the U.S. Department of Energy's (DOE's) National Nuclear Security Administration Nevada Operations Office (NNSA/NV). The current DOE Order governing management of radioactive waste is 435.1. Associated with DOE Order 435.1 is a Manual (DOE M 435.1-1) and Guidance (DOE G 435.1-1). The Manual and Guidance specify that preliminary closure and monitoring plans for a low-level waste (LLW) management facility be developed and initially submitted with the Performance Assessment (PA) and Composite Analysis (CA) for that facility. The Manual and Guidance, and the Disposal Authorization Statement (DAS) issued for the Area 3 RWMS further specify that the preliminary closure and monitoring plans be updated within one year following issuance of a DAS. This Integrated Closure and Monitoring Plan (ICMP) fulfills both requirements. Additional updates will be conducted every third year hereafter. This document is an integrated plan for closing and monitoring both RWMSs, and is based on guidance issued in 1999 by the DOE for developing closure plans. The plan does not follow the format suggested by the DOE guidance in order to better accommodate differences between the two RWMSs, especially in terms of operations and site characteristics. The modification reduces redundancy and provides a smoother progression of the discussion. The closure and monitoring plans were integrated because much of the information that would be included in individual plans is the same, and integration provides efficient presentation and program management. The ICMP identifies the regulatory requirements, describes the disposal sites and the physical environment where they are located, and defines the approach and schedule for both closing and monitoring the sites.

  14. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers.

    SciTech Connect (OSTI)

    Belle R. Upadhyaya; J. Wesley Hines

    2004-09-27T23:59:59.000Z

    The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001-September 2004. (1) Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. (2) Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. (3) Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. (4) Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. (5) Development of advanced signal processing methods using wavelet transforms and image processing techniques for isolating flaw types. (6) Development and implementation of a new nonlinear and non-stationary signal processing method, called the Hilbert-Huang transform (HHT), for flaw detection and location. This is a more robust and adaptive approach compared to the wavelet transform. (7) Implementation of a moving-window technique in the time domain for detecting and quantifying flaw types in tubular structures. A window zooming technique was also developed for flaw location in tubes. (8) Theoretical study of elastic wave propagation (longitudinal and shear waves) in metallic flat plates and tubing with and without flaws. (9) Simulation of the Lamb wave propagation using the finite-element code ABAQUS. This enabled the verification of the experimental results. The research tasks included both analytical research and experimental studies. The experimental results helped to enhance the robustness of fault monitoring methods and to provide a systematic verification of the analytical results. The results of this research were disseminated in scientific meetings. A journal manuscript was submitted for publication. The new findings of this research have potential applications in aerospace and civil structures. The report contains a complete bibliography that was developed during the course of the project.

  15. SYNTHESIS How and why environmental noise impacts animals: an integrative, mechanistic review

    E-Print Network [OSTI]

    Swaddle, John

    . Abstract The scope and magnitude of anthropogenic noise pollution are often much greater than those the effects of acoustic stimuli on animal physiology, development, neural function and genetic effects, we are affected by environmental noise. Keywords Anthropogenic noise, fitness, human disturbance, noise pollution

  16. Seeps and springs sampling and analysis plant for the Environmental Monitoring Plan at Waste Area Grouping 6, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This Sampling and Analysis Plan addresses the monitoring, sampling, and analysis activities that will be conducted at seeps and springs and at two french drain outlets in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-land-burial disposal facility for low-level radioactive waste at Oak Ridge National Laboratory, a research facility owned by the U.S. Department of Energy and operated by Lockheed Martin Energy System, Inc. Initially, sampling will be conducted at as many as 15 locations within WAG 6 (as many as 13 seeps and 2 french drain outlets). After evaluating the results obtained and reviewing the observations made by field personnel during the first round of sampling, several seeps and springs will be chosen as permanent monitoring points, together with the two french drain outlets. Baseline sampling of these points will then be conducted quarterly for 1 year (i.e., four rounds of sampling after the initial round). The samples will be analyzed for various geochemical, organic, inorganic, and radiological parameters. Permanent sampling points having suitable flow rates and conditions may be outfitted with automatic flow-monitoring equipment. The results of the sampling and flow-monitoring efforts will help to quantify flux moving across the ungauged perimeter of the site and will help to identify changes in releases from the contaminant sources.

  17. Seeps and springs sampling and analysis plan for the environmental monitoring plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This Sampling and Analysis Plan addresses the monitoring, sampling, and analysis activities that will be conducted at seeps and springs and at two french drain outlets in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-land-burial disposal facility for low-level radioactive waste at Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and operated by Martin Marietta Energy Systems, Inc. Initially, sampling will be conducted at as many as 15 locations within WAG 6 (as many as 13 seeps and 2 french drain outlets). After evaluating the results obtained and reviewing the observations made by field personnel during the first round of sampling, several seeps and springs will be chosen as permanent monitoring points, together with the two french drain outlets. Baseline sampling of these points will then be conducted quarterly for 1 year (i.e., four rounds of sampling after the initial round). The samples will be analyzed for various geochemical, organic, inorganic, and radiological parameters. Permanent sampling points having suitable flow rates and conditions may be outfitted with automatic flow-monitoring equipment. The results of the sampling and flow-monitoring efforts will help to quantify flux moving across the ungauged perimeter of the site and will help to identify changes in releases from the contaminant sources.

  18. Integrating UF6 Cylinder RF Tracking With Continuous Load Cell Monitoring for Verifying Declared UF6 Feed and Withdrawal Operations Verifying Declared UF6 Feed and Withdrawal Operations

    SciTech Connect (OSTI)

    Krichinsky, Alan M [ORNL; Miller, Paul [ORNL; Pickett, Chris A [ORNL; Richardson, Dave [ORNL; Rowe, Nathan C [ORNL; Whitaker, J Michael [ORNL; Younkin, James R [ORNL

    2009-01-01T23:59:59.000Z

    Oak Ridge National Laboratory is demonstrating the integration of UF6 cylinder tracking, using RF technology, with continuous load cell monitoring (CLCM) at mock UF6 feed and withdrawal (F&W) stations. CLCM and cylinder tracking are two of several continuous-monitoring technologies that show promise in providing integrated safeguards of F&W operations at enrichment plants. Integrating different monitoring technologies allows advanced, automated event processing to screen innocuous events thereby minimizing false alerts to independent inspectors. Traditionally, international inspectors rely on batch verification of material inputs and outputs derived from operator declarations and periodic on-site inspections at uranium enrichment plants or other nuclear processing facilities. Continuously monitoring F&W activities between inspections while providing filtered alerts of significant operational events will substantially increase the amount of valuable information available to inspectors thereby promising to enhance the effectiveness of safeguards and to improve efficiency in conducting on-site inspections especially at large plants for ensuring that all operations are declared.

  19. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers, Volumes 1, 2.

    SciTech Connect (OSTI)

    Upadhyaya, Belle R.; Hines, J. Wesley; Lu, Baofu; Huang, Xuedong; Penha, Rosani, L.; Perillo, Sergio, R.; Zhao, Ke

    2005-06-03T23:59:59.000Z

    The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001 √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬? September 2004. √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬∑ Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬∑ Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬∑ Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬∑ Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬∑ Development of advanced signal processing methods using wavelet transforms and image processing techniques for isolating flaw types. √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬∑ Development and implementation of a new nonlinear and non-stationary signal processing method, called the Hilbert-Huang transform (HHT), for flaw detection and location. This is a more robust and adaptive approach compared to the wavelet transform

  20. Final Scientific/Technical Report, DE-FG02-06ER64171, Integrated Nucleic Acid System for In-Field Monitoring of Microbial Community Dynamics and Metabolic Activity Ė Subproject to Co-PI Eric E. Roden

    SciTech Connect (OSTI)

    Eric E. Roden

    2009-07-08T23:59:59.000Z

    This report summarizes research conducted in conjunction with a project entitled ďIntegrated Nucleic Acid System for In-Field Monitoring of Microbial Community Dynamics and Metabolic ActivityĒ, which was funded through the Integrative Studies Element of the former NABIR Program (now the Environmental Remediation Sciences Program) within the Office of Biological and Environmental Research. Dr. Darrell Chandler (originally at Argonne National Laboratory, now with Akonni Biosystems) was the overall PI/PD for the project. The overall project goals were to (1) apply a model iron-reducer and sulfate-reducer microarray and instrumentation systems to sediment and groundwater samples from the Scheibe et al. FRC Area 2 field site, UMTRA sediments, and other DOE contaminated sites; (2) continue development and expansion of a 16S rRNA/rDNA¨-targeted probe suite for microbial community dynamics as new sequences are obtained from DOE-relevant sites; and (3) address the fundamental molecular biology and analytical chemistry associated with the extraction, purification and analysis of functional genes and mRNA in environmental samples. Work on the UW subproject focused on conducting detailed batch and semicontinuous culture reactor experiments with uranium-contaminated FRC Area 2 sediment. The reactor experiments were designed to provide coherent geochemical and microbiological data in support of microarray analyses of microbial communities in Area 2 sediments undergoing biostimulation with ethanol. A total of four major experiments were conducted (one batch and three semicontinuous culture), three of which (the batch and two semicontinuous culture) provided samples for DNA microarray analysis. A variety of other molecular analyses (clone libraries, 16S PhyloChip, RT-PCR, and T-RFLP) were conducted on parallel samples from the various experiments in order to provide independent information on microbial community response to biostimulation.

  1. DOE/NV/26383-LTR2008-01 Letter Report Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Caliente, Lincoln County, Nevada

    SciTech Connect (OSTI)

    J. Engelbrecht; I. Kavouras; D. Campbell; S. Campbell; S. Kohl; D. Shafer

    2009-04-02T23:59:59.000Z

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Beatty, Sarcobatus Flats, Rachel, Caliente, Pahranagat NWR, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program.

  2. Information management architecture for an integrated computing environment for the Environmental Restoration Program. Environmental Restoration Program, Volume 3, Interim technical architecture

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This third volume of the Information Management Architecture for an Integrated Computing Environment for the Environmental Restoration Program--the Interim Technical Architecture (TA) (referred to throughout the remainder of this document as the ER TA)--represents a key milestone in establishing a coordinated information management environment in which information initiatives can be pursued with the confidence that redundancy and inconsistencies will be held to a minimum. This architecture is intended to be used as a reference by anyone whose responsibilities include the acquisition or development of information technology for use by the ER Program. The interim ER TA provides technical guidance at three levels. At the highest level, the technical architecture provides an overall computing philosophy or direction. At this level, the guidance does not address specific technologies or products but addresses more general concepts, such as the use of open systems, modular architectures, graphical user interfaces, and architecture-based development. At the next level, the technical architecture provides specific information technology recommendations regarding a wide variety of specific technologies. These technologies include computing hardware, operating systems, communications software, database management software, application development software, and personal productivity software, among others. These recommendations range from the adoption of specific industry or Martin Marietta Energy Systems, Inc. (Energy Systems) standards to the specification of individual products. At the third level, the architecture provides guidance regarding implementation strategies for the recommended technologies that can be applied to individual projects and to the ER Program as a whole.

  3. United States Department of Energy New Jersey Department of Environmental Protection and Energy. 1991--1992 Heating Oil and Propane Price Monitoring Program

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    In cooperation with the United States Department of Energy (USDOE), Energy Information Administration (EIA) the New Jersey Department of Environmental Protection and Energy (DEPE), Office of Energy participated in a program to monitor retail prices of no. 2 heating oil and propane in New Jersey. According to program instructions, we conducted price surveys on a semi-monthly basis to obtain the necessary information from retail fuel merchants and propane dealers identified by the EIA. The period of the surveys was October 7, 1991 to March 16 1992. We submitted data collected as of specified reference dates to the EIA, within two working days of those dates.

  4. The Effect of Government Actions on Environmental Technology Innovation: Applications to the Integrated Assessment of Carbon Sequestration Technologies

    SciTech Connect (OSTI)

    Rubin, E. S.; Hounshell, D. A.; Yeh, S.; Taylor, M.; Schrattenholzer, L.; Riahi, K.; Barreto, L.; Rao, S.

    2004-01-15T23:59:59.000Z

    This project seeks to improve the ability of integrated assessment models (IA) to incorporate changes in technology, especially environmental technologies, cost and performance over time. In this report, we present results of research that examines past experience in controlling other major power plant emissions that might serve as a reasonable guide to future rates of technological progress in carbon capture and sequestration (CCS) systems. In particular, we focus on U.S. and worldwide experience with sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) control technologies over the past 30 years, and derive empirical learning rates for these technologies. The patterns of technology innovation are captured by our analysis of patent activities and trends of cost reduction over time. Overall, we found learning rates of 11% for the capital costs of flue gas desulfurization (FGD) system for SO{sub 2} control, and 13% for selective catalytic reduction (SCR) systems for NO{sub x} control. We explore the key factors responsible for the observed trends, especially the development of regulatory policies for SO{sub 2} and NO{sub x} control, and their implications for environmental control technology innovation.

  5. A-1 2004 SITE ENVIRONMENTAL REPORT APPENDIX A: GLOSSARY

    E-Print Network [OSTI]

    Measurements Laboratory EMP Environmental Monitoring Plan EMS* Environmental Management System EPA* U dichlorodiphenyltrichloroethane DMR Discharge Monitoring Report DOE* U.S. Department of Energy DOE CH DOE Chicago Operations* Environmental Information Management System ELAP Environmental Laboratory Approval Program EML Environmental

  6. A proposed framework for establishing integrated cost and performance criteria for environmental technologies: A summary report

    SciTech Connect (OSTI)

    NONE

    1994-05-01T23:59:59.000Z

    This document presents a summary of results of a joint EPA/DOE project aimed at establishing a suite of standard cost and performance criteria for evaluating environmental cleanup technologies for DOE sites. Project findings include: (1) decisionmakers have quite different perspectives with interests and information needs varying among decisionmaker groups, (2) previous criteria development efforts may be too narrowly focused to apply to all decisionmakers, (3) criteria must include social/political/economic interests of decisionmakers as well as site-specific variations, and (4) there are 5 core questions that all decisionmakers are likely to ask when considering a technology for use at a site. The resource developed in the project offers decisionmakers a first-time comprehensive assessment of major technology evaluation issues.

  7. A comparison between integrated risk assessment and classical health/environmental assessment: Emerging beneficial properties

    SciTech Connect (OSTI)

    Sekizawa, Jun [Faculty of Integrated Arts and Sciences, University of Tokushima, Japan, 1-1 Minamijosanjimacho, Tokushima 770-8502 (Japan)]. E-mail: sekizawa@ias.tokushima-u.ac.jp; Tanabe, Shinsuke [Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyocho, Matsuyama, Ehime 790-8577 (Japan)

    2005-09-01T23:59:59.000Z

    Both humans and wildlife are exposed to various types of halogenated organic compounds such as polychlorinated biphenyls (PCBs) and dichlorodiphenyltrichloroethane (DDT), typically old chemicals, and tris(4-chlorophenyl) methane (TCPM) and brominated flame retardants, some new chemicals, simultaneously. Classical risk assessment has evaluated health and ecological risks independently by experts from different disciplines. Taking into considerations the recent concerns about endocrine disrupting chemicals and the progress of research in related areas, we integrated and assessed data on exposure and potential effects in humans and wildlife. Comparisons were made for organ concentrations, body burdens of several organochlorine compounds (OCs), metabolic capacities between humans and various wildlife. When we integrate the knowledge on effects and exposure in humans and in wildlife, new insights were suggested about similarities and/or differences in potential effects among various human populations living on different foods and having different body burdens. Combining existing information with emerging knowledge of mechanisms of actions on endocrine disrupting chemicals after exposure to above chemicals during early developmental stages will further elucidate potential risks from exposure to those chemicals.

  8. A contractor report to the Department of Energy on environmental management baseline programs and integration opportunities (discussion draft)

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    In July 1996, the US Department of Energy (DOE) Assistant Secretary for Environmental Management (EM) chartered a government contractor led effort to develop a suite of technically defensible, integrated alternatives which meet the EM mission. The contractor team was challenged to ``think outside-the-box`` for solutions that cross traditional site boundaries and enable the programs to get the job done at an earlier date and at a lower cost. This report documents baseline programs current plans for material disposition and presents the opportunities for additional acceleration of cleanup and cost savings. A graphical depiction of the disposition of EM-owned waste and material from current state to final disposition is shown as disposition maps in Attachments 1, 3, 5, 7, 9, and 11. These disposition maps detail the material disposition at eleven major DOE sites as planned in the current discussion draft plan, Accelerating Cleanup: Focus on 2006. Maps reflecting material disposition at additional sites will be added in the future. Opportunities to further accelerate the cleanup of DOE-EM sites and reduce the overall cost of cleanup are depicted in the alternative disposition maps shown in Attachments 2, 4, 6, 8, 10, and 12. These integration opportunities bring nation-wide resources to bear on common problems facing the DOE sites.

  9. Arctic ocean long-term acoustic monitoring : ambient noise, environmental correlates, and transients north of Barrow, Alaska

    E-Print Network [OSTI]

    Roth, Ethan H.

    2008-01-01T23:59:59.000Z

    Environmental Correlates of Pack Ice Noise,Ē J. Acoust. Soc.Mechanical Behavior of Pack Ice,Ē in Mechanics of StructuredNoise Under Midwinter Pack IceĒ J. Acoust Soc. Am. Vol. 38,

  10. Integrated Task Plans for the Hanford Environmental Dose Reconstruction Project, FY 1992 through May 1994

    SciTech Connect (OSTI)

    Shipler, D.B.

    1992-09-01T23:59:59.000Z

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses from Hanford Site operations since 1944 to populations and individuals. The primary objective of work to be performed through May 1994 is to (1) determine the project's appropriate scope (space, time, radionuclides, pathways and individuals/population groups), (2) determine the project's appropriate level of accuracy (level of uncertainty in dose estimates) for the project, (3) complete model and data development, and (4) estimate doses for the Hanford Thyroid Disease Study (HTDS), representative individuals, and special populations as described herein. The plan for FY 1992 through May 1994 has been prepared based on activities and budgets approved by the Technical Steering Panel (TSP) at its meetings on August 19--20, 1991, and April 23--25, 1992. The activities can be divided into four broad categories: (1) model and data evaluation activities, (2)additional dose estimates, (3) model and data development activities, and (4)technical and communication support.

  11. Environmental impacts of building integrated PV applications in the state public buildings sector

    SciTech Connect (OSTI)

    Byrne, J.; Agbemabiese, L.; Kliesch, J.; Eiffert, P.; Hadjilambrinos, C.; Nigro, R.

