National Library of Energy BETA

Sample records for integrated energy storage

  1. Demand Response and Energy Storage Integration Study

    Broader source: Energy.gov [DOE]

    Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable...

  2. 2016 New Mexico Regional Energy Storage and Grid Integration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Mexico Regional Energy Storage and Grid Integration Workshop - Sandia Energy Energy ... Secure & Sustainable Energy Future 2016 NM Regional Energy Storage & Grid Integration ...

  3. Demand Response and Energy Storage Integration Study - Past Workshops...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response and Energy Storage Integration Study - Past Workshops Demand Response and Energy Storage Integration Study - Past Workshops The project was initiated and informed...

  4. 2016 New Mexico Regional Energy Storage and Grid Integration Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Mexico Regional Energy Storage and Grid Integration Workshop - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future 2016 NM Regional Energy Storage & Grid Integration Workshop Registration Agenda 2016 New Mexico Regional Energy Storage and Grid Integration Workshop Home/2016 New Mexico Regional Energy Storage and Grid Integration Workshop 2016 New Mexico Regional Energy Storage and Grid Integration

  5. SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR PV (SHINES) SUSTAINABLE AND ... while ensuring a resilient energy system combining energy storage with central ...

  6. Battery and Thermal Energy Storage | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery and Thermal Energy Storage Not long ago, the mantra among electric utilities was that "you can't store electricity"-instantaneous power production had to nearly equal demand. But NREL research is changing this belief, demonstrating the high performance of grid-integrated battery and thermal energy storage technologies. Photo of a battery energy storage system NREL examines how best to integrate these energy storage technologies into the electrical grid and potentially into

  7. Energy Storage Management for VG Integration (Presentation)

    SciTech Connect (OSTI)

    Kirby, B.

    2011-10-01

    This presentation describes how you economically manage integration costs of storage and variable generation.

  8. Demand Response and Energy Storage Integration Study

    Office of Energy Efficiency and Renewable Energy (EERE)

    This study is a multi-national laboratory effort to assess the potential value of demand response and energy storage to electricity systems with different penetration levels of variable renewable...

  9. Solar Energy Grid Integration Systems -- Energy Storage (SEGIS-ES).

    SciTech Connect (OSTI)

    Hanley, Charles J.; Ton, Dan T.; Boyes, John D.; Peek, Georgianne Huff

    2008-07-01

    This paper describes the concept for augmenting the SEGIS Program (an industry-led effort to greatly enhance the utility of distributed PV systems) with energy storage in residential and small commercial applications (SEGIS-ES). The goal of SEGIS-ES is to develop electrical energy storage components and systems specifically designed and optimized for grid-tied PV applications. This report describes the scope of the proposed SEGIS-ES Program and why it will be necessary to integrate energy storage with PV systems as PV-generated energy becomes more prevalent on the nation's utility grid. It also discusses the applications for which energy storage is most suited and for which it will provide the greatest economic and operational benefits to customers and utilities. Included is a detailed summary of the various storage technologies available, comparisons of their relative costs and development status, and a summary of key R&D needs for PV-storage systems. The report concludes with highlights of areas where further PV-specific R&D is needed and offers recommendations about how to proceed with their development.

  10. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Home/Energy Storage DOE-EERE Deputy Assistant Secretary for Renewable Power, Douglas Hollett. (DOE photo) Permalink Gallery DOE-EERE Deputy Assistant Secretary Hollett Visits Sandia Concentrating Solar Power, Customers & Partners, Cyber, Distribution Grid Integration, Energy, Energy Storage, Energy Storage Systems, Facilities, Global Climate & Energy, Global Climate & Energy, Grid Integration, Highlights - Energy Research, Microgrid, National Solar Thermal Test

  11. SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR PV (SHINES)

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Sustainable and Holistic Integration of Energy Storage and Solar PV (SHINES) program develops and demonstrates integrated photovoltaic (PV) and energy storage solutions that are scalable,...

  12. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Energy Storage Home/Tag:Energy Storage Energy Storage The contemporary grid limits renewable energy and other distributed energy sources from being economically and reliably integrated into the grid. While a national renewable energy portfolio standard (RPS) has yet to be established, 35 states have forged ahead with their own RPS programs and policies. As this generation becomes a larger portion of a utility's [...] By Tara Camacho-Lopez|

  13. Solid-state energy storage module employing integrated interconnect board

    DOE Patents [OSTI]

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.

    2003-11-04

    The present invention is directed to an improved electrochemical energy storage device. The electrochemical energy storage device includes a number of solid-state, thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. Fuses and various electrical and electromechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  14. Solid-state energy storage module employing integrated interconnect board

    DOE Patents [OSTI]

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.

    2004-09-28

    An electrochemical energy storage device includes a number of solid-state thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. Fuses and various electrical and electro-mechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  15. Solid-state energy storage module employing integrated interconnect board

    DOE Patents [OSTI]

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.

    2000-01-01

    The present invention is directed to an improved electrochemical energy storage device. The electrochemical energy storage device includes a number of solid-state, thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. In one embodiment, a sheet of conductive material is processed by employing a known milling, stamping, or chemical etching technique to include a connection pattern which provides for flexible and selective interconnecting of individual electrochemical cells within the housing, which may be a hermetically sealed housing. Fuses and various electrical and electro-mechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  16. Energy Storage Management for VG Integration (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Management for VG Integration UWIG FALL TECHNIICAL WORKSHOP Brendan Kirby National Renewable Energy Laboratory Consultant October 13, 2011 NREL/PR-5500-53295 Photo by NREL/PIX 19498 National Renewable Energy Laboratory Innovation for Our Energy Future Increases Value Through Optimized Ancillary Service (AS) Provision: Pumped Storage Generator Example (320 MW pump, 200-400 MW gen, 40 MW reg, 200 MW spin, 400 MW non) * Total profits increased 133%; * Energy profits reduced -48%; *

  17. Solar energy grid integration systems - Energy storage (SEGIS-ES)

    SciTech Connect (OSTI)

    Ton, Dan; Peek, Georgianne H.; Hanley, Charles; Boyes, John

    2008-05-01

    In late 2007, the U.S. Department of Energy (DOE) initiated a series of studies to address issues related to potential high penetration of distributed photovoltaic (PV) generation systems on our nation’s electric grid. This Renewable Systems Interconnection (RSI) initiative resulted in the publication of 14 reports and an Executive Summary that defined needs in areas related to utility planning tools and business models, new grid architectures and PV systems configurations, and models to assess market penetration and the effects of high-penetration PV systems. As a result of this effort, the Solar Energy Grid Integration Systems (SEGIS) program was initiated in early 2008. SEGIS is an industry-led effort to develop new PV inverters, controllers, and energy management systems that will greatly enhance the utility of distributed PV systems.

  18. Sustainable and Holistic Integration of Energy Storage and Solar PV (SHINES) Funding Opportunity

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Sustainable and Holistic Integration of Energy Storage and Solar PV (SHINES) solution as envisioned by SunShot will have the following features:

  19. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Energy Storage Home/Tag:Energy Storage Energy-Storage-Procurement-Image Permalink Gallery Sandia National Laboratories Develops Guidance Document for Energy Storage Procurement Energy, Energy Storage, News Sandia National Laboratories Develops Guidance Document for Energy Storage Procurement Through a partnership with Clean Energy States Alliance (CESA) and Clean Energy Group, Sandia has created a procurement guideline that offers useful

  20. Integrated Building Energy Systems Design Considering Storage Technologies

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Aki, Hirohisa

    2009-04-07

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO2 emissions. The problem is solved for a given test year at representative customer sites, e.g., nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research projectperformed for the U.S. Department of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO2 minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site.

  1. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy-Storage-Procurement-Image Permalink Gallery Sandia National Laboratories Develops Guidance Document for Energy Storage Procurement Energy, Energy Storage, News Sandia National Laboratories Develops Guidance Document for Energy Storage Procurement Through a partnership with Clean Energy States Alliance (CESA) and Clean Energy Group, Sandia has created a procurement guideline that offers useful information for states, municipalities, project developers, and end users to

  2. Demand Response and Energy Storage Integration Study- Past Workshops

    Broader source: Energy.gov [DOE]

    The project was initiated and informed by the results of two DOE workshops; one on energy storage and the other on demand response. The workshops were attended by members of the electric power industry, researchers, and policy makers; and the study design and goals reflect their contributions to the collective thinking of the project team.

  3. Princeton Power Systems (TRL 5 6 Component)- Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage

    Broader source: Energy.gov [DOE]

    Princeton Power Systems (TRL 5 6 Component) - Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage

  4. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Home/Energy Storage NM-electric-car-challenge_web Permalink Gallery Electric Car Challenge Sparks Students' STEM Interest Energy, Energy Storage, News, News & Events, Partnership, Transportation Energy Electric Car Challenge Sparks Students' STEM Interest Aspiring automotive engineers from 27 NM middle schools competed in the New Mexico Electric Car Challenge on Saturday, November 22nd at Highland High School in Albuquerque. Forty-six teams participated in a race, a design

  5. Sandia Energy Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Participates in Preparation of New Mexico Renewable Energy Storage Report http:energy.sandia.govsandia-participates-in-preparation-of-new-mexico-renewable-energy-storage-...

  6. Energy Storage

    ScienceCinema (OSTI)

    Paranthaman, Parans

    2014-06-23

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  7. Energy Storage

    SciTech Connect (OSTI)

    Paranthaman, Parans

    2014-06-03

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  8. 2016 NM Regional Energy Storage & Grid Integration Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... FacebookTwitterLinkedinRedditTumblrGoogle+PinterestVkEmail About the Author: admin Related Posts Permalink International Conference on Integration of Renewable and Distributed ...

  9. Notice of Intent to Issue Funding Opportunity for Integrated PV and Energy Storage Systems

    Broader source: Energy.gov [DOE]

    As solar power plants proliferate, the variability and uncertainty of the solar resource poses challenges for integrating PV with electric power systems at both the distribution and bulk system levels. In response to these challenges, the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy (EERE) has issued a notice of intent (NOI) to release the SunShot Sustainable and Holistic IntegratioN of Energy storage and Solar (SHINES) funding opportunity. SHINES will enable the holistic design, development, and widespread sustainable deployment of low-cost, flexible, and reliable energy storage solutions, and will strive to successfully integrate these solutions into PV power plants. SHINES projects can also focus on demand response and load management to achieve target metrics.

  10. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Energy Storage Home/Tag:Energy Storage Northrop-Grumman, GE Partnerships Tap a Wide Range of Sandia Labs Experience Sandia has signed a pair of umbrella cooperative research and development agreements (CRADAs) with Northrop Grumman Information Systems and General Electric Global Research that will broadly add to the Labs' research. "These strategic agreements envision long-term partner-ships," said Brooke Garcia, a Sandia business

  11. ARRA-Multi-Level Energy Storage and Controls for Large-Scale Wind Energy Integration

    SciTech Connect (OSTI)

    David Wenzhong Gao

    2012-09-30

    The Project Objective is to design innovative energy storage architecture and associated controls for high wind penetration to increase reliability and market acceptance of wind power. The project goals are to facilitate wind energy integration at different levels by design and control of suitable energy storage systems. The three levels of wind power system are: Balancing Control Center level, Wind Power Plant level, and Wind Power Generator level. Our scopes are to smooth the wind power fluctuation and also ensure adequate battery life. In the new hybrid energy storage system (HESS) design for wind power generation application, the boundary levels of the state of charge of the battery and that of the supercapacitor are used in the control strategy. In the controller, some logic gates are also used to control the operating time durations of the battery. The sizing method is based on the average fluctuation of wind profiles of a specific wind station. The calculated battery size is dependent on the size of the supercapacitor, state of charge of the supercapacitor and battery wear. To accommodate the wind power fluctuation, a hybrid energy storage system (HESS) consisting of battery energy system (BESS) and super-capacitor is adopted in this project. A probability-based power capacity specification approach for the BESS and super-capacitors is proposed. Through this method the capacities of BESS and super-capacitor are properly designed to combine the characteristics of high energy density of BESS and the characteristics of high power density of super-capacitor. It turns out that the super-capacitor within HESS deals with the high power fluctuations, which contributes to the extension of BESS lifetime, and the super-capacitor can handle the peaks in wind power fluctuations without the severe penalty of round trip losses associated with a BESS. The proposed approach has been verified based on the real wind data from an existing wind power plant in Iowa. An

  12. National Energy Storage Strategy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Grid Energy Storage Strategy Offered by the Energy Storage Subcommittee of the Electricity Advisory Committee Executive Summary Since 2008, there has been substantial progress in the development of electric storage technologies and greater clarity around their role in renewable resource integration, ancillary service markets, time arbitrage, capital deferral as well as other applications and services. These developments, coupled with the increased deployment of storage technologies

  13. Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Energy Storage, Energy Storage Systems, News, News & Events, Partnership, Renewable Energy, Research & Capabilities, Systems Analysis, Water Power Natural Energy ...

  14. Energy Storage

    SciTech Connect (OSTI)

    Mukundan, Rangachary

    2014-09-30

    Energy storage technology is critical if the U.S. is to achieve more than 25% penetration of renewable electrical energy, given the intermittency of wind and solar. Energy density is a critical parameter in the economic viability of any energy storage system with liquid fuels being 10 to 100 times better than batteries. However, the economical conversion of electricity to fuel still presents significant technical challenges. This project addressed these challenges by focusing on a specific approach: efficient processes to convert electricity, water and nitrogen to ammonia. Ammonia has many attributes that make it the ideal energy storage compound. The feed stocks are plentiful, ammonia is easily liquefied and routinely stored in large volumes in cheap containers, and it has exceptional energy density for grid scale electrical energy storage. Ammonia can be oxidized efficiently in fuel cells or advanced Carnot cycle engines yielding water and nitrogen as end products. Because of the high energy density and low reactivity of ammonia, the capital cost for grid storage will be lower than any other storage application. This project developed the theoretical foundations of N2 catalysis on specific catalysts and provided for the first time experimental evidence for activation of Mo 2N based catalysts. Theory also revealed that the N atom adsorbed in the bridging position between two metal atoms is the critical step for catalysis. Simple electrochemical ammonia production reactors were designed and built in this project using two novel electrolyte systems. The first one demonstrated the use of ionic liquid electrolytes at room temperature and the second the use of pyrophosphate based electrolytes at intermediate temperatures (200 – 300 ºC). The mechanism of high proton conduction in the pyrophosphate materials was found to be associated with a polyphosphate second phase contrary to literature claims and ammonia production rates as high as 5X 10

  15. Evaluation Framework and Analyses for Thermal Energy Storage Integrated with Packaged Air Conditioning

    SciTech Connect (OSTI)

    Kung, F.; Deru, M.; Bonnema, E.

    2013-10-01

    Few third-party guidance documents or tools are available for evaluating thermal energy storage (TES) integrated with packaged air conditioning (AC), as this type of TES is relatively new compared to TES integrated with chillers or hot water systems. To address this gap, researchers at the National Renewable Energy Laboratory conducted a project to improve the ability of potential technology adopters to evaluate TES technologies. Major project outcomes included: development of an evaluation framework to describe key metrics, methodologies, and issues to consider when assessing the performance of TES systems integrated with packaged AC; application of multiple concepts from the evaluation framework to analyze performance data from four demonstration sites; and production of a new simulation capability that enables modeling of TES integrated with packaged AC in EnergyPlus. This report includes the evaluation framework and analysis results from the project.

  16. Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies: Preprint

    SciTech Connect (OSTI)

    Hummon, M.; Denholm, P.; Jorgenson, J.; Mehos, M.

    2013-10-01

    Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant. We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.

  17. Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies (Presentation)

    SciTech Connect (OSTI)

    Hummon, M.; Jorgenson, J.; Denholm, P.; Mehos, M.

    2013-10-01

    Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant. We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.

  18. NREL: Energy Storage - Facilities and Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    integration of power grids, buildings, vehicles, charging systems, and energy storage systems. ... and energy storage system designs by enhancing performance and extending battery life. ...

  19. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion ...

  20. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion ...

  1. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sources Energy Sources Renewable Energy Renewable Energy Learn more about energy from solar, wind, water, geothermal and biomass. Read more Nuclear Nuclear Learn more about how we use nuclear energy. Read more Electricity Electricity Learn more about how we use electricity as an energy source. Read more Fossil Fossil Learn more about our fossil energy sources: coal, oil and natural gas. Read more Primary energy sources take many forms, including nuclear energy, fossil energy -- like oil, coal

  2. NREL: Energy Storage - Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Transportation Research Energy Storage Printable Version Awards R&D 100 ... (SAE) Project: Modular Battery Management System for HEVs 2002 TR100 AwardMIT's ...

  3. Thermochemical Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermochemical Energy Storage Thermochemical Energy Storage This presentation summarizes the introduction given by Christian Sattler during the Thermochemical Energy Storage Workshop on January 8, 2013. tces_workshop_2013_sattler.pdf (2.76 MB) More Documents & Publications Lessons Learned: Devolping Thermochemical Cycles for Solar Heat Storage Applications Reducing c-Si Module Operating Temperature via PV Packaging Components Baseload CSP Generation Integrated with Sulfur-Based

  4. Energy Storage for Variable Renewable Energy Resource Integration - A Regional Assessment for the Northwest Power Pool (NWPP)

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Jin, Chunlian; Balducci, Patrick J.; Elizondo, Marcelo A.; Guo, Xinxin; Nguyen, Tony B.; Tuffner, Francis K.; Viswanathan, Vilayanur V.

    2011-03-20

    This paper addresses the following key questions in the discussion on the integration of renewable energy resources in the Pacific Northwest power grid: a) what will be the future balancing requirement to accommodate a simulated expansion of wind energy resources from 3.3 GW in 2008 to 14.4 GW in 2019 in the Northwest Power Pool (NWPP), and b) what are the most cost effective technological solutions for meeting the balancing requirements in the Northwest Power Pool (NWPP). A life-cycle analysis was performed to assess the least-cost technology option for meeting the new balancing requirement. The technologies considered in this study include conventional turbines (CT), sodium sulfur (NaS) batteries, lithium ion (Li-ion) batteries, pumped hydro energy storage (PH), and demand response (DR). Hybrid concepts that combine 2 or more of the technologies above are also evaluated. This analysis was performed with collaboration by the Bonneville Power Administration and funded by the Energy Storage Systems Program of the U.S. Department of Energy.

  5. Energy Storage Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

  6. NREL: Energy Systems Integration - Systems Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-level system integration New distribution scenarios such as household DC systems and residential-scale generation and storage integrated with home energy management systems. ...

  7. energy storage development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  8. energy storage deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  9. electric energy storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  10. Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Storage Energy storage isn’t just for AA batteries. Thanks to investments from the Energy Department's <a href="http://arpa-e.energy.gov/">Advanced Research Projects Agency-Energy (ARPA-E)</a>, energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. <a href="http://energy.gov/articles/energy-storage-key-reliable-clean-electricity-supply">Learn more</a>. Energy storage

  11. NREL: Energy Storage - Energy Storage Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The lab's performance assessments factor in the design of the thermal management system, the thermal behavior of the cell, battery lifespan, and safety of the energy storage system...

  12. NREL: Energy Storage - Energy Storage Systems Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Systems Evaluation Photo of man standing between two vehicles and plugging the vehicle on the right into a charging station. NREL system evaluation has confirmed ...

  13. NREL: Energy Storage - Energy Storage Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Li-ion) devices used for EDV energy storage never exhibit problems, safety issues ... a fault signal and confining the fault locally in a system are extremely challenging. ...

  14. Materials for Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Energy Storage - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... where stringent system requirements exist for size, performance, and safety. ...

  15. Energy Storage | Open Energy Information

    Open Energy Info (EERE)

    around the clock. Some of the major issues concerning energy storage include cost, efficiency, and size. Benefits Make Renewable Energy Viable Allow for intermittent energy...

  16. NREL: Energy Storage - Battery Materials Synthesis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The greater energy and power requirements and system integration demands of EDVs pose significant challenges to energy storage technologies. Making these materials durable enough ...

  17. Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Safety Strategic Plan Now Available Energy Storage Safety Strategic Plan Now Available December 23, 2014 - 10:25am Addthis The Office of Electricity Delivery and Energy Reliability (OE) has worked with industry and other stakeholders to develop the Energy Storage Safety Strategic Plan, a roadmap for grid energy storage safety that highlights safety validation techniques, incident preparedness, safety codes, standards, and regulations. The Plan, which is now available for downloading,

  18. Materials for Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Energy Storage - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  19. Energy Storage Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Program Overview State Energy Advisory Board to EERE (STEAB) Mtg April 8, 2008 Georgianne H. Peek, PE Sandia National Laboratories 505-844-9855, ghpeek@sandia.gov www.sandia.gov/ess Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE AC04-94AL85000. DOE Energy Storage Program Mission: Develop advanced electricity storage and PE

  20. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  1. Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy

  2. Thermal Energy Storage

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Cooperman, Alissa; Bouza, Antonio

    2013-06-05

    The article discusses thermal energy storage technologies. This article addresses benefits of TES at both the building site and the electricity generation source. The energy savings and market potential of thermal energy store are reviewed as well.

  3. Thermochemical Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermochemical Energy Storage Overview on German, and European R&D Programs and the work carried out at the German Aerospace Center DLR Dr. Christian Sattler christian.sattler@dlr.de Dr. Antje Wörner antje.woerner@dlr.de Thermochemical Energy Storage > 8 January 2013 www.DLR.de * Chart 1 Contents - Short Introduction of the DLR - Energy Program - Thermochemical Storage - Strategic basis: Germany and European Union - Processes - CaO/Ca(OH) 2 - Metal oxides (restructure) - Sulfur -

  4. Energy Storage Systems

    SciTech Connect (OSTI)

    Conover, David R.

    2013-12-01

    Energy Storage Systems – An Old Idea Doing New Things with New Technology article for the International Assoication of ELectrical Inspectors

  5. Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Energy Storage One of the distinctive characteristics of the electric power sector is that the amount of electricity that can be generated is relatively fixed over short periods of time, although demand for electricity fluctuates throughout the day. Developing technology to store electrical energy so it can be available to meet demand whenever needed would represent a major breakthrough in electricity distribution. Helping to try and meet this goal, electricity storage devices can

  6. Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  7. Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  8. Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  9. Analog storage integrated circuit

    DOE Patents [OSTI]

    Walker, J.T.; Larsen, R.S.; Shapiro, S.L.

    1989-03-07

    A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks. 6 figs.

  10. Analog storage integrated circuit

    DOE Patents [OSTI]

    Walker, J. T.; Larsen, R. S.; Shapiro, S. L.

    1989-01-01

    A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks.

  11. Energy Storage | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Thus, energy storage and power electronics hold substantial promise for transforming the electric power industry. High voltage power electronics, such as switches, inverters, and ...

  12. Flywheel energy storage workshop

    SciTech Connect (OSTI)

    O`Kain, D.; Carmack, J.

    1995-12-31

    Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

  13. Energy Storage | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage The challenge of creating new advanced batteries and energy storage ... We develop more robust, safer and higher-energy density lithium-ion batteries, while using ...

  14. NREL: Energy Systems Integration - Analytics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Materials Laboratory of the Energy Systems Integration Facility run high-temperature instruments for the analysis of thermophysical properties. Small samples of ...

  15. NEDO Research Related to Battery Storage Applications for Integration...

    Open Energy Info (EERE)

    NEDO Research Related to Battery Storage Applications for Integration of Renewable Energy Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity...

