National Library of Energy BETA

Sample records for integrated energy systems

  1. NREL: Energy Systems Integration - Systems Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-level system integration New distribution scenarios such as household DC systems and residential-scale generation and storage integrated with home energy management systems. ...

  2. Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Watch: NREL Eastern Renewable Generation Integration Study Redefines What's Possible for Renewables Text Version Watch: NREL + SolarCity: Maximizing Solar Power on Electrical Grids Text Version Watch: Smart Homes and Buildings Research at the Energy Systems Integration Facility Text Version # # Previous Story Next Story × Skip to main content Toggle Search Search NREL.gov Search National Renewable Energy Laboratory Energy Systems Integration Toggle navigation Menu Research Research Renewable

  3. NREL: Energy Systems Integration - Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    archive. Printable Version Energy Systems Integration Home Capabilities Research & Development Facilities Working with Us Publications News Events Energy Systems Integration...

  4. National Renewable Energy Laboratory's Energy Systems Integration...

    Broader source: Energy.gov (indexed) [DOE]

    This brochure describes the Energy Systems Integration Facility at National Renewable Energy Laboratory. Download the National Renewable Energy Laboratory's energy systems ...

  5. Energy Systems Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration Energy Systems Integration Presentation-given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting-covers the National Renewable Energy Laboratory's Energy Systems Integration Facility (ESIF) and its capabilities. Download the Energy Systems Integration presentation. (1.96 MB) More Documents & Publications National Renewable Energy Laboratory's Energy Systems Integration Facility Overview Facilities and Infrastructure Program FY 2016 Budget

  6. NREL: Energy Systems Integration - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Stay up-to-date with the latest energy systems integration news from NREL with the following resources. Energy Systems Integration Newsletter Read a monthly recap of NREL's...

  7. Energy Systems Integration Facility Overview

    ScienceCinema (OSTI)

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2014-06-10

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  8. Energy Systems Integration Facility Overview

    SciTech Connect (OSTI)

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2014-02-28

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  9. NREL: Energy Systems Integration - Energy Systems Integration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Systems Modeling and Control Get the full list of job postings and learn more about working at NREL. Smarter Grid Solutions to Demonstrate Active Network Management System ...

  10. Staff | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cyber-Physical Systems Security and Resilience Center, and Energy Systems Integration ... Bryan Hannegan leads the lab's global initiative to optimize links among electricity, ...

  11. Energy Systems Integration Events | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Events View presentations from past seminars and workshops. September 2016 IEA Forum on Integrating Energy Efficiency and Renewable Energy September 8, 2016 Paris, France Contact: Dr. Martha Symko-Davies NREL Director of Partnerships for ESI Dr. Martha Symko-Davies will speak at the September 8 IEA Forum on Integrating Energy Efficiency and Renewable Energy on a panel called "Sectoral challenges and approaches." Grid Modernization Initiative Devices and Integrated Systems Workshops

  12. NREL: Energy Systems Integration - Analytics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Materials Laboratory of the Energy Systems Integration Facility run high-temperature instruments for the analysis of thermophysical properties. Small samples of ...

  13. Energy Systems Integration Newsletter Archives | Energy Systems Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL Energy Systems Integration Newsletter Archives Read past issues of Energy Systems Integration News. July 2016 June 2016 May 2016 April 2016 March 2016 February 2016 January 2016 December 2015 November 2015 October 2015 September 2015 August 2015 July 2015 June 2015 April 2015 March 2015 February 2015 January 201

  14. NREL: Energy Systems Integration Facility - Systems Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for research, development, and demonstration of key components of future energy systems. ... Demonstration of technology to control loads dynamically without affecting occupant ...

  15. Integrated Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Integrated Energy Systems Address: 747 N Main Street Place: Orange, California Zip: 92868 Region: Southern CA Area Sector: Solar Product: EPC Year Founded: 1985 Phone Number:...

  16. Energy Systems Integration Partnerships, NREL + Abengoa, Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abengoa at the Energy Systems Integration ... a major source of renewable electricity generation in the United States. ... tools to provide on-site and remote viewing of ...

  17. Sandia Energy - Solar Energy Grid Integration Systems (SEGIS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Grid Integration Systems (SEGIS) Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Solar Energy Grid Integration Systems...

  18. Energy Systems Integration Newsletter | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Newsletter A monthly recap of the latest energy systems integration (ESI) developments at NREL and around the world. Subscribe Archives August 2016 Read the latest ESI news from NREL. Photo of a visualization screen showing power grid modeling scenarios Study Shows Eastern U.S. Power Grid Can Support Upwards of 30% Wind and Solar Power Using high-performance computing capabilities and innovative visualization tools, NREL's newly released Eastern Renewable Energy Integration Study (ERGIS) shows

  19. Energy Systems Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Campus Subdivision (feeder) Community (substation) Area (Service Territory) Region ... with PV at end of circuit Utility Substation Transmission Distribution Campus Energy ...

  20. Energy-Water Nexus and Energy Systems Integration | Energy Systems...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ...Water Nexus and Energy Systems Integration As we optimize our energy system at all scales, NREL is embarking on a new area of research geared at finding ways to balance our water ...

  1. Subscribe to Energy Systems Integration Newsletter | Energy Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integration | NREL Subscribe to Energy Systems Integration Newsletter Subscribe to receive regular updates on what's happening in energy systems integration at NREL and around the world. * indicates required Email Address * First Name Last Name Subscribe

  2. Systems Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration Systems Integration Hawaii DREAMS of New Solar Technologies Hawaii DREAMS of New Solar Technologies Read more Plug and Play Solar PV for American Homes Plug and Play Solar PV for American Homes Read more Watt-Sun: A Multi-Scale, Multi-Modal, Machine-Learning Solar Forecasting Technology Watt-Sun: A Multi-Scale, Multi-Modal, Machine-Learning Solar Forecasting Technology Read more High PV Penetration with Energy Storage in Flagstaff, AZ High PV Penetration with Energy Storage

  3. ESIF 2014 (Energy Systems Integration Facility) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    This report covers research highlights and achievements for the Energy Systems Integration Facility in 2014.

  4. Systems Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The focus of systems integration is to understand the complex interactions among program areas, components, and the tradeoffs between them. Systems Integration ensures all ...

  5. Abengoa | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abengoa Abengoa is working with NREL researchers to develop a new and more cost-effective manufacturing process for critical components of concentrating solar power systems. Photo of a person standing in front of a large 3D visualization screen. Photo by Abengoa Engineers usually need to wait until a prototype is built before they can test their design at actual scale. With the immersive three-dimensional environment at the Energy Systems Integration Facility's (ESIF's) Insight Center, however,

  6. National Renewable Energy Laboratory's Energy Systems Integration Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview | Department of Energy National Renewable Energy Laboratory's Energy Systems Integration Facility Overview National Renewable Energy Laboratory's Energy Systems Integration Facility Overview This brochure describes the Energy Systems Integration Facility at National Renewable Energy Laboratory. Download the National Renewable Energy Laboratory's energy systems integration facility overview. (4.91 MB) More Documents & Publications Facilities and Infrastructure Program FY 2016

  7. Asetek | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Asetek Asetek's ultra-energy-efficient RackCDU liquid cooling system was installed and tested at the Energy Systems Integration Facility's (ESIF's) high-performance computing data center. It's a first-of-its-kind, multi-award-winning innovation that saves the ESIF approximately $1 million per year in operating costs. Photo of a computer rack with the word Asetek on its facade Photo from Asetek High-performance computers generate a lot of heat when in operation, and they often rely on expensive,

  8. Distributed Energy Systems Integration Group (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    Factsheet developed to describe the activites of the Distributed Energy Systems Integration Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

  9. Microgrids | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microgrids Think small: microgrids offer the flexibility, quick response and control, and security that the larger grid can't. NREL's cyber-physical test platform for microgrids reduces deployment risks and helps optimize hardware, communications, and security performance. Photo of three men standing in front of microgrid hardware in a laboratory NREL's microgrid research focuses on getting technologies from the factory into the field. The megawatt (MW)-scale Energy Systems Integration Facility

  10. Solectria | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solectria NREL is partnering with Solectria at the Energy Systems Integration Facility (ESIF) to develop photovoltaic inverters with advanced features that can support the electric grid. Photo of two men standing in a laboratory behind power inverter equipment Photo by Dennis Schroeder To get more solar power onto the grid, researchers are working to find ways to tame solar power's variable nature. Solar inverters offer a lot of potential to help with this, and manufacturers like Solectria are

  11. Energy Systems Integration Facility at National Renewable Energy Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Energy Systems Integration Facility at National Renewable Energy Laboratory Energy Systems Integration Facility at National Renewable Energy Laboratory Addthis Energy Systems Integration Facility 1 of 7 Energy Systems Integration Facility The Energy Department's Energy Systems Integration Facility (ESIF) at the National Renewable Energy Laboratory in Golden, Colorado. The 182,500-square-foot facility houses 15 experimental laboratories and several outdoor test beds.

  12. NREL: Energy Systems Integration Facility - Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awards The Energy Systems Integration Facility continues to receive awards for design, planning, construction, and efficiency. Highlights of recent awards are provided below. Photo of the exterior of the Energy Systems Integration Facility. The one-of-a-kind Energy Systems Integration Facility has been lauded for its unique approach to sustainable design-which includes the most energy-efficient data center in the world. R&D Magazine 2014 Laboratory of the Year The Energy Systems Integration

  13. NREL: Energy Systems Integration - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Here, Secretary of Energy Ernest Moniz experiences a 3D wind turbine model during a tour of ... equipment to find solutions to the challenges of effectively integrating clean ...

  14. NREL: Energy Systems Integration Facility - Fuel Distribution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Distribution Buses The Energy Systems Integration Facility's integrated fuel distribution buses provide natural gas, hydrogen, and diesel for fueling applications. Standard, ...

  15. Integrating Renewable Energy Systems in Buildings (Presentation)

    SciTech Connect (OSTI)

    Hayter, S. J.

    2011-08-01

    This presentation on integrating renewable energy systems into building was presented at the August, 2011 ASHRAE Region IX CRC meetings.

  16. NREL: Energy Systems Integration Facility - Research Themes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research, development, and demonstration needed to transform the nation's energy system. ... research, development, and demonstration activities and create new, integrated ...

  17. Solar Energy Technologies Program: Systems Integration

    SciTech Connect (OSTI)

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its systems integration subprogram

  18. Integrated Energy System Dispatch Optimization

    SciTech Connect (OSTI)

    Firestone, Ryan; Stadler, Michael; Marnay, Chris

    2006-06-16

    On-site cogeneration of heat and electricity, thermal and electrical storage, and curtailing/rescheduling demand options are often cost-effective to commercial and industrial sites. This collection of equipment and responsive consumption can be viewed as an integrated energy system(IES). The IES can best meet the sites cost or environmental objectives when controlled in a coordinated manner. However, continuously determining this optimal IES dispatch is beyond the expectations for operators of smaller systems. A new algorithm is proposed in this paper to approximately solve the real-time dispatch optimization problem for a generic IES containing an on-site cogeneration system subject to random outages, limited curtailment opportunities, an intermittent renewable electricity source, and thermal storage. An example demonstrates how this algorithm can be used in simulation to estimate the value of IES components.

  19. NREL: Energy Systems Integration Facility - Visualization of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visualization of Electric Power System Information Workshop The Energy Systems Integration Facility workshop, Visualization of Electric Power System Information, was held September...

  20. Industrial Scale Energy Systems Integration (Presentation), NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (ESI) opportunities in industry o Combined heat and power o Trigeneration o Demand response o Integrated, hybrid energy systems 3 Energy Use in the Industrial Sector * 25% of ...

  1. NREL: Energy Systems Integration - Redefining What's Possible...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Redefining What's Possible for Renewable Energy: Grid Integration NREL is spearheading engineering innovations that will help optimize the entire energy system, and the lab's ...

  2. Research | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and demonstrating innovative technologies and strategies to ensure that our energy sources, demand-response programs, and delivery systems can work together optimally as a system. ...

  3. What Is Energy Systems Integration? | Energy Systems Integration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    While most energy sources, delivery systems, and demand-response programs are treated as stand-alone technologies today, ESI examines how they can optimally work together as a ...

  4. Energy Systems Integration: A Convergence of Ideas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Integration A Convergence of Ideas July 2012 Ben Kroposki, Bobi Garrett, Stuart Macmillan, Brent Rice, and Connie Komomua National Renewable Energy Laboratory Mark O'Malley University College Dublin Dan Zimmerle Colorado State University NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. 1 Energy Systems Integration A Convergence of Ideas Benjamin Kroposki, Bobi Garrett,

  5. Wyle | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wyle NREL partnered with Wyle Labs and the U.S. Army to develop the Consolidated Utility Base Energy (CUBE) System-a solar, battery, and generator hybrid microgrid that will provide electricity to the Army's forward operating bases. Photo of the Consolidated Utility Base Energy (CUBE) System, a solar, battery, and generator hybrid microgrid, in a laboratory Photo by Dennis Schroeder In areas where grid power is unreliable or difficult to access, microgrids offer a safe and energy-efficient

  6. Integrated Security System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Security System Integrated Security System A security platform providing multi-layer intrusion detection and security management for a networked energy control systems architecture Integrated Security System (1.49 MB) More Documents & Publications Cybersecurity for Energy Delivery Systems 2010 Peer Review Presentations - Vulnerability and Intrusion Detection Protecting Intelligent Distributed Power Grids Against Cyber Attacks - May 2008 Impacts of IPv6 on Infrastructure Control

  7. NREL: Energy Systems Integration Facility - Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For more information about the Energy Systems Integration Facility, contact us. Photo of four people standing in front of laboratory equipment. Connect and collaborate with NREL's ...

  8. Energy Systems Integration Facility at National Renewable Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Energy Department's Energy Systems Integration Facility ... radical film for battery applications using a 3D ... Image: Dennis Schroeder, National Renewable Energy ...

  9. Raytheon | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    microgrid system that draws on batteries and solar energy for its power for installation at U.S. Marine Corps Air Station (MCAS) Miramar. Photo of two men looking at microgrid ...

  10. Seminars and Workshops | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seminars and Workshops NREL hosts workshops and seminars to educate and inform on all things energy systems integration. Download presentations and watch videos from past events. Subscribe to our newsletter to learn about upcoming events. Subscribe Smart Grid Educational Series Energy System Basics and Distribution Integration Seminar Series Frontiers in Distributed Optimization and Control of Sustainable Power Systems Workshop Integrating PV in Distributed Grids: Solutions and Technologies

  11. Solar Energy Grid Integration Systems-Advanced Concepts | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration Solar Energy Grid Integration Systems-Advanced Concepts Solar Energy Grid Integration Systems-Advanced Concepts On September 1, 2011, DOE announced 25.9 ...

  12. NREL: Energy Systems Integration - Power Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    analysis, and techniques to increase utility understanding of transmission grid integration issues and confidence in the reliability of emerging renewable energy applications. ...

  13. Fact Sheet: Systems Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration Fact Sheet: Systems Integration The Systems Integration program enables the widespread deployment of safe, reliable, and cost-effective solar energy technologies by addressing the associated technical and non-technical challenges. These include timely and cost-effective interconnection procedures, optimal system planning, accurate prediction of solar resources, monitoring and control of solar power, maintaining grid reliability and stability, and many more. To address the

  14. Energy Systems Integration: A Convergence of Ideas

    SciTech Connect (OSTI)

    Kroposki, B.; Garrett, B.; MacMillan, S.; Rice, B.; Komomua, C.; O'Malley, M.; Zimmerle, D.

    2012-07-01

    Energy systems integration (ESI) enables the effective analysis, design, and control of these interactions and interdependencies along technical, economic, regulatory, and social dimensions. By focusing on the optimization of energy from all systems, across all pathways, and at all scales, we can better understand and make use of the co-benefits that result to increase reliability and performance, reduce cost, and minimize environmental impacts. This white paper discusses systems integration and the research in new control architectures that are optimized at smaller scales but can be aggregated to optimize energy systems at any scale and would allow replicable energy solutions across boundaries of existing and new energy pathways.

  15. Work with Us | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Us Think big. Think broadly. Think boldly. Bring NREL your biggest energy challenges. We'll solve them together. Photo of several men standing in a laboratory space in front of various screens and equipment. For energy systems integration research, NREL offers partners access to an award-winning, state-of-the-art lab space and specialized scientists and engineers to help move new technologies forward. The Energy Systems Integration Facility (ESIF) was designed to be a connection point

  16. American Vanadium | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Vanadium NREL researchers are collaborating with American Vanadium, an integrated energy storage company, to evaluate and demonstrate the first North American CellCube battery management system. Photo of the American Vanadium CellCube device in a laboratory in the Energy Systems Integration Facility Photo by Dennis Schroeder CellCubes can store megawatts of energy, providing an uninterrupted supply of power from solar and wind power stations, no matter the outdoor conditions. Work at

  17. NREL: Energy Systems Integration - INTEGRATE Partner Demonstrates Active

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Network Management of Distributed Energy Resources at NREL Energy Systems Integration Printable Version INTEGRATE Partner Demonstrates Active Network Management of Distributed Energy Resources at NREL April 28, 2016 New York-based Smarter Grid Solutions (SGS) has employed its Active Network Management (ANM) system at NREL to manage and maintain a modeled distribution grid within normal operating limits through the autonomous management, coordination, and control of distributed energy

  18. Systems Integration Team | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration Team Systems Integration Team Guohui Yuan Headshot Guohui-Yuan.jpg Dr. Guohui Yuan is the program manager for the systems integration (SI) subprogram within the SunShot Initiative. His team supports research, development, and demonstration of technologies and solutions to enable the widespread deployment of solar energy on the nation's electricity grid. Dr. Yuan has been supporting the SunShot Initiative as a technical advisor since 2011. Previously, he held several key

  19. Advancing Energy Systems through Integration

    Broader source: Energy.gov [DOE]

    This presentation was given by Ever-Green Energy's Ken Smith as part of the November 20, 2012, Community Renewable Energy Deployment webinar District Heating with Renewable Energy.

  20. Integrated Deployment and the Energy Systems Integration Facility: Workshop Proceedings

    SciTech Connect (OSTI)

    Kroposki, B.; Werner, M.; Spikes, A.; Komomua, C.

    2013-01-01

    This report summarizes the workshop entitled: Integrated Deployment and the Energy Systems Integration Facility. In anticipation of the opening of the ESIF, NREL held the workshop August 21-23, 2012 and invited participants from utilities, government, industry, and academia to discuss renewable integration challenges and discover new ways to meet them by taking advantage of the ESIF's capabilities.

  1. Energy Systems Integration | OpenEI Community

    Open Energy Info (EERE)

    topics related to ESI Prospects for Nuclear Power(Davis 2012) A Framework for the Optimization of Integrated Energy Systems(Jain and Alleyne 2012) more Group members (16)...

  2. Energy Systems Integration | OpenEI Community

    Open Energy Info (EERE)

    live OpenEI maintenance March 8-9, 2013 Research topics related to ESI Prospects for Nuclear Power(Davis 2012) A Framework for the Optimization of Integrated Energy Systems(Jain...

  3. Energy Systems Integration: NREL + Solectria (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-02-01

    This fact sheet describes the collaboration between NREL and Solectria at the Energy Systems Integration Facility (ESIF) to to develop 500- and 750-kilowatt photovoltaic (PV) inverters with advanced features that can support the electric grid.

  4. Energy Systems Integration | OpenEI Community

    Open Energy Info (EERE)

    term > Energy Systems Integration Content Group Activity By term Q & A Feeds Term: Maintenance Type Term Title Author Replies Last Post sort icon Blog entry Maintenance OpenEI...

  5. Energy Systems Integration | OpenEI Community

    Open Energy Info (EERE)

    Groups > Groups > Energy Systems Integration Content Group Activity By term Q & A Feeds There are no feeds from external sites for this group. Groups Menu You must login in order...

  6. Energy Systems Integration Facility Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and data pathways across all scales. High Performance Electrical Systems Fuel Systems Thermal Systems Computing, Data Analysis, Laboratories Laboratories Laboratories and...

  7. Partnerships | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Partners 3M Abengoa ACCIONA Solar AccuFlux Advanced Energy AirGenerate Albeado Alstom American Vanadium Aquahydrex Arizona Public Service Asetek AutoPort Babcock & Wilcox ...

  8. Publications | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transactions on Power Delivery Photovoltaic Inverter Controllers Seeking AC Optimal Power Flow Solutions, IEEE Transactions on Power Systems Slow Dynamics Model of Compressed ...

  9. NREL: Technology Transfer - 2014 Energy Systems Integration Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Energy Systems Integration Facility Annual Report Available for Download February 13, 2015 The 2014 Energy Systems Integration Facility (ESIF) Annual Report is now available...

  10. Toyota | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Townsite Cleanup Continues in Los Alamos Canyon Townsite Cleanup Continues in Los Alamos Canyon July 1, 2016 - 9:00am Addthis LOS ALAMOS, N.M.,-The Department of Energy's (DOE) Environmental Management Los Alamos Field Office (EM-LA) and Los Alamos National Security, LLC (LANS) is moving forward with the removal of contaminated soil along the south-facing slopes of Los Alamos Canyon adjacent to the Los Alamos Townsite. To view official announcement click here. Addthis Related Articles EM-LA 2015

  11. 2014 News | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 News Below are news stories related to Energy Systems Integration. RSS Learn about RSS. December 23, 2014 NREL Receives Editors' Choice Awards for Supercomputer Research Two prestigious scientific magazines have awarded the Energy Department's National Renewable Energy Laboratory (NREL) with Editors' Choice awards for the Peregrine high-performance computer and the groundbreaking research it made possible. December 22, 2014 Report Says Western Grid Can Weather Disturbances Under High Renewable

  12. 2015 News | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 News Below are news stories related to Energy Systems Integration. RSS Learn about RSS. December 17, 2015 Inventive Thinkers at NREL Reach Record Number Researchers register ideas on everything from wave power to methane use. December 9, 2015 2014 Data Book Shows Increased Use of Renewable Electricity The 2014 Renewable Energy Data Book shows that U.S. renewable electricity grew to 15.5 percent of total installed capacity and 13.5 percent of total electricity generation. Published annually by

  13. Battery and Thermal Energy Storage | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery and Thermal Energy Storage Not long ago, the mantra among electric utilities was that "you can't store electricity"-instantaneous power production had to nearly equal demand. But NREL research is changing this belief, demonstrating the high performance of grid-integrated battery and thermal energy storage technologies. Photo of a battery energy storage system NREL examines how best to integrate these energy storage technologies into the electrical grid and potentially into

  14. Advanced Energy | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    so researchers could see the impact of the inverter's advanced features on power reliability and quality. Advanced Energy's inverter will help support a smarter grid that can ...

  15. Solar energy grid integration systems "SEGIS"

    SciTech Connect (OSTI)

    None, None

    2007-10-01

    The inevitable transformation of the electrical grid to a more distributed generation configuration requires solar system capabilities well beyond simple net-metered, grid-connected approaches. Time-of-use and peak-demand rate structures will require more sophisticated systems designs that integrate energy management and/or energy storage into the system architecture. Controlling power flow into and from the utility grid will be required to ensure grid reliability and power quality. Alternative protection strategies will also be required to accommodate large numbers of distributed energy sources. This document provides an overview of the R&D needs and describes some pathways to promising solutions. The solutions will, in many cases, require R&D of new components, innovative inverter/controllers, energy management systems, innovative energy storage and a suite of advanced control algorithms, technical methodologies, protocols and the associated communications. It is expected that these solutions will help to push the “advanced integrated system” and “smart grid” evolutionary processes forward in a faster but focused manner.

  16. NREL Leads Energy Systems Integration, Continuum Magazine: Issue 4 (Book)

    SciTech Connect (OSTI)

    Not Available

    2013-04-01

    Continuum Magazine showcases NREL's latest and most impactful clean energy innovations. This issue, 'NREL Leads Energy Systems Integration' explores the discipline of energy systems integration, in particular the role of the laboratory's new, one-of-a-kind Energy System Integration Facility. NREL scientists, engineers, and analysts deeply understand the fundamental science and technologies underpinning major energy producing and consuming systems, as well as the transmission infrastructure and communications and data networks required to integrate energy systems at all scales.

  17. Mercedes-Benz | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mercedes-Benz NREL is working with Mercedes-Benz to optimize the customer refueling experience for fuel cell electric vehicles. Photo of a Mercedes-Benz B-Class F-CELL hydrogen vehicle next to a fueling station With fuel cell electric vehicles now hitting the market, consumers will have to adjust to a different refueling experience than with gasoline, and some people may be anxious about refueling with hydrogen. NREL is using the Energy Systems Integration Facility's Hydrogen Infrastructure

  18. NREL: Energy Systems Integration Facility - Fixed Equipment and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo of a man's gloved hands working on laboratory equipment. the Energy Systems Integration Facility, researchers have access to a variety of equipment to support energy systems ...

  19. Active Integrated Perimeter Building Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Active Integrated Perimeter Building Systems Active Integrated Perimeter Building Systems Integrated systems require seamless data exchange between controlled demand side end uses and supply side resources for optimal energy cost/ carbon minimization, comfort, and indoor environmental quality. Integrated systems require seamless data exchange between controlled demand side end uses and supply side resources for optimal energy cost/ carbon minimization, comfort, and indoor environmental quality.

  20. NREL: Energy Systems Integration - Research Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Redefining What's Possible for Renewable Energy: Grid Integration A video released by the NREL ... NREL Report Redefines Wind as a Grid Stabilizer, Not a Liability NREL transmission ...

  1. INTEGRATED ENERGY EFFICIENT WINDOW-WALL SYSTEMS

    SciTech Connect (OSTI)

    Michael Arney, Ph.D.

    2002-12-31

    The building industry faces the challenge of reducing energy use while simultaneously improving construction methods and marketability. This paper describes the first phase of a project to address these concerns by designing an Integrated Window Wall System (IWWS) that can be commercialized. This work builds on previous research conducted during the 1990's by Lawrence Berkeley national Laboratories (LBNL). During this phase, the objective was to identify appropriate technologies, problems and issues and develop a number of design concepts. Four design concepts were developed into prototypes and preliminary energy analyses were conducted Three of these concepts (the foam wall, steel wall, and stiffened plate designs) showed particular potential for meeting the project objectives and will be continued into a second phase where one or two of the systems will be brought closer to commercialization.

  2. NREL: Distributed Grid Integration - Energy System Basics Video...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Codes & Standards Data Collection & Visualization Hawaii Clean Energy Initiative Microgrids Power Systems Modeling Solar Distributed Grid Integration Technology Development ...

  3. Systems Integration: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its systems integration subprogram.

  4. Integrated Energy Systems (IES) for Buildings: A Market Assessment...

    Broader source: Energy.gov (indexed) [DOE]

    Integrated Energy Systems (IES) combine on-site power or distributed generation ... functions using thermal energy normally wasted in the production of electricitypower. ...

  5. Building Management System Integrators | Open Energy Information

    Open Energy Info (EERE)

    Place: Berkshire, England, United Kingdom Zip: SL1 5AU Product: Service and maintenance provider. References: Building Management System Integrators1 This article is a...