    1999-07-01T23:59:59.000Z

    If the US is to meet its commitments for CO{sub 2} and SO{sub 2} emission reductions, as anticipated by the 1997 Kyoto Protocol on Climate Change and the Clean air Act Amendments of 1990, it almost certainly must implement policies to increase the use of renewable energy. This paper evaluates the potential of photovoltaic (PV) technologies to deliver high-value electrical services while offsetting SO{sub 2} and CO{sub 2} emissions. Their study focuses on PV applications in the public buildings sector because of its potential for speeding the commercialization of the technology in a market conducive to long-term return on investment. The study investigates the economic and environmental implications of PV meeting 2% of the energy demand of public buildings. The specific application investigated is a roof-mounted dispatchable peak-shaving system with uninterruptible power supply (UPS) capability. Several previous studies have shown that such a system is cost-effective on the basis of the energy services it provides. The present analysis indicates that this application can play an important role in helping the US meet its CO{sub 2} and SO{sub 2} emissions targets.

  12. Proposal for the award of a contract for the supply, installation and maintenance of radiation and environmental monitoring for the LHC

    E-Print Network [OSTI]

    2003-01-01T23:59:59.000Z

    This document concerns the award of a contract for the supply, installation and maintenance of radiation and environmental monitoring for the LHC. Following a market survey carried out among 53 firms in twelve Member States, a call for tenders (IT-3091/TIS/LHC) was sent on 17 July 2003 to seven firms and five consortia in eight Member States. By the closing date, CERN had received seven tenders from one firm and six consortia in six Member States. The Finance Committee is invited to agree to the negotiation of a contract with the consortium ASSYSTEM INDUSTRIAL SERVICES (FR) - GENITRON INSTRUMENTS (DE), the lowest bidder, for the supply, installation and maintenance of radiation and environmental monitoring for the LHC for a total amount not exceeding 5 474 000 euros (8 457 000 Swiss francs), subject to revision for inflation after 1 January 2007. The rate of exchange used is that stipulated in the tender. The consortium has indicated the following distribution by country of the contract value covered by this ...

  13. Survey of statistical and sampling needs for environmental monitoring of commercial low-level radioactive waste disposal facilities

    SciTech Connect (OSTI)

    Eberhardt, L.L.; Thomas, J.M.

    1986-07-01T23:59:59.000Z

    This project was designed to develop guidance for implementing 10 CFR Part 61 and to determine the overall needs for sampling and statistical work in characterizing, surveying, monitoring, and closing commercial low-level waste sites. When cost-effectiveness and statistical reliability are of prime importance, then double sampling, compositing, and stratification (with optimal allocation) are identified as key issues. If the principal concern is avoiding questionable statistical practice, then the applicability of kriging (for assessing spatial pattern), methods for routine monitoring, and use of standard textbook formulae in reporting monitoring results should be reevaluated. Other important issues identified include sampling for estimating model parameters and the use of data from left-censored (less than detectable limits) distributions.

  14. Integrating Ecology and Environmental Ethics: Earth Stewardship in the Southern End of the Author(s): Ricardo Rozzi, Juan J. Armesto, Julio R. Gutirrez, Francisca Massardo, Gene E.

    E-Print Network [OSTI]

    Berkowitz, Alan R.

    , and maRy t. k. aRRoyo The South American temperate and sub-Antarctic forests cover the longest-Term Ecological Research (ILTER) network, thus adding a new biome to this planetary network--the South AmericanIntegrating Ecology and Environmental Ethics: Earth Stewardship in the Southern End of the Americas

  15. Status of the flora and fauna on the Nevada Test Site, 1993. Results of continuing basic environmental monitoring, January through December 1993

    SciTech Connect (OSTI)

    Hunter, R.B. [comp.] [comp.

    1994-09-01T23:59:59.000Z

    This report provides the results of monitoring of plants and animals on the Nevada Test Site during calendar year 1993. Monitoring was accomplished under the Department of Energy`s Basic Environmental Compliance and Monitoring Program, initiated in 1987. The program looks at both baseline study areas, chosen to represent undisturbed conditions as much as possible, and areas disturbed by Department of energy (DOE) activities or natural phenomena. DOE disturbances studied include areas blasted by above-ground nuclear tests before 1962, subsidence craters created by underground nuclear tests, road maintenance activities, areas cleared for drilling, and influences of man-made water sources. Natural phenomena studied include recovery from range fires, effects of introduced species, damage to plants by insect outbreaks, and effects of weather fluctuations. In 1993 disturbances examined included several burned areas and roadsides, a drill pad on Pahute Mesa, introduced grasses and shrub removal effects on ephemeral plants, and effects on pine trees of an infestation of pinyon needle scale insects.

  16. Ground Water Surveillance Monitoring Implementation Guide for Use with DOE O 450.1, Environmental Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-06-24T23:59:59.000Z

    This Guide assists DOE sites in establishing and maintaining surveillance monitoring programs to detect future impacts on ground water resources from site operations, to track existing ground water contamination, and to assess the potential for exposing the general public to site releases. Canceled by DOE N 251.82.

  17. http://ep.jhu.edu/graduate-degree-programs/environmental-engineering-science-and-management PROGRAM INTEGRITY RULES GAINFUL EMPLOYMENT

    E-Print Network [OSTI]

    Ghosh, Somnath

    http://ep.jhu.edu/graduate-degree-programs/environmental-engineering-science-and-management PROGRAM: ADVANCED CERTIFICATE FOR POST-MASTER'S STUDY IN ENVIRONMENTAL ENGINEERING, SCIENCE, AND MANAGEMENT 1. CIP-1053.00 Environmental Science Teachers, Postsecondary 172081.00 Environmental Engineers 119041.00 Architectural

  18. http://ep.jhu.edu/graduate-degree-programs/environmental-engineering-science-and-management PROGRAM INTEGRITY RULES GAINFUL EMPLOYMENT

    E-Print Network [OSTI]

    Ghosh, Somnath

    http://ep.jhu.edu/graduate-degree-programs/environmental-engineering-science-and-management PROGRAM-1053.00 Environmental Science Teachers, Postsecondary 172081.00 Environmental Engineers 119041.00 Architectural-MASTER'S CERTIFICATE IN ENVIRONMENTAL ENGINEERING 1. CIP Code 141401 2. Credential Level Credential Level 4 ­ Post

  19. http://ep.jhu.edu/graduate-degree-programs/environmental-engineering-science-and-management PROGRAM INTEGRITY RULES GAINFUL EMPLOYMENT

    E-Print Network [OSTI]

    Ghosh, Somnath

    http://ep.jhu.edu/graduate-degree-programs/environmental-engineering-science-and-management PROGRAM: GRADUATE CERTIFICATE IN ENVIRONMENTAL ENGINEERING 1. CIP Code 141401 2. Credential Level MHEC Approved 3://www.bls.gov/soc/ 17-3025.00 Environmental Engineering Technicians 172081.00 Environmental Engineers 119041

  20. http://ep.jhu.edu/graduate-degree-programs/environmental-engineering-science-and-management PROGRAM INTEGRITY RULES GAINFUL EMPLOYMENT

    E-Print Network [OSTI]

    Ghosh, Somnath

    http://ep.jhu.edu/graduate-degree-programs/environmental-engineering-science-and-management PROGRAM-1053.00 Environmental Science Teachers, Postsecondary 172081.00 Environmental Engineers 119041.00 Architectural-MASTER'S CERTIFICATE IN CLIMATE CHANGE, ENERGY, AND ENVIRONMENTAL SUSTAINABILITY 1. CIP Code 030103 2. Credential Level

  1. http://ep.jhu.edu/graduate-degree-programs/environmental-engineering-science-and-management PROGRAM INTEGRITY RULES GAINFUL EMPLOYMENT

    E-Print Network [OSTI]

    Ghosh, Somnath

    http://ep.jhu.edu/graduate-degree-programs/environmental-engineering-science-and-management PROGRAM MASTER'S STUDY IN ENVIRONMENTAL PLANNING AND MANAGEMENT 1. CIP Code 141401 2. Credential Level MHEC://www.bls.gov/soc/ 17-3025.00 Environmental Engineering Technicians 172081.00 Environmental Engineers 119041

  2. Mine-induced sinkholes over the U.S. Strategic Petroleum Reserve (SPR) Storage Facility at Weeks Island, Louisiana: geological mitigation and environmental monitoring

    SciTech Connect (OSTI)

    Neal, J.T.

    1997-03-01T23:59:59.000Z

    A sinkhole formed over the former salt mine used for crude oil storage by the U.S. Strategic Petroleum Reserve at Weeks Island, Louisiana. This created a dilemma because in-mine grouting was not possible, and external grouting, although possible, was impractical. However, environmental protection during oil withdrawal and facility decommissioning was considered critical and alternative solutions were essential. Mitigation of, the sinkhole growth over the salt mine was accomplished by injecting saturated brine directly into the sinkhole throat, and by constructing a cylindrical freeze curtain around and into the dissolution orifice at the top of the salt dome. These measures vastly reduced the threat of major surface collapse around the sinkhole during oil transfer and subsequent brine backfill. The greater bulk of the crude oil was removed from the mine during 1995-6. Final skimming operations will remove residual oil trapped in low spots, concurrent with initiating backfill of the mine with saturated brine. Environmental monitoring during 1995-9 will assure that environmental surety is achieved.

  3. The National Inventory of Landscapes in Sweden (NILS) is a new, nationwide environmental monitoring programme focused on

    E-Print Network [OSTI]

    The National Inventory of Landscapes in Sweden (NILS) is a new, nationwide environmental aerial photo interpretation as well as field inventories. The programme commenced in full scale during 2003. National Inventory of LandscapesCurrent activities The first landscape squares were photographed

  4. 2220 J. Agric. Food Chem. 1993, 41, 2220-2227 An Enzyme Immunoassay for the Environmental Monitoring of the

    E-Print Network [OSTI]

    Hammock, Bruce D.

    2220 J. Agric. Food Chem. 1993, 41, 2220-2227 An Enzyme Immunoassay for the Environmental sample. Organic solvents also affected assay sensitivity; nevertheless, IC50s remained below 11ppb by the California Department of Food and Agriculture, NIEHS Superfund Grant ES04699-01,the University of California

  5. iEMSs 2008:International Congress on Environmental Modelling and Software Integrating Sciences and Information Technology for Environmental Assessment and Decision Making

    E-Print Network [OSTI]

    Hoffman, Forrest M.

    to be based on results from integrated Earth System Models (ESMs), C-LAMP is helping to establish the metadata

  6. Background Information for the Nevada National Security Site Integrated Sampling Plan, Revision 0

    SciTech Connect (OSTI)

    Farnham, Irene; Marutzky, Sam

    2014-12-01T23:59:59.000Z

    This document describes the process followed to develop the Nevada National Security Site (NNSS) Integrated Sampling Plan (referred to herein as the Plan). It provides the Planís purpose and objectives, and briefly describes the Underground Test Area (UGTA) Activity, including the conceptual model and regulatory requirements as they pertain to groundwater sampling. Background information on other NNSS groundwater monitoring programsóthe Routine Radiological Environmental Monitoring Plan (RREMP) and Community Environmental Monitoring Program (CEMP)óand their integration with the Plan are presented. Descriptions of the evaluations, comments, and responses of two Sampling Plan topical committees are also included.

  7. Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 2, Sections 1-16

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams;) are influenced by Western power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Westerns firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.

  8. Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 3, Appendix A

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams;) are influenced by Western power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Westerns firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.

  9. The Integrated Status and Effectiveness Monitoring Program : Expansion of Existing Smolt Trapping Program and Steelhead Spawner Surveys : March 1st, 2008 - February 28th, 2009.

    SciTech Connect (OSTI)

    Miller, Todd; Tonseth, Michael

    2009-01-01T23:59:59.000Z

    The Integrated Status and Effectiveness Monitoring Program (ISEMP - BPA project No.2003-0017) has been created as a cost effective means of developing protocols and new technologies, novel indicators, sample designs, analytical, data management and communication tools and skills, and restoration experiments that support the development of a region-wide Research, Monitoring and Evaluation (RME) program to assess the status of anadromous salmonid populations, their tributary habitat and restoration and management actions. The most straightforward approach to developing a regional-scale monitoring and evaluation program would be to increase standardization among status and trend monitoring programs. However, the diversity of species and their habitat, as well as the overwhelming uncertainty surrounding indicators, metrics, and data interpretation methods, requires the testing of multiple approaches. Thus, the approach ISEMP has adopted is to develop a broad template that may differ in the details among subbasins, but one that will ultimately lead to the formation of a unified RME process for the management of anadromous salmonid populations and habitat across the Columbia River Basin. ISEMP has been initiated in three pilot subbasins, the Wenatchee/Entiat, John Day, and Salmon. To balance replicating experimental approaches with the goal of developing monitoring and evaluation tools that apply as broadly as possible across the Pacific Northwest, these subbasins were chosen as representative of a wide range of potential challenges and conditions, e.g., differing fish species composition and life histories, ecoregions, institutional settings, and existing data. ISEMP has constructed a framework that builds on current status and trend monitoring infrastructures in these pilot subbasins, but challenges current programs by testing alternative monitoring approaches. In addition, the ISEMP is: (1) Collecting information over a hierarchy of spatial scales, allowing for a greater flexibility of data aggregation for multi-scale recovery planning assessments, and; (2) Designing methods that: (a) Identify factors limiting fish production in watersheds; (b) Determine restoration actions to address these problems; (c) Implement actions as a large-scale experiment (e.g., Before After Control Impact, or BACI design), and (d) Implement intensive monitoring and research to evaluate the action's success. The intent of the ISEMP project is to design monitoring programs that can efficiently collect information to address multiple management objectives over a broad range of scales. This includes: Evaluating the status of anadromous salmonids and their habitat; Identifying opportunities to restore habitat function and fish performance, and Evaluating the benefits of the actions to the fish populations across the Columbia River Basin. The multi-scale nature of this goal requires the standardization of protocols and sampling designs that are statistically valid and powerful, properties that are currently inconsistent across the multiple monitoring programs in the region. Other aspects of the program will aid in the ability to extrapolate information beyond the study area, such as research to elucidate causal mechanisms, and a classification of watersheds throughout the Columbia River Basin. Obviously, the scale of the problem is immense and the ISEMP does not claim to be the only program working towards this goal. As such, ISEMP relies heavily on the basin's current monitoring infrastructure to test and develop monitoring strategies, while acting as a coordinating body and providing support for key elements such as data management and technical analyses. The ISEMP also ensures that monitoring programs can address large-scale management objectives (resulting largely from the ESA) through these local efforts. While the ISEMP maintains a regional focus it also returns the necessary information to aid in management at the smaller spatial scales (individual projects) where manipulations (e.g., habitat restoration actions) actually occur. The work captur

  10. The integrated Status and Effectiveness Monitoring Program : U.S. Forest Service Fish Abundance and Steelhead Redd Surveys Annual Report : January 1 - December 31, 2008.

    SciTech Connect (OSTI)

    Call, Justin

    2008-12-08T23:59:59.000Z

    This contract report is one of a series of reports that document implementation components of the Bonneville Power Administration's (BPA) funded project: Integrated Status and Effectiveness Monitoring Program (ISEMP - BPA project No.2003-017-00, Chris Jordan, NOAA-NWFSC project sponsor). Other components of the project are separately reported, as explained below. The ISEMP project has been created as a cost effective means of developing protocols and new technologies, novel indicators, sample designs, analytical data management, communication tools and skills, and restoration experiments that support the development of a region-wide Research, Monitoring, and Evaluation (RME) program to assess the status of anadromous salmonids populations, their tributary habitat and restoration and management actions. The most straightforward approach to developing a regional-scale monitoring and evaluation program would be to increase standardization among status and trend monitoring programs. However, the diversity of species and their habitat, as well as the overwhelming uncertainty surrounding indicators, metrics, and data interpretation methods requires the testing of multiple approaches. Thus, ISEMP has adopted an approach to develop a broad template that may differ in the details among subbasins, but one that will ultimately lead to the formation of a unified RME process for the management of anadromous salmonid populations and habitat across the Columbia River Basin. ISEMP has been initiated in three pilot areas, the Wenatchee/Entiat, John Day, and Salmon. To balance replicating experimental approaches with the goal of developing monitoring and evaluation tools that apply as broadly as possible across the Pacific Northwest, these subbasins were chosen as representative of a wide range of potential challenges and conditions, e.g., differing fish species composition and life histories, ecoregions, institutional settings, and existing data. ISEMP has constructed a framework that builds on current status and trend monitoring infrastructures in these pilot subbasins, but challenges current programs by testing alternative monitoring approaches. In addition, the ISEMP is: (1) Collecting information over a hierarchy of spatial scales, allowing for a greater flexibility of data aggregation for multi-scale recovery planning assessments, and (2) Designing methods that: (a) Identify factors limiting fish production in watersheds; (b) Determine restoration actions to address these problems; (c) Implement actions as a large-scale experiment (e.g. Before After Control Impact, or BACI design), and (d) Implement intensive monitoring and research to evaluate the action's success. The intent of the ISEMP project is to design monitoring programs that can efficiently collect information to address multiple management objectives over a broad range of scales. This includes: Evaluating the status of anadromous salmonids and their habitat; Identifying opportunities to restore habitat function and fish performance, and Evaluating the benefits of the actions to the fish populations across the Columbia River Basin. The multi-scale nature of this goal requires the standardization of protocols and sampling designs that are statistically valid and powerful, properties that are currently inconsistent across the multiple monitoring programs in the region. Other aspects of the program will aid in the ability to extrapolate information beyond the study area, such as research to elucidate causal mechanisms, and a classification of watersheds throughout the Columbia River Basin. Obviously, the scale of the problem is immense and the ISEMP does not claim to be the only program working towards this goal. As such, ISEMP relies heavily on the basin's current monitoring infrastructure to test and develop monitoring strategies, while acting as a coordinating body and providing support for key elements such as data management and technical analyses. The ISEMP also ensures that monitoring programs can address large-scale management objectives (resulting largely from the ES

  11. Use of the UNCLE Facility to Assess Integrated Online Monitoring Systems for Detection of Diversions at Uranium Conversion Facilities

    SciTech Connect (OSTI)

    Dewji, Shaheen A [ORNL; Chapman, Jeffrey Allen [ORNL; Lee, Denise L [ORNL; Rauch, Eric [Los Alamos National Laboratory (LANL); Hertel, Nolan [Georgia Institute of Technology

    2011-01-01T23:59:59.000Z

    Historically, the approach to safeguarding nuclear material in the front end of the fuel cycle was implemented only at the stage when UF6 was declared as feedstock for enrichment plants. Recent International Atomic Energy Agency (IAEA) circulars and policy papers have sought to implement safeguards when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exist. Oak Ridge National Laboratory has developed the Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility to simulate the full-scale operating conditions for a purified uranium-bearing aqueous stream exiting the solvent extraction process conducted in a natural uranium conversion plant (NUCP) operating at 6000 MTU/year. Monitoring instruments, including the 3He passive neutron detector developed at Los Alamos National Laboratory and the Endress+Hauser Promass 83F Coriolis meter, have been tested at UNCLE and field tested at Springfields. The field trials demonstrated the need to perform full-scale equipment testing under controlled conditions prior to field deployment of operations and safeguards monitoring at additional plants. Currently, UNCLE is testing neutron-based monitoring for detection of noncompliant activities; however, gamma-ray source term monitoring is currently being explored complementary to the neutron detector in order to detect undeclared activities in a more timely manner. The preliminary results of gamma-ray source term modeling and monitoring at UNCLE are being analyzed as part of a comprehensive source term and detector benchmarking effort. Based on neutron source term detection capabilities, alternative gamma-based detection and monitoring methods will be proposed to more effectively monitor NUCP operations in verifying or detecting deviations from declared conversion activities.