  16. DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee...

    Office of Environmental Management (EM)

    Report DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee Report Energy storage ... More Documents & Publications Value of a Smart Grid System Battery Pack Requirements ...

  17. NREL: Energy Storage - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A complete collection of NREL's transportation and energy storage publications can be found in ... Multi-Node Thermal System Model for Lithium-Ion Battery Packs Paper Preprint Source: ...

  18. Sandia Energy Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feed 0 Bay-Area National Labs Team to Tackle Long-Standing Automotive Hydrogen-Storage Challenge http:energy.sandia.govbay-area-national-labs-team-to-tackle-long-stan...

  19. Joint Center for Energy Storage Research - Joint Center for Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research 30, 2012, Videos Joint Center for Energy Storage Research The Joint Center for Energy Storage Research (JCESR) is a major research partnership that integrates government, academic, and industrial researchers from many disciplines to overcome critical scientific and technical barriers and create new breakthrough energy storage technology.

  20. Energy storage connection system

    DOE Patents [OSTI]

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  1. Energy Storage Computational Tool | Open Energy Information

    Open Energy Info (EERE)

    Energy Storage Computational Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Storage Computational Tool AgencyCompany Organization: Navigant Consulting...

  2. Solar Thermochemical Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Thermochemical Energy Storage Solar Thermochemical Energy Storage This PowerPoint slide deck accompanied a presentation by Dr. Keith Lovegrove of the IT Power Group at the ...

  3. DOE Global Energy Storage Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOE’s Sandia National Laboratories, and has been operating since January 2012.

  4. DOE Global Energy Storage Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOEs Sandia National Laboratories, and has been operating since January 2012.

  5. NREL: Energy Storage - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integration NREL recently hosted the V2X Enabled Electric Vehicles expert workshop, one of several meetings organized under the International Energy Agency's ...

  6. Inertial energy storage device

    DOE Patents [OSTI]

    Knight, Jr., Charles E.; Kelly, James J.; Pollard, Roy E.

    1978-01-01

    The inertial energy storage device of the present invention comprises a composite ring formed of circumferentially wound resin-impregnated filament material, a flanged hollow metal hub concentrically disposed in the ring, and a plurality of discrete filament bandsets coupling the hub to the ring. Each bandset is formed of a pair of parallel bands affixed to the hub in a spaced apart relationship with the axis of rotation of the hub being disposed between the bands and with each band being in the configuration of a hoop extending about the ring along a chordal plane thereof. The bandsets are disposed in an angular relationship with one another so as to encircle the ring at spaced-apart circumferential locations while being disposed in an overlapping relationship on the flanges of the hub. The energy storage device of the present invention has the capability of substantial energy storage due to the relationship of the filament bands to the ring and the flanged hub.

  7. An assessment of the net value of CSP systems integrated with thermal energy storage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mehos, M.; Jorgenson, J.; Denholm, P.; Turchi, C.

    2015-05-01

    Within this study, we evaluate the operational and capacity value—or total system value—for multiple concentrating solar power (CSP) plant configurations under an assumed 33% renewable penetration scenario in California. We calculate the first-year bid price for two CSP plants, including a 2013 molten-salt tower integrated with a conventional Rankine cycle and a hypothetical 2020 molten-salt tower system integrated with an advanced supercritical carbon-dioxide power block. The overall benefit to the regional grid, defined in this study as the net value, is calculated by subtracting the first-year bid price from the total system value.

  8. An assessment of the net value of CSP systems integrated with thermal energy storage

    SciTech Connect (OSTI)

    Mehos, M.; Jorgenson, J.; Denholm, P.; Turchi, C.

    2015-05-01

    Within this study, we evaluate the operational and capacity valueor total system valuefor multiple concentrating solar power (CSP) plant configurations under an assumed 33% renewable penetration scenario in California. We calculate the first-year bid price for two CSP plants, including a 2013 molten-salt tower integrated with a conventional Rankine cycle and a hypothetical 2020 molten-salt tower system integrated with an advanced supercritical carbon-dioxide power block. The overall benefit to the regional grid, defined in this study as the net value, is calculated by subtracting the first-year bid price from the total system value.

  9. Test report : Milspray Scorpion energy storage device.

    SciTech Connect (OSTI)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-08-01

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors have supplied their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and a subset of these systems were selected for performance evaluation at the BCIL. The technologies tested were electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. MILSPRAY Military Technologies has developed an energy storage system that utilizes lead acid batteries to save fuel on a military microgrid. This report contains the testing results and some limited assessment of the Milspray Scorpion Energy Storage Device.

  10. Energy Storage Systems 2007 Peer Review - International Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Energy Storage Program Presentations Energy Storage Systems 2007 Peer Review - International Energy Storage Program Presentations The U.S. DOE Energy Storage Systems ...

  11. Integrated Used Nuclear Fuel Storage, Transportation, and Disposal Canister

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System - Energy Innovation Portal Storage Energy Storage Electricity Transmission Electricity Transmission Advanced Materials Advanced Materials Find More Like This Return to Search Integrated Used Nuclear Fuel Storage, Transportation, and Disposal Canister System Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication 11-G00239_ID2603 (2).pdf (847 KB) Technology Marketing Summary Researchers at ORNL have developed an integrated system that

  12. Energy Storage Safety Strategic Plan - December 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety Strategic Plan - December 2014 Energy Storage Safety Strategic Plan - December 2014 Energy storage is emerging as an integral component to a resilient and efficient grid through a diverse array of potential application. The evolution of the grid that is currently underway will result in a greater need for services best provided by energy storage, including energy management, backup power, load leveling, frequency regulation, voltage support, and grid stabilization. The increase in demand

  13. Superconducting magnetic energy storage

    SciTech Connect (OSTI)

    Hassenzahl, W.

    1988-08-01

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

  14. NREL: Energy Storage - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webmaster Please enter your name and email address in the boxes provided, then type your message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Energy Storage Home Thermal Management Computer-Aided Battery Engineering Safety Lifespan Systems Evaluation Materials Synthesis Publications News Awards Facilities Working with Us Did

  15. Joint Center for Energy Storage Research

    SciTech Connect (OSTI)

    Eric Isaacs

    2012-11-30

    The Joint Center for Energy Storage Research (JCESR) is a major public-private research partnership that integrates U.S. Department of Energy national laboratories, major research universities and leading industrial companies to overcome critical scientific challenges and technical barriers, leading to the creation of breakthrough energy storage technologies. JCESR, centered at Argonne National Laboratory, outside of Chicago, consolidates decades of basic research experience that forms the foundation of innovative advanced battery technologies. The partnership has access to some of the world's leading battery researchers as well as scientific research facilities that are needed to develop energy storage materials that will revolutionize the way the United States and the world use energy.

  16. Maui energy storage study.

    SciTech Connect (OSTI)

    Ellison, James; Bhatnagar, Dhruv; Karlson, Benjamin

    2012-12-01

    This report investigates strategies to mitigate anticipated wind energy curtailment on Maui, with a focus on grid-level energy storage technology. The study team developed an hourly production cost model of the Maui Electric Company (MECO) system, with an expected 72 MW of wind generation and 15 MW of distributed photovoltaic (PV) generation in 2015, and used this model to investigate strategies that mitigate wind energy curtailment. It was found that storage projects can reduce both wind curtailment and the annual cost of producing power, and can do so in a cost-effective manner. Most of the savings achieved in these scenarios are not from replacing constant-cost diesel-fired generation with wind generation. Instead, the savings are achieved by the more efficient operation of the conventional units of the system. Using additional storage for spinning reserve enables the system to decrease the amount of spinning reserve provided by single-cycle units. This decreases the amount of generation from these units, which are often operated at their least efficient point (at minimum load). At the same time, the amount of spinning reserve from the efficient combined-cycle units also decreases, allowing these units to operate at higher, more efficient levels.

  17. East Penn Manufacturing Co Grid-Scale Energy Storage Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    East Penn Manufacturing Co Grid-Scale Energy Storage Demonstration Using UltraBattery(tm) ... UltraBattery(tm) modules integrated in a turnkey Battery Energy Storage System (BESS). ...

  18. Sandia Energy - New Mexico Renewable Energy Storage Task Force

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Storage Task Force Home Infrastructure Security Renewable Energy Energy Partnership News News & Events Energy Storage Systems Energy Storage New Mexico Renewable...

  19. Power-to-Gas for Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power-to-Gas for Energy Storage Rob Harvey Director, Energy Storage DOE Electrolytic Hydrogen Production Workshop National Renewable Energy Laboratory, Golden, CO - Feb 28, 2014 1 Integrate Renewables Renewable Gas Options 2 Power-to-Gas converts clean generation when it is not needed into renewable fuel, power or heat where and when it is needed Power-to-Gas Solution Surplus Power Industrial H2 Natural Gas Grid Clean Fuel Dispatchable Power Low Carbon Heating Electrolyzer Solar Power Wind Power

  20. Energy Storage & Power Electronics 2008 Peer Review- Energy Storage Systems (ESS) Presentations

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Storage Systems (ESS) Presentations from the 2008 Energy Storage and Power Electronics peer review.

  1. Energy Storage Systems 2007 Peer Review- International Energy Storage Program Presentations

    Office of Energy Efficiency and Renewable Energy (EERE)

    International energy storage program presentations from the 2007 Energy Storage Systems (ESS) peer review.

  2. Grid Applications for Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications for Energy Storage Flow Cells for Energy Storage Workshop Washington DC 7-8 March 2012 Joe Eto jheto@lbl.gov (510) 486-7284 Referencing a Recent Sandia Study,* This Talk Will: Describe and illustrate selected grid applications for energy storage Time-of-use energy cost management Demand charge management Load following Area Regulation Renewables energy time shift Renewables capacity firming Compare Sandia's estimates of the economic value of these applications to the Electricity

  3. Hydrogen Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Hydrogen Storage The Fuel Cell Technologies Office (FCTO) is developing onboard automotive hydrogen storage systems that allow for a driving range of more than 300 miles while meeting cost, safety, and performance requirements. Why Study Hydrogen Storage Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell technologies in applications including stationary power, portable power, and transportation. Hydrogen has the highest energy per mass of any

  4. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Advancement Partnership (October 2012) Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) The Energy Storage Technology Advancement Partnership ...

  5. Con Edison Energy Storage Activities

    U.S. Energy Information Administration (EIA) Indexed Site

    Con Edison Energy Storage Activities June 15, 2015 EIA Conference Con Edison Energy Storage (ES) 2 Presentation Overview * Introduction to Con Edison * Potential benefits of storage on our system * Unique urban challenges * Con Edison storage related activities * Going forward Con Edison: Overview 3 Customers Infrastructure Service Territory Electric 3.4 million One of the worlds largest underground electric systems All 5 boroughs of NYC and Westchester County Gas 1.1 million 4,333 miles of gas

  6. EnStorage Inc | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: EnStorage Inc Place: Israel Zip: 30900 Product: Israel-based energy storage technology developer, developing a regenerative fuel cell energy storage...

  7. Apply: Small Business Funding Opportunity for Lighting, Integrated Storage,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Distributed Generation | Department of Energy Small Business Funding Opportunity for Lighting, Integrated Storage, and Distributed Generation Apply: Small Business Funding Opportunity for Lighting, Integrated Storage, and Distributed Generation November 12, 2014 - 6:00pm Addthis This funding opportunity is closed. The Department of Energy released a funding opportunity under its Small Business Innovation Research (SBIR) and Technology Transfer program that will help small businesses

  8. NREL: Energy Storage - Energy Storage Modeling and Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    As battery size increases to meet EDVs' energy storage system demands, macroscopic design factors and highly dynamic environmental conditions significantly influence the ...

  9. DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report: Revision 2 DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee Report: ... More Documents & Publications Battery Pack Requirements and Targets Validation FY 2009 ...

  10. Advanced Materials and Devices for Stationary Electrical Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy Materials and Devices for Stationary Electrical Energy Storage Applications Advanced Materials and Devices for Stationary Electrical Energy Storage Applications Reliable access to cost-effective electricity is the backbone of the U.S. economy, and electrical energy storage is an integral element in this system. Without significant investments in stationary electrical energy storage, the current electric grid infrastructure will increasingly struggle to

  11. Article for thermal energy storage

    DOE Patents [OSTI]

    Salyer, Ival O.

    2000-06-27

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  12. Grid Applications for Energy Storage

    Broader source: Energy.gov [DOE]

    Presentation by Joe Eto, Lawrence Berkeley National Laboratory, at the Flow Cells for Energy Storage Workshop held March 7-8, 2012, in Washington, DC.

  13. EPRI Energy Storage Talking Points

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    generation such as renewables, and reducing the strain on conventional generators. * Energy storage may provide fast ... providing temporary local sources of electricity, augmenting ...

  14. Automotive Energy Storage Systems 2015

    Broader source: Energy.gov [DOE]

    Automotive Energy Storage Systems 2015, the ITB Group’s 16th annual technical conference, was held from March 4–5, 2015, in Novi, Michigan.

  15. NREL: Energy Storage - Battery Lifespan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and cost tradeoffs Excess power, energy, and thermal management system requirements Warranty, second ... Complicating matters, storage and cycling patterns can trigger varied ...

  16. Superconducting energy storage

    SciTech Connect (OSTI)

    Giese, R.F.

    1993-10-01

    This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

  17. FY06 DOE Energy Storage Program PEER Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 DOE Energy Storage Program PEER REVIEW John D. Boyes Sandia National Laboratories ESS ... Distributed Systems Integration The ACONF System * Added circuitry between each string of ...

  18. NV Energy Electricity Storage Valuation

    SciTech Connect (OSTI)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

    2013-06-30

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

  19. Energy Storage Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage » Technology Marketing Summaries Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Marketing Summaries (134) Success Stories (3) Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success

  20. Energy Storage Components and Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Components and Systems - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  1. Energy Storage: The Key to a Reliable, Clean Electricity Supply |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Storage: The Key to a Reliable, Clean Electricity Supply Energy Storage: The Key to a Reliable, Clean Electricity Supply February 22, 2012 - 4:52pm Addthis Improved energy storage technology offers a number of economic and environmental benefits. Improved energy storage technology offers a number of economic and environmental benefits. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this project do? ARPA-E's GRIDS program

  2. Storage Water Heaters | Department of Energy

    Energy Savers [EERE]

    Storage Water Heaters Storage Water Heaters Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over its lifetime. | Photo courtesy ...

  3. Sandia Energy - Sandia, DOE Energy Storage Program, GeneSiCSemiconduc...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Energy Storage Program, GeneSiC Semiconductor, U.S. Army ARDEC: Ultra-High-Voltage Silicon Carbide Thyristors Home Infrastructure Security Energy Grid Integration Partnership...

  4. Thermal energy storage apparatus

    SciTech Connect (OSTI)

    Thoma, P.E.

    1980-04-22

    A thermal energy storage apparatus and method employs a container formed of soda lime glass and having a smooth, defectfree inner wall. The container is filled substantially with a material that can be supercooled to a temperature greater than 5* F., such as ethylene carbonate, benzophenone, phenyl sulfoxide, di-2-pyridyl ketone, phenyl ether, diphenylmethane, ethylene trithiocarbonate, diphenyl carbonate, diphenylamine, 2benzoylpyridine, 3-benzoylpyridine, 4-benzoylpyridine, 4methylbenzophenone, 4-bromobenzophenone, phenyl salicylate, diphenylcyclopropenone, benzyl sulfoxide, 4-methoxy-4prmethylbenzophenone, n-benzoylpiperidine, 3,3pr,4,4pr,5 pentamethoxybenzophenone, 4,4'-bis-(Dimethylamino)-benzophenone, diphenylboron bromide, benzalphthalide, benzophenone oxime, azobenzene. A nucleating means such as a seed crystal, a cold finger or pointed member is movable into the supercoolable material. A heating element heats the supercoolable material above the melting temperature to store heat. The material is then allowed to cool to a supercooled temperature below the melting temperature, but above the natural, spontaneous nucleating temperature. The liquid in each container is selectively initiated into nucleation to release the heat of fusion. The heat may be transferred directly or through a heat exchange unit within the material.

  5. Energy Storage | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Leading the charge in energy storage R&D Argonne National Laboratory is a global leader in the development of advanced energy storage technologies and has a portfolio of more than 125 patented advanced cathode, anode, electrolyte and additive components for lithium-ion, llithium-air, lithium-sulfur, sodium-ion, and flow batteries. Employing some of the most respected and cited battery researchers in the world, Argonne is the U.S. Department of Energy's lead laboratory for

  6. Value of Energy Storage for Grid Applications

    SciTech Connect (OSTI)

    Denholm, P.; Jorgenson, J.; Hummon, M.; Jenkin, T.; Palchak, D.; Kirby, B.; Ma, O.; O'Malley, M.

    2013-05-01

    This analysis evaluates several operational benefits of electricity storage, including load-leveling, spinning contingency reserves, and regulation reserves. Storage devices were simulated in a utility system in the western United States, and the operational costs of generation was compared to the same system without the added storage. This operational value of storage was estimated for devices of various sizes, providing different services, and with several sensitivities to fuel price and other factors. Overall, the results followed previous analyses that demonstrate relatively low value for load-leveling but greater value for provision of reserve services. The value was estimated by taking the difference in operational costs between cases with and without energy storage and represents the operational cost savings from deploying storage by a traditional vertically integrated utility. The analysis also estimated the potential revenues derived from a merchant storage plant in a restructured market, based on marginal system prices. Due to suppression of on-/off-peak price differentials and incomplete capture of system benefits (such as the cost of power plant starts), the revenue obtained by storage in a market setting appears to be substantially less than the net benefit provided to the system. This demonstrates some of the additional challenges for storage deployed in restructured energy markets.

  7. NREL Teams With ComEd on Microgrid-Integrated Storage Solution to Get More

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar on the Grid | Energy Systems Integration | NREL Teams With ComEd on Microgrid-Integrated Storage Solution to Get More Solar on the Grid February 22, 2016 Effectively integrating large amounts of renewable energy such as solar photovoltaics (PV) onto the electric grid requires finding ways to manage the inherent variability of the resource. That's where energy storage technologies like batteries come in-when integrated into PV systems, storage can allow solar to power homes and

  8. A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems

    SciTech Connect (OSTI)

    Onar, Omer C

    2012-01-01

    This manuscript focuses on a novel actively controlled hybrid magnetic battery/ultracapacitor based energy storage system (ESS) for vehicular propulsion systems. A stand-alone battery system might not be sufficient to satisfy peak power demand and transient load variations in hybrid and plug-in hybrid electric vehicles (HEV, PHEV). Active battery/ultracapacitor hybrid ESS provides a better solution in terms of efficient power management and control flexibility. Moreover, the voltage of the battery pack can be selected to be different than that of the ultracapacitor, which will result in flexibility of design as well as cost and size reduction of the battery pack. In addition, the ultracapacitor bank can supply or recapture a large burst of power and it can be used with high C-rates. Hence, the battery is not subjected to supply peak and sharp power variations, and the stress on the battery will be reduced and the battery lifetime would be increased. Utilizing ultracapacitor results in effective capturing of the braking energy, especially in sudden braking conditions.

  9. Lower-Energy Energy Storage System (LEESS) Component Evaluation...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Lower-Energy Energy Storage System (LEESS) Component Evaluation Citation Details In-Document Search Title: Lower-Energy Energy Storage System (LEESS) Component ...

  10. November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy States Alliance will host a webinar on Duke Energy's battery energy storage systems. This webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program Manager...

  11. Analytic Challenges to Valuing Energy Storage

    SciTech Connect (OSTI)

    Ma, Ookie; O'Malley, Mark; Cheung, Kerry; Larochelle, Philippe; Scheer, Rich

    2011-10-25

    Electric grid energy storage value. System-level asset focus for mechanical and electrochemical energy storage. Analysis questions for power system planning, operations, and customer-side solutions.

  12. Energy Storage Program Planning Document (2011) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Energy Storage Program Planning Document (2011) More Documents & Publications Progress in Grid Scale Flow Batteries Energy Storage Systems 2014 Peer Review Presentations - ...

  13. Policy Questions on Energy Storage Technologies | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy Questions on Energy Storage Technologies Policy Questions on Energy Storage Technologies Memorandum from the Electricity Advisory Committee to Secretary Chu and Assistant ...

  14. Fact Sheet: Energy Storage Database (October 2012)

    Office of Environmental Management (EM)

    Multiple sort options (e.g., state, type, size) to ease navigation Energy storage projects and ... Energy storage can reduce power fluctuations, enhance system flexibility, and enable ...

  15. Modeling and Control System Design for an Integrated Solar Generation and Energy Storage System with a Ride-Through Capability: Preprint

    SciTech Connect (OSTI)

    Wang, X.; Yue, M.; Muljadi, E.

    2012-09-01

    This paper presents a generic approach for PV panel modeling. Data for this modeling can be easily obtained from manufacturer datasheet, which provides a convenient way for the researchers and engineers to investigate the PV integration issues. A two-stage power conversion system (PCS) is adopted in this paper for the PV generation system and a Battery Energy Storage System (BESS) can be connected to the dc-link through a bi-directional dc/dc converter. In this way, the BESS can provide some ancillary services which may be required in the high penetration PV generation scenario. In this paper, the fault ride-through (FRT) capability is specifically focused. The integrated BESS and PV generation system together with the associated control systems is modeled in PSCAD and Matlab platforms and the effectiveness of the controller is validated by the simulation results.

  16. NREL: Transportation Research - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Transportation Research Cutaway image of an automobile showing the location of energy storage components (battery and inverter), as well as electric motor, power electronics controller, and heat exchangers. Blowout shows the image of an individual battery pack. NREL research is pointing the way toward affordable, high-performing, long-lasting batteries for the next generation of electric-drive vehicles. Researcher holding cables and standing in front of an open equipment chamber.

  17. Lih thermal energy storage device

    DOE Patents [OSTI]

    Olszewski, Mitchell; Morris, David G.

    1994-01-01

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

  18. Renewable Energy Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integration - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, ...

  19. Systems Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration Systems Integration Hawaii DREAMS of New Solar Technologies Hawaii DREAMS of New Solar Technologies Read more Plug and Play Solar PV for American Homes Plug and Play Solar PV for American Homes Read more Watt-Sun: A Multi-Scale, Multi-Modal, Machine-Learning Solar Forecasting Technology Watt-Sun: A Multi-Scale, Multi-Modal, Machine-Learning Solar Forecasting Technology Read more High PV Penetration with Energy Storage in Flagstaff, AZ High PV Penetration with Energy Storage

  20. Project Profile: Innovative Phase Change Thermal Energy Storage Solution

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Baseload Power | Department of Energy Phase Change Thermal Energy Storage Solution for Baseload Power Project Profile: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Infinia logo Infinia, under the Baseload CSP FOA, developed and demonstrated a subscale system for baseload CSP power generation using thermal energy storage (TES) in a unique integration of innovative enhancements that improves performance and reduces cost. Approach Illustration of two gray

  1. Integrated rural energy planning

    SciTech Connect (OSTI)

    El Mahgary, Y.; Biswas, A.K.

    1985-01-01

    This book presents papers on integrated community energy systems in developing countries. Topics considered include an integrated rural energy system in Sri Lanka, rural energy systems in Indonesia, integrated rural food-energy systems and technology diffusion in India, bringing energy to the rural sector in the Philippines, the development of a new energy village in China, the Niaga Wolof experimental rural energy center, designing a model rural energy system for Nigeria, the Basaisa village integrated field project, a rural energy project in Tanzania, rural energy development in Columbia, and guidelines for the planning, development and operation of integrated rural energy projects.

