National Library of Energy BETA

Sample records for integrated dynamic electron

  1. Integrated Dynamic Electron Solutions, Inc. | Department of Energy

    Office of Environmental Management (EM)

    Integrated Dynamic Electron Solutions, Inc. America's Next Top Energy Innovator Challenge 333 likes Integrated Dynamic Electron Solutions, Inc. Lawrence Livermore National Laboratory Dynamic Transmission Electron Microscopes DTEM reveal unprecedented details of the mechanisms underlying a host of nanoscale systems that are at the core of our current and future energy economy. A vast and growing number of materials utilized in the energy sector rely on nanostructured materials and their unique

  2. Field calculations, single-particle tracking, and beam dynamics with space charge in the electron lens for the Fermilab Integrable Optics Test Accelerator

    SciTech Connect (OSTI)

    Noll, Daniel; Stancari, Giulio

    2015-11-17

    An electron lens is planned for the Fermilab Integrable Optics Test Accelerator as a nonlinear element for integrable dynamics, as an electron cooler, and as an electron trap to study space-charge compensation in rings. We present the main design principles and constraints for nonlinear integrable optics. A magnetic configuration of the solenoids and of the toroidal section is laid out. Singleparticle tracking is used to optimize the electron path. Electron beam dynamics at high intensity is calculated with a particle-in-cell code to estimate current limits, profile distortions, and the effects on the circulating beam. In the conclusions, we summarize the main findings and list directions for further work.

  3. Dynamic Transmission Electron Microscopy

    SciTech Connect (OSTI)

    Evans, James E.; Jungjohann, K. L.; Browning, Nigel D.

    2012-10-12

    Dynamic transmission electron microscopy (DTEM) combines the benefits of high spatial resolution electron microscopy with the high temporal resolution of ultrafast lasers. The incorporation of these two components into a single instrument provides a perfect platform for in situ observations of material processes. However, previous DTEM applications have focused on observing structural changes occurring in samples exposed to high vacuum. Therefore, in order to expand the pump-probe experimental regime to more natural environmental conditions, in situ gas and liquid chambers must be coupled with Dynamic TEM. This chapter describes the current and future applications of in situ liquid DTEM to permit time-resolved atomic scale observations in an aqueous environment, Although this chapter focuses mostly on in situ liquid imaging, the same research potential exists for in situ gas experiments and the successful integration of these techniques promises new insights for understanding nanoparticle, catalyst and biological protein dynamics with unprecedented spatiotemporal resolution.

  4. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronic Thermal System Performance and Integration Integrated Power Module Cooling Vehicle Technologies Office: 2009 Advanced Power Electronics R&D Annual Progress Report

  5. Dynamic imaging with electron microscopy

    ScienceCinema (OSTI)

    Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

    2014-05-30

    Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

  6. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Integrated Vehicle Thermal Management

  7. Electronic unit integrated into a flexible polymer body (Patent...

    Office of Scientific and Technical Information (OSTI)

    Electronic unit integrated into a flexible polymer body Citation Details In-Document Search Title: Electronic unit integrated into a flexible polymer body A peel and stick ...

  8. Monolithic integration of silicon electronics and photonics.

    SciTech Connect (OSTI)

    Lentine, Anthony L.; Zortman, William A.; Trotter, Douglas Chandler; Watts, Michael R.

    2010-10-01

    A low power modulator is monolithically integrated with a radiation hardened CMOS driver. This integrated optoelectronic device demonstrates 1.68mW power consumption at 2Gbps.

  9. Power Electronic Thermal System Performance and Integration | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ape_13_bennion.pdf More Documents & Publications Power Electronic Thermal System Performance and Integration Integrated Power Module Cooling Vehicle Technologies Office: 2009 Advanced Power Electronics R&D Annual Progress Report

  10. Adjoint Fokker-Planck equation and runaway electron dynamics...

    Office of Scientific and Technical Information (OSTI)

    2017 Title: Adjoint Fokker-Planck equation and runaway electron dynamics Authors: Liu, Chang 1 ; Brennan, Dylan P. 1 ; Bhattacharjee, Amitava 1 ; Boozer, Allen H. 2 + Show...

  11. Method for integrating microelectromechanical devices with electronic circuitry

    DOE Patents [OSTI]

    Montague, Stephen (Albuquerque, NM); Smith, James H. (Albuquerque, NM); Sniegowski, Jeffry J. (Albuquerque, NM); McWhorter, Paul J. (Albuquerque, NM)

    1998-01-01

    A method for integrating one or more microelectromechanical (MEM) devices with electronic circuitry. The method comprises the steps of forming each MEM device within a cavity below a device surface of the substrate; encapsulating the MEM device prior to forming electronic circuitry on the substrate; and releasing the MEM device for operation after fabrication of the electronic circuitry. Planarization of the encapsulated MEM device prior to formation of the electronic circuitry allows the use of standard processing steps for fabrication of the electronic circuitry.

  12. Method for integrating microelectromechanical devices with electronic circuitry

    DOE Patents [OSTI]

    Montague, S.; Smith, J.H.; Sniegowski, J.J.; McWhorter, P.J.

    1998-08-25

    A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry. The method comprises the steps of forming each MEM device within a cavity below a device surface of the substrate; encapsulating the MEM device prior to forming electronic circuitry on the substrate; and releasing the MEM device for operation after fabrication of the electronic circuitry. Planarization of the encapsulated MEM device prior to formation of the electronic circuitry allows the use of standard processing steps for fabrication of the electronic circuitry. 13 figs.

  13. Electron dynamics in intense laser fields with Bohmian trajectories |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stanford Synchrotron Radiation Lightsource Electron dynamics in intense laser fields with Bohmian trajectories Wednesday, March 2, 2016 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Hossein Z. Jooya, University of Kansas Program Description The electron quantum dynamics of atomic hydrogen under intense laser fields is investigated by means of the De Broglie-Bohm framework of Bohmian mechanics. This method is used to explore the sub-cycle multiphoton ionization dynamics of the

  14. U31: Vehicle Stability and Dynamics: Electronic Stability Control

    SciTech Connect (OSTI)

    Petrolino, Joseph; Spezia, Tony; Arant, Michael; Delorenzis, Damon; LaClair, Tim J; Lim, Alvin; Pape, Doug

    2011-01-01

    A team led by NTRCI is working to improve the roll and yaw stability of heavy duty combination trucks through developing stability algorithms, assembling demonstration hardware, and investigating robust wireless communication. Modern electronic stability control (ESC) products automatically slow a vehicle rounding a corner too quickly or apply individual brakes when necessary to improve the steering characteristics of a vehicle. Air brake systems in North America provide no electronic communication between a tractor and semitrailer, limiting the degree to which control systems can be optimized. Prior research has demonstrated stability improvements where dynamic measurements and control commands are communicated between units of a vehicle. Three related activities were undertaken: (1) Develop an algorithm for the optimum yaw and roll control of a combination vehicle. Vehicle state parameters needed to control the vehicle and the proper brake response were determined. An integrated stability control for the tractor and semitrailer requires communication between the two units. Dynamic models were used to assess the algorithm. (2) Implement the ESC algorithm in the laboratory. Hardware components suitable for the harsh environment for measurement, sensor-to-controller communication, and semitrailer-to-tractor communication and brake actuation were specified and assembled as a working system. The goal was to collect the needed vehicle state information, transmit the information to the ESC system, and then actuate the brakes in response to controller commands. (3) Develop a wireless network with the data rate and reliability necessary to communicate dynamic signals for a vehicle stability control system. Adaptive connectivity-aware, multi-hop routing was selected because it can perform in the harsh environment where packet collisions and fading often will exist. The protocol is to give high priority to urgent messages.

  15. The integration of cryogenic cooling systems with superconducting electronic systems

    SciTech Connect (OSTI)

    Green, Michael A.

    2003-07-01

    The need for cryogenic cooling has been critical issue that has kept superconducting electronic devices from reaching the market place. Even though the performance of the superconducting circuit is superior to silicon electronics, the requirement for cryogenic cooling has put the superconducting devices at a disadvantage. This report will talk about the various methods for refrigerating superconducting devices. Cryocooler types will be compared for vibration, efficiency, and cost. Some solutions to specific problems of integrating cryocoolers to superconducting devices are presented.

  16. Electronic Structure, Phonon Dynamical Properties, and CO2 Capture...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Electronic Structure, Phonon Dynamical Properties, and CO2 Capture Capability of Na2-xMxZrO3 ( MLi ,K): Density-Functional Calculations and Experimental...

  17. Power Electronic Thermal System Performance and Integration | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ape016_bennion_2010_o.pdf More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Integrated Vehicle Thermal Management

  18. Correlated electron dynamics with time-dependent quantum Monte Carlo:

    Office of Scientific and Technical Information (OSTI)

    Three-dimensional helium (Journal Article) | SciTech Connect Correlated electron dynamics with time-dependent quantum Monte Carlo: Three-dimensional helium Citation Details In-Document Search Title: Correlated electron dynamics with time-dependent quantum Monte Carlo: Three-dimensional helium Here the recently proposed time-dependent quantum Monte Carlo method is applied to three dimensional para- and ortho-helium atoms subjected to an external electromagnetic field with amplitude sufficient

  19. Antenna with distributed strip and integrated electronic components

    DOE Patents [OSTI]

    Rodenbeck, Christopher T. (Albuquerque, NM); Payne, Jason A. (Albuquerque, NM); Ottesen, Cory W. (Albuquerque, NM)

    2008-08-05

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element can be in proximity to a ground conductor and/or arranged as a dipole. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. An antenna can comprise a distributed strip patterned on a printed wiring board, integrated with electronic components mounted on top of or below the distributed strip, and substantially within the extents of the distributed strip. Mounting of electronic components on top of or below the distributed strip has little effect on the performance of the antenna, and allows for realizing the combination of the antenna and integrated components in a compact form. An embodiment of the invention comprises an antenna including a distributed strip, integrated with a battery mounted on the distributed strip.

  20. Electronic Structure, Phonon Dynamical Properties, and Capture Capability

    Office of Scientific and Technical Information (OSTI)

    of Na2-xMxZrO3 (M=Li,K): Density-Functional Calculations and Experimental Validations (Journal Article) | SciTech Connect Electronic Structure, Phonon Dynamical Properties, and Capture Capability of Na2-xMxZrO3 (M=Li,K): Density-Functional Calculations and Experimental Validations Citation Details In-Document Search Title: Electronic Structure, Phonon Dynamical Properties, and Capture Capability of Na2-xMxZrO3 (M=Li,K): Density-Functional Calculations and Experimental Validations Authors:

  1. Method for integrating microelectromechanical devices with electronic circuitry

    DOE Patents [OSTI]

    Barron, Carole C. (Austin, TX); Fleming, James G. (Albuquerque, NM); Montague, Stephen (Albuquerque, NM)

    1999-01-01

    A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry on a common substrate. The MEM device can be fabricated within a substrate cavity and encapsulated with a sacrificial material. This allows the MEM device to be annealed and the substrate planarized prior to forming electronic circuitry on the substrate using a series of standard processing steps. After fabrication of the electronic circuitry, the electronic circuitry can be protected by a two-ply protection layer of titanium nitride (TiN) and tungsten (W) during an etch release process whereby the MEM device is released for operation by etching away a portion of a sacrificial material (e.g. silicon dioxide or a silicate glass) that encapsulates the MEM device. The etch release process is preferably performed using a mixture of hydrofluoric acid (HF) and hydrochloric acid (HCI) which reduces the time for releasing the MEM device compared to use of a buffered oxide etchant. After release of the MEM device, the TiN:W protection layer can be removed with a peroxide-based etchant without damaging the electronic circuitry.

  2. Dynamic Electronic Control of Catalytic Converters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electronic Control of Catalytic Converters Dynamic Electronic Control of Catalytic Converters Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_stout.pdf More Documents & Publications Commonalities between Non-road and On-road Diesel Emissions Diesel Injection Shear-Stress

  3. Quantifying chaotic dynamics from integrate-and-fire processes

    SciTech Connect (OSTI)

    Pavlov, A. N.; Pavlova, O. N.; Mohammad, Y. K.; Kurths, J.

    2015-01-15

    Characterizing chaotic dynamics from integrate-and-fire (IF) interspike intervals (ISIs) is relatively easy performed at high firing rates. When the firing rate is low, a correct estimation of Lyapunov exponents (LEs) describing dynamical features of complex oscillations reflected in the IF ISI sequences becomes more complicated. In this work we discuss peculiarities and limitations of quantifying chaotic dynamics from IF point processes. We consider main factors leading to underestimated LEs and demonstrate a way of improving numerical determining of LEs from IF ISI sequences. We show that estimations of the two largest LEs can be performed using around 400 mean periods of chaotic oscillations in the regime of phase-coherent chaos. Application to real data is discussed.

  4. Photocathode Optimization for a Dynamic Transmission Electron Microscope: Final Report

    SciTech Connect (OSTI)

    Ellis, P; Flom, Z; Heinselman, K; Nguyen, T; Tung, S; Haskell, R; Reed, B W; LaGrange, T

    2011-08-04

    The Dynamic Transmission Electron Microscope (DTEM) team at Harvey Mudd College has been sponsored by LLNL to design and build a test setup for optimizing the performance of the DTEM's electron source. Unlike a traditional TEM, the DTEM achieves much faster exposure times by using photoemission from a photocathode to produce electrons for imaging. The DTEM team's work is motivated by the need to improve the coherence and current density of the electron cloud produced by the electron gun in order to increase the image resolution and contrast achievable by DTEM. The photoemission test setup is nearly complete and the team will soon complete baseline tests of electron gun performance. The photoemission laser and high voltage power supply have been repaired; the optics path for relaying the laser to the photocathode has been finalized, assembled, and aligned; the internal setup of the vacuum chamber has been finalized and mostly implemented; and system control, synchronization, and data acquisition has been implemented in LabVIEW. Immediate future work includes determining a consistent alignment procedure to place the laser waist on the photocathode, and taking baseline performance measurements of the tantalum photocathode. Future research will examine the performance of the electron gun as a function of the photoemission laser profile, the photocathode material, and the geometry and voltages of the accelerating and focusing components in the electron gun. This report presents the team's progress and outlines the work that remains.

  5. Modeling Crabbing Dynamics in an Electron-Ion Collider

    SciTech Connect (OSTI)

    Castilla, Alejandro; Morozov, Vasiliy S.; Satogata, Todd J.; Delayen, Jean R.

    2015-09-01

    A local crabbing scheme requires ?/2 (mod ?) horizontal betatron phase advances from an interaction point (IP) to the crab cavities on each side of it. However, realistic phase advances generated by sets of quadrupoles, or Final Focusing Blocks (FFB), between the crab cavities located in the expanded beam regions and the IP differ slightly from ?/2. To understand the effect of crabbing on the beam dynamics in this case, a simple model of the optics of the Medium Energy Electron-Ion Collider (MEIC) including local crabbing was developed using linear matrices and then studied numerically over multiple turns (1000 passes) of both electron and proton bunches. The same model was applied to both local and global crabbing schemes to determine the linear-order dynamical effects of the synchro-betatron coupling induced by crabbing.

  6. Analysis of electron dynamics in non-ideal Penning traps

    SciTech Connect (OSTI)

    Coppa, G.; Mulas, R.; D'Angola, A.

    2012-06-15

    Penning traps that are used for particular applications, such as in ion pump technology, Larmor, bouncing, and diocotron frequencies, can be of the same order of magnitude. The paper deals with the dynamics of electrons confined in such devices starting from the study of the properties of the trajectories. In cases of interest, in which electron-neutral collision frequency is much smaller with respect to the characteristic frequencies of the motion, suitable time averages of the trajectories are introduced in order to simplify the analysis of the problem. In the work, time averages have been calculated in a simple way by using an approximate r-z decoupling of the effective potential. Results obtained with the method are presented and discussed in both linear and nonlinear regimes.

  7. Electronic unit integrated into a flexible polymer body

    DOE Patents [OSTI]

    Krulevitch, Peter A. (Pleasanton, CA); Maghribi, Mariam N. (Livermore, CA); Benett, William J. (Livermore, CA); Hamilton, Julie K. (Tracy, CA); Rose, Klint A. (Mt. View, CA); Davidson, James Courtney (Livermore, CA); Strauch, Mark S. (Livermore, CA)

    2008-03-11

    A peel and stick electronic system comprises a silicone body, and at least one electronic unit operatively connected to the silicone body. The electronic system is produce by providing a silicone layer on a substrate, providing a metal layer on the silicone layer, and providing at least one electronic unit connected to the metal layer.

  8. Electronic unit integrated into a flexible polymer body

    DOE Patents [OSTI]

    Krulevitch, Peter A.; Maghribi, Mariam N.; Benett, William J.; Hamilton, Julie K.; Rose, Klint A.; Davidson, James Courtney; Strauch, Mark S.

    2005-04-12

    A peel and stick electronic system comprises a silicone body, and at least one electronic unit operatively connected to the silicone body. The electronic system is produce by providing a silicone layer on a substrate, providing a metal layer on the silicone layer, and providing at least one electronic unit connected to the metal layer.

  9. Electronic Unit Integrated Into A Flexible Polymer Body

    DOE Patents [OSTI]

    Krulevitch, Peter A. (Pleasanton, CA); Maghribi, Mariam N. (Livermore, CA); Benett, William J. (Livermore, CA); Hamilton, Julie K. (Tracy, CA); Rose, Klint A. (Mt. View, CA); Davidson, James Courtney (Livermore, CA); Strauch, Mark S. (Livermore, CA)

    2006-01-31

    A peel and stick electronic system comprises a silicone body, and at least one electronic unit operatively connected to the silicone body. The electronic system is produce by providing a silicone layer on a substrate, providing a metal layer on the silicone layer, and providing at least one electronic unit connected to the metal layer.

  10. Electronic unit integrated into a flexible polymer body

    DOE Patents [OSTI]

    Krulevitch, Peter A. (Pleasanton, CA); Maghribi, Mariam N. (Livermore, CA); Benett, William J. (Livermore, CA); Hamilton, Julie K. (Tracy, CA); Rose, Klint A. (Mt. View, CA); Davidson, James Courtney (Livermore, CA); Strauch, Mark S. (Livermore, CA)

    2006-04-18

    A peel and stick electronic system comprises a silicone body, and at least one electronic unit operatively connected to the silicone body. The electronic system is produce by providing a silicone layer on a substrate, providing a metal layer on the silicone layer, and providing at least one electronic unit connected to the metal layer.

  11. Integrated testing of the Thales LPT9510 pulse tube cooler and the iris LCCE electronics

    SciTech Connect (OSTI)

    Johnson, Dean L.; Rodriguez, Jose I.; Carroll, Brian A.; Bustamante, John G.; Kirkconnell, Carl S.; Luong, Thomas T.; Murphy, J. B.; Haley, Michael F.

    2014-01-29

    The Jet Propulsion Laboratory (JPL) has identified the Thales LPT9510 pulse tube cryocooler as a candidate low cost cryocooler to provide active cooling on future cost-capped scientific missions. The commercially available cooler can provide refrigeration in excess of 2 W at 100K for 60W of power. JPL purchased the LPT9510 cooler for thermal and dynamic performance characterization, and has initiated the flight qualification of the existing cooler design to satisfy near-term JPL needs for this cooler. The LPT9510 has been thermally tested over the heat reject temperature range of 0C to +40C during characterization testing. The cooler was placed on a force dynamometer to measure the selfgenerated vibration of the cooler. Iris Technology has provided JPL with a brass board version of the Low Cost Cryocooler Electronics (LCCE) to drive the Thales cooler during characterization testing. The LCCE provides precision closed-loop temperature control and embodies extensive protection circuitry for handling and operational robustness; other features such as exported vibration mitigation and low frequency input current filtering are envisioned as options that future flight versions may or may not include based upon the mission requirements. JPL has also chosen to partner with Iris Technology for the development of electronics suitable for future flight applications. Iris Technology is building a set of radiation-hard, flight-design electronics to deliver to the Air Force Research Laboratory (AFRL). Test results of the thermal, dynamic and EMC testing of the integrated Thales LPT9510 cooler and Iris LCCE electronics is presented here.