  6. NREL: Energy Systems Integration Facility - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research capabilities include: Systems integration Prototype and component development Manufacturing and material diagnostics High-performance computing and analytics. Photo of...

  7. Energy Systems Integration | OpenEI Community

    Open Energy Info (EERE)

    is live OpenEI maintenance March 8-9, 2013 Research topics related to ESI Prospects for Nuclear Power(Davis 2012) A Framework for the Optimization of Integrated Energy...

  8. NREL: Energy Systems Integration Facility - Research Electrical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    It facilitates complex integrated system testing of both AC and DC systems up to a 1-MW scale across the laboratories. Photo of laboratory equipment with four different color-coded ...

  9. Solar energy grid integration systems - Energy storage (SEGIS-ES)

    SciTech Connect (OSTI)

    Ton, Dan; Peek, Georgianne H.; Hanley, Charles; Boyes, John

    2008-05-01

    In late 2007, the U.S. Department of Energy (DOE) initiated a series of studies to address issues related to potential high penetration of distributed photovoltaic (PV) generation systems on our nation’s electric grid. This Renewable Systems Interconnection (RSI) initiative resulted in the publication of 14 reports and an Executive Summary that defined needs in areas related to utility planning tools and business models, new grid architectures and PV systems configurations, and models to assess market penetration and the effects of high-penetration PV systems. As a result of this effort, the Solar Energy Grid Integration Systems (SEGIS) program was initiated in early 2008. SEGIS is an industry-led effort to develop new PV inverters, controllers, and energy management systems that will greatly enhance the utility of distributed PV systems.

  10. NREL: Hydrogen and Fuel Cells Research - 2015 Energy Systems Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Annual Report Calls to Industry: Bring Us Your Challenges 2015 Energy Systems Integration Facility Annual Report Calls to Industry: Bring Us Your Challenges April 6, 2016 The 2015 Energy Systems Integration Facility Annual Report is now available for download. The Energy Systems Integration Facility (ESIF) is the nation's premier facility for research, development, and demonstration of the components and strategies needed to optimize our entire energy system. It was established in

  11. 2015 Energy Systems Integration Facility Annual Report Calls to Industry:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bring Us Your Challenges | Grid Modernization | NREL 2015 Energy Systems Integration Facility Annual Report Calls to Industry: Bring Us Your Challenges April 6, 2016 The 2015 Energy Systems Integration Facility Annual Report is now available for download. The Energy Systems Integration Facility (ESIF) is the nation's premier facility for research, development, and demonstration of the components and strategies needed to optimize our entire energy system. It was established in 2013 by the

  12. NREL: Sustainable NREL - Energy Systems Integration Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency Features Natural ventilation through operable windows Daylighting Open air cubicles LED lights with lighting control system Radiant heating and cooling ...

  13. Energy Systems Integration Facility Delivering on Promise to...

    Energy Savers [EERE]

    NREL) NREL and Raytheon, perform system level testing on the Miramar ZnBr Flow Battery Simulated MicroGrid, in the Energy Storage Lab (ESL) at the Energy Systems Integration ...

  14. Integrated Energy Systems Multi-Media Webcast: Three CHP Sites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multi-Media Webcast: Three CHP Sites Yield Important Lessons Learned, September 2005 Integrated Energy Systems Multi-Media Webcast: Three CHP Sites Yield Important Lessons Learned, ...

  15. Photo of the Week: The Energy Systems Integration Facility |...

    Broader source: Energy.gov (indexed) [DOE]

    Take a tour of the Energy Systems Integration Facility here. | Photo by Dennis Schroeder, NREL. Sarah Gerrity Sarah Gerrity Former Multimedia Editor, Office of Public Affairs Every ...

  16. Energy Systems Integration - Q & A | OpenEI Community

    Open Energy Info (EERE)

    Integration - Q & A Home > Energy Systems Integration Content Group Activity By term Q & A Feeds No questions have been added to this group yet. Groups Menu You must login in order...

  17. NREL: Innovation Impact - Energy Systems Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Where most energy sources, delivery systems, and demand-response programs are treated as stand-alone technologies today, ESI examines how they can optimally work together as a ...

  18. Energy Systems Integration Facility Delivering on Promise to Strengthen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America's Clean Energy Innovation | Department of Energy Systems Integration Facility Delivering on Promise to Strengthen America's Clean Energy Innovation Energy Systems Integration Facility Delivering on Promise to Strengthen America's Clean Energy Innovation September 11, 2015 - 1:42pm Addthis NREL Senior Engineering Project Manager, Pat Moriarty, left and NREL Senior Engineer , Paul Fleming, review velocity (blue) and turbulence (yellow) in a simulation of the Lillgrund Wind Farm in

  19. Integrated Energy Systems (IES) for Buildings: A Market Assessment,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 2002 | Department of Energy (IES) for Buildings: A Market Assessment, September 2002 Integrated Energy Systems (IES) for Buildings: A Market Assessment, September 2002 Integrated Energy Systems (IES) combine on-site power or distributed generation technologies with thermally activated technologies to provide cooling, heating, humidity control, energy storage and/or other process functions using thermal energy normally wasted in the production of electricity/power. This study

  20. Solar Energy Grid Integration Systems -- Energy Storage (SEGIS-ES).

    SciTech Connect (OSTI)

    Hanley, Charles J.; Ton, Dan T.; Boyes, John D.; Peek, Georgianne Huff

    2008-07-01

    This paper describes the concept for augmenting the SEGIS Program (an industry-led effort to greatly enhance the utility of distributed PV systems) with energy storage in residential and small commercial applications (SEGIS-ES). The goal of SEGIS-ES is to develop electrical energy storage components and systems specifically designed and optimized for grid-tied PV applications. This report describes the scope of the proposed SEGIS-ES Program and why it will be necessary to integrate energy storage with PV systems as PV-generated energy becomes more prevalent on the nation's utility grid. It also discusses the applications for which energy storage is most suited and for which it will provide the greatest economic and operational benefits to customers and utilities. Included is a detailed summary of the various storage technologies available, comparisons of their relative costs and development status, and a summary of key R&D needs for PV-storage systems. The report concludes with highlights of areas where further PV-specific R&D is needed and offers recommendations about how to proceed with their development.

  1. Southern California Gas | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Southern California Gas Southern California Gas Company has joined with NREL and the National Fuel Cell Research Center to launch demonstration projects to create and test a carbon-free, power-to-gas system for the first time ever in the United States. The technology converts electricity into gaseous energy and could provide North America with a large-scale, cost-effective solution for storing excess energy produced from renewable sources. Read our news story on the project.

  2. NREL Leads Energy Systems Integration - Continuum Magazine | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Continuum showcases NREL's unique research capabilities and most impactful clean energy innovations. Dan Says From our director Dan says More than a Dream-a Renewable Electricity Future 01 More than a Dream-a Renewable Electricity Future With improved grid flexibility, storage, and transmission infrastructure, renewable energy can power the grid. A Living Laboratory for Energy Systems Integration 02 A Living Laboratory for Energy Systems Integration NREL is collecting, storing, analyzing, and

  3. Industrial Scale Energy Systems Integration; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Ruth, Mark

    2015-07-28

    The industrial sector consumes 25% of the total energy in the U.S. and produces 18% of the greenhouse gas (GHG) emissions. Energy Systems Integration (ESI) opportunities can reduce those values and increase the profitability of that sector. This presentation outlines several options. Combined heat and power (CHP) is an option that is available today for many applications. In some cases, it can be extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits of CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed. extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits of CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed.

  4. Integrated Nuclear-Renewable Energy Systems: Foundational Workshop Report

    SciTech Connect (OSTI)

    Shannon Bragg-Sitton; Richard Boardman; John Collins; Mark Ruth; Owen Zinaman; Charles Forsberg

    2014-08-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated Nuclear – Renewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to estimate FOM for

  5. Smart Homes and Buildings Research at the Energy Systems Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility (Text Version) | Energy Systems Integration | NREL Smart Homes and Buildings Research at the Energy Systems Integration Facility (Text Version) This is a text version of the video "Smart Homes and Buildings Research at the Energy Systems Integration Facility." So, the big promise of the smart home is to enhance your comfort and your convenience. And at the same time, allow us to save energy. So, we're doing the right thing, but we're also more convenient and more

  6. NREL: Energy Systems Integration - Seminar Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    damage potential, and practical solutions for insecure field devices on the smart grid. ... Ravel Ammerman. Integrating PV in Distributed Grids: Solutions and Technologies Workshop ...

  7. NREL: Energy Systems Integration Facility - Facility Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    discussions as well as information about composite data products and hydrogen and fuel cell grid integration. See the workshop agenda and presentations. May and June 2012: From...

  8. Optical Metrology Laboratory | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to national or international standards to ensure the quality and traceability of data. ... range (280-2,400 nm) and pulse integration capability Optronic Laboratories OL-756 ...

  9. Technical University of Denmark | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical University of Denmark NREL is working in partnership with the Technical University of Denmark for the Centre for IT-Intelligent Energy Systems in Cities (CITIES) project. Denmark is targeting an energy system that is 100% renewable by 2050. To reach this ambitious goal, CITIES is bringing together industrial and academic partners to effectively overhaul and integrate Denmark's energy system. NREL will provide technical support for this project, including modeling, simulating, and

  10. NREL: Energy Systems Integration - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL to Advance Technologies for Microgrid Projects The ... Impacting Innovation and Commercialization: NREL's ... solar energy in California where 33 percent ...

  11. National Renewable Energy Laboratory's Energy Systems Integration Facility Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A megawatt-scale systems integration R&D facility. Unique Capabilites Hardware-in-the-Loop at Megawatt-scale Power Megawatt-scale power-in-the-loop allows researchers and manufacturers to conduct integration tests at full power and actual load levels in real-time simulation and evaluate component and system performance before going to market. High Performance Computing Data Center (HPCDC) Petascale computing at the HPCDC enables unprecedented large-scale modeling and simulation of material

  12. NREL: Energy Systems Integration Facility - About the Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Energy Efficiency and Sustainability Features Operable windows and convection shafts Daylighting Open-air cubicles LED lights with lighting control system Low-velocity active ...

  13. NREL: Energy Systems Integration - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 19, 2015 NREL's Enhanced Scenario Framework for Electricity Sector Analysis Provides Cost, Performance Data Projections of potential energy futures are highly dependent on ...

  14. Energy Systems Integration: A Convergence of Ideas

    Open Energy Info (EERE)

    Bobi Garrett, Stuart Macmillan, Brent Rice, and Connie Komomua National Renewable Energy Laboratory Mark O'Malley University College Dublin Dan Zimmerle Colorado State...

  15. 2016 News | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New York-based Smarter Grid Solutions has employed its ... and maintain a modeled distribution grid within normal ... & Thermal Energy Storage Microgrids Cybersecurity & ...

  16. NREL: Energy Systems Integration Facility - Manufacturing and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing and Material Diagnostics Manufacturing and material diagnostics help manufacturers of clean energy technologies scale up production to volumes that meet U.S....

  17. Energy Systems Integration | OpenEI Community

    Open Energy Info (EERE)

    energy carriers 2-6 ... Tags: ESI, MarketsIncentives Qinsun Prospects for Nuclear Power(Davis 2012) Posted by: Qinsun 15 Nov 2012 - 13:36 This paper analyzed the...

  18. NREL: Energy Systems Integration Facility Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility R&D Magazine's 2014 Laboratory of the Year Photo of a man observing a robotic arm that simulates hydrogen refueling inside the Energy Storage Laboratory. R&D...

  19. Duke Energy and Alstom Grid | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Duke Energy and Alstom Grid NREL is working with Duke Energy and Alstom Grid to explore ways that smart inverters can increase grid stability. Using data from Duke Energy, NREL is validating the voltage control capabilities of smart inverters in modeled, real-world scenarios. Photo of two men standing in front of a multicolored 3-D projection screen Photo by Dennis Schroeder Adding renewable energy sources such as solar to a utility's existing distribution systems can introduce much faster power

  20. Cybersecurity and Resilience | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cybersecurity and Resilience Securing the grid from cyberattacks is more complex than ... That's why NREL established the Cyber-Physical Systems Security and Resilience R&D Center. ...

  1. Microgrid Testing (Brochure), Energy Systems Integration (ESI...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    generators: because diesel generators are ... capability includes a 1.5-MW PV simulator, three ... for running power system models concurrently with ...

  2. Symbiotically integrated organic recycling/renewable energy systems

    SciTech Connect (OSTI)

    Hamburg, R.A.

    1983-06-01

    Two operating systems designed for the integrated recycling of organic materials and production of renewable energy are described. Both systems include the Chinese design, water-pressure biogas digesters, a solar greenhouse and algae/aquatic plant ponds, all in passive symbiotic relationships with a minimum of high technology sophistication. A discussion of fish ponds and fuel alcohol production is also included since they offer many possibilities for expanded integration.

  3. Energy Systems Integration: NREL + Advanced Energy (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADVANCED ENERGY Solar inverter manufacturer Advanced Energy Industries is using the ESIF's Power Systems Integration Laboratory (PSIL) to test its advanced photovoltaic (PV) inverter technology with the ESIF's power hardware-in-the-loop system and megawatt- scale grid simulators. Solar inverters are responsible for a number of critical functions within a solar PV system, including converting the direct current output into alternating current for the grid. Advanced Energy's inverter will help

  4. Systems Integration Competitive Awards | Department of Energy

    Energy Savers [EERE]

    Research & Development » Sustainability Sustainability The Bioenergy Technologies Office (BETO) is committed to developing the resources, technologies, and systems needed to support a thriving bioenergy industry that protects natural resources and advances environmental, economic, and social benefits. BETO's Sustainability Area proactively identifies and addresses issues that affect the scale-up potential, public acceptance, and long-term viability of advanced bioenergy systems; as a

  5. Hewlett-Packard | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anderson - New World Hewlett and Anderson - New World Richard G. Hewlett and Oscar E. Anderson, Jr. The New World, 1939-1946. Volume I: A History of the Atomic Energy Commission. 1962. Text in each PDF is fully searchable. HewlettandAndersonNewWorldNoBookmarks.pdf (9.71 MB) HewlettandAndersonNewWorldPicturesOnly.pdf (16.93 MB) More Documents & Publications The Manhattan Project: Making the Atomic Bomb The Manhattan Project: Making of the Atomic Bomb Gosling, The Manhattan Project: Making the

  6. Integrated solar thermal energy collector system

    SciTech Connect (OSTI)

    Garrison, J.D.

    1987-08-18

    A solar thermal collector system is described one of a class of devices which converts solar radiation into heat and transmits this heat to storage from whence it is utilized, comprising: an evacuated glass solar collector, the evacuated glass solar collector having a glass vacuum envelope, the upper portion of the glass vacuum envelope also serving as window to pass solar radiation, the evacuated glass solar collector having a multiplicity of substantially parallel linear adjacent concentrating troughs, each trough shaped and mirror surfaced so as concentrate solar radiation in the vacuum, the mirror surface inside the vacuum and the concentration approximately ideal, the multiplicity of substantially parallel linear adjacent troughs extending substantially over the entire length and width of the evacuated glass solar collector; a heat storage system, the heat storage system adjacent to the evacuated glass solar collector, the heat storage system having a heat storage tank which is thermally insulated, the heat storage tank containing a heat storage medium, and the heat storage system including means of removal of heat from the heat storage tank for utilization.

  7. Energy Systems Integration: NREL + Advanced Energy (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-02-01

    This fact sheet describes the collaboration between NREL and Advanced Energy Industries at the ESIF to test its advanced photovoltaic inverter technology with the ESIF's power hardware-in-the-loop system and megawatt-scale grid simulators.

  8. Energy Systems Integration: NREL + Google (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-02-01

    This fact sheet describes the collaboration between NREL, Google, and the IEEE Power Electronics Society at the ESIF to work on the Little Box Challenge, an open competition challenging engineers to build smaller power inverters for use in photovoltaic power systems.

  9. General Motors | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Motors General Motors (GM) is partnering with NREL on a multiyear, multimillion-dollar joint research and development effort to lower the cost of automotive fuel cell stacks through improvements in materials and manufacturing. Photo of fuel stack hardware in a laboratory Photo by Dennis Schroeder Lowering the cost and improving the durability and performance of fuel cell systems will help get more drivers behind the wheel of these zero-emission vehicles. GM is working with NREL to find

  10. REopt: A Platform for Energy System Integration and Optimization: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    REopt: A Platform for Energy System Integration and Optimization Preprint T. Simpkins, D. Cutler, K. Anderson, D. Olis, E. Elgqvist, M. Callahan, and A. Walker Presented at the 8th International Conference on Energy and Sustainability (ES2014) Boston, Massachusetts June 20 - July 2, 2014 Conference Paper NREL/CP-7A40-61783 August 2014 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under

  11. Energy Systems Integration Partnerships, NREL + Wyle (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-03-01

    This fact sheet describes the partnership between NREL and Wyle Labs at the Energy Systems Integration Facility. Under a research agreement with Wyle Labs, NREL is working with the U.S. Army to complete development and testing of the Consolidated Utility Base Energy (CUBE) System - a power distribution device that delivers power from solar, battery, and diesel generators to loads on forward operating bases.

  12. Integrated Energy Systems (IES) for Buildings: A Market Assessment

    SciTech Connect (OSTI)

    LeMar, P.

    2002-10-29

    Integrated Energy Systems (IES) combine on-site power or distributed generation technologies with thermally activated technologies to provide cooling, heating, humidity control, energy storage and/or other process functions using thermal energy normally wasted in the production of electricity/power. IES produce electricity and byproduct thermal energy onsite, with the potential of converting 80 percent or more of the fuel into useable energy. IES have the potential to offer the nation the benefits of unprecedented energy efficiency gains, consumer choice and energy security. It may also dramatically reduce industrial and commercial building sector carbon and air pollutant emissions and increase source energy efficiency. Applications of distributed energy and Combined heat and power (CHP) in ''Commercial and Institutional Buildings'' have, however, been historically limited due to insufficient use of byproduct thermal energy, particularly during summer months when heating is at a minimum. In recent years, custom engineered systems have evolved incorporating potentially high-value services from Thermally Activated Technologies (TAT) like cooling and humidity control. Such TAT equipment can be integrated into a CHP system to utilize the byproduct heat output effectively to provide absorption cooling or desiccant humidity control for the building during these summer months. IES can therefore expand the potential thermal energy services and thereby extend the conventional CHP market into building sector applications that could not be economically served by CHP alone. Now more than ever, these combined cooling, heating and humidity control systems (IES) can potentially decrease carbon and air pollutant emissions, while improving source energy efficiency in the buildings sector. Even with these improvements over conventional CHP systems, IES face significant technological and economic hurdles. Of crucial importance to the success of IES is the ability to treat the heating

  13. RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS

    SciTech Connect (OSTI)

    S.M. Bragg-Sitton; R. Boardman

    2014-12-01

    The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “all of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system would

  14. Renewable Electricity-to-Grid Integration | Energy Systems Integration |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable & Alternative Fuels Glossary › FAQS › Overview Data Summary Biomass Geothermal Hydropower Solar Wind Alternative transportation fuels All renewable & alternative fuels data reports Analysis & Projections Major Topics Most popular Alternative Fuels Capacity and generation Consumption Environment Industry Characteristics Prices Production Projections Recurring Renewable energy type All reports Browse by Tag Alphabetical Frequency Tag Cloud ‹ See all Renewable Reports

  15. Controllable Grid Interface Test System | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controllable Grid Interface Test System NREL's controllable grid interface (CGI) test system can reduce certification testing time and costs while providing system engineers with a better understanding of how wind turbines, photovoltaic inverters, and energy storage systems react to disturbances on the electric power system. The controllable grid interface is the first test facility in the United States that has fault simulation capabilities. It allows manufacturers and system operators to

  16. The Smart Power Lab at the Energy Systems Integration Facility

    SciTech Connect (OSTI)

    Christensen, Dane; Sparn, Bethany; Hannegan, Brian

    2015-06-11

    Watch how NREL researchers are using the Smart Power Laboratory at the Energy Systems Integration Facility (ESIF) to develop technologies that will help the "smart homes" of the future perform efficiently and communicate effectively with the electricity grid while enhancing occupants' comfort and convenience.

  17. Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems: Preprint

    SciTech Connect (OSTI)

    Bragg-Sitton, S. M.; Boardman, R.; Ruth, M.; Zinaman, O.; Forsberg, C.

    2015-01-01

    The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. One concept under consideration by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and transportation sectors. This integration concept has been referred to as a 'hybrid system' that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product.

  18. Energy Systems Integration: NREL + Raytheon (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Energy Systems Integration Facility (ESIF) at the National Renewable Energy Laboratory (NREL) provides the R&D capabilities needed for private industry, academia, government, and public entities to collaborate on utility- scale solutions for integrating renewable energy and other efficiency technologies into our energy systems. To learn more about the ESIF, visit: www.nrel.gov/esif. NREL + RAYTHEON NREL has partnered with Raytheon Company, Primus Power, and Advanced Energy to

  19. Sandia Energy - Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Energy Assurance, Energy Surety, Grid Integration, Infrastructure Security, Microgrid, News, News & Events, Renewable Energy, Systems Analysis, Systems Engineering,...

  20. Energy implications of integrated solid waste management systems. Final report

    SciTech Connect (OSTI)

    Little, R.E.; McClain, G.; Becker, M.; Ligon, P.; Shapiro, K.

    1994-07-01

    This study develops estimates of energy use and recovery from managing municipal solid waste (MSW) under various collection, processing, and disposal scenarios. We estimate use and recovery -- or energy balance -- resulting from MSW management activities such as waste collection, transport, processing, and disposal, as well as indirect use and recovery linked to secondary materials manufacturing using recycled materials. In our analysis, secondary materials manufacturing displaces virgin materials manufacturing for 13 representative products. Energy implications are expressed as coefficients that measure the net energy saving (or use) of displacing products made from virgin versus recycled materials. Using data developed for the 1992 New York City Master Plan as a starting point, we apply our method to an analysis of various collection systems and 30 types of facilities to illustrate bow energy balances shift as management systems are modified. In sum, all four scenarios show a positive energy balance indicating the energy and advantage of integrated systems versus reliance on one or few technology options. That is, energy produced or saved exceeds the energy used to operate the solid waste system. The largest energy use impacts are attributable to processing, including materials separation and composting. Collection and transportation energy are relatively minor contributors. The largest two contributors to net energy savings are waste combustion and energy saved by processing recycled versus virgin materials. An accompanying spatial analysis methodology allocates energy use and recovery to New York City, New York State outside the city, the U.S., and outside the U.S. Our analytical approach is embodied in a spreadsheet model that can be used by energy and solid waste analysts to estimate impacts of management scenarios at the state and substate level.

  1. Integrated rural energy planning

    SciTech Connect (OSTI)

    El Mahgary, Y.; Biswas, A.K.

    1985-01-01

    This book presents papers on integrated community energy systems in developing countries. Topics considered include an integrated rural energy system in Sri Lanka, rural energy systems in Indonesia, integrated rural food-energy systems and technology diffusion in India, bringing energy to the rural sector in the Philippines, the development of a new energy village in China, the Niaga Wolof experimental rural energy center, designing a model rural energy system for Nigeria, the Basaisa village integrated field project, a rural energy project in Tanzania, rural energy development in Columbia, and guidelines for the planning, development and operation of integrated rural energy projects.

  2. Integrated Energy Systems International Ltd | Open Energy Information

    Open Energy Info (EERE)

    Biomass Product: UK-based firm which operates in energy technology management and cost control. The firm is working with International Paper on a biomass project. References:...

  3. ESIF: Bring Us Your Challenges, Energy Systems Integration Facility (ESIF), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 | ESIF NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Bring us your challenges | 2 | | 3 | What if solving our energy challenges wasn't just about producing more, but finding better ways to use what is already there? Energy Systems Integration (ESI) is an approach to solving these big energy challenges that explores ways for energy systems to work more efficiently on their

  4. Princeton Power Systems (TRL 5 6 Component)- Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage

    Broader source: Energy.gov [DOE]

    Princeton Power Systems (TRL 5 6 Component) - Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage

  5. Energy Systems Integration Partnerships, NREL + Wyle (Fact Sheet), Energy Systems Integration (ESI), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WYLE Under a research agreement with Wyle Labs, NREL is working with the U.S. Army to complete development and testing of the Consolidated Utility Base Energy (CUBE) System- a power distribution device that delivers power from solar, battery, and diesel generators to loads on forward operating bases. The CUBE was originally developed for the Army's Expeditionary Energy and Sustainment Systems, formerly known as Mobile Electric Power. The Army's Rapid Equipping Force is funding NREL to complete

  6. Smart Home and Building Systems | Energy Systems Integration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that connects appliances, a home, or even a community to an end-to-end energy ecosystem. ... testing any portion of a home's energy ecosystem, including end loads, transformers, ...

  7. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Sandia's larger portfolio of renewable energy technology programs (Wind, Solar Power, Geothermal, and Energy Systems Analysis). Transmission Grid Integration The goal of...

  8. Integrated Global System Modeling Framework | Open Energy Information

    Open Energy Info (EERE)

    System Modeling Framework AgencyCompany Organization: MIT Joint Program on the Science and Policy of Global Change Sector: Climate, Energy Focus Area: Renewable Energy...

  9. Energy Systems Integration Partnerships, NREL + Asetek (Fact Sheet), Energy Systems Integration (ESI), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASETEK To measure the energy savings, performance, and reliability of a warm-water direct-to-chip liquid-cooling retrofit solution for data centers, an Asetek RackCDU liquid-cooling system was installed as a retrofit to an existing air-cooled system in the ESIF high performance computing (HPC) data center. Liquid-cooling technology takes advantage of the fact that liquid has approximately 1,000 times the cooling capacity of air, and that pumps circulating liquid cooling are much more efficient

  10. System-of-Systems Approach for Integrated Energy Systems Modeling and Simulation: Preprint

    SciTech Connect (OSTI)

    Mittal, Saurabh; Ruth, Mark; Pratt, Annabelle; Lunacek, Monte; Krishnamurthy, Dheepak; Jones, Wesley

    2015-08-21

    Today’s electricity grid is the most complex system ever built—and the future grid is likely to be even more complex because it will incorporate distributed energy resources (DERs) such as wind, solar, and various other sources of generation and energy storage. The complexity is further augmented by the possible evolution to new retail market structures that provide incentives to owners of DERs to support the grid. To understand and test new retail market structures and technologies such as DERs, demand-response equipment, and energy management systems while providing reliable electricity to all customers, an Integrated Energy System Model (IESM) is being developed at NREL. The IESM is composed of a power flow simulator (GridLAB-D), home energy management systems implemented using GAMS/Pyomo, a market layer, and hardware-in-the-loop simulation (testing appliances such as HVAC, dishwasher, etc.). The IESM is a system-of-systems (SoS) simulator wherein the constituent systems are brought together in a virtual testbed. We will describe an SoS approach for developing a distributed simulation environment. We will elaborate on the methodology and the control mechanisms used in the co-simulation illustrated by a case study.