  2. Fact Sheet: Advanced Implementation of Energy Storage Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Technologies - Community Energy Storage for Grid Support (August 2013) Fact Sheet: Advanced Implementation of Energy Storage Technologies - Community Energy Storage for ...

  3. Grid Storage and the Energy Frontier Research Centers | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid Storage and the Energy Frontier Research Centers Grid Storage and the Energy Frontier Research Centers DOE: Grid Storage and the Energy Frontier Research Centers Grid Storage...

  4. Sandia Energy Carbon Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expansion of DOE-DOT Tight Oil Research Work http:energy.sandia.govexpansion-of-doe-dot-tight-oil-research-work http:energy.sandia.govexpansion-of-doe-dot-tight-oil-research...

  5. Solar Thermochemical Energy Storage | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Keith Lovegrove of the IT Power Group at the 2013 SunShot TCES Workshop. It is focused on solar thermochemical energy storage and presents lessons learned from 40 years of ...

  6. NM Renewable Energy Storage Task Force

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  7. Integration of US Department of Energy contractor installations for the purpose of optimizing treatment, storage, and disposal of low-level radioactive waste (LLW)

    SciTech Connect (OSTI)

    Lucas, M.; Gnoose, J.; Coony, M.; Martin, E.; Piscitella, R.

    1998-02-01

    The US Department of Energy (DOE) manages a multibillion dollar environmental management (EM) program. In June 1996, the Assistant Secretary of Energy for EM issued a memorandum with guidance and a vision for a ten year planning process for the EM Program. The purpose of this process, which became known as the Accelerated Cleanup: Focus on 2006, is to make step changes within the DOE complex regarding the approach for making meaningful environmental cleanup progress. To augment the process, Assistant Secretary requested the site contractors to engage in an effort to identify and evaluate integration alternatives for EM waste stream treatment, storage, and disposal (TSD) that would parallel the 2006 Plan. In October 1996, ten DOE contractor installations began the task of identifying alternative opportunities for low level radioactive waste (LLW). Cost effective, efficient solutions were necessary to meet all requirements associated with storing, characterizing, treating, packaging, transporting, and disposing of LLW while protecting the workers` health and safety, and minimizing impacts to the environment. To develop these solutions, a systems engineering approach was used to establish the baseline requirements, to develop alternatives, and to evaluate the alternatives. Key assumptions were that unique disposal capabilities exist within the DOE that must be maintained; private sector disposal capability for some LLW may not continue to exist into the foreseeable future; and decisions made by the LLW Team must be made on a system or complex wide basis to fully realize the potential cost and schedule benefits. This integration effort promoted more accurate waste volume estimates and forecasts; enhanced recognition of existing treatment, storage, and disposal capabilities and capacities; and improved identification of cost savings across the complex.

  8. National Hydrogen Storage Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Hydrogen Storage Project National Hydrogen Storage Project In July 2003, the Department of Energy (DOE) issued a "Grand Challenge" to the global scientific community for...

  9. The Solar Storage Company | Open Energy Information

    Open Energy Info (EERE)

    Company Place: Palo Alto, California Zip: 1704 Product: US-based start-up developing energy production and storage systems. References: The Solar Storage Company1 This...

  10. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    : Poster Session Energy Storage Systems 2010 Update Conference Presentations - Day 3: ... Electrochemical Flow Storage System - Michael Perry, UTRC.pdf (59.78 KB) ESS ...

  11. Techno-economic Modeling of the Integration of 20% Wind and Large-scale Energy Storage in ERCOT by 2030

    SciTech Connect (OSTI)

    Baldick, Ross; Webber, Michael; King, Carey; Garrison, Jared; Cohen, Stuart; Lee, Duehee

    2012-12-21

    This study's objective is to examine interrelated technical and economic avenues for the Electric Reliability Council of Texas (ERCOT) grid to incorporate up to and over 20% wind generation by 2030. Our specific interests are to look at the factors that will affect the implementation of both high level of wind power penetration (> 20% generation) and installation of large scale storage.

  12. NREL Teams With ComEd on Microgrid-Integrated Storage Solution to Get More

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar on the Grid | Grid Modernization | NREL Teams With ComEd on Microgrid-Integrated Storage Solution to Get More Solar on the Grid February 22, 2016 Effectively integrating large amounts of renewable energy such as solar photovoltaics (PV) onto the electric grid requires finding ways to manage the inherent variability of the resource. That's where energy storage technologies like batteries come in-when integrated into PV systems, storage can allow solar to power homes and businesses even

  13. Decision Models for Integrating Energy/Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Decision Models for Integrating Energy/Water - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management

  14. Matt Rogers on AES Energy Storage

    Broader source: Energy.gov [DOE]

    The Department of Energy and AES Energy Storage recently agreed to a $17.1M conditional loan guarantee commitment. This project will develop the first battery-based energy storage system to provide...

  15. Post regulation circuit with energy storage

    DOE Patents [OSTI]

    Ball, Don G.; Birx, Daniel L.; Cook, Edward G.

    1992-01-01

    A charge regulation circuit provides regulation of an unregulated voltage supply and provides energy storage. The charge regulation circuit according to the present invention provides energy storage without unnecessary dissipation of energy through a resistor as in prior art approaches.

  16. Test report : Princeton power systems prototype energy storage system.

    SciTech Connect (OSTI)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-08-01

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. Princeton Power Systems has developed an energy storage system that utilizes lithium ion phosphate batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Princeton Power Systems Prototype Energy Storage System.

  17. Test report : Raytheon / KTech RK30 energy storage system.

    SciTech Connect (OSTI)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-10-01

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratories (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprising of lead acid, lithium-ion or zinc-bromide. Raytheon/KTech has developed an energy storage system that utilizes zinc-bromide flow batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Raytheon/KTech Zinc-Bromide Energy Storage System.

  18. Sandia Energy - Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Transmission Grid Integration Transmission Grid...

  19. Sandia Energy - Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Distribution Grid Integration Distribution Grid...

  20. Storage Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Water Heaters Storage Water Heaters June 15, 2012 - 6:00pm Addthis Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over...

  1. NREL: Energy Storage - Battery Second Use for Plug-In Electric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Systems integrators and installers should work to develop large megawatt-scale energy storage system (ESS) solutions for repurposed PEV batteries that minimize integration, balance ...

  2. Energy Storage Success Stories - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Success Stories Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Marketing Summaries (134) Success Stories (3) Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Graphic of a full-grown

  3. Two-Stage, Integrated, Geothermal-CO2 Storage Reservoirs: An Approach for Sustainable Energy Production, CO2-Sequestration Security, and Reduced Environmental Risk

    SciTech Connect (OSTI)

    Buscheck, T A; Chen, M; Sun, Y; Hao, Y; Elliot, T R

    2012-02-02

    We introduce a hybrid two-stage energy-recovery approach to sequester CO{sub 2} and produce geothermal energy at low environmental risk and low cost by integrating geothermal production with CO{sub 2} capture and sequestration (CCS) in saline, sedimentary formations. Our approach combines the benefits of the approach proposed by Buscheck et al. (2011b), which uses brine as the working fluid, with those of the approach first suggested by Brown (2000) and analyzed by Pruess (2006), using CO{sub 2} as the working fluid, and then extended to saline-formation CCS by Randolph and Saar (2011a). During stage one of our hybrid approach, formation brine, which is extracted to provide pressure relief for CO{sub 2} injection, is the working fluid for energy recovery. Produced brine is applied to a consumptive beneficial use: feedstock for fresh water production through desalination, saline cooling water, or make-up water to be injected into a neighboring reservoir operation, such as in Enhanced Geothermal Systems (EGS), where there is often a shortage of a working fluid. For stage one, it is important to find economically feasible disposition options to reduce the volume of brine requiring reinjection in the integrated geothermal-CCS reservoir (Buscheck et al. 2012a). During stage two, which begins as CO{sub 2} reaches the production wells; coproduced brine and CO{sub 2} are the working fluids. We present preliminary reservoir engineering analyses of this approach, using a simple conceptual model of a homogeneous, permeable CO{sub 2} storage formation/geothermal reservoir, bounded by relatively impermeable sealing units. We assess both the CO{sub 2} sequestration capacity and geothermal energy production potential as a function of well spacing between CO{sub 2} injectors and brine/CO{sub 2} producers for various well patterns and for a range of subsurface conditions.

  4. Innovative Energy Storage Technologies Enabling More Renewable Power |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Innovative Energy Storage Technologies Enabling More Renewable Power Innovative Energy Storage Technologies Enabling More Renewable Power November 15, 2011 - 3:45pm Addthis The PNM Prosperity Energy Storage Project is the nation’s first combined solar generation and storage facility to be fully integrated into a utility’s power grid. Pictured above are the facility's solar panels, including an aerial view in the upper left. | Image courtesy of PNM The PNM

  5. Batteries and Energy Storage Technology BEST | Open Energy Information

    Open Energy Info (EERE)

    Batteries and Energy Storage Technology BEST Jump to: navigation, search Name: Batteries and Energy Storage Technology (BEST) Place: United Kingdom Product: International quarterly...

  6. Ridge Energy Storage and Grid Services LP | Open Energy Information

    Open Energy Info (EERE)

    Energy Storage and Grid Services LP Jump to: navigation, search Name: Ridge Energy Storage and Grid Services LP Place: Houston, Texas Zip: 77027 Product: Developer of compressed...

  7. Hydrogen Storage Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Fact Sheet Hydrogen Storage Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen storage. Hydrogen Storage (955.88 KB) More Documents & Publications US DRIVE Hydrogen Storage Technical Team Roadmap Hydrogen & Our Energy Future

  8. Energy Department Releases Strategic Plan for Energy Storage Safety |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Strategic Plan for Energy Storage Safety Energy Department Releases Strategic Plan for Energy Storage Safety December 23, 2014 - 10:16am Addthis Dr. Imre Gyuk Dr. Imre Gyuk Energy Storage Program Manager, Office of Electricity Delivery and Energy Reliability I am pleased to announce that we have just released the Energy Storage Safety Strategic Plan, a roadmap for grid energy storage safety that addresses the range of grid-scale, utility, community, and residential

  9. Wind Energy Integration: Slides

    Wind Powering America (EERE)

    information about integrating wind energy into the electricity grid. Wind Energy Integration Photo by Dennis Schroeder, NREL 25907 Wind energy currently contributes significant power to energy portfolios around the world. *U.S. Department of Energy. (August 2015). 2014 Wind Technologies Market Report. Wind Energy Integration In 2014, Denmark led the way with wind power supplying roughly 39% of the country's electricity demand. Ireland, Portugal, and Spain provided more than 20% of their

  10. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Sandia's larger portfolio of renewable energy technology programs (Wind, Solar Power, Geothermal, and Energy Systems Analysis). Transmission Grid Integration The goal of...

  11. Advanced research in solar-energy storage

    SciTech Connect (OSTI)

    Luft, W.

    1983-01-01

    The Solar Energy Storage Program at the Solar Energy Research Institute is reviewed. The program provides research, systems analyses, and economic assessments of thermal and thermochemical energy storage and transport. Current activities include experimental research into very high temperature (above 800/sup 0/C) thermal energy storage and assessment of novel thermochemical energy storage and transport systems. The applications for such high-temperature storage are thermochemical processes, solar thermal-electric power generation, cogeneration of heat and electricity, industrial process heat, and thermally regenerative electrochemical systems. The research results for five high-temperature thermal energy storage technologies and two thermochemical systems are described.

  12. energy storage | OpenEI Community

    Open Energy Info (EERE)

    and Energy Efficiency. Links: Big Clean Data group on linkedin Big Data Concentrated Solar Power DataAnalysis energy efficiency energy storage expert systems machine learning...

  13. Hydrogen Energy Storage (HES) Activities at NREL (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Activities at NREL HTAC Josh Eichman, PhD Hydrogen and Fuel Cell Technical Advisory Committee Meeting 4/21/2015 NREL/PR-5400-64137 2 Outline * Hydrogen and Energy Storage Overview o Hydrogen storage pathways o International Power-to-gas activities * Hydrogen energy storage activities o NREL - DOE storage analysis results (FY14) o NREL - DOE storage analysis tasks (FY15) o Energy Storage Workshop results o Clean Energy Dialogue - US/Canada * Update: INTEGRATE activities * Newly Proposed CARB-DOE

  14. Prestressed elastomer for energy storage

    DOE Patents [OSTI]

    Hoppie, Lyle O.; Speranza, Donald

    1982-01-01

    Disclosed is a regenerative braking device for an automotive vehicle. The device includes a power isolating assembly (14), an infinitely variable transmission (20) interconnecting an input shaft (16) with an output shaft (18), and an energy storage assembly (22). The storage assembly includes a plurality of elastomeric rods (44, 46) mounted for rotation and connected in series between the input and output shafts. The elastomeric rods are prestressed along their rotational or longitudinal axes to inhibit buckling of the rods due to torsional stressing of the rods in response to relative rotation of the input and output shafts.

  15. Sandia National Laboratories: Energy storage summit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photography By Lonnie Anderson Thursday, September 01, 2016 N.M. Sen. Martin Heinrich hosts Energy Storage Summit 2016 theme is Storage Strategies for Industry & National Security 2016 theme is Storage Strategies for Industry & National Security THE FUTURE OF ENERGY STORAGE - Industry leaders from across the US came to Albuquerque on Aug. 23 to participate in US Sen. Martin Heinrich's 2016 Energy Summit. Sandia Labs Director Jill Hruby opened the event, themed Storage Strategies for

  16. Panel 3, Electrolysis for Grid Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolysis for Grid Energy Storage DOE-Industry Canada Workshop May 15, 2014 INTRODUCTION HYDROGEN ENERGY SYSTEMS FOR ENERGY STORAGE AND CLEAN FUEL PRODUCTION ITM POWER INC. ITM POWER INC. ENERGY STORAGE | CLEAN FUEL Positioned well...... Energy Storage: * Pioneers of HES / P2G initiative in CA * Board member of CHBC - Title sponsor at Spring summit, 5 th May in Long beach * Committee member CHBC HES * Member of FCHEA, CHFCA, OFCC, Clean Fuel: * Founder member of H 2 USA and H 2 FIRST *

  17. Renewable Energy Integration | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    renewable energy, distributed generation, energy storage, thermally activated technologies, and demand response into the electric distribution and transmission system. ...

  18. November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3 ESTAP Webinar: Duke Energy's Energy Storage Projects November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects November 1, 2013 - 5:00pm Addthis On Wednesday, November 13 from 1 - 2 p.m. ET, Clean Energy States Alliance will host a webinar on Duke Energy's battery energy storage systems. This webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery and Energy Reliability. The webinar will discuss Duke

  19. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 3 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at ...

  20. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Energy Storage Systems 2010 Update Conference Presentations - Day 3, Session 3 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at ...

  1. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Energy Storage Systems 2010 Update Conference Presentations - Day 3, Session 2 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at ...

  2. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, I.O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  3. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, Ival O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  4. Electrochemical Energy Storage Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles (PEVs). The Energy Storage activity comprises a number of research areas (including advanced materials research, cell level research, battery development, and enabling R&D which includes analysis, testing and other activities) for advanced energy storage technologies (batteries and ultra-capacitors).

  5. Energy Storage - Advanced Technology Development Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Development Merit Review Energy Storage - Advanced Technology Development ... Research Program Annual Review Safety System Oversight Staffing Analysis - Blank ...

  6. Carbon Capture and Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Carbon Capture and Storage Through Office of Fossil Energy R&D the United States has become a world leader in carbon capture and storage science and technology. Fossil Energy Research Benefits - Carbon Capture and Storage (723.49 KB) More Documents & Publications Microsoft Word - PSRP Updates 6-25-10_v2 Fossil Energy Today - Second Quarter, 2011 Fossil Energy FY 2013 Budget-in-Brief

  7. Compact magnetic energy storage module

    DOE Patents [OSTI]

    Prueitt, Melvin L.

    1994-01-01

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

  8. Compact magnetic energy storage module

    DOE Patents [OSTI]

    Prueitt, M.L.

    1994-12-20

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

  9. Flywheel Energy Storage technology workshop

    SciTech Connect (OSTI)

    O`Kain, D.; Howell, D.

    1993-12-31

    Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in Flywheel Energy Storage (FES) technologies. FES offers several advantages over conventional electro-chemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

  10. Energy storage device with large charge separation

    DOE Patents [OSTI]

    Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei

    2016-04-12

    High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.

  11. Underground Energy Storage Program. 1983 annual summary

    SciTech Connect (OSTI)

    Kannberg, L.D.

    1984-06-01

    The Underground Energy Storage Program approach, structure, history, and milestones are described. Technical activities and progress in the Seasonal Thermal Energy Storage and Compressed Air Energy Storage components of the program are then summarized, documenting the work performed and progress made toward resolving and eliminating technical and economic barriers associated with those technologies. (LEW)

  12. Thermal energy storage program description

    SciTech Connect (OSTI)

    Reimers, E.

    1989-03-01

    The U.S. Department of Energy (DOE) has sponsored applied research, development, and demonstration of technologies aimed at reducing energy consumption and encouraging replacement of premium fuels (notably oil) with renewable or abundant indigenous fuels. One of the technologies identified as being able to contribute to these goals is thermal energy storage (TES). Based on the potential for TES to contribute to the historic mission of the DOE and to address emerging energy issues related to the environment, a program to develop specific TES technologies for diurnal, industrial, and seasonal applications is underway. Currently, the program is directed toward three major application targets: (1) TES development for efficient off-peak building heating and cooling, (2) development of advanced TES building materials, and (3) TES development to reduce industrial energy consumption.

  13. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

  14. Fact Sheet: Energy Storage Testing and Validation (October 2012)

    Broader source: Energy.gov [DOE]

    At Sandia National Laboratories, the Energy Storage Analysis Laboratory, in conjunction with the Energy Storage Test Pad, provides independent testing and validation of electrical energy storage...

  15. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage Program is ...

  16. Energy Storage Systems 2014 Peer Review Presentations - Session...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Energy Storage Systems 2014 Peer Review Presentations - Session 11 OE's Energy Storage ... Balducci, PNNL PDF icon Secondary-Use Battery Energy Storage Systems - Michael Starke, ...

  17. Smart Grid Regional and Energy Storage Demonstration Projects...

    Office of Environmental Management (EM)

    Regional and Energy Storage Demonstration Projects: Awards Smart Grid Regional and Energy Storage Demonstration Projects: Awards List of Smart Grid Regional and Energy Storage ...

  18. Energy Storage Systems 2014 Peer Review Presentations - Session...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Energy Storage Systems 2014 Peer Review Presentations - Session 9 OE's Energy Storage ... More Documents & Publications Energy Storage System Safety Reports - August 2014 and ...

  19. Flywheel Energy Storage Device for Hybrid and Electric Vehicles...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Find More Like This Return to Search Flywheel Energy Storage ... added without extra cost and without any system conflict * No special housing is required ...

  20. US DRIVE Electrochemical Energy Storage Technical Team Roadmap...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrochemical Energy Storage Technical Team Roadmap US DRIVE Electrochemical Energy Storage Technical Team Roadmap This U.S. DRIVE electrochemical energy storage roadmap ...

  1. Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery...

    Energy Savers [EERE]

    Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (August 2013) Fact ... of an array of UltraBattery modules integrated in a turnkey battery energy storage system. ...

  2. Storage & Transmission Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects Storage & ...

  3. Batteries and Energy Storage | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SPOTLIGHT Batteries and Energy Storage Argonne's all- encompassing battery research ... We develop more robust, safer and higher-energy density lithium-ion batteries, while using ...

  4. Evaluating Behind-the-Meter Energy Storage Systems with NREL's System Advisor Model (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluating Behind-the- Meter Energy Storage Systems with NREL's System Advisor Model A new model helps companies assess the performance and economic effects of integrating battery energy storage systems into the electric grid. The Challenge Battery energy storage is a key enabling technology for the integration of large amounts of solar generation onto the electric distribution system. With an 80% drop in battery prices in the last six years and new mandates for energy storage solutions in

  5. Charging Graphene for Energy Storage

    SciTech Connect (OSTI)

    Liu, Jun

    2014-10-06

    Since 2004, graphene, including single atomic layer graphite sheet, and chemically derived graphene sheets, has captured the imagination of researchers for energy storage because of the extremely high surface area (2630 m2/g) compared to traditional activated carbon (typically below 1500 m2/g), excellent electrical conductivity, high mechanical strength, and potential for low cost manufacturing. These properties are very desirable for achieving high activity, high capacity and energy density, and fast charge and discharge. Chemically derived graphene sheets are prepared by oxidation and reduction of graphite1 and are more suitable for energy storage because they can be made in large quantities. They still contain multiply stacked graphene sheets, structural defects such as vacancies, and oxygen containing functional groups. In the literature they are also called reduced graphene oxide, or functionalized graphene sheets, but in this article they are all referred to as graphene for easy of discussion. Two important applications, batteries and electrochemical capacitors, have been widely investigated. In a battery material, the redox reaction occurs at a constant potential (voltage) and the energy is stored in the bulk. Therefore, the energy density is high (more than 100 Wh/kg), but it is difficult to rapidly charge or discharge (low power, less than 1 kW/kg)2. In an electrochemical capacitor (also called supercapacitors or ultracapacitor in the literature), the energy is stored as absorbed ionic species at the interface between the high surface area carbon and the electrolyte, and the potential is a continuous function of the state-of-charge. The charge and discharge can happen rapidly (high power, up to 10 kW/kg) but the energy density is low, less than 10 Wh/kg2. A device that can have both high energy and high power would be ideal.

  6. Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Watch: NREL Eastern Renewable Generation Integration Study Redefines What's Possible for Renewables Text Version Watch: NREL + SolarCity: Maximizing Solar Power on Electrical Grids Text Version Watch: Smart Homes and Buildings Research at the Energy Systems Integration Facility Text Version # # Previous Story Next Story × Skip to main content Toggle Search Search NREL.gov Search National Renewable Energy Laboratory Energy Systems Integration Toggle navigation Menu Research Research Renewable

  7. Sandia Energy - Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Energy Assurance, Energy Surety, Grid Integration, Infrastructure Security, Microgrid, News, News & Events, Renewable Energy, Systems Analysis, Systems Engineering,...

  8. NREL: Energy Systems Integration - Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    archive. Printable Version Energy Systems Integration Home Capabilities Research & Development Facilities Working with Us Publications News Events Energy Systems Integration...

  9. 2010 DOE EERE Vehicle Technologies Program Merit Review - Energy Storage |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Energy Storage 2010 DOE EERE Vehicle Technologies Program Merit Review - Energy Storage Energy storage research and development merit review results 2010_amr_02.pdf (2.63 MB) More Documents & Publications 2011 Annual Merit Review Results Report - Energy Storage Technologies 2012 Annual Merit Review Results Report - Energy Storage Technologies 2012 Annual Merit Review Results Report - Energy Storage Technologies

  10. Boosting CSP Production with Thermal Energy Storage

    SciTech Connect (OSTI)

    Denholm, P.; Mehos, M.