  12. Integrated Dynamic Electron Solutions, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    existing buildings with costs comparable to conventional HVAC. Learn More California Lithium Battery, Inc. Argonne National Laboratory 626 likes California Lithium Battery...

  13. Integrated Dynamic Electron Solutions, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    transport and stationery power plants, marine, cars and trucks. Learn More California Lithium Battery, Inc. Argonne National Laboratory 626 likes California Lithium Battery...

  14. Integrated Dynamic Electron Solutions, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    method for building tiny chemical structures to greatly improve the performance of lithium-ion batteries. Lithium-ion batteries are rechargeable batteries that are widely used...

  15. Integrated Dynamic Electron Solutions, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    - like those used by wounded veterans returning from Iraq and Afghanistan - to military vehicle components, biomedical implants, aerospace fasteners and chemical plant valves....

  16. Options of system integrated environment modelling in the predicated dynamic cyberspace

    SciTech Connect (OSTI)

    Janková, Martina; Dvořák, Jiří

    2015-03-10

    In this article there are briefly mentioned some selected options of contemporary conception of cybernetic system models in the corresponding and possible integratable environment with modern system dynamics thinking and all this in the cyberspace of possible projecting of predicted system characteristics. The key to new capabilities of system integration modelling in the considered cyberspace is mainly the ability to improve the environment and the system integration options, all this with the aim of modern control in the hierarchically arranged dynamic cyberspace, e.g. in the currently desired electronic business with information. The aim of this article is to assess generally the trends in the use of modern modelling methods considering the cybernetics applications verified in practice, modern concept of project management and also the potential integration of artificial intelligence in the new projecting and project management of integratable and intelligent models, e.g. with the optimal structures and adaptable behaviour.The article results from the solution of a specific research partial task at the faculty; especially the moments proving that the new economics will be based more and more on information, knowledge system defined cyberspace of modern management, are stressed in the text.

  17. Integrated system dynamics toolbox for water resources planning.

    SciTech Connect (OSTI)

    Reno, Marissa Devan; Passell, Howard David; Malczynski, Leonard A.; Peplinski, William J.; Tidwell, Vincent Carroll; Coursey, Don; Hanson, Jason; Grimsrud, Kristine; Thacher, Jennifer; Broadbent, Craig; Brookshire, David; Chemak, Janie; Cockerill, Kristan; Aragon, Carlos , Socorro, NM); Hallett, Heather , Socorro, NM); Vivoni, Enrique , Socorro, NM); Roach, Jesse

    2006-12-01

    Public mediated resource planning is quickly becoming the norm rather than the exception. Unfortunately, supporting tools are lacking that interactively engage the public in the decision-making process and integrate over the myriad values that influence water policy. In the pages of this report we document the first steps toward developing a specialized decision framework to meet this need; specifically, a modular and generic resource-planning ''toolbox''. The technical challenge lies in the integration of the disparate systems of hydrology, ecology, climate, demographics, economics, policy and law, each of which influence the supply and demand for water. Specifically, these systems, their associated processes, and most importantly the constitutive relations that link them must be identified, abstracted, and quantified. For this reason, the toolbox forms a collection of process modules and constitutive relations that the analyst can ''swap'' in and out to model the physical and social systems unique to their problem. This toolbox with all of its modules is developed within the common computational platform of system dynamics linked to a Geographical Information System (GIS). Development of this resource-planning toolbox represents an important foundational element of the proposed interagency center for Computer Aided Dispute Resolution (CADRe). The Center's mission is to manage water conflict through the application of computer-aided collaborative decision-making methods. The Center will promote the use of decision-support technologies within collaborative stakeholder processes to help stakeholders find common ground and create mutually beneficial water management solutions. The Center will also serve to develop new methods and technologies to help federal, state and local water managers find innovative and balanced solutions to the nation's most vexing water problems. The toolbox is an important step toward achieving the technology development goals of this center.

  18. Integrated Three-Dimensional Module Heat Exchange for Power Electronic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    application of the technology is not limited. Other applications include variable speed motor drives for energy efficiency, solar power and micro-scale grid power electronics,...

  19. Formation and nonlinear dynamics of the squeezed state of a helical electron beam with additional deceleration

    SciTech Connect (OSTI)

    Egorov, E. N. Koronovskii, A. A.; Kurkin, S. A.; Hramov, A. E.

    2013-11-15

    Results of numerical simulations and analysis of the formation and nonlinear dynamics of the squeezed state of a helical electron beam in a vircator with a magnetron injection gun as an electron source and with additional electron deceleration are presented. The ranges of control parameters where the squeezed state can form in such a system are revealed, and specific features of the system dynamics are analyzed. It is shown that the formation of a squeezed state of a nonrelativistic helical electron beam in a system with electron deceleration is accompanied by low-frequency longitudinal dynamics of the space charge.

  20. Toward integrated PV panels and power electronics using printing technologies

    SciTech Connect (OSTI)

    Ababei, Cristinel; Yuvarajan, Subbaraya; Schulz, Douglas L.

    2010-07-15

    In this paper, we review the latest developments in the area of printing technologies with an emphasis on the fabrication of control-embedded photovoltaics (PV) with on-board active and passive devices. We also review the use of power converters and maximum power point tracking (MPPT) circuits with PV panels. Our focus is on the investigation of the simplest implementations of such circuits in view of their integration with solar cells using printing technologies. We see this concept as potentially enabling toward further cost reduction. Besides a discussion as to feasibility, we shall also present some projections and guidelines toward possible integration. (author)

  1. Integrated Network Decompositions and Dynamic Programming for Graph Optimization (INDDGO)

    Energy Science and Technology Software Center (OSTI)

    2012-05-31

    The INDDGO software package offers a set of tools for finding exact solutions to graph optimization problems via tree decompositions and dynamic programming algorithms. Currently the framework offers serial and parallel (distributed memory) algorithms for finding tree decompositions and solving the maximum weighted independent set problem. The parallel dynamic programming algorithm is implemented on top of the MADNESS task-based runtime.

  2. Single-Particle Dynamics in Electron Storage Rings with Extremely Low

    Office of Scientific and Technical Information (OSTI)

    Emittance (Conference) | SciTech Connect Conference: Single-Particle Dynamics in Electron Storage Rings with Extremely Low Emittance Citation Details In-Document Search Title: Single-Particle Dynamics in Electron Storage Rings with Extremely Low Emittance Electron storage rings are widely used for high luminosity colliders, damping rings in high-energy linear colliders, and synchrotron light sources. They have become essential facilities to study high-energy physics and material and medical

  3. Probing Electron Dynamics with the Laplacian of the Momentum Density

    SciTech Connect (OSTI)

    Sukumar, N.; MacDougall, Preston J.; Levit, M. Creon

    2012-09-24

    This chapter in the above-titled monograph presents topological analysis of the Laplacian of the electron momentum density in organic molecules. It relates topological features in this distribution to chemical and physical properties, particularly aromaticity and electron transport.

  4. High Resolution Simulation of Beam Dynamics in Electron Linacs for Free Electron Lasers

    SciTech Connect (OSTI)

    Ryne, R.D.; Venturini, M.; Zholents, A.A.; Qiang, J.

    2009-01-05

    In this paper we report on large scale multi-physics simulation of beam dynamics in electron linacs for next generation free electron lasers (FELs). We describe key features of a parallel macroparticle simulation code including three-dimensional (3D) space-charge effects, short-range structure wake fields, longitudinal coherent synchrotron radiation (CSR) wake fields, and treatment of radiofrequency (RF) accelerating cavities using maps obtained from axial field profiles. A macroparticle up-sampling scheme is described that reduces the shot noise from an initial distribution with a smaller number of macroparticles while maintaining the global properties of the original distribution. We present a study of the microbunching instability which is a critical issue for future FELs due to its impact on beam quality at the end of the linac. Using parameters of a planned FEL linac at Lawrence Berkeley National Laboratory (LBNL), we show that a large number of macroparticles (beyond 100 million) is needed to control numerical shot noise that drives the microbunching instability. We also explore the effect of the longitudinal grid on simulation results. We show that acceptable results are obtained with around 2048 longitudinal grid points, and we discuss this in view of the spectral growth rate predicted from linear theory. As an application, we present results from simulations using one billion macroparticles of the FEL linac under design at LBNL. We show that the final uncorrelated energy spread of the beam depends not only on the initial uncorrelated energy spread but also depends strongly on the shape of the initial current profile. By using a parabolic initial current profile, 5 keV initial uncorrelated energy spread at 40 MeV injection energy, and improved linac design, those simulations demonstrate that a reasonable beam quality can be achieved at the end of the linac, with the final distribution having about 100 keV energy spread, 2.4 GeV energy, and 1.2 kA peak current.

  5. INDDGO: Integrated Network Decomposition & Dynamic programming for Graph Optimization

    SciTech Connect (OSTI)

    Groer, Christopher S; Sullivan, Blair D; Weerapurage, Dinesh P

    2012-10-01

    It is well-known that dynamic programming algorithms can utilize tree decompositions to provide a way to solve some \\emph{NP}-hard problems on graphs where the complexity is polynomial in the number of nodes and edges in the graph, but exponential in the width of the underlying tree decomposition. However, there has been relatively little computational work done to determine the practical utility of such dynamic programming algorithms. We have developed software to construct tree decompositions using various heuristics and have created a fast, memory-efficient dynamic programming implementation for solving maximum weighted independent set. We describe our software and the algorithms we have implemented, focusing on memory saving techniques for the dynamic programming. We compare the running time and memory usage of our implementation with other techniques for solving maximum weighted independent set, including a commercial integer programming solver and a semi-definite programming solver. Our results indicate that it is possible to solve some instances where the underlying decomposition has width much larger than suggested by the literature. For certain types of problems, our dynamic programming code runs several times faster than these other methods.

  6. The density matrix functional approach to electron correlation: Dynamic and nondynamic correlation along the full dissociation coordinate

    SciTech Connect (OSTI)

    Mentel, ?. M.; Meer, R. van; Gritsenko, O. V.; Baerends, E. J.

    2014-06-07

    For chemistry an accurate description of bond weakening and breaking is vital. The great advantage of density matrix functionals, as opposed to density functionals, is their ability to describe such processes since they naturally cover both nondynamical and dynamical correlation. This is obvious in the Lwdin-Shull functional, the exact natural orbital functional for two-electron systems. We present in this paper extensions of this functional for the breaking of a single electron pair bond in N-electron molecules, using LiH, BeH{sup +}, and Li{sub 2} molecules as prototypes. Attention is given to the proper formulation of the functional in terms of not just J and K integrals but also the two-electron L integrals (K integrals with a different distribution of the complex conjugation of the orbitals), which is crucial for the calculation of response functions. Accurate energy curves are obtained with extended Lwdin-Shull functionals along the complete dissociation coordinate using full CI calculations as benchmark.

  7. Single-Particle Dynamics in Electron Storage Rings with Extremely...

    Office of Scientific and Technical Information (OSTI)

    Electron storage rings are widely used for high luminosity colliders, damping rings in ... To further increase the luminosity of colliders or the brightness of synchrotron light ...

  8. Hot electron dynamics in graphene (Thesis/Dissertation) | SciTech Connect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thesis/Dissertation: Hot electron dynamics in graphene Citation Details In-Document Search Title: Hot electron dynamics in graphene Graphene, a two-dimensional (2D) honeycomb structure allotrope of carbon atoms, has a long history since the invention of the pencil [Petroski (1989)] and the linear dispersion band structure proposed by Wallace [Wal]; however, only after Novoselov et al. successively isolated graphene from graphite [Novoselov et al. (2004)], it has been studied intensively during

  9. Longitudinal dynamics of twin electron bunches in the Linac Coherent Light

    Office of Scientific and Technical Information (OSTI)

    Source (Journal Article) | SciTech Connect Longitudinal dynamics of twin electron bunches in the Linac Coherent Light Source Citation Details In-Document Search Title: Longitudinal dynamics of twin electron bunches in the Linac Coherent Light Source Authors: Zhang, Zhen ; Ding, Yuantao ; Marinelli, Agostino ; Huang, Zhirong Publication Date: 2015-03-02 OSTI Identifier: 1181464 Grant/Contract Number: AC02-76SF00515 Type: Published Article Journal Name: Physical Review Special Topics -

  10. Electron Elevator: Excitations across the Band Gap via a Dynamical Gap

    Office of Scientific and Technical Information (OSTI)

    State (Journal Article) | SciTech Connect Electron Elevator: Excitations across the Band Gap via a Dynamical Gap State Citation Details In-Document Search This content will become publicly available on January 26, 2017 Title: Electron Elevator: Excitations across the Band Gap via a Dynamical Gap State Authors: Lim, A. ; Foulkes, W. M. C. ; Horsfield, A. P. ; Mason, D. R. ; Schleife, A. ; Draeger, E. W. ; Correa, A. A. Publication Date: 2016-01-27 OSTI Identifier: 1236285 Grant/Contract

  11. A high dynamic range data acquisition system for a solid-state electron

    Office of Scientific and Technical Information (OSTI)

    electric dipole moment experiment (Journal Article) | SciTech Connect Journal Article: A high dynamic range data acquisition system for a solid-state electron electric dipole moment experiment Citation Details In-Document Search Title: A high dynamic range data acquisition system for a solid-state electron electric dipole moment experiment We have built a high precision (24-bit) data acquisition (DAQ) system capable of simultaneously sampling eight input channels for the measurement of the

  12. Density matrix renormalization group with efficient dynamical electron correlation through range separation

    SciTech Connect (OSTI)

    Hedegrd, Erik Donovan Knecht, Stefan; Reiher, Markus; Kielberg, Jesper Skau; Jensen, Hans Jrgen Aagaard

    2015-06-14

    We present a new hybrid multiconfigurational method based on the concept of range-separation that combines the density matrix renormalization group approach with density functional theory. This new method is designed for the simultaneous description of dynamical and static electron-correlation effects in multiconfigurational electronic structure problems.

  13. Electron plasma dynamics during autoresonant excitation of the diocotron mode

    SciTech Connect (OSTI)

    Baker, C. J. Danielson, J. R. Hurst, N. C. Surko, C. M.

    2015-02-15

    Chirped-frequency autoresonant excitation of the diocotron mode is used to move electron plasmas confined in a Penning-Malmberg trap across the magnetic field for advanced plasma and antimatter applications. Plasmas of 10{sup 8} electrons, with radii small compared to that of the confining electrodes, can be moved from the magnetic axis to ?90% of the electrode radius with near unit efficiency and reliable angular positioning. Translations of ?70% of the wall radius are possible for a wider range of plasma parameters. Details of this process, including phase and displacement oscillations in the plasma response and plasma expansion, are discussed, as well as possible extensions of the technique.

  14. Evaluation of two-electron integrals for explicit r{sub 12} theories

    SciTech Connect (OSTI)

    Valeev, Edward F.; Schaefer, Henry F. III

    2000-09-08

    We present a practical scheme for the evaluation of nonstandard two-electron molecular integrals that appear in ab initio theories employing explicitly correlated wave functions with linear r{sub 12} terms (''linear r{sub 12}'' methods). In contrast with previous efforts, the target integrals are evaluated recursively via intermediates formulated solely in terms of Cartesian Gaussian functions. All working equations fit conveniently the framework of highly efficient Head-Gordon and Pople method of evaluation of electron repulsion integrals. Thus, only straightforward modifications of existing codes that employ HGP or HGP-PRISM scheme are necessary to implement our approach. High potential of the pathway is realized in a robust practical implementation. (c) 2000 American Institute of Physics.

  15. Monopole and topological electron dynamics in adiabatic spintronic and graphene systems

    SciTech Connect (OSTI)

    Tan, S.G.; Jalil, M.B.A.; Fujita, T.

    2010-08-15

    A unified theoretical treatment is presented to describe the physics of electron dynamics in semiconductor and graphene systems. Electron spin's fast alignment with the Zeeman magnetic field (physical or effective) is treated as a form of adiabatic spin evolution which necessarily generates a monopole in magnetic space. One could transform this monopole into the physical and intuitive topological magnetic fields in the useful momentum (K) or real spaces (R). The physics of electron dynamics related to spin Hall, torque, oscillations and other technologically useful spinor effects can be inferred from the topological magnetic fields in spintronic, graphene and other SU(2) systems.

  16. Dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons

    SciTech Connect (OSTI)

    Saha, Asit E-mail: prasantachatterjee1@rediffmail.com; Pal, Nikhil; Chatterjee, Prasanta E-mail: prasantachatterjee1@rediffmail.com

    2014-10-15

    The dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons has been investigated in the framework of perturbed and non-perturbed Kadomtsev-Petviashili (KP) equations. Applying the reductive perturbation technique, we have derived the KP equation in electron-positron-ion magnetoplasma with kappa distributed electrons and positrons. Bifurcations of ion acoustic traveling waves of the KP equation are presented. Using the bifurcation theory of planar dynamical systems, the existence of the solitary wave solutions and the periodic traveling wave solutions has been established. Two exact solutions of these waves have been derived depending on the system parameters. Then, using the Hirota's direct method, we have obtained two-soliton and three-soliton solutions of the KP equation. The effect of the spectral index ? on propagations of the two-soliton and the three-soliton has been shown. Considering an external periodic perturbation, we have presented the quasi periodic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas.

  17. 2012 ELECTRONIC SPECTROSCOPY & DYNAMICS GORDON RESEARCH CONFERENCE, JULY 22-27, 2012

    SciTech Connect (OSTI)

    Kohler, Bern

    2012-07-27

    Topics covered in this GRC include high-resolution spectroscopy, coherent electronic energy transport in biology, excited state theory and dynamics, excitonics, electronic spectroscopy of cold and ultracold molecules, and the spectroscopy of nanostructures. Several sessions will highlight innovative techniques such as time-resolved x-ray spectroscopy, frequency combs, and liquid microjet photoelectron spectroscopy that have forged stimulating new connections between gas-phase and condensed-phase work.

  18. Evaluation of Maxim Module-Integrated Electronics at the DOE Regional Test Centers (Presentation)

    SciTech Connect (OSTI)

    Deline, C.; Sekulic, B.; Barkaszi, S.; Yang, J.; Kahn, S.

    2014-06-01

    Module-embedded power electronics developed by Maxim Integrated are under evaluation through a partnership with the Department of Energy's Regional Test Center (RTC) program. Field deployments of both conventional modules and electronics-enhanced modules are designed to quantify the performance advantage of Maxim's products under different amounts of interrow shading, and their ability to be deployed at a greater ground-coverage ratio than conventional modules. Simulations in PVSYST have quantified the predicted performance difference between conventional modules and Maxim's modules from interrow shading. Initial performance results have identified diffuse irradiance losses at tighter row spacing for both the Maxim and conventional modules. Comparisons with published models show good agreement with models predicting the greatest diffuse irradiance losses. At tighter row spacing, all of the strings equipped with embedded power electronics outperformed their conventional peers. An even greater performance advantage is predicted to occur in the winter months when the amount of interrow shading mismatch is at a maximum.