  11. Erigo and EaglePicher | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Erigo and EaglePicher NREL researchers are testing an energy storage system for a microgrid-developed by Erigo and EaglePicher and sponsored by U.S. Northern Command-that contains three independently controllable energy storage technologies. Photo of energy storage system hardware in a laboratory Photo by Dennis Schroeder Microgrids-and effective storage systems supporting them-are especially important for remote military bases where accessing energy can be costly and dangerous. This research is

  12. Optimal Real-time Dispatch for Integrated Energy Systems

    SciTech Connect (OSTI)

    Firestone, Ryan Michael

    2007-05-31

    This report describes the development and application of a dispatch optimization algorithm for integrated energy systems (IES) comprised of on-site cogeneration of heat and electricity, energy storage devices, and demand response opportunities. This work is intended to aid commercial and industrial sites in making use of modern computing power and optimization algorithms to make informed, near-optimal decisions under significant uncertainty and complex objective functions. The optimization algorithm uses a finite set of randomly generated future scenarios to approximate the true, stochastic future; constraints are included that prevent solutions to this approximate problem from deviating from solutions to the actual problem. The algorithm is then expressed as a mixed integer linear program, to which a powerful commercial solver is applied. A case study of United States Postal Service Processing and Distribution Centers (P&DC) in four cities and under three different electricity tariff structures is conducted to (1) determine the added value of optimal control to a cogeneration system over current, heuristic control strategies; (2) determine the value of limited electric load curtailment opportunities, with and without cogeneration; and (3) determine the trade-off between least-cost and least-carbon operations of a cogeneration system. Key results for the P&DC sites studied include (1) in locations where the average electricity and natural gas prices suggest a marginally profitable cogeneration system, optimal control can add up to 67% to the value of the cogeneration system; optimal control adds less value in locations where cogeneration is more clearly profitable; (2) optimal control under real-time pricing is (a) more complicated than under typical time-of-use tariffs and (b) at times necessary to make cogeneration economic at all; (3) limited electric load curtailment opportunities can be more valuable as a compliment to the cogeneration system than alone; and

  13. New Energy Systems Integration Facility (ESIF) to Help Modernize the Grid |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Systems Integration Facility (ESIF) to Help Modernize the Grid New Energy Systems Integration Facility (ESIF) to Help Modernize the Grid September 11, 2013 - 11:09am Addthis The new Energy Systems Integration Facility is the nation's first facility to help both public and private sector researchers scale-up promising clean energy technologies -- from solar modules and wind turbines to electric vehicles and efficient, interactive home appliances -- and test how they

  14. NREL: Energy Systems Integration - NREL Assesses Costs of Adding...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Existing Power Systems September 29, 2015 Much effort has been made to assess the costs associated with integrating variable generation (VG) such as wind and solar into an...

  15. Weather forecast-based optimization of integrated energy systems.

    SciTech Connect (OSTI)

    Zavala, V. M.; Constantinescu, E. M.; Krause, T.; Anitescu, M.

    2009-03-01

    In this work, we establish an on-line optimization framework to exploit detailed weather forecast information in the operation of integrated energy systems, such as buildings and photovoltaic/wind hybrid systems. We first discuss how the use of traditional reactive operation strategies that neglect the future evolution of the ambient conditions can translate in high operating costs. To overcome this problem, we propose the use of a supervisory dynamic optimization strategy that can lead to more proactive and cost-effective operations. The strategy is based on the solution of a receding-horizon stochastic dynamic optimization problem. This permits the direct incorporation of economic objectives, statistical forecast information, and operational constraints. To obtain the weather forecast information, we employ a state-of-the-art forecasting model initialized with real meteorological data. The statistical ambient information is obtained from a set of realizations generated by the weather model executed in an operational setting. We present proof-of-concept simulation studies to demonstrate that the proposed framework can lead to significant savings (more than 18% reduction) in operating costs.

  16. NREL: Energy Systems Integration - SolarCity and the Hawaiian...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ESIF to optimize PV inverter technology will ultimately enable greater deployment of solar PV on homes and buildings across the country. Printable Version Energy Systems...

  17. REopt: A Platform for Energy System Integration and Optimization: Preprint

    SciTech Connect (OSTI)

    Simpkins, T.; Cutler, D.; Anderson, K.; Olis, D.; Elgqvist, E.; Callahan, M.; Walker, A.

    2014-08-01

    REopt is NREL's energy planning platform offering concurrent, multi-technology integration and optimization capabilities to help clients meet their cost savings and energy performance goals. The REopt platform provides techno-economic decision-support analysis throughout the energy planning process, from agency-level screening and macro planning to project development to energy asset operation. REopt employs an integrated approach to optimizing a site?s energy costs by considering electricity and thermal consumption, resource availability, complex tariff structures including time-of-use, demand and sell-back rates, incentives, net-metering, and interconnection limits. Formulated as a mixed integer linear program, REopt recommends an optimally-sized mix of conventional and renewable energy, and energy storage technologies; estimates the net present value associated with implementing those technologies; and provides the cost-optimal dispatch strategy for operating them at maximum economic efficiency. The REopt platform can be customized to address a variety of energy optimization scenarios including policy, microgrid, and operational energy applications. This paper presents the REopt techno-economic model along with two examples of recently completed analysis projects.

  18. Energy Systems Integration Facility Named Lab of the Year - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Energy Systems Integration Facility Named Lab of the Year Energy Department User Facility already helping partners achieve technology advancements March 27, 2014 The editors of R&D Magazine have named the Energy Department's Energy Systems Integration Facility (ESIF) as the 2014 Laboratory of the Year. Located on the campus of the National Renewable Energy Laboratory (NREL) in Golden, Colo., research at ESIF transforms how the nation generates, delivers and uses energy by

  19. Integrated Energy Systems Multi-Media Webcast: Three CHP Sites Yield

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Important Lessons Learned, September 2005 | Department of Energy Multi-Media Webcast: Three CHP Sites Yield Important Lessons Learned, September 2005 Integrated Energy Systems Multi-Media Webcast: Three CHP Sites Yield Important Lessons Learned, September 2005 Cooling, Heating and Power (CHP) system integration is advancing. The U.S. Department of Energy partnered with industry to accelerate CHP system integration. This is an announcement for a webcast that provided detailed information on

  20. Memorandum, Implementation of Department of Energy Manual 450.4-1, Integrated Safety Management System Manual

    Broader source: Energy.gov [DOE]

    Memorandum, Implementation of Department of Energy Manual 450.401, "Integrated Safety Management System Manual". January 4, 2007. Identifies and institutionalizes requirements and responsibilities for the development and implementation of ISM systems throughout DOE.

  1. Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands Kari Burman, Dan Olis, Vahan Gevorgian, Adam Warren, and Robert Butt National Renewable Energy Laboratory Peter Lilienthal and John Glassmire HOMER Energy LLC Technical Report NREL/TP-7A20-51294 September 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No.

  2. Smart Grid Educational Series | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Grid Educational Series NREL hosts an ongoing series of educational webinars on smart grid-related topics, featuring speakers from the lab and the energy industry. Stay informed about upcoming webinars in the series by subscribing to our monthly newsletter. Video Surveillance System Security & NERC CIP Compliance August 19, 2016 This webinar featured a presentation on cybersecurity and video surveillance from Joe Coe of Hikvision, and a second presentation by John Chowdhury of NKSoft

  3. Integrated Building Energy Systems Design Considering Storage Technologies

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Aki, Hirohisa

    2009-04-07

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO2 emissions. The problem is solved for a given test year at representative customer sites, e.g., nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research projectperformed for the U.S. Department of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO2 minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site.

  4. A System-of-Systems Approach for Integrated Energy Systems Modeling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The IESM can be used to understand and test the impact of new retail market structures and technologies such as DERs, demand-response equipment, and energy management systems on ...

  5. DOE to Invest in Grid Integration Systems for Solar Energy | Department of

    Office of Environmental Management (EM)

    Energy in Grid Integration Systems for Solar Energy DOE to Invest in Grid Integration Systems for Solar Energy August 13, 2008 - 1:00pm Addthis DOE announced on August 12 that it plans to invest up to $24 million over a number of years to develop products that connect solar power systems with the electrical grid in an interactive way. DOE has selected 12 industry teams that will receive $2.9 million in current fiscal year funding to develop conceptual designs and market analyses for such

  6. Smart Homes and Buildings Research at the Energy Systems Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Grid More Resilient to Power Outages | Department of Energy Hurricane Season and the Department's Efforts to Make the Grid More Resilient to Power Outages Smart Grid Week: Hurricane Season and the Department's Efforts to Make the Grid More Resilient to Power Outages June 6, 2013 - 5:41pm Addthis President Barack Obama listens to then-Acting Energy Secretary Daniel B. Poneman during a meeting with electric utility CEOs and trade association representatives at the Department of Energy in

  7. 2014 ESIF (Energy Systems Integration Facility) Annual Report...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar inverters onto the grid, operating microgrids that can DAN E. ARVIZU Director of the National Renewable Energy ... Photovoltaic Diffusion: An Analysis of Geospatial Datasets." ...

  8. Solar energy grid integration systems : final report of the Florida Solar Energy Center Team.

    SciTech Connect (OSTI)

    Ropp, Michael; Gonzalez, Sigifredo; Schaffer, Alan; Katz, Stanley; Perkinson, Jim; Bower, Ward Isaac; Prestero, Mark; Casey, Leo; Moaveni, Houtan; Click, David; Davis, Kristopher; Reedy, Robert; Kuszmaul, Scott S.; Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali

    2012-03-01

    Initiated in 2008, the Solar Energy Grid Integration Systems (SEGIS) program is a partnership involving the U.S. DOE, Sandia National Laboratories, private sector companies, electric utilities, and universities. Projects supported under the program have focused on the complete-system development of solar technologies, with the dual goal of expanding utility-scale penetration and addressing new challenges of connecting large-scale solar installations in higher penetrations to the electric grid. The Florida Solar Energy Center (FSEC), its partners, and Sandia National Laboratories have successfully collaborated to complete the work under the third and final stage of the SEGIS initiative. The SEGIS program was a three-year, three-stage project that include conceptual design and market analysis in Stage 1, prototype development and testing in Stage 2, and moving toward commercialization in Stage 3. Under this program, the FSEC SEGIS team developed a comprehensive vision that has guided technology development that sets one methodology for merging photovoltaic (PV) and smart-grid technologies. The FSEC team's objective in the SEGIS project is to remove barriers to large-scale general integration of PV and to enhance the value proposition of photovoltaic energy by enabling PV to act as much as possible as if it were at the very least equivalent to a conventional utility power plant. It was immediately apparent that the advanced power electronics of these advanced inverters will go far beyond conventional power plants, making high penetrations of PV not just acceptable, but desirable. This report summarizes a three-year effort to develop, validate and commercialize Grid-Smart Inverters for wider photovoltaic utilization, particularly in the utility sector.

  9. NREL: Energy Systems Integration - ESIF Workshop on Frontiers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nonlinear Oscillators and Self-Organizing Power Electronics Systems Brian Johnson, NREL Representing Storage and Demand Response in Power System Operations Josh A. Taylor, ...

  10. Integrating Wind and Solar Energy in the U.S. Bulk Power System: Lessons from Regional Integration Studies

    SciTech Connect (OSTI)

    Bird, L.; Lew, D.

    2012-09-01

    Two recent studies sponsored by the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) have examined the impacts of integrating high penetrations of wind and solar energy on the Eastern and Western electric grids. The Eastern Wind Integration and Transmission Study (EWITS), initiated in 2007, examined the impact on power system operations of reaching 20% to 30% wind energy penetration in the Eastern Interconnection. The Western Wind and Solar Integration Study (WWSIS) examined the operational implications of adding up to 35% wind and solar energy penetration to the Western Interconnect. Both studies examined the costs of integrating variable renewable energy generation into the grid and transmission and operational changes that might be necessary to address higher penetrations of wind or solar generation. This paper identifies key insights from these regional studies for integrating high penetrations of renewables in the U.S. electric grid. The studies share a number of key findings, although in some instances the results vary due to differences in grid operations and markets, the geographic location of the renewables, and the need for transmission.

  11. NREL: Energy Systems Integration - NREL Teams with Southern California...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Teams with Southern California Gas to Launch First Power-to-Gas Project in U.S. April 14, 2015 Southern California Gas Company (SoCalGas) has joined with the Energy ...

  12. NREL's Energy Systems Integration Facility Garners LEED® Platinum...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... ESIF achieved all 56 LEED points applied for and the facility is 40% more energy efficient than the baseline building performance rating per ASHRAEIESNA Standard 90.1-2004. It ...

  13. The Hawaiian Electric Companies | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Hanford Story The Hanford Story Addthis Description Washington Closure Hanford depicting The Hanford Story

    Services » The Harnessed Atom The Harnessed Atom The Harnessed Atom The Harnessed Atom is a new middle school science, technology, engineering, and math (STEM) curriculum extension that focuses on nuclear science and energy. It offers teachers accurate, unbiased, and up-to-date information on the roles that energy and nuclear science play in our lives. The curriculum includes

  14. Notice of Intent to Issue Funding Opportunity for Integrated PV and Energy Storage Systems

    Broader source: Energy.gov [DOE]

    As solar power plants proliferate, the variability and uncertainty of the solar resource poses challenges for integrating PV with electric power systems at both the distribution and bulk system levels. In response to these challenges, the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy (EERE) has issued a notice of intent (NOI) to release the SunShot Sustainable and Holistic IntegratioN of Energy storage and Solar (SHINES) funding opportunity. SHINES will enable the holistic design, development, and widespread sustainable deployment of low-cost, flexible, and reliable energy storage solutions, and will strive to successfully integrate these solutions into PV power plants. SHINES projects can also focus on demand response and load management to achieve target metrics.

  15. NREL: Energy Systems Integration Facility - Hardware-in-the-Loop...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tests at full power and actual load levels in real-time simulations to evaluate component and system performance before going to market. For more information, read the...

  16. Integrated MARKAL-EFOM System (TIMES) | Open Energy Information

    Open Energy Info (EERE)

    Program ComplexityEase of Use: Advanced Website: iea-etsap.orgwebTimes.asp Cost: Free Related Tools TEEMP Intertemporal Computable Equilibrium System (ICES) MCA4Climate -...

  17. NREL: Energy Systems Integration Facility - Prototype and Component...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research, development, and demonstration of power system components such as PV ... research, development, and demonstration of key components of near-market technologies. ...

  18. Integrated Sensing Systems Inc ISSYS | Open Energy Information

    Open Energy Info (EERE)

    systems (MEMS) with a view to harnessing it for use in medical and scientific sensing applications. Coordinates: 46.78469, -98.564874 Show Map Loading map......

  19. High-Performance Computing and Visualization | Energy Systems Integration |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL High-Performance Computing and Visualization High-performance computing (HPC) and visualization at NREL propel technology innovation as a research tool by which scientists and engineers find new ways to tackle our nation's energy challenges-challenges that cannot be addressed through traditional experimentation alone. Photo of two men standing in front of a 3D visualization screen These research efforts will save time and money and significantly improve the likelihood of breakthroughs

  20. 2015 Energy Systems Integration Facility Annual Report Calls to Industry:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Distributed Wind Market Report Fact Sheet 2015 Distributed Wind Market Report Fact Sheet 2015-Distributed-Wind-Market-Report-Fact-Sheet_Page_1.jpg Wind turbines in distributed applications are found in all 50 states, Puerto Rico, and the U.S. Virgin Islands to provide energy locally, either serving on-site electricity needs or a local grid. Distributed wind is defined by the wind project's location relative to end-use and powerdistribution infrastructure, rather than turbine or project size.

  1. Recent content in Energy Systems Integration | OpenEI Community

    Open Energy Info (EERE)

    Systems(Jain and Alleyne 2012) Qinsun 15 Nov 2012 - 13:19 Document Prospects for Nuclear Power(Davis 2012) Qinsun 15 Nov 2012 - 13:36 Document Research topics related to ESI...

  2. Renewable Energy Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integration - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, ...

  3. Impact of Generator Flexibility on Electric System Costs and Integration of Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of Generator Flexibility on Electric System Costs and Integration of Renewable Energy D. Palchak and P. Denholm Technical Report NREL/TP-6A20-62275 July 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National Renewable

  4. Energy Systems Integration: NREL + SolarCity and the Hawaiian Electric Companies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-02-01

    This fact sheet describes the collaboration between NREL, SolarCity, and the Hawaiian Electric Companies at the Energy Systems Integration Facility (ESIF) to address the safety, reliability, and stability challenges of interconnecting high penetrations of distributed photovoltaics with the electric power system.

  5. Integrating CSP w/ TES into a Utility System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrating CSP w/ TES into a Utility System Integrating CSP w/ TES into a Utility System This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. csp_review_meeting_042513_albert.pdf (1.81 MB) More Documents & Publications EA-1683: Final Environmental Assessment SunShot Vision Study: February 2012 (Book), SunShot, Energy Efficiency & Renewable Energy (EERE) A New Generation of Parabolic Trough

  6. Systems and methods for an integrated electrical sub-system powered by wind energy

    DOE Patents [OSTI]

    Liu, Yan; Garces, Luis Jose

    2008-06-24

    Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.

  7. Integrated renewable energy/organic waste recycling system. Final report, July 31, 1982

    SciTech Connect (OSTI)

    Hamburg, R.A.; Davenport, S.

    1982-01-01

    Two operating systems for integrated recycling of organic materials are described. The systems include Chinese water-pressure design biogas digesters/solar greenhouses/and algae and aquatic plant ponds-all in passive symbiotic relationships with a minimum of technological sophistication. Economic, Financial and Net Energy Analyses of these systems have been done with concern toward long term environmental effects. A discussion of fish ponds and fuel alcohol production is also included since they offer much potential for expanded integration. 21 tabs.

  8. An Energy Preserving Time Integration Method for Gyric Systems: Development of the Offshore Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Preserving Time Integration Method for Gyric Systems: Development of the Offshore Wind Energy Simulation Toolkit Brian C. Owens Texas A&M University brian_owens@tamu.edu John E. Hurtado Texas A&M University jehurtado@tamu.edu Matthew Barone Sandia National Laboratories* mbarone@sandia.gov Joshua A. Paquette Sandia National Laboratories* japaque@sandia.gov *Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned

  9. NiSource Energy Technologies Inc.: System Integration of Distributed Power for Complete Building Systems

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Summarizes NiSource Energy Technologies' work under contract to DOE's Distribution and Interconnection R&D. Includes studying distributed generation interconnection issues and CHP system performance.

  10. SolarCity and the Hawaiian Electric Companies | Energy Systems Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL SolarCity and the Hawaiian Electric Companies NREL is collaborating with SolarCity at the Energy Systems Integration Facility (ESIF) to address the safety, reliability, and stability challenges of interconnecting high penetrations of distributed photovoltaics (PV) with the electric power system. "We know how important the option of solar is for our customers. Solving these issues requires that everyone-utilities, the solar industry, and other leading technical experts like

  11. Sandia Energy - Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Transmission Grid Integration Transmission Grid...

  12. Sandia Energy - Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Distribution Grid Integration Distribution Grid...

  13. The integration of renewable energy sources into electric power transmission systems

    SciTech Connect (OSTI)

    Barnes, P.R.; Dykas, W.P.; Kirby, B.J.; Purucker, S.L.; Lawler, J.S.

    1995-07-01

    Renewable energy technologies such as photovoltaics, solar thermal power plants, and wind turbines are nonconventional, environmentally attractive sources of energy that can be considered for electric power generation. Many of the areas with abundant renewable energy resources (very sunny or windy areas) are far removed from major load centers. Although electrical power can be transmitted over long distances of many hundreds of miles through high-voltage transmission lines, power transmission systems often operate near their limits with little excess capacity for new generation sources. This study assesses the available capacity of transmission systems in designated abundant renewable energy resource regions and identifies the requirements for high-capacity plant integration in selected cases. In general, about 50 MW of power from renewable sources can be integrated into existing transmission systems to supply local loads without transmission upgrades beyond the construction of a substation to connect to the grid. Except in the Southwest, significant investment to strengthen transmission systems will be required to support the development of high-capacity renewable sources of 1000 MW or greater in areas remote from major load centers. Cost estimates for new transmission facilities to integrate and dispatch some of these high-capacity renewable sources ranged from several million dollars to approximately one billion dollars, with the latter figure an increase in total investment of 35%, assuming that the renewable source is the only user of the transmission facility.

  14. Wind Energy Integration: Slides

    Wind Powering America (EERE)

    information about integrating wind energy into the electricity grid. Wind Energy Integration Photo by Dennis Schroeder, NREL 25907 Wind energy currently contributes significant power to energy portfolios around the world. *U.S. Department of Energy. (August 2015). 2014 Wind Technologies Market Report. Wind Energy Integration In 2014, Denmark led the way with wind power supplying roughly 39% of the country's electricity demand. Ireland, Portugal, and Spain provided more than 20% of their

  15. The integration of renewable energy sources into electric power distribution systems. Volume 2, Utility case assessments

    SciTech Connect (OSTI)

    Zaininger, H.W.; Ellis, P.R.; Schaefer, J.C.

    1994-06-01

    Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: (1) The local solar insolation and/or wind characteristics; (2) renewable energy source penetration level; (3) whether battery or other energy storage systems are applied; and (4) local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kw-scale applications may be connected to three-phase secondaries, and larger hundred-kW and MW-scale applications, such as MW-scale windfarms or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications.

  16. Energy analysis of facade-integrated photovoltaic systems applied to UAE commercial buildings

    SciTech Connect (OSTI)

    Radhi, Hassan

    2010-12-15

    Developments in the design and manufacture of photovoltaic cells have recently been a growing concern in the UAE. At present, the embodied energy pay-back time (EPBT) is the criterion used for comparing the viability of such technology against other forms. However, the impact of PV technology on the thermal performance of buildings is not considered at the time of EPBT estimation. If additional energy savings gained over the PV system life are also included, the total EPBT could be shorter. This paper explores the variation of the total energy of building integrated photovoltaic systems (BiPV) as a wall cladding system applied to the UAE commercial sector and shows that the ratio between PV output and saving in energy due to PV panels is within the range of 1:3-1:4. The result indicates that for the southern and western facades in the UAE, the embodied energy pay-back time for photovoltaic system is within the range of 12-13 years. When reductions in operational energy are considered, the pay-back time is reduced to 3.0-3.2 years. This study comes to the conclusion that the reduction in operational energy due to PV panels represents an important factor in the estimation of EPBT. (author)

  17. Integration of Wind Energy Systems into Power Engineering Education Program at UW-Madison

    SciTech Connect (OSTI)

    Venkataramanan, Giri; Lesieutre, Bernard; Jahns, Thomas; Desai, Ankur R

    2012-09-01

    This project has developed an integrated curriculum focused on the power engineering aspects of wind energy systems that builds upon a well-established graduate educational program at UW- Madison. Five new courses have been developed and delivered to students. Some of the courses have been offered on multiple occasions. The courses include: Control of electric drives for Wind Power applications, Utility Applications of Power Electronics (Wind Power), Practicum in Small Wind Turbines, Utility Integration of Wind Power, and Wind and Weather for Scientists and Engineers. Utility Applications of Power Electronics (Wind Power) has been provided for distance education as well as on-campus education. Several industrial internships for students have been organized. Numerous campus seminars that provide discussion on emerging issues related to wind power development have been delivered in conjunction with other campus events. Annual student conferences have been initiated, that extend beyond wind power to include sustainable energy topics to draw a large group of stakeholders. Energy policy electives for engineering students have been identified for students to participate through a certificate program. Wind turbines build by students have been installed at a UW-Madison facility, as a test-bed. A Master of Engineering program in Sustainable Systems Engineering has been initiated that incorporates specializations that include in wind energy curricula. The project has enabled UW-Madison to establish leadership at graduate level higher education in the field of wind power integration with the electric grid.

  18. Systems Integration

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  19. Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations

    SciTech Connect (OSTI)

    Jones, Lawrence E.

    2012-01-05

    A variety of studies have recently evaluated the opportunities for the large-scale integration of wind energy into the US power system. These studies have included, but are not limited to, "20 Percent Wind Energy by 2030: Increasing Wind Energy's Contribution to US Electricity Supply", the "Western Wind and Solar Integration Study", and the "Eastern Wind Integration and Transmission Study." Each of these US based studies have evaluated a variety of activities that can be undertaken by utilities to help integrate wind energy.

  20. High Penetration PV: How High Can We Go? (Brochure), Energy Systems Integration (ESI), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Penetration PV: How High Can We Go? ENERGY SYSTEMS INTEGRATION ESI optimizes the design and performance of electrical, thermal, fuel, and water pathways at all scales. "We know how important the option of solar is for our customers. Solving these issues requires that everyone-utilities, the solar industry, and other leading technical experts like NREL-work together. That's what this work is all about. With the highest amount of solar in the nation, our utilities are facing potential

  1. Integrating Renewable Energy into the Transmission and Distribution System of the U. S. Virgin Islands

    SciTech Connect (OSTI)

    Burman, K.; Olis, D.; Gevorgian, V.; Warren, A.; Butt, R.; Lilienthal, P.; Glassmire, J.

    2011-09-01

    This report focuses on the economic and technical feasibility of integrating renewable energy technologies into the U.S. Virgin Islands transmission and distribution systems. The report includes three main areas of analysis: 1) the economics of deploying utility-scale renewable energy technologies on St. Thomas/St. John and St. Croix; 2) potential sites for installing roof- and ground-mount PV systems and wind turbines and the impact renewable generation will have on the electrical subtransmission and distribution infrastructure, and 3) the feasibility of a 100- to 200-megawatt power interconnection of the Puerto Rico Electric Power Authority (PREPA), Virgin Islands Water and Power Authority (WAPA), and British Virgin Islands (BVI) grids via a submarine cable system.

  2. Integrated Wind Energy/Desalination System: October 11, 2004 -- July 29, 2005

    SciTech Connect (OSTI)

    GE Global Research

    2006-10-01

    This study investigates the feasibility of multiple concepts for integrating wind turbines and reverse osmosis desalination systems for water purification.

  3. Office of Energy Efficiency and Renewable Energy's Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Energy Efficiency and Renewable Energy's Integrated Resource and Information System DOEIG-0905 April 2014 U.S. Department of Energy Office of Inspector General Office of...