    2012-06-01

    Combining concentrating solar power (CSP) with thermal energy storage shows promise for increasing grid flexibility by providing firm system capacity with a high ramp rate and acceptable part-load operation. When backed by energy storage capability, CSP can supplement photovoltaics by adding generation from solar resources during periods of low solar insolation. The falling cost of solar photovoltaic (PV) - generated electricity has led to a rapid increase in the deployment of PV and projections that PV could play a significant role in the future U.S. electric sector. The solar resource itself is virtually unlimited; however, the actual contribution of PV electricity is limited by several factors related to the current grid. The first is the limited coincidence between the solar resource and normal electricity demand patterns. The second is the limited flexibility of conventional generators to accommodate this highly variable generation resource. At high penetration of solar generation, increased grid flexibility will be needed to fully utilize the variable and uncertain output from PV generation and to shift energy production to periods of high demand or reduced solar output. Energy storage is one way to increase grid flexibility, and many storage options are available or under development. In this article, however, we consider a technology already beginning to be used at scale - thermal energy storage (TES) deployed with concentrating solar power (CSP). PV and CSP are both deployable in areas of high direct normal irradiance such as the U.S. Southwest. The role of these two technologies is dependent on their costs and relative value, including how their value to the grid changes as a function of what percentage of total generation they contribute to the grid, and how they may actually work together to increase overall usefulness of the solar resource. Both PV and CSP use solar energy to generate electricity. A key difference is the ability of CSP to utilize high

  11. Hydrogen for Energy Storage Analysis Overview (Presentation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Hydrogen Storage The Fuel Cell Technologies Office (FCTO) is developing onboard automotive hydrogen storage systems that allow for a driving range of more than 300 miles while meeting cost, safety, and performance requirements. Why Study Hydrogen Storage Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell technologies in applications including stationary power, portable power, and transportation. Hydrogen has the highest energy per mass of any

  12. Pumped Storage Hydropower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pumped Storage Hydropower Pumped Storage Hydropower In addition to traditional hydropower, pumped-storage hydropower (PSH)-A type of hydropower that works like a battery, pumping water from a lower reservoir to an upper reservoir for storage and later generation-is an important piece of DOE's renewable energy portfolio because it acts as a utility-scale grid storage technology. DOE's Water Power Program plays a supportive role in demonstrating the benefits of PSH and its role in our nation's

  13. Hydrogen Energy Storage: Grid and Transportation Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure / 1 02 Hydrogen Energy Storage: Grid and Transportation Services NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. February 2015 Hydrogen Energy Storage: Grid and Transportation Services Proceedings of an Expert Workshop Convened by the U.S. Department of Energy and Industry Canada, Hosted by the National Renewable Energy Laboratory and the California Air Resources

  14. Charting the Future of Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charting the Future of Energy Storage Charting the Future of Energy Storage August 7, 2013 - 2:53pm Addthis Watch the video above to learn how Urban Electric Power is creating a market for energy storage technology. | Video by Matty Greene, Energy Department. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs What are the key facts? As we continue to incorporate more renewable energy into the grid, energy storage technologies will be key to

  15. INTERNATIONAL DEVELOPMENT OF ENERGY STORAGE INTEROPERABILITY TEST

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DEVELOPMENT OF ENERGY STORAGE INTEROPERABILITY TEST PROTOCOLS FOR PHOTOVOLTAIC INTEGRATION David Rosewater 1 , Jay Johnson 1 *, Maurizio Verga 2 , Riccardo Lazzari 2 , Christian Messner 3 , Roland Bründlinger 3 , Kathan Johannes 3 , Jun Hashimoto 4 , Kenji Otani 4 * Corresponding Author 1 Sandia National Laboratories P.O. Box 5800 MS1033 Albuquerque, NM 87185-1033 USA Phone: +1 505-284-9586 Fax: +1 505-844-3952 jjohns2@sandia.gov 2 Ricerca sul Sistema Energetico-RSE S.P.A. Via R. Rubattino 54

  16. Panel 4, Hydrogen Energy Storage Policy Considerations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Policy Considerations Hydrogen Storage Workshop Jeffrey Reed Southern ... 2 And There's a Fully Built Delivery System N S E W LINE 235 LINE 335 LEGEND NOT TO ...

  17. Panel 4, Hydrogen Energy Storage Policy Considerations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Policy Considerations Hydrogen Storage Workshop Jeffrey Reed Southern California Gas Company May 15, 2014 0 Methane is a Great Storage Medium 1 SoCalGas' storage fields are the largest energy storage resource in the region Goleta Playa Del Rey Honor Rancho Aliso Canyon 2 And There's a Fully Built Delivery System N S E W LINE 235 LINE 335 LEGEND NOT TO SCALE RECIPROCATING COMPRESSOR STATION CENTRIFUGAL COMPRESSOR STATION PRESSURE LIMITING STATION STORAGE FIELD 4/00 P AC IF IC GA S

  18. Ultrafine Hydrogen Storage Powders - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Storage Energy Storage Find More Like This Return to Search Ultrafine Hydrogen Storage Powders Ames Laboratory Contact AMES About This Technology Technology Marketing SummaryThis invention provides for composition and method of making extremely fine powders for storing hydrogen.DescriptionThe use of the powders decreases problems that are normally encountered when storage powders repeatedly experience during absorption and then desorption of

  19. Applications of cogeneration with thermal energy storage technologies

    SciTech Connect (OSTI)

    Somasundaram, S.; Katipamula, S.; Williams, H.R.

    1995-03-01

    The Pacific Northwest Laboratory (PNL) leads the U.S. Department of Energy`s Thermal Energy Storage (TES) Program. The program focuses on developing TES for daily cycling (diurnal storage), annual cycling (seasonal storage), and utility-scale applications [utility thermal energy storage (UTES)]. Several of these storage technologies can be used in a new or an existing power generation facility to increase its efficiency and promote the use of the TES technology within the utility and the industrial sectors. The UTES project has included a study of both heat storage and cool storage systems for different utility-scale applications. The study reported here has shown that an oil/rock diurnal TES system, when integrated with a simple gas turbine cogeneration system, can produce on-peak power for $0.045 to $0.06 /kWh, while supplying a 24-hour process steam load. The molten salt storage system was found to be less suitable for simple as well as combined-cycle cogeneration applications. However, certain advanced TES concepts and storage media could substantially improve the performance and economic benefits. In related study of a chill TES system was evaluated for precooling gas turbine inlet air, which showed that an ice storage system could be used to effectively increase the peak generating capacity of gas turbines when operating in hot ambient conditions.

  20. QER - Comment of Energy Storage Association | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Association QER - Comment of Energy Storage Association From: Katherine Hamilton [katherine@38northsolutions.com] on behalf of Katherine Hamilton [k.hamilton@energystorage.org] Sent: Friday, October 10, 2014 4:37 PM To: QERcomments Subject: Comments from Energy Storage Association Attachment: ESA QER Comments10 10 14FINAL.pdf; ATT00001.htm Attached please find comments from the Energy Storage Association on the Department of Energy's Quadrennial Energy Review. Thank you for the

  1. Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology (August 2013) | Department of Energy Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (August 2013) Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (August 2013) East Penn Manufacturing, through its subsidary Ecoult, has designed and constructed an energy storage facility consisting of an array of UltraBattery modules integrated in a turnkey battery energy storage system. The UltraBattery technology is a significant

  2. Battery storage for supplementing renewable energy systems

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The battery storage for renewable energy systems section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  3. Comments by the Energy Storage Association to the Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by the Energy Storage Association to the Department of Energy Electricity Advisory Council - March 13, 2014 Comments by the Energy Storage Association to the Department of Energy ...

  4. Matt Rogers on AES Energy Storage

    ScienceCinema (OSTI)

    Rogers, Matt

    2013-05-29

    The Department of Energy and AES Energy Storage recently agreed to a $17.1M conditional loan guarantee commitment. This project will develop the first battery-based energy storage system to provide a more stable and efficient electrical grid for New York State's high-voltage transmission network. Matt Rogers is the Senior Advisor to the Secretary for Recovery Act Implementation.

  5. Energy Storage for the Power Grid

    SciTech Connect (OSTI)

    Imhoff, Carl; Vaishnav, Dave

    2014-07-01

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid. This technology provides the energy industry and the nation with a reliable, stable, safe, and low-cost storage alternative for a cleaner, efficient energy future.

  6. Battery energy storage market feasibility study

    SciTech Connect (OSTI)

    Kraft, S.; Akhil, A.

    1997-07-01

    Under the sponsorship of the Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed energy storage as an important enabling technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).

  7. American Vanadium | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Vanadium NREL researchers are collaborating with American Vanadium, an integrated energy storage company, to evaluate and demonstrate the first North American CellCube battery management system. Photo of the American Vanadium CellCube device in a laboratory in the Energy Systems Integration Facility Photo by Dennis Schroeder CellCubes can store megawatts of energy, providing an uninterrupted supply of power from solar and wind power stations, no matter the outdoor conditions. Work at

  8. Energy Storage R&D and ARRA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage R&D and ARRA Energy Storage R&D and ARRA 2010 DOE Vehicle ... More Documents & Publications Hybrid Electric Systems Overview of Battery R&D Activities Overview of ...

  9. Energy Storage Systems 2007 Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Systems 2007 Peer Review The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. The agenda and ESS ...

  10. India's Integrated Energy Policy | Open Energy Information

    Open Energy Info (EERE)

    search Name India's Integrated Energy Policy AgencyCompany Organization Government of India Sector Energy Focus Area Conventional Energy, Energy Efficiency, Renewable Energy...

  11. About - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The mission of JCESR, DOE's Batteries and Energy Storage Hub, is to overcome critical scientific and technical barriers and create transformative battery technology for ...

  12. Emerging Technologies: Energy Storage for PV Power

    SciTech Connect (OSTI)

    Ponoum, Ratcharit; Rutberg, Michael; Bouza, Antonio

    2013-11-30

    The article discusses available technologies for energy storage for photovoltaic power systems, and also addresses the efficiency levels and market potential of these strategies.

  13. Analytic Challenges to Valuing Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    analytical task. Market Conditions - Markets are continually evolving, and the long-term value of energy storage is difficult to capture. Niche markets have emerged, but...

  14. Energy Storage Systems 2010 Update Conference Presentations ...

    Broader source: Energy.gov (indexed) [DOE]

    (1.83 MB) ESS 2010 Update Conference - Value of Storage with Increased Renewable Penetration - Jim Brainard, SNL.pdf (228.18 KB) More Documents & Publications Energy ...

  15. Renewable Energy Interconnection and Storage - Technical Aspects...

    Open Energy Info (EERE)

    Interconnection and Storage - Technical Aspects Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity Website Focus Area: Renewable Energy...

  16. Energy Storage for the Power Grid

    SciTech Connect (OSTI)

    Wang, Wei; Imhoff, Carl; Vaishnav, Dave

    2014-04-23

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

  17. Energy Storage for the Power Grid

    ScienceCinema (OSTI)

    Wang, Wei; Imhoff, Carl; Vaishnav, Dave

    2014-06-12

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

  18. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 2 The U.S. ... Municipal Power Vanadium Redox Battery Demonstration Project - Joseph Startari, ...

  19. Hydrogen for Energy Storage Analysis Overview (Presentation)

    SciTech Connect (OSTI)

    Steward, D. M.; Ramsden, T.; Harrison, K.

    2010-06-01

    Overview of hydrogen for energy storage analysis presented at the National Hydrogen Association Conference & Expo, May 3-6, 2010, Long Beach, CA.

  20. Energy Storage Demonstration Project Locations | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Map of the United States showing the location of Energy Storage Demonstration projects created with funding from the Smart Grid Demonstration Project, funded through the American ...

  1. NREL: Energy Storage - Working with Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partnering with industry, government, and universities is key to developing affordable energy storage technology and moving it into the marketplace and the U.S. economy. In ...

  2. Webinar Presentation: Energy Storage Solutions for Microgrids...

    Office of Environmental Management (EM)

    & Federal Energy Storage Technology Advancement Partnership (ESTAP) Todd Olinsky-Paul ... is needed An Unbuffered, Stressed Complex System is inherently Vulnerable to Collapse The ...

  3. Affiliates - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The program includes nearly one-hundred stakeholder organizations involved in electrical energy storage, ranging from chemical and material manufacturers to battery system ...

  4. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Office of Environmental Management (EM)

    micro pumped hydro, and other forms of energy storage may be able to provide significant ... testing and evaluation once a system is installed Project Partners * Sandia ...

  5. Panel 3, Electrolysis for Grid Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolysis for Grid Energy Storage DOE-Industry Canada Workshop May 15, 2014 INTRODUCTION ... paying for demand management - that the system is a responsive load and can meet ...

  6. Flywheel energy storage system focus of display

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flywheel Energy Storage System Focus of Display Demonstration to feature advanced, solar-powered replacement for batteries For more information contact: e:mail: Public Affairs ...

  7. Nuclear Hybrid Energy Systems: Molten Salt Energy Storage

    SciTech Connect (OSTI)

    P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

    2014-07-01

    With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

  8. Energy Storage Safety Strategic Plan Now Available | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Safety Strategic Plan Now Available Energy Storage Safety Strategic Plan Now Available December 23, 2014 - 10:25am Addthis The Office of Electricity Delivery and Energy Reliability (OE) has worked with industry and other stakeholders to develop the Energy Storage Safety Strategic Plan, a roadmap for grid energy storage safety that highlights safety validation techniques, incident preparedness, safety codes, standards, and regulations. The Plan, which is now available for downloading,

  9. 2014 Energy Storage Peer Review - Preliminary Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Peer Review - Preliminary Agenda 2014 Energy Storage Peer Review - Preliminary Agenda The 2014 Energy Storage Peer Review will be held September 19-19, 2014, in Washington, DC. The event is free but registration is required by Friday, September 5, 2014. This year's review will include the latest innovations across all spectrums of energy storage, spanning materials research all the way to the safe deployment of systems. OE's Dr. Imre Gyuk will be an opening speaker, providing the

  10. SHINES SunShot Project to Improve Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SHINES SunShot Project to Improve Energy Storage SHINES SunShot Project to Improve Energy Storage Addthis Description Below is the text version for the SHINES SunShot Project to Improve Energy Storage video. Text appears on the screen: The SunShot Initiative just launched the Sustainable and Holistic Integration of Energy Storage and Solar PV Program. We call it... SHINES. The video cuts to a shot of Lidijia Sekaric, SunShot Acting Director. SHINES is the first program in our renewable portfolio

  11. Modular Energy Storage System for Alternative Energy Vehicles

    SciTech Connect (OSTI)

    Thomas, Janice; Ervin, Frank

    2012-05-15

    An electrical vehicle environment was established to promote research and technology development in the area of high power energy management. The project incorporates a topology that permits parallel development of an alternative energy delivery system and an energy storage system. The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles plugin electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. In order to meet the project objectives, the Vehicle Energy Management System (VEMS) was defined and subsystem requirements were obtained. Afterwards, power electronics, energy storage electronics and controls were designed. Finally, these subsystems were built, tested individually, and integrated into an electric vehicle system to evaluate and optimize the subsystems performance. Phase 1 of the program established the fundamental test bed to support development of an electrical environment ideal for fuel cell application and the mitigation of many shortcomings of current fuel cell technology. Phase 2, continued development from Phase 1, focusing on implementing subsystem requirements, design and construction of the energy management subsystem, and the integration of this subsystem into the surrogate electric vehicle. Phase 2 also required the development of an Alternative Energy System (AES) capable of emulating electrical characteristics of fuel cells, battery, gen set, etc. Under the scope of the project, a boost converter that couples the alternate energy delivery system to the energy storage system was developed, constructed and tested. Modeling tools were utilized during the design process to optimize both component and system design. This model driven design process enabled an iterative process to track and evaluate the impact

  12. SHINES SunShot Project to Improve Energy Storage- Text Alt Version

    Office of Energy Efficiency and Renewable Energy (EERE)

    Caption:The SunShot Initiative just launched the Sustainable and Holistic Integration of Energy Storage and Solar PV Program.

  13. Thermal energy storage apparatus, controllers and thermal energy storage control methods

    DOE Patents [OSTI]

    Hammerstrom, Donald J.

    2016-05-03

    Thermal energy storage apparatus, controllers and thermal energy storage control methods are described. According to one aspect, a thermal energy storage apparatus controller includes processing circuitry configured to access first information which is indicative of surpluses and deficiencies of electrical energy upon an electrical power system at a plurality of moments in time, access second information which is indicative of temperature of a thermal energy storage medium at a plurality of moments in time, and use the first and second information to control an amount of electrical energy which is utilized by a heating element to heat the thermal energy storage medium at a plurality of moments in time.

  14. Flow Cells for Energy Storage Workshop Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview Flow Cells for Energy Storage Workshop Overview Overview presentation by Adam Weber, Lawrence Berkeley National Laboratory, at the Flow Cells for Energy Storage Workshop held March 7-8, 2012, in Washington, DC. flowcells2012_overview.pdf (236.9 KB) More Documents & Publications Meeting Agenda Flow Cells for Energy Storage Workshop Summary Report Flow Batteries: A Historical Perspective

  15. Technoeconomic Modeling of Battery Energy Storage in SAM

    SciTech Connect (OSTI)

    DiOrio, Nicholas; Dobos, Aron; Janzou, Steven; Nelson, Austin; Lundstrom, Blake

    2015-09-01

    Detailed comprehensive lead-acid and lithium-ion battery models have been integrated with photovoltaic models in an effort to allow System Advisor Model (SAM) to offer the ability to predict the performance and economic benefit of behind the meter storage. In a system with storage, excess PV energy can be saved until later in the day when PV production has fallen, or until times of peak demand when it is more valuable. Complex dispatch strategies can be developed to leverage storage to reduce energy consumption or power demand based on the utility rate structure. This document describes the details of the battery performance and economic models in SAM.

  16. Market and policy barriers to energy storage deployment : a study for the energy storage systems program.

    SciTech Connect (OSTI)

    Bhatnagar, Dhruv; Currier, Aileen B.; Hernandez, Jacquelynne; Ma, Ookie; Kirby, Brendan

    2013-09-01

    Electric energy storage technologies have recently been in the spotlight, discussed as essential grid assets that can provide services to increase the reliability and resiliency of the grid, including furthering the integration of variable renewable energy resources. Though they can provide numerous grid services, there are a number of factors that restrict their current deployment. The most significant barrier to deployment is high capital costs, though several recent deployments indicate that capital costs are decreasing and energy storage may be the preferred economic alternative in certain situations. However, a number of other market and regulatory barriers persist, limiting further deployment. These barriers can be categorized into regulatory barriers, market (economic) barriers, utility and developer business model barriers, crosscutting barriers and technology barriers. This report, through interviews with stakeholders and review of regulatory filings in four regions roughly representative of the United States, identifies the key barriers restricting further energy storage development in the country. The report also includes a discussion of possible solutions to address these barriers and a review of initiatives around the country at the federal, regional and state levels that are addressing some of these issues. Energy storage could have a key role to play in the future grid, but market and regulatory issues have to be addressed to allow storage resources open market access and compensation for the services they are capable of providing. Progress has been made in this effort, but much remains to be done and will require continued engagement from regulators, policy makers, market operators, utilities, developers and manufacturers.

  17. Hybrid Radical Energy Storage Device - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Hybrid Radical Energy Storage Device National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary In order to provide a cost effective, environmentally benign and efficient means for storing electric energy from renewable sources, breakthroughs are needed in rechargeable battery technology that will substantially increase energy and power densities.

  18. Integrated Energy System Dispatch Optimization

    SciTech Connect (OSTI)

    Firestone, Ryan; Stadler, Michael; Marnay, Chris

    2006-06-16

    On-site cogeneration of heat and electricity, thermal and electrical storage, and curtailing/rescheduling demand options are often cost-effective to commercial and industrial sites. This collection of equipment and responsive consumption can be viewed as an integrated energy system(IES). The IES can best meet the sites cost or environmental objectives when controlled in a coordinated manner. However, continuously determining this optimal IES dispatch is beyond the expectations for operators of smaller systems. A new algorithm is proposed in this paper to approximately solve the real-time dispatch optimization problem for a generic IES containing an on-site cogeneration system subject to random outages, limited curtailment opportunities, an intermittent renewable electricity source, and thermal storage. An example demonstrates how this algorithm can be used in simulation to estimate the value of IES components.

  19. 2011 Annual Merit Review Results Report - Energy Storage Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Energy Storage Technologies 2011 Annual Merit Review Results Report - Energy Storage Technologies Merit review of DOE Vehicle Technologies research activities 2011_amr_02.pdf (15.22 MB) More Documents & Publications 2012 Annual Merit Review Results Report - Energy Storage Technologies 2010 DOE EERE Vehicle Technologies Program Merit Review - Energy Storage 2012 Annual Merit Review Results Report - Energy Storage

  20. 2014 Annual Merit Review Results Report - Energy Storage Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Energy Storage Technologies 2014 Annual Merit Review Results Report - Energy Storage Technologies Merit review of DOE Vehicle Technologies research activities 2014_amr_02.pdf (12.24 MB) More Documents & Publications 2011 Annual Merit Review Results Report - Energy Storage Technologies 2012 Annual Merit Review Results Report - Energy Storage Technologies 2012 Annual Merit Review Results Report - Energy Storage Technologies

  1. Presentations - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Presentations To view notes or play video, please download. JCESR Presentations at the 228th Electrochemical Society Meeting, Phoenix, AZ (10-11-15) The Joint Center for Energy Storage Research (JCESR): A New Paradigm for Energy Storage Research George Crabtree, JCESR Director Overcoming Key Challenges for a Viable Lithium-Sulfur Transportation Battery Kevin Zavadil, JCESR Thrust PI, Chemical Transformation Pathways to Non-aqueous Redox Flow (NRF) Batteries for Grid Storage Fikile Brushett,

  2. Energy Storage Testing and Analysis High Power and High Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing and Analysis High Power and High Energy Development Energy Storage Testing and ... Testing Overview and Progress of the Battery Testing, Analysis, and Design Activity ...

  3. New York's Energy Storage System Gets Recharged | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    York's Energy Storage System Gets Recharged New York's Energy Storage System Gets Recharged August 2, 2010 - 1:18pm Addthis Matt Rogers, Senior Advisor to Secretary Chu, explain why grid frequency regulation matters Jonathan Silver Jonathan Silver Executive Director of the Loan Programs Office What does this mean for me? AES Storage in New York got a $17.1M conditional loan guarantee to provide a more stable transmission grid. When thinking of clean technologies, energy storage might not be the

  4. Hydrogen Energy Storage for Grid and Transportation Services...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Energy Storage for Grid and Transportation Services Workshop Hydrogen Energy Storage for Grid and Transportation Services Workshop The U.S. Department of Energy (DOE) and...

  5. Hydrogen Energy Storage for Grid and Transportation Services...

    Broader source: Energy.gov (indexed) [DOE]

    The U.S. Department of Energy (DOE) and Industry Canada held a Hydrogen Energy Storage for ... and opportunities for commercial hydrogen energy storage applications to support ...

  6. Purchasing Energy-Efficient Residential Electric Storage Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Efficient Residential Electric Storage Water Heaters Purchasing Energy-Efficient Residential Electric Storage Water Heaters The Federal Energy Management Program (FEMP) ...

  7. General Purpose Energy Storage (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    General Purpose Energy Storage Citation Details In-Document Search Title: General Purpose Energy Storage You are accessing a document from the Department of Energy's (DOE) ...

  8. Energy Storage Systems 2012 Peer Review Presentations - Poster...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SBIR Projects Energy Storage Systems 2012 Peer Review Presentations - Poster Session 2 ... Compressed Air Energy Storage (UCAES) System - James Kesseli, Brayton Energy (1.78 MB) ...

  9. Energy Storage Systems 2014 Peer Review Presentations - Poster...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Energy Storage Systems 2014 Peer Review Presentations - Poster Session 8 OE's Energy ... KB) Superconducting Magnet Energy Storage System with Direct Power Electronics Interface - ...