  19. How electronic dynamics with Pauli exclusion produces Fermi-Dirac statistics

    SciTech Connect (OSTI)

    Nguyen, Triet S.; Nanguneri, Ravindra; Parkhill, John

    2015-04-07

    It is important that any dynamics method approaches the correct population distribution at long times. In this paper, we derive a one-body reduced density matrix dynamics for electrons in energetic contact with a bath. We obtain a remarkable equation of motion which shows that in order to reach equilibrium properly, rates of electron transitions depend on the density matrix. Even though the bath drives the electrons towards a Boltzmann distribution, hole blocking factors in our equation of motion cause the electronic populations to relax to a Fermi-Dirac distribution. These factors are an old concept, but we show how they can be derived with a combination of time-dependent perturbation theory and the extended normal ordering of Mukherjee and Kutzelnigg for a general electronic state. The resulting non-equilibrium kinetic equations generalize the usual Redfield theory to many-electron systems, while ensuring that the orbital occupations remain between zero and one. In numerical applications of our equations, we show that relaxation rates of molecules are not constant because of the blocking effect. Other applications to model atomic chains are also presented which highlight the importance of treating both dephasing and relaxation. Finally, we show how the bath localizes the electron density matrix.

  20. Crucial role of nuclear dynamics for electron injection in a dye–semiconductor complex

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Monti, Adriano; Negre, Christian F. A.; Batista, Victor S.; Rego, Luis G. C.; de Groot, Huub J. M.; Buda, Francesco

    2015-06-05

    In this study, we investigate the electron injection from a terrylene-based chromophore to the TiO2 semiconductor bridged by a recently proposed phenyl-amide-phenyl molecular rectifier. The mechanism of electron transfer is studied by means of quantum dynamics simulations using an extended Hückel Hamiltonian. It is found that the inclusion of the nuclear motion is necessary to observe the photoinduced electron transfer. In particular, the fluctuations of the dihedral angle between the terrylene and the phenyl ring modulate the localization and thus the electronic coupling between the donor and acceptor states involved in the injection process. The electron propagation shows characteristic oscillatorymore » features that correlate with interatomic distance fluctuations in the bridge, which are associated with the vibrational modes driving the process. The understanding of such effects is important for the design of functional dyes with optimal injection and rectification properties.« less

  1. Crucial role of nuclear dynamics for electron injection in a dye–semiconductor complex

    SciTech Connect (OSTI)

    Monti, Adriano; Negre, Christian F. A.; Batista, Victor S.; Rego, Luis G. C.; de Groot, Huub J. M.; Buda, Francesco

    2015-06-05

    In this study, we investigate the electron injection from a terrylene-based chromophore to the TiO2 semiconductor bridged by a recently proposed phenyl-amide-phenyl molecular rectifier. The mechanism of electron transfer is studied by means of quantum dynamics simulations using an extended Hückel Hamiltonian. It is found that the inclusion of the nuclear motion is necessary to observe the photoinduced electron transfer. In particular, the fluctuations of the dihedral angle between the terrylene and the phenyl ring modulate the localization and thus the electronic coupling between the donor and acceptor states involved in the injection process. The electron propagation shows characteristic oscillatory features that correlate with interatomic distance fluctuations in the bridge, which are associated with the vibrational modes driving the process. The understanding of such effects is important for the design of functional dyes with optimal injection and rectification properties.

  2. Electronic Structure and Lattice Dynamics of the Magnetic Shape Memory Alloy Co2NiGa

    SciTech Connect (OSTI)

    Siewert, M.; Shapiro, S.; Gruner, M.E.; Dannenberg, A.; Hucht, A.; Xu, G.; Schlagel, D.L.; Lograsso, T.A.; Entel1, P.

    2010-08-20

    In addition to the prototypical Ni-Mn-based Heusler alloys, the Co-Ni-Ga systems have recently been suggested as another prospective materials class for magnetic shape-memory applications. We provide a characterization of the dynamical properties of this material and their relation to the electronic structure within a combined experimental and theoretical approach. This relies on inelastic neutron scattering to obtain the phonon dispersion while first-principles calculations provide the link between dynamical properties and electronic structure. In contrast to Ni{sub 2}MnGa, where the softening of the TA{sub 2} phonon branch is related to Fermi-surface nesting, our results reveal that the respective anomalies are absent in Co-Ni-Ga, in the phonon dispersions as well as in the electronic structure.

  3. Integrating GIS with Distributed Applications Using Dynamic Data-Sharing Mechanisms

    SciTech Connect (OSTI)

    Burnett, Robert A. ); Tzemos, Spyridon ); Stoops, LaMar R. )

    2002-08-21

    Effective integration of a stand-alone GIS (e.g., ArcView 3.x) into a complex distributed software application requires an efficient, reliable mechanism for passing data and function requests to and from the GIS component. This paper describes the use of dynamic data-sharing and inter-process communication mechanisms to integrate GIS capability into a multi-jurisdictional distributed emergency management information system. These mechanisms include dynamic layer updates from spatial and attribute information shared via a distributed relational database across multiple sites; storage of private and shared ViewMarks to facilitate consistent GIS views; and asynchronous inter-process communication using function queuing and a data sharing library.

  4. Dynamic Complexity Study of Nuclear Reactor and Process Heat Application Integration

    SciTech Connect (OSTI)

    J'Tia Patrice Taylor; David E. Shropshire

    2009-09-01

    Abstract This paper describes the key obstacles and challenges facing the integration of nuclear reactors with process heat applications as they relate to dynamic issues. The paper also presents capabilities of current modeling and analysis tools available to investigate these issues. A pragmatic approach to an analysis is developed with the ultimate objective of improving the viability of nuclear energy as a heat source for process industries. The extension of nuclear energy to process heat industries would improve energy security and aid in reduction of carbon emissions by reducing demands for foreign derived fossil fuels. The paper begins with an overview of nuclear reactors and process application for potential use in an integrated system. Reactors are evaluated against specific characteristics that determine their compatibility with process applications such as heat outlet temperature. The reactor system categories include light water, heavy water, small to medium, near term high-temperature, and far term high temperature reactors. Low temperature process systems include desalination, district heating, and tar sands and shale oil recovery. High temperature processes that support hydrogen production include steam reforming, steam cracking, hydrogen production by electrolysis, and far-term applications such as the sulfur iodine chemical process and high-temperature electrolysis. A simple static matching between complementary systems is performed; however, to gain a true appreciation for system integration complexity, time dependent dynamic analysis is required. The paper identifies critical issues arising from dynamic complexity associated with integration of systems. Operational issues include scheduling conflicts and resource allocation for heat and electricity. Additionally, economic and safety considerations that could impact the successful integration of these systems are considered. Economic issues include the cost differential arising due to an integrated system and the economic allocation of electricity and heat resources. Safety issues include changes in regulatory constraints imposed on the facilities. Modeling and analysis tools, such as System Dynamics for time dependent operational and economic issues and RELAP5 3D for chemical transient affects, are evaluated. The results of this study advance the body of knowledge toward integration of nuclear reactors and process heat applications.

  5. Dynamic Processes in Biology, Chemistry, and Materials Science: Opportunities for UltraFast Transmission Electron Microscopy - Workshop Summary Report

    SciTech Connect (OSTI)

    Kabius, Bernd C.; Browning, Nigel D.; Thevuthasan, Suntharampillai; Diehl, Barbara L.; Stach, Eric A.

    2012-07-25

    This report summarizes a 2011 workshop that addressed the potential role of rapid, time-resolved electron microscopy measurements in accelerating the solution of important scientific and technical problems. A series of U.S. Department of Energy (DOE) and National Academy of Science workshops have highlighted the critical role advanced research tools play in addressing scientific challenges relevant to biology, sustainable energy, and technologies that will fuel economic development without degrading our environment. Among the specific capability needs for advancing science and technology are tools that extract more detailed information in realistic environments (in situ or operando) at extreme conditions (pressure and temperature) and as a function of time (dynamic and time-dependent). One of the DOE workshops, Future Science Needs and Opportunities for Electron Scattering: Next Generation Instrumentation and Beyond, specifically addressed the importance of electron-based characterization methods for a wide range of energy-relevant Grand Scientific Challenges. Boosted by the electron optical advancement in the last decade, a diversity of in situ capabilities already is available in many laboratories. The obvious remaining major capability gap in electron microscopy is in the ability to make these direct in situ observations over a broad spectrum of fast (µs) to ultrafast (picosecond [ps] and faster) temporal regimes. In an effort to address current capability gaps, EMSL, the Environmental Molecular Sciences Laboratory, organized an Ultrafast Electron Microscopy Workshop, held June 14-15, 2011, with the primary goal to identify the scientific needs that could be met by creating a facility capable of a strongly improved time resolution with integrated in situ capabilities. The workshop brought together more than 40 leading scientists involved in applying and/or advancing electron microscopy to address important scientific problems of relevance to DOE’s research mission. This workshop built on previous workshops and included three breakout sessions identifying scientific challenges in biology, biogeochemistry, catalysis, and materials science frontier areas of fundamental science that underpin energy and environmental science that would significantly benefit from ultrafast transmission electron microscopy (UTEM). In addition, the current status of time-resolved electron microscopy was examined, and the technologies that will enable future advances in spatio-temporal resolution were identified in a fourth breakout session.

  6. Electron dynamics in complex environments with real-time time dependent density functional theory in a QM-MM framework

    SciTech Connect (OSTI)

    Morzan, Uriel N.; Ramrez, Francisco F.; Scherlis, Damin A. E-mail: mcgl@qb.ffyb.uba.ar; Lebrero, Mariano C. Gonzlez E-mail: mcgl@qb.ffyb.uba.ar

    2014-04-28

    This article presents a time dependent density functional theory (TDDFT) implementation to propagate the Kohn-Sham equations in real time, including the effects of a molecular environment through a Quantum-Mechanics Molecular-Mechanics (QM-MM) hamiltonian. The code delivers an all-electron description employing Gaussian basis functions, and incorporates the Amber force-field in the QM-MM treatment. The most expensive parts of the computation, comprising the commutators between the hamiltonian and the density matrixrequired to propagate the electron dynamics, and the evaluation of the exchange-correlation energy, were migrated to the CUDA platform to run on graphics processing units, which remarkably accelerates the performance of the code. The method was validated by reproducing linear-response TDDFT results for the absorption spectra of several molecular species. Two different schemes were tested to propagate the quantum dynamics: (i) a leap-frog Verlet algorithm, and (ii) the Magnus expansion to first-order. These two approaches were confronted, to find that the Magnus scheme is more efficient by a factor of six in small molecules. Interestingly, the presence of iron was found to seriously limitate the length of the integration time step, due to the high frequencies associated with the core-electrons. This highlights the importance of pseudopotentials to alleviate the cost of the propagation of the inner states when heavy nuclei are present. Finally, the methodology was applied to investigate the shifts induced by the chemical environment on the most intense UV absorption bands of two model systems of general relevance: the formamide molecule in water solution, and the carboxy-heme group in Flavohemoglobin. In both cases, shifts of several nanometers are observed, consistently with the available experimental data.

  7. Evaluation of Maxim Module-Integrated Electronics at the DOE Regional Test Centers: Preprint

    SciTech Connect (OSTI)

    Deline, C.; Sekulic, B.; Stein, J.; Barkaszi, S.; Yang, J.; Kahn, S.

    2014-07-01

    Module-embedded power electronics developed by Maxim Integrated are under evaluation through a partnership with the Department of Energy's Regional Test Center (RTC) program. Field deployments of both conventional modules and electronics-enhanced modules are designed to quantify the performance advantage of Maxim's products under different amounts of inter-row shading, and their ability to be deployed at a greater ground-coverage-ratio than conventional modules. Simulations in PVSYST have quantified the predicted performance difference between conventional modules and Maxim's modules from inter-row shading. Initial performance results have identified diffuse irradiance losses at tighter row spacing for both the Maxim and conventional modules. Comparisons with published models show good agreement with models predicting the greatest diffuse irradiance losses. At tighter row spacing, all of the strings equipped with embedded power electronics outperformed their conventional peers. An even greater performance advantage is predicted to occur in the winter months when the amount of inter-row shading mismatch is at a maximum.

  8. Integrability and nonintegrability of quantum systems. II. Dynamics in quantum phase space

    SciTech Connect (OSTI)

    Zhang, Weimin (Department of Physics, FM-15, University of Washington, Seattle, WA (USA) Department of Physics and Atmospheric Science, Drexel University, Philadelphia, PA (USA)); Feng, D.H.; Yuan, Jianmin (Department of Physics and Atmospheric Science, Drexel University, Philadelphia, PA (USA))

    1990-12-15

    Based on the concepts of integrability and nonintegrability of a quantum system presented in a previous paper (Zhang, Feng, Yuan, and Wang, Phys. Rev. A 40, 438 (1989)), a realization of the dynamics in the quantum phase space is now presented. For a quantum system with dynamical group {ital G-script} and in one of its unitary irreducible-representation carrier spaces {ital h-german}{sub {Lambda}}, the quantum phase space is a 2{ital M}{sub {Lambda}}-dimensional topological space, where {ital M}{sub {Lambda}} is the quantum-dynamical degrees of freedom. This quantum phase space is isomorphic to a coset space {ital G-script}/{ital H-script} via the unitary exponential mapping of the elementary excitation operator subspace of {ital g-script} (algebra of {ital G-script}), where {ital H-script} ({contained in}{ital G-script}) is the maximal stability subgroup of a fixed state in {ital h-german}{sub {Lambda}}. The phase-space representation of the system is realized on {ital G-script}/{ital H-script}, and its classical analogy can be obtained naturally. It is also shown that there is consistency between quantum and classical integrability. Finally, a general algorithm for seeking the manifestation of quantum chaos'' via the classical analogy is provided. Illustrations of this formulation in several important quantum systems are presented.

  9. Nonlinear electron dynamics of gold ultrathin films induced by intense terahertz waves

    SciTech Connect (OSTI)

    Minami, Yasuo Takeda, Jun; Katayama, Ikufumi; Dao, Thang Duy; Nagao, Tadaaki; Kitajima, Masahiro

    2014-12-15

    Linear and nonlinear electron dynamics of polycrystalline gold (Au) ultrathin films with thicknesses ranging from 1.4 to 5.8?nm were investigated via transmittance terahertz (THz) spectroscopy with intense electric field transients. We prepared ultrathin films with low surface roughness formed on a Si(7??7) reconstructed surface, leading to the observation of monotonic decrease in THz transmittance with respect to film thickness. Furthermore, at all tested thicknesses, the transmittance decreased nonlinearly by 10%30% with the application if high-intensity THz electric fields. Based on a Drude-model analysis, we found a significant decrease in the damping constant induced by the THz electric field, indicating that electrons are driven beyond the polycrystalline grain boundaries in Au thin films, and consequently leading to the suppression of the electronboundary scattering rate.

  10. Multifunctional oxides for integrated manufacturing of efficient graphene electrodes for organic electronics

    SciTech Connect (OSTI)

    Kidambi, Piran R.; Robertson, John; Hofmann, Stephan; Weijtens, Christ; Meyer, Jens

    2015-02-09

    Using multi-functional oxide films, we report on the development of an integration strategy for scalable manufacturing of graphene-based transparent conducting electrodes (TCEs) for organic electronics. A number of fundamental and process challenges exists for efficient graphene-based TCEs, in particular, environmentally and thermally stable doping, interfacial band engineering for efficient charge injection/extraction, effective wetting, and process compatibility including masking and patterning. Here, we show that all of these challenges can be effectively addressed at once by coating graphene with a thin (>10?nm) metal oxide (MoO{sub 3} or WO{sub 3}) layer. We demonstrate graphene electrode patterning without the need for conventional lithography and thereby achieve organic light emitting diodes with efficiencies exceeding those of standard indium tin oxide reference devices.

  11. Dynamic

    Office of Legacy Management (LM)

    Dynamic , and Static , Res.ponse of the Government Oil Shale Mine at ' , . , Rifle, Colorado, to the Rulison Event. , . ; . . DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. p ( y c - - a 2-1 0 -4- REPORT AT (29-2) 914 USBM 1 0 0 1 UNITED STATES DEPARTMENT O F THE I NTERIOR BUREAU OF MINES e s.09 P. L. R U S S E L L RESEARCH D l RECTOR Februory 2, lB7O DYNAMIC AND STATIC RESPONSE 'OF THE GOVERNMENT

  12. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    SciTech Connect (OSTI)

    Geng, Hua Y.

    2015-02-15

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic modelthe FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of r{sub s}=0.912.

  13. Observation of the dynamics leading to a conical intersection in dissociative electron attachment to water

    SciTech Connect (OSTI)

    Haxton, Dan; Adaniya, Hidihito; Slaughter, Dan; Rudek, B.; Osipov, Timur; Weber, Thorsten; Rescigno, Tom; McCurdy, Bill; Belkacem, Ali

    2011-06-08

    Following prior work on the lower-energy resonances, we apply techniques of momentum imaging and ab initio scattering calculations to the process of dissociative electron attachment to water via the highest-energy {sup 2}B{sub 2} resonance. We focus on the H{sup -} anion fragment, which is produced via dynamics passing through and avoiding the conical intersection with the lower A{sub 1} state, leading to OH ((sup 2}{Pi}#5;) and OH ({sup 2}{Sigma}#6;), respectively. The momentum imaging technique, when combined with theoretical calculations on the attachment amplitude and dissociation dynamics, demonstrates that the angular distributions provide a signature of the location of the conical intersection in the space of nuclear con#12;gurations.

  14. PROJECT PROFILE: Combined PV/Battery Grid Integration with High Frequency Magnetics Enabled Power Electronics (SuNLaMP)

    Broader source: Energy.gov [DOE]

    This project will develop new power electronics devices, systems, and materials to address power electronic and dispatchability challenges that result from connecting hundreds of gigawatts of solar energy onto the electricity grid. These devices will incorporate advanced high-frequency (HF) magnetics along with the latest wide bandgap silicon carbide (SiC) switches. This design enables cost-effective grid integration of PV while increasing its dispatchability.

  15. Acceleration and dynamics of an electron in the degenerate and magnetized plasma elliptical waveguide

    SciTech Connect (OSTI)

    Abdoli-Arani, A.; Jazi, B. [Department of Photonics, Faculty of Physics, University of Kashan, Kashan (Iran, Islamic Republic of); Shokri, B. [Physics Department and Laser-Plasma Research Institute, G. C. Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2013-02-15

    The dynamics and energy gain of an electron in the field of a transverse magnetic wave propagating inside an elliptical degenerate plasma waveguide is analytically investigated by finding the field components of the TM{sub mr} mode in this waveguide. Besides, by solving the relativistic momentum and energy equations the deflection angle and the acceleration gradient of the electron in the waveguide are obtained. Furthermore, the field components of the hybrid mode and the transferred power in the presence of the magnetic field in this waveguide are found. Also by applying the boundary conditions at the plasma-conductor interface, we calculate the dispersion relation. It is shown that the cutoff frequency of this mode is dependent on the plasma density but independent of the magnetic field. Then, a single-electron model for numerical calculations of the electron deflection angle and acceleration gradient inside the magnetized plasma-filled elliptical waveguide is generally presented to be used as a cascading process for the acceleration purposes.