  4. Material and energy recovery in integrated waste management systems: Project overview and main results

    SciTech Connect (OSTI)

    Consonni, Stefano; Giugliano, Michele; Massarutto, Antonio; Saccani, Cesare

    2011-09-15

    Highlights: > The source separation level (SSL) of waste management system does not qualify adequately the system. > Separately collecting organic waste gives less advantages than packaging materials. > Recycling packaging materials (metals, glass, plastics, paper) is always attractive. > Composting and anaerobic digestion of organic waste gives questionable outcomes. > The critical threshold of optimal recycling seems to be a SSL of 50%. - Abstract: This paper describes the context, the basic assumptions and the main findings of a joint research project aimed at identifying the optimal breakdown between material recovery and energy recovery from municipal solid waste (MSW) in the framework of integrated waste management systems (IWMS). The project was carried out from 2007 to 2009 by five research groups at Politecnico di Milano, the Universities of Bologna and Trento, and the Bocconi University (Milan), with funding from the Italian Ministry of Education, University and Research (MIUR). Since the optimization of IWMSs by analytical methods is practically impossible, the search for the most attractive strategy was carried out by comparing a number of relevant recovery paths from the point of view of mass and energy flows, technological features, environmental impact and economics. The main focus has been on mature processes applicable to MSW in Italy and Europe. Results show that, contrary to a rather widespread opinion, increasing the source separation level (SSL) has a very marginal effects on energy efficiency. What does generate very significant variations in energy efficiency is scale, i.e. the size of the waste-to-energy (WTE) plant. The mere value of SSL is inadequate to qualify the recovery system. The energy and environmental outcome of recovery depends not only on 'how much' source separation is carried out, but rather on 'how' a given SSL is reached.

  5. Creating a spatial multi-criteria decision support system for energy related integrated environmental impact assessment

    SciTech Connect (OSTI)

    Wanderer, Thomas Herle, Stefan

    2015-04-15

    By their spatially very distributed nature, profitability and impacts of renewable energy resources are highly correlated with the geographic locations of power plant deployments. A web-based Spatial Decision Support System (SDSS) based on a Multi-Criteria Decision Analysis (MCDA) approach has been implemented for identifying preferable locations for solar power plants based on user preferences. The designated areas found serve for the input scenario development for a subsequent integrated Environmental Impact Assessment. The capabilities of the SDSS service get showcased for Concentrated Solar Power (CSP) plants in the region of Andalusia, Spain. The resulting spatial patterns of possible power plant sites are an important input to the procedural chain of assessing impacts of renewable energies in an integrated effort. The applied methodology and the implemented SDSS are applicable for other renewable technologies as well. - Highlights: • The proposed tool facilitates well-founded CSP plant siting decisions. • Spatial MCDA methods are implemented in a WebGIS environment. • GIS-based SDSS can contribute to a modern integrated impact assessment workflow. • The conducted case study proves the suitability of the methodology.

  6. Integration of ocean thermal energy conversion power plants with existing power systems

    SciTech Connect (OSTI)

    Arunasalam, N.

    1986-01-01

    The problem of integrating an Ocean Thermal Energy Conversion (OTEC) power plant with existing power systems is studied. A nonlinear model of an OTEC power system is developed. The dynamics of the large local induction motor load, and the coaxial cable connection to the mainland are included in the model. The effect of the motor load and the coaxial cable on the steady-state stability of the OTEC power plant is investigated using linearized analysis. The transient stability of the OTEC system is investigated through simulation. The contribution made by the motor load and the coaxial cable to the transient stability is studied. The occurrence of self excitation phenomena is analyzed using linear methods and simulation. The effects of wave and vessel motion on the electrical power output of the OTEC plant is investigated.

  7. Department of Energy Announces $8.5 Million to Advance Solar Energy Grid Integration Systems

    Broader source: Energy.gov [DOE]

    Stage III awards through DOE's Sandia National Laboratories to help advance solar energy deployment and grid reliability

  8. Case Studies of integrated hydrogen systems. International Energy Agency Hydrogen Implementing Agreement, Final report for Subtask A of task 11 - Integrated Systems

    SciTech Connect (OSTI)

    Schucan, T.

    1999-12-31

    Within the framework of the International Energy Agency Hydrogen Implementing Agreement, Task 11 was undertaken to develop tools to assist in the design and evaluation of existing and potential hydrogen demonstration projects. Emphasis was placed on integrated systems, from input energy to hydrogen end use. Included in the PDF document are the Executive Summary of the final report and the various case studies. The activities of task 11 were focused on near- and mid-term applications, with consideration for the transition from fossil-based systems to sustainable hydrogen energy systems. The participating countries were Canada, Italy, Japan, the Netherlands, Spain, Switzerland and the United States. In order for hydrogen to become a competitive energy carrier, experience and operating data need to be generated and collected through demonstration projects. A framework of scientific principles, technical expertise, and analytical evaluation and assessment needed to be developed to aid in the design and optimization of hydrogen demonstration projects to promote implementation. The task participants undertook research within the framework of three highly coordinated subtasks that focused on the collection and critical evaluation of data from existing demonstration projects around the world, the development and testing of computer models of hydrogen components and integrated systems, and the evaluation and comparison of hydrogen systems. While the Executive Summary reflects work on all three subtasks, this collection of chapters refers only to the work performed under Subtask A. Ten projects were analyzed and evaluated in detail as part of Subtask A, Case Studies. The projects and the project partners were: Solar Hydrogen Demonstration Project, Solar-Wasserstoff-Bayern, Bayernwerk, BMW, Linde, Siemens (Germany); Solar Hydrogen Plant on Residential House, M. Friedli (Switzerland); A.T. Stuart Renewable Energy Test Site; Stuart Energy Systems (Canada); PHOEBUS Juelich

  9. Building system integration research: recommendations for a US Department of Energy multiyear program plan

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    This plan describes the scope, technical content, and resources required to conduct the Building System Integration (BSI) research program during FY 1987 through 1991. System integration research is defined, the need for the research is discussed, its benefits are outlined, and the history of building system integration research is summarized. The program scope, the general approach taken in developing this program plan, and the plan's contents are also described.

  10. India's Integrated Energy Policy | Open Energy Information

    Open Energy Info (EERE)

    search Name India's Integrated Energy Policy AgencyCompany Organization Government of India Sector Energy Focus Area Conventional Energy, Energy Efficiency, Renewable Energy...

  11. Integrated Energy System with Beneficial Carbon Dioxide (CO2) Use - Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Sun, Xiaolei; Rink, Nancy T

    2011-04-29

    This report presents an integrated energy system that combines the production of substitute natural gas through coal hydrogasification with an algae process for beneficial carbon dioxide (CO2) use and biofuel production (funded under Department of Energy (DOE) contract DE-FE0001099). The project planned to develop, test, operate and evaluate a 2 ton-per-day coal hydrogasification plant and 25-acre algae farm at the Arizona Public Service (APS) 1000 Megawatt (MW) Cholla coal-fired power plant in Joseph City, Arizona. Conceptual design of the integrated system was undertaken with APS partners Air Liquide (AL) and Parsons. The process engineering was separated into five major areas: flue gas preparation and CO2 delivery, algae farming, water management, hydrogasification, and biofuel production. The process flow diagrams, energy and material balances, and preliminary major equipment needs for each major area were prepared to reflect integrated process considerations and site infrastructure design basis. The total project also included research and development on a bench-scale hydrogasifier, one-dimensional (1-D) kinetic-model simulation, extensive algae stressing, oil extraction, lipid analysis and a half-acre algae farm demonstration at APS?s Redhawk testing facility. During the project, a two-acre algae testing facility with a half-acre algae cultivation area was built at the APS Redhawk 1000 MW natural gas combined cycle power plant located 55 miles west of Phoenix. The test site integrated flue gas delivery, CO2 capture and distribution, algae cultivation, algae nursery, algae harvesting, dewatering and onsite storage as well as water treatment. The site environmental, engineering, and biological parameters for the cultivators were monitored remotely. Direct biodiesel production from biomass through an acid-catalyzed transesterification reaction and a supercritical methanol transesterification reaction were evaluated. The highest oil-to-biodiesel conversion of 79

  12. Grid Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Grid Integration Grid Integration Grid Integration The Wind Program works with electric grid operators, utilities, regulators, and industry to create new strategies for incorporating increasing amounts of wind energy into the power system while maintaining economic and reliable operation of the grid. Utilities have been increasingly deploying wind power to provide larger portions of electricity generation. However, many utilities also express concerns about wind

  13. Integrated process modeling for the laser inertial fusion Energy (LIFE) generation system

    SciTech Connect (OSTI)

    Meier, W R; Anklam, T M; Erlandson, A C; Miles, R R; Simon, A J; Sawicki, R; Storm, E

    2009-10-22

    A concept for a new fusion-fission hybrid technology is being developed at Lawrence Livermore National Laboratory. The primary application of this technology is base-load electrical power generation. However, variants of the baseline technology can be used to 'burn' spent nuclear fuel from light water reactors or to perform selective transmutation of problematic fission products. The use of a fusion driver allows very high burn-up of the fission fuel, limited only by the radiation resistance of the fuel form and system structures. As a part of this process, integrated process models have been developed to aid in concept definition. Several models have been developed. A cost scaling model allows quick assessment of design changes or technology improvements on cost of electricity. System design models are being used to better understand system interactions and to do design trade-off and optimization studies. Here we describe the different systems models and present systems analysis results. Different market entry strategies are discussed along with potential benefits to US energy security and nuclear waste disposal. Advanced technology options are evaluated and potential benefits from additional R&D targeted at the different options is quantified.

  14. Cybersecurity and Resilience (Brochure), Energy Systems Integration (ESI), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CyberCon CyberCon IMPORTANT REMINDER: Time is running out to make your hotel reservations, if you haven't please do so by September 6th. IMPORTANT REMINDER: Time is running out to make your hotel reservations, if you haven't please do so by September 6th. DOE Cyber-An Enterprise Approach: Excellence Through Innovation & Integration The Office of the Chief Information Officer (OCIO) will host the DOE Cyber Conference, September 19-22, 2016 in Atlanta, Georgia. The conference will convene the

  15. Integrated municipal solid waste management: Six case studies of system cost and energy use. A summary report

    SciTech Connect (OSTI)

    1995-11-01

    Report documents an evaluation of the environmental, economic, and energy impacts of integrated municipal solid waste management systems in six cities: Minneapolis, NW; Springfield, MA; Seattle, WA; Scottsdale, AZ; Palm Beach County, CA; and Sevierville, TN. The primary objective of these case studies was to develop and present consistent cost, resource use (especially energy), and environmental regulator information on each operating IMSWM system. The process is defined as using two or more alternative waste management techniques. Detailed reports on each system are available.

  16. Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes - Business Case Assessment

    SciTech Connect (OSTI)

    Baxter, Van D

    2007-05-01

    . Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, 'HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment', ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. Table 1 summarizes the energy savings potential of the highest scoring options from the 2005 study for all five locations. All system options were scored by the ORNL building equipment research team and by William Goetzler of Navigant Consulting. These scores were reviewed by DOE/BT's Residential Integration program leaders and Building America team members. Based on these results, the two centrally ducted integrated heat pump (IHP) systems (air source and ground source versions) were selected for advancement to Stage 2 (Exploratory Development) business case assessments in FY06. This report describes results of these business case assessments. It is a compilation of three separate reports describing the initial business case study (Baxter 2006a), an update to evaluate the impact of an economizer cooling option (Baxter 2006b), and a second update to evaluate the impact of a winter humidification option (Baxter 2007). In addition it

  17. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  18. 20% Wind Energy by 2030 - Chapter 4: Transmission and Integration into the U.S. Electric System Summary Slides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: Transmission and Integration into the U.S. Electric System Summary Slides Enhanced electricity delivery necessary with increased wind deployments Enhancement of electrical transmission system required in all electricity-growth scenarios, not just wind Transmission is needed to: * Relieve congestion in existing system * Improve system reliability for all customers * Increase access to lower-cost energy * Access new and remote generation resources Wind requires more transmission than some other

  19. Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report describes one area in which islands may lead: integrating a high percentage of renewable energy resources into an isolated grid. In addition, it explores the challenges, feasibility, and potential benefits of interconnecting the USVI grids with the much larger Puerto Rican grid.

  20. California Energy Commission Public Interest EnergyResearch/Energy System Integration -- Transmission-Planning Research&Development Scoping Project

    SciTech Connect (OSTI)

    Eto, Joseph H.; Lesieutre, Bernard; Widergren, Steven

    2004-07-01

    The objective of this Public Interest Energy Research (PIER)scoping project is to identify options for public-interest research and development (R&D) to improve transmission-planning tools, techniques, and methods. The information presented was gathered through a review of current California utility, California Independent System Operator (ISO), and related western states electricity transmission-planning activities and emerging needs. This report presents the project teams findings organized under six topic areas and identifies 17 distinct R&D activities to improve transmission-planning in California and the West. The findings in this report are intended for use, along with other materials, by PIER staff, to facilitate discussions with stakeholders that will ultimately lead to development of a portfolio of transmission-planning R&D activities for the PIER program.

  1. An assessment of the net value of CSP systems integrated with thermal energy storage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mehos, M.; Jorgenson, J.; Denholm, P.; Turchi, C.

    2015-05-01

    Within this study, we evaluate the operational and capacity value—or total system value—for multiple concentrating solar power (CSP) plant configurations under an assumed 33% renewable penetration scenario in California. We calculate the first-year bid price for two CSP plants, including a 2013 molten-salt tower integrated with a conventional Rankine cycle and a hypothetical 2020 molten-salt tower system integrated with an advanced supercritical carbon-dioxide power block. The overall benefit to the regional grid, defined in this study as the net value, is calculated by subtracting the first-year bid price from the total system value.

  2. An assessment of the net value of CSP systems integrated with thermal energy storage

    SciTech Connect (OSTI)

    Mehos, M.; Jorgenson, J.; Denholm, P.; Turchi, C.

    2015-05-01

    Within this study, we evaluate the operational and capacity valueor total system valuefor multiple concentrating solar power (CSP) plant configurations under an assumed 33% renewable penetration scenario in California. We calculate the first-year bid price for two CSP plants, including a 2013 molten-salt tower integrated with a conventional Rankine cycle and a hypothetical 2020 molten-salt tower system integrated with an advanced supercritical carbon-dioxide power block. The overall benefit to the regional grid, defined in this study as the net value, is calculated by subtracting the first-year bid price from the total system value.

  3. Heat-pump-centered Integrated Community Energy Systems: systems development, Consolidated Natural Gas Service Company. Final report

    SciTech Connect (OSTI)

    Baker, N.R.; Donakowski, T.D.; Foster, R.B.; Sala, D.L.; Tison, R.R.; Whaley, T.P.; Yudow, B.D.; Swenson, P.F.

    1980-01-01

    The Heat-Actuated Heat Pump Centered Integrated Community Energy System (HAHP-ICES) utilizes a gas-fired, engine-driven, heat pump and commercial buildings, and offers several advantages over the more conventional equipment it is intended to supplant. The general non-site-specific application assumes a hypothetical community of one 59,000 ft/sup 2/ office building and five 24-unit, low-rise apartment buildings located in a region with a climate similar to Chicago. This community serves as a starting point - the base case - upon which various sensitivity analyses are performed and through which the performance characteristics of the HAHP are explored. The results of these analyses provided the selection criteria for the site-specific application of the HAHP-ICES concept to a real-world community. The site-specific community consists of 42 townhouses; five 120-unit, low-rise apartment buildings; five 104-unit high-rise apartment buildings; one 124,000 ft/sup 2/ office building; and a single 135,000 ft/sup 2/ retail building located in Monroeville, Pa. The base-case analyses confirmed that the HAHP-ICES has significant potentials for reducing the primary energy consumption and pollutant emissions associated with space conditioning when compared with a conventional system. Primary energy consumption was reduced by 30%, while emission reductions ranged from 39 to 77%. The results of the site-specific analysis indicate that reductions in energy consumption of between 15 and 22% are possible when a HAHP-ICES is selected as opposed to conventional HVAC equipment.

  4. Demand Response and Energy Storage Integration Study

    Broader source: Energy.gov [DOE]

    Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable...

  5. Energy Systems Integration Facility (ESIF) External Stakeholders Workshop: Workshop Proceedings, 9 October 2008, Golden, Colorado

    SciTech Connect (OSTI)

    Komomua, C.; Kroposki, B.; Mooney, D.; Stoffel, T.; Parsons, B.; Hammond, S.; Kutscher, C.; Remick, R.; Sverdrup, G.; Hawsey, R.; Pacheco, M.

    2009-01-01

    On October 9, 2008, NREL hosted a workshop to provide an opportunity for external stakeholders to offer insights and recommendations on the design and functionality of DOE's planned Energy Systems Infrastructure Facility (ESIF). The goal was to ensure that the planning for the ESIF effectively addresses the most critical barriers to large-scale energy efficiency (EE) and renewable energy (RE) deployment. This technical report documents the ESIF workshop proceedings.

  6. Knowledge Integration to Make Decisions About Complex Systems: Sustainability of Energy Production from Agriculture

    SciTech Connect (OSTI)

    Danuso, Francesco

    2008-06-18

    A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple, Easy Modelling Language) for knowledge integration has been developed. SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Joergensen, 1994) in which systems are modeled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.

  7. Knowledge Integration to Make Decisions About Complex Systems: Sustainability of Energy Production from Agriculture

    SciTech Connect (OSTI)

    Danuso, Francesco

    2008-06-18

    A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple, Easy Modelling Language) for knowledge integration has been developed.  SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Jørgensen, 1994) in which systems are modelled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower  management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.

  8. Knowledge Integration to Make Decisions About Complex Systems: Sustainability of Energy Production from Agriculture

    ScienceCinema (OSTI)

    Danuso, Francesco [University of Udine, Italy

    2010-01-08

    A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple, Easy Modelling Language) for knowledge integration has been developed.  SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Jørgensen, 1994) in which systems are modelled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower  management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.

  9. Integrated Chemical Geothermometry System for Geothermal Exploration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Chemical Geothermometry System for Geothermal Exploration Integrated Chemical Geothermometry System for Geothermal Exploration DOE Geothermal Peer Review 2010 - Presentation. Develop practical and reliable system to predict geothermal reservoir temperatures from integrated chemical analyses of spring and well fluids. tracers_spycher_integrated_chemical.pdf (272.32 KB) More Documents & Publications Integrated Chemical Geothermometry System for Geothermal Exploration

  10. Systems Integration Competitive Awards

    Broader source: Energy.gov [DOE]

    Through the SunShot Systems Integration efforts, DOE is funding a range of research and development (R&D) projects to advance balance of system hardware technologies, such as racking systems...

  11. Modeling energy in an Integrated Pollutant Removal (IPR) system with CO{sub 2} capture integrated with oxy-fuel combustion

    SciTech Connect (OSTI)

    Harendra, Sivaram; Oryshchyn, Danylo B.; Gerdemann, Stephen J.

    2012-01-01

    Oxy-coal combustion is one of the technical solutions for mitigating CO{sub 2} in thermal power plants. Many processes have been evolved in past the decade to capture CO{sub 2} from process industries. Researchers at the National Energy Technology Laboratory (NETL) have patented a process, integrated pollutant removal (IPR), that uses off the shelf technology to produce a sequestration-ready CO{sub 2} stream from an oxy-combustion power plant. The IPR process as it is realized at the Jupiter Oxygen Burner Test Facility is a spray tower (direct-contact heat exchanger) followed by four stages of compression with intercooling. To study the energy flows of the oxy-combustion process, a 15 MW{sub t}h oxy-combustion pulverized-coal-fired plant integrated with the IPR system was simulated and analyzed using ASPEN Plus and ASPEN energy analyzer. This paper discusses flue-gas recycle, energy flow, recovery, and optimization of IPR systems. ASPEN models of heat- and mass-transfer processes in aflue-gas-condensing heat-exchanger system were developed to predict the heat transferred from flue gas to cooling water. The flue-gas exit temperature, cooling water outlet temperature, and energy flows of IPR streams were computed using ASPEN models. Pinch principles are deployed for targeting design and operation-guiding purposes and balancing the heat and mass transfer in the IPR system. The results are expected to support sophistication of the IPR system design, improving its application in a variety of settings. They open the door for valuable IPR efficiency improvements and generalization of methodology for simultaneous management of energy resources.

  12. Automated Energy Distribution and Reliability System: Validation Integration - Results of Future Architecture Implementation

    SciTech Connect (OSTI)

    Buche, D. L.

    2008-06-01

    This report describes Northern Indiana Public Service Co. project efforts to develop an automated energy distribution and reliability system. The purpose of this project was to implement a database-driven GIS solution that would manage all of the company's gas, electric, and landbase objects. This report is second in a series of reports detailing this effort.

  13. Energy Systems Laboratory Groundbreaking

    ScienceCinema (OSTI)

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.;

    2013-05-28

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  14. Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    The Systems Integration (SI) subprogram works closely with industry, universities, and the national laboratories to overcome technical barriers to the large-scale deployment of solar technologies. To support these goals, the subprogram invests primarily in four areas: grid integration, technology validation, solar resource assessment, and balance of system development.

  15. Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2011-10-13

    The Systems Integration (SI) subprogram works closely with industry, universities, and the national laboratories to overcome technical barriers to the large-scale deployment of solar technologies. To support these goals, the subprogram invests primarily in four areas: grid integration, technology validation, solar resource assessment, and balance of system development.

  16. SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR PV (SHINES) SUSTAINABLE AND ... while ensuring a resilient energy system combining energy storage with central ...

  17. Impact of Generator Flexibility on Electric System Costs and Integration of Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Flexibility of traditional generators plays an important role in accommodating the increased variability and uncertainty of wind and solar on the electric power system. Increased flexibility can be achieved with changes to operational practices or upgrades to existing generation. One challenge is in understanding the value of increasing flexibility, and how this value may change given higher levels of variable generation. This study uses a commercial production cost model to measure the impact of generator flexibility on the integration of wind and solar generators. We use a system that is based on two balancing areas in the Western United States with a range of wind and solar penetrations between 15% and 60%, where instantaneous penetration of wind and solar is limited to 80%.

  18. Impact of Generator Flexibility on Electric System Costs and Integration of Renewable Energy

    SciTech Connect (OSTI)

    Palchak, D.; Denholm, P.

    2014-07-01

    Flexibility of traditional generators plays an important role in accommodating the increased variability and uncertainty of wind and solar on the electric power system. Increased flexibility can be achieved with changes to operational practices or upgrades to existing generation. One challenge is in understanding the value of increasing flexibility, and how this value may change given higher levels of variable generation. This study uses a commercial production cost model to measure the impact of generator flexibility on the integration of wind and solar generators. We use a system that is based on two balancing areas in the Western United States with a range of wind and solar penetrations between 15% and 60%, where instantaneous penetration of wind and solar is limited to 80%.

  19. Energy Delivery Systems Cybersecurity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cybersecurity » Energy Delivery Systems Cybersecurity Energy Delivery Systems Cybersecurity About the Cybersecurity for Energy Delivery Systems Program A key mission of the Department of Energy's (DOE) Office of Electricity Delivery and Energy Reliability (OE) is to enhance the reliability and resilience of the nation's energy infrastructure. Cybersecurity of energy delivery systems is critical for protecting the energy infrastructure and the integral function that it serves in our lives. OE

  20. Energy Delivery Systems Cybersecurity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Delivery Systems Cybersecurity About the Cybersecurity for Energy Delivery Systems Program A key mission of the Department of Energy's (DOE) Office of Electricity Delivery and Energy Reliability (OE) is to enhance the reliability and resilience of the nation's energy infrastructure. Cybersecurity of energy delivery systems is critical for protecting the energy infrastructure and the integral function that it serves in our lives. OE designed the Cybersecurity for Energy Delivery Systems

  1. Renewable Energy Integration | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    renewable energy, distributed generation, energy storage, thermally activated technologies, and demand response into the electric distribution and transmission system. ...

  2. China Integrated Energy | Open Energy Information

    Open Energy Info (EERE)

    integrated energy company in China engaged in three business segments: the production and sale of biodiesel, the wholesale distribution of finished oil and heavy oil...

  3. Residential Buildings Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Buildings Integration Residential Buildings Integration Zero Energy Ready Home Zero Energy Ready Home Zero Energy Ready Homes are so efficient that a renewable energy ...

  4. Challenges to Integration of Safety and Reliability with Proliferation Resistance and Physical Protection for Generation IV Nuclear Energy Systems

    SciTech Connect (OSTI)

    H. Khalil; P. F. Peterson; R. Bari; G. -L. Fiorini; T. Leahy; R. Versluis

    2012-07-01

    The optimization of a nuclear energy system's performance requires an integrated consideration of multiple design goals - sustainability, safety and reliability (S&R), proliferation resistance and physical protection (PR&PP), and economics - as well as careful evaluation of trade-offs for different system design and operating parameters. Design approaches motivated by each of the goal areas (in isolation from the other goal areas) may be mutually compatible or in conflict. However, no systematic methodology approach has yet been developed to identify and maximize synergies and optimally balance conflicts across the possible design configurations and operating modes of a nuclear energy system. Because most Generation IV systems are at an early stage of development, design, and assessment, designers and analysts are only beginning to identify synergies and conflicts between PR&PP, S&R, and economics goals. The close coupling between PR&PP and S&R goals has motivated early attention within the Generation IV International Forum to their integrated consideration to facilitate the optimization of their effects and the minimization of potential conflicts. This paper discusses the status of this work.

  5. Energy Systems Integration: NREL + SolarCity and the Hawaiian Electric Companies (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SOLARCITY AND THE HAWAIIAN ELECTRIC COMPANIES NREL is collaborating with solar energy company SolarCity at the ESIF to address the safety, reliability, and stability challenges of interconnecting high penetrations of distributed photovoltaics (PV) with the electric power system. The work includes collaboration with the Hawaiian Electric Companies to analyze high-penetration solar scenarios using advanced modeling and inverter testing at the ESIF. R&D STRATEGY The ESIF's unique megawatt-scale

  6. Grid Integration of Solar Energy Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid Integration of Solar Energy Workshop Grid Integration of Solar Energy Workshop The Grid Integration of Solar Energy Workshop on October 29, 2015 identified critical challenges ...

  7. Integrated Safety Management Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Management » Quality Assurance » Integrated Safety Management Policy Integrated Safety Management Policy This Integrated Safety Management (ISM) System Description (ISMSD) defines how the U.S. Department of Energy (DOE) Office of Environmental Management (EM) integrates environment, safety, and health requirements and controls into Federal work activities, and oversees implementation of ISM within EM federal and contractor activities. It explains our safety values, objectives and

  8. Integrated and Engineered Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated and Engineered Systems Integrated and Engineered Systems National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Contact thumbnail of Business Development Executive Miranda Intrator Business Development Executive Richard P. Feynmnan Center for Innovation (505) 665-8315 Email Engineers at Los Alamos create, design, and build the

  9. Integrated Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Validation » Integrated Projects Integrated Projects To maximize overall system efficiencies, reduce costs, and optimize component development, optimized integrated hydrogen and fuel cell systems must be developed and validated. Novel new approaches such as Power Parks, which "marry" the transportation and electricity generation markets in synergistic ways, and integrated renewable hydrogen production systems, which combine electrolysis powered by wind, solar, and other

  10. Low Wind Speed Technology Phase II: Integrated Wind Energy/Desalination System; General Electric Global Research

    SciTech Connect (OSTI)

    Not Available

    2006-03-01

    This fact sheet describes a subcontract with General Electric Global Research to explore wind power as a desirable option for integration with desalination technologies.

  11. Advanced Integrated Traction System

    SciTech Connect (OSTI)

    Greg Smith; Charles Gough

    2011-08-31

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step

  12. Modeling and Control System Design for an Integrated Solar Generation and Energy Storage System with a Ride-Through Capability: Preprint

    SciTech Connect (OSTI)

    Wang, X.; Yue, M.; Muljadi, E.