  10. National Renewable Energy Laboratory's Energy Systems Integration...

    Broader source: Energy.gov (indexed) [DOE]

    This brochure describes the Energy Systems Integration Facility at National Renewable Energy Laboratory. Download the National Renewable Energy Laboratory's energy systems ...

  11. Electrical Energy Storage for Renewable Energy Systems

    SciTech Connect (OSTI)

    Helms, C. R.; Cho, K. J.; Ferraris, John; Balkus, Ken; Chabal, Yves; Gnade, Bruce; Rotea, Mario; Vasselli, John

    2012-08-31

    This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. Significant accomplishments are detailed in each section. Those particularly noteworthy include: • Transition metal silicate cathodes with 2x higher storage capacity than commercial cobalt oxide cathodes were demonstrated. • MnO₂ nanowires, which are a promising replacement for RuO₂, were synthesized • PAN-based carbon nanofibers were prepared and characterized with an energy density 30-times higher than current ultracapacitors on the market and comparable to lead-acid batteries • An optimization-based control strategy for real-time power management of battery storage in wind farms was developed and demonstrated. • PVDF films were developed with breakdown strengths of > 600MVm⁻¹, a maximum energy density of approximately 15 Jcm⁻³, and an average dielectric constant of 9.8 (±1.2). Capacitors made from these films can support a 10-year lifetime operating at an electric field of 200 MV m⁻¹. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing this work with other sources of funding from both industry and government.

  12. Lower-Energy Energy Storage System (LEESS) Component Evaluation (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Lower-Energy Energy Storage System (LEESS) Component Evaluation Citation Details In-Document Search Title: Lower-Energy Energy Storage System (LEESS) Component Evaluation Alternate hybrid electric vehicle (HEV) energy storage systems (ESS) such as lithium-ion capacitors (LICs) and electrochemical double-layer capacitor (EDLC) modules have the potential for improved life, superior cold temperature performance, and lower long-term cost projections relative to

  13. The state of energy storage in electric utility systems and its effect on renewable energy resources

    SciTech Connect (OSTI)

    Rau, N.S.

    1994-08-01

    This report describes the state of the art of electric energy storage technologies and discusses how adding intermittent renewable energy technologies (IRETs) to a utility network affects the benefits from storage dispatch. Load leveling was the mode of storage dispatch examined in the study. However, the report recommended that other modes be examined in the future for kilowatt and kilowatt-hour optimization of storage. The motivation to install storage with IRET generation can arise from two considerations: reliability and enhancement of the value of energy. Because adding storage increases cost, reliability-related storage is attractive only if the accruing benefits exceed the cost of storage installation. The study revealed that the operation of storage should not be guided by the output of the IRET but rather by system marginal costs. Consequently, in planning studies to quantify benefits, storage should not be considered as an entity belonging to the system and not as a component of IRETS. The study also indicted that because the infusion of IRET energy tends to reduce system marginal cost, the benefits from load leveling (value of energy) would be reduced. However, if a system has storage, particularly if the storage is underutilized, its dispatch can be reoriented to enhance the benefits of IRET integration.

  14. Underground Energy Storage Program. 1984 annual summary

    SciTech Connect (OSTI)

    Kannberg, L.D.

    1985-06-01

    Underground Energy Storage (UES) Program activities during the period from April 1984 through March 1985 are briefly described. Primary activities in seasonal thermal energy storage (STES) involved field testing of high-temperature (>100/sup 0/C (212/sup 0/F)) aquifer thermal energy storage (ATES) at St. Paul, laboratory studies of geochemical issues associated with high-temperatures ATES, monitoring of chill ATES facilities in Tuscaloosa, and STES linked with solar energy collection. The scope of international activities in STES is briefly discussed.

  15. Oriented Nanostructures for Energy Conversion and Storage

    SciTech Connect (OSTI)

    Liu, Jun; Cao, Guozhong H.; Yang, Zhenguo; Wang, Donghai; DuBois, Daniel L.; Zhou, Xiao Dong; Graff, Gordon L.; Pederson, Larry R.; Zhang, Jiguang

    2008-08-28

    Recently the role of nanostructured materials in addressing the challenges in energy and natural resources has attracted wide attention. In particular, oriented nanostructures have demonstrated promising properties for energy harvesting, conversion and storage. The purpose of the paper is to review the synthesis and application of oriented nanostructures in a few key areas of energy technologies, namely photovoltaics, batteries, supercapacitors and thermoelectrics. Although the applications differ from field to field, one of the fundamental challenges is to improve the generation and transport of electrons and ions. We will first briefly review the several major approaches to attain oriented nanostructured films that are applicable for energy applications. We will then discuss how such controlled nanostructures can be used in photovoltaics, batteries, capacitors, thermoelectrics, and other unconventional ways of energy conversion. We will highlight the role of high surface area to maximize the surface activity, and the importance of optimum dimension and architecture, controlled pore channels and alignment of the nanocrystalline phase to optimize the electrons and ion transport. Finally, the paper will discuss the challenges in attaining integrated architectures to achieve the desired performance. Brief background information will be provided for the relevant technologies, but the emphasis is focused mainly on the nanoeffects of mostly inorganic based materials and devices.

  16. The Value of Energy Storage for Grid Applications

    SciTech Connect (OSTI)

    Denholm, Paul; Jorgenson, Jennie; Hummon, Marissa; Jenkin, Thomas; Palchak, David; Kirby, Brendan; Ma, Ookie; O'Malley, Mark

    2013-05-01

    This analysis evaluates several operational benefits of electricity storage, including load-leveling, spinning contingency reserves, and regulation reserves. Storage devices were simulated in a utility system in the western United States, and the operational costs of generation was compared to the same system without the added storage. This operational value of storage was estimated for devices of various sizes, providing different services, and with several sensitivities to fuel price and other factors. Overall, the results followed previous analyses that demonstrate relatively low value for load-leveling but greater value for provision of reserve services. The value was estimated by taking the difference in operational costs between cases with and without energy storage and represents the operational cost savings from deploying storage by a traditional vertically integrated utility. The analysis also estimated the potential revenues derived from a merchant storage plant in a restructured market, based on marginal system prices. Due to suppression of on-/off-peak price differentials and incomplete capture of system benefits (such as the cost of power plant starts), the revenue obtained by storage in a market setting appears to be substantially less than the net benefit provided to the system. This demonstrates some of the additional challenges for storage deployed in restructured energy markets.

  17. Value of Energy Storage for Grid Applications (Report Summary) (Presentation)

    SciTech Connect (OSTI)

    Denholm, P.; Jorgenson, J.; Hummon, M.; Jenkin, T.; Palchak, D.; Kirby, B.; Ma, O.; O'Malley, M.

    2013-06-01

    This analysis evaluates several operational benefits of electricity storage, including load-leveling, spinning contingency reserves, and regulation reserves. Storage devices were simulated in a utility system in the western United States, and the operational costs of generation was compared to the same system without the added storage. This operational value of storage was estimated for devices of various sizes, providing different services, and with several sensitivities to fuel price and other factors. Overall, the results followed previous analyses that demonstrate relatively low value for load-leveling but greater value for provision of reserve services. The value was estimated by taking the difference in operational costs between cases with and without energy storage and represents the operational cost savings from deploying storage by a traditional vertically integrated utility. The analysis also estimated the potential revenues derived from a merchant storage plant in a restructured market, based on marginal system prices. Due to suppression of on-/off-peak price differentials and incomplete capture of system benefits (such as the cost of power plant starts), the revenue obtained by storage in a market setting appears to be substantially less than the net benefit provided to the system. This demonstrates some of the additional challenges for storage deployed in restructured energy markets.

  18. Energy Systems Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration Energy Systems Integration Presentation-given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting-covers the National Renewable Energy Laboratory's Energy Systems Integration Facility (ESIF) and its capabilities. Download the Energy Systems Integration presentation. (1.96 MB) More Documents & Publications National Renewable Energy Laboratory's Energy Systems Integration Facility Overview Facilities and Infrastructure Program FY 2016 Budget

  19. Storage Electric Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Water Heaters Storage Electric Water Heaters The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. Water Heaters, Storage Electric -- v2.0 (102.27 KB) More Documents

  20. Storage Gas Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas Water Heaters Storage Gas Water Heaters The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. Water Heaters, Storage Gas -- v2.0 (106.02 KB) More Documents &

  1. Storage Oil Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil Water Heaters Storage Oil Water Heaters The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. Water Heaters, Storage Oil -- v2.0 (103.3 KB) More Documents & Publications

  2. Microsoft Word - Grid Energy Storage December 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage U.S. Department of Energy December 2013 Acknowledgements We would like to acknowledge the members of the core team dedicated to developing this report on grid energy storage: Imre Gyuk (OE), Mark Johnson (ARPA-E), John Vetrano (Office of Science), Kevin Lynn (EERE), William Parks (OE), Rachna Handa (OE), Landis Kannberg (PNNL), Sean Hearne & Karen Waldrip (SNL), Ralph Braccio (Booz Allen Hamilton). 2 Table of Contents Acknowledgements

  3. Hydrogen Storage Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Related Links Hydrogen Storage Related Links The following resources provide details about U.S. Department of Energy (DOE)-funded hydrogen storage activities, research plans and roadmaps, models and tools, and additional related links. DOE-Funded Hydrogen Storage Activities Each year, hydrogen and fuel cell projects funded by DOE's Hydrogen and Fuel Cells Program are reviewed for their merit during an Annual Merit Review and Peer Evaluation Meeting. View posters and presentations from the latest

  4. Energy Systems Integration Facility Delivering on Promise to...

    Energy Savers [EERE]

    NREL) NREL and Raytheon, perform system level testing on the Miramar ZnBr Flow Battery Simulated MicroGrid, in the Energy Storage Lab (ESL) at the Energy Systems Integration ...

  5. Compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, Frederick W.; Kartsounes, George T.

    1981-01-01

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  6. Compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, F.W.; Kartsounes, G.T.

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  7. Flow Cells for Energy Storage Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flow Cells for Energy Storage Workshop Flow Cells for Energy Storage Workshop The U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory (LBNL) held a Flow Cells for Energy Storage Workshop on March 7-8, 2012, at the Renaissance Hotel in Washington, D.C. Flow cells combine the unique advantages of batteries and fuel cells and can offer benefits for multiple energy storage applications. The purpose of the workshop was to understand the applied research and development (R&D)

  8. Hydrogen Energy Storage (HES) and Power-to-Gas Economic Analysis; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Eichman, Joshua

    2015-07-30

    This presentation summarizes opportunities for hydrogen energy storage and power-to-gas and presents the results of a market analysis performed by the National Renewable Energy Laboratory to quantify the value of energy storage. Hydrogen energy storage and power-to-gas systems have the ability to integrate multiple energy sectors including electricity, transportation, and industrial. On account of the flexibility of hydrogen systems, there are a variety of potential system configurations. Each configuration will provide different value to the owner, customers and grid system operator. This presentation provides an economic comparison of hydrogen storage, power-to-gas and conventional storage systems. The total cost is compared to the revenue with participation in a variety of markets to assess the economic competitiveness. It is found that the sale of hydrogen for transportation or industrial use greatly increases competitiveness. Electrolyzers operating as demand response devices (i.e., selling hydrogen and grid services) are economically competitive, while hydrogen storage that inputs electricity and outputs only electricity have an unfavorable business case. Additionally, tighter integration with the grid provides greater revenue (e.g., energy, ancillary service and capacity markets are explored). Lastly, additional hours of storage capacity is not necessarily more competitive in current energy and ancillary service markets and electricity markets will require new mechanisms to appropriately compensate long duration storage devices.

  9. University of Arizona Compressed Air Energy Storage

    SciTech Connect (OSTI)

    Simmons, Joseph; Muralidharan, Krishna

    2012-12-31

    Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

  10. Hydrogen storage and integrated fuel cell assembly

    DOE Patents [OSTI]

    Gross, Karl J.

    2010-08-24

    Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

  11. Vehicle Technologies Office: 2009 Energy Storage R&D Annual Progress...

    Energy Savers [EERE]

    Energy Storage R&D Annual Progress Report Vehicle Technologies Office: 2009 Energy Storage ... Progress Report for Energy Storage R&D Vehicle Technologies Office: 2010 Energy Storage ...

  12. Energy Storage Systems 2010 Update Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Update Conference Energy Storage Systems 2010 Update Conference The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at the Washington DC Marriott Hotel on Nov. 2 - 4, 2010, with more than 500 attendees. The 2010 agenda reflected increased national interest in energy storage issues. The 3-day conference included 11 sessions plus a poster session on the final day. Presentations are available through the individual session links. The agenda and list of

  13. ENERGY EFFICIENCY AND ENVIRONMENTALLY FRIENDLY DISTRIBUTED ENERGY STORAGE BATTERY

    SciTech Connect (OSTI)

    LANDI, J.T.; PLIVELICH, R.F.

    2006-04-30

    Electro Energy, Inc. conducted a research project to develop an energy efficient and environmentally friendly bipolar Ni-MH battery for distributed energy storage applications. Rechargeable batteries with long life and low cost potentially play a significant role by reducing electricity cost and pollution. A rechargeable battery functions as a reservoir for storage for electrical energy, carries energy for portable applications, or can provide peaking energy when a demand for electrical power exceeds primary generating capabilities.

  14. Webinar Presentation - Energy Storage in State RPS - Dec. 19...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation - Energy Storage in State RPS - Dec. 19, 2011 Webinar Presentation - Energy Storage in State RPS - Dec. 19, 2011 Dr. Imre Gyuk of the Office of Electricity Delivery...

  15. Lignin Based Carbon Materials for Energy Storage Applications...

    Office of Scientific and Technical Information (OSTI)

    Book: Lignin Based Carbon Materials for Energy Storage Applications Citation Details In-Document Search Title: Lignin Based Carbon Materials for Energy Storage Applications The ...

  16. Energy storage devices having anodes containing Mg and electrolytes...

    Office of Scientific and Technical Information (OSTI)

    Energy storage devices having anodes containing Mg and electrolytes utilized therein Title: Energy storage devices having anodes containing Mg and electrolytes utilized therein For ...

  17. 2012 Annual Merit Review Results Report - Energy Storage Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2amr02.pdf (10.14 MB) More Documents & Publications 2011 Annual Merit Review Results Report - Energy Storage Technologies 2012 Annual Merit Review Results Report - Energy Storage ...

  18. 2014 Annual Merit Review Results Report - Energy Storage Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Technologies 2014 Annual Merit Review Results Report - Energy Storage Technologies Merit review of DOE Vehicle Technologies research activities 2014amr02.pdf ...

  19. 2011 Annual Merit Review Results Report - Energy Storage Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Technologies 2011 Annual Merit Review Results Report - Energy Storage Technologies Merit review of DOE Vehicle Technologies research activities 2011amr02.pdf ...

  20. In-Situ Electron Microscopy of Electrical Energy Storage Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications In-Situ Electron Microscopy of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage Materials Investigations ...

  1. In-Situ Electron Microscopy of Electrical Energy Storage Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications In-Situ Electron Microscopy of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage Materials In-situ ...

  2. Fact Sheet: Energy Storage Database (October 2012) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Database (October 2012) Fact Sheet: Energy Storage Database (October 2012) DOE and Sandia National Laboratories are developing a database of energy storage projects and policies ...

  3. Webinar: Increasing Renewable Energy with Hydrogen Storage and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Webinar: Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Below is the text ...

  4. New York Battery and Energy Storage Technology Consortium NY...

    Open Energy Info (EERE)

    Battery and Energy Storage Technology Consortium NY BEST Jump to: navigation, search Name: New York Battery and Energy Storage Technology Consortium (NY-BEST) Place: Albany, New...

  5. Category:Smart Grid Projects - Energy Storage Demonstrations...

    Open Energy Info (EERE)

    Smart Grid Projects - Energy Storage Demonstrations Jump to: navigation, search Smart Grid Energy Storage Demonstration Projects category. Pages in category "Smart Grid Projects -...

  6. U.S. CHP Installations Incorporating Thermal Energy Storage ...

    Broader source: Energy.gov (indexed) [DOE]

    Thermal Energy Storage (TES) andor Turbine Inlet Cooling (TIC) was prepared by the ... Thermal Energy Storage (TES) andor Turbine Inlet Cooling (TIC), 2004 Guide to ...

  7. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Download presentation ...

  8. Cost analysis of energy storage systems for electric utility...

    Office of Scientific and Technical Information (OSTI)

    Cost analysis of energy storage systems for electric utility applications Citation Details In-Document Search Title: Cost analysis of energy storage systems for electric utility ...

  9. Value of Energy Storage for Grid Applications (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Value of Energy Storage for Grid Applications Citation Details In-Document Search Title: Value of Energy Storage for Grid Applications This analysis evaluates several operational ...

  10. Press Conference on the Batteries and Energy Storage Hub Announcement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 3, 2012, Videos Press Conference on the Batteries and Energy Storage Hub ... over five years to establish a new Batteries and Energy Storage Hub, the Joint Center ...

  11. Purchasing Energy-Efficient Residential Gas Storage Water Heaters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas Storage Water Heaters Purchasing Energy-Efficient Residential Gas Storage Water Heaters The Federal Energy Management Program (FEMP) provides acquisition guidance for ...

  12. Energy Storage Systems 2007 Peer Review - Utility & Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility & Commercial Applications Presentations Energy Storage Systems 2007 Peer Review - Utility & Commercial Applications Presentations The U.S. DOE Energy Storage Systems ...

  13. Energy Storage Systems 2007 Peer Review - Economics Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economics Presentations Energy Storage Systems 2007 Peer Review - Economics Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September ...

  14. Methods and energy storage devices utilizing electrolytes having...

    Office of Scientific and Technical Information (OSTI)

    Methods and energy storage devices utilizing electrolytes having surface-smoothing additives Title: Methods and energy storage devices utilizing electrolytes having ...

  15. Energy Storage Systems 2014 Peer Review Presentations - Session...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Energy Storage Systems 2014 Peer Review Presentations - Session 10 OE's Energy Storage Systems (ESS) Program conducted a peer review and update meeting in Washington, DC on Sept. ...

  16. Energy Storage Activities in the United States Electricity Grid...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Storage Activities in the United States Electricity Grid Electricity Advisory Committee Energy Storage Technologies Subcommittee Members Ralph Masiello, Subcommittee Chair ...

  17. Extreme Temperature Energy Storage and Generation, for Cost and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Extreme Temperature Energy Storage and Generation, for Cost and Risk Reduction in Geothermal Exploration Extreme Temperature Energy Storage and Generation, for Cost and Risk ...

  18. Novel Molten Salts Thermal Energy Storage for Concentrating Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation This presentation ...

  19. Extreme Temperature Energy Storage and Generation, for Cost and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technologies Program 2013 Peer Review Extreme Temperature Energy Storage and ... generator A (250C) energy storage system A (250C) converter to manage and ...

  20. Fact Sheet: Codes and Standards for Energy Storage System Performance...

    Office of Environmental Management (EM)

    Codes and Standards for Energy Storage System Performance and Safety (June 2014) Fact Sheet: Codes and Standards for Energy Storage System Performance and Safety (June 2014) The ...

  1. FY06 DOE Energy Storage Program PEER Review

    Broader source: Energy.gov (indexed) [DOE]

    7 DOE Energy Storage Program PEER Review FY07 DOE Energy Storage Program PEER Review John ... the quality, reliability, flexibility and cost effectiveness of the existing system. ...

  2. Energy Storage Systems 2006 Peer Review - Day 1 morning presentations...

    Office of Environmental Management (EM)

    morning presentations Energy Storage Systems 2006 Peer Review - Day 1 morning presentations ... of the Kauai Island Utility Cooperative System for Energy Storage Potential - Abbas ...

  3. Fact Sheet Available: Codes and Standards for Energy Storage...

    Energy Savers [EERE]

    Fact Sheet Available: Codes and Standards for Energy Storage System Performance and Safety (June 2014) Fact Sheet Available: Codes and Standards for Energy Storage System ...

  4. FY2002 ENERGY STORAGE SYSTEMS PEER REVIEW AGENDA

    Office of Environmental Management (EM)

    ENERGY STORAGE SYSTEMS RESEARCH PROGRAM ANNUAL PEER REVIEW November 2-3, 2006 Washington ... of the Kauai Island Utility Co-operative System for Energy storage Potential - Abbas ...

  5. EAC Recommendations on National Distributed Energy Storage in...

    Energy Savers [EERE]

    EAC Recommendations on National Distributed Energy Storage in the Electric Grid Now Available ... defined as an energy storage element or system located at the distribution substation, ...

  6. June 30 Webinar: Measuring Energy Storage System Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    30 Webinar: Measuring Energy Storage System Performance: A GovernmentIndustry-Developed Protocol June 30 Webinar: Measuring Energy Storage System Performance: A Government...

  7. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Office of Environmental Management (EM)

    Li-ion technologies have not demonstrated sufficient grid-scale energy storage feasibility. ... Energy storage can reduce power fluctuations, enhance system flexibility, and enable ...

  8. Project Profile: Innovative Thermal Energy Storage for Baseload...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Energy Storage for Baseload Solar Power Generation Project Profile: Innovative ... FOA, developed a thermal energy storage system based on encapsulated phase change ...

  9. Energy Storage System Guide for Compliance with Safety Codes...

    Office of Environmental Management (EM)

    Guide for Compliance with Safety Codes and Standards 2016 Energy Storage System Guide for Compliance with Safety Codes and Standards 2016 Under the Energy Storage Safety Strategic ...

  10. Innovative Phase Change Thermal Energy Storage Solution for Baseload...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power ... salt thermal energy storage (TES) system that can interface with Infinia's ...

  11. Detroit Edison Advanced Implementation of Energy Storage Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Storage Technologies Project Description Detroit Edison will complete installation and begin an aggregated 1 MW Community Energy Storage (CES) System in their ...

  12. Project Profile: Reducing the Cost of Thermal Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Project Profile: Reducing the Cost of Thermal Energy Storage for ... is looking at innovative ways to reduce thermal energy storage (TES) system costs. ...

  13. MIMES: Multimodal Imaging of Materials for Energy Storage | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MIMES: Multimodal Imaging of Materials for Energy Storage MIMES: Multimodal Imaging of Materials for Energy Storage Project goals Li-ion batteries (LIB) have had a remarkable...

  14. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Record-Setting Microscopy Illuminates Energy Storage Materials Record-Setting Microscopy Illuminates Energy Storage Materials Print Thursday, 22 January 2015 12:10 X-ray microscopy...

  15. Reversible Metal Hydride Thermal Energy Storage for High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reversible Metal Hydride Thermal Energy Storage for High Temperature Power Generation Systems Reversible Metal Hydride Thermal Energy Storage for High Temperature Power Generation ...

  16. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 3 The U.S. ... 2010 Update Conference - Nitrogen-Air Battery - David Ingersoll, SNL.pdf PDF icon ESS ...

  17. Energy Storage Systems 2005 Peer Review

    Broader source: Energy.gov [DOE]

    The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on October 20, 2005 in San Francisco, CA. The agenda and ESS program overview presentation are below.

  18. Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    View More The Next Energy Storage Revolution JCESR Director Crabtree on how next-gen batteries ... of laboriously exploring its details one battery system or component at a time. ...

  19. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentations from the fourth session of Day 2, chaired by NETL's Kim Nuhfer, are below. ESS 2010 Update Conference - Low Cost Energy Storage - Ted Wiley, Aquion.pdf (1.47 MB) Ess ...