  16. Electronic spectra and excited state dynamics of pentafluorophenol: Effects of low-lying ??{sup ?} states

    SciTech Connect (OSTI)

    Karmakar, Shreetama; Mukhopadhyay, Deb Pratim; Chakraborty, Tapas

    2015-05-14

    Multiple fluorine atom substitution effect on photophysics of an aromatic chromophore has been investigated using phenol as the reference system. It has been noticed that the discrete vibronic structure of the S{sub 1}?S{sub 0} absorption system of phenol vapor is completely washed out for pentafluorophenol (PFP), and the latter also shows very large Stokes shift in the fluorescence spectrum. For excitations beyond S{sub 1} origin, the emission yield of PFP is reduced sharply with increase in excess vibronic energy. However, in a collisional environment like liquid hydrocarbon, the underlying dynamical process that drives the non-radiative decay is hindered drastically. Electronic structure theory predicts a number of low-lying dark electronic states of ??{sup ?} character in the vicinity of the lowest valence ??{sup ?} state of this molecule. Tentatively, we have attributed the excitation energy dependent non-radiative decay of the molecule observed only in the gas phase to an interplay between the lowest ??{sup ?} and a nearby dissociative ??{sup ?} state. Measurements in different liquids reveal that some of the dark excited states light up with appreciable intensity only in protic liquids like methanol and water due to hydrogen bonding between solute and solvents. Electronic structure theory methods indeed predict that for PFP-(H{sub 2}O){sub n} clusters (n = 1-11), intensities of a number of ??{sup ?} states are enhanced with increase in cluster size. In contrast with emitting behavior of the molecule in the gas phase and solutions of nonpolar and polar aprotic liquids, the fluorescence is completely switched off in polar protic liquids. This behavior is a chemically significant manifestation of perfluoro effect, because a very opposite effect occurs in the case of unsubstituted phenol for which fluorescence yield undergoes a very large enhancement in protic liquids. Several dynamical mechanisms have been suggested to interpret the observed photophysical behavior.

  17. Generalized correlation integral vectors: A distance concept for chaotic dynamical systems

    SciTech Connect (OSTI)

    Haario, Heikki; Kalachev, Leonid; Hakkarainen, Janne

    2015-06-15

    Several concepts of fractal dimension have been developed to characterise properties of attractors of chaotic dynamical systems. Numerical approximations of them must be calculated by finite samples of simulated trajectories. In principle, the quantities should not depend on the choice of the trajectory, as long as it provides properly distributed samples of the underlying attractor. In practice, however, the trajectories are sensitive with respect to varying initial values, small changes of the model parameters, to the choice of a solver, numeric tolerances, etc. The purpose of this paper is to present a statistically sound approach to quantify this variability. We modify the concept of correlation integral to produce a vector that summarises the variability at all selected scales. The distribution of this stochastic vector can be estimated, and it provides a statistical distance concept between trajectories. Here, we demonstrate the use of the distance for the purpose of estimating model parameters of a chaotic dynamic model. The methodology is illustrated using computational examples for the Lorenz 63 and Lorenz 95 systems, together with a framework for Markov chain Monte Carlo sampling to produce posterior distributions of model parameters.

  18. MAPPING OF RESERVOIR PROPERTIES AND FACIES THROUGH INTEGRATION OF STATIC AND DYNAMIC DATA

    SciTech Connect (OSTI)

    Albert C. Reynolds; Dean S. Oliver; Fengjun Zhang; Yannong Dong; Jan Arild Skjervheim; Ning Liu

    2003-01-01

    Knowledge of the distribution of permeability and porosity in a reservoir is necessary for the prediction of future oil production, estimation of the location of bypassed oil, and optimization of reservoir management. But while the volume of data that can potentially provide information on reservoir architecture and fluid distributions has increased enormously in the past decade, it is not yet possible to make use of all the available data in an integrated fashion. While it is relatively easy to generate plausible reservoir models that honor static data such as core, log, and seismic data, it is far more difficult to generate plausible reservoir models that honor dynamic data such as transient pressures, saturations, and flow rates. As a result, the uncertainty in reservoir properties is higher than it could be and reservoir management can not be optimized. The goal of this project is to develop computationally efficient automatic history matching techniques for generating geologically plausible reservoir models which honor both static and dynamic data. Solution of this problem is necessary for the quantification of uncertainty in future reservoir performance predictions and for the optimization of reservoir management. Facies (defined here as regions of relatively uniform petrophysical properties) are common features of all reservoirs. Because the flow properties of the various facies can vary greatly, knowledge of the location of facies boundaries is of utmost importance for the prediction of reservoir performance and for the optimization of reservoir management. When the boundaries between facies are fairly well known, but flow properties are poorly known, the average properties for all facies can be determined using traditional techniques. Traditional history matching honors dynamic data by adjusting petrophysical properties in large areas, but in the process of adjusting the reservoir model ignores the static data and often results in implausible reservoir models. In general, boundary locations, average permeability and porosity, relative permeability curves, and local flow properties may all need to be adjusted to achieve a plausible reservoir model that honors all data. In this project, we will characterize the distribution of geologic facies as an indicator random field, making use of the tools of geostatistics as well as the tools of inverse and probability theory for data integration.

  19. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent

    SciTech Connect (OSTI)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2015-06-21

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism.

  20. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Meng; Charles, River; Tong, Huimin; Zhang, Lei; Patel, Mili; Wang, Francis; Rames, Matthew J.; Ren, Amy; Rye, Kerry-Anne; Qiu, Xiayang; et al

    2015-03-04

    Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobicmore » environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL.« less

  1. Dynamics of soft Nanomaterials captured by transmission electron microscopy in liquid water

    SciTech Connect (OSTI)

    Proetto, Maria T.; Rush, Anthony M.; Chien, Miao-Ping; Abellan Baeza, Patricia; Patterson, Joseph P.; Thompson, Matthew P.; Olson, Norman H.; Moore, Curtis E.; Rheingold, Arnold L.; Andolina, Christopher; Millstone, Jill; Howell, Stephen B.; Browning, Nigel D.; Evans, James E.; Gianneschi, Nathan C.

    2014-01-14

    In this paper we present in situ transmission electron microscopy (TEM) of soft, synthetic nanoparticles with a comparative analysis using conventional TEM methods. This comparison is made with the simple aim of describing what is an unprecedented example of in situ imaging by TEM. However, we contend the technique will quickly become essential in the characterization of analogous systems, especially where dynamics are of interest in the solvated state. In this case, particles were studied which were obtained from the direct polymerization of an oxaliplatin analog, designed for an ongoing program in novel chemotherapeutic delivery systems. The resulting nanoparticles provided sufficient contrast for facile imaging in situ, and point toward key design parameters that enable this new characterization approach for organic nanomaterials. We describe the preparation of the synthetic micellar nanoparticles to- gether with their characterization in liquid water.

  2. Communication: Microsecond dynamics of the protein and water affect electron transfer in a bacterial bc{sub 1} complex

    SciTech Connect (OSTI)

    Martin, Daniel R.; Matyushov, Dmitry V.

    2015-04-28

    Cross-membrane electron transport between cofactors localized in proteins of mitochondrial respiration and bacterial photosynthesis is the source of all biological energy. The statistics and dynamics of nuclear fluctuations in these protein/membrane/water heterogeneous systems are critical for their energetic efficiency. The results of 13 ?s of atomistic molecular dynamics simulations of the membrane-bound bc{sub 1} bacterial complex are analyzed here. The reaction is affected by a broad spectrum of nuclear modes, with the slowest dynamics in the range of time-scales ?0.1-1.6 ?s contributing half of the reaction reorganization energy. Two reorganization energies are required to describe protein electron transfer due to dynamical arrest of protein conformations on the observation window. This mechanistic distinction allows significant lowering of activation barriers for reactions in proteins.

  3. Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser

    SciTech Connect (OSTI)

    Wu, Wenting; Nogly, Przemyslaw; Rheinberger, Jan; Kick, Leonhard M.; Gati, Cornelius; Nelson, Garrett; Deupi, Xavier; Standfuss, Jrg; Schertler, Gebhard; Panneels, Valrie

    2015-06-27

    A new batch preparation method is presented for high-density micrometre-sized crystals of the G protein-coupled receptor rhodopsin for use in time-resolved serial femtosecond crystallography at an X-ray free-electron laser using a liquid jet. Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallization conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.

  4. Coupled electron-nuclear dynamics: Charge migration and charge transfer initiated near a conical intersection

    SciTech Connect (OSTI)

    Mendive-Tapia, David; Vacher, Morgane; Bearpark, Michael J.; Robb, Michael A.

    2013-07-28

    Coupled electron-nuclear dynamics, implemented using the Ehrenfest method, has been used to study charge migration with fixed nuclei, together with charge transfer when nuclei are allowed to move. Simulations were initiated at reference geometries of neutral benzene and 2-phenylethylamine (PEA), and at geometries close to potential energy surface crossings in the cations. Cationic eigenstates, and the so-called sudden approximation, involving removal of an electron from a correlated ground-state wavefunction for the neutral species, were used as initial conditions. Charge migration without coupled nuclear motion could be observed if the Ehrenfest simulation, using the sudden approximation, was started near a conical intersection where the states were both strongly coupled and quasi-degenerate. Further, the main features associated with charge migration were still recognizable when the nuclear motion was allowed to couple. In the benzene radical cation, starting from the reference neutral geometry with the sudden approximation, one could observe sub-femtosecond charge migration with a small amplitude, which results from weak interaction with higher electronic states. However, we were able to engineer large amplitude charge migration, with a period between 10 and 100 fs, corresponding to oscillation of the electronic structure between the quinoid and anti-quinoid cationic electronic configurations, by distorting the geometry along the derivative coupling vector from the D{sub 6h} Jahn-Teller crossing to lower symmetry where the states are not degenerate. When the nuclear motion becomes coupled, the period changes only slightly. In PEA, in an Ehrenfest trajectory starting from the D{sub 2} eigenstate and reference geometry, a partial charge transfer occurs after about 12 fs near the first crossing between D{sub 1}, D{sub 2} (N{sup +}-Phenyl, N-Phenyl{sup +}). If the Ehrenfest propagation is started near this point, using the sudden approximation without coupled nuclear motion, one observes an oscillation of the spin density charge migration between the N atom and the phenyl ring with a period of 4 fs. When the nuclear motion becomes coupled, this oscillation persists in a damped form, followed by an effective charge transfer after 30 fs.

  5. Statistical analysis of the dynamics of secondary electrons in the flare of a high-voltage beam-type discharge

    SciTech Connect (OSTI)

    Demkin, V. P.; Mel'nichuk, S. V.

    2014-09-15

    In the present work, results of investigations into the dynamics of secondary electrons with helium atoms in the presence of the reverse electric field arising in the flare of a high-voltage pulsed beam-type discharge and leading to degradation of the primary electron beam are presented. The electric field in the discharge of this type at moderate pressures can reach several hundred V/cm and leads to considerable changes in the kinetics of secondary electrons created in the process of propagation of the electron beam generated in the accelerating gap with a grid anode. Moving in the accelerating electric field toward the anode, secondary electrons create the so-called compensating current to the anode. The character of electron motion and the compensating current itself are determined by the ratio of the field strength to the concentration of atoms (E/n). The energy and angular spectra of secondary electrons are calculated by the Monte Carlo method for different ratios E/n of the electric field strength to the helium atom concentration. The motion of secondary electrons with threshold energy is studied for inelastic collisions of helium atoms and differential analysis is carried out of the collisional processes causing energy losses of electrons in helium for different E/n values. The mechanism of creation and accumulation of slow electrons as a result of inelastic collisions of secondary electrons with helium atoms and selective population of metastable states of helium atoms is considered. It is demonstrated that in a wide range of E/n values the motion of secondary electrons in the beam-type discharge flare has the character of drift. At E/n values characteristic for the discharge of the given type, the drift velocity of these electrons is calculated and compared with the available experimental data.

  6. Electron-Beam Dynamics for an Advanced Flash-Radiography Accelerator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ekdahl, Carl

    2015-11-17

    Beam dynamics issues were assessed for a new linear induction electron accelerator being designed for multipulse flash radiography of large explosively driven hydrodynamic experiments. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Furthermore, beam physics issues were examined through theoretical analysis and computer simulations, including particle-in-cell codes. Beam instabilities investigated included beam breakup, image displacement, diocotron, parametric envelope, ion hose, and themore » resistive wall instability. The beam corkscrew motion and emittance growth from beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos National Laboratory will result if the same engineering standards and construction details are upheld.« less

  7. Quasioptical design of integrated Doppler backscattering and correlation electron cyclotron emission systems on the DIII-D tokamak

    SciTech Connect (OSTI)

    Rhodes, T. L.; Peebles, W. A.; Nguyen, X.; Hillesheim, J. C.; Schmitz, L.; Wang, G.; White, A. E.

    2010-10-15

    The quasioptical design of a new integrated Doppler backscattering (DBS) and correlation electron cyclotron emission (CECE) system is presented. The design provides for simultaneous measurements of intermediate wavenumber density and long wavelength electron temperature turbulence behavior. The Doppler backscattering technique is sensitive to plasma turbulence flow and has been utilized to determine radial electric field, geodesic acoustic modes, zonal flows, and intermediate scale (k{approx}1-6 cm{sup -1}) density turbulence. The correlation ECE system measures a second turbulent field, electron temperature fluctuations, and is sensitive to long poloidal wavelength (k{<=}1.8 cm{sup -1}). The integrated system utilizes a newly installed in-vessel focusing mirror that produces a beam waist diameter of 3.5-5 cm in the plasma depending on the frequency. A single antenna (i.e., monostatic operation) is used for both launch and receive. The DBS wavenumber is selected via an adjustable launch angle and variable probing frequency. Due to the unique system design both positive and negative wavenumbers can be obtained, with a range of low to intermediate wavenumbers possible (approximately -3 to 10 cm{sup -1}). A unique feature of the design is the ability to place the DBS and CECE measurements at the same radial and poloidal locations allowing for cross correlation studies (e.g., measurement of nT cross-phase).

  8. Structural, dynamic, electronic, and vibrational properties of flexible, intermediate, and stressed rigid As-Se glasses and liquids from first principles molecular dynamics

    SciTech Connect (OSTI)

    Bauchy, M.; Kachmar, A.; Micoulaut, M.

    2014-11-21

    The structural, vibrational, electronic, and dynamic properties of amorphous and liquid As{sub x}Se{sub 1-x} (0.10 Dynamics. Within the above range of compositions, thresholds, and anomalies are found in the behavior of reciprocal and real space properties that can be correlated to the experimental location of the Boolchand intermediate phase in these glassy networks, observed at 0.27 dynamical atomic-scale fingerprints for the onset of rigidity within the network, while also providing a much more complex picture than the one derived from mean-field approaches of stiffness transitions.

  9. The integration of liquid cryogen cooling and cryocoolers withsuperconducting electronic systems

    SciTech Connect (OSTI)

    Green, Michael A.

    2003-07-09

    The need for cryogenic cooling has been a critical issuethat has kept superconducting electronic devices from reaching the marketplace. Even though the performance of many of the superconductingcircuits is superior to silicon electronics, the requirement forcryogenic cooling has put the superconducting devices at a seriousdisadvantage. This report discusses the process of refrigeratingsuperconducting devices with cryogenic liquids and small cryocoolers.Three types of cryocoolers are compared for vibration, efficiency, andreliability. The connection of a cryocooler to the load is discussed. Acomparison of using flexible copper straps to carry the heat load andusing heat pipe is shown. The type of instrumentation needed formonitoring and controlling the cooling is discussed.

  10. Integrating Heterogeneous Healthcare Datasets and Visual Analytics for Disease Bio-surveillance and Dynamics

    SciTech Connect (OSTI)

    Ramanathan, Arvind; Pullum, Laura L; Steed, Chad A; Quinn, Shannon; Chennubhotla, Chakra; Parker, Tara L

    2013-01-01

    n this paper, we present an overview of the big data chal- lenges in disease bio-surveillance and then discuss the use of visual analytics for integrating data and turning it into knowl- edge. We will explore two integration scenarios: (1) combining text and multimedia sources to improve situational awareness and (2) enhancing disease spread model data with real-time bio-surveillance data. Together, the proposed integration methodologies can improve awareness about when, where and how emerging diseases can affect wide geographic regions.

  11. Novel scanning electron microscope bulge test technique integrated with loading function

    SciTech Connect (OSTI)

    Li, Chuanwei; Xie, Huimin E-mail: xiehm@mail.tsinghua.edu.cn; Liu, Zhanwei E-mail: xiehm@mail.tsinghua.edu.cn

    2014-10-15

    Membranes and film-on-substrate structures are critical elements for some devices in electronics industry and for Micro Electro Mechanical Systems devices. These structures are normally at the scale of micrometer or even nanometer. Thus, the measurement for the mechanical property of these membranes poses a challenge over the conventional measurements at macro-scales. In this study, a novel bulge test method is presented for the evaluation of mechanical property of micro thin membranes. Three aspects are discussed in the study: (a) A novel bulge test with a Scanning Electron Microscope system realizing the function of loading and measuring simultaneously; (b) a simplified Digital Image Correlation method for a height measurement; and (c) an imaging distortion correction by the introduction of a scanning Moir method. Combined with the above techniques, biaxial modulus as well as Young's modulus of the polyimide film can be determined. Besides, a standard tensile test is conducted as an auxiliary experiment to validate the feasibility of the proposed method.

  12. Electron Solvation Dynamics and Reactivity in Ionic Liquids Observed by Picosecond RadiolysisTechniques

    SciTech Connect (OSTI)

    Wishart J. F.; Funston, A.M.; Szreder, T.; Cook, A.R.; Gohdo, M.

    2012-01-01

    On time scales of a nanosecond or less, radiolytically-generated excess electrons in ionic liquids undergo solvation processes and reactions that determine all subsequent chemistry and the accumulation of radiolytic damage. Using picosecond pulse radiolysis detection methods, we observed and quantified the solvation response of the electron in 1-methyl-1-butyl-pyrrolidinium bis(trifluoromethylsulfonyl)amide and used it to understand electron scavenging by a typical solute, duroquinone.

  13. Electron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    density measurement by differential interferometry W. X. Ding, D. L. Brower, B. H. Deng, and T. Yates Electrical Engineering Department, University of California-Los Angeles, Los Angeles, California 90095 ͑Received 5 May 2006; presented on 10 May 2006; accepted 16 June 2006; published online 26 September 2006͒ A novel differential interferometer is being developed to measure the electron density gradient and its fluctuations. Two separate laser beams with slight spatial offset and frequency

  14. Performance Tuning of Fock Matrix and Two-Electron Integral Calculations for NWChem on Leading HPC Platforms

    SciTech Connect (OSTI)

    Shan, Hongzhan; Austin, Brian M.; De Jong, Wibe A.; Oliker, Leonid; Wright, Nicholas J.; Apra, Edoardo

    2014-10-01

    Attaining performance in the evaluation of two-electron repulsion integrals and constructing the Fock matrix is of considerable importance to the computational chemistry community. Due to its numerical complexity improving the performance behavior across a variety of leading supercomputing platforms is an increasing challenge due to the significant diversity in high-performance computing architectures. In this paper, we present our successful tuning methodology for these important numerical methods on the Cray XE6, the Cray XC30, the IBM BG/Q, as well as the Intel Xeon Phi. Our optimization schemes leverage key architectural features including vectorization and simultaneous multithreading, and results in speedups of up to 2.5x compared with the original implementation.

  15. Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Canton, Sophie E.; Kjær, Kasper S.; Vankó, György; van Driel, Tim B.; Adachi, Shin -ichi; Bordage, Amélie; Bressler, Christian; Chabera, Pavel; Christensen, Morten; Dohn, Asmus O.; et al

    2015-03-02

    Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances.more » Thus experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined.« less

  16. Nonlinear space charge dynamics in mixed ionic-electronic conductors: Resistive switching and ferroelectric-like hysteresis of electromechanical response

    SciTech Connect (OSTI)

    Morozovska, Anna N.; Morozovsky, Nicholas V.; Eliseev, Eugene A.; Varenyk, Olexandr V.; Kim, Yunseok; Strelcov, Evgheni; Tselev, Alexander; Kalinin, Sergei V.