    2012-09-01

    This paper presents a generic approach for PV panel modeling. Data for this modeling can be easily obtained from manufacturer datasheet, which provides a convenient way for the researchers and engineers to investigate the PV integration issues. A two-stage power conversion system (PCS) is adopted in this paper for the PV generation system and a Battery Energy Storage System (BESS) can be connected to the dc-link through a bi-directional dc/dc converter. In this way, the BESS can provide some ancillary services which may be required in the high penetration PV generation scenario. In this paper, the fault ride-through (FRT) capability is specifically focused. The integrated BESS and PV generation system together with the associated control systems is modeled in PSCAD and Matlab platforms and the effectiveness of the controller is validated by the simulation results.

  13. Integrated Building Management System (IBMS)

    SciTech Connect (OSTI)

    Anita Lewis

    2012-07-01

    This project provides a combination of software and services that more easily and cost-effectively help to achieve optimized building performance and energy efficiency. Featuring an open-platform, cloud- hosted application suite and an intuitive user experience, this solution simplifies a traditionally very complex process by collecting data from disparate building systems and creating a single, integrated view of building and system performance. The Fault Detection and Diagnostics algorithms developed within the IBMS have been designed and tested as an integrated component of the control algorithms running the equipment being monitored. The algorithms identify the normal control behaviors of the equipment without interfering with the equipment control sequences. The algorithms also work without interfering with any cooperative control sequences operating between different pieces of equipment or building systems. In this manner the FDD algorithms create an integrated building management system.

  14. Power Systems Integration Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Power Systems Integration Laboratory at the Energy Systems Integration Facility. At NREL's Power Systems Integration Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on developing and testing large-scale distributed energy systems for grid-connected, stand-alone, and microgrid applications. The laboratory can accommodate large power system components such as inverters for photovoltaic (PV) and wind systems, diesel and natural gas generators, battery packs, microgrid interconnection switchgear, and vehicles. Closely coupled with the research electrical distribution bus at the ESIF, the Power Systems Integration Laboratory will offer power testing capability of megawatt-scale DC and AC power systems, as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Thermal heating and cooling loops and fuel also allow testing of combined heating/cooling and power systems (CHP).

  15. Integrated Canada-U.S. Power Sector Modeling with the Regional Energy Deployment System (ReEDS)

    SciTech Connect (OSTI)

    Martinez, A.; Eurek, K.; Mai, T.; Perry, A.

    2013-02-01

    The electric power system in North America is linked between the United States and Canada. Canada has historically been a net exporter of electricity to the United States. The extent to which this remains true will depend on the future evolution of power markets, technology deployment, and policies. To evaluate these and related questions, we modify the Regional Energy Deployment System (ReEDS) model to include an explicit representation of the grid-connected power system in Canada to the continental United States. ReEDS is unique among long-term capacity expansion models for its high spatial resolution and statistical treatment of the impact of variable renewable generation on capacity planning and dispatch. These unique traits are extended to new Canadian regions. We present example scenario results using the fully integrated Canada-U.S. version of ReEDS to demonstrate model capabilities. The newly developed, integrated Canada-U.S. ReEDS model can be used to analyze the dynamics of electricity transfers and other grid services between the two countries under different scenarios.

  16. Colorado: EERE Opens State-of-the-Art Energy Systems Integration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the groundbreaking science and innovation we need to address the effects of global climate change and pave the way to a cleaner, more sustainable energy future," Moniz stated. ...

  17. Sandia Energy Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efforts-during-recent-houston-press-conferencefeed 0 Recent Sandia Secure, Scalable Microgrid Advanced Controls Research Accomplishments http:energy.sandia.gov...

  18. Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Energy Storage, Energy Storage Systems, News, News & Events, Partnership, Renewable Energy, Research & Capabilities, Systems Analysis, Water Power Natural Energy ...

  19. Advancing Net-Zero Energy Commercial Buildings; Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    This fact sheet provides an overview of the research the National Renewable Energy Laboratory is conducting to achieve net-zero energy buildings (NZEBs). It also includes key definitions of NZEBs and inforamtion about an NZEB database that captures information about projects around the world.

  20. Wind energy and power system operations: a review of wind integration studies to date

    SciTech Connect (OSTI)

    Cesaro, Jennifer de; Porter, Kevin; Milligan, Michael

    2009-12-15

    Wind integration will not be accomplished successfully by doing ''more of the same.'' It will require significant changes in grid planning and operations, continued technical evolution in the design and operation of wind turbines, further adoption and implementation of wind forecasting in the control room, and incorporation of market and policy initiatives to encourage more flexible generation. (author)

  1. Coastal zone energy management: a multidisciplinary approach for the integration of solar electric systems with Florida's power generation system

    SciTech Connect (OSTI)

    Camejo, N.

    1983-12-01

    In order for Florida to ''accomplish effective coastal land management, it must have a comprehensive statewide approach closely relating land and water management development decisions in Florida must be made with understanding of the proposed development effects on the state's water resources''. This approach is very sensible in view of the issues raised in the introduction. Whether a power plant is sited inland or on the coast has tremendous implications for water use. Offshore siting of power plants is an alternative which should be carefully evaluated using CZEM. Of particular importance is the existence of renewable energy sources, such as OTEC, Wind and Ocean current, in the offshore areas of Florida. Many Solar Electric options could be sited in the coastal and offshore areas. The main technological problem associated with offshore power plants is the transmission of the electricity to shore. The solution to this problem may be using Hydrogen as an intermediary energy carrier. The use of Solar Electric Systems would be consistent with the policy to diversify the generation mix. If Florida is called upon to develop its offshore energy resources in the national interest, the use of CZEM would allow decision makers to make more environmentally sensitive decisions. This would allow the balancing of energy production and environmental quality.

  2. Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations. Executive Summary

    SciTech Connect (OSTI)

    Jones, Lawrence E.

    2011-11-01

    This is the executive summary for a report that provides findings from the field regarding the best ways in which to guide operational strategies, business processes and control room tools to support the integration of renewable energy into electrical grids.

  3. Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations

    SciTech Connect (OSTI)

    Jones, Lawrence E.

    2011-11-01

    This report provides findings from the field regarding the best ways in which to guide operational strategies, business processes and control room tools to support the integration of renewable energy into electrical grids.

  4. "Modeling the Integrated Expansion of the Canadian and U.S. Power Sectors with the Regional Energy Deployment System" Study Now Available

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory (NREL) has released a study entitled "Modeling the Integrated Expansion of the Canadian and U.S. Power Sectors with the Regional Energy Deployment System (ReEDS)”. Funded by OE, this study documents a development effort that created a robust representation of the combined capacity expansion of the U.S. and Canadian electric sectors in the NREL Regional Energy Deployment System model.

  5. DOE Transmission System Integration Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Near-Zero Emissions Long-Term Operations Renewable Integration Water Management Electric Vehicles Demand Response & Efficiency Renewable Energy Energy Storage Sensors & Control ...

  6. Solar Energy Grid Integration Systems. Final Report of the Princeton Power Systems Development of the 100kW Demand Response Inverter.

    SciTech Connect (OSTI)

    Bower, Ward Isaac; Heavener, Paul; Sena-Henderson, Lisa; Hammell, Darren; Holveck, Mark; David, Carolyn; Akhil, Abbas Ali; Gonzalez, Sigifredo

    2012-01-01

    Initiated in 2008, the Solar Energy Grid Integration (SEGIS) program is a partnership involving the U.S. Department of Energy, Sandia National Laboratories, electric utilities, academic institutions and the private sector. Recognizing the need to diversify the nation's energy portfolio, the SEGIS effort focuses on specific technologies needed to facilitate the integration of large-scale solar power generation into the nation's power grid Sandia National Laboratories (SNL) awarded a contract to Princeton Power Systems, Inc., (PPS) to develop a 100kW Advanced AC-link SEGIS inverter prototype under the Department of Energy Solar Energy Technologies Program for near-term commercial applications. This SEGIS initiative emphasizes the development of advanced inverters, controllers, communications and other balance-of-system components for photovoltaic (PV) distributed power applications. The SEGIS Stage 3 Contract was awarded to PPS on July 28, 2010. PPS developed and implemented a Demand Response Inverter (DRI) during this three-stage program. PPS prepared a 'Site Demonstration Conference' that was held on September 28, 2011, to showcase the cumulative advancements. This demo of the commercial product will be followed by Underwriters Laboratories, Inc., certification by the fourth quarter of 2011, and simultaneously the customer launch and commercial production sometime in late 2011 or early 2012. This final report provides an overview of all three stages and a full-length reporting of activities and accomplishments in Stage 3.

  7. Workshop: Systems Integration Vision Challenges and Opportunities |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 5:30PM PDT Pacific A Even after achieving the SunShot Initiative's cost targets for solar energy, successful systems integration will remain as the key barrier to enable significantly higher levels of penetration and growth in solar power generation. To fully realize the SunShot goals, it is critical to address the challenges to successful integration of solar generation into the power grid (both transmission and distribution). SunShot's Systems Integration (SI)

  8. Residential Buildings Integration Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Buildings Integration Program Residential Buildings Integration Program ... More Documents & Publications Home Performance with ENERGY STAR -- 10 Years of Continued ...

  9. CBEI: Collaborative Approaches for Integrated Energy Retrofits...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collaborative Approaches for Integrated Energy Retrofits - 2015 Peer Review CBEI: Collaborative Approaches for Integrated Energy Retrofits - 2015 Peer Review Presenter: John ...

  10. Develop and test fuel cell powered on-site integrated total energy systems

    SciTech Connect (OSTI)

    Kaufman, A.; Werth, J.

    1988-12-01

    This report describes the design, fabrication and testing of a 25kW phosphoric acid fuel cell system aimed at stationary applications, and the technology development underlying that system. The 25kW fuel cell ran at rated power in both the open and closed loop mode in the summer of 1988. Problems encountered and solved include acid replenishment leakage, gas cross-leakage and edge-leakage in bipolar plates, corrosion of metallic cooling plates and current collectors, cooling groove depth variations, coolant connection leaks, etc. 84 figs., 7 tabs.

  11. Integrated Energy System with Beneficial Carbon Dioxide (CO{sub 2}) Use

    SciTech Connect (OSTI)

    Sun, Xiaolei; Rink, Nancy

    2011-04-30

    To address the public concerns regarding the consequences of climate change from anthropogenic carbon dioxide (CO{sub 2}) emissions, the U.S. Department of Energy National Energy Technology Laboratory (DOE-NETL) is actively funding a CO{sub 2} management program to develop technologies capable of reducing the CO{sub 2} emissions from fossil fuel power plants and other industrial facilities. Over the past decade, this program has focused on reducing the costs of carbon capture and storage technologies. Recently, DOE-NETL launched an alternative CO{sub 2} mitigation program focusing on beneficial CO{sub 2} reuse and supporting the development of technologies that mitigate emissions by converting CO{sub 2} to solid mineral form that can be utilized for enhanced oil recovery, in the manufacturing of concrete or as a benign landfill, in the production of valuable chemicals and/or fuels. This project was selected as a CO{sub 2} reuse activity which would conduct research and development (R&D) at the pilot scale via a cost-shared Cooperative Agreement number DE-FE0001099 with DOE-NETL and would utilize funds setaside by the American Recovery and Reinvestment Act (ARRA) of 2009 for Industrial Carbon Capture and Sequestration R&D,

  12. Composite Data Products (CDPs) from the Hydrogen Secure Data Center (HSDC) at the Energy Systems Integration Facility (ESIF), NREL

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Hydrogen Secure Data Center (HSDC) at NREL's Energy Systems Integration Facility (ESIF) plays a crucial role in NREL's independent, third-party analysis of hydrogen fuel cell technologies in real-world operation. NREL partners submit operational, maintenance, safety, and cost data to the HSDC on a regular basis. NREL's Technology Validation Team uses an internal network of servers, storage, computers, backup systems, and software to efficiently process raw data, complete quarterly analysis, and digest large amounts of time series data for data visualization. While the raw data are secured by NREL to protect commercially sensitive and proprietary information, individualized data analysis results are provided as detailed data products (DDPs) to the partners who supplied the data. Individual system, fleet, and site analysis results are aggregated into public results called composite data products (CDPs) that show the status and progress of the technology without identifying individual companies or revealing proprietary information. These CDPs are available from this NREL website: 1) Hydrogen Fuel Cell Vehicle and Infrastructure Learning Demonstration; 2) Early Fuel Cell Market Demonstrations; 3) Fuel Cell Technology Status [Edited from http://www.nrel.gov/hydrogen/facilities_secure_data_center.html].

  13. Wind Energy Management System Integration Project Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-09-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation) and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. In order to improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively, by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique

  14. Project Profile: Integrated Solar Thermochemical Reaction System |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Integrated Solar Thermochemical Reaction System Project Profile: Integrated Solar Thermochemical Reaction System PNNL logo Pacific Northwest National Laboratory, under the 2012 SunShot Concentrating Solar Power (CSP) R&D funding opportunity announcement (FOA), is creating a new CSP method for hybridization with fossil-fuel plants. The system uses solar energy to drive a chemical reaction that produces a gas capable of offsetting the need for fossil fuels in

  15. Integrated nonthermal treatment system study

    SciTech Connect (OSTI)

    Biagi, C.; Bahar, D.; Teheranian, B.; Vetromile, J.; Quapp, W.J.; Bechtold, T.; Brown, B.; Schwinkendorf, W.; Swartz, G.

    1997-01-01

    This report presents the results of a study of nonthermal treatment technologies. The study consisted of a systematic assessment of five nonthermal treatment alternatives. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The alternatives considered were innovative nonthermal treatments for organic liquids and sludges, process residue, soil and debris. Vacuum desorption or various washing approaches are considered for treatment of soil, residue and debris. Organic destruction methods include mediated electrochemical oxidation, catalytic wet oxidation, and acid digestion. Other methods studied included stabilization technologies and mercury separation of treatment residues. This study is a companion to the integrated thermal treatment study which examined 19 alternatives for thermal treatment of MLLW waste. The quantities and physical and chemical compositions of the input waste are based on the inventory database developed by the US Department of Energy. The Integrated Nonthermal Treatment Systems (INTS) systems were evaluated using the same waste input (2,927 pounds per hour) as the Integrated Thermal Treatment Systems (ITTS). 48 refs., 68 figs., 37 tabs.

  16. Parallel Integrated Thermal Management - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Early Stage R&D Early Stage R&D Find More Like This Return to Search Parallel Integrated Thermal Management National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Many current cooling systems for hybrid electric vehicles (HEVs) with a high power electric drive system utilize a low temperature liquid cooling loop for cooling the power electronics system and electric machines associated with the electric

  17. CSP Heat Integration for Baseload Renewable Energy Deployment | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Concentrating Solar Power » CSP Heat Integration for Baseload Renewable Energy Deployment CSP Heat Integration for Baseload Renewable Energy Deployment --This project has been closed-- In October 2013, DOE announced an award under the Concentrating Solar Power (CSP) Heat Integration for Baseload Renewable Energy Development (HIBRED) program to advance the state of the art in CSP hybrid plants, which incorporate thermal and or chemical energy from a CSP system into a fossil fueled

  18. Integrated fluorescence analysis system

    DOE Patents [OSTI]

    Buican, Tudor N.; Yoshida, Thomas M.

    1992-01-01

    An integrated fluorescence analysis system enables a component part of a sample to be virtually sorted within a sample volume after a spectrum of the component part has been identified from a fluorescence spectrum of the entire sample in a flow cytometer. Birefringent optics enables the entire spectrum to be resolved into a set of numbers representing the intensity of spectral components of the spectrum. One or more spectral components are selected to program a scanning laser microscope, preferably a confocal microscope, whereby the spectrum from individual pixels or voxels in the sample can be compared. Individual pixels or voxels containing the selected spectral components are identified and an image may be formed to show the morphology of the sample with respect to only those components having the selected spectral components. There is no need for any physical sorting of the sample components to obtain the morphological information.

  19. Integrated Management Tracking System

    Energy Science and Technology Software Center (OSTI)

    2000-03-30

    The Integrated Management Tracking System (IMTS) is a "Web Enabled" Client/Server Business application that provides for the Identification and Resolution of commitments, situations, events and problems. The IMTS engine is written with Microsoft Active Server Pages (ASP) for IIS4. The system provides for reporting, entering, editing, closing and administration over a Intranet, Extranet or Internet. This Application facilitates: Electronic assignment, acceptance and tracking to completion. Email notifications of assigned action. Establishment of Due Dates. Electronicmore » search and retrieval based on keywords in combination with user specified database parameters (Document Type, Date Ranges, etc.). Coded for Trending and Reporting. User selected reports. Various levels of access for reports and administration. The "Server" side of this application consists of a Microsoft Access database running on a NT Server with Internet Information Server (IIS). As the "Client" side of the application runs on any Web browser, this solution is a cost effective, user friendly application that lends itself to organizations not physically colocated in one location providing information immediately available to everyone at once.« less

  20. Integrating Variable Renewable Energy: Challenges and Solutions

    SciTech Connect (OSTI)

    Bird, L.; Milligan, M.; Lew, D.

    2013-09-01

    In the U.S., a number of utilities are adopting higher penetrations of renewables, driven in part by state policies. While power systems have been designed to handle the variable nature of loads, the additional supply-side variability and uncertainty can pose new challenges for utilities and system operators. However, a variety of operational and technical solutions exist to help integrate higher penetrations of wind and solar generation. This paper explores renewable energy integration challenges and mitigation strategies that have been implemented in the U.S. and internationally, including forecasting, demand response, flexible generation, larger balancing areas or balancing area cooperation, and operational practices such as fast scheduling and dispatch.

  1. Energy Systems

    Broader source: Energy.gov [DOE]

    DOE Industrial Technologies Program Save Energy Now Webinar that provides information on how steam trap monitoring saves energy in manufacturing facilities.

  2. SunShot Systems Integration Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration The SunShot Initiative's Systems Integration (SI) program enables the widespread deployment of safe, reliable, and cost-effective solar energy technologies by addressing the associated technical and non-technical challenges. These include timely and cost- effective interconnection procedures, optimal system planning, accurate prediction of solar resources, monitoring and control of solar power, maintaining grid reliability and stability, and many more. To address the

  3. Integrated system checkout report

    SciTech Connect (OSTI)

    Not Available

    1991-08-14

    The planning and preparation phase of the Integrated Systems Checkout Program (ISCP) was conducted from October 1989 to July 1991. A copy of the ISCP, DOE-WIPP 90--002, is included in this report as an appendix. The final phase of the Checkout was conducted from July 10, 1991, to July 23, 1991. This phase exercised all the procedures and equipment required to receive, emplace, and retrieve contact handled transuranium (CH TRU) waste filled dry bins. In addition, abnormal events were introduced to simulate various equipment failures, loose surface radioactive contamination events, and personnel injury. This report provides a detailed summary of each days activities during this period. Qualification of personnel to safely conduct the tasks identified in the procedures and the abnormal events were verified by observers familiar with the Bin-Scale CH TRU Waste Test requirements. These observers were members of the staffs of Westinghouse WID Engineering, QA, Training, Health Physics, Safety, and SNL. Observers representing a number of DOE departments, the state of new Mexico, and the Defense Nuclear Facilities Safety Board observed those Checkout activities conducted during the period from July 17, 1991, to July 23, 1991. Observer comments described in this report are those obtained from the staff member observers. 1 figs., 1 tab.

  4. Integrated fuel cell energy systems for modern buildings. Final technical report for contract period October 1997 to September 2001

    SciTech Connect (OSTI)

    Woods, Richard

    2001-09-27

    This report summarizes the activities and results of a cooperative agreement. The scope focused on natural gas fuel processing subsystems for fuel cell systems that could be used in modern buildings. The focus of this project was the development of a natural gas (NG) fueled, fuel processing subsystem (FPS) for polymer electrolyte membrane (PEM) fuel cell systems in modern buildings applications. This cooperative development program was coordinated with several parallel programs that were related to integrated fuel processor developments for fuel cell systems. The most significant were the development of an integrated fuel-flexible, fuel processing subsystem (DE-FC02-97EE0482) and internal HbT programs to develop autothermal reforming (ATR) technologies and to develop a commercially viable stationary subsystem.

  5. Fuel Pathways Integration Tech Team | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pathways Integration Tech Team Fuel Pathways Integration Tech Team Presentation on Fuel Pathways Integration Tech Team to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004. 8_fpitt_gardner.pdf (109.24 KB) More Documents & Publications Systems Analysis Workshop Agenda Hydrogen Analysis Analysis Activities at National Renewable Energy Laboratory

  6. Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  7. Decision Models for Integrating Energy/Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Decision Models for Integrating Energy/Water - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management

  8. Redefining What's Possible for Renewable Energy: Grid Integration

    SciTech Connect (OSTI)

    Cochran, Jaquelin; Milligan, Michael; Bloom, Aaron; Lopez, Anthony; Mai, Trieu

    2015-01-22

    The Energy Department's National Renewable Energy Laboratory (NREL) is spearheading engineering innovations that will help optimize the entire energy system, and the lab's analysis capabilities complement that engineering work by identifying ways to integrate renewable energy effectively and economically. This 3-minute video shows how NREL research and analysis are redefining what’s possible for renewable energy on the grid.

  9. Technical Meeting: Buildings-to-Grid Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings-to-Grid Integration Technical Meeting: Buildings-to-Grid Integration As a first step to better understanding a range of perspectives on buildings-to-grid integration opportunities, the Building Technologies Office held a technical meeting on December 12-13, 2012. The meeting was hosted by the National Renewable Energy Laboratory at the Energy Systems Integration Facility, and participants included stakeholders from the private sector, utilities, universities, federal sector, and the

  10. Integrated Energy Analysis and Validation Environment | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Integrated Energy Analysis and Validation Environment Integrated Energy Analysis and Validation Environment Lead Performer: EnergyAnalytics - Avon, CT DOE Funding: $86,147 Cost Share: N/A Project Term: June 2014 - March 2015 Funding Opportunity: Small Business Innovation Research FY 2014 Phase 1 Release 2 Awards Project Objective A great deal of progress has been made in delivery of highly mature building systems energy simulation tools. However, application of these highly

  11. HLW System Integrated Project Team

    Office of Environmental Management (EM)

    l W S Hi h l W S High Level Waste System High Level Waste System Integrated Project Team ... and skilled kf Developing and deploying t h l i This document is intended for planning ...

  12. Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes

    SciTech Connect (OSTI)

    Baxter, Van D

    2006-11-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development

  13. 2016 New Mexico Regional Energy Storage and Grid Integration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Mexico Regional Energy Storage and Grid Integration Workshop - Sandia Energy Energy ... Secure & Sustainable Energy Future 2016 NM Regional Energy Storage & Grid Integration ...

  14. Procurement Integrity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrity Procurement Integrity Procurement Integrity (148.69 KB) More Documents & Publications POLICY FLASH 2016-04 AcqGuide3pt1.doc� PI Brief 6 15 07 final2�

  15. Integrity Automotive | Open Energy Information

    Open Energy Info (EERE)

    Product: Joint venture between Kentucky businessman Randal Waldman of Integrity Manufacturing and California-based electric car maker Zap. References: Integrity Automotive1...

  16. Integrated multiplexed capillary electrophoresis system

    DOE Patents [OSTI]

    Yeung, Edward S.; Tan, Hongdong

    2002-05-14

    The present invention provides an integrated multiplexed capillary electrophoresis system for the analysis of sample analytes. The system integrates and automates multiple components, such as chromatographic columns and separation capillaries, and further provides a detector for the detection of analytes eluting from the separation capillaries. The system employs multiplexed freeze/thaw valves to manage fluid flow and sample movement. The system is computer controlled and is capable of processing samples through reaction, purification, denaturation, pre-concentration, injection, separation and detection in parallel fashion. Methods employing the system of the invention are also provided.

  17. Integrated Safety Management System Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-11-01

    This manual provides requirements and guidance for DOE and contractors to ensure development and implementation of an effective Integrated Safety Management system that is periodically reviewed and continuously improved. Canceled by DOE O 450.2.

  18. A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems

    SciTech Connect (OSTI)

    Onar, Omer C

    2012-01-01

    This manuscript focuses on a novel actively controlled hybrid magnetic battery/ultracapacitor based energy storage system (ESS) for vehicular propulsion systems. A stand-alone battery system might not be sufficient to satisfy peak power demand and transient load variations in hybrid and plug-in hybrid electric vehicles (HEV, PHEV). Active battery/ultracapacitor hybrid ESS provides a better solution in terms of efficient power management and control flexibility. Moreover, the voltage of the battery pack can be selected to be different than that of the ultracapacitor, which will result in flexibility of design as well as cost and size reduction of the battery pack. In addition, the ultracapacitor bank can supply or recapture a large burst of power and it can be used with high C-rates. Hence, the battery is not subjected to supply peak and sharp power variations, and the stress on the battery will be reduced and the battery lifetime would be increased. Utilizing ultracapacitor results in effective capturing of the braking energy, especially in sudden braking conditions.

  19. Integrated Vehicle Thermal Management Systems (VTMS) Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Integrated Vehicle Thermal Management Power Electronic Thermal System Performance and Integration Characterization and Development of Advanced...

  20. Integrated Assessment | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontenttimes-integrated-assessment-model-0,h Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance...

  1. Integrated Biorefineries | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research & Development Demonstration & Market Transformation Integrated ... funded by the Bioenergy Technologies Office at pilot, demonstration, and pioneer scales. ...

  2. 2014 SunShot Initiative Systems Integration Subprogram Overview |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Systems Integration Subprogram Overview 2014 SunShot Initiative Systems Integration Subprogram Overview These slides correspond to a presentation given by SunShot Initiative Systems Integration Acting Program Manager Dr. Ranga Pitchumani at the 2014 SunShot Grand Challenge Summit and Peer Review in Anaheim, CA. This presentation is an overview of the SunShot Initiative's systems integration research portfolio. rangapitchumani_si_subprogram_overview_sunshot2014.pdf

  3. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-01-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter

  4. Development of an Integrated Distribution Management System

    SciTech Connect (OSTI)

    Schatz, Joe E.

    2010-10-20

    This final report details the components, functionality, costs, schedule and benefits of developing an Integrated Distribution Management System (IDMS) for power distribution system operation. The Distribution Automation (DA) and Supervisory Control and Data Acquisition (SCADA) systems used by electric power companies to manage the distribution of electric power to retail energy consumers are vital components of the Nation’s critical infrastructure. Providing electricity is an essential public service and a disruption in that service, if not quickly restored, could threaten the public safety and the Nation’s economic security. Our Nation’s economic prosperity and quality of life have long depended on the essential services that utilities provide; therefore, it is necessary to ensure that electric utilities are able to conduct their operations safely and efficiently. A fully integrated technology of applications is needed to link various remote sensing, communications and control devices with other information tools that help guide Power Distribution Operations personnel. A fully implemented IDMS will provide this, a seamlessly integrated set of applications to raise electric system operating intelligence. IDMS will enhance DA and SCADA through integration of applications such as Geographic Information Systems, Outage Management Systems, Switching Management and Analysis, Operator Training Simulator, and other Advanced Applications, including unbalanced load flow and fault isolation/service restoration. These apps are capable of utilizing and obtaining information from appropriately installed DER, and by integrating disparate systems, the Distribution Operators will benefit from advanced capabilities when analyzing, controlling and operating the electric system.