  20. Compressed Air Energy Storage (CAES) | Open Energy Information

    Open Energy Info (EERE)

    and stored in a reservoir, then when electricity is needed, air is heated with natural gas and expanded through a turbine. Adiabatic Adiabatic compressed air energy storage...

  1. Lower-Energy Energy Storage System (LEESS) Component Evaluation...

    Office of Scientific and Technical Information (OSTI)

    LEESS; COMPONENT EVALUATION; LITHIUM ION; CAPACITORS; Transportation Alternate hybrid electric vehicle (HEV) energy storage systems (ESS) such as lithium-ion capacitors (LICs)...

  2. Regenerative Fuel Cells for Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 1 Regenerative Fuel Cells for Energy Storage April 2011 Corky Mittelsteadt April 2011 2 Outline 1. Regenerative Fuel Cells at Giner 2. Regenerative Systems for Energy Storage 1. Economics 2. Electrolyzer Optimization 3. Fuel Cell Optimization 4. What to do with O 2 ? 5. High Pressure Electrolysis vs. External Pumping 3. The Three Questions April 2011 3 RFC System Challenges Existing state of the art regenerative fuel cell systems require two separate stacks and significant auxiliary support

  3. Solar energy thermalization and storage device

    DOE Patents [OSTI]

    McClelland, J.F.

    A passive solar thermalization and thermal energy storage assembly which is visually transparent is described. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  4. Solar energy thermalization and storage device

    DOE Patents [OSTI]

    McClelland, John F.

    1981-09-01

    A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  5. Energy storage options for space power

    SciTech Connect (OSTI)

    Hoffman, H.W.; Martin, J.F.; Olszewski, M.

    1985-01-01

    Including energy storage in a space power supply enhances the feasibility of using thermal power cycles (Rankine or Brayton) and providing high-power pulses. Review of storage options (superconducting magnets, capacitors, electrochemical batteries, thermal phase-change materials (PCM), and flywheels) suggests that flywheels and phase-change devices hold the most promise. Latent heat storage using inorganic salts and metallic eutectics offers thermal energy storage densities of 1500 to 2000 kJ/kg at temperatures to 1675/sup 0/K. Innovative techniques allow these media to operate in direct contact with the heat engine working fluid. Enhancing thermal conductivity and/or modifying PCM crystallization habit provide other options. Flywheels of low-strain graphite and Kevlar fibers have achieved mechanical energy storage densities of 300 kJ/kg. With high-strain graphite fibers, storage densities appropriate to space power needs (approx. 550 kJ/kg) seem feasible. Coupling advanced flywheels with emerging high power density homopolar generators and compulsators could result in electric pulse-power storage modules of significantly higher energy density.

  6. Structural Integrity Program for INTEC Calcined Solids Storage Facilities

    SciTech Connect (OSTI)

    Jeffrey Bryant

    2008-08-30

    This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, 'Radioactive Waste Management Manual'. Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities.

  7. Batteries for Large Scale Energy Storage

    SciTech Connect (OSTI)

    Soloveichik, Grigorii L.

    2011-07-15

    In recent years, with the deployment of renewable energy sources, advances in electrified transportation, and development in smart grids, the markets for large-scale stationary energy storage have grown rapidly. Electrochemical energy storage methods are strong candidate solutions due to their high energy density, flexibility, and scalability. This review provides an overview of mature and emerging technologies for secondary and redox flow batteries. New developments in the chemistry of secondary and flow batteries as well as regenerative fuel cells are also considered. Advantages and disadvantages of current and prospective electrochemical energy storage options are discussed. The most promising technologies in the short term are high-temperature sodium batteries with β”-alumina electrolyte, lithium-ion batteries, and flow batteries. Regenerative fuel cells and lithium metal batteries with high energy density require further research to become practical.

  8. Integral collector storage system with heat exchange apparatus

    DOE Patents [OSTI]

    Rhodes, Richard O.

    2004-04-20

    The present invention relates to an integral solar energy collector storage systems. Generally, an integral collector storage system includes a tank system, a plurality of heat exchange tubes with at least some of the heat exchange tubes arranged within the tank system, a first glazing layer positioned over the tank system and a base plate positioned under the tank system. In one aspect of the invention, the tank system, the first glazing layer an the base plate each include protrusions and a clip is provided to hold the layers together. In another aspect of the invention, the first glazing layer and the base plate are ribbed to provide structural support. This arrangement is particularly useful when these components are formed from plastic. In yet another aspect of the invention, the tank system has a plurality of interconnected tank chambers formed from tubes. In this aspect, a supply header pipe and a fluid return header pipe are provided at a first end of the tank system. The heat exchange tubes have inlets coupled to the supply header pipe and outlets coupled to the return header pipe. With this arrangement, the heat exchange tubes may be inserted into the tank chambers from the first end of the tank system.

  9. Energy Department Announces $18 Million to Develop Solar Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solutions, Boost Grid Resiliency | Department of Energy 18 Million to Develop Solar Energy Storage Solutions, Boost Grid Resiliency Energy Department Announces $18 Million to Develop Solar Energy Storage Solutions, Boost Grid Resiliency January 19, 2016 - 11:33am Addthis News Media Contact 202-586-4940 DOENews@hq.doe.gov WASHINGTON, D.C. - As part of the Energy Department's Grid Modernization Initiative announced by Secretary Ernest Moniz last week to improve the resiliency, reliability and

  10. Energy Storage Technologies Available for Licensing - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Storage Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Marketing Summaries (134) Success Stories (3) Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Browse Energy

  11. HYBRID RADICAL ENERGY STORAGE DEVICE AND METHOD OF MAKING - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal 377648 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Return to Search HYBRID RADICAL ENERGY STORAGE DEVICE

  12. Hydrogen-based electrochemical energy storage

    DOE Patents [OSTI]

    Simpson, Lin Jay

    2013-08-06

    An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.

  13. Energy storage systems cost update : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Schoenung, Susan M.

    2011-04-01

    This paper reports the methodology for calculating present worth of system and operating costs for a number of energy storage technologies for representative electric utility applications. The values are an update from earlier reports, categorized by application use parameters. This work presents an update of energy storage system costs assessed previously and separately by the U.S. Department of Energy (DOE) Energy Storage Systems Program. The primary objective of the series of studies has been to express electricity storage benefits and costs using consistent assumptions, so that helpful benefit/cost comparisons can be made. Costs of energy storage systems depend not only on the type of technology, but also on the planned operation and especially the hours of storage needed. Calculating the present worth of life-cycle costs makes it possible to compare benefit values estimated on the same basis.

  14. Energy storage for hybrid remote power systems

    SciTech Connect (OSTI)

    Isherwood, W., LLNL

    1998-03-01

    Energy storage can be a cost-effective component of hybrid remote power systems. Storage serves the special role of taking advantage of intermittent renewable power sources. Traditionally this role has been played by lead-acid batteries, which have high life-cycle costs and pose special disposal problems. Hydrogen or zinc-air storage technologies can reduce life-cycle costs and environmental impacts. Using projected data for advanced energy storage technologies, LLNL ran an optimization for a hypothetical Arctic community with a reasonable wind resource (average wind speed 8 m/s). These simulations showed the life-cycle annualized cost of the total energy system (electric plus space heating) might be reduced by nearly 40% simply by adding wind power to the diesel system. An additional 20 to 40% of the wind-diesel cost might be saved by adding hydrogen storage or zinc-air fuel cells to the system. Hydrogen produced by electrolysis of water using intermittent, renewable power provides inexpensive long-term energy storage. Conversion back to electricity with fuel cells can be accomplished with available technology. The advantages of a hydrogen electrolysis/fuel cell system include low life-cycle costs for long term storage, no emissions of concern, quiet operation, high reliability with low maintenance, and flexibility to use hydrogen as a direct fuel (heating, transportation). Disadvantages include high capital costs, relatively low electrical turn-around efficiency, and lack of operating experience in utility settings. Zinc-air fuel cells can lower capital and life-cycle costs compared to hydrogen, with most of the same advantages. Like hydrogen systems, zinc-air technology promises a closed system for long-term storage of energy from intermittent sources. The turn around efficiency is expected to exceed 60%, while use of waste heat can potentially increase overall energy efficiency to over 80%.

  15. Kauai Island Utility Cooperative energy storage study.

    SciTech Connect (OSTI)

    Akhil, Abbas Ali; Yamane, Mike; Murray, Aaron T.

    2009-06-01

    Sandia National Laboratories performed an assessment of the benefits of energy storage for the Kauai Island Utility Cooperative. This report documents the methodology and results of this study from a generation and production-side benefits perspective only. The KIUC energy storage study focused on the economic impact of using energy storage to shave the system peak, which reduces generator run time and consequently reduces fuel and operation and maintenance (O&M) costs. It was determined that a 16-MWh energy storage system would suit KIUC's needs, taking into account the size of the 13 individual generation units in the KIUC system and a system peak of 78 MW. The analysis shows that an energy storage system substantially reduces the run time of Units D1, D2, D3, and D5 - the four smallest and oldest diesel generators at the Port Allen generating plant. The availability of stored energy also evens the diurnal variability of the remaining generation units during the off- and on-peak periods. However, the net economic benefit is insufficient to justify a load-leveling type of energy storage system at this time. While the presence of storage helps reduce the run time of the smaller and older units, the economic dispatch changes and the largest most efficient unit in the KIUC system, the 27.5-MW steam-injected combustion turbine at Kapaia, is run for extra hours to provide the recharge energy for the storage system. The economic benefits of the storage is significantly reduced because the charging energy for the storage is derived from the same fuel source as the peak generation source it displaces. This situation would be substantially different if there were a renewable energy source available to charge the storage. Especially, if there is a wind generation resource introduced in the KIUC system, there may be a potential of capturing the load-leveling benefits as well as using the storage to dampen the dynamic instability that the wind generation could introduce into

  16. US DRIVE Electrochemical Energy Storage Technical Team Roadmap | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Electrochemical Energy Storage Technical Team Roadmap US DRIVE Electrochemical Energy Storage Technical Team Roadmap This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles (PEVs). The Energy Storage activity comprises a number of research areas (including advanced materials research, cell level research, battery development, and enabling R&D which includes

  17. Aquifer thermal energy storage. International symposium: Proceedings

    SciTech Connect (OSTI)

    1995-05-01

    Aquifers have been used to store large quantities of thermal energy to supply process cooling, space cooling, space heating, and ventilation air preheating, and can be used with or without heat pumps. Aquifers are used as energy sinks and sources when supply and demand for energy do not coincide. Aquifer thermal energy storage may be used on a short-term or long-term basis; as the sole source of energy or as a partial storage; at a temperature useful for direct application or needing upgrade. The sources of energy used for aquifer storage are ambient air, usually cold winter air; waste or by-product energy; and renewable energy such as solar. The present technical, financial and environmental status of ATES is promising. Numerous projects are operating and under development in several countries. These projects are listed and results from Canada and elsewhere are used to illustrate the present status of ATES. Technical obstacles have been addressed and have largely been overcome. Cold storage in aquifers can be seen as a standard design option in the near future as it presently is in some countries. The cost-effectiveness of aquifer thermal energy storage is based on the capital cost avoidance of conventional chilling equipment and energy savings. ATES is one of many developments in energy efficient building technology and its success depends on relating it to important building market and environmental trends. This paper attempts to provide guidance for the future implementation of ATES. Individual projects have been processed separately for entry onto the Department of Energy databases.

  18. Videos - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 19, 2014, Videos David Willets Visits JCESR UK Universities and Science Minister, David Willetts, visited Argonne National Laboratory and the Joint Center for Energy Storage Research (JCESR). Read More December 18, 2013, Videos Clean Energy 2030: Building a Sustainable Future JCESR Director George Crabtree discusses the future of clean energy in "Clean Energy 2030: Building a Sustainable Future," a UChicago - Argonne - Fermilab Joint Speaker Series Event held at Argonne. Read

  19. Sandia Energy Carbon Capture & Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expansion of DOE-DOT Tight Oil Research Work http:energy.sandia.govexpansion-of-doe-dot-tight-oil-research-work http:energy.sandia.govexpansion-of-doe-dot-tight-oil-research...

  20. Appendix A: Energy storage technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The project financial evaluation section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  1. Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  2. Grid Energy Storage - December 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid Energy Storage - December 2013 Grid Energy Storage - December 2013 Modernizing the electric grid will help the nation meet the challenge of handling projected energy needs-including addressing climate change by relying on more energy from renewable sources-in the coming decades, while maintaining a robust and resilient electricity delivery system. By some estimates, the United States will need somewhere between 4 and 5 tera kilowatt-hours of electricity annually by 2050. Those planning and

  3. Flywheel energy storage advances using HTS bearings.

    SciTech Connect (OSTI)

    Mulcahy, T. M.

    1998-09-11

    High-Temperature-Superconducting (HT) bearings have the potential to reduce idling losses and make flywheel energy storage economical. Demonstration of large, high-speed flywheels is key to market penetration. Toward this goal, a flywheel system has been developed and tested with 5-kg to 15-kg disk-shaped rotors. Rlm speeds exceeded 400 mls and stored energies were >80 W-hr. Test implementation required technological advances in nearly all aspects of the flywheel system. Features and limitations of the design and tests are discussed, especially those related to achieving additional energy storage.

  4. Energy Storage Systems 2007 Peer Review- Utility & Commercial Applications Presentations

    Office of Energy Efficiency and Renewable Energy (EERE)

    Utility and commercial application project presentations from the 2007 Energy Storage Systems (ESS) peer review.

  5. International Conference on Integration of Renewable and Distributed Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources (IRED): Coming October 2016 Integration of Renewable and Distributed Energy Resources (IRED): Coming October 2016 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power &

  6. NREL: Energy Systems Integration - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Stay up-to-date with the latest energy systems integration news from NREL with the following resources. Energy Systems Integration Newsletter Read a monthly recap of NREL's...

  7. Energy Systems Integration Facility Overview

    ScienceCinema (OSTI)

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2014-06-10

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  8. Energy Systems Integration Facility Overview

    SciTech Connect (OSTI)

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2014-02-28

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  9. Project Profile: CSP Energy Storage Solutions - Multiple Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compared | Department of Energy Concentrating Solar Power » Project Profile: CSP Energy Storage Solutions - Multiple Technologies Compared Project Profile: CSP Energy Storage Solutions - Multiple Technologies Compared US Solar Holdings logo US Solar Holdings, under the Thermal Storage FOA, is aiming to demonstrate commercial, utility-scale thermal energy storage technologies and provide a path to cost-effective energy storage for CSP plants >50 MW. Approach US Solar Holdings is

  10. Underground-Energy-Storage Program, 1982 annual report

    SciTech Connect (OSTI)

    Kannberg, L.D.

    1983-06-01

    Two principal underground energy storage technologies are discussed--Seasonal Thermal Energy Storage (STES) and Compressed Air Energy Storage (CAES). The Underground Energy Storage Program objectives, approach, structure, and milestones are described, and technical activities and progress in the STES and CAES areas are summarized. STES activities include aquifer thermal energy storage technology studies and STES technology assessment and development. CAES activities include reservoir stability studies and second-generation concepts studies. (LEW)

  11. Integrating CO₂ storage with geothermal resources for dispatchable renewable electricity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Buscheck, Thomas A.; Bielicki, Jeffrey M.; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Edmunds, Thomas A.; Saar, Martin O.; Randolph, Jimmy B.

    2014-12-31

    We present an approach that uses the huge fluid and thermal storage capacity of the subsurface, together with geologic CO₂ storage, to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, nuclear, fossil) thermal resources, as well as energy from electrical grids. Captured CO₂ is injected into saline aquifers to store pressure, generate artesian flow of brine, and provide an additional working fluid for efficient heat extraction and power conversion. Concentric rings of injection and production wells are used to create a hydraulic divide to store pressure, CO₂, and thermal energy. Such storage can take excess power frommore » the grid and excess/waste thermal energy, and dispatch that energy when it is demanded, enabling increased penetration of variable renewables. Stored CO₂ functions as a cushion gas to provide enormous pressure-storage capacity and displaces large quantities of brine, which can be desalinated and/or treated for a variety of beneficial uses.« less

  12. Integrating CO₂ storage with geothermal resources for dispatchable renewable electricity

    SciTech Connect (OSTI)

    Buscheck, Thomas A.; Bielicki, Jeffrey M.; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Edmunds, Thomas A.; Saar, Martin O.; Randolph, Jimmy B.

    2014-12-31

    We present an approach that uses the huge fluid and thermal storage capacity of the subsurface, together with geologic CO₂ storage, to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, nuclear, fossil) thermal resources, as well as energy from electrical grids. Captured CO₂ is injected into saline aquifers to store pressure, generate artesian flow of brine, and provide an additional working fluid for efficient heat extraction and power conversion. Concentric rings of injection and production wells are used to create a hydraulic divide to store pressure, CO₂, and thermal energy. Such storage can take excess power from the grid and excess/waste thermal energy, and dispatch that energy when it is demanded, enabling increased penetration of variable renewables. Stored CO₂ functions as a cushion gas to provide enormous pressure-storage capacity and displaces large quantities of brine, which can be desalinated and/or treated for a variety of beneficial uses.

  13. Radiation augmentation energy storage system

    SciTech Connect (OSTI)

    Christe, K.O.

    1990-02-27

    This patent describes a method of converting radiation energy into chemical energy to produce a high-performance propellant. It comprises: photolytically converting oxygen to ozone; storing and stabilizing the ozone in liquid oxygen to form an ozone/liquid oxygen solution; and combusting the ozone/liquid oxygen solution with hydrogen.

  14. Fuel-Free Compressed-Air Energy Storage: Fuel-Free, Ubiquitous Compressed-Air Energy Storage and Power Conditioning

    SciTech Connect (OSTI)

    2010-09-13

    GRIDS Project: General Compression has developed a transformative, near-isothermal compressed air energy storage system (GCAES) that prevents air from heating up during compression and cooling down during expansion. When integrated with renewable generation, such as a wind farm, intermittent energy can be stored in compressed air in salt caverns or pressurized tanks. When electricity is needed, the process is reversed and the compressed air is expanded to produce electricity. Unlike conventional compressed air energy storage (CAES) projects, no gas is burned to convert the stored high-pressure air back into electricity. The result of this breakthrough is an ultra-efficient, fully shapeable, 100% renewable and carbon-free power product. The GCAES™ system can provide high quality electricity and ancillary services by effectively integrating renewables onto the grid at a cost that is competitive with gas, coal and nuclear generation.

  15. Energy Storage - Advanced Technology Development Merit Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Technology Development Merit Review Energy Storage - Advanced Technology Development Merit Review This document is a summary of the evaluation and comments provided by the review panel for the FY 2005 Department of Energy (DOE) Advanced Technology Development (ATD) program annual review. The review was held at the Argonne National Laboratory on August 9-10, 2005. A panel of knowledgeable, independent reviewers assessed the accomplishments of the ATD program and

  16. Chongqing Wanli Storage Battery Co | Open Energy Information

    Open Energy Info (EERE)

    Storage Battery Co. Place: Chongqing Municipality, China Sector: Solar, Vehicles, Wind energy Product: The scope of Wanli's power storage business includes batteries made for...

  17. Molten Nitrate Salt Development for Thermal Energy Storage in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An important component of thermal energy storage system optimization is selecting the working fluid used as the storage media andor heat transfer fluid. Large quantities of the ...

  18. Energy Storage Systems 2012 Peer Review Presentations - Poster...

    Broader source: Energy.gov (indexed) [DOE]

    2012 Peer Review - Low Cost, High-Energy Density Flywheel Storage Grid Demo - Mike Strasik, Boeing ... Electrochemical Flow Storage System - Mike Perry, UTRC (349.16 KB) ESS ...

  19. Energy Department Announces New Investment in Nuclear Fuel Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investment in Nuclear Fuel Storage Research Energy Department Announces New Investment in Nuclear Fuel Storage Research April 16, 2013 - 12:19pm Addthis NEWS MEDIA CONTACT (202)...

  20. Energy Systems Integration Events | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Events View presentations from past seminars and workshops. September 2016 IEA Forum on Integrating Energy Efficiency and Renewable Energy September 8, 2016 Paris, France Contact: Dr. Martha Symko-Davies NREL Director of Partnerships for ESI Dr. Martha Symko-Davies will speak at the September 8 IEA Forum on Integrating Energy Efficiency and Renewable Energy on a panel called "Sectoral challenges and approaches." Grid Modernization Initiative Devices and Integrated Systems Workshops

  1. Regenerative Fuel Cells for Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regenerative Fuel Cells for Energy Storage Regenerative Fuel Cells for Energy Storage Presentation by Corky Mittelsteadt, Giner Electrochemical Systems, at the NREL Reversible Fuel Cells Workshop, April 19, 2011 rev_fc_wkshp_mittelsteadt.pdf (723.94 KB) More Documents & Publications Reversible Fuel Cells Workshop Summary Report Development of Reversible Fuel Cell Systems at Proton Energy Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton

  2. LiH thermal energy storage device

    DOE Patents [OSTI]

    Olszewski, M.; Morris, D.G.

    1994-06-28

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures. 5 figures.

  3. Aquifer thermal energy (heat and chill) storage

    SciTech Connect (OSTI)

    Jenne, E.A.

    1992-11-01

    As part of the 1992 Intersociety Conversion Engineering Conference, held in San Diego, California, August 3--7, 1992, the Seasonal Thermal Energy Storage Program coordinated five sessions dealing specifically with aquifer thermal energy storage technologies (ATES). Researchers from Sweden, The Netherlands, Germany, Switzerland, Denmark, Canada, and the United States presented papers on a variety of ATES related topics. With special permission from the Society of Automotive Engineers, host society for the 1992 IECEC, these papers are being republished here as a standalone summary of ATES technology status. Individual papers are indexed separately.

  4. Simulation of diurnal thermal energy storage systems: Preliminary results

    SciTech Connect (OSTI)

    Katipamula, S.; Somasundaram, S.; Williams, H.R.

    1994-12-01

    This report describes the results of a simulation of thermal energy storage (TES) integrated with a simple-cycle gas turbine cogeneration system. Integrating TES with cogeneration can serve the electrical and thermal loads independently while firing all fuel in the gas turbine. The detailed engineering and economic feasibility of diurnal TES systems integrated with cogeneration systems has been described in two previous PNL reports. The objective of this study was to lay the ground work for optimization of the TES system designs using a simulation tool called TRNSYS (TRaNsient SYstem Simulation). TRNSYS is a transient simulation program with a sequential-modular structure developed at the Solar Energy Laboratory, University of Wisconsin-Madison. The two TES systems selected for the base-case simulations were: (1) a one-tank storage model to represent the oil/rock TES system, and (2) a two-tank storage model to represent the molten nitrate salt TES system. Results of the study clearly indicate that an engineering optimization of the TES system using TRNSYS is possible. The one-tank stratified oil/rock storage model described here is a good starting point for parametric studies of a TES system. Further developments to the TRNSYS library of available models (economizer, evaporator, gas turbine, etc.) are recommended so that the phase-change processes is accurately treated.