  12. Oak Ridge Reservation annual site environmental report for 1995

    SciTech Connect (OSTI)

    Koncinski, W.S. [ed.

    1996-09-01T23:59:59.000Z

    This report presents the details of the environmental monitoring and management program for the Oak Ridge Reservation. Topics discussed include: site background, climate, and operations; environmental compliance strategies; effluent monitoring; environmental management program including environmental restoration, decontamination and decommissioning, technology development, and public involvement; effluent monitoring of airborne discharges, liquid discharges, toxicity control and monitoring, biological monitoring and abatement; environmental surveillance which encompasses meteorological monitoring, ambient air monitoring, surface water monitoring, soils monitoring, sediment monitoring, and contamination of food stuffs monitoring; radiation doses; chemical exposures; ground water monitoring; and quality assurance.

  13. Contractor report to the Department of Energy on opportunities for integration of environmental management activities across the complex (predecisional draft). Revision 1

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    The US Department of Energy (DOE) Environmental Management (EM) program faces significant technical and financial challenges in cleaning up the environmental legacy of nuclear weapons production and research and development, while facing an uncertain future in obtaining the needed funding to perform this work. Many of these requirements, including State and Federal regulations and negotiated agreements, continue to be a significant contributor to EM program costs and schedules. Historically, the sites have managed their programs focusing on their individual site`s needs. While this approach maximized successes at individual sites, it has resulted in a more costly program than if more integration across the DOE system occurred. In July 1996, the DOE Assistant Secretary for EM, Al Alm, chartered a contractor led effort to perform complex-wide integration in support of the ten-year plan process to develop a suite of technically defensible, integrated alternatives to meet the EM mission. This report documents opportunities for waste and nuclear materials management integration activities in six areas: transuranic (TRU) waste, mixed low-level waste (MLLW), low-level waste (LLW), environmental restoration (ER), high-level waste (HLW), and spent nuclear fuel (SNF). The opportunities represent technically defensible solutions which reduce cost, accelerate schedules, and result in no significant increase in risk.

  14. Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Reservoirs

    SciTech Connect (OSTI)

    L.A. Davis; A.L. Graham; H.W. Parker; J.R. Abbott; M.S. Ingber; A.A. Mammoli; L.A. Mondy; Quanxin Guo; Ahmed Abou-Sayed

    2005-12-07T23:59:59.000Z

    Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Formations The U.S. and other countries may enter into an agreement that will require a significant reduction in CO2 emissions in the medium to long term. In order to achieve such goals without drastic reductions in fossil fuel usage, CO2 must be removed from the atmosphere and be stored in acceptable reservoirs. The research outlined in this proposal deals with developing a methodology to determine the suitability of a particular geologic formation for the long-term storage of CO2 and technologies for the economical transfer and storage of CO2 in these formations. A novel well-logging technique using nuclear-magnetic resonance (NMR) will be developed to characterize the geologic formation including the integrity and quality of the reservoir seal (cap rock). Well-logging using NMR does not require coring, and hence, can be performed much more quickly and efficiently. The key element in the economical transfer and storage of the CO2 is hydraulic fracturing the formation to achieve greater lateral spreads and higher throughputs of CO2. Transport, compression, and drilling represent the main costs in CO2 sequestration. The combination of well-logging and hydraulic fracturing has the potential of minimizing these costs. It is possible through hydraulic fracturing to reduce the number of injection wells by an order of magnitude. Many issues will be addressed as part of the proposed research to maximize the storage rate and capacity and insure the environmental integrity of CO2 sequestration in geological formations. First, correlations between formation properties and NMR relaxation times will be firmly established. A detailed experimental program will be conducted to determine these correlations. Second, improved hydraulic fracturing models will be developed which are suitable for CO2 sequestration as opposed to enhanced oil recovery (EOR). Although models that simulate the fracturing process exist, they can be significantly improved by extending the models to account for nonsymmetric, nonplanar fractures, coupling the models to more realistic reservoir simulators, and implementing advanced multiphase flow models for the transport of proppant. Third, it may be possible to deviate from current hydraulic fracturing technology by using different proppants (possibly waste materials that need to be disposed of, e.g., asbestos) combined with different hydraulic fracturing carrier fluids (possibly supercritical CO2 itself). Because current technology is mainly aimed at enhanced oil recovery, it may not be ideally suited for the injection and storage of CO2. Finally, advanced concepts such as increasing the injectivity of the fractured geologic formations through acidization with carbonated water will be investigated. Saline formations are located through most of the continental United States. Generally, where saline formations are scarce, oil and gas reservoirs and coal beds abound. By developing the technology outlined here, it will be possible to remove CO2 at the source (power plants, industry) and inject it directly into nearby geological formations, without releasing it into the atmosphere. The goal of the proposed research is to develop a technology capable of sequestering CO2 in geologic formations at a cost of US $10 per ton.

  15. An integrated approach for techno-economic and environmental analysis of energy from biomass and fossil fuels

    E-Print Network [OSTI]

    Mohan, Tanya

    2007-04-25T23:59:59.000Z

    Biomass conversion into forms of energy is receiving current attention because of environmental, energy and agricultural concerns. The purpose of this thesis is to analyze the environmental, energy, economic, and technological aspects of using a...

  16. An integrated approach for techno-economic and environmental analysis of energy from biomass and fossil fuels†

    E-Print Network [OSTI]

    Mohan, Tanya

    2007-04-25T23:59:59.000Z

    Biomass conversion into forms of energy is receiving current attention because of environmental, energy and agricultural concerns. The purpose of this thesis is to analyze the environmental, energy, economic, and technological aspects of using a...

  17. Integrating life-cycle impact assessment with environmental assessment techniques to satisfy the needs of ISO 14000

    SciTech Connect (OSTI)

    Rhodes, S.P.; Brown, L. [Scientific Certification Systems, Inc., Oakland, CA (United States)

    1997-08-01T23:59:59.000Z

    After three years of negotiations, the ISO 14000 standards on Environmental Management Tools are now making rapid progress toward completion and international adoption. At the outset of this standardization effort, one methodological tool--life-cycle assessment (LCA)--was singled out for standardization, while the remaining standards were focused on management frameworks and applications--environmental management systems, environmental performance evaluation, environmental labeling and environmental auditing. The reason for singling out LCA was the belief that it could serve as a tool for evaluating the environmental impacts associated with competing production technologies, alternative materials, product options and packaging choices, and for supporting environmental claims in the marketplace. Of particular importance was LCA`s system-wide, cradle-to-grave, scope, which was considered essential for accurate and fair assessments and comparisons. This presentation examines the evolution of LCA standardization within the ISO-14000 process, describes the LCSEA framework and methodology, and explores the role of environmental professionals in this context.

  18. Federal Radiological Monitoring and Assessment Center | National...

    National Nuclear Security Administration (NNSA)

    Mission The mission of the FRMAC is to coordinate and manage all federal radiological environmental monitoring and assessment Federal Radiological Monitoring and Assessment...

  19. http://ep.jhu.edu/graduate-degree-programs/environmental-engineering-science-and-management PROGRAM INTEGRITY RULES GAINFUL EMPLOYMENT

    E-Print Network [OSTI]

    Ghosh, Somnath

    http://ep.jhu.edu/graduate-degree-programs/environmental-engineering-science-and-management PROGRAM IN ENVIRONMENTAL ENGINEERING AND SCIENCE 1. CIP Code 141401 2. Credential Level MHEC Approved 3. Program Length://www.onetonline.org/find/ SOC System: http://www.bls.gov/soc/ 17-3025.00 Environmental Engineering Technicians 17

  20. http://ep.jhu.edu/graduate-degree-programs/environmental-engineering-science-and-management PROGRAM INTEGRITY RULES GAINFUL EMPLOYMENT

    E-Print Network [OSTI]

    Ghosh, Somnath

    http://ep.jhu.edu/graduate-degree-programs/environmental-engineering-science-and-management PROGRAM: GRADUATE CERTIFICATE IN ENVIRONMENTAL ENGINEERING, PLANNING AND MANAGEMENT 1. CIP Code 141401 2. Credential://www.onetonline.org/find/ SOC System: http://www.bls.gov/soc/ 17-3025.00 Environmental Engineering Technicians 172081

  1. HP Steam Trap Monitoring

    E-Print Network [OSTI]

    Pascone, S.

    2011-01-01T23:59:59.000Z

    STEAM MONITORING HP Steam Trap Monitoring HP Steam Trap Monitoring ? 12-18 months payback! ? 3-5% permanent reduction in consumption ? LEED Pt.? Innovation in Operations EB O&M ? Saved clients over $1,000,000 Annual consumption... Steam Trap Monitoring ? Real-time monitoring for high-pressure critical traps (>15 PSIG) ? Average total system cost $25K - $50K ? Web-Based or Modbus/BMS Integration Basic Installation Wireless Signal Transmitter Receiver Repeater...

  2. Selecting environmental indicator for use in strategic environmental assessment

    SciTech Connect (OSTI)

    Donnelly, Alison [School of Natural Sciences, Trinity College Dublin, Dublin 2 (Ireland) and Environmental Protection Agency (Ireland)]. E-mail: Alison.Donnelly@tcd.ie; Jones, Mike [School of Natural Sciences, Trinity College Dublin, Dublin 2 (Ireland); O'Mahony, Tadhg [Environmental Protection Agency (Ireland); Byrne, Gerry [Environmental Protection Agency (Ireland)

    2007-03-15T23:59:59.000Z

    The primary aim of carrying out Strategic Environmental Assessment (SEA) is to provide for a high level of environmental protection and to integrate environmental considerations into the planning process. The SEA Directive (2001/42/EC) recommends monitoring to determine the environmental impact of the implementation of plans and programmes. Environmental indicators are a useful tool by which this impact may be measured. However, careful consideration must be given to developing a set of indicators in order to isolate, plan or programme specific impacts. Here, we demonstrate the effectiveness of a workshop-based approach to develop appropriate criteria for selecting environmental indicator for use in SEA. A multi-disciplinary team was used in the approach which consisted of representatives from each of four environmental fields i.e. biodiversity, water, air and climatic factors, together with SEA experts, planning experts, academics and consultants. The team reviewed various sets of criteria, already in existence, for environmental indicator development but not specifically for SEA indicators. The results of this review together with original criteria were applied to the final list agreed upon. Some of the criteria recommended includes, relevance to plan, ability to prioritise, and ability to identify conflict with other plan or SEA objectives.

  3. Site Environmental Report for 2006. Volume I, Environment, Health, and Safety Division

    SciTech Connect (OSTI)

    none,

    2007-09-30T23:59:59.000Z

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1A, Environment, Safety, and Health Reporting.1 The Site Environmental Report for 2006 summarizes Berkeley Labís environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2006. (Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as ďBerkeley Lab,Ē ďthe Laboratory,Ē ďLawrence Berkeley National Laboratory,Ē and ďLBNL.Ē) The report is separated into two volumes. Volume I is organized into an executive summary followed by six chapters that contain an overview of the Laboratory, a discussion of the Laboratoryís environmental management system, the status of environmental programs, and summarized results from surveillance and monitoring activities. Volume II contains individual data results from surveillance and monitoring activities.

  4. A proposed framework for establishing integrated cost and performance criteria for environmental technologies. A summary report to the U.S. Department of Energy

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    Through an Interagency Agreement between the US Environmental Protection Agency (EPA) and the US Department of Energy (DOE), EPA directed a project to establish a suite of standard cost and performance criteria to guide the evaluation of environmental cleanup technologies for DOE sites. Ideally, these criteria would be ``generic`` in that they could be used as a basis for evaluating any cleanup technology for any DOE site. To be most useful, however, these criteria would also reflect the interests of diverse decisionmakers who influence DOE technology evaluation. The project was conducted by the National Environmental Technology Applications Center (NETAC), a nonprofit organization specializing in the development and commercialization of new and innovative environmental technologies for national and international markets. To accomplish the project objective, NETAC (1) developed a data gathering questionnaire, (2) interviewed government and industry decisionmakers, (3) identified previous criteria development efforts, (4) conducted a workshop, (5) evaluated workshop discussions, and (6) applied its five years` experience in commercializing environmental technologies to analyze project findings. The project resulted in the development of a unique and comprehensive resource or tool to enhance communication among decisionmakers. This resource, a ``Proposed Framework for Establishing Integrated Cost and Performance Criteria for Evaluating Environmental Cleanup Technologies for DOE Sites,`` offers decisionmakers a first-time comprehensive assessment of major technology evaluation issues by a decisionmaker group.

  5. Site Environmental Report for 2010, Volumes 1 & 2

    E-Print Network [OSTI]

    Baskin, David

    2012-01-01T23:59:59.000Z

    4: Environmental Monitoring LBNL, Environmental MonitoringExecutive Summary, Note 3. 27 . LBNL, Analysis of BackgroundProtection Agency LBNL, 2006 Long Range Development Plan (no

  6. 7,511,624 Wind Energy Overview: Device for monitoring the balance and integrity of wind turbine blades either in

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    turbine blades either in service or as a quality control step in the manufacturing process Researchers oscillations (including imbalances and tracking variations) in wind turbine blades. This technology was tested covering the RPM rate of any wind turbine blade. This invention directly targets the operational monitoring

  7. Development of the integrated environmental control model: Performance models of selective catalytic reduction NO{sub x} control systems. Quarterly progress report, [April 1, 1993--June 30, 1993

    SciTech Connect (OSTI)

    Frey, H.C.

    1993-07-01T23:59:59.000Z

    This report concerns the Integrated Environmental Control Model (IECM) created and enhanced by Carnegie Mellon University (CMU) for the US Department of Energy`s Pittsburgh Energy Technology Center (DOE/PETC). The IECM provides a capability to model various conventional and advanced processes for controlling air pollutant emissions from coal-fired power plants before, during, or after combustion. The principal purpose of the model is to calculate the performance, emissions, and cost of power plant configurations employing alternative environmental control methods. The model consists of various control technology modules, which may be integrated into a complete utility plant in any desired combination. In contrast to conventional deterministic models, the IECM offers the unique capability to assign probabilistic values to all model input parameters, and to obtain probabilistic outputs in the form of cumulative distribution functions indicating the likelihood of different costs and performance results.

  8. Quality Assurance 9 2003 SITE ENVIRONMENTAL REPORT9-1

    E-Print Network [OSTI]

    Homes, Christopher C.

    organization. The purpose of the BNL Quality Management (QM) System is to imple- ment QM methodology throughout the vari- ous BNL management systems and associated processes to: Plan and perform BNL operations is de-For environmental monitoring, QA ployed as an integrated system of management activities

  9. Environmental Quality: Air (Louisiana)

    Broader source: Energy.gov [DOE]

    The Department of Environmental Quality regulates air quality in Louisiana. The Department has an established a fee system for funding the monitoring, investigation and other activities required...

  10. Aircraft Cabin Environmental Quality Sensors

    SciTech Connect (OSTI)

    Gundel, Lara; Kirchstetter, Thomas; Spears, Michael; Sullivan, Douglas

    2010-05-06T23:59:59.000Z

    The Indoor Environment Department at Lawrence Berkeley National Laboratory (LBNL) teamed with seven universities to participate in a Federal Aviation Administration (FAA) Center of Excellence (COE) for research on environmental quality in aircraft. This report describes research performed at LBNL on selecting and evaluating sensors for monitoring environmental quality in aircraft cabins, as part of Project 7 of the FAA's COE for Airliner Cabin Environmental Research (ACER)1 effort. This part of Project 7 links to the ozone, pesticide, and incident projects for data collection and monitoring and is a component of a broader research effort on sensors by ACER. Results from UCB and LBNL's concurrent research on ozone (ACER Project 1) are found in Weschler et al., 2007; Bhangar et al. 2008; Coleman et al., 2008 and Strom-Tejsen et al., 2008. LBNL's research on pesticides (ACER Project 2) in airliner cabins is described in Maddalena and McKone (2008). This report focused on the sensors needed for normal contaminants and conditions in aircraft. The results are intended to complement and coordinate with results from other ACER members who concentrated primarily on (a) sensors for chemical and biological pollutants that might be released intentionally in aircraft; (b) integration of sensor systems; and (c) optimal location of sensors within aircraft. The parameters and sensors were selected primarily to satisfy routine monitoring needs for contaminants and conditions that commonly occur in aircraft. However, such sensor systems can also be incorporated into research programs on environmental quality in aircraft cabins.

  11. INEL Geothermal Environmental Program. Final environmental report

    SciTech Connect (OSTI)

    Thurow, T.L.; Cahn, L.S.

    1982-09-01T23:59:59.000Z

    An overview of environmental monitoring programs and research during development of a moderate temperature geothermal resource in the Raft River Valley is presented. One of the major objectives was to develop programs for environmental assessment and protection that could serve as an example for similar types of development. The monitoring studies were designed to establish baseline conditions (predevelopment) of the physical, biological, and human environment. Potential changes were assessed and adverse environmental impacts minimized. No major environmental impacts resulted from development of the Raft River Geothermal Research Facility. The results of the physical, biological, and human environment monitoring programs are summarized.