  5. Performance of Integrated Hydronic Heating Systems.

    SciTech Connect (OSTI)

    BUTCHER,T.A.

    2007-12-20

    A variety of system configurations are used in North America to meet the heating and domestic hot water needs of single-family homes. This includes, for example: warm air furnaces with electric water heaters; boilers with integrated hot water coils; and boilers with 'indirect' hot water storage tanks. Integrated hydronic systems which provide both heat and hot water are more popular only in the Northeast and mid-Atlantic regions. For those making decisions about configurations of these integrated hydronic systems, including control options, little information is available concerning the annual energy cost implications of these decisions. This report presents results of a project to use a direct load emulation approach to measure the performance of hydronic systems, develop performance curves, and to provide decision tools to consumers. This is a laboratory measurement system involving direct energy input and output measurements under different load patterns. These results are then used to develop performance correlations for specific systems that can be used to predict energy use in specific applications. A wide range of system types have been tested under this project including conventional boilers with 'tankless' internal coils for domestic hot water production, boilers with indirect external storage tanks, tank type water heaters which may also be used for space heating, condensing oil- and gas-fired systems, and systems with custom control features. It is shown that low load and idle energy losses can have a very large impact on the total annual energy use and that the potential energy savings associated with replacing old equipment with newer, high efficiency equipment with low losses at idle or low load can be in the 25% range. These savings are larger than simple combustion efficiency measurements would indicate.

  6. Renewable Energy Integration | Department of Energy

    Energy Savers [EERE]

    energy and energy efficiency enhance reliability, security, and resiliency from microgrid applications in critical infrastructure protection and highly constrained areas of ...

  7. Energy Department Announces $15 Million to Integrate Affordable Solar Energy into Nation’s Electrical Grid

    Broader source: Energy.gov [DOE]

    Supporting the goals of the Obama Administration’s Climate Action Plan, the Energy Department today announced $15 million in available funding to help integrate distributed, on-site solar energy systems into the nation’s electrical grid.

  8. Integrated Dynamic Electron Solutions, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Dynamic Electron Solutions, Inc. America's Next Top Energy Innovator Challenge 333 likes Integrated Dynamic Electron Solutions, Inc. Lawrence Livermore National Laboratory Dynamic Transmission Electron Microscopes DTEM reveal unprecedented details of the mechanisms underlying a host of nanoscale systems that are at the core of our current and future energy economy. A vast and growing number of materials utilized in the energy sector rely on nanostructured materials and their unique

  9. Integrated Photovoltaics | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics Jump to: navigation, search Name: Integrated Photovoltaics Place: Sunnyvale, California Product: California-based stealth mode PV startup. Coordinates: 32.780338,...

  10. Integrity Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Integrity Biofuels Place: Grammer, Indiana Product: Planning a 38m litre (10m gallon) per year biodiesel plant in Indiana. Coordinates:...

  11. Technology Integration | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Program Annual Merit Review and Peer Evaluation Vehicle Technologies Plenary vtpn02smithti2011o.pdf (814.37 KB) More Documents & Publications Technology Integration Overview ...

  12. Innovative Office Lighting System with Integrated Spectrally...

    Energy Savers [EERE]

    Office Lighting System with Integrated Spectrally Adaptive Control Innovative Office Lighting System with Integrated Spectrally Adaptive Control Lead Performer: Philips Research ...

  13. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electronic Thermal System Performance and Integration Power Electronic Thermal System Performance and Integration 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual ...

  14. Tank Waste System Integrated Project Team

    Office of Environmental Management (EM)

    Tank Waste System Tank Waste System Integrated Project Team Integrated Project Team Steve Schneider Office of Engineering and Technology Tank Waste Corporate Board July 29, 2009 2 ...

  15. Race to Zero 2015 Systems Integration Excellence Award Winners | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Race to Zero 2015 Systems Integration Excellence Award Winners Race to Zero 2015 Systems Integration Excellence Award Winners View the 2015 Systems Integration Excellence Award winner presentations. Habitat for Humanity Net Zero Energy Home - Redbird Red Team Illinois State University, Normal, IL H4: Heritage Homes - Heritage Homes Penn State University, State College, PA Ø-Zone Residence - Ø-Zone Ryerson University Dept. of Architectural Science, Toronto, Ontario, Canada The

  16. PROJECT PROFILE: Accelerating Systems Integration Codes and Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (SuNLaMP) | Department of Energy Accelerating Systems Integration Codes and Standards (SuNLaMP) PROJECT PROFILE: Accelerating Systems Integration Codes and Standards (SuNLaMP) Funding Program: SuNLaMP SunShot Subprogram: Systems Integration Location: National Renewable Energy Laboratory, Golden, CO SunShot Award Amount: $3,000,000 This project focuses on accelerating the revision process of the IEEE 1547 series and UL 1741 standards and testing procedures. Collectively, these standards are

  17. Integrated Solar Thermochemical Reaction System

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet describes an integrated solar thermochemical reaction system project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pacific Northwest National Laboratory, is working to develop and demonstrate a high-performance solar thermochemical reaction system in an end-to-end demonstration that produces electricity. A highly efficient solar thermochemical reaction system would allow for 24-hour operation without the need for storage technology, and reductions in total system costs while providing a relatively low-risk deployment option for CSP systems.

  18. WINS. Market Simulation Tool for Facilitating Wind Energy Integration

    SciTech Connect (OSTI)

    Shahidehpour, Mohammad

    2012-10-30

    Integrating 20% or more wind energy into the system and transmitting large sums of wind energy over long distances will require a decision making capability that can handle very large scale power systems with tens of thousands of buses and lines. There is a need to explore innovative analytical and implementation solutions for continuing reliable operations with the most economical integration of additional wind energy in power systems. A number of wind integration solution paths involve the adoption of new operating policies, dynamic scheduling of wind power across interties, pooling integration services, and adopting new transmission scheduling practices. Such practices can be examined by the decision tool developed by this project. This project developed a very efficient decision tool called Wind INtegration Simulator (WINS) and applied WINS to facilitate wind energy integration studies. WINS focused on augmenting the existing power utility capabilities to support collaborative planning, analysis, and wind integration project implementations. WINS also had the capability of simulating energy storage facilities so that feasibility studies of integrated wind energy system applications can be performed for systems with high wind energy penetrations. The development of WINS represents a major expansion of a very efficient decision tool called POwer Market Simulator (POMS), which was developed by IIT and has been used extensively for power system studies for decades. Specifically, WINS provides the following superiorities; (1) An integrated framework is included in WINS for the comprehensive modeling of DC transmission configurations, including mono-pole, bi-pole, tri-pole, back-to-back, and multi-terminal connection, as well as AC/DC converter models including current source converters (CSC) and voltage source converters (VSC); (2) An existing shortcoming of traditional decision tools for wind integration is the limited availability of user interface, i.e., decision

  19. Integrated Waste Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consent-Based Siting » Integrated Waste Management Integrated Waste Management The Department envisions an integrated waste management system with storage, transportation, and disposal capabilities in order to safely and effectively manage our nation's spent nuclear fuel and high-level radioactive waste. The Department envisions an integrated waste management system with storage, transportation, and disposal capabilities in order to safely and effectively manage our nation's spent nuclear fuel

  20. Energy Department Announces $25 Million to Accelerate Integration...

    Office of Environmental Management (EM)

    5 Million to Accelerate Integration of Solar Energy into Nation's Electrical Grid Energy Department Announces 25 Million to Accelerate Integration of Solar Energy into Nation's ...

  1. Guide to Integrating Renewable Energy in Federal Construction...

    Energy Savers [EERE]

    Integrating Renewable Energy in Federal Construction Guide to Integrating Renewable Energy in Federal Construction Document by the Federal Energy Management Program helps federal ...

  2. U.S.-Israel Integrated Energy and Desalination Design Challenge Lab Call |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy U.S.-Israel Integrated Energy and Desalination Design Challenge Lab Call U.S.-Israel Integrated Energy and Desalination Design Challenge Lab Call May 23, 2016 - 12:00pm Addthis Melanie A. Kenderdine Melanie A. Kenderdine Director of the Office of Energy Policy and Systems Analysis Department of Energy's (DOE) Office of Energy Policy and Systems Analysis (EPSA) has issued a National Laboratory call for proposals for the U.S.-Israel Integrated Energy and Desalination

  3. Transportation Energy Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Analysis - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  4. Fact Sheet: Best Practices Handbook for the Collection and Use of Solar Energy Applications; Best Practices Handbook for the Collection and Use of Solar Energy Applications (Fact Sheet), Energy Systems Integration (ESI), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This fact sheet presents highlights from the Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications, which provides detailed information about solar resource data and the resulting data products needed for planning each stage of large concentrating solar power systems, from initial site selection to system operations.

  5. Sandia National Laboratories: Integrated Military Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Military Systems (IMS) Capabilities Facilities Projects Facebook Twitter YouTube Flickr RSS Integrated Military Systems (IMS) Integrated Military Systems Missile Air Defense Demonstrates advanced technologies, delivers responsive technical solutions in anticipation of Missile Defense mission needs, and facilitates the integration and sustainment of operational capabilities across the broad Missile Defense mission Missile Air Defense Strike Systems & Aerospace Technologies Provides

  6. Sandia Energy Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efforts-during-recent-houston-press-conferencefeed 0 Recent Sandia Secure, Scalable Microgrid Advanced Controls Research Accomplishments http:energy.sandia.gov...

  7. Sandia Energy Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    eer-of-the-year-awardsfeed 0 Sandian Contributes to Western Electricity Coordinating Council Photovoltaic Power Plant Model Validation Guideline http:energy.sandia.gov...

  8. Mirasol Solar Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Mirasol Solar Energy Systems Jump to: navigation, search Logo: Mirasol Solar Energy Systems Name: Mirasol Solar Energy Systems Address: 101 Spring Road NE Place: Rio Rancho, New...

  9. Landfill Energy Systems LES | Open Energy Information

    Open Energy Info (EERE)

    Energy Systems LES Jump to: navigation, search Name: Landfill Energy Systems (LES) Place: Michigan Zip: 48393 Product: Landfill gas to energy systems project developer, gas...

  10. About Buildings-to-Grid Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings-to-Grid » About Buildings-to-Grid Integration About Buildings-to-Grid Integration As electricity demand continues to increase, integrating buildings and the electricity grid is a key step to increasing energy efficiency. Intermittent and variable generation sources, such as photovoltaic systems, as well as new load sources, such as electric vehicles, are being installed on the grid in increasing numbers and at more distributed locations. At the same time, smart sensing, metering and

  11. Integrated Renewable Energy and Campus Sustainability Initiative

    SciTech Connect (OSTI)

    Uthoff, Jay; Jensen, Jon; Bailey, Andrew

    2013-09-25

    Renewable energy, energy conservation, and other sustainability initiatives have long been a central focus of Luther College. The DOE funded Integrated Renewable Energy and Campus Sustainability Initiative project has helped accelerate the College’s progress toward carbon neutrality. DOE funds, in conjunction with institutional matching funds, were used to fund energy conservation projects, a renewable energy project, and an energy and waste education program aimed at all campus constituents. The energy and waste education program provides Luther students with ideas about sustainability and conservation guidelines that they carry with them into their future communities.

  12. 2016 New Mexico Regional Energy Storage and Grid Integration Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Mexico Regional Energy Storage and Grid Integration Workshop - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future 2016 NM Regional Energy Storage & Grid Integration Workshop Registration Agenda 2016 New Mexico Regional Energy Storage and Grid Integration Workshop Home/2016 New Mexico Regional Energy Storage and Grid Integration Workshop 2016 New Mexico Regional Energy Storage and Grid Integration

  13. Energy Integration Visualization Room (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-08-01

    This two-page fact sheet describes the new Energy Integration Visualization Room in the ESIF and talks about some of the capabilities and unique visualization features of the the room.

  14. Algal Integrated Biorefineries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Algal Biofuels » Algal Integrated Biorefineries Algal Integrated Biorefineries The Algae Program works closely with the Demonstration and Deployment Program on projects that can validate advancements toward commercialization at increasing scales. Integrated biorefineries apply R&D to scale-up facilities to a degree relevant to commercial applications. U.S. Department of Energy funding of this work helps to advance the industry by minimizing the risk of these

  15. Vol 2, Integrated Safety Management System Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-05-27

    This Department of Energy (DOE) Integrated Safety Management System (ISMS) Guide is approved for use by the Office of Environment, Safety and Health (EH) and is available for use by all DOE components and their contractors. This Guide is a consensus document coordinated by EH and prepared under the direction of the DOE Safety Management Implementation Team (SMIT). Canceled by DOE G 450.4-1B.

  16. GRID INTEGRATION OF SOLAR ENERGY WORKSHOP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GRID INTEGRATION OF SOLAR ENERGY WORKSHOP OCTOBER 29, 2015 OVERVIEW The U.S. Department of Energy's SunShot Initiative is a collaborative national effort that aggressively drives innovation to make solar energy cost-competitive with traditional energy sources by 2020. SunShot's strategic research and development programs support efforts by private companies, universities, and national laboratories to drive down the cost of solar electricity to $0.06 per kilowatt-hour, and to enable the safe,

  17. NREL: Energy Analysis: Electric Sector Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Sector Integration Integrating higher levels of renewable resources into the U.S. electricity system could pose challenges to the operability of the nation's grid. NREL's electric sector integration analysis work investigates the potential impacts of expanding renewable technology deployment on grid operations and infrastructure expansion including: Feasibility of higher levels of renewable electricity generation. Options for increasing electric system flexibility to accommodate higher

  18. ISO 50001 Conformant Energy Management Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ISO 50001 Conformant Energy Management Systems ISO 50001 Conformant Energy Management Systems Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review commlbldgs04_mckane_040213.pdf (1.09 MB) More Documents & Publications Becoming a Certified Practitioner or a Certified Energy Engineer The Do and Check Processes of an Energy Management System Superior Energy Performance: Getting the Most Value from ISO 50001

  19. Chapter 2: Energy Sectors and Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Energy Sectors and Systems September 2015 Quadrennial Technology Review 2 Energy Sectors and Systems Issues and RDD&D Opportunities Energy systems are becoming increasingly interconnected and complex. Integrated energy systems present both opportunities for performance improvement as well as risks to operability and security. The size and scope of these opportunities and risks are just beginning to be understood. This chapter addresses both the key issues of energy sectors and their

  20. Validation of an Integrated Hydrogen Energy Station | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Integrated Hydrogen Energy Station Validation of an Integrated Hydrogen Energy Station 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. tv_06_heydorn.pdf (762.2 KB) More Documents & Publications Development of a Renewable Hydrogen Energy Station Fuel Cell Power Plants Renewable and Waste Fuels DFC Technology Status

  1. Apollo Energy Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Apollo Energy Systems Inc Place: Pompano Beach, Florida Zip: FLA 33069 Sector: Hydro, Hydrogen, Renewable Energy Product: Apollo Energy Systems is a developer, producer, marketor...

  2. Integrated Enhanced Geothermal Systems (EGS) research and development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Integrated Enhanced Geothermal Systems (EGS) research and development Integrated Enhanced Geothermal Systems (EGS) research and development February 21, 2014 - 2:59pm Addthis Open Date: 02/21/2014 Close Date: 04/30/2014 Funding Organization: Department of Energy Geothermal Technologies Office Funding Number: DE-FOA-0000842 Summary: Through this Funding Opportunity Announcement (FOA), the Geothermal Technologies Office's (GTO) Enhanced Geothermal Systems (EGS) Subprogram

  3. Demand Response and Energy Storage Integration Study - Past Workshops...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response and Energy Storage Integration Study - Past Workshops Demand Response and Energy Storage Integration Study - Past Workshops The project was initiated and informed...

  4. Advances in Integrating Energy Efficiency into the Real Estate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advances in Integrating Energy Efficiency into the Real Estate Market (301) Advances in Integrating Energy Efficiency into the Real Estate Market (301) April 21

  5. You Are My Sunshine: Integrating Residential Solar and Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    You Are My Sunshine: Integrating Residential Solar and Energy Efficiency (301) You Are My Sunshine: Integrating Residential Solar and Energy Efficiency (301) October 15...

  6. Sandia Energy - Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Energy Assurance, Energy Surety, Grid Integration, Infrastructure Security, Microgrid, News, News & Events, Renewable Energy, Systems Analysis, Systems Engineering,...

  7. Sandia Energy - Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Energy Assurance, Energy Surety, Grid Integration, Infrastructure Security, Microgrid, News, News & Events, Renewable Energy, Systems Analysis, Systems Engineering,...

  8. Integrated risk information system (IRIS)

    SciTech Connect (OSTI)

    Tuxen, L.

    1990-12-31

    The Integrated Risk Information System (IRIS) is an electronic information system developed by the US Environmental Protection Agency (EPA) containing information related to health risk assessment. IRIS is the Agency`s primary vehicle for communication of chronic health hazard information that represents Agency consensus following comprehensive review by intra-Agency work groups. The original purpose for developing IRIS was to provide guidance to EPA personnel in making risk management decisions. This original purpose for developing IRIS was to guidance to EPA personnel in making risk management decisions. This role has expanded and evolved with wider access and use of the system. IRIS contains chemical-specific information in summary format for approximately 500 chemicals. IRIS is available to the general public on the National Library of Medicine`s Toxicology Data Network (TOXNET) and on diskettes through the National Technical Information Service (NTIS).

  9. Grid Integration | Department of Energy

    Energy Savers [EERE]

    Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Plants With plants in development. Click on the numbers to see the sites. CLOSE About the Points About the Data What is Heat Flow? Heat Flow (mW/m^2) 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 150 250 View All Maps Addthis

    Renewable Energy » Geothermal Technology Basics Geothermal Technology Basics August 14, 2013 - 1:45pm Addthis Photo of steam pouring

  10. Integrated Safety Management (ISM) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Safety Management (ISM) Integrated Safety Management (ISM) The objective of ISM is to perform work in a safe and environmentally sound manner. More specifically, as described in DOE P 450.4, Safety Management System Policy: "The Department and Contractors must systematically integrate safety into management and work practices at all levels so that missions are accomplished while protecting the public, the worker, and the environment. This is to be accomplished through effective

  11. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in the United States. Preliminary background report

    SciTech Connect (OSTI)

    Feurer, D.A.; Weaver, C.L.; Gallagher, K.C.; Hejna, D.; Rielley, K.J.

    1980-01-01

    This report is a summary of a series of preliminary reports describing the laws and regulatory programs of the United states and each of the 50 states affecting the siting and operation of energy generating facilities likely to be used in Integrated Community Energy Systems (ICES). A brief summary of public utility regulatory programs, energy facility siting programs, and municipal franchising authority is presented in this report to identify how such programs and authority may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES. Subsequent reports will (1) describe public utility rate regulatory procedures and practices as they might affect an ICES, (2) analyze each of the aforementioned regulatory programs to identify impediments to the development of ICES, and (3) recommend potential changes in legislation and regulatory practices and procedures to overcome such impediments.

  12. Scaling Up Renewable Energy Generation: Aligning Targets and Incentives with Grid Integration Considerations, Greening The Grid

    SciTech Connect (OSTI)

    Katz, Jessica; Cochran, Jaquelin

    2015-05-27

    Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. This document, part of a Greening the Grid toolkit, provides power system planners with tips to help secure and sustain investment in new renewable energy generation by aligning renewable energy policy targets and incentives with grid integration considerations.

  13. Workshop: Systems Integration Vision Challenges and Opportunities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration Vision Challenges and Opportunities Workshop: Systems Integration Vision Challenges and Opportunities May 22, 2014 2:30PM to 5:30PM PDT Pacific A Even after ...

  14. Integrated assessment of dispersed energy resources deployment

    SciTech Connect (OSTI)

    Marnay, Chris; Blanco, Raquel; Hamachi, Kristina S.; Kawaan, Cornelia P.; Osborn, Julie G.; Rubio, F. Javier

    2000-06-01

    The goal of this work is to create an integrated framework for forecasting the adoption of distributed energy resources (DER), both by electricity customers and by the various institutions within the industry itself, and for evaluating the effect of this adoption on the power system, particularly on the overall reliability and quality of electrical service to the end user. This effort and follow on contributions are intended to anticipate and explore possible patterns of DER deployment, thereby guiding technical work on microgrids towards the key technical problems. An early example of this process addressed is the question of possible DER adopting customer disconnection. A deployment scenario in which many customers disconnect from their distribution company (disco) entirely leads to a quite different set of technical problems than a scenario in which customers self generate a significant share or all of their on-site electricity requirements and additionally buy and sell energy and ancillary services (AS) locally and/or into wider markets. The exploratory work in this study suggests that the economics under which customers disconnect entirely are unlikely.

  15. Georgetown University Integrated Community Energy System (GU-ICES). Phase III, Stage I. Feasibility analysis. Final report. Volume 1

    SciTech Connect (OSTI)

    1980-10-01

    This Feasibility Analysis covers a wide range of studies and evaluations. The Report is divided into five parts. Section 1 contains all material relating to the Institutional Assessment including consideration of the requirements and position of the Potomac Electric Co. as they relate to cogeneration at Georgetown in parallel with the utility (Task 1). Sections 2 through 7 contain all technical information relating to the Alternative Subsystems Analysis (Task 4). This includes the energy demand profiles upon which the evaluations were based (Task 3). It further includes the results of the Life-Cycle-Cost Analyses (Task 5) which are developed in detail in the Appendix for evaluation in the Technical Report. Also included is the material relating to Incremental Savings and Optimization (Task 6) and the Conceptual Design for candidate alternate subsystems (Task 7). Section 8 contains all material relating to the Environmental Impact Assessment (Task 2). The Appendix contains supplementary material including the budget cost estimates used in the life-cycle-cost analyses, the basic assumptions upon which the life-cycle analyses were developed, and the detailed life-cycle-cost anlysis for each subsystem considered in detail.

  16. Integrated control system and method

    SciTech Connect (OSTI)

    Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin

    2013-10-29

    An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.

  17. Vehicle Testing and Integration Facility; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-03-02

    Engineers at the National Renewable Energy Laboratory’s (NREL’s) Vehicle Testing and Integration Facility (VTIF) are developing strategies to address two separate but equally crucial areas of research: meeting the demands of electric vehicle (EV) grid integration and minimizing fuel consumption related to vehicle climate control. Dedicated to renewable and energy-efficient solutions, the VTIF showcases technologies and systems designed to increase the viability of sustainably powered vehicles. NREL researchers instrument every class of on-road vehicle, conduct hardware and software validation for EV components and accessories, and develop analysis tools and technology for the Department of Energy, other government agencies, and industry partners.

  18. Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes - Update to Include Evaluation of Impact of Including a Humidifier Option

    SciTech Connect (OSTI)

    Baxter, Van D

    2007-02-01

    --A Stage 2 Scoping Assessment, ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. In 2006, the two top-ranked options from the 2005 study, air-source and ground-source versions of a centrally ducted integrated heat pump (IHP) system, were subjected to an initial business case study. The IHPs were subjected to a more rigorous hourly-based assessment of their performance potential compared to a baseline suite of equipment of legally minimum efficiency that provided the same heating, cooling, water heating, demand dehumidification, and ventilation services as the IHPs. Results were summarized in a project report, Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes, ORNL/TM-2006/130 (Baxter 2006a). The present report is an update to that document which summarizes results of an analysis of the impact of adding a humidifier to the HVAC system to maintain minimum levels of space relative humidity (RH) in winter. The space RH in winter has direct impact on occupant comfort and on control of dust mites, many types of disease bacteria, and 'dry air' electric shocks. Chapter 8 in ASHRAE's 2005 Handbook of Fundamentals (HOF) suggests a 30% lower limit on RH for indoor temperatures in the range of {approx}68-69F based on comfort (ASHRAE 2005). Table 3 in chapter 9 of the same reference suggests a 30-55% RH range for winter as established by a Canadian study of exposure limits for residential indoor environments (EHD 1987). Harriman, et al (2001) note that for RH levels of 35% or higher, electrostatic shocks are minimized and that dust mites cannot live at RH levels below 40%. They also indicate that many disease bacteria life spans are minimized when space RH is held within a 30-60% range. From the foregoing it is reasonable to assume that a winter space RH range of 30-40% would be an acceptable compromise between comfort

  19. Material and energy recovery in integrated waste management system - An Italian case study on the quality of MSW data

    SciTech Connect (OSTI)

    Bianchini, A.; Pellegrini, M.; Saccani, C.

    2011-09-15

    This paper analyses the way numerical data on Municipal Solid Waste (MSW) quantities are recorded, processed and then reported for six of the most meaningful Italian Districts and shows the difficulties found during the comparison of these Districts, starting from the lack of homogeneity and the fragmentation of the data indispensable to make this critical analysis. These aspects are often ignored, but data certainty are the basis for serious MSW planning. In particular, the paper focuses on overall Source Separation Level (SSL) definition and on the influence that Special Waste (SW) assimilated to MSW has on it. An investigation was then necessary to identify new parameters in place of overall SSL. Moreover, these parameters are not only important for a waste management system performance measure, but are fundamental in order to design and check management plan and to identify possible actions to improve it.

  20. Energy Management System Lowers U.S. Navy Energy Costs Through PV System Interconnection (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    To meet the U.S. Navy's energy goals, the National Renewable Energy Laboratory (NREL) and the Naval Facilities Engineering Command (NAVFAC) spent two years collaborating on demonstrations that tested market-ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology - an energy management system - was identified as a promising method for reducing energy use and costs, and can contribute to increasing energy security.

  1. Grid Integration of Solar Energy Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Grid Integration of Solar Energy Workshop Important: The bullets below are an attempt to represent the opinions and input shared by workshop attendees. They are not a statement of the opinions of the U.S. Department of Energy. Breakout Session 1 What grid architectural objectives are required to achieve seamless, real-time integration of hundreds of GW of solar at the $0.06/kWh SunShot goal?  Need a clear definition of architectural objectives o Consider services that architecture needs to

  2. Contacts for Integrating Renewable Energy into Federal Construction Projects

    Broader source: Energy.gov [DOE]

    Contacts to learn more about integrating renewable energy technologies into Federal construction projects.

  3. Solar Energy System Exemption

    Broader source: Energy.gov [DOE]

    A solar energy system is defined as "any device that uses the heat of the sun as its primary energy source and is used to heat or cool the interior of a structure or swimming pool, or to heat...

  4. Modeling for System Integration Studies (Presentation)

    SciTech Connect (OSTI)

    Orwig, K. D.

    2012-05-01

    This presentation describes some the data requirements needed for grid integration modeling and provides real-world examples of such data and its format. Renewable energy integration studies evaluate the operational impacts of variable generation. Transmission planning studies investigate where new transmission is needed to transfer energy from generation sources to load centers. Both use time-synchronized wind and solar energy production and load as inputs. Both examine high renewable energy penetration scenarios in the future.