    2014-08-14

    We performed self-consistent modelling of nonlinear electrotransport and electromechanical response of thin films of mixed ionic-electronic conductors (MIEC) allowing for steric effects of mobile charged defects (ions, protons, or vacancies), electron degeneration, and Vegard stresses. We establish correlations between the features of the nonlinear space-charge dynamics, current-voltage, and bending-voltage curves for different types of the film electrodes. A pronounced ferroelectric-like hysteresis of the bending-voltage loops and current maxima on the double hysteresis current-voltage loops appear for the electron-transport electrodes. The double hysteresis loop with pronounced humps indicates a memristor-type resistive switching. The switching occurs due to the strong nonlinear coupling between the electronic and ionic subsystems. A sharp meta-stable maximum of the electron density appears near one open electrode and moves to another one during the periodic change of applied voltage. Our results can explain the nonlinear nature and correlation of electrical and mechanical memory effects in thin MIEC films. The analytical expression proving that the electrically induced bending of MIEC films can be detected by interferometric methods is derived.

  17. Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses

    SciTech Connect (OSTI)

    Canton, Sophie E.; Kjr, Kasper S.; Vank, Gyrgy; van Driel, Tim B.; Adachi, Shin -ichi; Bordage, Amlie; Bressler, Christian; Chabera, Pavel; Christensen, Morten; Dohn, Asmus O.; Galler, Andreas; Gawelda, Wojciech; Gosztola, David; Haldrup, Kristoffer; Harlang, Tobias; Liu, Yizhu; Mller, Klaus B.; Nmeth, Zoltn; Nozawa, Shunsuke; Ppai, Mtys; Sato, Tokushi; Sato, Takahiro; Suarez-Alcantara, Karina; Togashi, Tadashi; Tono, Kensuke; Uhlig, Jens; Vithanage, Dimali A.; Wrnmark, Kenneth; Yabashi, Makina; Zhang, Jianxin; Sundstrm, Villy; Nielsen, Martin M.

    2015-03-02

    Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donoracceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances. Thus experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined.

  18. Mapping of Reservoir Properties and Facies Through Integration of Static and Dynamic Data

    SciTech Connect (OSTI)

    Reynolds, Albert C.; Oliver, Dean S.; Zhang, Fengjun; Dong, Yannong; Skjervheim, Jan Arild; Liu, Ning

    2003-03-10

    The goal of this project was to develop computationally efficient automatic history matching techniques for generating geologically plausible reservoir models which honor both static and dynamic data. Solution of this problem was necessary for the quantification of uncertainty in future reservoir performance predictions and for the optimization of reservoir management.

  19. Electron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron thermal transport within magnetic islands in the reversed-field pinch a... H. D. Stephens, 1,b͒ D. J. Den Hartog, 1,3 C. C. Hegna, 1,2 and J. A. Reusch 1 1 Department of Physics, University of Wisconsin-Madison, 1150 University Ave., Madison, Wisconsin 53706, USA 2 Department of Engineering Physics, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706, USA 3 Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of

  20. Hybrid DFT Functional-Based Static and Molecular Dynamics Studies of Excess Electron in Liquid Ethylene Carbonate

    SciTech Connect (OSTI)

    Yu, J. M.; Balbuena, P. B.; Budzien, J. L.; Leung, Kevin

    2011-02-22

    We applied static and dynamic hybrid functional density functional theory (DFT) calculations to study the interactions of one and two excess electrons with ethylene carbonate (EC) liquid and clusters. Optimal structures of (EC)n and (EC)n- clusters devoid of Li+ ions, n = 16, were obtained. The excess electron was found to be localized on a single EC in all cases, and the EC dimeric radical anion exhibits a reduced barrier associated with the breaking of the ethylene carbonoxygen covalent bond compared to EC-. In ab initio molecular dynamics (AIMD) simulations of EC- solvated in liquid EC, large fluctuations in the carbonyl carbonoxygen bond lengths were observed. AIMD simulations of a two-electron attack on EC in EC liquid and on Li metal surfaces yielded products similar to those predicted using nonhybrid DFT functionals, except that CO release did not occur for all attempted initial configurations in the liquid state.

  1. Electron dynamics of the buffer layer and bilayer graphene on SiC

    SciTech Connect (OSTI)

    Shearer, Alex J.; Caplins, Benjamin W.; Suich, David E.; Harris, Charles B., E-mail: cbharris@berkeley.edu [Department of Chemistry, University of California at Berkeley, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Johns, James E. [Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455 (United States); Hersam, Mark C. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States)

    2014-06-09

    Angle- and time-resolved two-photon photoemission (TPPE) was used to investigate electronic states in the buffer layer of 4H-SiC(0001). An image potential state (IPS) series was observed on this strongly surface-bound buffer layer, and dispersion measurements indicated free-electron-like behavior for all states in this series. These results were compared with TPPE taken on bilayer graphene, which also show the existence of a free-electron-like IPS series. Lifetimes for the n?=?2, and n?=?3 states were obtained from time-resolved TPPE; slightly increased lifetimes were observed in the bilayer graphene sample for the n?=?2 the n?=?3 states. Despite the large band gap of graphene at the center of the Brillouin zone, the lifetime results demonstrate that the graphene layers do not behave as a simple tunneling barrier, suggesting that the buffer layer and graphene overlayers play a direct role in the decay of IPS electrons.

  2. Communication: Quantum molecular dynamics simulation of liquid para-hydrogen by nuclear and electron wave packet approach

    SciTech Connect (OSTI)

    Hyeon-Deuk, Kim; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 ; Ando, Koji

    2014-05-07

    Liquid para-hydrogen (p-H{sub 2}) is a typical quantum liquid which exhibits strong nuclear quantum effects (NQEs) and thus anomalous static and dynamic properties. We propose a real-time simulation method of wave packet (WP) molecular dynamics (MD) based on non-empirical intra- and inter-molecular interactions of non-spherical hydrogen molecules, and apply it to condensed-phase p-H{sub 2}. The NQEs, such as WP delocalization and zero-point energy, are taken into account without perturbative expansion of prepared model potential functions but with explicit interactions between nuclear and electron WPs. The developed MD simulation for 100 ps with 1200 hydrogen molecules is realized at feasible computational cost, by which basic experimental properties of p-H{sub 2} liquid such as radial distribution functions, self-diffusion coefficients, and shear viscosities are all well reproduced.

  3. INVESTIGATION OF A DYNAMIC POWER LINE RATING CONCEPT FOR IMPROVED WIND ENERGY INTEGRATION OVER COMPLEX TERRAIN

    SciTech Connect (OSTI)

    Jake P. Gentle; Kurt S Myers; Tyler B Phillips; Inanc Senocak; Phil Anderson

    2014-08-01

    Dynamic Line Rating (DLR) is a smart grid technology that allows the rating of power line to be based on real-time conductor temperature dependent on local weather conditions. In current practice overhead power lines are generally given a conservative rating based on worst case weather conditions. Using historical weather data collected over a test bed area, we demonstrate there is often additional transmission capacity not being utilized with the current static rating practice. We investigate a new dynamic line rating methodology using computational fluid dynamics (CFD) to determine wind conditions along transmission lines at dense intervals. Simulated results are used to determine conductor temperature by calculating the transient thermal response of the conductor under variable environmental conditions. In calculating the conductor temperature, we use both a calculation with steady-state assumption and a transient calculation. Under low wind conditions, steady-state assumption predicts higher conductor temperatures that could lead to curtailments, whereas transient calculations produce conductor temperatures that are significantly lower, implying the availability of additional transmission capacity.

  4. DYNAMIC STABILITY OF THE SOLAR SYSTEM: STATISTICALLY INCONCLUSIVE RESULTS FROM ENSEMBLE INTEGRATIONS

    SciTech Connect (OSTI)

    Zeebe, Richard E.

    2015-01-01

    Due to the chaotic nature of the solar system, the question of its long-term stability can only be answered in a statistical sense, for instance, based on numerical ensemble integrations of nearby orbits. Destabilization of the inner planets, leading to close encounters and/or collisions can be initiated through a large increase in Mercury's eccentricity, with a currently assumed likelihood of ?1%. However, little is known at present about the robustness of this number. Here I report ensemble integrations of the full equations of motion of the eight planets and Pluto over 5 Gyr, including contributions from general relativity. The results show that different numerical algorithms lead to statistically different results for the evolution of Mercury's eccentricity (e{sub M}). For instance, starting at present initial conditions (e{sub M}?0.21), Mercury's maximum eccentricity achieved over 5 Gyr is, on average, significantly higher in symplectic ensemble integrations using heliocentric rather than Jacobi coordinates and stricter error control. In contrast, starting at a possible future configuration (e{sub M}?0.53), Mercury's maximum eccentricity achieved over the subsequent 500 Myr is, on average, significantly lower using heliocentric rather than Jacobi coordinates. For example, the probability for e{sub M} to increase beyond 0.53 over 500 Myr is >90% (Jacobi) versus only 40%-55% (heliocentric). This poses a dilemma because the physical evolution of the real systemand its probabilistic behaviorcannot depend on the coordinate system or the numerical algorithm chosen to describe it. Some tests of the numerical algorithms suggest that symplectic integrators using heliocentric coordinates underestimate the odds for destabilization of Mercury's orbit at high initial e{sub M}.

  5. The phase topology of a special case of Goryachev integrability in rigid body dynamics

    SciTech Connect (OSTI)

    Ryabov, P. E.

    2014-07-31

    The phase topology of a special case of Goryachev integrability in the problem of motion of a rigid body in a fluid is investigated using the method of Boolean functions, which was developed by Kharlamov for algebraically separated systems. The bifurcation diagram of the moment map is found and the Fomenko invariant, which classifies the systems up to rough Liouville equivalence, is specified. Bibliography: 15 titles. (paper)

  6. Electron beam dynamics in the long-pulse, high-current DARHT-II linear induction accelerator

    SciTech Connect (OSTI)

    Ekdahl, Carl A; Abeyta, Epifanio O; Aragon, Paul; Archuleta, Rita; Cook, Gerald; Dalmas, Dale; Esquibel, Kevin; Gallegos, Robert A; Garnett, Robert; Harrison, James F; Johnson, Jeffrey B; Jacquez, Edward B; Mccuistian, Brian T; Montoya, Nicholas A; Nath, Subrato; Nielsen, Kurt; Oro, David; Prichard, Benjamin; Rowton, Lawrence; Sanchez, Manolito; Scarpetti, Raymond; Schauer, Martin M; Seitz, Gerald; Schulze, Martin; Bender, Howard A; Broste, William B; Carlson, Carl A; Frayer, Daniel K; Johnson, Douglas E; Tom, C Y; Williams, John; Hughes, Thomas; Anaya, Richard; Caporaso, George; Chambers, Frank; Chen, Yu - Jiuan; Falabella, Steve; Guethlein, Gary; Raymond, Brett; Richardson, Roger; Trainham, C; Weir, John; Genoni, Thomas; Toma, Carsten

    2009-01-01

    The DARHT-II linear induction accelerator (LIA) now accelerates 2-kA electron beams to more than 17 MeV. This LIA is unique in that the accelerated current pulse width is greater than 2 microseconds. This pulse has a flat-top region where the final electron kinetic energy varies by less than 1% for more than 1.5 microseconds. The long risetime of the 6-cell injector current pulse is 0.5 {micro}s, which can be scraped off in a beam-head cleanup zone before entering the 68-cell main accelerator. We discuss our experience with tuning this novel accelerator; and present data for the resulting beam transport and dynamics. We also present beam stability data, and relate these to previous stability experiments at lower current and energy.

  7. Beam dynamics study of a 30?MeV electron linear accelerator to drive a neutron source

    SciTech Connect (OSTI)

    Kumar, Sandeep; Yang, Haeryong; Kang, Heung-Sik

    2014-02-14

    An experimental neutron facility based on 32?MeV/18.47?kW electron linac has been studied by means of PARMELA simulation code. Beam dynamics study for a traveling wave constant gradient electron accelerator is carried out to reach the preferential operation parameters (E?=?30?MeV, P?=?18?kW, dE/E?electron energy is required to produce acceptable neutron flux. The final neutron flux is estimated to be 5??10{sup 11}?n/cm{sup 2}/s/mA. Future development will be the real design of a 30?MeV electron linac based on S band traveling wave.

  8. High-speed multiframe dynamic transmission electron microscope image acquisition system with arbitrary timing

    DOE Patents [OSTI]

    Reed, Bryan W.; DeHope, William J.; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M.

    2015-10-20

    An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses of a predefined pulse duration and waveform, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has two pairs of plates arranged perpendicular to one another. A control system controls the laser and a plurality of switching components synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to be provided with an independently set duration and independently set inter-pulse spacings.

  9. Tunable mega-ampere electron current propagation in solids by dynamic control of lattice melt

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    MacLellan, D.  A.; Carroll, D.  C.; Gray, R.  J.; Booth, N.; Burza, M.; Desjarlais, M.  P.; Du, F.; Neely, D.; Powell, H.  W.; Robinson, A.  P. L.; et al

    2014-10-31

    The influence of lattice-melt-induced resistivity gradients on the transport of mega-ampere currents of fast electrons in solids is investigated numerically and experimentally using laser-accelerated protons to induce isochoric heating. Tailoring the heating profile enables the resistive magnetic fields which strongly influence the current propagation to be manipulated. This tunable laser-driven process enables important fast electron beam properties, including the beam divergence, profile, and symmetry to be actively tailored, and without recourse to complex target manufacture.

  10. ON QUIET-TIME SOLAR WIND ELECTRON DISTRIBUTIONS IN DYNAMICAL EQUILIBRIUM WITH LANGMUIR TURBULENCE

    SciTech Connect (OSTI)

    Zaheer, S.; Yoon, P. H.

    2013-10-01

    A recent series of papers put forth a self-consistent theory of an asymptotically steady-state electron distribution function and Langmuir turbulence intensity. The theory was developed in terms of the ? distribution which features Maxwellian low-energy electrons and a non-Maxwellian energetic power-law tail component. The present paper discusses a generalized ? distribution that features a Davydov-Druyvesteyn type of core component and an energetic power-law tail component. The physical motivation for such a generalization is so that the model may reflect the influence of low-energy electrons interacting with low-frequency kinetic Alfvnic turbulence as well as with high-frequency Langmuir turbulence. It is shown that such a solution and the accompanying Langmuir wave spectrum rigorously satisfy the balance requirement between the spontaneous and induced emission processes in both the particle and wave kinetic equations, and approximately satisfy the similar balance requirement between the spontaneous and induced scattering processes, which are nonlinear. In spite of the low velocity modification of the electron distribution function, it is shown that the resulting asymptotic velocity power-law index ?, where f{sub e} ? v {sup ?} is close to the average index observed during the quiet-time solar wind condition, i.e., ? ? O(6.5) whereas ?{sub average} ? 6.69, according to observation.

  11. The structural, electronic and dynamic properties of the L1{sub 2}- type Co{sub 3}Ti alloy

    SciTech Connect (OSTI)

    Arikan, Nihat; zduran, Mustafa

    2014-10-06

    The structural, electronic and dynamic properties of the cubic Co{sub 3}Ti alloy in L1{sub 2} structure have been investigated using a pseudopotential plane wave (PP-PW) method within the generalized gradient approximation proposed by PerdewBurkeErnzerhof (GGA-PBE). The structural properties, including the lattice constant, the bulk modulus and its pressure derivative agree reasonably with the previous results. The density of state (DOS), projected density of state (PDOS) and electronic band structure are also reported. The DOS shows that Co{sub 3}Ti alloy has a metallic character since the energy bands cross the Fermi level. The density of states at Fermi level mainly comes from the Co-3d states. Phonon dispersion curves and their corresponding total densities of states were obtained using a linear response in the framework of the density functional perturbation theory. All computed phonon frequencies are no imaginer and thus, Co{sub 3}Ti alloy is dynamically stable. The zone center phonon modes have been founded to be 9.307, 9.626 and 13.891 THz for Co{sub 3}Ti.

  12. Integrated atomistic chemical imaging and reactive force field molecular dynamic simulations on silicon oxidation

    SciTech Connect (OSTI)

    Dumpala, Santoshrupa; Broderick, Scott R.; Rajan, Krishna; Khalilov, Umedjon; Neyts, Erik C.; Duin, Adri C. T. van; Provine, J; Howe, Roger T.

    2015-01-05

    In this paper, we quantitatively investigate with atom probe tomography, the effect of temperature on the interfacial transition layer suboxide species due to the thermal oxidation of silicon. The chemistry at the interface was measured with atomic scale resolution, and the changes in chemistry and intermixing at the interface were identified on a nanometer scale. We find an increase of suboxide (SiOx) concentration relative to SiO{sub 2} and increased oxygen ingress with elevated temperatures. Our experimental findings are in agreement with reactive force field molecular dynamics simulations. This work demonstrates the direct comparison between atom probe derived chemical profiles and atomistic-scale simulations for transitional interfacial layer of suboxides as a function of temperature.

  13. Integrated Dynamic Gloabal Modeling of Land Use, Energy and Economic Growth

    SciTech Connect (OSTI)

    Atul Jain, University of Illinois, Urbana-Champaign, IL Brian O'Neill, NCAR, Boulder, CO

    2009-10-14

    The overall objective of this collaborative project is to integrate an existing general equilibrium energy-economic growth model with a biogeochemical cycles and biophysical models in order to more fully explore the potential contribution of land use-related activities to future emissions scenarios. Land cover and land use change activities, including deforestation, afforestation, and agriculture management, are important source of not only CO2, but also non-CO2 GHGs. Therefore, contribution of land-use emissions to total emissions of GHGs is important, and consequently their future trends are relevant to the estimation of climate change and its mitigation. This final report covers the full project period of the award, beginning May 2006, which includes a sub-contract to Brown University later transferred to the National Center for Atmospheric Research (NCAR) when Co-PI Brian O'Neill changed institutional affiliations.

  14. Solving the Accelerator-Condenser Coupling Problem in a Nanosecond Dynamic Transmission Electron Microscope

    SciTech Connect (OSTI)

    Reed, B W; LaGrange, T; Shuttlesworth, R M; Gibson, D J; Campbell, G H; Browning, N D

    2009-12-29

    We describe a modification to a transmission electron microscope (TEM) that allows it to briefly (using a pulsed-laser-driven photocathode) operate at currents in excess of 10 mA while keeping the effects of condenser lens aberrations to a minimum. This modification allows real-space imaging of material microstructure with a resolution of order 10 nm over regions several {micro}m across with an exposure time of 15 ns. This is more than 6 orders of magnitude faster than typical video-rate TEM imaging. The key is the addition of a weak magnetic lens to couple the large-diameter high-current beam exiting the accelerator into the acceptance aperture of a conventional TEM condenser lens system. We show that the performance of the system is essentially consistent with models derived from ray tracing and finite element simulations. The instrument can also be operated as a conventional TEM by using the electron gun in a thermionic mode. The modification enables very high electron current densities in {micro}m-sized areas and could also be used in a non-pulsed system for high-throughput imaging and analytical TEM.

  15. Combining nanocalorimetry and dynamic transmission electron microscopy for in situ characterization of materials processes under rapid heating and cooling

    SciTech Connect (OSTI)

    Grapes, Michael D.; LaGrange, Thomas; Reed, Bryan W.; Campbell, Geoffrey H.; Friedman, Lawrence H.; LaVan, David A.; Weihs, Timothy P.