  12. Development of biological and chemical methods for environmental monitoring of DOE waste disposal and storage facilities. Final report

    SciTech Connect (OSTI)

    NONE

    1989-04-01T23:59:59.000Z

    Hazardous chemicals in the environment have received ever increasing attention in recent years. In response to ongoing problems with hazardous waste management, Congress enacted the Resource Conservation and Recovery Act (RCRA) in 1976. In 1980, Congress adopted the Comprehensive Environmental Response Compensation, and Liability Act (CERCLA), commonly called Superfund to provide for emergency spill response and to clean up closed or inactive hazardous waste sites. Scientists and engineers have begun to respond to the hazardous waste challenge with research and development on treatment of waste streams as well as cleanup of polluted areas. The magnitude of the problem is just now beginning to be understood. The U.S. Environmental Protection Agency (USEPA) National Priorities List as of September 13 1985, contained 318 proposed sites and 541 final sites (USEPA, 1985). Estimates of up to 30,000 sites containing hazardous wastes (1,200 to 2,000 of which present a serious threat to public health) have been made (Public Law 96-150). In addition to the large number of sites, the costs of cleanup using available technology are phenomenal. For example, a 10-acre toxic waste site in Ohio is to be cleaned up by removing chemicals from the site and treating the contaminated groundwater. The federal government has already spent more than $7 million to remove the most hazardous wastes and the groundwater decontamination alone is expected to take at least 10 years and cost $12 million. Another example of cleanup costs comes from the State of California Commission for Economic Development which predicts a bright economic future for the state except for the potential outlay of $40 billion for hazardous waste cleanup mandated by federal and state laws.

  13. Faculty of Science Environmental Science

    E-Print Network [OSTI]

    quality control and monitoringEnvironmental management and conservation ∑ Education with additionalFaculty of Science Environmental Science If you have a natural curiosity and concern about the environment, Environmental Science offers you exciting career opportunities. It applies scientific tools from

  14. Environmental management system objectives & targets results summary :

    SciTech Connect (OSTI)

    Vetter, Douglas Walter

    2014-04-01T23:59:59.000Z

    Sandia National Laboratories/New Mexicos (SNL/NM) Environmental Management System is the integrated approach for members of the workforce to identify and manage environmental risks. Each Fiscal Year (FY) SNL/NM performs an analysis to identify environmental aspects, and the environmental programs associated with them are charged with the task of routinely monitoring and measuring the objectives and targets that are established to mitigate potential impacts of SNL/NMs operations on the environment. An annual summary of the results achieved towards meeting established Sandia Corporation and SNL/NM Site-specific objectives and targets provides a connection to, and rational for, annually revised environmental aspects. The purpose of this document is to summarize the results achieved and documented in FY2013.

  15. Radiological and Environmental Monitoring at the Clean Slate I and III Sites, Tonopah Test Range, Nevada, With Emphasis on the Implications for Off-site Transport

    SciTech Connect (OSTI)

    Mizell, Steve A [DRI; Etyemezian, Vic [DRI; McCurdy, Greg [DRI; Nikolich, George [DRI; Shadel, Craig [DRI; Miller, Julianne J [DRI

    2014-09-01T23:59:59.000Z

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]) implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range [NAFR]). Operation Roller Coaster consisted of four tests in which chemical explosions were detonated in the presence of nuclear devices to assess the dispersal of radionuclides and evaluate the effectiveness of storage structures to contain the ejected radionuclides. These tests resulted in the dispersal of plutonium over the ground surface downwind of the test ground zero (GZ). Three testsóClean Slate I, II, and IIIówere conducted on the TTR in Cactus Flat. The fourth, Double Tracks, was conducted in Stonewall Flat on the NTTR. The Desert Research Institute (DRI) installed two monitoring stations in 2008, Station 400 at the Sandia National Laboratories (SNL) Range Operations Center (ROC) and Station 401 at Clean Slate III. Station 402 was installed at Clean Slate I in 2011 to measure radiological, meteorological, and dust conditions. The monitoring activity was implemented to determine if radionuclide contamination in the soil at the Clean Slate sites was being transported beyond the contamination area boundaries. Some of the data collected also permits comparison of radiological exposure at the TTR monitoring stations to conditions observed at Community Environmental Monitoring Program (CEMP) stations around the NTTR. Annual average gross alpha values from the TTR monitoring stations are higher than values from the surrounding CEMP stations. Annual average gross beta values from the TTR monitoring stations are generally lower than values observed for the surrounding CEMP stations. This may be due to use of sample filters with larger pore space because when glass-fiber filters began to be used at TTR Station 400, gross beta values increased. Gamma spectroscopy typically identified only naturally occurring radionuclides. The radionuclides cesium-134 and -137 were identified in only two samples at each station collected in the weeks following the destruction of the nuclear power reactor in Fukushima, Japan, on March 11, 2011. Observed gamma energy values never exceeded the local background by more than 4 ?R/h. The higher observed gamma values were coincident with wind from any of the cardinal directions, which suggests that there is no significant transport from the Clean Slate contamination areas. Annual average daily gamma values at the TTR stations are higher than at the surrounding CEMP stations, but they are equivalent to or just slightly higher than the background estimates made at locations at equivalent elevations, such as Denver, Colorado. Winds in excess of approximately 15 mph begin to resuspend soil particles and create dust, but dust generation is also affected by soil temperature, relative humidity, and soil water content. Power curves provide good predictive equations for dust concentration as a function of wind speed. However, winds in the highest wind speed category occur infrequently. iii

  16. Animal Environmental Systems Goal: Colorado State University will enhance its focus, depth, and integration in undergraduate education, graduate education,

    E-Print Network [OSTI]

    to livestock nutrition and management, soil science, engineering, and economics of waste management systems and the evaluation of production systems and regulatory protocols for effective environmental protection. Purpose, thus multiplying the potential for environmental hazards. Rapid urbanization along the Front Range has

  17. (Environmental technology)

    SciTech Connect (OSTI)

    Boston, H.L.

    1990-10-12T23:59:59.000Z

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  18. Development of high through-put Sr isotope analysis for monitoring reservoir integrity for CO{sub 2} storage.

    SciTech Connect (OSTI)

    Wall, Andy; Jain, Jinesh; Stewart, Brian; Capo, Rosemary; Hakala, Alexandra J.; Hammack, Richard; Guthrie, George

    2012-01-01T23:59:59.000Z

    Recent innovations in multi-collector ICP-mass spectrometry (MC-ICP-MS) have allowed for rapid and precise measurements of isotope ratios in geological samples. Naturally occurring Sr isotopes has the potential for use in Monitoring, Verification, and Accounting (MVA) associated with geologic CO2 storage. Sr isotopes can be useful for: Sensitive tracking of brine migration; Determining seal rock leakage; Studying fluid/rock reactions. We have optimized separation chemistry procedures that will allow operators to prepare samples for Sr isotope analysis off site using rapid, low cost methods.

  19. WIPP Transparency Project - container tracking and monitoring demonstration using the Authenticated Tracking and Monitoring System (ATMS)

    SciTech Connect (OSTI)

    SCHOENEMAN, J. LEE; SMARTT, HEIDI ANNE; HOFER, DENNIS

    2000-01-27T23:59:59.000Z

    The Authenticated Tracking and Monitoring System (ATMS) is designed to answer the need for global monitoring of the status and location of proliferation-sensitive items on a worldwide basis, 24 hours a day. ATMS uses wireless sensor packs to monitor the status of the items within the shipment and surrounding environmental conditions. Receiver and processing units collect a variety of sensor event data that is integrated with GPS tracking data. The collected data are transmitted to the International Maritime Satellite (INMARSAT) communication system, which then sends the data to mobile ground stations. Authentication and encryption algorithms secure the data during communication activities. A typical ATMS application would be to track and monitor the stiety and security of a number of items in transit along a scheduled shipping route. The resulting tracking, timing, and status information could then be processed to ensure compliance with various agreements.

  20. Parameters used in the environmental pathways and radiological dose modules (DESCARTES, CIDER, and CRD codes) of the Hanford Environmental Dose Reconstruction Integrated Codes (HEDRIC)

    SciTech Connect (OSTI)

    Snyder, S.F.; Farris, W.T.; Napier, B.A.; Ikenberry, T.A.; Gilbert, R.O.

    1994-05-01T23:59:59.000Z

    This letter report is a description of work performed for the Hanford Environmental Dose Reconstruction (HEDR) Project. The HEDR Project was established to estimate the radiation doses to individuals resulting from releases of radionuclides from the Hanford Site during the period of 1944 to 1992. This work is being done by staff at Battelle, Pacific Northwest Laboratories under a contract with the Centers for Disease Control and Prevention with technical direction provided by an independent Technical Steering Panel (TSP).

  1. MARKAL-MACRO -- An integrated energy-environmental-economic decision tool: Evaluation of U.S. Environmental Protection Agency Green Lights/Energy Star Buildings Programs

    SciTech Connect (OSTI)

    Lee, J.C.; Goldstein, G.A. [Brookhaven National Lab., Upton, NY (United States); Linkey, E. [Environmental Protection Agency, New York, NY (United States); Huang, J.I. [InfoLink, Inc., Taipei (Taiwan, Province of China)

    1997-12-31T23:59:59.000Z

    The MARKAL-MACRO model is used to evaluate the cost effectiveness and market potential in Taiwan for technologies which are promoted by the US Environmental Protection Agency Green Lights and Energy Star Buildings Programs. Comparative analysis of the model results show that these technologies are economically more competitive than conventional technologies and are projected to be dominant in the market place in meeting retrofit and future energy demands in commercial buildings under least-cost energy planning strategies.

  2. Monitoring the Long-Term Effectiveness of Integrated Safety Management System (ISMS) Implementation Through Use of a Performance Dashboard Process

    SciTech Connect (OSTI)

    Michael D. Kinney and William D. Barrick

    2008-09-01T23:59:59.000Z

    This session will examine a method developed by Federal and Contractor personnel at the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) to examine long-term maintenance of DOE Integrated Safety Management System (ISMS) criteria, including safety culture attributes, as well as identification of process improvement opportunities. This process was initially developed in the summer of 2000 and has since been expanded to recognize the importance of safety culture attributes, and associated safety culture elements, as defined in DOE M 450.4-1, ďIntegrated Safety Management System Manual.Ē This process has proven to significantly enhance collective awareness of the importance of long-term ISMS implementation as well as support commitments by NNSA/NSO personnel to examine the continued effectiveness of ISMS processes.

  3. "The integrity of the water" --that strangely poetic phrase buried in the legalese of the Clean Water Act --is what's really at stake for all those charged with monitoring, regulating and preventing aquatic pollution. But "integrity" is not an easy goal t

    E-Print Network [OSTI]

    Bottomline "The integrity of the water" -- that strangely poetic phrase buried in the legalese of the Clean Water Act -- is what's really at stake for all those charged with monitoring, regulating and preventing aquatic pollution. But "integrity" is not an easy goal to attain, at last in the realm of San

  4. DEVELOPMENT OF A LONG-TERM MONITORING SYSTEM TO EVALUATE COVER SYSTEM PERFORMANCE

    SciTech Connect (OSTI)

    Kumthekar, U.; Chiou, J. D.; Prochaska, M.; Benson, C. H.

    2002-02-25T23:59:59.000Z

    Environmental remediation at the Fernald Environmental Management Project is nearing completion, but long-term technology needs continue to emerge at the site. Remote, real-time, autonomous monitoring technologies are needed to ensure the integrity of the site and its remedy systems once cleanup is complete. The Fernald Post Closure Stewardship Technology Project (PCSTP), through the work of the Integrating Stewardship Technology Team (ISTT), has selected technologies to address initial site needs. This paper will explore the monitoring requirements of the Fernald On-Site Disposal Facility (OSDF), the parameters selected as critical for comprehensive long-term monitoring of the facility, and the process by which technologies were chosen to monitor those parameters.

  5. Environmental Radiological Effluent Monitoring and Environmental Surveillance

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNFEnergySession0-02NationwideServices ¬ĽEEnvironmental

  6. Microalgae-derived HEFA jet fuel : environmental and economic impacts of scaled/integrated growth facilities and global production potential

    E-Print Network [OSTI]

    Ames, Jacob L. (Jacob Lee)

    2015-01-01T23:59:59.000Z

    Biofuels have the potential to mitigate the environmental impact of aviation and offer increased energy security through the displacement of conventional jet fuel. This study investigates strategies designed to reduce the ...

  7. 1999 SITE ENVIRONMENTAL REPORT

    SciTech Connect (OSTI)

    ENGEL-COX,J.; ZIMMERMAN,E.; LEE,R.; WILLIAMS,J.; GREEN,T.; PAQUETTE,D.; HOODA,B.; SCARPITTA,S.; GENZER,P.; ET AL

    2000-09-01T23:59:59.000Z

    Throughout the scientific community, Brookhaven National Laboratory (BNL) is renowned for its leading-edge research in physics, medicine, chemistry, biology, materials, and the environment. BNL is committed to supporting its world-class scientific research with an internationally recognized environmental protection program. The 1999 Site Environmental Report (SER) summarizes the status of the Laboratory's environmental programs and performance, including the steady progress towards cleaning up the site and fully integrating environmental stewardship into all facets of the Laboratory's mission. BNL is located on 5,265 acres of pine barrens in Suffolk County in the center of Long Island, New York. The Laboratory is situated above a sole source aquifer at the headwaters of the Peconic River; therefore, protecting ground and surface water quality is a special concern. Approximately 3,600 acres of the site are undeveloped and serve as habitat for a wide variety of animals and plants, including one New York State endangered species, the tiger salamander, and two New York State threatened species, the banded sunfish and the stiff goldenrod. Monitoring, preserving, and restoring these ecological resources is a high priority for the Laboratory.

  8. Integrated sensing platform and method for improved quantitative and selective monitoring of chemical analytes in both liquid and gas phase

    DOE Patents [OSTI]

    Blair, Dianna S. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM); Butler, Michael A. (Albuquerque, NM)

    2000-01-01T23:59:59.000Z

    By measuring two or more physical parameters of a thin sensing film which are altered when exposed to chemicals, more effective discrimination between chemicals can be achieved. In using more than one sensor, the sensors are preferably integrated on the same substrate so that they may measure the same thin film. Even more preferably, the sensors are provided orthogonal to one another so that they may measure the same portion of the thin film. These provisions reduce problems in discrimination arising from variations in thin films.

  9. Integrated stratigraphy of the Early Miocene lacustrine deposits of Pag Island (SW Croatia): Palaeovegetation and environmental changes in the

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Integrated stratigraphy of the Early Miocene lacustrine deposits of Pag Island (SW Croatia, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia a b s t r a c ta r t i c l e i n f o Article Orbital forcing Long-lived lakes Dinaride Lake System Early Miocene Croatia An integrated stratigraphic

  10. West Valley Demonstration Project Site Environmental Report Calendar Year 2000

    SciTech Connect (OSTI)

    NONE

    2001-08-31T23:59:59.000Z

    The annual site environmental monitoring report for the West Valley Demonstration Project nuclear waste management facility.

  11. Monitoring: The missing piece

    SciTech Connect (OSTI)

    Bjorkland, Ronald, E-mail: r_bjorkland@hotmail.com

    2013-11-15T23:59:59.000Z

    The U.S. National Environmental Policy Act (NEPA) of 1969 heralded in an era of more robust attention to environmental impacts resulting from larger scale federal projects. The number of other countries that have adopted NEPA's framework is evidence of the appeal of this type of environmental legislation. Mandates to review environmental impacts, identify alternatives, and provide mitigation plans before commencement of the project are at the heart of NEPA. Such project reviews have resulted in the development of a vast number of reports and large volumes of project-specific data that potentially can be used to better understand the components and processes of the natural environment and provide guidance for improved and efficient environmental protection. However, the environmental assessment (EA) or the more robust and intensive environmental impact statement (EIS) that are required for most major projects more frequently than not are developed to satisfy the procedural aspects of the NEPA legislation while they fail to provide the needed guidance for improved decision-making. While NEPA legislation recommends monitoring of project activities, this activity is not mandated, and in those situations where it has been incorporated, the monitoring showed that the EIS was inaccurate in direction and/or magnitude of the impact. Many reviews of NEPA have suggested that monitoring all project phases, from the design through the decommissioning, should be incorporated. Information gathered though a well-developed monitoring program can be managed in databases and benefit not only the specific project but would provide guidance how to better design and implement future activities designed to protect and enhance the natural environment. -- Highlights: ē NEPA statutes created profound environmental protection legislative framework. ē Contrary to intent, NEPA does not provide for definitive project monitoring. ē Robust project monitoring is essential for enhanced environmental management. ē Adaptive database framework is needed to accommodate project-monitoring data.

  12. Innovative coke oven gas cleaning system for retrofit applications: Environmental Monitoring Program. Baseline sampling program report: Volume 2, Appendix sections 1--7

    SciTech Connect (OSTI)

    Stuart, L.M.

    1994-05-27T23:59:59.000Z

    This report contains no text. It consist entirely of results monitoring stack opacity, benzene surveys, chemical effluent in wastewater, etc.

  13. Environmental planning and categorical exclusions: Making the categorical exclusion an integral part of your NEPA tool kit

    SciTech Connect (OSTI)

    Holthoff, M.G.; Hanrahan, T.P.

    1994-06-01T23:59:59.000Z

    As contained in the Regulations for Implementing the Procedural Provisions of the National Environmental Policy Act, 40 CFR 1500--1508, the Council on Environmental Quality (CEQ) directs federal agencies to adopt their own procedures for implementing the Act. The US Department of Energy (DOE) and the US Department of Agriculture Forest Service (USFS) are two examples of federal agencies with dissimilar but functionally equivalent CX processes. The DOE and USFS were selected as subjects for this study because of their distinctly different missions and as a results of the author`s familiarity with the policies of both agencies. The objectives of this study are to: (1) describe the CX policies and processes of the two agencies, (2) identify the similarities and differences between the two processes, and (3) suggest ways for improving these processes. In performing this evaluation, the authors will identify the components of each agency`s CX process that clearly contributes qualitative information for the purpose of making environmental planning decisions. Drawing from the best elements of each process, the authors will provide some general recommendations that should enable the agencies to fulfill their various obligations to the CX process while concurrently performing early, thorough, and expeditious environmental reviews under NEPA.