  5. Webinar Presentation - Energy Storage in State RPS - Dec. 19, 2011 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Presentation - Energy Storage in State RPS - Dec. 19, 2011 Webinar Presentation - Energy Storage in State RPS - Dec. 19, 2011 Dr. Imre Gyuk of the Office of Electricity Delivery and Energy Reliability presented "Grid Energy Storage: The Big Picture" as one of four guest speakers for a webinar on energy storage and renewable portfolio standards (RPS). The webinar was hosted by the State-Federal RPS Collaborative and the Clean Energy States Alliance (CESA) to

  6. Argonne OutLoud: Energy Storage - JCESR Goes Beyond the Lithium Ion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frontier - Joint Center for Energy Storage Research November 18, 2013, Videos Argonne OutLoud: Energy Storage - JCESR Goes Beyond the Lithium Ion Frontier Director George Crabtree discusses a new paradigm for battery research, integrating discovery science, battery design and pre-commercial prototyping in one interactive organization. This talk presents the vision and strategy of JCESR

  7. Sandia Energy - Solar Energy Grid Integration Systems (SEGIS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Grid Integration Systems (SEGIS) Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Solar Energy Grid Integration Systems...

  8. FY06 DOE Energy Storage Program PEER Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 DOE Energy Storage Program PEER Review FY07 DOE Energy Storage Program PEER Review John D. Boyes Sandia National Laboratories Mission Mission Develop advanced electricity storage and PE technologies, in partnership with industry, for modernizing and expanding the electric supply. This will improve the quality, reliability, flexibility and cost effectiveness of the existing system. Help create an energy storage industry Make energy storage ubiquitous ESS Program Makeup ESS Program Makeup ESS

  9. Project Profile: Novel Molten Salts Thermal Energy Storage for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Generation | Department of Energy Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation Project Profile: Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation Alabama logo The University of Alabama, under the Thermal Storage FOA, is developing thermal energy storage (TES) media consisting of low melting point (LMP) molten salt with high TES density for sensible heat storage systems. Approach They will conduct

  10. May 20 ESTAP Webinar: Commissioning Energy Storage | Department...

    Broader source: Energy.gov (indexed) [DOE]

    ET, Clean Energy State Alliance will host a webinar on the process of commissioning an energy storage system. Speakers include Dr. Imre Gyuk, Energy Storage Program Manager in the ...

  11. Lower-Energy Energy Storage System (LEESS) Component Evaluation

    SciTech Connect (OSTI)

    Gonder, J.; Cosgrove, J.; Shi, Y.; Saxon, A.; Pesaran, A.

    2014-10-01

    Alternate hybrid electric vehicle (HEV) energy storage systems (ESS) such as lithium-ion capacitors (LICs) and electrochemical double-layer capacitor (EDLC) modules have the potential for improved life, superior cold temperature performance, and lower long-term cost projections relative to traditional battery storage systems. If such lower-energy ESS (LEESS) devices can also be shown to maintain high HEV fuel savings, future HEVs designed with these devices could have an increased value proposition relative to conventional vehicles. NREL's vehicle test platform is helping validate the in-vehicle performance capability of alternative LEESS devices and identify unforeseen issues. NREL created the Ford Fusion Hybrid test platform for in-vehicle evaluation of such alternative LEESS devices, bench testing of the initial LIC pack, integration and testing of the LIC pack in the test vehicle, and bench testing and installation of an EDLC module pack. EDLC pack testing will continue in FY15. The in-vehicle LIC testing results suggest technical viability of LEESS devices to support HEV operation. Several LIC configurations tested demonstrated equivalent fuel economy and acceleration performance as the production nickel-metal-hydride ESS configuration across all tests conducted. The lowest energy LIC scenario demonstrated equivalent performance over several tests, although slightly higher fuel consumption on the US06 cycle and slightly slower acceleration performance. More extensive vehicle-level calibration may be able to reduce or eliminate these performance differences. The overall results indicate that as long as critical attributes such as engine start under worst case conditions can be retained, considerable ESS downsizing may minimally impact HEV fuel savings.

  12. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations: Data used in Geosphere Journal Article

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thomas A. Buscheck

    2015-06-01

    This data submission is for Phase 2 of Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations, which focuses on multi-fluid (CO2 and brine) geothermal energy production and diurnal bulk energy storage in geologic settings that are suitable for geologic CO2 storage. This data submission includes all data used in the Geosphere Journal article by Buscheck et al (2016). All assumptions are discussed in that article.

  13. Partnerships - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partnerships JCESR brings together high-powered scientists and engineers from ten universities, five national laboratories, and five industrial firms, and provides them with the tools and institutional backing needed to discover new materials, understand their basic science, accelerate technology development, and commercialize revolutionary energy storage technologies. The team's combined expertise spans the full innovation ecosystem - mission-driven basic research, innovative engineering,

  14. Energy Proportionality for Disk Storage Using Replication

    SciTech Connect (OSTI)

    Kim, Jinoh; Rotem, Doron

    2010-09-09

    Energy saving has become a crucial concern in datacenters as several reports predict that the anticipated energy costs over a three year period will exceed hardware acquisition. In particular, saving energy for storage is of major importance as storage devices (and cooling them off) may contribute over 25 percent of the total energy consumed in a datacenter. Recent work introduced the concept of energy proportionality and argued that it is a more relevant metric than just energy saving as it takes into account the tradeoff between energy consumption and performance. In this paper, we present a novel approach, called FREP (Fractional Replication for Energy Proportionality), for energy management in large datacenters. FREP includes areplication strategy and basic functions to enable flexible energy management. Specifically, our method provides performance guarantees by adaptively controlling the power states of a group of disks based on observed and predicted workloads. Our experiments, using a set of real and synthetic traces, show that FREP dramatically reduces energy requirements with a minimal response time penalty.

  15. Cost-Effective Solar Thermal Energy Storage: Thermal Energy Storage With Supercritical Fluids

    SciTech Connect (OSTI)

    2011-02-01

    Broad Funding Opportunity Announcement Project: UCLA and JPL are creating cost-effective storage systems for solar thermal energy using new materials and designs. A major drawback to the widespread use of solar thermal energy is its inability to cost-effectively supply electric power at night. State-of-the-art energy storage for solar thermal power plants uses molten salt to help store thermal energy. Molten salt systems can be expensive and complex, which is not attractive from a long-term investment standpoint. UCLA and JPL are developing a supercritical fluid-based thermal energy storage system, which would be much less expensive than molten-salt-based systems. The teams design also uses a smaller, modular, single-tank design that is more reliable and scalable for large-scale storage applications.

  16. Integrated Energy Systems (IES) for Buildings: A Market Assessment,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 2002 | Department of Energy (IES) for Buildings: A Market Assessment, September 2002 Integrated Energy Systems (IES) for Buildings: A Market Assessment, September 2002 Integrated Energy Systems (IES) combine on-site power or distributed generation technologies with thermally activated technologies to provide cooling, heating, humidity control, energy storage and/or other process functions using thermal energy normally wasted in the production of electricity/power. This study

  17. Energy Storage & Power Electronics 2008 Peer Review - Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (1.31 MB) ESPE 2008 Peer Review - 300kW Energy Storage Demonstration Project - Ib Olsen, Gaia Power.pdf (242.3 KB) ESPE 2008 Peer Review - Lead-Carbon Devices for Utility ...

  18. PNNL Solving the Energy Storage Challenge | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    PNNL teamed up with Northwest Public Television to produce a video on their effort on energy storage, "Saving the Sun for a Rainy Day." Niketa Kumar Niketa Kumar Public Affairs ...

  19. ACCESS: Argonne Collaborative Center for Energy Storage Science | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory ACCESS: Argonne Collaborative Center for Energy Storage Science Share Topic Energy Energy usage Energy storage Browse By - Any - General Argonne Information Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Diesel ---Electric drive technology ---Hybrid & electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Powertrain research --Building design ---Construction --Manufacturing -Energy sources --Renewable energy

  20. Energy Storage Program Planning Document (2011) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Planning Document (2011) Energy Storage Program Planning Document (2011) Energy storage systems have the potential to extend and optimize the operating capabilities of the grid, since power can be stored and used at a later time. This allows for flexibility in generation and distribution, improving the economic efficiency and utilization of the entire system while making the grid more reliable and robust. Additionally, alternatives to traditional power generation, including variable wind

  1. Energy Storage Systems 2006 Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Peer Review Energy Storage Systems 2006 Peer Review The 2006 Peer Review Meeting for the DOE Energy Storage Systems (ESS) Program was held in Washington DC on November 2-3, 2006. Current and completed program projects were presented and reviewed by a group of industry professionals. The agenda and ESS program overview are available below. Day 1 morning session presentations Day 1 afternoon session presentations Day 2 morning session presentations Day 2 afternoon session presentations ESS 2006

  2. SOLID PARTICLE THERMAL ENERGY STORAGE DESIGN FOR A FLUIDIZED...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and ...

  3. 9-26 QER Report: Energy Transmission, Storage, and Distribution...

    Broader source: Energy.gov (indexed) [DOE]

    -26 QER Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 QER ... National Renewable Energy Laboratory (Renewable Energy Deployment System, ReEDS) * ...

  4. Southern company energy storage study : a study for the DOE energy storage systems program.

    SciTech Connect (OSTI)

    Ellison, James; Bhatnagar, Dhruv; Black, Clifton; Jenkins, Kip

    2013-03-01

    This study evaluates the business case for additional bulk electric energy storage in the Southern Company service territory for the year 2020. The model was used to examine how system operations are likely to change as additional storage is added. The storage resources were allowed to provide energy time shift, regulation reserve, and spinning reserve services. Several storage facilities, including pumped hydroelectric systems, flywheels, and bulk-scale batteries, were considered. These scenarios were tested against a range of sensitivities: three different natural gas price assumptions, a 15% decrease in coal-fired generation capacity, and a high renewable penetration (10% of total generation from wind energy). Only in the elevated natural gas price sensitivities did some of the additional bulk-scale storage projects appear justifiable on the basis of projected production cost savings. Enabling existing peak shaving hydroelectric plants to provide regulation and spinning reserve, however, is likely to provide savings that justify the project cost even at anticipated natural gas price levels. Transmission and distribution applications of storage were not examined in this study. Allowing new storage facilities to serve both bulk grid and transmission/distribution-level needs may provide for increased benefit streams, and thus make a stronger business case for additional storage.

  5. 2012 Annual Merit Review Results Report - Energy Storage Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3_amr_02.pdf (11.12 MB) More Documents & Publications 2011 Annual Merit Review Results Report - Energy Storage Technologies 2010 DOE EERE Vehicle Technologies Program Merit Review - Energy Storage 2012 Annual Merit Review Results Report - Energy Storage Technologies

  6. 2012 Annual Merit Review Results Report - Energy Storage Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2_amr_02.pdf (10.14 MB) More Documents & Publications 2011 Annual Merit Review Results Report - Energy Storage Technologies 2012 Annual Merit Review Results Report - Energy Storage Technologies 2010 DOE EERE Vehicle Technologies Program Merit Review - Energy Storage

  7. 10 Questions with Energy Storage Expert Imre Gyuk | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Expert Imre Gyuk 10 Questions with Energy Storage Expert Imre Gyuk March 17, 2016 - 9:30am Addthis Dr. Imre Gyuk -- pictured speaking at a Green Mountain Power energy storage event -- was recently recognized for his game-changing work in energy storage. | Photo courtesy of the Clean Energy States Alliance. Dr. Imre Gyuk -- pictured speaking at a Green Mountain Power energy storage event -- was recently recognized for his game-changing work in energy storage. | Photo courtesy of

  8. Fact Sheet: Tehachapi Wind Energy Storage Project (May 2014) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Tehachapi Wind Energy Storage Project (May 2014) Fact Sheet: Tehachapi Wind Energy Storage Project (May 2014) The Tehachapi Wind Energy Storage Project (TSP) Battery Energy Storage System (BESS) consists of an 8 MW-4 hour (32 MWh) lithium-ion battery and a smart inverter system that is cutting-edge in scale and application. Southern California Edison (SCE) will test the BESS for 24 months to determine its capability and effectiveness to support 13 operational users. For more

  9. Integrated Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Integrated Energy Systems Address: 747 N Main Street Place: Orange, California Zip: 92868 Region: Southern CA Area Sector: Solar Product: EPC Year Founded: 1985 Phone Number:...

  10. China Integrated Energy | Open Energy Information

    Open Energy Info (EERE)

    integrated energy company in China engaged in three business segments: the production and sale of biodiesel, the wholesale distribution of finished oil and heavy oil...

  11. Energy Systems Integration Partnerships, NREL + Abengoa, Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abengoa at the Energy Systems Integration ... a major source of renewable electricity generation in the United States. ... tools to provide on-site and remote viewing of ...

  12. Residential Buildings Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Buildings Integration Residential Buildings Integration Zero Energy Ready Home Zero Energy Ready Home Zero Energy Ready Homes are so efficient that a renewable energy ...

  13. NREL: Energy Systems Integration - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Here, Secretary of Energy Ernest Moniz experiences a 3D wind turbine model during a tour of ... equipment to find solutions to the challenges of effectively integrating clean ...

  14. Staff | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cyber-Physical Systems Security and Resilience Center, and Energy Systems Integration ... Bryan Hannegan leads the lab's global initiative to optimize links among electricity, ...

  15. Transportation Storage Interface | Department of Energy

    Office of Environmental Management (EM)

    Storage Interface Transportation Storage Interface Regulation of Future Extended Storage and Transportation. Transportation Storage Interface (891.2 KB) More Documents & Publications Gap Analysis to Support Extended Storage of Used Nuclear Fuel Status Update: Extended Storage and Transportation Waste Confidence Activities Related to Storage of Spent Nuclear Fuel

  16. Energy conversion & storage program. 1994 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1995-04-01

    The Energy Conversion and Storage Program investigates state-of-the-art electrochemistry, chemistry, and materials science technologies for: (1) development of high-performance rechargeable batteries and fuel cells; (2) development of high-efficiency thermochemical processes for energy conversion; (3) characterization of complex chemical processes and chemical species; (4) study and application of novel materials for energy conversion and transmission. Research projects focus on transport process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  17. Energy Conversion & Storage Program, 1993 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1994-06-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  18. Energy Systems Integration Newsletter Archives | Energy Systems Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL Energy Systems Integration Newsletter Archives Read past issues of Energy Systems Integration News. July 2016 June 2016 May 2016 April 2016 March 2016 February 2016 January 2016 December 2015 November 2015 October 2015 September 2015 August 2015 July 2015 June 2015 April 2015 March 2015 February 2015 January 201

  19. Hydrogen Energy Storage (HES) Activities at NREL; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Eichman, J.

    2015-04-21

    This presentation provides an overview of hydrogen and energy storage, including hydrogen storage pathways and international power-to-gas activities, and summarizes the National Renewable Energy Laboratory's hydrogen energy storage activities and results.

  20. Grid Integration of Solar Energy Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid Integration of Solar Energy Workshop Grid Integration of Solar Energy Workshop The Grid Integration of Solar Energy Workshop on October 29, 2015 identified critical challenges ...

  1. Smart Storage Pty Ltd | Open Energy Information

    Open Energy Info (EERE)

    Storage Pty Ltd Jump to: navigation, search Name: Smart Storage Pty Ltd Place: Australia Product: Australia-based developer of hybrid battery storage solutions. References: Smart...

  2. Energy Storage Systems Are Coming: Are You Ready

    SciTech Connect (OSTI)

    Conover, David R.

    2015-12-05

    Energy storage systems (batteries) are not a new concept, but the technology being developed and introduced today with an increasing emphasis on energy storage, is new. The increased focus on energy, environmental and economic issues in the built environment is spurring increased application of renewables as well as reduction in peak energy use - both of which create a need for energy storage. This article provides an overview of current and anticipated energy storage technology, focusing on ensuring the safe application and use of energy storage on both the grid and customer side of the utility meter.

  3. Vehicle Technologies Office: 2013 Energy Storage R&D Progress...

    Energy Savers [EERE]

    Report, Sections 1-3 The FY 2013 Progress Report for Energy Storage R&D ... R&D Annual Report FY 2012 Annual Progress Report for Energy Storage R&D Vehicle Technologies Office: 2015

  4. Energy Department Awards $7 Million to Advance Hydrogen Storage...

    Office of Environmental Management (EM)

    7 Million to Advance Hydrogen Storage Systems Energy Department Awards 7 Million to Advance Hydrogen Storage Systems May 19, 2014 - 12:30pm Addthis The Energy Department today ...

  5. National Distributed Energy Storage in the Electric Grid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High ES U.S. energy storage deployment projections show exponential growth, so penetrations could be high. Behind-the-Meter energy storage projected to gain in market share. ...

  6. Energy Storage Systems 2014 Peer Review Presentations - Session...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Energy Storage Systems 2014 Peer Review Presentations - Session 5 OE's Energy Storage ... IA State PDF icon Na-Metal Halide Battery Development - Jin Y. Kim, PNNL PDF icon ...

  7. Energy Storage Systems 2012 Peer Review Presentations - Day 2...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Energy Storage Systems 2012 Peer Review Presentations - Day 2, Session 1 The U.S. DOE ... ESS 2012 Peer Review - Nitrogen-Oxygen Battery for Large Scale Energy Storage - Frank ...

  8. September 10th Webinar for the Energy Storage Safety Working...

    Energy Savers [EERE]

    0th Webinar for the Energy Storage Safety Working Group on Safety Validation and Risk Assessment R&D September 10th Webinar for the Energy Storage Safety Working Group on Safety ...

  9. Energy Storage Systems 2012 Peer Review Presentations - Poster...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ARRA Projects Energy Storage Systems 2012 Peer Review Presentations - Poster Session 2 (Day 2): ARRA Projects The U.S. DOE Energy Storage Systems Program (ESS) conducted a peer ...

  10. Energy Storage Systems 2012 Peer Review Presentations - Day 3...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Energy Storage Systems 2012 Peer Review Presentations - Day 3, Session 1 The U.S. DOE Energy Storage Systems Program (ESS) conducted a peer review and update meeting in ...

  11. Energy Storage Systems 2012 Peer Review Presentations - Day 3...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Energy Storage Systems 2012 Peer Review Presentations - Day 3, Session 3 The U.S. DOE Energy Storage Systems Program (ESS) conducted a peer review and update meeting in ...

  12. Fact Sheet: Energy Storage Testing and Validation (October 2012...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cell level to megawatt-scale electrical energy storage systems Testing and validating the ... camera Energy Storage Test Pad - System Testing * Scalable from 5 kW to 1 MW, * ...

  13. The Northeastern Center for Chemical Energy Storage (NECCES)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The NorthEast Center for Chemical Energy Storage (NECCES) has been moved to Binghamton ... The Northeastern Center for Chemical Energy Storage (NECCES) is an effort being led by ...

  14. NREL Leads Energy Systems Integration - Continuum Magazine | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Continuum showcases NREL's unique research capabilities and most impactful clean energy innovations. Dan Says From our director Dan says More than a Dream-a Renewable Electricity Future 01 More than a Dream-a Renewable Electricity Future With improved grid flexibility, storage, and transmission infrastructure, renewable energy can power the grid. A Living Laboratory for Energy Systems Integration 02 A Living Laboratory for Energy Systems Integration NREL is collecting, storing, analyzing, and

  15. Hybrid radical energy storage device and method of making - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal 24,992 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search Hybrid radical

  16. Hydrogen Energy Storage for Grid and Transportation Services...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    challenges, benefits and opportunities for commercial hydrogen energy storage applications to support grid services, variable electricity generation, and hydrogen vehicles. ...

  17. Project Profile: Novel Thermal Energy Storage Systems for Concentrating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Power | Department of Energy Energy Storage Systems for Concentrating Solar Power Project Profile: Novel Thermal Energy Storage Systems for Concentrating Solar Power University of Connecticut logo The University of Connecticut, under the Thermal Storage FOA, is developing innovative heat transfer devices and methodologies for novel thermal energy storage (TES) systems for CSP involving phase change materials (PCMs). Approach Specific objectives include embedding thermosyphons and/or

  18. Project Profile: CSP Energy Storage Solutions - Multiple Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Project Profile: CSP Energy Storage Solutions - Multiple ... construction techniques Development of system operation strategies Maximization of ...

  19. International Carbon Storage Body Praises Department of Energy Projects |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Carbon Storage Body Praises Department of Energy Projects International Carbon Storage Body Praises Department of Energy Projects November 8, 2012 - 12:00pm Addthis Washington, DC - Three U.S. Department of Energy (DOE) projects have been identified by an international carbon storage organization as an important advancement toward commercialization and large-scale deployment of carbon capture, utilization, and storage (CCUS) technologies. The projects were officially

  20. Sandian Spoke at the New York Energy Storage Expo

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spoke at the New York Energy Storage Expo - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management

  1. Sandia Participates in Preparation of New Mexico Renewable Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report Preparation of New Mexico Renewable Energy Storage Report - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy

  2. Collaborators - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaborators In addition to its 15 partner organizations, the JCESR team includes five funded collaborators that contribute to the research in countless ways. These leaders in energy storage R&D provide world-renowned researchers and state-of-the-art facilities to move JCESR goals forward. Harvard University Established in 1636, Harvard University is the oldest institution of higher education in the United States. Harvard is devoted to excellence in teaching, learning, and research and to

  3. Leadership - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership George Crabtree George Crabtree, an Argonne National Laboratory Distinguished Fellow, is the Director of the Joint Center for Energy Storage Research. As JCESR Director, Crabtree directs the overall strategy and goals of the research program and operational plan, acts as liaison to executives of JCESR partner organizations, and represents JCESR with external constituencies and advisory committees. View Bio Venkat Srinivasan Venkat Srinivasan, JCESR Deputy Director, Research and

  4. Reluctance apparatus for flywheel energy storage

    DOE Patents [OSTI]

    Hull, John R.

    2000-01-01

    A motor generator for providing high efficiency, controlled voltage output or storage of energy in a flywheel system. A motor generator includes a stator of a soft ferromagnetic material, a motor coil and a generator coil, and a rotor has at least one embedded soft ferromagnetic piece. Control of voltage output is achieved by use of multiple stator pieces and multiple rotors with controllable gaps between the stator pieces and the soft ferromagnetic piece.

  5. Get Pumped about Pumped Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Get Pumped about Pumped Storage Get Pumped about Pumped Storage April 27, 2015 - 9:11am Addthis Get Pumped about Pumped Storage Charlton I. Clark Integration Team Lead, Wind and Water Power Program Hydropower plays an important role as the backbone of America's electrical grid. It is highly flexible and can rapidly respond to fluctuations in the demand for electricity with pumped storage. Often described as "giant batteries," pumped storage hydropower (PSH) plants account for the bulk

  6. DOE Selects Nine Projects to Receive Funding for Carbon Storage Intelligent Monitoring and Well Integrity and Mitigation Research

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has selected nine projects to receive funding to research new CO2 storage technologies devoted to intelligent monitoring systems and advanced well integrity and mitigation approaches through DOE’s Carbon Storage Program.