    2014-08-15

    Nanocalorimetry is a chip-based thermal analysis technique capable of analyzing endothermic and exothermic reactions at very high heating and cooling rates. Here, we couple a nanocalorimeter with an extremely fast in situ microstructural characterization tool to identify the physical origin of rapid enthalpic signals. More specifically, we describe the development of a system to enable in situ nanocalorimetry experiments in the dynamic transmission electron microscope (DTEM), a time-resolved TEM capable of generating images and electron diffraction patterns with exposure times of 30 ns500 ns. The full experimental system consists of a modified nanocalorimeter sensor, a custom-built in situ nanocalorimetry holder, a data acquisition system, and the DTEM itself, and is capable of thermodynamic and microstructural characterization of reactions over a range of heating rates (10{sup 2} K/s10{sup 5} K/s) accessible by conventional (DC) nanocalorimetry. To establish its ability to capture synchronized calorimetric and microstructural data during rapid transformations, this work describes measurements on the melting of an aluminum thin film. We were able to identify the phase transformation in both the nanocalorimetry traces and in electron diffraction patterns taken by the DTEM. Potential applications for the newly developed system are described and future system improvements are discussed.

  16. Laser-to-hot-electron conversion limitations in relativistic laser matter interactions due to multi-picosecond dynamics

    SciTech Connect (OSTI)

    Schollmeier, M.; Sefkow, A. B.; Geissel, M.; Kimmel, M. W.; Rambo, P. K.; Schwarz, J.; Arefiev, A. V.; Flippo, K. A.; Johnson, R. P.; Shimada, T.; Gaillard, S. A.; Offermann, D. T.

    2015-04-15

    High-energy short-pulse lasers are pushing the limits of plasma-based particle acceleration, x-ray generation, and high-harmonic generation by creating strong electromagnetic fields at the laser focus where electrons are being accelerated to relativistic velocities. Understanding the relativistic electron dynamics is key for an accurate interpretation of measurements. We present a unified and self-consistent modeling approach in quantitative agreement with measurements and differing trends across multiple target types acquired from two separate laser systems, which differ only in their nanosecond to picosecond-scale rising edge. Insights from high-fidelity modeling of laser-plasma interaction demonstrate that the ps-scale, orders of magnitude weaker rising edge of the main pulse measurably alters target evolution and relativistic electron generation compared to idealized pulse shapes. This can lead for instance to the experimentally observed difference between 45 MeV and 75 MeV maximum energy protons for two nominally identical laser shots, due to ps-scale prepulse variations. Our results show that the realistic inclusion of temporal laser pulse profiles in modeling efforts is required if predictive capability and extrapolation are sought for future target and laser designs or for other relativistic laser ion acceleration schemes.

  17. Gas mixing system for imaging of nanomaterials under dynamic environments by environmental transmission electron microscopy

    SciTech Connect (OSTI)

    Akatay, M. Cem; Zvinevich, Yury; Ribeiro, Fabio H. E-mail: estach@bnl.gov; Baumann, Philipp; Stach, Eric A. E-mail: estach@bnl.gov

    2014-03-15

    A gas mixing manifold system that is capable of delivering a stable pressure stream of a desired composition of gases into an environmental transmission electron microscope has been developed. The system is designed to provide a stable imaging environment upon changes of either the composition of the gas mixture or upon switching from one gas to another. The design of the system is described and the response of the pressure inside the microscope, the sample temperature, and sample drift in response to flow and composition changes of the system are reported.

  18. Integrated Experimental and Model-based Analysis Reveals the Spatial Aspects of EGFR Activation Dynamics

    SciTech Connect (OSTI)

    Shankaran, Harish; Zhang, Yi; Chrisler, William B.; Ewald, Jonathan A.; Wiley, H. S.; Resat, Haluk

    2012-10-02

    The epidermal growth factor receptor (EGFR) belongs to the ErbB family of receptor tyrosine kinases, and controls a diverse set of cellular responses relevant to development and tumorigenesis. ErbB activation is a complex process involving receptor-ligand binding, receptor dimerization, phosphorylation, and trafficking (internalization, recycling and degradation), which together dictate the spatio-temporal distribution of active receptors within the cell. The ability to predict this distribution, and elucidation of the factors regulating it, would help to establish a mechanistic link between ErbB expression levels and the cellular response. Towards this end, we constructed mathematical models for deconvolving the contributions of receptor dimerization and phosphorylation to EGFR activation, and to examine the dependence of these processes on sub-cellular location. We collected experimental datasets for EGFR activation dynamics in human mammary epithelial cells, with the specific goal of model parameterization, and used the data to estimate parameters for several alternate models. Model-based analysis indicated that: 1) signal termination via receptor dephosphorylation in late endosomes, prior to degradation, is an important component of the response, 2) less than 40% of the receptors in the cell are phosphorylated at any given time, even at saturating ligand doses, and 3) receptor dephosphorylation rates at the cell surface and early endosomes are comparable. We validated the last finding by measuring EGFR dephosphorylation rates at various times following ligand addition both in whole cells, and in endosomes using ELISAs and fluorescent imaging. Overall, our results provide important information on how EGFR phosphorylation levels are regulated within cells. Further, the mathematical model described here can be extended to determine receptor dimer abundances in cells co-expressing various levels of ErbB receptors. This study demonstrates that an iterative cycle of experiments and modeling can be used to gain mechanistic insight regarding complex cell signaling networks.

  19. Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Leenheer, Andrew Jay; Jungjohann, Katherine Leigh; Zavadil, Kevin Robert; Sullivan, John P.; Harris, Charles Thomas

    2015-03-18

    Electrodeposited metallic lithium is an ideal negative battery electrode, but nonuniform microstructure evolution during cycling leads to degradation and safety issues. A better understanding of the Li plating and stripping processes is needed to enable practical Li-metal batteries. Here we use a custom microfabricated, sealed liquid cell for in situ scanning transmission electron microscopy (STEM) to image the first few cycles of lithium electrodeposition/dissolution in liquid aprotic electrolyte at submicron resolution. Cycling at current densities from 1 to 25 mA/cm2 leads to variations in grain structure, with higher current densities giving a more needle-like, higher surface area deposit. The effectmore » of the electron beam was explored, and it was found that, even with minimal beam exposure, beam-induced surface film formation could alter the Li microstructure. The electrochemical dissolution was seen to initiate from isolated points on grains rather than uniformly across the Li surface, due to the stabilizing solid electrolyte interphase surface film. As a result, we discuss the implications for operando STEM liquid-cell imaging and Li-battery applications.« less

  20. Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Levantino, Matteo; Schirò, Giorgio; Lemke, Henrik Till; Cottone, Grazia; Glownia, James Michael; Zhu, Diling; Chollet, Mathieu; Ihee, Hyotcherl; KAIST, Daejeon; Cupane, Antonio; et al

    2015-04-02

    Light absorption can trigger biologically relevant protein conformational changes. The light induced structural rearrangement at the level of a photoexcited chromophore is known to occur in the femtosecond timescale and is expected to propagate through the protein as a quake-like intramolecular motion. Here we report direct experimental evidence of such ‘proteinquake’ observed in myoglobin through femtosecond X-ray solution scattering measurements performed at the Linac Coherent Light Source X-ray free-electron laser. An ultrafast increase of myoglobin radius of gyration occurs within 1 picosecond and is followed by a delayed protein expansion. As the system approaches equilibrium it undergoes damped oscillations withmore » a ~3.6-picosecond time period. Our results unambiguously show how initially localized chemical changes can propagate at the level of the global protein conformation in the picosecond timescale.« less

  1. Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser

    SciTech Connect (OSTI)

    Levantino, Matteo; Schir, Giorgio; Lemke, Henrik Till; Cottone, Grazia; Glownia, James Michael; Zhu, Diling; Chollet, Mathieu; Ihee, Hyotcherl; KAIST, Daejeon; Cupane, Antonio; Cammarata, Marco

    2015-04-02

    Light absorption can trigger biologically relevant protein conformational changes. The light induced structural rearrangement at the level of a photoexcited chromophore is known to occur in the femtosecond timescale and is expected to propagate through the protein as a quake-like intramolecular motion. Here we report direct experimental evidence of such proteinquake observed in myoglobin through femtosecond X-ray solution scattering measurements performed at the Linac Coherent Light Source X-ray free-electron laser. An ultrafast increase of myoglobin radius of gyration occurs within 1 picosecond and is followed by a delayed protein expansion. As the system approaches equilibrium it undergoes damped oscillations with a ~3.6-picosecond time period. Our results unambiguously show how initially localized chemical changes can propagate at the level of the global protein conformation in the picosecond timescale.

  2. Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Farfurnik, D.; Jarmola, A.; Pham, L. M.; Wang, Z. H.; Dobrovitski, V. V.; Walsworth, R. L.; Budker, D.; Bar-Gill, N.

    2015-08-24

    In this study, we demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T1 effects and DD microwave pulses are used to increase the transverse coherence time T2 from ~0.7ms up to ~30ms. Furthermore, we extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We also identify that the optimal controlmore » scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.« less

  3. Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond

    SciTech Connect (OSTI)

    Farfurnik, D.; Jarmola, A.; Pham, L. M.; Wang, Z. H.; Dobrovitski, V. V.; Walsworth, R. L.; Budker, D.; Bar-Gill, N.

    2015-08-24

    In this study, we demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T1 effects and DD microwave pulses are used to increase the transverse coherence time T2 from ~0.7ms up to ~30ms. Furthermore, we extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We also identify that the optimal control scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.

  4. Instrumentation and Beam Dynamics Study of Advanced Electron-Photon Facility in Indiana University

    SciTech Connect (OSTI)

    Luo, Tianhuan; /Indiana U.

    2011-08-01

    The Advanced eLectron-PHoton fAcility (ALPHA) is a compact electron accelerator under construction and being commissioned at the Indiana University Center for Exploration of Energy and Matter (CEEM). In this thesis, we have studied the refurbished Cooler Injector Synchrotron (CIS) RF cavity using both the transmission line model and SUPERFISH simulation. Both low power and high power RF measurements have been carried out to characterize the cavity. Considering the performance limit of ferrite, we have designed a new ferrite loaded, co-axial quarter wave like cavity with similar structure but a more suitable ferrite material. We have also designed a traveling wave stripline kicker for fast extraction by POISSON and Microwave Studio. The strips geometry is trimmed to maximize the uniformity of the kicking field and match the impedance of the power cables. The time response simulation shows the kicker is fast enough for machine operation. The pulsed power supply requirement has also been specified. For the beam diagnosis in the longitudinal direction, we use a wideband Wall Gap Monitor (WGM) served in CIS. With proper shielding and amplification to get good WGM signal, we have characterized the injected and extracted beam signal in single pass commissioning, and also verified the debunching effect of the ALPHA storage ring. A modulation-demodulation signal processing method is developed to measure the current and longitudinal profile of injected beam. By scanning the dipole strength in the injection line, we have reconstructed the tomography of the longitudinal phase space of the LINAC beam. In the accumulation mode, ALPHA will be operated under a low energy and high current condition, where intra beam scattering (IBS) becomes a dominant effect on the beam emittance. A self consistent simulation, including IBS effect, gas scattering and linear coupling, has been carried out to calculate the emittance of the stored beam.

  5. Kinetics of liquid-mediated crystallization of amorphous Ge from multi-frame dynamic transmission electron microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Santala, M. K.; Raoux, S.; Campbell, G. H.

    2015-12-24

    The kinetics of laser-induced, liquid-mediated crystallization of amorphous Ge thin films were studied using multi-frame dynamic transmission electron microscopy (DTEM), a nanosecond-scale photo-emission transmission electron microscopy technique. In these experiments, high temperature gradients are established in thin amorphous Ge films with a 12-ns laser pulse with a Gaussian spatial profile. The hottest region at the center of the laser spot crystallizes in ~100 ns and becomes nano-crystalline. Over the next several hundred nanoseconds crystallization continues radially outward from the nano-crystalline region forming elongated grains, some many microns long. The growth rate during the formation of these radial grains is measuredmore » with time-resolved imaging experiments. Crystal growth rates exceed 10 m/s, which are consistent with crystallization mediated by a very thin, undercooled transient liquid layer, rather than a purely solid-state transformation mechanism. The kinetics of this growth mode have been studied in detail under steady-state conditions, but here we provide a detailed study of liquid-mediated growth in high temperature gradients. Unexpectedly, the propagation rate of the crystallization front was observed to remain constant during this growth mode even when passing through large local temperature gradients, in stark contrast to other similar studies that suggested the growth rate changed dramatically. As a result, the high throughput of multi-frame DTEM provides gives a more complete picture of the role of temperature and temperature gradient on laser crystallization than previous DTEM experiments.« less

  6. In-situ Study of Dynamic Phenomena at Metal Nanosolder Interfaces Using Aberration Corrected Scanning Transmission Electron Microcopy.

    SciTech Connect (OSTI)

    Lu, Ping

    2014-10-01

    Controlling metallic nanoparticle (NP) interactions plays a vital role in the development of new joining techniques (nanosolder) that bond at lower processing temperatures but remain viable at higher temperatures. The pr imary objective of this project is t o develop a fundamental understanding of the actual reaction processes, associated atomic mechanisms, and the resulting microstructure that occur during thermally - driven bond formation concerning metal - metal nano - scale (<50nm) interfaces. In this LDRD pr oject, we have studied metallic NPs interaction at the elevated temperatures by combining in - situ transmission electron microscopy (TEM ) using an aberration - corrected scanning transmission electron microscope (AC - STEM) and atomic - scale modeling such as m olecular dynamic (MD) simulations. Various metallic NPs such as Ag, Cu and Au are synthesized by chemical routines. Numerous in - situ e xperiments were carried out with focus of the research on study of Ag - Cu system. For the first time, using in - situ STEM he ating experiments , we directly observed t he formation of a 3 - dimensional (3 - D) epitaxial Cu - Ag core - shell nanoparticle during the thermal interaction of Cu and Ag NPs at elevated temperatures (150 - 300 o C). The reaction takes place at temperatures as low as 150 o C and was only observed when care was taken to circumvent the effects of electron beam irradiation during STEM imaging. Atomic - scale modeling verified that the Cu - Ag core - shell structure is energetically favored, and indicated that this phenomenon is a nano - scale effect related to the large surface - to - volume ratio of the NPs. The observation potentially can be used for developing new nanosolder technology that uses Ag shell as the %22glue%22 that stic ks the particles of Cu together. The LDRD has led to several journal publications and numerous conference presentations, and a TA. In addition, we have developed new TEM characterization techniques and phase - field modeling tools that can be used for future materials research at Sandia. Acknowledgeme nts This work was supported by the Laboratory Directed Research and Development (LDRD) program of Sandia National Laboratories. Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidia ry of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000.

  7. Two-photon photodissociation dynamics of H{sub 2}O via the D-tilde electronic state

    SciTech Connect (OSTI)

    Yuan Kaijun; Cheng Lina; Cheng Yuan; Guo Qing; Dai Dongxu; Yang Xueming

    2009-08-21

    Photodissociation dynamics of H{sub 2}O via the D-tilde state by two-photon absorption have been investigated using the H-atom Rydberg tagging time-of-flight technique. The action spectrum of the D-tilde<-X-tilde transition band has been measured. The predissociation lifetime of the D-tilde state is determined to be about 13.5 fs. The quantum state-resolved OH product translational energy distributions and angular distributions have also been measured. By carefully simulating these distributions, quantum state distributions of the OH product as well as the state-resolved angular anisotropy parameters were determined. The most important pathway of the H{sub 2}O dissociation via the D-tilde state leads to the highly rotationally excited OH(X,v=0) products. Vibrationally excited OH(X) products (up to v=10) and electronically excited OH(A,v=0,1,2) have also been observed. The OH(A)/OH(X) branching ratios are determined to be 17.9% at 244.540 nm (2{omega}{sub 1}=81 761.4 cm{sup -1}) and 19.9% at 244.392 nm (2{omega}{sub 2}=81 811 cm{sup -1}), which are considerably smaller than the value predicted by the theory. These discrepancies are attributed to the nonadiabatic coupling effect between the B-tilde and D-tilde surfaces at the bent geometry.

  8. Excitation of the 6p7s {sup 3}P{sub 0,1} states of Pb atoms by electron impact: Differential and integrated cross sections

    SciTech Connect (OSTI)

    Milisavljevic, S.; Rabasovic, M. S.; Sevic, D.; Marinkovic, B. P.; Pejcev, V.; Filipovic, D. M.; Sharma, Lalita; Srivastava, Rajesh; Stauffer, A. D.

    2007-08-15

    Experimental measurements of electron impact excitation of the 6p7s {sup 3}P{sub 0,1} states of Pb atoms have been made at incident electron energies E{sub 0}=10, 20, 40, 60, 80, and 100 eV and scattering angles from 10 deg. to 150 deg. In addition, relativistic distorted-wave calculations have been carried out at these energies. The data obtained include the differential (DCS), integral (Q{sub I}), momentum transfer (Q{sub M}), and viscosity (Q{sub V}) cross sections. Absolute values for the differential cross sections have been obtained by normalizing the relative DCSs at 10 deg. to the experimental DCS values of [S. Milisavljevic, M. S. Rabasovic, D. Sevic, V. Pejcev, D. M. Filipovic, L. Sharma, R. Srivastava, A. D. Stauffer, and B. P. Marinkovic, Phys. Rev. A 75, 052713 (2007)]. The integrated cross sections were determined by numerical integration of the absolute DCSs. The experimental results have been compared with the corresponding calculations and good agreement is obtained.

  9. Rapid Laser Induced Crystallization of Amorphous NiTi Films Observed by Nanosecond Dynamic Transmission Electron Microscopy (DTEM)

    SciTech Connect (OSTI)

    LaGrange, T; Campbell, G H; Browning, N D; Reed, B W; Grummon, D S

    2010-03-01

    The crystallization processes of the as-deposited, amorphous NiTi thin films have been studied in detail using techniques such as differential scanning calorimetry and, in-situ TEM. The kinetic data have been analyzed in terms of Johnson-Mehl-Avrami-Kolomogrov (JMAK) semi-empirical formula. The kinetic parameters determined from this analysis have been useful in defining process control parameters for tailoring microstructural features and shape memory properties. Due to the commercial push to shrink thin film-based devices, unique processing techniques have been developed using laser-based annealing to spatially control the microstructure evolution down to sub-micron levels. Nanosecond, pulse laser annealing is particularly attractive since it limits the amount of peripheral heating and unwanted microstructural changes to underlying or surrounding material. However, crystallization under pulsed laser irradiation can differ significantly from conventional thermal annealing, e.g., slow heating in a furnace. This is especially true for amorphous NiTi materials and relevant for shape memory thin film based microelectromechanical systems (MEMS) applications. There is little to no data on the crystallization kinetics of NiTi under pulsed laser irradiation, primarily due to the high crystallization rates intrinsic to high temperature annealing and the spatial and temporal resolution limits of standard techniques. However, with the high time and spatial resolution capabilities of the dynamic transmission electron microscope (DTEM) constructed at Lawrence Livermore National Laboratory, the rapid nucleation events occurring from pulsed laser irradiation can be directly observed and nucleation rates can be quantified. This paper briefly explains the DTEM approach and how it used to investigate the pulsed laser induced crystallization processes in NiTi and to determine kinetic parameters.

  10. Accompanying coordinate expansion and recurrence relation method using a transfer relation scheme for electron repulsion integrals with high angular momenta and long contractions

    SciTech Connect (OSTI)

    Hayami, Masao; Seino, Junji; Nakai, Hiromi

    2015-05-28

    An efficient algorithm for the rapid evaluation of electron repulsion integrals is proposed. The present method, denoted by accompanying coordinate expansion and transferred recurrence relation (ACE-TRR), is constructed using a transfer relation scheme based on the accompanying coordinate expansion and recurrence relation method. Furthermore, the ACE-TRR algorithm is extended for the general-contraction basis sets. Numerical assessments clarify the efficiency of the ACE-TRR method for the systems including heavy elements, whose orbitals have long contractions and high angular momenta, such as f- and g-orbitals.