  14. The impact of environmental constraints on productivity improvement and energy efficiency in integrated paper and steel plants

    SciTech Connect (OSTI)

    Boyd, G.A. [Argonne National Lab., IL (United States). Decision and Information Sciences Div.; McClelland, J. [Maryland Univ., College Park, MD (United States). Dept. of Economics

    1996-12-31T23:59:59.000Z

    This paper presents a methodology and results for assessing the impact of production and energy efficiency, environmental regulation, and abatement capital expenditure constraints (e.g. capital rationing) on the productivity of energy and pollution intensive sectors. Energy is treated like any other production input when examining evidence of inefficiency. We find that capital rationing and environmental regulations do contribute to productivity and energy efficiency losses, but do not explain all of the production and energy inefficiencies observed in the paper industry. A summary of the energy source of production inefficiency found in the paper industry, is presented.. Each source is derived as the incremental contribution., i.e. the first is constraints on capital, the second in environmental regulation not accounted for by the first, and the final component is production inefficiency that is not accounted for my any of the- environmental analysis. While the methods are very data intensive, they reveal much more that analysis of aggregate data, 1835 since the only plant level data can provide the estimates of inefficiency that this methodology employs.

  15. Environmental Frontier of Sustainability

    E-Print Network [OSTI]

    Takada, Shoji

    A A Global Environmental Studies Frontier of Sustainability Science Akihisa MORI, Global Environmental Studies Satoshi KONISHI, Institute of Advanced Energy, etc Integrated Research Bld This class is designed for graduate students to acknowledge research frontier of Sustainability Science

  16. 2008 Annual Site Environmental Report Summary Pamphlet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and monitoring programs through December 31, 2008. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste...

  17. Site Environmental Report for 2001

    E-Print Network [OSTI]

    #12;Site Environmental Report for 2001 Volume I August 2002 Ernest Orlando Lawrence Berkeley ..............................................................................................2-1 3 Environmental Program Summary Lawrence Berkeley National Laboratory (Berkeley Lab) prepares an integrated report on its environmental

  18. Environmental Protection and Natural Resources

    E-Print Network [OSTI]

    SŠnchez-RodrŪguez, Roberto; Mumme, Stephen

    2010-01-01T23:59:59.000Z

    59 Stat. 1219. U.S. Environmental Protection Agency (EPA).1992. Integrated Environmental Plan for the Mexican-U.S.EPA, A92-171.toc. U.S. Environmental Protection Agency (

  19. Environmental Protection Implementation Plan

    SciTech Connect (OSTI)

    Brekke, D.D.

    1995-11-01T23:59:59.000Z

    This Environmental Protection Implementation Plan is intended to ensure that the environmental program objectives of Department of Energy Order 5400.1 are achieved at SNL/California. This document states SNL/California`s commitment to conduct its operations in an environmentally safe and responsible manner. The Environmental Protection Implementation Plan helps management and staff comply with applicable environmental responsibilities. This report focuses on the following: notification of environmental occurrences; general planning and reporting; special programs and plans; environmental monitoring program; and quality assurance and data verification.

  20. INSTITUTIONAL ARRANGEMENTS FOR ENVIRONMENTAL MONITORING

    E-Print Network [OSTI]

    was responsible for project construction, and other stakeholders. Conversely, the Canadian Wildlife Service and encouragement. My parents, Jes√ļs and Carmen, and friends in Spain, went through the journey with me through my

  1. ENVIRONMENTAL OVERSIGHT AND MONITORING AGREEMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work4/11 ENVIROISSUES PAGE 01/24/2005 04:22

  2. United States Environmental Monitoring EPA

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V4100 DOE/EA-1452D E P A R TEPAUnited

  3. Monitoring Sessile Droplet Evaporation on a Micromechanical Device

    E-Print Network [OSTI]

    Prasad, A.; Lin, A. T.-H.; Rao, V. R.; Seshia, A. A.

    2014-08-18T23:59:59.000Z

    batch fabrication of miniaturized mechanical devices that may be co-integrated with chip-scale electronics and microfluidic handling systems to realize miniaturized and portable platforms for bio-chemical sensing and environmental monitoring [1... for mapping DNA on flat substrates [25], in microfluidics for optimizing device biochip designs [26], ARTICLE Journal Name 2 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012 and dynamics of drying drops on nanostructured...

  4. THE BROOKHAVEN NATIONAL LABORATORY PERFLUOROCARBON TRACER TECHNOLOGY: A PROVEN AND COST EFFECTIVE METHOD TO VERIFY INTEGRITY AND MONITOR LONG TERM PERFORMANCE OF WALLS, FLOORS, CAPS, AND COVER SYSTEMS.

    SciTech Connect (OSTI)

    HEISER, J.; SULLIVAN, T.

    2002-03-11T23:59:59.000Z

    Currently, containment system failures are detected by monitoring wells downstream of the waste site. Clearly this approach is inefficient, as the contaminants will have migrated from the disposal area before they are detected. Methods that indicate early cover failure (prior to contaminant release) or predict impending cover failure are needed. The Brookhaven National Laboratory (BNL) Perfluorocarbon Tracer (PFT) technology can measure performance changes and integrity losses as the cover ages. This allows early detection of cover failure or pending failure so that repair or replacement can be made before contaminants leave the disposal cell. The PFT technology has been successfully applied to four subsurface barrier problems, one leak detection problem from underground ducts, and one surface cover problem. Testing has demonstrated that the PFTs are capable of accurately detecting and locating leaks down to fractions of an inch. The PFT technology has several advantages over competing approaches. The ability to simultaneously use multiple PFTs separates it from other gas tracer technologies. Using multiple tracers provides independent confirmation of flaw location, helps to clearly define transport pathways, and can be used for confirmatory testing (e.g., repeat the test using a new tracer). The PFT tests provide a direct measure of flaws in a barrier, whereas other measurements (pressure, moisture content, temperature, subsidence) provide indirect measures that need interpretation. The focus of the six PFT demonstrations has been on engineering aspects of the technology with the intent of finding if a flaw existed in the barrier. Work remains to be done on the scientific basis for this technology. This includes determining PFT diffusion rates through various materials (soils and barrier) as a function of moisture content, determining the effects of barometric pumping on PFT flow for cover systems, and determining wind effects on side slopes of cover systems and their impact on PFT performance. It also includes application of models to assist in the design of the monitoring system and the interpretation of the data. The set of demonstrations was performed on small sites (< 1/4 acre). Future work also needs to consider scaling issues to develop and design optimal techniques for delivery and monitoring of the PFTs.

  5. ENVIRONMENTAL MANAGEMENT Environmental Policy

    E-Print Network [OSTI]

    Haase, Markus

    ENVIRONMENTAL MANAGEMENT Environmental Policy February 2013 The University of Leeds is responsible to reflect best environmental practice, implement an environmental management system to pursue sustainability and continuous improvement and seek innovative ways of meeting environmental objectives. These include: To meet

  6. 2010 Site Environmental Report

    SciTech Connect (OSTI)

    Ratel, K.; Lee, R; Remien, J; Hooda, B; Green, T; Williams, J; Pohlot, P; Dorsch, W; Paquette, D; Burke, J

    2011-10-01T23:59:59.000Z

    Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy. The report is written to inform the public, regulators, employees, and other stakeholders of the Laboratory's environmental performance during the calendar year in review. Volume I of the SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and performance in restoration and surveillance monitoring programs. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. Volume II of the SER, the Groundwater Status Report, also is prepared annually to report on the status of and evaluate the performance of groundwater treatment systems at the Laboratory. Volume II includes detailed technical summaries of groundwater data and its interpretation, and is intended for internal BNL users, regulators, and other technically oriented stakeholders. A brief summary of the information contained in Volume II is included in Chapter 7, Groundwater Protection, of this volume. Both reports are available in print and as downloadable files on the BNL web page at http://www.bnl.gov/ewms/ser/. An electronic version on compact disc is distributed with each printed report. In addition, a summary of Volume I is prepared each year to provide a general overview of the report, and is distributed with a compact disc containing the full report. BNL is operated and managed for DOE's Office of Science by Brookhaven Science Associates (BSA), a partnership formed by Stony Brook University and Battelle Memorial Institute. For more than 60 years, the Laboratory has played a lead role in the DOE Science and Technology mission and continues to contribute to the DOE missions in energy resources, environmental quality, and national security. BNL manages its world-class scientific research with particular sensitivity to environmental issues and community concerns. The Laboratory's motto, 'Exploring Life's Mysteries...Protecting its Future,' and its Environmental, Safety, Security and Health Policy reflect the commitment of BNL's management to fully integrate environmental stewardship into all facets of its mission and operations.

  7. aerial radiation monitoring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measurement system, in-core neutron monitor, medical radiation diagnostic device, nondestructive inspection device, environmental radiation monitoring, cosmic-ray measurement,...

  8. aerial surveying radiation monitoring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measurement system, in-core neutron monitor, medical radiation diagnostic device, nondestructive inspection device, environmental radiation monitoring, cosmic-ray measurement,...

  9. Environmental Report 2008

    SciTech Connect (OSTI)

    Gallegos, G; Bertoldo, N A; Campbell, C G; Cerruti, S; Dibley, V; Doman, J L; Grayson, A R; Jones, H E; Kumamoto, G; MacQueen, D H; Nelson, J C; Paterson, L; Revelli, M A; Wegrecki, A M; Wilson, K; Woollett, J

    2009-09-16T23:59:59.000Z

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2008 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites - the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and is available at https://saer.lln.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2008: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff, ambient radiation, and special status wildlife and plants (Chapter 6). Complete monitoring data, which are summarized in the body of the report, are provided in Appendix A. The remaining three chapters discuss the radiological impact on the public from LLNL operations (Chapter 7), LLNL's groundwater remediation program (Chapter 8), and quality assurance for the environmental monitoring programs (Chapter 9). The report uses Systeme International units, consistent with the federal Metric Conversion Act of 1975 and Executive Order 12770, Metric Usage in Federal Government Programs (1991). For ease of comparison to environmental reports issued prior to 1991, dose values and many radiological measurements are given in both metric and U.S. customary units. A conversion table is provided in the glossary. The report is the responsibility of LLNL's Environmental Protection Department. Monitoring data were obtained through the combined efforts of the Environmental Protection Department; Environmental Restoration Department; Physical and Life Sciences Environmental Monitoring Radiation Laboratory; and the Hazards Control Department.

  10. 9-1 2001 SITE ENVIRONMENTAL REPORT CHAPTER 9: QUALITY ASSURANCE

    E-Print Network [OSTI]

    Homes, Christopher C.

    organization. The purpose of the BNL Quality Management (QM) System is to implement QM methodology throughout the various BNL management systems and associated processes to: ß Plan and perform BNL operations and expectations. For environmental monitoring, QA is defined as an integrated system of management activities

  11. Global nuclear material monitoring

    SciTech Connect (OSTI)

    Howell, J.A.; Monlove, H.O.; Goulding, C.A.; Martinez, B.J.; Coulter, C.A.

    1997-08-01T23:59:59.000Z

    This is the final report of a one-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project provided a detailed systems design for advanced integrated facility monitoring and identified the components and enabling technologies required to facilitate the development of the monitoring system of the future.

  12. Oak Ridge Reservation Annual Site Environmental Report for 2009

    SciTech Connect (OSTI)

    Bechtel Jacobs

    2010-09-01T23:59:59.000Z

    The Oak Ridge Reservation Annual Site Environmental Report is prepared animally and presents summary environmental data to (1) characterize environmental performance, (2) summarize environmental occurrences reported during the year, (3) confirm compliance with environmental standards and requirements, and (4) highlight significant program activities. The report fulfills the requirement contained in DOE Order 231.1 A, Environment, Safety and Health Reporting (DOE 2004) that an integrated annual site environmental report be prepared. The results summarized in this report are based on data collected prior to and through 2009. This report is not intended to nor does it present the results of all environmental monitoring associated with the ORR. Data collected for other site and regulatory purposes, such as environmental restoration/remedial investigation reports, waste management characterization sampling data, and environmental permit compliance data, are presented in other documents that have been prepared in accordance with applicable DOE guidance and/or laws and are referenced herein as appropriate. Appendix A to this report identifies corrections to the 2008 report. Appendix B contains a glossary of technical terms that may be useful for understanding the terminology used in this document. Environmental monitoring on the ORR consists primarily of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring involves the collection and analysis of samples or measurements of liquid and gaseous effluents at the points of release to the environment; these measurements allow the quantification and official reporting of contaminant levels, assessment of radiation and chemical exposures to the public, and demonstration of compliance with applicable standards and permit requirements. Environmental surveillance consists of direct measurements and collection and analysis of samples taken from the site and its environs exclusive of effluents; these activities provide information on contaminant concentrations in air, water, groundwater, soil, foods, biota, and other media. Environmental surveillance data support determinations regarding environmental compliance and, when combined with data from effluent monitoring, support chemical and radiation dose and exposure assessments regarding the potential effects of ORR operations, if any, on the local environment.

  13. School Of Resource and Environmental Management

    E-Print Network [OSTI]

    conservation, sustainable resource management, and environmental monitoring. Students will learn aboutSchool Of Resource and Environmental Management SIMON FRASER UNIVERSITY Sessional Instructor the implications of uncertainty in the interpretation of ecological data and environmental decision making

  14. Environmental surveillance at Los Alamos during 1994

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    This report describes environmental monitoring activities at Los Alamos National Laboratory for 1994. Data were collected to assess external penetrating radiation, airborne emissions, liquid effluents, radioactivity of environmental materials and food stuffs, and environmental compliance.

  15. Modeling of integrated environmental control systems for coal-fired power plants. Quarterly progress report, [April 1, 1988--June 30, 1988

    SciTech Connect (OSTI)

    Rubin, E.S.

    1988-06-01T23:59:59.000Z

    This is the third quarterly report of DOE Contract No. DE-AC22- 87PC79864, entitled ``Modeling of Integrated Environmental Control Systems for Coal-Fired Power Plants.`` This report summarizes accomplishments during the period April 1, 1988 to June 30, 1988. Our efforts during the last quarter focused on, (1) completion of a sulfuric acid plant model (used in conjunction with by-product recovery processes for SO{sub 2}/NO{sub x} removal) and, (2) an update the NOXSO process model. Other accomplishments involved revision and expansion of the enthalpy data algorithms used for process energy balances. The sections below present the details of these developments. References are included at the end of each section.

  16. Site Environmental Report for 1998

    SciTech Connect (OSTI)

    Holland, R.C.

    1999-06-01T23:59:59.000Z

    Sandia National Laboratories (SNL) is committed to conducting its operations in an environmentally safe and sound manner. It is mandatory that activities at SNL/California comply with all applicable environmental statutes, regulations, and standards. Moreover, SNL/California continuously strives to reduce risks to employees, the public, and the environment to the lowest levels reasonably possible. To help verify effective protection of public safety and preservation of the environment, SNL/California maintains an extensive, ongoing environmental monitoring program. This program monitors all significant effluents and the environment at the SNL/California site perimeter. Lawrence Livermore National Laboratory (LLNL) performs off-site external radiation monitoring for both sites. These monitoring efforts ensure that emission controls are effective in preventing contamination of the environment. As part of SNL/California's Environmental Monitoring Program, an environmental surveillance system measures the possible presence of hazardous materials in groundwater, stormwater, and sewage. The program also includes an extensive environmental dosimetry program, which measures external radiation levels around the Livermore site and nearby vicinity. Each year, the results of the Environmental Monitoring Program are published in this report, the Site Environmental Report. This executive summary focuses on impacts to the environment. Chapter 3, ''Compliance Summary,'' reviews the site's various environmental protection activities and compliance status with applicable environmental regulations. The effluent monitoring and environmental surveillance results for 1998 show that SNL/California operations had no harmful effects on the environment or the public.

  17. Final report on Weeks Island Monitoring Phase : 1999 through 2004.

    SciTech Connect (OSTI)

    Ehgartner, Brian L.; Munson, Darrell Eugene

    2005-05-01T23:59:59.000Z

    This Final Report on the Monitoring Phase of the former Weeks Island Strategic Petroleum Reserve crude oil storage facility details the results of five years of monitoring of various surface accessible quantities at the decommissioned facility. The Weeks Island mine was authorized by the State of Louisiana as a Strategic Petroleum Reserve oil storage facility from 1979 until decommissioning of the facility in 1999. Discovery of a sinkhole over the facility in 1992 with freshwater inflow to the facility threatened the integrity of the oil storage and led to the decision to remove the oil, fill the chambers with brine, and decommission the facility. Thereafter, a monitoring phase, by agreement between the Department of Energy and the State, addressed facility stability and environmental concerns. Monitoring of the surface ground water and the brine of the underground chambers from the East Fill Hole produced no evidence of hydrocarbon contamination, which suggests that any unrecovered oil remaining in the underground chambers has been contained. Ever diminishing progression of the initial major sinkhole, and a subsequent minor sinkhole, with time was verification of the response of sinkholes to filling of the facility with brine. Brine filling of the facility ostensively eliminates any further growth or new formation from freshwater inflow. Continued monitoring of sinkhole response, together with continued surface surveillance for environmental problems, confirmed the intended results of brine pressurization. Surface subsidence measurements over the mine continued throughout the monitoring phase. And finally, the outward flow of brine was monitored as a measure of the creep closure of the mine chambers. Results of each of these monitoring activities are presented, with their correlation toward assuring the stability and environmental security of the decommissioned facility. The results suggest that the decommissioning was successful and no contamination of the surface environment by crude oil has been found.

  18. Class 1 overview of cultural resources for the Western Area Power Administration Salt Lake City Area Integrated Projects electric power marketing environmental impact statement

    SciTech Connect (OSTI)

    Moeller, K.L.; Malinowski, L.M.; Hoffecker, J.F.; Walitschek, D.A.; Shogren, L.; Mathews, J.E.; Verhaaren, B.T.

    1993-11-01T23:59:59.000Z

    Argonne National Laboratory conducted an inventory of known archaeological and historic sites in areas that could be affected by the hydropower operation alternatives under analysis in the power marketing environmental impact statement for the Western Area Power Administration`s Salt Lake City Area Integrated Projects. The study areas included portions of the Green River (Flaming Gorge Dam to Cub Creek) in Utah and Colorado and the Gunnison River (Blue Mesa Reservoir to Crystal Dam) in Colorado. All previous archaeological surveys and previously recorded prehistoric and historic sites, structures, and features were inventoried and plotted on maps (only survey area maps are included in this report). The surveys were classified by their level of intensity, and the sites were classified according to their age, type, and contents. These data (presented here in tabular form) permit a general assessment of the character and distribution of archaeological remains in the study areas, as well as an indication of the sampling basis for such an assessment. To provide an adequate context for the descriptions of the archaeological and historic sites, this report also presents overviews of the environmental setting and the regional prehistory, history, and ethnography for each study area.