  7. Addressing Climate Change with Next Generation Energy Storage Technology -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joint Center for Energy Storage Research March 19, 2015, Videos Addressing Climate Change with Next Generation Energy Storage Technology George Crabtree gives keynote at Loyola University In March 2015, George Crabtree gave the keynote address, "Addressing Climate Change with Next Generation Energy Storage Technology" at the Institute of Environmental Sustainability Climate Change Conference at Loyola University

  8. Project Profile: Regenerative Carbonate-Based Thermochemical Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System for Concentrating Solar Power | Department of Energy Regenerative Carbonate-Based Thermochemical Energy Storage System for Concentrating Solar Power Project Profile: Regenerative Carbonate-Based Thermochemical Energy Storage System for Concentrating Solar Power southern_research_institute_logo.jpg Southern Research Institute (SRI), through the Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage (CSP: ELEMENTS) funding

  9. High Efficiency Thermal Energy Storage System for CSP | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Thermal Energy Storage System for CSP High Efficiency Thermal Energy Storage System for CSP This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. csp_review_meeting_042413_singh.pdf (1.63 MB) More Documents & Publications High Efficiency Thermal Energy Storage System for CSP - FY13 Q1 High-Efficiency Thermal Energy Storage System for CSP - FY13 Q3 High-Efficiency Thermal Energy Storage

  10. June 30 Webinar: Measuring Energy Storage System Performance: A

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Government/Industry-Developed Protocol | Department of Energy 30 Webinar: Measuring Energy Storage System Performance: A Government/Industry-Developed Protocol June 30 Webinar: Measuring Energy Storage System Performance: A Government/Industry-Developed Protocol June 20, 2016 - 5:52pm Addthis The U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability, Energy Storage Systems Program, through the support of Pacific Northwest National Laboratory (PNNL) and Sandia

  11. Fact Sheet Available: Codes and Standards for Energy Storage System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance and Safety (June 2014) | Department of Energy Fact Sheet Available: Codes and Standards for Energy Storage System Performance and Safety (June 2014) Fact Sheet Available: Codes and Standards for Energy Storage System Performance and Safety (June 2014) June 25, 2014 - 12:10pm Addthis The U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability Energy Storage Systems Program, with the support of Pacific Northwest National Laboratory (PNNL) and Sandia

  12. Hydrogen Energy Storage for Grid and Transportation Services Workshop |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Energy Storage for Grid and Transportation Services Workshop Hydrogen Energy Storage for Grid and Transportation Services Workshop The U.S. Department of Energy (DOE) and Industry Canada held a Hydrogen Energy Storage for Grid and Transportation Services Workshop on May 14-15, 2014, in Sacramento, California. The workshop was hosted by the National Renewable Energy Laboratory (NREL) and the California Air Resources Board (CARB) to identify challenges, benefits, and

  13. Advanced Thermal Energy Storage: Novel Tuning of Critical Fluctuations for Advanced Thermal Energy Storage

    SciTech Connect (OSTI)

    2011-12-01

    HEATS Project: NAVITASMAX is developing a novel thermal energy storage solution. This innovative technology is based on simple and complex supercritical fluids— substances where distinct liquid and gas phases do not exist, and tuning the properties of these fluid systems to increase their ability to store more heat. In solar thermal storage systems, heat can be stored in NAVITASMAX’s system during the day and released at night—when the sun is not shining—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in NAVITASMAX’s system at night and released to produce electricity during daytime peak-demand hours.

  14. Role of Energy Storage with Renewable Electricity Generation

    SciTech Connect (OSTI)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-01-01

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  15. General Purpose Energy Storage (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: LDRD Country of Publication: United States Language: English Subject: Energy Storage(25) Energy Sciences Word Cloud More Like This Full Text File size NAView Full ...

  16. NREL Energy Storage Projects: FY2014 Annual Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Energy Storage Projects: FY2014 Annual Report Ahmad Pesaran, Chunmei Ban, Evan ... Yang, and Chao Zhang National Renewable Energy Laboratory Taeyoung Han General Motors ...

  17. "Solar Fuels and Energy Storage: The Unmet Needs" conference...

    Office of Science (SC) Website

    "Solar Fuels and Energy Storage: The Unmet Needs" conference sponsored by UNC: EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & ...

  18. Self-Assembled, Nanostructured Carbon for Energy Storage and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In the area of energy storage, the development of carbon nano- materials for improved ultracapacitors will enhance the com- mercial viability of renewable energy technologies such ...

  19. Most Viewed Documents - Energy Storage, Conversion, and Utilization...

    Office of Scientific and Technical Information (OSTI)

    Energy Storage, Conversion, and Utilization Process Equipment Cost Estimation, Final ... with IPST, now at Cargill. Inc) (2008) Energy Saving Potentials and Air Quality ...

  20. QER Report: Energy Transmission, Storage, and Distribution Infrastruct...

    Broader source: Energy.gov (indexed) [DOE]

    Chapter VII Appendix B NATURAL GAS NG-2 QER Report: Energy Transmission, Storage, and ... time horizon under consideration for the Quadrennial Energy Review). Increasing Demand. ...

  1. QER Report: Energy Transmission, Storage, and Distribution Infrastruct...

    Broader source: Energy.gov (indexed) [DOE]

    Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 Appendix A: LIQUID FUELS Introduction The existing liquid fuel component of the energy ...

  2. QER Report: Energy Transmission, Storage, and Distribution Infrastruct...

    Broader source: Energy.gov (indexed) [DOE]

    Chapter VII Appendix C ELECTRICITY EL-2 QER Report: Energy Transmission, Storage, and ... policy objectives, such as greenhouse gas reduction and state renewable energy goals. ...

  3. The Role of Energy Storage with Renewable Electricity Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Role of Energy Storage with Renewable Electricity Generation Paul Denholm, Erik Ela, Brendan Kirby, and Michael Milligan National Renewable Energy Laboratory 1617 Cole ...

  4. Energy Storage Monitoring System and In-Situ Impedance Measurement...

    Broader source: Energy.gov (indexed) [DOE]

    Path Dependence Vehicle Technologies Office Merit Review 2015: INL Electrochemical Performance Testing Energy Storage Testing and Analysis High Power and High Energy Development

  5. Engineering Nanocrystals for Energy Conversion and Storage, and...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Engineering Nanocrystals for Energy Conversion and Storage, and Sensors Citation Details In-Document Search Title: Engineering Nanocrystals for Energy Conversion and ...

  6. Innovative Phase hange Thermal Energy Storage Solution for Baseload...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phase hange Thermal Energy Storage Solution for Baseload Power Innovative Phase hange Thermal Energy ... for Dish Engine Solar Power Generation Dish Stirling High Performance ...

  7. FE Carbon Capture and Storage News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to maintain integrity of turbine components. May 10, 2013 Breakthrough Industrial Carbon Capture, Utilization and Storage Project Begins Full-Scale Operations Captured...

  8. Solar energy grid integration systems "SEGIS"

    SciTech Connect (OSTI)

    None, None

    2007-10-01

    The inevitable transformation of the electrical grid to a more distributed generation configuration requires solar system capabilities well beyond simple net-metered, grid-connected approaches. Time-of-use and peak-demand rate structures will require more sophisticated systems designs that integrate energy management and/or energy storage into the system architecture. Controlling power flow into and from the utility grid will be required to ensure grid reliability and power quality. Alternative protection strategies will also be required to accommodate large numbers of distributed energy sources. This document provides an overview of the R&D needs and describes some pathways to promising solutions. The solutions will, in many cases, require R&D of new components, innovative inverter/controllers, energy management systems, innovative energy storage and a suite of advanced control algorithms, technical methodologies, protocols and the associated communications. It is expected that these solutions will help to push the “advanced integrated system” and “smart grid” evolutionary processes forward in a faster but focused manner.

  9. Energy Department Awards $7 Million to Advance Hydrogen Storage Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 7 Million to Advance Hydrogen Storage Systems Energy Department Awards $7 Million to Advance Hydrogen Storage Systems May 19, 2014 - 1:43pm Addthis The Energy Department today announced $7 million for six projects to develop lightweight, compact, and inexpensive advanced hydrogen storage systems that will enable longer driving ranges and help make fuel cell systems competitive for different platforms and sizes of vehicles. These advances in hydrogen storage will be

  10. Energy Department Awards $7 Million to Advance Hydrogen Storage Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 7 Million to Advance Hydrogen Storage Systems Energy Department Awards $7 Million to Advance Hydrogen Storage Systems May 19, 2014 - 12:30pm Addthis The Energy Department today announced $7 million for six projects to develop lightweight, compact, and inexpensive advanced hydrogen storage systems that will enable longer driving ranges and help make fuel cell systems competitive for different platforms and sizes of vehicles. These advances in hydrogen storage will be

  11. Energy Storage and Distributed Energy Generation Project, Final Project Report

    SciTech Connect (OSTI)

    Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

    2008-03-31

    This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

  12. Chemical Hydrogen Storage Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage » Materials-Based Storage » Chemical Hydrogen Storage Materials Chemical Hydrogen Storage Materials The Fuel Cell Technologies Office's (FCTO's) chemical hydrogen storage materials research focuses on improving the volumetric and gravimetric capacity, transient performance, and efficient, cost-effective regeneration of the spent storage material. Technical Overview The category of chemical hydrogen storage materials generally refers to covalently bound hydrogen in either solid or

  13. Project Profile: Degradation Mechanisms for Thermal Energy Storage and Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transfer Fluid Containment Materials | Department of Energy Degradation Mechanisms for Thermal Energy Storage and Heat Transfer Fluid Containment Materials Project Profile: Degradation Mechanisms for Thermal Energy Storage and Heat Transfer Fluid Containment Materials National Renewable Energy Laboratory logo -- This project is inactive -- The National Renewable Energy Laboratory (NREL), with support from the University of Wisconsin and Sandia National Laboratories, under the National

  14. Sandia Energy - Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure Security, Microgrid, Modeling & Analysis, News, News & Events, Partnership, Renewable Energy, SMART...

  15. Integrated heat exchanger design for a cryogenic storage tank

    SciTech Connect (OSTI)

    Fesmire, J. E.; Bonner, T.; Oliveira, J. M.; Johnson, W. L.; Notardonato, W. U.; Tomsik, T. M.; Conyers, H. J.

    2014-01-29

    Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth, from Earth, or in space are envisioned for automobiles, aircraft, rockets, and spacecraft. These advancements rely on practical ways of storage, transfer, and handling of liquid hydrogen. Focusing on storage, an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125,000-liter capacity horizontal cylindrical tank, with vacuum jacket and multilayer insulation, and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening, complete modularity, pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification, and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach, problem solving, and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications.

  16. Energy Systems Integration Newsletter | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Newsletter A monthly recap of the latest energy systems integration (ESI) developments at NREL and around the world. Subscribe Archives August 2016 Read the latest ESI news from NREL. Photo of a visualization screen showing power grid modeling scenarios Study Shows Eastern U.S. Power Grid Can Support Upwards of 30% Wind and Solar Power Using high-performance computing capabilities and innovative visualization tools, NREL's newly released Eastern Renewable Energy Integration Study (ERGIS) shows

  17. Webinar Presentation: Energy Storage Solutions for Microgrids (November

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2012) | Department of Energy Presentation: Energy Storage Solutions for Microgrids (November 2012) Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) On November 7, 2012, Clean Energy States Aliance (CESA) hosted a webinar with Connecticut DEEP in conjuction with Sandia National Lab and DOE on State and Federal Energy Storage Technology Partnership (ESTAP). The four guest speakers were Veronica Szczerkowski (CT DEEP), Imre Gyuk (DOE), Matt Lazarewicz (CESA

  18. Purchasing Energy-Efficient Residential Gas Storage Water Heaters |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Gas Storage Water Heaters Purchasing Energy-Efficient Residential Gas Storage Water Heaters The Federal Energy Management Program (FEMP) provides acquisition guidance for residential gas storage water heaters, a product category covered by ENERGY STAR efficiency requirements. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products or FEMP-designated products in all product categories covered by these programs and in any acquisition

  19. Thermal energy storage for coal-fired power generation

    SciTech Connect (OSTI)

    Drost, M.K.; Somasundaram, S.; Brown, D.R.; Antoniak, Z.I.

    1990-11-01

    This paper presents an engineering and economic evaluation of using thermal energy storage (TES) with coal-fired conventional and combined cycle power plants. In the first case, conventional pulverized coal combustion equipment was assumed to continuously operate to heat molten nitrate salt which was then stored in a tank. During intermediate-load demand periods, hot salt was withdrawn from storage and used to generate steam for a Rankine steam power cycle. This allowed the coal-fired salt heater to be approximately one-third the size of a coal-fired boiler in a conventional cycling plant. The use of nitrate salt TES also reduced the levelized cost of power by between 5% and 24% depends on the operating schedule. The second case evaluate the use of thermal energy storage with an integrated gasification combined cycle (IGCC) power plant. In this concept, the nitrate salt was heated by a combination of the gas turbine exhaust and the hot fuel gas. The IGCC plant also contained a low-temperature storage unit that uses a mixture of oil and rock as the thermal storage medium. Thermal energy stored in the low-temperature TES was used to preheat the feedwater after it leaves the condenser and to produce process steam for other applications in the IGCC plant. This concept study also predicted a 5% to 20% reduction in levelized cost of power compared to other coal-fired alternatives. If significant escalation rates in the price of fuel were assumed, the concept could be competitive with natural-gas-fired intermediate-load power generation. A sensitivity analysis of using a direct-contact heat exchanger instead of the conventional finned-tube design showed a significant reduction in the installed capital cost. 3 refs., 2 figs., 6 tabs.

  20. ESTER, Enel integrated System for TEsts on stoRage (Smart Grid...

    Open Energy Info (EERE)

    ESTER, Enel integrated System for TEsts on stoRage (Smart Grid Project) Jump to: navigation, search Project Name ESTER, Enel integrated System for TEsts on stoRage Country Italy...

  1. Sandia Energy Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efforts-during-recent-houston-press-conferencefeed 0 Recent Sandia Secure, Scalable Microgrid Advanced Controls Research Accomplishments http:energy.sandia.gov...

  2. Energy Systems Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Campus Subdivision (feeder) Community (substation) Area (Service Territory) Region ... with PV at end of circuit Utility Substation Transmission Distribution Campus Energy ...

  3. National Renewable Energy Laboratory's Energy Systems Integration Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview | Department of Energy National Renewable Energy Laboratory's Energy Systems Integration Facility Overview National Renewable Energy Laboratory's Energy Systems Integration Facility Overview This brochure describes the Energy Systems Integration Facility at National Renewable Energy Laboratory. Download the National Renewable Energy Laboratory's energy systems integration facility overview. (4.91 MB) More Documents & Publications Facilities and Infrastructure Program FY 2016

  4. Energy storage benefits and market analysis handbook : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Eyer, James M.; Corey, Garth P.; Iannucci, Joseph J., Jr.

    2004-12-01

    This Guide describes a high level, technology-neutral framework for assessing potential benefits from and economic market potential for energy storage used for electric utility-related applications. In the United States use of electricity storage to support and optimize transmission and distribution (T&D) services has been limited due to high storage system cost and by limited experience with storage system design and operation. Recent improvement of energy storage and power electronics technologies, coupled with changes in the electricity marketplace, indicate an era of expanding opportunity for electricity storage as a cost-effective electric resource. Some recent developments (in no particular order) that drive the opportunity include: (1) states adoption of the renewables portfolio standard (RPS), which may increased use of renewable generation with intermittent output, (2) financial risk leading to limited investment in new transmission capacity, coupled with increasing congestion on some transmission lines, (3) regional peaking generation capacity constraints, and (4) increasing emphasis on locational marginal pricing (LMP).

  5. NV energy electricity storage valuation : a study for the DOE Energy Storage Systems program.

    SciTech Connect (OSTI)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader; Jin, Chunlian

    2013-06-01

    This study examines how grid-level electricity storage may benefit the operations of NV Energy, and assesses whether those benefits are likely to justify the cost of the storage system. To determine the impact of grid-level storage, an hourly production cost model of the Nevada Balancing Authority (%22BA%22) as projected for 2020 was created. Storage was found to add value primarily through the provision of regulating reserve. Certain storage resources were found likely to be cost-effective even without considering their capacity value, as long as their effectiveness in providing regulating reserve was taken into account. Giving fast resources credit for their ability to provide regulating reserve is reasonable, given the adoption of FERC Order 755 (%22Pay-for-performance%22). Using a traditional five-minute test to determine how much a resource can contribute to regulating reserve does not adequately value fast-ramping resources, as the regulating reserve these resources can provide is constrained by their installed capacity. While an approximation was made to consider the additional value provided by a fast-ramping resource, a more precise valuation requires an alternate regulating reserve methodology. Developing and modeling a new regulating reserve methodology for NV Energy was beyond the scope of this study, as was assessing the incremental value of distributed storage.

  6. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect (OSTI)

    None, None

    2012-11-30

    Compressed Air Energy Storage (CAES) is a hybrid energy storage and generation concept that has many potential benefits especially in a location with increasing percentages of intermittent wind energy generation. The objectives of the NYSEG Seneca CAES Project included: for Phase 1, development of a Front End Engineering Design for a 130MW to 210 MW utility-owned facility including capital costs; project financials based on the engineering design and forecasts of energy market revenues; design of the salt cavern to be used for air storage; draft environmental permit filings; and draft NYISO interconnection filing; for Phase 2, objectives included plant construction with a target in-service date of mid-2016; and for Phase 3, objectives included commercial demonstration, testing, and two-years of performance reporting. This Final Report is presented now at the end of Phase 1 because NYSEG has concluded that the economics of the project are not favorable for development in the current economic environment in New York State. The proposed site is located in NYSEG’s service territory in the Town of Reading, New York, at the southern end of Seneca Lake, in New York State’s Finger Lakes region. The landowner of the proposed site is Inergy, a company that owns the salt solution mining facility at this property. Inergy would have developed a new air storage cavern facility to be designed for NYSEG specifically for the Seneca CAES project. A large volume, natural gas storage facility owned and operated by Inergy is also located near this site and would have provided a source of high pressure pipeline quality natural gas for use in the CAES plant. The site has an electrical take-away capability of 210 MW via two NYSEG 115 kV circuits located approximately one half mile from the plant site. Cooling tower make-up water would have been supplied from Seneca Lake. NYSEG’s engineering consultant WorleyParsons Group thoroughly evaluated three CAES designs and concluded that any

  7. Energy conversion & storage program. 1995 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1996-06-01

    The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

  8. Two New Energy Storage Safety Reports Now Available | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Two New Energy Storage Safety Reports Now Available Two New Energy Storage Safety Reports Now Available October 14, 2014 - 5:33pm Addthis The Office of Electricity Delivery and Energy Reliability has released two reports on energy storage safety - "Overview of Development and Deployment of Codes, Standards and Regulations Affecting Energy Storage System Safety in the United States" and "Inventory of Safety-Related Codes and Standards for Energy Storage Systems." The first

  9. Development of Molecular Electrocatalysts for Energy Storage

    SciTech Connect (OSTI)

    DuBois, Daniel L.

    2014-02-20

    Molecular electrocatalysts can play an important role in energy storage and utilization reactions needed for intermittent renewable energy sources. This manuscript describes three general themes that our laboratories have found useful in the development of molecular electrocatalysts for reduction of CO2 to CO and for H2 oxidation and production. The first theme involves a conceptual partitioning of catalysts into first, second, and outer coordination spheres. This is illustrated with the design of electrocatalysts for CO2 reduction to CO using first and second coordination spheres and for H2 production catalysts using all three coordination spheres. The second theme focuses on the development of thermodynamic models that can be used to design catalysts to avoid high energy and low energy intermediates. In this research, new approaches to the measurement of thermodynamic hydride donor and acceptor abilities of transition metal complexes were developed. Combining this information with other thermodynamic information such as pKa values and redox potentials led to more complete thermodynamic descriptions of transition metal hydride, dihydride, and related species. Relationships extracted from this information were then used to develop models that are powerful tools for predicting and understanding the relative free energies of intermediates in catalytic reactions. The third theme is the control of proton movement during electrochemical fuel generation and utilization reactions. This research involves the incorporation of pendant amines in the second coordination sphere that can facilitate H-H bond heterolysis and heteroformation, intramolecular and intermolecular proton transfer steps, and the coupling of proton and electron transfer steps. Studies also indicate an important role for outer coordination sphere in the delivery of protons to the second coordination sphere. Understanding these proton transfer reactions and their

  10. Hydrogen Energy Storage: Grid and Transportation Services Workshop Proceedings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Structure / 1 02 Hydrogen Energy Storage: Grid and Transportation Services NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. February 2015 Hydrogen Energy Storage: Grid and Transportation Services Proceedings of an Expert Workshop Convened by the U.S. Department of Energy and Industry Canada, Hosted by the National Renewable Energy Laboratory and the California Air Resources

  11. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Energy Storage: Experimental analysis and modeling Monterey Gardiner U.S. Department of Energy Fuel Cell Technologies Office 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Hydrogen Energy Storage: Experimental analysis and modeling FCTO Webinar Josh Eichman, PhD

  12. Hydrogen Storage - Current Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage - Current Technology Hydrogen Storage - Current Technology Hydrogen storage is a significant challenge for the development and viability of hydrogen-powered vehicles. On-board hydrogen storage in the range of approximately 5-13 kg is required to enable a driving range of greater than 300 miles for the full platform of light-duty automotive vehicles using fuel cell power plants. Hydrogen Storage Technologies Current on-board hydrogen storage approaches involve compressed hydrogen gas

  13. Grid Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Grid Integration Grid Integration Grid Integration The Wind Program works with electric grid operators, utilities, regulators, and industry to create new strategies for incorporating increasing amounts of wind energy into the power system while maintaining economic and reliable operation of the grid. Utilities have been increasingly deploying wind power to provide larger portions of electricity generation. However, many utilities also express concerns about wind

  14. Energy Department Advances Carbon Capture and Storage Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Capture and Storage Research on Two Fronts Energy Department Advances Carbon Capture and Storage Research on Two Fronts September 16, 2009 - 1:00pm Addthis Washington, DC - ...

  15. Economic Analysis Case Studies of Battery Energy Storage with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economic Analysis Case Studies of Battery Energy Storage with SAM Nicholas DiOrio, Aron Dobos, ... to use the storage system to increase the system value and mitigate demand charges. ...

  16. Energy Storage Research and Development 2008 Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EnErgy StoragE rESEarch and dEvElopmEnt annual progress report 2008 V e h i c l e T e c h ......... 3 II.A System Development ......

  17. Zibo Storage Battery Factory | Open Energy Information

    Open Energy Info (EERE)

    Storage Battery Factory Jump to: navigation, search Name: Zibo Storage Battery Factory Place: Zibo, Shandong Province, China Zip: 255056 Product: China-based affiliate of CSIC...

  18. Comments by the Energy Storage Association to the Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Advisory Council - March 13, 2014 | Department of Energy by the Energy Storage Association to the Department of Energy Electricity Advisory Council - March 13, 2014 Comments by the Energy Storage Association to the Department of Energy Electricity Advisory Council - March 13, 2014 Public comments by the Energy Storage Association to the Department of Energy Electricity Advisory Council presented at the March 13, 2014 meeting of the EAC. Comments by the Energy Storage Association

  19. Energy Storage System Safety Reports - August 2014 and September 2014 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy System Safety Reports - August 2014 and September 2014 Energy Storage System Safety Reports - August 2014 and September 2014 Energy storage for stationary applications is one of the fastest growing areas in the utility field. As the technology expands, the need for safety and uniformity in standards also increases. As part of the OE Energy Storage Program Safety Initiative, OE has released two reports prepared by Pacific Northwest National Laboratory. The first report -

  20. Extreme Temperature Energy Storage and Generation, for Cost and Risk

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduction in Geothermal Exploration | Department of Energy Extreme Temperature Energy Storage and Generation, for Cost and Risk Reduction in Geothermal Exploration Extreme Temperature Energy Storage and Generation, for Cost and Risk Reduction in Geothermal Exploration Extreme Temperature Energy Storage and Generation, for Cost and Risk Reduction in Geothermal Exploration presentation at the April 2013 peer review meeting held in Denver, Colorado. fast_cap_sys_peer2013.pdf (1.51 MB) More