  11. Integrated Kinetic Simulation of Laser-Plasma Interactions, Fast-Electron Generation and Transport in Fast Ignition

    SciTech Connect (OSTI)

    Kemp, A; Cohen, B; Divol, L

    2009-11-16

    We present new results on the physics of short-pulse laser-matter interaction of kilojoule-picosecond pulses at full spatial and temporal scale, using a new approach that combines a 3D collisional electromagnetic Particle-in-Cell code with an MHD-hybrid model of high-density plasma. In the latter, collisions damp out plasma waves, and an Ohm's law with electron inertia effects neglected determines the electric field. In addition to yielding orders of magnitude in speed-up while avoiding numerical instabilities, this allows us to model the whole problem in a single unified framework: the laser-plasma interaction at sub-critical densities, energy deposition at relativistic critical densities, and fast-electron transport in solid densities. Key questions such as the multi-picosecond temporal evolution of the laser energy conversion into hot electrons, the impact of return currents on the laser-plasma interaction, and the effect of self-generated electric and magnetic fields on electron transport will be addressed. We will report applications to current experiments.

  12. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors

    SciTech Connect (OSTI)

    Liu, Chao; Cai, Yuefei; Liu, Zhaojun; Ma, Jun; Lau, Kei May

    2015-05-04

    We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrown n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme.

  13. Extending the Capabilities of the Mooring Analysis Program: A Survey of Dynamic Mooring Line Theories for Integration into FAST: Preprint

    SciTech Connect (OSTI)

    Masciola, M.; Jonkman, J.; Robertson, A.

    2014-03-01

    Techniques to model dynamic mooring lines come in various forms. The most widely used models include either a heuristic representation of the physics (such as a Lumped-Mass, LM, system), a Finite-Element Analysis (FEA) discretization of the lines (discretized in space), or a Finite-Difference (FD) model (which is discretized in both space and time). In this paper, we explore the features of the various models, weigh the advantages of each, and propose a plan for implementing one dynamic mooring line model into the open-source Mooring Analysis Program (MAP). MAP is currently used as a module for the FAST offshore wind turbine computer-aided engineering (CAE) tool to model mooring systems quasi-statically, although dynamic mooring capabilities are desired. Based on the exploration in this manuscript, the lumped-mass representation is selected for implementation in MAP based on its simplicity, computational cost, and ability to provide similar physics captured by higher-order models.

  14. CMOS Integrated Single Electron Transistor Electrometry (CMOS-SET) circuit design for nanosecond quantum-bit read-out.

    SciTech Connect (OSTI)

    Gurrieri, Thomas M.; Lilly, Michael Patrick; Carroll, Malcolm S.; Levy, James E.

    2008-08-01

    Novel single electron transistor (SET) read-out circuit designs are described. The circuits use a silicon SET interfaced to a CMOS voltage mode or current mode comparator to obtain a digital read-out of the state of the qubit. The design assumes standard submicron (0.35 um) CMOS SOI technology using room temperature SPICE models. Implications and uncertainties related to the temperature scaling of these models to 100mK operation are discussed. Using this technology, the simulations predict a read-out operation speed of approximately Ins and a power dissipation per cell as low as 2nW for single-shot read-out, which is a significant advantage over currently used radio frequency SET (RF-SET) approaches.

  15. Integrated Vehicle Thermal Management Systems (VTMS) Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Integrated Vehicle Thermal Management Power Electronic Thermal System Performance and Integration Characterization and Development of Advanced...

  16. Experimental and numerical study of gas dynamic window for electron beam transport into the space with increased pressure

    SciTech Connect (OSTI)

    Skovorodko, P. A.; Sharafutdinov, R. G.

    2014-12-09

    The paper is devoted to experimental and numerical study of the gas jet technical device for obtaining axisymmetric flow with low pressure in its near axis region. The studied geometry of the device is typical of that used in the plasma generator consisting of an electron gun with a hollow (plasma) cathode and a double supersonic ring nozzle. The geometry of the nozzles as well as the relation between the gas flow rates through the nozzles providing the electron beam extraction into the region with increased pressure are tested both experimentally and numerically. The maximum external pressure of about 0.25 bar that does not disturb the electron beam is achieved.

  17. Tests of innovative photon detectors and integrated electronics for the large-area CLAS12 ring-imaging Cherenkov detector

    SciTech Connect (OSTI)

    Contalbrigo, Marco

    2015-07-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab. Its aim is to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and a densely packed and highly segmented photon detector. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). Extensive tests have been performed on Hamamatsu H8500 and novel flat multi-anode photomultipliers under development and on various types of silicon photomultipliers. A large scale prototype based on 28 H8500 MA-PMTs has been realized and tested with few GeV/c hadron beams at the T9 test-beam facility of CERN. In addition a small prototype was used to study the response of customized SiPM matrices within a temperature interval ranging from 25 down to –25 °C. The preliminary results of the individual photon detector tests and of the prototype performance at the test-beams are here reported.

  18. Dynamical heavy-quark recombination and the nonphotonic single-electron puzzle at energies available at the BNL Relativistic Heavy Ion Collider (RHIC)

    SciTech Connect (OSTI)

    Ayala, Alejandro; Magnin, J.; Montano, Luis Manuel; Sanchez, G. Toledo

    2009-12-15

    We show that the single, nonphotonic electron nuclear modification factor R{sub AA}{sup e} is affected by the thermal enhancement of the heavy-baryon-to-heavy-meson ratio in relativistic heavy-ion collisions with respect to proton-proton collisions. We make use of the dynamical quark recombination model to compute such a ratio and show that this produces a sizable suppression factor for R{sub AA}{sup e} at intermediate transverse momenta. We argue that this suppression factor needs to be considered, in addition to the energy loss contribution, in calculations of R{sub AA}{sup e}.

  19. First-principles investigation of the dissociation and coupling of methane on small copper clusters: Interplay of collision dynamics and geometric and electronic effects

    SciTech Connect (OSTI)

    Varghese, Jithin J.; Mushrif, Samir H.

    2015-05-14

    Small metal clusters exhibit unique size and morphology dependent catalytic activity. The search for alternate minimum energy pathways and catalysts to transform methane to more useful chemicals and carbon nanomaterials led us to investigate collision induced dissociation of methane on small Cu clusters. We report here for the first time, the free energy barriers for the collision induced activation, dissociation, and coupling of methane on small Cu clusters (Cu{sub n} where n = 2–12) using ab initio molecular dynamics and metadynamics simulations. The collision induced activation of the stretching and bending vibrations of methane significantly reduces the free energy barrier for its dissociation. Increase in the cluster size reduces the barrier for dissociation of methane due to the corresponding increase in delocalisation of electron density within the cluster, as demonstrated using the electron localisation function topology analysis. This enables higher probability of favourable alignment of the C–H stretching vibration of methane towards regions of high electron density within the cluster and makes higher number of sites available for the chemisorption of CH{sub 3} and H upon dissociation. These characteristics contribute in lowering the barrier for dissociation of methane. Distortion and reorganisation of cluster geometry due to high temperature collision dynamics disturb electron delocalisation within them and increase the barrier for dissociation. Coupling reactions of CH{sub x} (x = 1–3) species and recombination of H with CH{sub x} have free energy barriers significantly lower than complete dehydrogenation of methane to carbon. Thus, competition favours the former reactions at high hydrogen saturation on the clusters.

  20. Molecular Dynamics Study of Fe(II) Adsorption, Electron Exchange, and Mobility at Goethite (alpha-FeOOH) Surfaces

    SciTech Connect (OSTI)

    Zarzycki, Piotr P.; Kerisit, Sebastien N.; Rosso, Kevin M.

    2015-02-12

    We present classical molecular simulations of the adsorption free energy profiles for the aqueous Fe(II) ion approaching key low index crystal faces of goethite at neutral surface charge conditions. Calculated profiles show minima corresponding to stable outer- and inner-sphere adsorbed structures. We analyzed the energetics and kinetics of most possible interfacial electron transfer reactions, as well as analyzing the same for subsurface migration pathways of injected electrons through calculating the Marcus free energy surfaces. We conclude that inner-sphere Fe(II)-complex formation is required for the interfacial electron transfer to occur, but the energetic cost of moving from the outer-sphere to inner-sphere geometry may prevent electron injection at some faces. We also show that some surfaces, especially (101), (100) and (001), are more energetically prone toward reduction than others. We demonstrate that subsurface charge migration in directions parallel to the surface, which run along the iron chains, is more energetically plausible than conduction through the resistive crystal bulk phase. Collectively this leads to the conclusion that Fe(II)-catalyzed recrystallization of goethite most likely proceeds by short path length electron migration through specific goethite surfaces along specific directions, until capture at Fe sites structurally susceptible to reduction and release.

  1. Integrated dynamic policy management methodology and system for strategic environmental assessment of golf course installation policy in Taiwan

    SciTech Connect (OSTI)

    Chen, Ching-Ho; Liu, Wei-Lin; Liaw, Shu-Liang

    2011-01-15

    Strategic environmental assessment (SEA) focuses primarily on assessing how policies, plans, and programs (PPPs) influence the sustainability of the involved regions. However, the processes of assessing policies and developing management strategies for pollution load and resource use are usually separate in the current SEA system. This study developed a policy management methodology to overcome the defects generated during the above processes. This work first devised a dynamic management framework using the methods of systems thinking, system dynamics, and Managing for Results (MFRs). Furthermore, a driving force-pressure-state-impact-response (DPSIR) indicator system was developed. The golf course installation policy was applied as a case study. Taiwan, counties of Taiwan, and the golf courses within those individual counties were identified as a system, subsystems, and objects, respectively. This study identified an object-linked double-layer framework with multi-stage-option to simultaneously to quantify golf courses in each subsystem and determine ratios of abatement and allocation for pollution load and resource use of each golf course. The DPSIR indicator values for each item of each golf course in each subsystem are calculated based on the options taken in the two decision layers. The summation of indicator values for all items of all golf courses in all subsystems according to various options is defined as the sustainability value of the policy. An optimization model and a system (IDPMS) were developed to obtain the greatest sustainability value of the policy, while golf course quantity, human activity intensity, total quantities of pollution load and resource use are simultaneously obtained. The solution method based on enumeration of multiple bounds for objectives and constraints (EMBOC) was developed for the problem with 1.95 x 10{sup 128} combinations of possible options to solve the optimal solution in ten minutes using a personal computer with 3.0 GHz CPU. This study obtain the policy with the optimal environmental sustainability value in Taiwan is 102 golf courses. Human activity intensity and total quantities of pollution load and resource use which are concurrently obtained are less than those of the existing policy and the existing quantities in 2006. The optimal solution remains unchanged under most sensitivity analysis conditions, unless the weights and constraints are extremely changed. The analytical results indicate that the proposed methodology can be used to assist the authorities for simultaneously generating and assessing the policy during the SEA process.

  2. "The gate-keepers in a changing world: integrating microbial diversity and dynamics with global change biology."

    SciTech Connect (OSTI)

    Jessica L.M. Gutknecht and Kathryn M. Docherty

    2011-11-01

    Microorganisms (Bacteria, Archaea and Fungi) are the gate-keepers of many ecosystem-scale biogeochemical cycles. Although there have been measurable changes in ecosystem function due to human activities such as greenhouse gas production, nutrient loading, land-use change, and water consumption, few studies have connected microbial community dynamics with these changes in ecosystem function. Specifically, very little is known about how global changes will induce important functional changes in microbial biodiversity. Even less is known about how microbial functional changes could alter rates of nutrient cycling or whether microbial communities have enough functional redundancy that changes will have little impact on overall process rates. The proposed symposium will provide an overview of this emerging research area, with emphasis on linking the microorganisms directly to important ecological functions under the influence of global change dynamics. The session will include both broad overviews as well as specific case-studies by researchers who examine microbial communities from a variety of taxonomic levels and from various environments. The session will begin broadly, with speakers discussing how microbial communities may inform ecosystem-scale global change studies, and help to make microbial ecological knowledge more tangible for a broad range of ecologists. The session will continue with case studies of microbial community information informing process in global change experiments. Finally, the session will close with speakers discussing how microbial community information might fit into global change models, and what types of information are useful for future studies. We have requested that speakers particularly incorporate their views on what types of microbial data is useful and informative in the context of larger ecosystem processes. We foresee that this session could serve as a focal point for global change microbial ecologists to meet and discuss their field at the ESA 2010 General Meeting. However, more importantly, the session will provide for a broad range of interests for ecosystem ecologists, theoretical ecologists, and global change biologists, and will foster communication between these groups to generate informative microbial community data in the future.

  3. Development and Use of Integrated Microarray-Based Genomic Technologies for Assessing Microbial Community Composition and Dynamics

    SciTech Connect (OSTI)

    J. Zhou; S.-K. Rhee; C. Schadt; T. Gentry; Z. He; X. Li; X. Liu; J. Liebich; S.C. Chong; L. Wu

    2004-03-17

    To effectively monitor microbial populations involved in various important processes, a 50-mer-based oligonucleotide microarray was developed based on known genes and pathways involved in: biodegradation, metal resistance and reduction, denitrification, nitrification, nitrogen fixation, methane oxidation, methanogenesis, carbon polymer decomposition, and sulfate reduction. This array contains approximately 2000 unique and group-specific probes with <85% similarity to their non-target sequences. Based on artificial probes, our results showed that at hybridization conditions of 50 C and 50% formamide, the 50-mer microarray hybridization can differentiate sequences having <88% similarity. Specificity tests with representative pure cultures indicated that the designed probes on the arrays appeared to be specific to their corresponding target genes. Detection limits were about 5-10ng genomic DNA in the absence of background DNA, and 50-100ng ({approx}1.3{sup o} 10{sup 7} cells) in the presence background DNA. Strong linear relationships between signal intensity and target DNA and RNA concentration were observed (r{sup 2} = 0.95-0.99). Application of this microarray to naphthalene-amended enrichments and soil microcosms demonstrated that composition of the microflora varied depending on incubation conditions. While the naphthalene-degrading genes from Rhodococcus-type microorganisms were dominant in enrichments, the genes involved in naphthalene degradation from Gram-negative microorganisms such as Ralstonia, Comamonas, and Burkholderia were most abundant in the soil microcosms (as well as those for polyaromatic hydrocarbon and nitrotoluene degradation). Although naphthalene degradation is widely known and studied in Pseudomonas, Pseudomonas genes were not detected in either system. Real-time PCR analysis of 4 representative genes was consistent with microarray-based quantification (r{sup 2} = 0.95). Currently, we are also applying this microarray to the study of several different microbial communities and processes at the NABIR-FRC in Oak Ridge, TN. One project involves the monitoring of the development and dynamics of the microbial community of a fluidized bed reactor (FBR) used for reducing nitrate and the other project monitors microbial community responses to stimulation of uranium reducing populations via ethanol donor additions in situ and in a model system. Additionally, we are developing novel strategies for increasing microarray hybridization sensitivity. Finally, great improvements to our methods of probe design were made by the development of a new computer program, CommOligo. CommOligo designs unique and group-specific oligo probes for whole-genomes, metagenomes, and groups of environmental sequences and uses a new global alignment algorithm to design single or multiple probes for each gene or group. We are now using this program to design a more comprehensive functional gene array for environmental studies. Overall, our results indicate that the 50mer-based microarray technology has potential as a specific and quantitative tool to reveal the composition of microbial communities and their dynamics important to processes within contaminated environments.

  4. Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy

    SciTech Connect (OSTI)

    Leenheer, Andrew Jay; Jungjohann, Katherine Leigh; Zavadil, Kevin Robert; Sullivan, John P.; Harris, Charles Thomas

    2015-03-18

    Electrodeposited metallic lithium is an ideal negative battery electrode, but nonuniform microstructure evolution during cycling leads to degradation and safety issues. A better understanding of the Li plating and stripping processes is needed to enable practical Li-metal batteries. Here we use a custom microfabricated, sealed liquid cell for in situ scanning transmission electron microscopy (STEM) to image the first few cycles of lithium electrodeposition/dissolution in liquid aprotic electrolyte at submicron resolution. Cycling at current densities from 1 to 25 mA/cm2 leads to variations in grain structure, with higher current densities giving a more needle-like, higher surface area deposit. The effect of the electron beam was explored, and it was found that, even with minimal beam exposure, beam-induced surface film formation could alter the Li microstructure. The electrochemical dissolution was seen to initiate from isolated points on grains rather than uniformly across the Li surface, due to the stabilizing solid electrolyte interphase surface film. As a result, we discuss the implications for operando STEM liquid-cell imaging and Li-battery applications.

  5. Quantitative in-situ scanning electron microscope pull-out experiments and molecular dynamics simulations of carbon nanotubes embedded in palladium

    SciTech Connect (OSTI)

    Hartmann, S., E-mail: steffen.hartmann@etit.tu-chemnitz.de; Blaudeck, T.; Hermann, S.; Wunderle, B. [Technische Universitt Chemnitz, Reichenhainer Str. 70, 09126 Chemnitz (Germany); Hlck, O. [Technische Universitt Chemnitz, Reichenhainer Str. 70, 09126 Chemnitz (Germany); Fraunhofer IZM Berlin, Gustav-Meyer-Allee 25, 13355 Berlin (Germany); Schulz, S. E.; Gessner, T. [Technische Universitt Chemnitz, Reichenhainer Str. 70, 09126 Chemnitz (Germany); Fraunhofer ENAS Chemnitz, Technologie-Campus 3, 09126 Chemnitz (Germany)

    2014-04-14

    In this paper, we present our results of experimental and numerical pull-out tests on carbon nanotubes (CNTs) embedded in palladium. We prepared simple specimens by employing standard silicon wafers, physical vapor deposition of palladium and deposition of CNTs with a simple drop coating technique. An AFM cantilever with known stiffness connected to a nanomanipulation system was utilized inside a scanning electron microscope (SEM) as a force sensor to determine forces acting on a CNT during the pull-out process. SEM-images of the cantilever attached to a CNT have been evaluated for subsequent displacement steps with greyscale correlation to determine the cantilever deflection. We compare the experimentally obtained pull-out forces with values of numerical investigations by means of molecular dynamics and give interpretations for deviations according to material impurities or defects and their influence on the pull-out data. We find a very good agreement of force data from simulation and experiment, which is 17 nN and in the range of 1061 nN, respectively. Our findings contribute to the ongoing research of the mechanical characterization of CNT-metal interfaces. This is of significant interest for the design of future mechanical sensors utilizing the intrinsic piezoresistive effect of CNTs or other future devices incorporating CNT-metal interfaces.

  6. Massively-parallel electron dynamics calculations in real-time and real-space: Toward applications to nanostructures of more than ten-nanometers in size

    SciTech Connect (OSTI)

    Noda, Masashi; Ishimura, Kazuya; Nobusada, Katsuyuki; Yabana, Kazuhiro; Boku, Taisuke

    2014-05-15

    A highly efficient program of massively parallel calculations for electron dynamics has been developed in an effort to apply the method to optical response of nanostructures of more than ten-nanometers in size. The approach is based on time-dependent density functional theory calculations in real-time and real-space. The computational code is implemented by using simple algorithms with a finite-difference method in space derivative and Taylor expansion in time-propagation. Since the computational program is free from the algorithms of eigenvalue problems and fast-Fourier-transformation, which are usually implemented in conventional quantum chemistry or band structure calculations, it is highly suitable for massively parallel calculations. Benchmark calculations using the K computer at RIKEN demonstrate that the parallel efficiency of the program is very high on more than 60 000 CPU cores. The method is applied to optical response of arrays of C{sub 60} orderly nanostructures of more than 10 nm in size. The computed absorption spectrum is in good agreement with the experimental observation.