  19. Environmental Conditions Environmental Conditions

    E-Print Network [OSTI]

    Environmental Conditions Environmental Conditions Appendix II The unique geology, hydrology and instream habitat. This chapter examines how environmental conditions in the Deschutes watershed affect, the discussion characterizes the environmental conditions within three watershed areas: the Lower Deschutes

  20. Synopsis of the first cycle of the pulp and paper mill environmental effects monitoring program in the Atlantic region. Atlantic region surveillance report number EPS-5-AR-99-3

    SciTech Connect (OSTI)

    Parker, R.; Smith, N.

    1999-01-01T23:59:59.000Z

    May 1992 amendments to the Federal Pulp and Paper Effluent Regulations included changes in effluent limits and a requirement for every Canadian pulp and paper mill to conduct an environmental effects monitoring (EEM) program in order to determine if the fish, fish habitat, and the utilization of the fishery resource were being adequately protected by the requirements of the Regulations. This report summarizes results of 17 EEM studies of the mills operating in the Atlantic region. Study components included: An adult fish survey; an invertebrate community survey; measurements for chlorinated dioxins and furans, if the mills used chlorine for bleaching; supporting water and sediment quality measurements; and a fish tainting study if there was any public concern about the tainting of fish. Monitoring techniques that produced useful results are identified along with areas where problems were encountered. Changes are recommended for the next cycle of the EEM program.

  1. INTEGRATING PHOTOVOLTAIC SYSTEMS

    E-Print Network [OSTI]

    Delaware, University of

    for Energy and Environmental Policy University of Delaware February 2006 #12;INTEGRATING PHOTOVOLTAIC Delmarva Power Delaware Energy Office University of Delaware Center for Energy and Environmental Policy..................................................................................................... 5 3.3.1 Delaware's Solar Resource

  2. Rocky Flats Plant Site Environmental Report for 1992

    SciTech Connect (OSTI)

    Cirrincione, D.A.; Erdmann, N.L. [eds.

    1992-12-31T23:59:59.000Z

    The Rocky Rats Plant Site Environmental Report provides summary information on the plant`s environmental monitoring programs and the results recorded during 1992. The report contains a compliance summary, results of environmental monitoring and other related programs, a review of environmental remediation activities, information on external gamma radiation dose monitoring, and radiation dose estimates for the surrounding population.

  3. administration site environmental: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MANAGEMENT SYSTEM 2.1 INTEGRATED SAFETY MANAGEMENT, ISO 14001, AND OHSAS 44 2-1 1999 SITE ENVIRONMENTAL REPORT CHAPTER 2: ENVIRONMENTAL MANAGEMENT SYSTEM Environmental...

  4. Environmental Management

    ScienceCinema (OSTI)

    None

    2015-01-07T23:59:59.000Z

    Another key aspect of the NNSS mission is Environmental Management program, which addresses the environmental legacy from historic nuclear weapons related activities while also ensuring the health and safety of present day workers, the public, and the environment as current and future missions are completed. The Area 5 Radioactive Waste Management site receives low-level and mixed low-level waste from some 28 different generators from across the DOE complex in support of the legacy clean-up DOE Environmental Management project. Without this capability, the DOE would not be able to complete the clean up and proper disposition of these wastes. The program includes environmental protection, compliance, and monitoring of the air, water, plants, animals, and cultural resources at the NNSS. Investigation and implementation of appropriate corrective actions to address the contaminated ground water facilities and soils resulting from historic nuclear testing activities, the demolition of abandoned nuclear facilities, as well as installation of ground water wells to identify and monitor the extent of ground water contamination.

  5. Environmental Management

    SciTech Connect (OSTI)

    None

    2014-11-12T23:59:59.000Z

    Another key aspect of the NNSS mission is Environmental Management program, which addresses the environmental legacy from historic nuclear weapons related activities while also ensuring the health and safety of present day workers, the public, and the environment as current and future missions are completed. The Area 5 Radioactive Waste Management site receives low-level and mixed low-level waste from some 28 different generators from across the DOE complex in support of the legacy clean-up DOE Environmental Management project. Without this capability, the DOE would not be able to complete the clean up and proper disposition of these wastes. The program includes environmental protection, compliance, and monitoring of the air, water, plants, animals, and cultural resources at the NNSS. Investigation and implementation of appropriate corrective actions to address the contaminated ground water facilities and soils resulting from historic nuclear testing activities, the demolition of abandoned nuclear facilities, as well as installation of ground water wells to identify and monitor the extent of ground water contamination.

  6. Site environmental report for 1996

    SciTech Connect (OSTI)

    Holland, R.C.

    1997-08-01T23:59:59.000Z

    To help verify effective protection of public safety and preservation of the environment, Sandia National Laboratories (SNL)/California maintains an extensive, ongoing environmental monitoring program. This program monitors all significant airborne and liquid effluents and the environment at the SNL/California site perimeter. Lawrence Livermore National Laboratory (LLNL) performs off-site environmental monitoring for both sites. These monitoring efforts ensure that emission controls are effective in preventing contamination of the environment. As part of SNL/California`s Environmental Monitoring Program, an environmental surveillance system measures the possible presence of radioactive and hazardous materials in ambient air, surface water, groundwater, sewage, soil, vegetation, and locally produced food-stuffs. The program also includes an extensive environmental dosimetry program, which measures external radiation levels around the Livermore site and nearby vicinity. Each year, the results of the Environmental Monitoring Program are published in this report, the Site Environmental Report. This executive summary focuses on impacts to the environment and estimated radiation doses to the public from site emissions. Chapter 3, {open_quotes}Compliance Summary,{close_quotes} reviews the site`s various environmental protection activities and compliance status, with applicable environmental regulations. The effluent monitoring and environmental surveillance results for 1996 show that SNL/California operations had no harmful effects on the environment or the public. 37 figs., 12 tabs.

  7. Puna Geothermal Venture Hydrologic Monitoring Program

    SciTech Connect (OSTI)

    None

    1990-04-01T23:59:59.000Z

    This document provides the basis for the Hydrologic Monitoring Program (HMP) for the Puna Geothermal Venture. The HMP is complementary to two additional environmental compliance monitoring programs also being submitted by Puma Geothermal Venture (PGV) for their proposed activities at the site. The other two programs are the Meteorology and Air Quality Monitoring Program (MAQMP) and the Noise Monitoring Program (NMP), being submitted concurrently.

  8. Irrigation Monitoring with Soil Water Sensors†

    E-Print Network [OSTI]

    Enciso, Juan; Porter, Dana; Peries, Xavier

    2007-01-19T23:59:59.000Z

    Monitoring soil water content is essential if growers want to optimize production, conserve water, reduce environmental impacts and save money. This publication illustrates how soil moisture monitoring can improve irrigation decisions and how...

  9. Vibration-based damage identification and health monitoring of civil structures

    E-Print Network [OSTI]

    He, Xianfei

    2008-01-01T23:59:59.000Z

    A review of structural health monitoring literature: 1996-integrated framework for structural health monitoring. Ē PhDVibration-based structural health monitoring og highway

  10. MONITORING AND HABITAT ANALYSIS FOR WOLVES IN UPPER MARCEL J. POTVIN,1 School of Forest Resources and Environmental Science Michigan Technological University, Houghton, MI

    E-Print Network [OSTI]

    Resources and Environmental Science Michigan Technological University, Houghton, MI 49931, USA THOMAS D. DRUMMER, Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931, USA University, Houghton, MI 49931, USA DEAN E. BEYER, JR., Michigan Department of Natural Resources, Marquette

  11. BENCHMARK DATA FOR STRUCTURAL HEALTH MONITORING Jyrki Kullaa

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    BENCHMARK DATA FOR STRUCTURAL HEALTH MONITORING Jyrki Kullaa Helsinki Metropolia University analysis is a key function in structural health monitoring (SHM). To develop algorithms for SHM, one needs. KEYWORDS : structural health monitoring, damage detection, environmental or operational effects, moving

  12. Environmental Management System (EMS) objectives & targets : annual results summary %3CU%2B2013%3E FY10.

    SciTech Connect (OSTI)

    Waffelaert, Pascale S.; Vetter, Douglas Walter

    2011-05-01T23:59:59.000Z

    Sandia National Laboratory/New Mexico's (SNL/NM) Environmental Management System is the integrated approach for members of the workforce to identify and manage environmental risks. Each fiscal year (FY) significant environmental aspects are identified and the environmental programs associated with them are charged with the task of routinely monitoring and measuring the objectives and targets that are designed to mitigate the impact of SNL/NM's operations on the environment. An annual summary of the results achieved towards meeting established objectives and targets provides a connection to and rational for annually revised significant aspects. The purpose of this document is to summarize the results achieved and documented in FY2010.

  13. Generic protocol for environmental audits at federal facilities

    SciTech Connect (OSTI)

    NONE

    1989-08-01T23:59:59.000Z

    The Generic Protocol is a supplement to earlier efforts by EPA to provide technical assistance to Federal agencies on environmental auditing. EPA`s Office of Federal Activities (OFA) issued the Federal Facility Compliance Strategy (referred to as the `Yellow Book`), prepared in 1984 and revised in 1988, as a framework for EPA`s media programs to follow to ensure that Federal facilities are fully integrated into Federal and State compliance monitoring and enforcement activities. The policy encourages Federal agencies to voluntarily develop comprehensive auditing programs to ensure environmental compliance.

  14. Site Environmental Report for 2005 Volume I and Volume II

    SciTech Connect (OSTI)

    Ruggieri, Michael

    2006-07-07T23:59:59.000Z

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1A, ''Environment, Safety, and Health Reporting''. The ''Site Environmental Report for 2005'' summarizes Berkeley Lab's environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2005. (Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as ''Berkeley Lab'', ''the Laboratory'', ''Lawrence Berkeley National Laboratory'', and ''LBNL''.) The report is separated into two volumes. Volume I contains an overview of the Laboratory, the status of environmental programs, and summarized results from surveillance and monitoring activities. This year's Volume I text body is organized into an executive summary followed by six chapters. The report's structure has been reorganized this year, and it now includes a chapter devoted to environmental management system topics. Volume II contains individual data results from surveillance and monitoring activities. The ''Site Environmental Report'' is distributed by releasing it on the Web from the Berkeley Lab Environmental Services Group (ESG) home page, which is located at http://www.lbl.gov/ehs/esg/. Many of the documents cited in this report also are accessible from the ESG Web page. CD and printed copies of this Site Environmental Report are available upon request. The report follows the Laboratory's policy of using the International System of Units (SI), also known as the metric system of measurements. Whenever possible, results are also reported using the more conventional (non-SI) system of measurements, because the non-SI system is referenced by several current regulatory standards and is more familiar to some readers. Two tables are provided at the end of the Glossary to help readers: the first defines the prefixes used with SI units of measurement, and the second provides conversions to non-SI units.

  15. Two-Stage, Integrated, Geothermal-CO2 Storage Reservoirs: An Approach for Sustainable Energy Production, CO2-Sequestration Security, and Reduced Environmental Risk

    SciTech Connect (OSTI)

    Buscheck, T A; Chen, M; Sun, Y; Hao, Y; Elliot, T R

    2012-02-02T23:59:59.000Z

    We introduce a hybrid two-stage energy-recovery approach to sequester CO{sub 2} and produce geothermal energy at low environmental risk and low cost by integrating geothermal production with CO{sub 2} capture and sequestration (CCS) in saline, sedimentary formations. Our approach combines the benefits of the approach proposed by Buscheck et al. (2011b), which uses brine as the working fluid, with those of the approach first suggested by Brown (2000) and analyzed by Pruess (2006), using CO{sub 2} as the working fluid, and then extended to saline-formation CCS by Randolph and Saar (2011a). During stage one of our hybrid approach, formation brine, which is extracted to provide pressure relief for CO{sub 2} injection, is the working fluid for energy recovery. Produced brine is applied to a consumptive beneficial use: feedstock for fresh water production through desalination, saline cooling water, or make-up water to be injected into a neighboring reservoir operation, such as in Enhanced Geothermal Systems (EGS), where there is often a shortage of a working fluid. For stage one, it is important to find economically feasible disposition options to reduce the volume of brine requiring reinjection in the integrated geothermal-CCS reservoir (Buscheck et al. 2012a). During stage two, which begins as CO{sub 2} reaches the production wells; coproduced brine and CO{sub 2} are the working fluids. We present preliminary reservoir engineering analyses of this approach, using a simple conceptual model of a homogeneous, permeable CO{sub 2} storage formation/geothermal reservoir, bounded by relatively impermeable sealing units. We assess both the CO{sub 2} sequestration capacity and geothermal energy production potential as a function of well spacing between CO{sub 2} injectors and brine/CO{sub 2} producers for various well patterns and for a range of subsurface conditions.

  16. The Office of Environmental Management technical reports: A bibliography

    SciTech Connect (OSTI)

    NONE

    1998-07-01T23:59:59.000Z

    The Office of Environmental Management`s (EM) technical reports bibliography is an annual publication that contains information on scientific and technical reports sponsored by the Office of Environmental Management added to the Energy Science and Technology Database from July 1, 1995--that were published from October 1, 1996--September 30, 1997. This information is divided into the following categories: Miscellaneous, Focus Areas and Crosscutting Programs, Support Programs, Technology Integration and International Technology Exchange, are now included in the Miscellaneous category. The Office of Environmental Management within the Department of Energy (DOE) is responsible for environmental restoration, waste management, technology development and facility transition and management. Subjects include: subsurface contaminants; mixed waste characterization, treatment and disposal; radioactive tank waste remediation; plutonium; deactivation and decommissioning; robotics; characterization, monitoring, and sensor technology; and efficient separations. 880 refs.

  17. Environmental Report 2007

    SciTech Connect (OSTI)

    Mathews, S; Gallegos, G; Berg, L L; Bertoldo, N A; Campbell, C G; Cerruti, S; Doman, J L; Ferry, L S; Grayson, A R; Jones, H E; Kumamoto, G; Larson, J; MacQueen, D H; Paterson, L; Revelli, M A; Ridley, M; Rueppel, D; Wegrecki, A M; Wilson, K; Woollett, J

    2008-09-24T23:59:59.000Z

    The purposes of the 'Lawrence Livermore National Laboratory Environmental Report 2007' are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites--the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and is available at https://saer.lln.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2007: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff, ambient radiation, and special status wildlife and plants (Chapter 6). Complete monitoring data, which are summarized in the body of the report, are provided in Appendix A. The remaining three chapters discuss the radiological impact on the public from LLNL operations (Chapter 7), LLNL's groundwater remediation program (Chapter 8), and quality assurance for the environmental monitoring programs (Chapter 9). The report uses Systeme International units, consistent with the federal Metric Conversion Act of 1975 and Executive Order 12770, Metric Usage in Federal Government Programs (1991). For ease of comparison to environmental reports issued prior to 1991, dose values and many radiological measurements are given in both metric and U.S. customary units. A conversion table is provided in the glossary.

  18. Monitoring materials

    DOE Patents [OSTI]

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    The apparatus and method provide techniques for effectively implementing alpha and/or beta and/or gamma monitoring of items or locations as desired. Indirect alpha monitoring by detecting ions generated by alpha emissions, in conjunction with beta and/or gamma monitoring is provided. The invention additionally provides for screening of items prior to alpha monitoring using beta and/or gamma monitoring, so as to ensure that the alpha monitoring apparatus is not contaminated by proceeding direct to alpha monitoring of a heavily contaminated item or location. The invention provides additional versatility in the emission forms which can be monitored, whilst maintaining accuracy and avoiding inadvertent contamination.

  19. Performance Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization Performance Monitoring Performance Monitoring A redirector page has been set up without anywhere to redirect to. Last edited: 2014-08-25 14:37:27...

  20. The Development of a MEMS-based Integrated Wireless Remote Biosensors

    E-Print Network [OSTI]

    District of Columbia, University of the

    transmission between divers, unmanned or autonomous undersea vehicle, and pollution monitoring of environmental

  1. WEST VALLEY DEMONSTRATION PROJECT SITE ENVIRONMENTAL REPORT CALENDARY YEAR 2001

    SciTech Connect (OSTI)

    NONE

    2002-09-30T23:59:59.000Z

    THE ANNUAL (CALENDAR YEAR 2001) SITE ENVIRONMENTAL MONITORING REPORT FOR THE WEST VALLEY DEMONSTRATION PROJECT NUCLEAR WASTE MANAGEMENT FACILITY.

  2. Geophysical Monitoring of Hydrological and Biogeochemical

    E-Print Network [OSTI]

    Hubbard, Susan

    Geophysical Monitoring of Hydrological and Biogeochemical Transformations Associated with Cr explored the use of geophysical approaches for monitoring the spatiotemporal distribution of hydrological first integrated hydrological wellbore and geophysical tomographic data sets to estimate hydrological

  3. Site environmental report for 1994

    SciTech Connect (OSTI)

    Brekke, D.D.; Holland, R.C.; Gordon, K.W. [ed.

    1995-12-01T23:59:59.000Z

    Sandia National Laboratories (SNL) is committed to conducting its operations in an environmentally safe and sound manner. It is mandatory that activities at SNL/California comply with all applicable environmental statutes, regulations, and standards. Moreover, SNL/California continuously strives to reduce risks to employees, the public, and the environment to the lowest levels reasonably possible. To help verify effective protection of public safety and preservation of the environment, SNL/California maintains an extensive, ongoing environmental monitoring program. This program monitors all significant airborne and liquid effluents and the environment at the SNL/California site perimeter. Lawrence Livermore National Laboratory (LLNL) performs off-site environmental monitoring for both sites. These monitoring efforts ensure that emission controls are effective in preventing contamination of the environment. As part of SNL/California`s Environmental Monitoring Program, an environmental surveillance system measures the possible presence of radioactive and hazardous materials in ambient air, surface water, groundwater, sewage, soil, vegetation, and locally-produced food-stuffs. The program also includes an extensive environmental dosimetry program, which measures external radiation levels around the Livermore site and nearby vicinity. Each year, the results of the Environmental Monitoring Program are published in this report, the Site Environmental Report This executive summary focuses on impacts to the environment and estimated radiation doses to the public from site emissions. Chapter 3, {open_quotes}Compliance Summary,{close_quotes} reviews the site`s various environmental protection activities and compliance status with applicable environmental regulations. The effluent monitoring and environmental surveillance results for 1994 show that SNL/California operations had no harmful effects on the environment or the public. A summary of the findings is provided below.