  5. Systems Integration (Fact Sheet), SunShot Initiative, U.S. Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy (DOE) | Department of Energy Systems Integration (Fact Sheet), SunShot Initiative, U.S. Department of Energy (DOE) Systems Integration (Fact Sheet), SunShot Initiative, U.S. Department of Energy (DOE) The Systems Integration (SI) subprogram works closely with industry, universities, and the national laboratories to overcome technical barriers to the large-scale deployment of solar technologies. To support these goals, the subprogram invests primarily in four areas: grid integration,

  6. Advanced integrated solvent extraction systems

    SciTech Connect (OSTI)

    Horwitz, E.P.; Dietz, M.L.; Leonard, R.A.

    1997-10-01

    Advanced integrated solvent extraction systems are a series of novel solvent extraction (SX) processes that will remove and recover all of the major radioisotopes from acidic-dissolved sludge or other acidic high-level wastes. The major focus of this effort during the last 2 years has been the development of a combined cesium-strontium extraction/recovery process, the Combined CSEX-SREX Process. The Combined CSEX-SREX Process relies on a mixture of a strontium-selective macrocyclic polyether and a novel cesium-selective extractant based on dibenzo 18-crown-6. The process offers several potential advantages over possible alternatives in a chemical processing scheme for high-level waste treatment. First, if the process is applied as the first step in chemical pretreatment, the radiation level for all subsequent processing steps (e.g., transuranic extraction/recovery, or TRUEX) will be significantly reduced. Thus, less costly shielding would be required. The second advantage of the Combined CSEX-SREX Process is that the recovered Cs-Sr fraction is non-transuranic, and therefore will decay to low-level waste after only a few hundred years. Finally, combining individual processes into a single process will reduce the amount of equipment required to pretreat the waste and therefore reduce the size and cost of the waste processing facility. In an ongoing collaboration with Lockheed Martin Idaho Technology Company (LMITCO), the authors have successfully tested various segments of the Advanced Integrated Solvent Extraction Systems. Eichrom Industries, Inc. (Darien, IL) synthesizes and markets the Sr extractant and can supply the Cs extractant on a limited basis. Plans are under way to perform a test of the Combined CSEX-SREX Process with real waste at LMITCO in the near future.

  7. Integrated safety management system verification: Volume 1

    SciTech Connect (OSTI)

    Christensen, R.F.

    1998-08-12

    Department of Energy (DOE) Policy (P) 450.4, Safety Management System Policy, commits to institutionalizing an Integrated Safety Management System (ISMS) throughout the DOE complex. The DOE Acquisition Regulations (DEAR 48 CFR 970) requires contractors to manage and perform work in accordance with a documented Integrated Safety Management System. The Manager, Richland Operations Office (RL), initiated a combined Phase 1 and Phase 2 Integrated Safety Management Verification review to confirm that PNNL had successfully submitted a description of their ISMS and had implemented ISMS within the laboratory facilities and processes. A combined review was directed by the Manager, RL, based upon the progress PNNL had made in the implementation of ISM. This report documents the results of the review conducted to verify: (1) that the PNNL integrated safety management system description and enabling documents and processes conform to the guidance provided by the Manager, RL; (2) that corporate policy is implemented by line managers; (3) that PNNL has provided tailored direction to the facility management; and (4) the Manager, RL, has documented processes that integrate their safety activities and oversight with those of PNNL. The general conduct of the review was consistent with the direction provided by the Under Secretary`s Draft Safety Management System Review and Approval Protocol. The purpose of this review was to provide the Manager, RL, with a recommendation to the adequacy of the ISMS description of the Pacific Northwest Laboratory based upon compliance with the requirements of 49 CFR 970.5204(-2 and -78); and, to provide an evaluation of the extent and maturity of ISMS implementation within the Laboratory. Further, this review was intended to provide a model for other DOE Laboratories. In an effort to reduce the time and travel costs associated with ISM verification the team agreed to conduct preliminary training and orientation electronically and by phone. These

  8. Giner | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BOE Reserve Class No 2001 reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 - 1,000 MBOE 1,000.1 - 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE Appalachian Basin Boundary Appalachian Basin, Eastern WV (Panel 5 of 7) Oil and Gas Fields By 2001 BOE

    Gas Reserve Class No 2001 gas reserves 0.1 - 10 MBOE 10.1 - 100 MMCF 100.1 - 1,000 MMCF 1,000.1 - 10,000 MMCF 10,000.1 - 100,000 MMCF > 100,000 MMCF Appalachian Basin Boundary Appalachian Basin, Eastern WV (Panel 5 of 7) Oil and Gas Fields By

  9. Google | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Google Rules of Behavior Form Google Rules of Behavior Form Google Rules of Behavior Form Google Drive for Work Rules of Behavior Form (46.01 KB) More Documents & Publications Audit Report: DOE-OIG-16-12 April 2014 Cybersecurity Awareness Campaign - Malware Front Burner - Issue 16

    Google Google's Little Box Challenge offered $1 million to the team that built the best kilowatt-scale solar inverter with a power density greater than 50 watts per cubic inch. To help determine the winner, NREL

  10. NREL: Energy Systems Integration - Toyota

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The project will provide confirmation on the levels at which vehicle loads become significant to distribution grid power quality challenges and will lead to foundational strategies ...

  11. NREL: Energy Systems Integration News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    factor correction, peak load demand shifting, frequency regulation, load management and demand response, voltage support, and uninterruptable power for grid failure ride-through. ...

  12. Facilities | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo of the Hydrogen Infrastructure Testing and Research Facility building, with fuel cell charging stations and vehicles Hydrogen Infrastructure Testing and Research Facility A ...

  13. Energy Storage Systems

    SciTech Connect (OSTI)

    Conover, David R.

    2013-12-01

    Energy Storage Systems – An Old Idea Doing New Things with New Technology article for the International Assoication of ELectrical Inspectors

  14. Megawatt Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Energy Systems Place: Zionsville, Indiana Sector: Renewable Energy, Services, Solar, Wind energy Phone Number: 317.797.3381 Website: www.mwenergysystems.com Coordinates:...

  15. Integrated Safety Management Champions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Champions Integrated Safety Management Champions November 1, 2006 CHARTER FOR THE ISM CHAMPIONS COUNCIL 1. PURPOSE. The purpose of the ISM Champions Council (Council) is to support line management in developing and sustaining vital, mature ISM systems throughout the Department so that work is reliably accomplished in a safe manner. The Council will promote continuous learning and improvement of ISM effectiveness throughout the DOE complex. 2. BACKGROUND. The Department established the Integrated

  16. Energy market integration in South America

    SciTech Connect (OSTI)

    Hammons, T.J.; Franco, N. de; Sbertoli, L.V.; Khelil, C.; Rudnick, H.; Clerici, A.; Longhi, A.

    1997-08-01

    This article is a summary of presentations made during the 1997 Winter Meeting panel session on Power and Natural Gas in Latin America: Towards an Integrated Market. Reregulation and demand for energy resources to support economic growth are driving international natural gas and electricity exchange initiatives. Panelists focused on the gas and electric power industry in Latin America in terms of the: transport of gas or transmission of electricity; energy market integration in the southern cone of South America; and issues on gas use for electricity generation in South America countries. Countries such as Argentina, Bolivia, and Peru will export natural gas to Brazil, Uruguay, Paraguay and Chile, an the energy matrices of these countries will change.

  17. Hawaii Energy Strategy: Program guide. [Contains special sections on analytical energy forecasting, renewable energy resource assessment, demand-side energy management, energy vulnerability assessment, and energy strategy integration

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The Hawaii Energy Strategy program, or HES, is a set of seven projects which will produce an integrated energy strategy for the State of Hawaii. It will include a comprehensive energy vulnerability assessment with recommended courses of action to decrease Hawaii's energy vulnerability and to better prepare for an effective response to any energy emergency or supply disruption. The seven projects are designed to increase understanding of Hawaii's energy situation and to produce recommendations to achieve the State energy objectives of: Dependable, efficient, and economical state-wide energy systems capable of supporting the needs of the people, and increased energy self-sufficiency. The seven projects under the Hawaii Energy Strategy program include: Project 1: Develop Analytical Energy Forecasting Model for the State of Hawaii. Project 2: Fossil Energy Review and Analysis. Project 3: Renewable Energy Resource Assessment and Development Program. Project 4: Demand-Side Management Program. Project 5: Transportation Energy Strategy. Project 6: Energy Vulnerability Assessment Report and Contingency Planning. Project 7: Energy Strategy Integration and Evaluation System.

  18. Solimpeks Solar Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Solimpeks Solar Energy Systems Jump to: navigation, search Name: Solimpeks Solar Energy Systems Place: Karatay - KONYA, Turkey Zip: 42300 Sector: Solar Product: Turkish...

  19. Rand Solar Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Rand Solar Energy Systems Jump to: navigation, search Name: Rand Solar Energy Systems Place: Petach Tikva, Israel Zip: 49130 Sector: Solar Product: Israel-based manufacturer and...

  20. Alstom Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Alstom Energy Systems Jump to: navigation, search Name: Alstom Energy Systems Address: 3 avenue Andr Malraux Place: Levallois-Perret Cedex, France Website: www.alstom.com...

  1. Distributed Energy Systems Corp | Open Energy Information

    Open Energy Info (EERE)

    Distributed Energy Systems Corp Jump to: navigation, search Name: Distributed Energy Systems Corp Place: Wallingford, Connecticut Zip: CT 06492 Product: The former holding company...

  2. Flywheel Energy Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    K2H 8S1 Product: Focuses on design, fabrication, assembling and distributing flywheel energy storage systems and related components. References: Flywheel Energy Systems Inc1...

  3. American Alternative Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Alternative Energy Systems Jump to: navigation, search Name: American Alternative Energy Systems Place: Denton, Texas Zip: 76209 Product: An American company involved in project...

  4. Renewable Energy Systems Americas | Open Energy Information

    Open Energy Info (EERE)

    Americas Jump to: navigation, search Name: Renewable Energy Systems Americas Place: Broomfield, CO Website: www.res-americas.com References: Renewable Energy Systems Americas1...

  5. Bio Energy Systems LLC | Open Energy Information

    Open Energy Info (EERE)

    search Name: Bio-Energy Systems LLC Place: san Anselmo, California Zip: 94960 Product: Biodiesel producer in Vallejo, California. References: Bio-Energy Systems LLC1 This...

  6. Independent Energy Systems IES | Open Energy Information

    Open Energy Info (EERE)

    IES Jump to: navigation, search Name: Independent Energy Systems (IES) Place: Santa Cruz, California Zip: 95062 Product: Independent Energy Systems sells, designs, and installs...

  7. Thermal Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Energy Systems Jump to: navigation, search Name: Thermal Energy Systems Place: London, United Kingdom Sector: Biomass Product: UK based company that constructs and installs boilers...

  8. Integrating Renewable Energy Requirements Into Building Energy Codes

    SciTech Connect (OSTI)

    Kaufmann, John R.; Hand, James R.; Halverson, Mark A.

    2011-07-01

    This report evaluates how and when to best integrate renewable energy requirements into building energy codes. The basic goals were to: (1) provide a rough guide of where we’re going and how to get there; (2) identify key issues that need to be considered, including a discussion of various options with pros and cons, to help inform code deliberations; and (3) to help foster alignment among energy code-development organizations. The authors researched current approaches nationally and internationally, conducted a survey of key stakeholders to solicit input on various approaches, and evaluated the key issues related to integration of renewable energy requirements and various options to address those issues. The report concludes with recommendations and a plan to engage stakeholders. This report does not evaluate whether the use of renewable energy should be required on buildings; that question involves a political decision that is beyond the scope of this report.

  9. Integrating Environmental, Safety, and Quality Management System Audits |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Integrating Environmental, Safety, and Quality Management System Audits Integrating Environmental, Safety, and Quality Management System Audits August 2009 Presenter: David Skipper, UT-Battelle Track 7-2 Topics Covered: External registration/validation of management systems is desirableUT-Battelle registrations ISO 9001 for isotope development process ISO 14001 for all UT-Battelle activities OHSAS 18001 for all UT-Battelle activities ISO 17025 for metrology laboratory

  10. Integration of HVAC System Design with Simplified Duct Distribution -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Top Innovation | Department of Energy Integration of HVAC System Design with Simplified Duct Distribution - Building America Top Innovation Integration of HVAC System Design with Simplified Duct Distribution - Building America Top Innovation This photo shows framed walls and HVAC distribution systems. This Top Innovation profile describes work by Building America research team IBACOS who field tested simplified duct designs in hundreds of homes, confirming the performance of

  11. PEV Grid Integration Research - Vehicles, Buildings, and Renewables Working Together; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-07-29

    This presentation will discuss current research activities in PEV grid integration at NREL. Presented at the 2015 IEEE Power and Energy Systems General Meeting, Denver, Colorado.

  12. PROJECT PROFILE: Fraunhofer USA, Center for Sustainable Energy Systems CSE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (SHINES) | Department of Energy Fraunhofer USA, Center for Sustainable Energy Systems CSE (SHINES) PROJECT PROFILE: Fraunhofer USA, Center for Sustainable Energy Systems CSE (SHINES) Title: SunDial - An Integrated SHINES System to Enable High-Penetration Feeder-Level Photovoltaics Fraunhofer logo.png Funding Opportunity: Sustainable and Holistic Integration of Energy Storage and Solar PV SunShot Subprogram: Systems Integration Location: Boston, Massachusetts Partners: National Grid, EnerNOC

  13. Zicom Electronic Security Systems Ltd | Open Energy Information

    Open Energy Info (EERE)

    Security Systems Ltd. Place: Mumbai, Maharashtra, India Zip: 400093 Sector: Solar, Wind energy Product: Mumbai-based electronic security systems integrator. The firm plans to...

  14. Dynamic Analysis of Nuclear Energy System Strategies

    Energy Science and Technology Software Center (OSTI)

    2004-06-17

    DANESS is an integrated process model for nuclear energy systems allowing the simulation of multiple reactors and fuel cycles in a continuously changing nuclear reactor park configuration. The model is energy demand driven and simulates all nuclear fuel cycle facilites, up to 10 reactors and fuels. Reactor and fuel cycle facility history are traced and the cost of generating energy is calculated per reactor and for total nuclear energy system. The DANESS model aims atmore » performing dynamic systems analysis of nuclear energy development used for integrated analysis of development paths for nuclear energy, parameter scoping for new nuclear energy systems, economic analysis of nuclear energy, government role analysis, and education.« less

  15. Demand Response and Energy Storage Integration Study

    Office of Energy Efficiency and Renewable Energy (EERE)

    This study is a multi-national laboratory effort to assess the potential value of demand response and energy storage to electricity systems with different penetration levels of variable renewable...

  16. Buildings-to-Grid Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings-to-Grid Integration Buildings-to-Grid Integration Integrating buildings and the grid increases energy efficiency, supports incorporation of renewable energy, and balances new loads, such as electric vehicles. Integrating buildings and the grid increases energy efficiency, supports incorporation of renewable energy, and balances new loads, such as electric vehicles. The U.S. Department of Energy's Building Technologies Office is coordinating strategies and activities with stakeholders

  17. Systems Integration Research, Development, and Demonstration

    Broader source: Energy.gov [DOE]

    To achieve the SunShot goals, DOE Systems Integration activities are focused on these key research, development, and demonstration areas:

  18. Integrated Chemical Geothermometry System for Geothermal Exploration

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Develop practical and reliable system to predict geothermal reservoir temperatures from integrated chemical analyses of spring and well fluids.

  19. Bechtel Environmental Integrated Database Management System

    Energy Science and Technology Software Center (OSTI)

    1995-04-11

    Bechtel Environmental Integrated Data Management System (BEIDMS1.4) is an Oracle based relational database that stores data related to all aspects of environmental data collection.

  20. NREL: Transportation Research - Systems Analysis and Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL's systems analysis and integration team evaluates the impact of emerging technologies on efficiency, performance, cost, and battery life for a full range of ...

  1. Design, construction, system integration, and test results of the 1 MW CW RF system for the e-gun cavity in the energy recovery LINAC at Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Lenci,S.J.; Eisen, E. L.; Dickey, D. L.; Sainz, J. E.; Utay, P. F.; Zaltsman, A.; Lambiase, R.

    2009-05-04

    Brookhaven's ERL (Energy Recovery LINAC) requires a 1 MW CW RF system for the superconducting electron gun cavity. The system consists primarily of a klystron tube, transmitter, and High-Voltage Power Supply (HVPS). The 703.75 MHz klystron made by CPl, Inc. provides RF power of 1MW CW with efficiency of 65%. It has a single output window, diode-type electron gun, and collector capable of dissipating the entire beam power. It was fully factory tested including 24-hour heat run at 1.1 MW CWo The solid state HVPS designed by Continental Electronics provides up to 100 kV at low ripple and 2.1 MW CW with over 95% efficiency. With minimal stored energy and a fast shut-down mode no crowbar circuit is needed. Continental 's transmitter includes PLC based user interface and monitoring, RF pre-amplifier, magnet and Vac-Ion pump supplies, cooling water instrumentation, and integral safety interlock system. BNL installed the klystron, HVPS, and transmitter along with other items, such as circulator, water load, and waveguide components. The collaboration of BNL, CPI, and Continental in the design, installation, and testing was essential to the successful operation of the 1MW system.

  2. Orion Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Systems Jump to: navigation, search Name: Orion Energy Systems Place: Plymouth, Wisconsin Zip: 53073 Product: Designs and manufactures application specific lighting systems and...

  3. Energy Conservation Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Systems Inc Jump to: navigation, search Name: Energy Conservation Systems Inc Place: Prostpect, Kentucky Zip: 40059 Product: Smart solutionspower control system provider...

  4. Aperion Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    system controls, and fuel options with various stack technologies to supply optimized fuel cell systems. References: Aperion Energy Systems1 This article is a stub. You can...

  5. Motor Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance Motor Systems Motor Systems Dramatic energy and cost savings can be achieved in motor systems by applying best energy management practices and purchasing ...

  6. Integrated Distribution Management System for Alabama Principal Investigator

    SciTech Connect (OSTI)

    Schatz, Joe

    2013-03-31

    Southern Company Services, under contract with the Department of Energy, along with Alabama Power, Alstom Grid (formerly AREVA T&D) and others moved the work product developed in the first phase of the Integrated Distribution Management System (IDMS) from “Proof of Concept” to true deployment through the activity described in this Final Report. This Project – Integrated Distribution Management Systems in Alabama – advanced earlier developed proof of concept activities into actual implementation and furthermore completed additional requirements to fully realize the benefits of an IDMS. These tasks include development and implementation of a Distribution System based Model that enables data access and enterprise application integration.

  7. Analytical Tool Development for Aftertreatment Sub-Systems Integration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Analytical Tool Development for Aftertreatment Sub-Systems Integration Analytical Tool Development for Aftertreatment Sub-Systems Integration 2003 DEER Conference Presentation: Detroit Diesel Corporation 2003_deer_bolton2.pdf (847.55 KB) More Documents & Publications Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions Update on Modeling for Effective Diesel Engine Aftertreatment Implementation - Master Plan, Status and Critical Needs

  8. Integrated Solar Thermochemical Reaction System for High Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production of Electricity | Department of Energy Integrated Solar Thermochemical Reaction System for High Efficiency Production of Electricity Integrated Solar Thermochemical Reaction System for High Efficiency Production of Electricity This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. csp_review_meeting_042313_wegeng.pdf (2.22 MB) More Documents & Publications Highly Efficient Solar

  9. Wood energy system design

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This handbook, Wood Energy System Design, was prepared with the support of the Council of Great Lakes Governors and the US Department of Energy. It contains: wood fuel properties; procurement; receiving, handling, and storage; combustion; gasification; emission control; electric power generation and cogeneration; and case studies. (JF)

  10. Guide to Integrating Renewable Energy in Federal Construction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrating Renewable Energy in Federal Construction Developed by the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP), the "Guide to Integrating Renewable Energy into Federal Construction" helps Federal agencies understand renewable energy options, select appropriate types of renewable energy technologies, and integrate these technologies into all phases of new construction or major renovation projects. This PDF is a printed version of the online guide. This

  11. U.S.-Israel Integrated Energy and Desalination Design Challenge...

    Energy Savers [EERE]

    U.S.-Israel Integrated Energy and Desalination Design Challenge Lab Call U.S.-Israel Integrated Energy and Desalination Design Challenge Lab Call May 23, 2016 - 12:00pm Addthis ...

  12. U.S.-Israel Integrated Energy and Desalination Design Challenge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -Israel Integrated Energy and Desalination Design Challenge Lab Call The U.S.-Israel Integrated Energy and Desalination Design Challenge will give U.S. and Israeli experts the ...

  13. U.S.-Israel Integrated Energy and Desalination Design Challenge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S.-Israel Integrated Energy and Desalination Design Challenge Lab Call U.S.-Israel Integrated Energy and Desalination Design Challenge Lab Call On May 23, 2016, the U.S. ...

  14. SolidEnergy Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SolidEnergy Systems National Clean Energy Business Plan Competition SolidEnergy Systems Massachusetts Institute of Technology The Polymer Ionic Liquid (PIL) lithium battery combines the safety and energy density of a solid polymer lithium battery and the high performance of a lithium-ion battery. The battery developed by SolidEnergy achieves high energy density that works safely over a wide temperature range, which makes it ideal for electric vehicles and consumer electronics where both energy

  15. Financial Vehicles within an Integrated Energy Efficiency Program-- Webinar Slides

    Broader source: Energy.gov [DOE]

    "Financial Vehicles Within an Integrated Energy Efficiency Program," webinar slides from the U.S. Department of Energy's Better Buildings program.

  16. The Water-Energy Nexus: Capturing the Benefits of Integrated...

    Energy Savers [EERE]

    The Water-Energy Nexus: Capturing the Benefits of Integrated Resource Management for Water & Electricity Utilities and their Partners The Water-Energy Nexus: Capturing the Benefits ...

  17. WINDOW-WALL INTERFACE CORRECTION FACTORS: THERMAL MODELING OF INTEGRATED FENESTRATION AND OPAQUE ENVELOPE SYSTEMS FOR IMPROVED PREDICTION OF ENERGY USE

    SciTech Connect (OSTI)

    Bhandari, Mahabir S; Ravi, Dr. Srinivasan

    2012-01-01

    The boundary conditions for thermal modeling of fenestration systems assume an adiabatic condition between the fenestration system installed and the opaque envelope system. This theoretical adiabatic boundary condition may not be appropriate owing to heat transfer at the interfaces, particularly for aluminum- framed windows affixed to metal- framed walls. In such scenarios, the heat transfer at the interface may increase the discrepancy between real world thermal indices and laboratory measured or calculated indices based on NFRC Rating System.This paper discusses the development of window-wall Interface Correction Factors (ICF) to improve energy impacts of building envelope systems

  18. Implementation Guide for Integrating Environmental Management Systems into Integrated Safety Management Systems

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-08-20

    This Guide provides guidance to assist DOE sites in identifying those missing environmental management systems elements and integrating them into the site's integrated safety management system. Canceled by DOE N 251.96.

  19. Resource Energy Systems LLC | Open Energy Information

    Open Energy Info (EERE)

    provides property owners with turn-key solar energy services. RES completes all phases of solar design, installation, and completion. References: Resource Energy Systems, LLC1...

  20. Perpetual Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Perpetual Energy Systems Place: Woodland Hills, California Zip: 91367 Sector: Renewable Energy, Solar Product: String representation "Perpetual Energ ... sustainability." is too...

  1. Greentech Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Systems Place: Denmark Product: The company aims to develop, own or partly own energy plants, which produce electricity on the basis of sustainable energy forms. References:...

  2. Energy Systems Limited ESL | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy, Solar Product: ESL deals with design, supply, installations and maintenance of solar and other renewable energy systems in Uganda. The company has a special...

  3. Energy Systems Laboratory ESL | Open Energy Information

    Open Energy Info (EERE)

    ESL specializes in the research fields of metering, modeling and data analysis of energy use in buildings. References: Energy Systems Laboratory (ESL)1 This article is a...

  4. Facility Energy Decision System | Open Energy Information

    Open Energy Info (EERE)

    System (FEDS) AgencyCompany Organization: Federal Energy Management Program Sector: Energy Focus Area: Buildings Phase: Evaluate Effectiveness and Revise as Needed Topics:...

  5. Sustina Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Energy provides customers with a variety of renewable energy products. Their online store features the Evergreen 180 Watt Solar Module, and the AIR Breeze wind power system.2...

  6. Redhawk Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Redhawk Energy Systems Address: 10340 Palmer Rd. SW Place: Athens, Ohio Zip: 45701 Sector: Efficiency, Renewable Energy, Services, Solar,...

  7. CBEI: Collaborative Approaches for Integrated Energy Retrofits - 2015 Peer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review | Department of Energy Collaborative Approaches for Integrated Energy Retrofits - 2015 Peer Review CBEI: Collaborative Approaches for Integrated Energy Retrofits - 2015 Peer Review Presenter: John Messner, PSU View the Presentation CBEI: Collaborative Approaches for Integrated Energy Retrofits - 2015 Peer Review (2.32 MB) More Documents & Publications CBEI: Enhancing OpenStudio for Airflow and Daylight Modeling - 2015 Peer Review CBEI: Lessons Learned from Integrated Retrofits in

  8. 20% Wind Energy by 2030 - Chapter 4: Transmission and Integration into the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Electric System Summary Slides | Department of Energy 4: Transmission and Integration into the U.S. Electric System Summary Slides 20% Wind Energy by 2030 - Chapter 4: Transmission and Integration into the U.S. Electric System Summary Slides Summary slides for chapter 4 of 20% Wind Energy by 2030 overviewing transmission and integration 20percent_summary_chap4.pdf (1.78 MB) More Documents & Publications 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S.

  9. Integrated Training Management (ITM) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Training Management (ITM) Integrated Training Management (ITM) Each DOE element must have a training policy and procedure that establishes an integrated cycle of ...

  10. Green Integrated Design | Open Energy Information

    Open Energy Info (EERE)

    Integrated Design Jump to: navigation, search Logo: Green Integrated Design Name: Green Integrated Design Place: Tempe, Arizona Zip: 85283 Number of Employees: 1-10 Year Founded:...

  11. Power Integrations Inc | Open Energy Information

    Open Energy Info (EERE)

    Integrations Inc Jump to: navigation, search Name: Power Integrations Inc Place: San Jose, California Zip: 95138 Product: Supplier of high-voltage analog integrated circuits used...

  12. Integrated Vulnerability and Impacts Assessment for Natural and Engineered Water-Energy Systems in the Southwest and Southern Rocky Mountain Region

    SciTech Connect (OSTI)

    Tidwell, Vincent C.; Wolfsberg, Andrew; Macknick, Jordan; Middleton, Richard

    2015-01-01

    In the Southwest and Southern Rocky Mountains (SWSRM), energy production, energy resource extraction, and other high volume uses depend on water supply from systems that are highly vulnerable to extreme, coupled hydro-ecosystem-climate events including prolonged drought, flooding, degrading snow cover, forest die off, and wildfire. These vulnerabilities, which increase under climate change, present a challenge for energy and resource planners in the region with the highest population growth rate in the nation. Currently, analytical tools are designed to address individual aspects of these regional energy and water vulnerabilities. Further, these tools are not linked, severely limiting the effectiveness of each individual tool. Linking established tools, which have varying degrees of spatial and temporal resolution as well as modeling objectives, and developing next-generation capabilities where needed would provide a unique and replicable platform for regional analyses of climate-water-ecosystem-energy interactions, while leveraging prior investments and current expertise (both within DOE and across other Federal agencies).