  4. The Integration of On-Line Monitoring and Reconfiguration Functions using EDAA - European design and Automation Association1149.4 Into a Safety Critical Automotive Electronic Control Unit

    E-Print Network [OSTI]

    Jeffrey, C; Prosser, S; Lickess, M; Richardson, A; Riches, S

    2011-01-01T23:59:59.000Z

    This paper presents an innovative application of EDAA - European design and Automation Association 1149.4 and the Integrated Diagnostic Reconfiguration (IDR) as tools for the implementation of an embedded test solution for an Automotive Electronic Control Unit implemented as a fully integrated mixed signal system. The paper described how the test architecture can be used for fault avoidance with results from a hardware prototype presented. The paper concludes that fault avoidance can be integrated into mixed signal electronic systems to handle key failure modes.

  5. Annual Site Environmental Report Calendar Year 2007

    SciTech Connect (OSTI)

    Dan Kayser-Ames Laboratory

    2007-12-31T23:59:59.000Z

    This report summarizes the environmental status of Ames Laboratory for calendar year 2007. It includes descriptions of the Laboratory site, its mission, the status of its compliance with applicable environmental regulations, its planning and activities to maintain compliance, and a comprehensive review of its environmental protection, surveillance and monitoring activities. Ames Laboratory is located on the campus of Iowa State University (ISU) and occupies 11 buildings owned by the Department of Energy (DOE). See the Laboratory's Web page at www.external.ameslab.gov for locations and Laboratory overview. The Laboratory also leases space in ISU owned buildings. In 2007, the Laboratory accumulated and disposed of waste under U.S. Environmental Protection Agency (EPA) issued generator numbers. All waste is handled according to all applicable EPA, State, Local and DOE Orders. In 2006 the Laboratory reduced its generator status from a Large Quantity Generator (LQG) to a Small Quantity Generator (SQG). EPA Region VII was notified of this change. The Laboratory's RCRA hazardous waste management program was inspected by EPA Region VII in April 2006. There were no notices of violations. The inspector was impressed with the improvements of the Laboratory's waste management program over the past ten years. The Laboratory was in compliance with all applicable federal, state, local and DOE regulations and orders in 2007. There were no radiological air emissions or exposures to the general public due to Laboratory activities in 2007. See U.S. Department of Energy Air Emissions Annual Report in Appendix B. As indicated in prior SERs, pollution awareness, waste minimization and recycling programs have been in practice since 1990, with improvements implemented most recently in 2003. Included in these efforts were battery and CRT recycling, waste white paper and green computer paper-recycling. Ames Laboratory also recycles/reuses salvageable metal, used oil, styrofoam peanuts, batteries, fluorescent lamps and telephone books. Ames Laboratory reported to DOE-Ames Site Office (AMSO), through the Laboratory's Self Assessment Report, on its Affirmative Procurement Performance Measure. A performance level of 'A' was achieved in 2007 for Integrated Safety, Health, and Environmental Protection. As reported in Site Environmental Reports for prior years, the Laboratory's Environmental Management System has been integrated into the Laboratory's Integrated Safety Management System since 2005. The integration of EMS into the way the Laboratory does business allows the Laboratory to systematically review, address and respond to the Laboratory's environmental impacts.

  6. Site Environmental Report, 1993

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    The Site Environmental Report (SER) is prepared annually in accordance with DOE Order 5400.1, ``General Environmental Protection Program.`` This 1993 SER provides the general public as well as scientists and engineers with the results from the site`s ongoing Environmental Monitoring Program. Also included in this report is information concerning the site`s progress toward achieving full compliance with requirements set forth by DOE, US Environmental Protection Agency (USEPA), and Ohio EPA (OEPA). For some readers, the highlights provided in the Executive Summary may provide sufficient information. Many readers, however, may wish to read more detailed descriptions of the information than those which are presented here.

  7. Hanford Site Environmental Report 1999

    SciTech Connect (OSTI)

    TM Poston; RW Hanf; RL Dirkes

    2000-09-28T23:59:59.000Z

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmental programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1999 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, groundwater protection and monitoring information; and (6) discuss the activities to ensure quality.

  8. Hanford Site Environmental Report 1993

    SciTech Connect (OSTI)

    Dirkes, R.L.; Hanf, R.W.; Woodruff, R.K. [eds.

    1994-06-01T23:59:59.000Z

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The report is written to meet reporting requirements and Guidelines of the U.S. Department of Energy (DOE) an to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to (a) describe the Hanford Site and its mission, (b) summarize the status in 1993 of compliance with environmental regulations, (c) describe the environmental programs at the Hanford Site, (d) discuss estimated radionuclide exposure to the public from 1993 Hanford activities, (e) present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, (f) discuss activities to ensure quality. More detailed information can be found in the body of the report, the appendixes, and the cited references.

  9. Hanford Site 1998 Environmental Report

    SciTech Connect (OSTI)

    RL Dirkes; RW Hanf; TM Poston

    1999-09-21T23:59:59.000Z

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: describe the Hanford Site and its mission; summarize the status of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss the estimated radionuclide exposure to the public from 1998 Hanford Site activities; present the effluent monitoring, environmental surveillance, and groundwater protection and monitoring information; and discuss the activities to ensure quality.

  10. Post-DiplomaBachelorofScience EnvironmentalScience

    E-Print Network [OSTI]

    Seldin, Jonathan P.

    Management Technology) Environmental Conservation and Reclamation Environmental Protection Technology Conservation Lethbridge College Environmental Assessment and Restoration (formerly Watershed Management Management (Soil and Water Conservation) (prior to 2004) Selkirk College Integrated Environmental Planning

  11. Post-DiplomaBachelorofScience EnvironmentalScience

    E-Print Network [OSTI]

    Seldin, Jonathan P.

    Management Technology) Environmental Conservation and Reclamation Environmental Protection Technology and Fisheries Conservation Lethbridge College Environmental Assessment and Restoration (formerly Watershed Conservation) (prior to 2004) Selkirk College Integrated Environmental Planning Technology Recreation, Fish

  12. Savannah River Site environmental data for 1995

    SciTech Connect (OSTI)

    Arnett, M.W. [ed.

    1995-12-31T23:59:59.000Z

    This document presents data from Savannah River Site routine environmental monitoring and surveillance programs. An attempt also has been made to include all available data from environmental research programs.

  13. Characterizing a scientific elite: the social characteristics of the most highly cited scientists in environmental science and ecology

    E-Print Network [OSTI]

    Parker, John N.; Lortie, Christopher; Allesina, Stefano

    2010-01-01T23:59:59.000Z

    environmental health, monitoring, technology, geology, and management; natural history; soil science and conservation; and water resources

  14. Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Finch, S.M.; McMakin, A.H. (comps.)

    1991-01-01T23:59:59.000Z

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport environmental monitoring data; demographics, agriculture, food habits; environmental pathways and dose estimates.

  15. Oak Ridge Reservation Annual Site environmental report for 1994

    SciTech Connect (OSTI)

    Koncinski, W.S. [ed.] [Oak Ridge National Lab., TN (United States)

    1995-10-01T23:59:59.000Z

    This report presents the details of the environmental monitoring and management plan for the Oak Ridge Reservation. Topics include: site and operations overview; environmental compliance strategies; environmental management program; effluent monitoring; environmental surveillance; radiation doses; chemical doses; ground water; and quality assurance.

  16. E-mail: whare@udc.eduhttp://www.udc.edu//wrri Integrating Water Quality Monitoring and Modeling as a Tool for

    E-Print Network [OSTI]

    District of Columbia, University of the

    system Ground water quality Storm water Wastewater treatment plant Rainfall runoff Environmental and biological water quality parameters in water and wastewater. Examples are: (1) Senion2, (2) Titrino, (3) p the research and training needs of our faculty, students as well as water and wastewater operators. The main

  17. Environmental Education Strategic Plan

    SciTech Connect (OSTI)

    none,

    1991-12-01T23:59:59.000Z

    This document is designed to guide the Environmental Education and Development Branch (EM-522) of the EM Office of Technology (OTD) Development, Technology Integration and Environmental Education Division (EM-52) in planning and executing its program through EM staff, Operations Offices, National Laboratories, contractors, and others.

  18. Marsh, mudflat and tidal creek assessment Cumberland Island National Seashore. Kings Bay Environmental Monitoring Program cumberland island national seashore. Technical report

    SciTech Connect (OSTI)

    Nakashima, L.D.

    1991-01-01T23:59:59.000Z

    The project was designed to determine whether backbarrier dredging for the Kings Bay Naval Base is affecting marsh habitat sustainability on Cumberland Island. Research was predicated on the hypothesis that if the operation is indeed exerting an influence on Cumberland Island, it will most likely be first perceived in the effect it has on the rates of supply and delivery of sediments to the marshes and mudflats. The authors located three comparable sites, which experience a different level of exposure to the effects of dredging. Second, we initiated a time-series of marsh/mudflat sedimentation measurements, which are expected to be continued in future years. Finally, we compared six different methods for monitoring sedimentation, all of which are currently in practice.

  19. The Savannah River Site's Groundwater Monitoring Program, third quarter 1991

    SciTech Connect (OSTI)

    Not Available

    1992-02-17T23:59:59.000Z

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. Analytical results from third quarter 1991 are listed in this report.

  20. Environmental Management System (EMS) objectives and targets : annual results summary - FY2011.

    SciTech Connect (OSTI)

    Vetter, Douglas Walter

    2012-02-01T23:59:59.000Z

    Sandia National Laboratories/New Mexico's (SNL/NM) Environmental Management System is the integrated approach for members of the workforce to identify and manage environmental risks. Each Fiscal Year (FY) SNL/NM performs an analysis to identify environmental aspects, and the environmental programs associated with them are charged with the task of routinely monitoring and measuring the objectives and targets that are established to mitigate potential impacts of SNL/NM's operations on the environment. An annual summary of the results achieved towards meeting established objectives and targets provides a connection to, and rational for, annually revised environmental aspects. The purpose of this document is to summarize the results achieved and documented in FY2011.

  1. Environmental Management System (EMS) objectives&targets annual results summary : FY2012.

    SciTech Connect (OSTI)

    Vetter, Douglas Walter

    2013-02-01T23:59:59.000Z

    Sandia National Laboratories/New Mexico's (SNL/NM) Environmental Management System is the integrated approach for members of the workforce to identify and manage environmental risks. Each Fiscal Year (FY) SNL/NM performs an analysis to identify environmental aspects, and the environmental programs associated with them are charged with the task of routinely monitoring and measuring the objectives and targets that are established to mitigate potential impacts of SNL/NM's operations on the environment. An annual summary of the results achieved towards meeting established objectives and targets provides a connection to, and rational for, annually revised environmental aspects. The purpose of this document is to summarize the results achieved and documented in FY2012.

  2. Arnold Schwarzenegger INTEGRATED FORECAST AND

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN: California Energy Commission Energy-Related Environmental Research Joseph O' Hagan Contract Manager Joseph O' Hagan Project Manager Kelly Birkinshaw Program Area Manager ENERGY-RELATED ENVIRONMENTAL RESEARCH Martha

  3. UNIVERSITY OF BRISTOL ENVIRONMENTAL POLICY The University of Bristol believes that protection of the environment is an integral part of good institutional practice and that it

    E-Print Network [OSTI]

    Bristol, University of

    the last ten years. AIMS · Reduce consumption and costs whilst satisfying the University's needs for energy systems. 8. Identify and implement cost effective energy & water conservation measures. 9. Maintain an on-going energy/water and environmental management investment fund. 10. Conduct regular environmental site audits

  4. Environmental Implementation Plan

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    The Environmental Implementation Plan (EIP) is a dynamic long-range environmental-protection plan for SRS. The EIP communicates the current and future (five year) environmental plans from individual organizations and divisions as well as site environmental initiatives which are designed to protect the environment and meet or exceed compliance with changing environmental/ regulatory requirements. Communication with all site organizations is essential for making the site environmental planning process work. Demonstrating environmental excellence is a high priority embodied in DOE and WSRC policy. Because of your support and participation in the three EIP initiatives; Reflections, Sectional Revision, and Integrated Planning, improvements are being made to the EIP and SRS environmental protection programs. I appreciate the ``Partnership in Environmental Excellence`` formed by the environmental coordinators and professionals who work daily toward our goal of compliance and environmental excellence. I look forward to seeing continued success and improvement in our environmental protection programs through combined efforts of all site organizations to protect our employees, the public health, and the environment. Together, we will achieve our site vision for SRS to be the recognized model for Environmental Excellence in the DOE Nuclear Weapons Complex.

  5. Much ado about SEA/SA monitoring: The performance of English Regional Spatial Strategies, and some German comparisons

    SciTech Connect (OSTI)

    Hanusch, Marie [Helmholtz Centre for Environmental Research - UFZ, Department Urban Ecology, Environmental Planning and Transport, Permoserstr. 15, 04318 Leipzig (Germany)], E-mail: marie.hanusch@ufz.de; Glasson, John [Oxford Brookes University, Oxford Institute for Sustainable Development, School of the Built Environment, Headington Campus, Gipsy Lane, Oxford OX3 0BP (United Kingdom)

    2008-11-15T23:59:59.000Z

    Strategic Environmental Assessment (SEA) seeks to better integrate environmental considerations into the preparation and decision-making process of plans and programmes with a view to promoting sustainable development. Further to application of the European Directive 2001/42/EC (SEA Directive) in 2004, the body of practical SEA experience, and parallel research, has increased steadily. Yet there is a crucial element of SEA which cannot build on much experience but whose importance will grow over time - namely that of SEA monitoring. The paper explores the application of SEA monitoring for English Regional Spatial Strategies (RSSs). It briefly introduces the role of SEA monitoring and its legal requirements, the English approach of integrating SEA into Sustainability Appraisal (SA) and the nature of the current English Regional Planning context. The main part presents the research findings and discusses how practitioners cope with the challenges of SEA/SA monitoring - with guiding questions: why, what, who, how, when, and with what outcomes? Reflecting that monitoring is just about to start, the paper draws on measures envisaged for monitoring in the SA reports prepared for RSS, and on expert interviews. It identifies monitoring trends and highlights workable approaches as well as shortcomings. For a critical reflection the findings are mirrored briefly with SEA monitoring approaches of German Regional Plans. Although it is still early days for such monitoring, the findings indicate that there is a danger that some of the specific requirements and objectives of SEA/SA monitoring are not fully met, mainly due to insufficient databases, inappropriate institutional conditions and limited personnel and financial resources. Some recommendations are offered in conclusion.

  6. Lawrence Berkeley National Laboratory 1995 site environmental report

    SciTech Connect (OSTI)

    Balgobin, D.; Javandel, I.; Lackner, G.; Smith, C.; Thorson, P.; Tran, H.

    1996-07-01T23:59:59.000Z

    The 1995 Site Environmental Report summarizes environmental activities at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) for the 1995 calendar year. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the environmental management programs. The report also discusses significant highlights and plans of these programs. Topics discussed include: environmental monitoring, environmental compliance programs, air quality, water quality, ground water protection, sanitary sewer monitoring, soil and sediment quality, vegetation and foodstuffs monitoring, and special studies which include preoperational monitoring of building 85 and 1995 sampling results, radiological dose assessment, and quality assessment.

  7. Environmental Programs Environmental Programs Committee

    E-Print Network [OSTI]

    Richards-Kortum, Rebecca

    162 Environmental Programs Environmental Programs Committee Walter Whitfield Isle, Chair (English) Katherine Bennett Ensor (Statistics) Mark R. Wiesner (Civil and Environmental Engineering) Donald Ostdiek (Architecture) The Environmental Programs Committee coordinates courses and curricula on environmental topics

  8. Portal monitoring technology control process

    SciTech Connect (OSTI)

    York, R.L.

    1998-12-31T23:59:59.000Z

    Portal monitors are an important part of the material protection, control, and accounting (MPC and A) programs in Russia and the US. Although portal monitors are only a part of an integrated MPC and A system, they are an effective means of controlling the unauthorized movement of special nuclear material (SNM). Russian technical experts have gained experience in the use of SNM portal monitors from US experts ad this has allowed them to use the monitors more effectively. Several Russian institutes and companies are designing and manufacturing SNM portal monitors in Russia. Interactions between Russian and US experts have resulted in improvements to the instruments. SNM portal monitor technology has been effectively transferred from the US to Russia and should be a permanent part of the Russian MPC and A Program. Progress in the implementation of the monitors and improvements to how they are used are discussed.

  9. Site Environmental Report for 1995

    SciTech Connect (OSTI)

    Holland, R.C.; Brekke, D.D.

    1996-07-01T23:59:59.000Z

    Sandia National Laboratories (SNC) is a prime contractor to the Department of Energy (DOE), engaged in research and development This report describes the environmental monitoring report for Sandia National Laboratories.

  10. Annual Site Environmental Report

    SciTech Connect (OSTI)

    Finley, Virginia [PPPL

    2014-10-02T23:59:59.000Z

    This report provides the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of Princeton Plasma Physics Laboratoryís (PPPL) operations. The results of the 2013 environmental surveillance and monitoring program for PPPLís are presented and discussed. The report also summarizes environmental initiatives, assessments, and community involvement programs that were undertaken in 2013.

  11. Hanford Environmental Information System (HEIS) Operator`s Manual. Volume 1

    SciTech Connect (OSTI)

    Schreck, R.I.

    1991-10-01T23:59:59.000Z

    The Hanford Environmental Information System (HEIS) is a consolidated set of automated resources that effectively manage the data gathered during environmental monitoring and restoration of the Hanford Site. The HEIS includes an integrated database that provides consistent and current data to all users and promotes sharing of data by the entire user community. This manual describes the facilities available to the operational user who is responsible for data entry, processing, scheduling, reporting, and quality assurance. A companion manual, the HEIS User`s Manual, describes the facilities available-to the scientist, engineer, or manager who uses the system for environmental monitoring, assessment, and restoration planning; and to the regulator who is responsible for reviewing Hanford Site operations against regulatory requirements and guidelines.