  13. Super Hard Coating Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Systems Integration The SunShot Initiative's Systems Integration (SI) program enables the widespread deployment of safe, reliable, and cost-effective solar energy technologies by addressing the associated technical and non-technical challenges. These include timely and cost- effective interconnection procedures, optimal system planning, accurate prediction of solar resources, monitoring and control of solar power, maintaining grid reliability and stability, and many more. To address the

  14. AN INTEGRATED BIOLOGICAL CONTROL SYSTEM AT HANFORD

    SciTech Connect (OSTI)

    JOHNSON AR; CAUDILL JG; GIDDINGS RF; RODRIGUEZ JM; ROOS RC; WILDE JW

    2010-02-11

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimated spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  15. EERE Success Story-Colorado: EERE Opens State-of-the-Art Energy Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration Facility | Department of Energy Colorado: EERE Opens State-of-the-Art Energy Systems Integration Facility EERE Success Story-Colorado: EERE Opens State-of-the-Art Energy Systems Integration Facility November 6, 2013 - 12:00am Addthis On September 11, 2013, Energy Secretary Moniz dedicated the Energy Systems Integration Facility (ESIF) clean energy research center at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. "The Energy Department has been at the

  16. U.S.-Israel Integrated Energy and Desalination Design Challenge Lab Call

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -Israel Integrated Energy and Desalination Design Challenge Lab Call The U.S.-Israel Integrated Energy and Desalination Design Challenge will give U.S. and Israeli experts the opportunity to learn from each other on desalination and associated system design issues, while also stimulating innovative thinking on next-generation systems. Through this Challenge, the U.S. Department of Energy (DOE) and Israel's Ministry of National Infrastructure, Energy and Water Resources (MIEW) will encourage

  17. Thermochemical energy systems research

    SciTech Connect (OSTI)

    Nix, R G

    1983-08-01

    This paper describes research at SERI on heat-pumped thermochemical energy systems and thermochemical reduction of CO/sub 2/ to CO for open-loop solar energy transport. Analysis of the NaOH-H/sub 2/O heat-pumped system indicated cost-effectiveness relative to a hot oil solar system with parabolic trough receivers for production of 0.101 MPa saturated steam. Current work is on definition of high-temperature heat-pumped systems. Future work should be experimental with an objective of small-scale validation of high-temperature heat-pumped systems. The thermochemical CO/sub 2/ reduction is an extremely difficult and long-range research problem. Costs are unknown but are suspected to be high because of system complexity. The CO/sub 2/ reduction research should be de-emphasized.

  18. Hydrogen energy systems studies

    SciTech Connect (OSTI)

    Ogden, J.M.; Steinbugler, M.; Kreutz, T.

    1998-08-01

    In this progress report (covering the period May 1997--May 1998), the authors summarize results from ongoing technical and economic assessments of hydrogen energy systems. Generally, the goal of their research is to illuminate possible pathways leading from present hydrogen markets and technologies toward wide scale use of hydrogen as an energy carrier, highlighting important technologies for RD and D. Over the past year they worked on three projects. From May 1997--November 1997, the authors completed an assessment of hydrogen as a fuel for fuel cell vehicles, as compared to methanol and gasoline. Two other studies were begun in November 1997 and are scheduled for completion in September 1998. The authors are carrying out an assessment of potential supplies and demands for hydrogen energy in the New York City/New Jersey area. The goal of this study is to provide useful data and suggest possible implementation strategies for the New York City/ New Jersey area, as the Hydrogen Program plans demonstrations of hydrogen vehicles and refueling infrastructure. The authors are assessing the implications of CO{sub 2} sequestration for hydrogen energy systems. The goals of this work are (a) to understand the implications of CO{sub 2} sequestration for hydrogen energy system design; (b) to understand the conditions under which CO{sub 2} sequestration might become economically viable; and (c) to understand design issues for future low-CO{sub 2} emitting hydrogen energy systems based on fossil fuels.

  19. Energy Department Announces $25 Million to Accelerate Integration of Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy into Nation's Electrical Grid | Department of Energy 25 Million to Accelerate Integration of Solar Energy into Nation's Electrical Grid Energy Department Announces $25 Million to Accelerate Integration of Solar Energy into Nation's Electrical Grid May 2, 2016 - 5:19pm Addthis News Media Contact 202-586-4940 DOENews@hq.doe.gov WASHINGTON, D.C. - As part of the Energy Department's ongoing efforts to modernize the nation's grid through the Grid Modernization Initiative, the Energy

  20. Test report : Princeton power systems prototype energy storage system.

    SciTech Connect (OSTI)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-08-01

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. Princeton Power Systems has developed an energy storage system that utilizes lithium ion phosphate batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Princeton Power Systems Prototype Energy Storage System.

  1. Cybersecurity for Energy Delivery Systems (CEDS) Fact Sheets | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy (CEDS) Fact Sheets Cybersecurity for Energy Delivery Systems (CEDS) Fact Sheets A key mission of the Department of Energy's (DOE) Office of Electricity Delivery and Energy Reliability (OE) is to enhance the reliability and resilience of the nation's energy infrastructure. Cybersecurity of energy delivery systems is critical for protecting the energy infrastructure and the integral function that it serves in our lives. OE's Cybersecurity for Energy Delivery Systems (CEDS) program

  2. DOE Integrated Technology Validation Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Projects » DOE Integrated Technology Validation Projects DOE Integrated Technology Validation Projects Integrated hydrogen and fuel cell systems will maximize overall system efficiencies, reduce costs, and optimize component development. DOE's Fuel Cell Technologies Office has a number of demonstrations underway to develop, evaluate, and validate the performance of integrated systems such as Power Parks. The status of DOE's integrated technology validation projects is detailed in the

  3. Open Energy Information Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OpenEIS (energy information systems) Jessica Granderson Lawrence Berkeley National Laboratory JGranderson@lbl.gov, 510.486.6792 April 3, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Advanced algorithms and analyses can enable 5-40% savings, yet are rarely adopted; 3 relevant barriers include: 1. Lack of awareness that simple analytics can be used to generate valuable insights and actionable information, without further training 2. Risk

  4. Integrated Devices and Systems | Grid Modernization | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Codes Integrated codes contain the mathematical descriptions of the physical processes relating to nuclear weapon systems and describe what the nation knows about how nuclear weapons function. This subprogram funds the critical skills needed to develop, maintain and interpret the results of the large-scale integrated simulation codes that are needed for Stockpile Stewardship Program (SSP) maintenance, the Life Extension Programs (LEP), Significant Finding Investigation (SFI)

  5. On the path integral of constrained systems

    SciTech Connect (OSTI)

    Muslih, Sami I.

    2004-10-04

    Constrained Hamiltonian systems are investigated by using Gueler's method. Integration of a set of equations of motion and the action function is discussed. It is shown that the canonical path integral quantization is obtained directly as an integration over the canonical phase-space coordinates without any need to enlarge the initial phase-space by introducing extra- unphysical variables as in the Batalin-Fradkin-Tyutin (BFT) method. The abelian Proca model is analyzed by the two methods.

  6. Optimal Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Energy Systems Place: Torrance, California Zip: 90505 Product: Manufacturer of flywheel power system, specialising in aerospace and defence sector. Coordinates: 40.417285,...

  7. Powersource Energy Systems Ltd | Open Energy Information

    Open Energy Info (EERE)

    Systems Ltd Jump to: navigation, search Name: Powersource Energy Systems Ltd Place: Canada Product: A spinoff from Soltek Powersource Ltd, since 1996, it merged back with them...

  8. American Energy Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Systems Inc Jump to: navigation, search Name: American Energy Systems Inc Place: Minnesota Zip: 55350 Product: Biofuel burning appliance manufacturer (pellets & corn). References:...

  9. NREL: Energy Storage - Energy Storage Systems Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Systems Evaluation Photo of man standing between two vehicles and plugging the vehicle on the right into a charging station. NREL system evaluation has confirmed ...

  10. Advanced Energy Systems Ltd | Open Energy Information

    Open Energy Info (EERE)

    Systems Ltd Place: Welshpool, Western Australia, Australia Zip: 6016 Sector: Solar, Wind energy Product: Manufacturer and distributor of micro wind turbines, solar systems, gas...

  11. Star Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Systems Jump to: navigation, search Name: Star Energy Systems Place: Ahmedabad, Gujarat, India Zip: 380 009 Sector: Solar Product: Solar PV product distributor. Coordinates:...

  12. An Integrated Waste Management System and a Consent-Based

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Integrated Waste Management System and a Consent-Based Approach to Siting Consent-Based Siting Initiative Kick-Off Meeting Renaissance Washington, DC Downtown Hotel January 20, 2016 1:00-1:15 PM Keynote Speaker: Finding Long-Term Solutions for Managing Our Nation's Nuclear Waste Dr. Lynn Orr, Undersecretary for Science and Energy, Department of Energy 1:15-1:50 PM Panel Discussion: Updates on DOE Planning for an Integrated Waste Management System and Discussion of Engagement Opportunities in

  13. Integrating Nuclear Energy to Oilfield Operations – Two Case Studies

    SciTech Connect (OSTI)

    Eric P. Robertson; Lee O. Nelson; Michael G. McKellar; Anastasia M. Gandrik; Mike W. Patterson

    2011-11-01

    Fossil fuel resources that require large energy inputs for extraction, such as the Canadian oil sands and the Green River oil shale resource in the western USA, could benefit from the use of nuclear power instead of power generated by natural gas combustion. This paper discusses the technical and economic aspects of integrating nuclear energy with oil sands operations and the development of oil shale resources. A high temperature gas reactor (HTGR) that produces heat in the form of high pressure steam (no electricity production) was selected as the nuclear power source for both fossil fuel resources. Both cases were based on 50,000 bbl/day output. The oil sands case was a steam-assisted, gravity-drainage (SAGD) operation located in the Canadian oil sands belt. The oil shale development was an in-situ oil shale retorting operation located in western Colorado, USA. The technical feasibility of the integrating nuclear power was assessed. The economic feasibility of each case was evaluated using a discounted cash flow, rate of return analysis. Integrating an HTGR to both the SAGD oil sands operation and the oil shale development was found to be technically feasible for both cases. In the oil sands case, integrating an HTGR eliminated natural gas combustion and associated CO2 emissions, although there were still some emissions associated with imported electrical power. In the in situ oil shale case, integrating an HTGR reduced CO2 emissions by 88% and increased natural gas production by 100%. Economic viabilities of both nuclear integrated cases were poorer than the non-nuclear-integrated cases when CO2 emissions were not taxed. However, taxing the CO2 emissions had a significant effect on the economics of the non-nuclear base cases, bringing them in line with the economics of the nuclear-integrated cases. As we move toward limiting CO2 emissions, integrating non-CO2-emitting energy sources to the development of energy-intense fossil fuel resources is becoming

  14. International Conference on Integration of Renewable and Distributed Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources (IRED): Coming October 2016 Integration of Renewable and Distributed Energy Resources (IRED): Coming October 2016 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power &

  15. INTEGRATED VERTICAL AND OVERHEAD DECONTAMINATION (IVOD) SYSTEM

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.

    2001-01-01

    The deactivation and decommissioning of 1200 buildings within the U.S. Department of Energy-Office of Environmental Management complex will require the disposition of a large quantity of contaminated concrete and metal surfaces. It has been estimated that 23 million cubic meters of concrete and over 600,000 tons of metal will need disposition. The disposition of such large quantities of material presents difficulties in the area of decontamination and characterization. The final disposition of this large amount of material will take time and money as well as risk to the D&D work force. A single automated system that would decontaminate and characterize surfaces in one step would not only reduce the schedule and decrease cost during D&D operations but would also protect the D&D workers from unnecessary exposures to contaminated surfaces. This report summarizes the activities performed during FY00 and describes the planned activities for FY01. Accomplishments for FY00 include the following: Development and field-testing of characterization system; Completion of Title III design of deployment platform and decontamination unit; In-house testing of deployment platform and decontamination unit; Completion of system integration design; Identification of deployment site; and Completion of test plan document for deployment of IVOD at Rancho Seco nuclear power facility.

  16. Space reactor electric systems: system integration studies, Phase 1 report

    SciTech Connect (OSTI)

    Anderson, R.V.; Bost, D.; Determan, W.R.; Harty, R.B.; Katz, B.; Keshishian, V.; Lillie, A.F.; Thomson, W.B.

    1983-03-29

    This report presents the results of preliminary space reactor electric system integration studies performed by Rockwell International's Energy Systems Group (ESG). The preliminary studies investigated a broad range of reactor electric system concepts for powers of 25 and 100 KWe. The purpose of the studies was to provide timely system information of suitable accuracy to support ongoing mission planning activities. The preliminary system studies were performed by assembling the five different subsystems that are used in a system: the reactor, the shielding, the primary heat transport, the power conversion-processing, and the heat rejection subsystems. The subsystem data in this report were largely based on Rockwell's recently prepared Subsystem Technology Assessment Report. Nine generic types of reactor subsystems were used in these system studies. Several levels of technology were used for each type of reactor subsystem. Seven generic types of power conversion-processing subsystems were used, and several levels of technology were again used for each type. In addition, various types and levels of technology were used for the shielding, primary heat transport, and heat rejection subsystems. A total of 60 systems were studied.

  17. Pump Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pump Systems Pump Systems Dramatic energy and cost savings can be achieved in pump systems by applying best energy management practices and purchasing energy-efficiency equipment. Use the software tools, training, and publications listed below to save energy in pump systems. Pumps Tools Tools to Assess Your Energy System Pumping System Assessment Tool (PSAT) Qualified Specialists Qualified Specialists have passed a rigorous competency examination on a specific industrial system assessment tool.

  18. Fan Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fan Systems Fan Systems Dramatic energy and cost savings can be achieved in motor systems by applying best energy management practices and purchasing energy-efficiency equipment. Use the software tools, training, and publications listed below to save energy in fan systems. Fan Tools Tools to Assess Your Energy System Fan System Assessment Tool (FSAT) Qualified Specialists Qualified Specialists have passed a rigorous competency examination on a specific industrial system assessment tool. Locate a

  19. PIA - Fossil Energy Web System (FEWEB) | Department of Energy

    Energy Savers [EERE]

    Fossil Energy Web System (FEWEB) PIA - Fossil Energy Web System (FEWEB) PIA - Fossil Energy Web System (FEWEB) PDF icon PIA - Fossil Energy Web System (FEWEB) More Documents &...

  20. Batteries and energy systems

    SciTech Connect (OSTI)

    Mantell, C.L.

    1982-01-01

    A historical review of the galvanic concept and a brief description of the theory of operation of batteries are followed by chapters on specific types of batteries and energy systems. Chapters contain a section on basic theory, performance and applications. Secondary cells discussed are: SLI batteries, lead-acid storage batteries, lead secondary cells, alkaline secondary cells, nickel and silver-cadmium systems and solid electrolyte systems. Other chapters discuss battery charging, regenerative electrochemical systems, solar cells, fuel cells, electric vehicles and windmills. (KAW)

  1. Power Electronic Thermal System Performance and Integration | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ape_13_bennion.pdf (1.2 MB) More Documents & Publications Power Electronic Thermal System Performance and Integration Integrated Power Module Cooling Vehicle Technologies Office: 2009 Advanced Power Electronics R&D Annual Progress Report

  2. Economic development through biomass system integration: Volume 1

    SciTech Connect (OSTI)

    DeLong, M.M.

    1995-10-01

    This report documents a feasibility study for an integrated biomass power system, where an energy crop (alfalfa) is the feedstock for a processing plant and a power plant (integrated gasification combined cycle) in a way that benefits the facility owners. Chapters describe alfalfa basics, production risks, production economics, transportation and storage, processing, products, market analysis, business analysis, environmental impact, and policy issues. 69 figs., 63 tabs.

  3. You Are My Sunshine - Integrating Residential Solar and Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (301) | Department of Energy You Are My Sunshine - Integrating Residential Solar and Energy Efficiency (301) You Are My Sunshine - Integrating Residential Solar and Energy Efficiency (301) Better Buildings Residential Network Peer Exchange Call Series: You Are My Sunshine - Integrating Residential Solar and Energy Efficiency (301), October 15, 2015, call slides and discussion summary. Call Slides and Discussion Summary (1.14 MB) More Documents & Publications Better Buildings Network View

  4. Evaluating Behind-the-Meter Energy Storage Systems with NREL's System Advisor Model (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluating Behind-the- Meter Energy Storage Systems with NREL's System Advisor Model A new model helps companies assess the performance and economic effects of integrating battery energy storage systems into the electric grid. The Challenge Battery energy storage is a key enabling technology for the integration of large amounts of solar generation onto the electric distribution system. With an 80% drop in battery prices in the last six years and new mandates for energy storage solutions in

  5. Sandia Energy Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feed 0 Bay-Area National Labs Team to Tackle Long-Standing Automotive Hydrogen-Storage Challenge http:energy.sandia.govbay-area-national-labs-team-to-tackle-long-stan...

  6. NREL: Transportation Research - Systems Analysis and Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Systems Analysis and Integration Publications NREL publishes technical reports, fact sheets, and other documents about its systems analysis and integration activities. For a complete collection of publications, search NREL's Publications Database or find publications via the following author and keyword selections: Authors: Robb Barnitt Brennan Borlaug Aaron Brooker Evan Burton Yuche Chen Josh Eichman Jeff Gonder Jacob Holden Tony Markel Marc Melaina Michael Penev Laurie Ramroth

  7. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    ScienceCinema (OSTI)

    None

    2014-06-25

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  8. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    SciTech Connect (OSTI)

    2014-04-15

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  9. Solar Integrated Technologies SIT | Open Energy Information

    Open Energy Info (EERE)

    Integrated Technologies SIT Jump to: navigation, search Name: Solar Integrated Technologies (SIT) Place: Los Angeles, California Zip: 90058 Product: California-based manufacturer...

  10. Eon Masdar Integrated Carbon | Open Energy Information

    Open Energy Info (EERE)

    Eon Masdar Integrated Carbon Jump to: navigation, search Name: Eon Masdar Integrated Carbon Place: Germany Sector: Carbon Product: Germany-based carbon emission projects developer....

  11. Technology Integration Overview | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    vtpn02tismith2012o.pdf (1.85 MB) More Documents & Publications Technology Integration Overview Technology Integration Overview Vehicle Technologies Office Merit Review 2014: ...

  12. Energia Integral Andina | Open Energy Information

    Open Energy Info (EERE)

    Integral Andina Jump to: navigation, search Name: Energia Integral Andina Place: Bogota, Colombia Product: Colombia based company, focused on engineering and equipment supply....

  13. Seal system with integral detector

    DOE Patents [OSTI]

    Fiarman, S.

    1982-08-12

    A seal system is disclosed for materials where security is of the essence, such as nuclear materials. The seal is tamper-indicating, indicates changes in environmental conditions that evidence attempts to bypass the seal, is unique and cost effective. The seal system is comprised of a seal where an optical signal is transmitted through a loop, with a detector to read said signal, and one or more additional detectors designed to detect environmental changes, these detectors being operatively associated with the seal so that detection of a break in the optical signal or detection of environmental changes will cause an observable change in the seal.

  14. Seal system with integral detector

    DOE Patents [OSTI]

    Fiarman, Sidney

    1985-01-01

    There is disclosed a seal system for materials where security is of the essence, such as nuclear materials, which is tamper-indicating, which indicates changes in environmental conditions that evidence attempts to by-pass the seal, which is unique and cost effective, said seal system comprised of a seal where an optical signal is transmitted through a loop, with a detector to read said signal, and one or more additional detectors designed to detect environmental changes, these detectors being operatively associated with the seal so that detection of a break in the optical signal or detection of environmental changes will cause an observable change in the seal.

  15. Energy Storage Components and Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Components and Systems - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  16. Energy storage connection system

    DOE Patents [OSTI]

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  17. Balancing Area Coordination: Efficiently Integrating Renewable Energy Into the Grid, Greening the Grid

    SciTech Connect (OSTI)

    Katz, Jessica; Denholm, Paul; Cochran, Jaquelin

    2015-06-01

    Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. Coordinating balancing area operation can promote more cost and resource efficient integration of variable renewable energy, such as wind and solar, into power systems. This efficiency is achieved by sharing or coordinating balancing resources and operating reserves across larger geographic boundaries.

  18. Solar energy collection system

    SciTech Connect (OSTI)

    Hummel, R.L.

    1982-04-06

    A solar energy collection system for a building is described. A solar energy collector is disposed at the exterior surface of the building and includes a solar energy absorbent body having a surface which is exposed to sunlight and from which solar energy can be transmitted as sensible heat. A panel which is transparent to sunlight is spaced from the said surface of the absorbent body so as to define therewith a passageway in which air contacts at least a substantial area of said surface so that air in said passageway absorbs heat transmitted from said surface when the collector is in use. The passageway has an inlet and an outlet and the absorbent body and panel are arranged with the outlet higher than the inlet so that heated air in the passageway tends to rise by convection towards the outlet. The building is provided with heating means including a circulation circuit for a heating fluid. Heat exchange means are coupled to said air passageway outlet of the solar energy collector for passage of heated air therethrough. The heat exchange means are also coupled to the circulation circuit of the building heating means and are arranged to permit heat transfer between said heated air and the heating fluid. A return air flow conduit is coupled between the heat exchange means and the inlet of the air passageway of the solar energy collector for returning heated air from the heat exchange means to the air passageway for recirculation.

  19. Energy Storage Management for VG Integration (Presentation)

    SciTech Connect (OSTI)

    Kirby, B.

    2011-10-01

    This presentation describes how you economically manage integration costs of storage and variable generation.

  20. Development of Integrated Biorefineries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Biorefineries » Development of Integrated Biorefineries Development of Integrated Biorefineries The development of the integrated biorefinery was identified as crucial part of achieving alternative fuel production goals. Throughout its stages of development, the integrated biorefinery will utilize input from all of the other platforms as well as the existing biofuels industry. The research and development of feedstocks and the biochemical and thermochemical conversion platforms will

  1. Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy

  2. FOA for the Demonstration of an Integrated Biorefinery System: Blue Fire

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ethanol, Inc. | Department of Energy Blue Fire Ethanol, Inc. FOA for the Demonstration of an Integrated Biorefinery System: Blue Fire Ethanol, Inc. FOA for the Demonstration of an Integrated Biorefinery System: Blue Fire Ethanol, Inc. Award No. DE-FC36-07GO17025 (14.26 MB) More Documents & Publications FOA for the Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC FOA for the Demonstration of an Integrated Biorefinery System: POET Project Liberty,

  3. Integrated Solar Thermochemical Reaction System - FY13 Q2 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Integrated Solar Thermochemical Reaction System - FY13 Q2 Integrated Solar Thermochemical Reaction System - FY13 Q2 This document summarizes the progress of this PNNL project, funded by SunShot, for the second quarter of fiscal year 2013. progress_report_sunshot_pnnl_fy13_q2.pdf (274.11 KB) More Documents & Publications Integrated Solar Thermochemical Reaction System for High Efficiency Production of Electricity Highly Efficient Solar Thermochemical Reaction Systems Integrated

  4. Air quality data systems integration

    SciTech Connect (OSTI)

    Row, V.K.; Wilson, J.F.

    1998-12-31

    Traditionally, data used for compliance with air quality programs are obtained from various sources within the plant, on site lab, or perhaps from a product movement accounting program. For the most part, the data processing and subsequent calculations and reports were handled individually, thus generating huge spreadsheets and mounds of process data in paper format. The natural reaction to this overwhelming data management problem is to search for an off-the-shelf software package that will hopefully cover all of the plant`s needs for compliance with air quality regulations. Rather than searching for or trying to custom build a single electronic system, the authors suggest using internet browsing software to create links between existing repositories of air quality data and related information.

  5. Wind energy conversion system

    DOE Patents [OSTI]

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  6. Sandia Energy - PV Systems Reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Reliability Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Systems Reliability PV Systems ReliabilityCoryne Tasca2015-05-08T03:40:54+00:00...

  7. Hydrogen energy systems studies

    SciTech Connect (OSTI)

    Ogden, J.M.; Steinbugler, M.; Dennis, E.

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  8. Sandia Energy - Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure Security, Microgrid, Modeling & Analysis, News, News & Events, Partnership, Renewable Energy, SMART...

  9. Solar ADEPT: Efficient Solar Energy Systems

    SciTech Connect (OSTI)

    2011-01-01

    Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

  10. Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  11. Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  12. Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  13. Energy Systems | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Systems Research to strengthen the economy, protect the environment and enable energy independence and national security The Energy Systems (ES) division conducts applied energy research to strengthen the economy, protect the environment and enable energy independence and national security. From invention through demonstration, ES actively forms critical alliances with industrial partners, universities, other national laboratories and other Argonne divisions to conduct research,

  14. Molten-Caustic-Leaching System Integration Project

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    The objective of this project is to modify an existing molten-caustic-leaching (MCL) system for coal upgrading so that it operates in an integrated continuous manner. The overall strategy consists of several tasks, but only a few are discussed here. Tasks discussed are: MCL circuit component testing (coal sample procurement), final circuit modifications for integrated operation, coal product handling/waste disposal (coal inventory disposal, MCL solid waste disposal), project management and control. (VC)

  15. You Are My Sunshine - Integrating Residential Solar and Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Residential Network Peer Exchange Call Series: You Are My Sunshine - Integrating Residential Solar and Energy Efficiency (301), October 15, 2015, call slides and discussion ...

  16. Glossary of Transmission Grid Integration Terms | Open Energy...

    Open Energy Info (EERE)

    of Transmission Grid Integration Terms Abstract The National Renewable Energy Laboratory (NREL) has produced an extensive list of terms and definitions related to...

  17. Perpetual Energy Systems Ltd | Open Energy Information

    Open Energy Info (EERE)

    search Name: Perpetual Energy Systems Ltd. Place: Hyderabad, Andhra Pradesh, India Zip: 500 029 Sector: Biomass Product: Biomass project developer in India Coordinates:...

  18. Clean Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Zip: 95742 Product: The company has developed oxyfuel technology for zero emission fossil fuel power plants. References: Clean Energy Systems1 This article is a stub. You can...

  19. Nextronex Energy Systems LLC | Open Energy Information

    Open Energy Info (EERE)

    Systems LLC Address: 4400 Moline Martin Rd Place: Millbury, Ohio Zip: 43447-9401 Sector: Efficiency, Renewable Energy, Services, Solar Website: www.nextronex.comdefault.asp...

  20. Proton Energy Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Proton Energy Systems Inc Place: Wallingford, Connecticut Zip: 6492 Sector: Hydro, Hydrogen Product: Develops, manufactures and sells proprietary Proton Exchange Membrane (PEM)...