  12. Arnold Schwarzenegger INTEGRATED FORECAST AND

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN Manager Joseph O' Hagan Project Manager Kelly Birkinshaw Program Area Manager ENERGY-RELATED ENVIRONMENTAL

  13. Innovative coke oven gas cleaning system for retrofit applications. Quarterly environmental monitoring report No. 1, January 1, 1991--June 30, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-08-24T23:59:59.000Z

    The coke plant at the Sparrows Point Plant consist of three coke oven batteries and two coal chemical plants. The by-product coke oven gas (COG) consists primarily of hydrogen, methane, carbon monoxide, nitrogen and contaminants consisting of tars, light oils (benzene, toluene, and xylene) hydrogen sulfide, ammonia, water vapor and other hydrocarbons. This raw coke oven gas needs to be cleaned of most of its contaminants before it can be used as a fuel at other operations at the Sparrows Point Plant. In response to environmental concerns, BSC decided to replace much of the existing coke oven gas treatment facilities in the two coal chemical Plants (A and B) with a group of technologies consisting of: Secondary Cooling of the Coke oven Gas; Hydrogen Sulfide Removal; Ammonia Removal; Deacification of Acid Gases Removed; Ammonia Distillation and Destruction; and, Sulfur Recovery. This combination of technologies will replace the existing ammonia removal system, the final coolers, hydrogen sulfide removal system and the sulfur recovery system. The existing wastewater treatment, tar recovery and one of the three light oil recovery systems will continue to be used to support the new innovative combination of COG treatment technologies.

  14. Hanford Site ground-water monitoring for 1994

    SciTech Connect (OSTI)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01T23:59:59.000Z

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  15. Rocky Flats Plant Site Environmental Report: 1993 Highlights

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    The Rocky Flats Plant Site Environmental Report provides summary information on the plant`s environmental monitoring programs and the results recorded during 1993. The report contains a compliance summary, results of environmental monitoring and other related programs, a review of environmental remediation activities, information on external gamma radiation dose monitoring, and radiation dose estimates for the surrounding population. This section provides an overview of these topics and summarizes more comprehensive discussions found in the main text of this annual report.

  16. Critical Environmentalism - Towards an Epistemic Framework for Architecture

    E-Print Network [OSTI]

    Anz, Craig K.

    2010-01-16T23:59:59.000Z

    environmental domain. CE addresses environmental issues reciprocally emerging across numerous disciplines and theoretical stances and fosters critical and systemically collective approaches to knowledge integration, amalgamating multiple stakeholder perspectives...

  17. EIS-0409: EPA Notice of Availability of the Draft Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Draft Environmental Impact Statement EIS-0409: EPA Notice of Availability of the Draft Environmental Impact Statement Kemper County Integrated Gasification Combined-Cycle (IGCC)...

  18. EIS-0409: EPA Notice of Availability of the Final Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Environmental Impact Statement EIS-0409: EPA Notice of Availability of the Final Environmental Impact Statement Kemper County Integrated Gasification Combined-Cycle (IGCC)...

  19. Environmental Public Health Performance Standards Environmental Health Program Self-assessment Instrument (Version 2)

    E-Print Network [OSTI]

    Environmental Public Health Performance Standards Environmental Health Program Self-assessment Assessment Instrument, 1/7/2010 Page 3 Essential Service #1: Monitor environmental and health status health assessment been completed? 1.1B Is the community environmental health assessment updated at least

  20. Savannah River Site environmental report for 1993

    SciTech Connect (OSTI)

    Arnett, M.W.; Karapatakis, L.K.; Mamatey, A.R. [eds.

    1994-08-01T23:59:59.000Z

    Savannah River Site (SRS) conducts effluent monitoring and environmental surveillance to ensure the safety of the public and the well-being of the environment. DOE Order 5400,1, ``General Environmental Protection Program,`` requires the submission of an environmental report that documents the impact of facility operations on the environment and on public health. SRS has had an extensive environmental surveillance program in place since 1951 (before site startup). At that time, data generated by the on-site surveillance program were reported in site documents. Beginning in 1959, data from off-site environmental monitoring activities were presented in reports issued for public dissemination. Separate reporting of SRS`s on- and off-site environmental monitoring activities continued until 1985, when data from both surveillance programs were merged into a single public document. The Savannah River Site Environmental Report for 1993 is an overview of effluent monitoring and environmental surveillance activities conducted on and in the vicinity of SRS from January 1 through December 31, 1993. For complete program descriptions, consult the ``SRS Environmental Monitoring Plan`` (WSRC-3Ql-2-1000). It documents the rationale and design criteria for the monitoring program, the frequency of monitoring and analysis, the specific analytical and sampling procedures, and the quality assurance requirements.

  1. Environmental Participation and Environmental Motivation

    E-Print Network [OSTI]

    Torgler, Benno; GarcŪa-ValiŮas, MarŪa A.; Macintyre, Alison

    2009-01-01T23:59:59.000Z

    Willingness to pay for environmental protection in Germany:varying the causes of environmental problems on stated WTPstudy. Journal of Environmental Economics and Management,

  2. Environmental Engineering

    E-Print Network [OSTI]

    Wang, Hai

    CEECivil & Environmental Engineering THE SONNY ASTANI DEPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING #12;Civil and Environmental engineers are critical in addressing the needs of civilization and human origins. Civil and Environmental Engineers create, con- struct, and manage the infrastructure

  3. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1998

    SciTech Connect (OSTI)

    V. Finley

    2000-03-06T23:59:59.000Z

    The results of the 1998 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the US Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1998. One significant initiative is the Integrated Safety Management (ISM) program that embraces environment, safety, and health principles as one.

  4. TEMPERATURE AND LOAD EFFECTS ON ACOUSTIC EMISSION SIGNALS FOR STRUCTURAL HEALTH MONITORING APPLICATIONS

    E-Print Network [OSTI]

    Boyer, Edmond

    TEMPERATURE AND LOAD EFFECTS ON ACOUSTIC EMISSION SIGNALS FOR STRUCTURAL HEALTH MONITORING. KEYWORDS : Structural Health Monitoring, Acoustic Emission, Environmental and Operational Conditions2014 Author manuscript, published in "EWSHM - 7th European Workshop on Structural Health Monitoring

  5. Environmental Report 1996

    SciTech Connect (OSTI)

    Harrach, R.J.

    1996-01-01T23:59:59.000Z

    This summary provides an overview of LLNL`s environmental activities in 1996, including radiological and nonradiological surveillance, effluent and compliance monitoring, remediation, assessment of radiological releases and doses, and determination of the impact of LLNL operations on the environment and public health.

  6. 2009 Site Environmental Report

    SciTech Connect (OSTI)

    Ratel, K.M.; Brookhaven National Laboratory

    2010-09-30T23:59:59.000Z

    Each year, Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy. The report is written to inform the public, regulators, employees, and other stakeholders of BNL's environmental performance during the calendar year in review. The SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and compliance, restoration, and surveillance monitoring program performance. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. The report is available in print and as a downloadable file on the BNL web page at http://www.bnl.gov/ewms/ser/. A summary of the SER is also prepared each year to provide a general overview of the report, and is distributed with a CD of the full report.

  7. 2005 SITE ENVIRONMENTAL REPORT

    SciTech Connect (OSTI)

    BROOKHAVEN NATIONAL LABORATORY

    2006-08-29T23:59:59.000Z

    Each year, Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy (DOE). The report is written to inform the public, regulators, employees, and other stakeholders of BNL's environmental performance during the calendar year in review. The SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and compliance, restoration, and surveillance monitoring program performance. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. The report is available in print and as a downloadable file on the BNL web page at http://www.bnl.gov/ewms/ser/. A summary of the SER is also prepared each year to provide a general overview of the report, and is distributed with a CD of the full report.

  8. 2006 SITE ENVIRONMENTAL REPORT

    SciTech Connect (OSTI)

    BROOKHAVEN NATIONAL LABORATORY; RATEL,K.

    2007-10-01T23:59:59.000Z

    Each year, Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy. The report is written to inform the public, regulators, employees, and other stakeholders of BNL's environmental performance during the calendar year in review. The SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and compliance, restoration, and surveillance monitoring program performance. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. The report is available in print and as a downloadable file on the BNL web page at http://www.bnl.gov/ewms/ser/. A summary of the SER is also prepared each year to provide a general overview of the report, and is distributed with a CD of the full report.

  9. ENVS 4000, Spring (Jan-Apr) 2006 Monitoring Ecosystems

    E-Print Network [OSTI]

    Johnson, Dan L.

    systems depend on ecosystems for food, materials, energy, purification, enjoyment, a sense of place challenges. Adaptive ecosystem management depends on knowledge of system states and dynamics, and therefore and models for ecosystem monitoring and management, including Environmental Benefit Analysis, Environmental

  10. 1995 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect (OSTI)

    Shyr, L.J.; Duncan, D. [eds.] [eds.; Sanchez, R.

    1996-09-01T23:59:59.000Z

    This 1995 report contains data from routine radiological and non-radiological environmental monitoring activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration and various waste management programs at Sandia National Laboratories in Albuquerque, New Mexico, are included.

  11. Environmental report for Pantex Plant, 1993

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This report presents summaries and interpretations of the environmental monitoring data collected during 1993 at Pantex Plant. Additionally, it outlines site environmental management performance, summarizes compliance with applicable environmental regulations, and describes significant programs and achievements. Environmental monitoring is composed of two principal collection and analysis activities for radiological and nonradiological constituents: (1) effluent monitoring involving liquid and airborne effluents to characterize and quantify releases and (2) environmental surveillance involving water, soil, vegetation, and biota and measurement of external radiation to characterize environmental impacts of Pantex Plant. Data are used to assess impacts of operations to the public and the environment and to demonstrate compliance with applicable standards for both radiological and nonradiological contaminants. In 1993 more than 270 onsite and offsite locations were monitored regularly with 4000 samples collected and analyzed. Data from a location at the US Department of Agriculture Bushland Agricultural Research Service and historical data are also presented for reference.

  12. Environmental report 1993

    SciTech Connect (OSTI)

    Wilt, G.C. [ed.; Gallegos, G.M.; Tate, P.J.; Balke, B.K. [and others

    1994-09-01T23:59:59.000Z

    Lawrence Livermore National Laboratory (LLNL), a US Department of Energy (DOE) facility operated by the University of California, serves as a national resource of scientific, technical, and engineering capability with a special focus on national security. Over the years, the Laboratory`s mission has been broadened to encompass such areas as strategic defense, energy, the environment, biomedicine, the economy, and education. The Laboratory carries out this mission in compliance with local, state, and federal environmental regulatory requirements and takes measures to ensure that its operations do not adversely affect the environment or public health. It does so with the support of the Environmental Protection Department, which is responsible for environmental monitoring, environmental restoration, hazardous waste management, and ensuring environmental compliance. During 1993, the Environmental Protection Department conducted sampling of air, sewage effluent, ground water, surface water, soil, vegetation and foodstuffs, and took measurements of environmental radiation. It performed more than 190,000 analyses of environmental samples. The analytical results are summarized along with evaluations of the impact of radioactive and nonradioactive materials, a discussion of the effects of LLNL operations on the environment, and a summary of the activities undertaken to comply with local, state, and federal environmental laws.

  13. Strategic Petroleum Reserve Site Environmental Report for calendar year 1994

    SciTech Connect (OSTI)

    NONE

    1995-05-31T23:59:59.000Z

    The purpose of this Site Environmental Report (SER) is to characterize site environmental management performance, confirm compliance with environmental standards and requirements, and highlight significant programs and efforts. The SER, provided annually in accordance with Department of Energy DOE Order 5400.1, serves the public by summarizing monitoring data collected to assess how the Strategic Petroleum Reserve (SPR) impacts the environment. This report (SER) provides a balanced synopsis of non-radiological monitoring and regulatory compliance data and affirms that the SPR has been operating within acceptable regulatory limits. Included in this report is a description of each site`s environment, an overview of the SPR environmental program, and a recapitulation of special environmental activities and events associated with each SPR site during 1994. Two of these highlights include decommissioning of the Weeks Island facility (disposition of 73 million barrels of crude oil inventory) as well as the degasification of up to 144 million barrels of crude oil inventory at the Bayou Choctaw, Big Hill, Bryan Mound, and West Hackberry facilities. The decision to decommission the Weeks Island facility is a result of diminishing mine integrity from ground water intrusion. Degasifying the crude oil is required to reduce potentially harmful emissions that would occur during oil movements. With regard to still another major environmental action, 43 of the original 84 environmental findings from the 1992 DOE Tiger Team Assessment were closed by the end of 1994. Spills to the environment, another major topic, indicates a positive trend. Total volume of oil spilled in 1994 was only 39 barrels, down from 232 barrels in 1993, and the total volume of brine spilled was only 90 barrels, down from 370 barrels in 1993. The longer term trend for oil and brine spills has declined substantially from 27 in 1990 down to nine in 1994.

  14. CEBAF - environmental protection program plan

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    An important objective in the successful operation of the Continuous Electron Beam Accelerator Facility (CEBAF) is to ensure protection of the public and the environment. To meet this objective, the Southeastern Universities Research Association, Inc., (SURA) is committed to working with the US Department of Energy (DOE) to develop, implement, and manage a sound and workable environmental protection program at CEBAF. This environmental protection plan includes information on environmental monitoring, long-range monitoring, groundwater protection, waste minimization, and pollution prevention awareness program plan.

  15. Environmental Report 1995. Volume 1

    SciTech Connect (OSTI)

    Harrach, R.J.; Failor, R.A.; Gallegos, G.M. [and others

    1996-09-01T23:59:59.000Z

    This report contains the results of Lawrence Livermore National Laboratory`s (LLNL) environmental monitoring and compliance effort and an assessment of the impact of LLNL operations on the environment and the public. This first volume describes LLNL`s environmental impact and compliance activities and features descriptive and explanatory text, summary data tables, and plots showing data trends. The summary data include measures of the center of data, their spread or variability, and their extreme values. Chapters on monitoring air, sewage, surface water, ground water, soil and sediment, vegetation and foodstuff, and environmental radiation are present.

  16. Intelligent Software Agents: Sensor Integration and Response

    SciTech Connect (OSTI)

    Kulesz, James J [ORNL; Lee, Ronald W [ORNL

    2013-01-01T23:59:59.000Z

    Abstract In a post Macondo world the buzzwords are Integrity Management and Incident Response Management. The twin processes are not new but the opportunity to link the two is novel. Intelligent software agents can be used with sensor networks in distributed and centralized computing systems to enhance real-time monitoring of system integrity as well as manage the follow-on incident response to changing, and potentially hazardous, environmental conditions. The software components are embedded at the sensor network nodes in surveillance systems used for monitoring unusual events. When an event occurs, the software agents establish a new concept of operation at the sensing node, post the event status to a blackboard for software agents at other nodes to see , and then react quickly and efficiently to monitor the scale of the event. The technology addresses a current challenge in sensor networks that prevents a rapid and efficient response when a sensor measurement indicates that an event has occurred. By using intelligent software agents - which can be stationary or mobile, interact socially, and adapt to changing situations - the technology offers features that are particularly important when systems need to adapt to active circumstances. For example, when a release is detected, the local software agent collaborates with other agents at the node to exercise the appropriate operation, such as: targeted detection, increased detection frequency, decreased detection frequency for other non-alarming sensors, and determination of environmental conditions so that adjacent nodes can be informed that an event is occurring and when it will arrive. The software agents at the nodes can also post the data in a targeted manner, so that agents at other nodes and the command center can exercise appropriate operations to recalibrate the overall sensor network and associated intelligence systems. The paper describes the concepts and provides examples of real-world implementations including the Threat Detection and Analysis System (TDAS) at the International Port of Memphis and the Biological Warning and Incident Characterization System (BWIC) Environmental Monitoring (EM) Component. Technologies developed for these 24/7 operational systems have applications for improved real-time system integrity awareness as well as provide incident response (as needed) for production and field applications.

  17. Oak Ridge Y-12 Plant biological monitoring and abatement program (BMAP) plan

    SciTech Connect (OSTI)

    Adams, S.M.; Brandt, C.C.; Cicerone, D.S. [and others

    1998-02-01T23:59:59.000Z

    The proposed Biological Monitoring and Abatement Program (BMAP) for East Fork Poplar Creek (EFPC) at the Oak Ridge Y-12 Plant, as described, will be conducted for the duration of the National Pollutant Discharge Elimination System permit issued for the Y-12 Plant on April 28, 1995, and which became effective July 1, 1995. The basic approach to biological monitoring used in this program was developed by the staff in the Environmental Sciences Division at the Oak Ridge National Laboratory at the request of Y-12 Plant personnel. The proposed BMAP plan is based on results of biological monitoring conducted since 1985. Details of the specific procedures used in the current routine monitoring program are provided, but experimental designs for future studies are described in less detail. The overall strategy used in developing this plan was, and continues to be, to use the results obtained from each task to define the scope of future monitoring efforts. Such efforts may require more intensive sampling than initially proposed in some areas or a reduction in sampling intensity in others. By using the results of previous monitoring efforts to define the current program and to guide them in the development of future studies, an effective integrated monitoring program has been developed to assess the impacts of the Y-12 Plant operation on the biota of EFPC and to document the ecological effects of remedial actions.

  18. Live Webinar on the Funding Opportunity for Environmental Stewardship for Renewable Energy Technologies: MHK Environmental and Resource Characterization Instrumentation

    Broader source: Energy.gov [DOE]

    This FOA will support the development of instrumentation, associated signal processing algorithms or software, and integration of instrumentation packages for monitoring the environmental impacts of marine and hydrokinetic technologies. It will also support the development and testing of sensors, instrumentation, or processing techniques to collect physical data on ocean waves (e.g., height, period, directionality, steepness). Join us for an informational webinar on March 20, 2014. The purpose of this webinar will be to give applicants a chance to ask questions about the FOA process generally. Reserve your webinar seat now at: https://www1.gotomeeting.com/register/553062432

  19. Summary of the Hanford Site Environmental Report for Calendar Year 2005

    SciTech Connect (OSTI)

    Hanf, Robert W.; Morasch, Launa F.; Poston, Ted M.; Dirkes, Roger L.

    2006-09-28T23:59:59.000Z

    This small booklet provides highlights of the environmental monitoring at the Hanford Site during 2005. It is a summary of the information contained in the larger report: Hanford Site Environmental Monitoring for Calendar Year 2005.

  20. WELDON SPRING SITE ENVIRONMENTAL REPORT FOR CALENDAR YEAR 2002

    SciTech Connect (OSTI)

    WASHINGTON GROUP INTERNATIONAL AND JACOBS ENGINEERING GROUP

    2003-05-01T23:59:59.000Z

    This annual report presents a summary of data from the environmental monitoring program, to characterize trends and environmental conditions at the site, and to confirm compliance with environmental and health protection standards and requirements. This report also presents the status of remedial activities and the results of monitoring activities to assess their impacts on the public and environment.