  7. The structures and dynamics of atomic and molecular adsorbates on metal surfaces by scanning tunneling microscopy and low energy electron diffraction

    SciTech Connect (OSTI)

    Yoon, Hyungsuk Alexander

    1996-12-01

    Studies of surface structure and dynamics of atoms and molecules on metal surfaces are presented. My research has focused on understanding the nature of adsorbate-adsorbate and adsorbate-substrate interactions through surface studies of coverage dependency and coadsorption using both scanning tunneling microscopy (STM) and low energy electron diffraction (LEED). The effect of adsorbate coverage on the surface structures of sulfur on Pt(111) and Rh(111) was examined. On Pt(111), sulfur forms p(2x2) at 0.25 ML of sulfur, which transforms into a more compressed ({radical}3x{radical}3)R30{degrees} at 0.33 ML. On both structures, it was found that sulfur adsorbs only in fcc sites. When the coverage of sulfur exceeds 0.33 ML, it formed more complex c({radical}3x7)rect structure with 3 sulfur atoms per unit cell. In this structure, two different adsorption sites for sulfur atoms were observed - two on fcc sites and one on hcp site within the unit cell.

  8. Electronic Medical Business Operations System

    Energy Science and Technology Software Center (OSTI)

    2012-04-16

    Electronic Management of medical records has taken a back seat both in private industry and in the government. Record volumes continue to rise every day and management of these paper records is inefficient and very expensive. In 2005, the White House announced support for the development of electronic medical records across the federal government. In 2006, the DOE issued 10 CFR 851 requiring all medical records be electronically available by 2015. The Y-12 National Securitymore » Complex is currently investing funds to develop a comprehensive EMR to incorporate the requirements of an occupational health facility which are common across the Nuclear Weapons Complex (NWC). Scheduling, workflow, and data capture from medical surveillance, certification, and qualification examinations are core pieces of the system. The Electronic Medical Business Operations System (EMBOS) will provide a comprehensive health tool solution to 10 CFR 851 for Y-12 and can be leveraged to the Nuclear Weapon Complex (NWC); all site in the NWC must meet the requirements of 10 CFR 851 which states that all medical records must be electronically available by 2015. There is also potential to leverage EMBOS to the private4 sector. EMBOS is being developed and deployed in phases. When fully deployed the EMBOS will be a state-of-the-art web-enabled integrated electronic solution providing a complete electronic medical record (EMR). EMBOS has been deployed and provides a dynamic electronic medical history and surveillance program (e.g., Asbestos, Hearing Conservation, and Respirator Wearer) questionnaire. Table 1 below lists EMBOS capabilities and data to be tracked. Data to be tracked: Patient Demographics – Current/Historical; Physical Examination Data; Employee Medical Health History; Medical Surveillance Programs; Patient and Provider Schedules; Medical Qualification/Certifications; Laboratory Data; Standardized Abnormal Lab Notifications; Prescription Medication Tracking and Dispensing; Allergies; Non-Occupational Illness and Injury Visits; Occupational Recommendations/Restrictions; Diagnosis/Vital Signs/Blood Pressures; Immunizations; Return to Work Visits Capabilities: Targeted Health Assessments; Patient Input Capabilities for Questionnaires; Medical Health History; Surveillance Programs; Human Reliability Program; Scheduling; Automated Patient Check-in/Check-out; Provider & Patient Workflow; Laboratory Interface & Device Integration; Human Reliability Program Processing; Interoperability with SAP, IH, IS, RADCON; Coding: ICED-9/10; Desktop Integration; Interface/Storage of Digital X-Rays (PACS)« less

  9. Temporal Characterization of Hydrates System Dynamics beneath Seafloor Mounds. Integrating Time-Lapse Electrical Resistivity Methods and In Situ Observations of Multiple Oceanographic Parameters

    SciTech Connect (OSTI)

    Lutken, Carol; Macelloni, Leonardo; D'Emidio, Marco; Dunbar, John; Higley, Paul

    2015-01-31

    This study was designed to investigate temporal variations in hydrate system dynamics by measuring changes in volumes of hydrate beneath hydrate-bearing mounds on the continental slope of the northern Gulf of Mexico, the landward extreme of hydrate occurrence in this region. Direct Current Resistivity (DCR) measurements were made contemporaneously with measurements of oceanographic parameters at Woolsey Mound, a carbonate-hydrate complex on the mid-continental slope, where formation and dissociation of hydrates are most vulnerable to variations in oceanographic parameters affected by climate change, and where changes in hydrate stability can readily translate to loss of seafloor stability, impacts to benthic ecosystems, and venting of greenhouse gases to the water-column, and eventually, the atmosphere. We focused our study on hydrate within seafloor mounds because the structurally-focused methane flux at these sites likely causes hydrate formation and dissociation processes to occur at higher rates than at sites where the methane flux is less concentrated and we wanted to maximize our chances of witnessing association/dissociation of hydrates. We selected a particularly well-studied hydrate-bearing seafloor mound near the landward extent of the hydrate stability zone, Woolsey Mound (MC118). This mid-slope site has been studied extensively and the project was able to leverage considerable resources from the teams research experience at MC118. The site exhibits seafloor features associated with gas expulsion, hydrates have been documented at the seafloor, and changes in the outcropping hydrates have been documented, photographically, to have occurred over a period of months. We conducted observatory-based, in situ measurements to 1) characterize, geophysically, the sub-bottom distribution of hydrate and its temporal variability, and 2) contemporaneously record relevant environmental parameters (temperature, pressure, salinity, turbidity, bottom currents) to detect short-term changes within the hydrates system, identify relationships/impacts of local oceanographic parameters on the hydrates system, and improve our understanding of how seafloor instability is affected by hydrates-driven changes. A 2009 DCR survey of MC118 demonstrated that we could image resistivity anomalies to a depth of 75m below the seafloor in water depths of 1km. We reconfigured this system to operate autonomously on the seafloor in a pre-programmed mode, for periods of months. We designed and built a novel seafloor lander and deployment capability that would allow us to investigate the seafloor at potential deployment sites and deploy instruments only when conditions met our criteria. This lander held the DCR system, controlling computers, and battery power supply, as well as instruments to record oceanographic parameters. During the first of two cruises to the study site, we conducted resistivity surveying, selected a monitoring site, and deployed the instrumented lander and DCR, centered on what appeared to be the most active locations within the site, programmed to collect a DCR profile, weekly. After a 4.5-month residence on the seafloor, the team recovered all equipment. Unfortunately, several equipment failures occurred prior to recovery of the instrument packages. Prior to the failures, however, two resistivity profiles were collected together with oceanographic data. Results show, unequivocally, that significant changes can occur in both hydrate volume and distribution during time periods as brief as one week. Occurrences appear to be controlled by both deep and near-surface structure. Results have been integrated with seismic data from the area and show correspondence in space of hydrate and structures, including faults and gas chimneys.

  10. Power Electronics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration » Power Electronics Power Electronics PowerElectronics graphic.png Power electronics, critical components in PV systems and the larger electric grid, are used to convert electricity from one form to another and deliver it from generation to end consumption. The objective of the Power Electronics activity area is to develop solutions that leverage transformative power electronics technologies-including wide band gap semiconductors, advanced magnetics, thin film capacitors,

  11. Investigation of a FAST-OrcaFlex Coupling Module for Integrating Turbine and Mooring Dynamics of Offshore Floating Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Masciola, M.; Robertson, A.; Jonkman, J.; Driscoll, F.

    2011-10-01

    To enable offshore floating wind turbine design, the following are required: accurate modeling of the wind turbine structural dynamics, aerodynamics, platform hydrodynamics, a mooring system, and control algorithms. Mooring and anchor design can appreciably affect the dynamic response of offshore wind platforms that are subject to environmental loads. From an engineering perspective, system behavior and line loads must be studied well to ensure the overall design is fit for the intended purpose. FAST (Fatigue, Aerodynamics, Structures and Turbulence) is a comprehensive simulation tool used for modeling land-based and offshore wind turbines. In the case of a floating turbine, continuous cable theory is used to emulate mooring line dynamics. Higher modeling fidelity can be gained through the use of finite element mooring theory. This can be achieved through the FASTlink coupling module, which couples FAST with OrcaFlex, a commercial simulation tool used for modeling mooring line dynamics. In this application, FAST is responsible for capturing the aerodynamic loads and flexure of the wind turbine and its tower, and OrcaFlex models the mooring line and hydrodynamic effects below the water surface. This paper investigates the accuracy and stability of the FAST/OrcaFlex coupling operation.

  12. Electronic Coupling Dependence of Ultrafast Interfacial Electron Transfer

    Office of Scientific and Technical Information (OSTI)

    on Nanocrystalline Thin Films and Single Crystal (Technical Report) | SciTech Connect Electronic Coupling Dependence of Ultrafast Interfacial Electron Transfer on Nanocrystalline Thin Films and Single Crystal Citation Details In-Document Search Title: Electronic Coupling Dependence of Ultrafast Interfacial Electron Transfer on Nanocrystalline Thin Films and Single Crystal The long-term goal of the proposed research is to understand electron transfer dynamics in nanoparticle/liquid interface.

  13. Individual identification of free hole and electron dynamics in CuIn{sub 1?x}Ga{sub x}Se{sub 2} thin films by simultaneous monitoring of two optical transitions

    SciTech Connect (OSTI)

    Okano, Makoto; Hagiya, Hideki; Sakurai, Takeaki; Akimoto, Katsuhiro; Shibata, Hajime; Niki, Shigeru; Kanemitsu, Yoshihiko

    2015-05-04

    The photocarrier dynamics of CuIn{sub 1?x}Ga{sub x}Se{sub 2} (CIGS) thin films were studied using white-light transient absorption (TA) measurements, as an understanding of this behavior is essential for improving the performance of solar cells composed of CIGS thin films. A characteristic double-peak structure due to the splitting of the valence bands in the CIGS was observed in the TA spectra under near-band-gap resonant excitation. From a comparison of the TA decay dynamics monitored at these two peaks, it was found that the slow-decay components of the electron and hole relaxation are on the nanosecond timescale. This finding is clear evidence of the long lifetimes of free photocarriers in polycrystalline CIGS thin films.

  14. Experimental results of an electron cyclotron resonance oxygen source and a low energy beam transport system for 1 MeV integral split ring radio frequency quadruple accelerator upgrade project

    SciTech Connect (OSTI)

    Peng, S. X.; Zhang, M.; Song, Z. Z.; Xu, R.; Zhao, J.; Yuan, Z. X.; Yu, J. X.; Chen, J.; Guo, Z. Y.

    2008-02-15

    To meet the requirements of developing separated function radio frequency quadruple (rfq) and upgrading the 1 MeV integral split ring rfq accelerator, an electron cyclotron resonance O{sup +} ion source and low energy beam transport (LEBT) system have been developed. Using two Einzel lenses to focus the beam, more than 6 mA O{sup +} peak beam current with energy of 22 keV can be easily obtained at the end of LEBT when the duty faction is at 1/6. The normalized root-mean-square emittance of 90% of the beam is about 0.12{pi} mm mrad. By changing the focusing power of lenses, the beam waist can be shifted from 80 mm before the beam diaphragm 2 to 80 mm after it. The experimental results will be presented in this article.

  15. Interaction Region Design and Detector Integration at JLab's MEIC

    SciTech Connect (OSTI)

    Lin, Fanglei; Brindza, Paul D.; Derbenev, Yaroslav S.; Ent, Rolf; Morozov, Vasiliy; Nadel-Turonski, Pawel A.; Zhang, Yuhong; Hyde, Charles E.; Sullivan, Michael

    2013-12-01

    The Electron Ion Collider (EIC) will be a next-generation facility for the study of the strong interaction (QCD). JLab?s MEIC is designed for high luminosities of up to 10^34 cm^-2 s^-1. This is achieved in part due to an aggressively small beta-star, which imposes stringent requirements on the collider rings? dynamical properties. Additionally, one of the unique features of MEIC is a full-acceptance detector with a dedicated, small-angle, high-resolution detection system, capable of covering a wide range of momenta (and charge-to-mass ratios) with respect to the original ion beam to enable access to new physics. The detector design relies on a number of features, such as a 50 mrad beam crossing angle, large-aperture ion and electron final focusing quads and spectrometer dipoles as well as a large machine-element-free detection space downstream of the final focusing quads. We present an interaction region design developed with close integration of the detector and beam dynamical aspects. The dynamical aspect of the design rests on a symmetry-based concept for compensation of non-linear effects. The optics and geometry have been optimized to accommodate the detection requirements and to ensure the interaction region?s modularity for easiness of integration into the collider ring lattices. As a result, the design offers an excellent detector performance combined with the necessary non-linear dynamical properties.

  16. Oak Ridge Bio-surveillance Toolkit (ORBiT): Integrating Big-Data Analytics with Visual Analysis for Public Health Dynamics

    SciTech Connect (OSTI)

    Ramanathan, Arvind; Pullum, Laura L; Steed, Chad A; Chennubhotla, Chakra; Quinn, Shannon

    2013-01-01

    In this position paper, we describe the design and implementation of the Oak Ridge Bio-surveillance Toolkit (ORBiT): a collection of novel statistical and machine learning tools implemented for (1) integrating heterogeneous traditional (e.g. emergency room visits, prescription sales data, etc.) and non-traditional (social media such as Twitter and Instagram) data sources, (2) analyzing large-scale datasets and (3) presenting the results from the analytics as a visual interface for the end-user to interact and provide feedback. We present examples of how ORBiT can be used to summarize ex- tremely large-scale datasets effectively and how user interactions can translate into the data analytics process for bio-surveillance. We also present a strategy to estimate parameters relevant to dis- ease spread models from near real time data feeds and show how these estimates can be integrated with disease spread models for large-scale populations. We conclude with a perspective on how integrating data and visual analytics could lead to better forecasting and prediction of disease spread as well as improved awareness of disease susceptible regions.

  17. Calculation of the transverse kicks generated by the bends of a hollow electron lens

    SciTech Connect (OSTI)

    Stancari, Giulio

    2014-03-25

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam in high-energy accelerators. They were used in the Fermilab Tevatron collider for abort-gap clearing, beam-beam compensation, and halo scraping. A beam-beam compensation scheme based upon electron lenses is currently being implemented in the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. This work is in support of a conceptual design of hollow electron beam scraper for the Large Hadron Collider. It also applies to the implementation of nonlinear integrable optics with electron lenses in the Integrable Optics Test Accelerator at Fermilab. We consider the axial asymmetries of the electron beam caused by the bends that are used to inject electrons into the interaction region and to extract them. A distribution of electron macroparticles is deposited on a discrete grid enclosed in a conducting pipe. The electrostatic potential and electric fields are calculated using numerical Poisson solvers. The kicks experienced by the circulating beam are estimated by integrating the electric fields over straight trajectories. These kicks are also provided in the form of interpolated analytical symplectic maps for numerical tracking simulations, which are needed to estimate the effects of the electron lens imperfections on proton lifetimes, emittance growth, and dynamic aperture. We outline a general procedure to calculate the magnitude of the transverse proton kicks, which can then be generalized, if needed, to include further refinements such as the space-charge evolution of the electron beam, magnetic fields generated by the electron current, and longitudinal proton dynamics.

  18. Time-resolved Kα spectroscopy measurements of hot-electron equilibration dynamics in thin-foil solid targets: Collisional and collective effects

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nilson, P. M.; Solodov, A. A.; Davies, J. R.; Theobald, W.; Mileham, C.; Stoeckl, C.; Begishev, I. A.; Zuegel, J. D.; Froula, D. H.; Betti, R.; et al

    2015-09-25

    Time-resolved Kα spectroscopy measurements from high-intensity laser interactions with thin-foil solid targets are reviewed. Thin Cu foils were irradiated with 1- to 10-J, 1-ps pulses at focused intensities from 1018 to 1019 W/cm2. The experimental data show Kα-emission pulse widths from 3 to 6 ps, increasing with laser intensity. The time-resolved Kα-emission data are compared to a hot-electron transport and Kα-production model that includes collisional electron-energy coupling, resistive heating, and electromagnetic field effects. The experimental data show good agreement with the model when a reduced ponderomotive scaling is used to describe the initial mean hot-electron energy over the relevant intensitymore » range.« less

  19. First principles molecular dynamics without self-consistent field optimization

    SciTech Connect (OSTI)

    Souvatzis, Petros; Niklasson, Anders M. N.

    2014-01-28

    We present a first principles molecular dynamics approach that is based on time-reversible extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. The optimization-free dynamics keeps the computational cost to a minimum and typically provides molecular trajectories that closely follow the exact Born-Oppenheimer potential energy surface. Only one single diagonalization and Hamiltonian (or Fockian) construction are required in each integration time step. The proposed dynamics is derived for a general free-energy potential surface valid at finite electronic temperatures within hybrid density functional theory. Even in the event of irregular functional behavior that may cause a dynamical instability, the optimization-free limit represents a natural starting guess for force calculations that may require a more elaborate iterative electronic ground state optimization. Our optimization-free dynamics thus represents a flexible theoretical framework for a broad and general class of ab initio molecular dynamics simulations.

  20. Final Scientific/Technical Report, DE-FG02-06ER64171, Integrated Nucleic Acid System for In-Field Monitoring of Microbial Community Dynamics and Metabolic Activity – Subproject to Co-PI Eric E. Roden

    SciTech Connect (OSTI)

    Eric E. Roden

    2009-07-08

    This report summarizes research conducted in conjunction with a project entitled “Integrated Nucleic Acid System for In-Field Monitoring of Microbial Community Dynamics and Metabolic Activity”, which was funded through the Integrative Studies Element of the former NABIR Program (now the Environmental Remediation Sciences Program) within the Office of Biological and Environmental Research. Dr. Darrell Chandler (originally at Argonne National Laboratory, now with Akonni Biosystems) was the overall PI/PD for the project. The overall project goals were to (1) apply a model iron-reducer and sulfate-reducer microarray and instrumentation systems to sediment and groundwater samples from the Scheibe et al. FRC Area 2 field site, UMTRA sediments, and other DOE contaminated sites; (2) continue development and expansion of a 16S rRNA/rDNA¬-targeted probe suite for microbial community dynamics as new sequences are obtained from DOE-relevant sites; and (3) address the fundamental molecular biology and analytical chemistry associated with the extraction, purification and analysis of functional genes and mRNA in environmental samples. Work on the UW subproject focused on conducting detailed batch and semicontinuous culture reactor experiments with uranium-contaminated FRC Area 2 sediment. The reactor experiments were designed to provide coherent geochemical and microbiological data in support of microarray analyses of microbial communities in Area 2 sediments undergoing biostimulation with ethanol. A total of four major experiments were conducted (one batch and three semicontinuous culture), three of which (the batch and two semicontinuous culture) provided samples for DNA microarray analysis. A variety of other molecular analyses (clone libraries, 16S PhyloChip, RT-PCR, and T-RFLP) were conducted on parallel samples from the various experiments in order to provide independent information on microbial community response to biostimulation.

  1. Sandia National Laboratories: Rad-Hard Electronics and Trusted...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    testing of electronic microsystems for both unclassified and classified integrated circuits. Application-Specific Integrated Circuits (ASICs) Sandia's Application-Specific...

  2. Thermal Stress and Reliability for Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Power Electronic Thermal System Performance and Integration ...

  3. Electron radiography

    DOE Patents [OSTI]

    Merrill, Frank E.; Morris, Christopher

    2005-05-17

    A system capable of performing radiography using a beam of electrons. Diffuser means receive a beam of electrons and diffuse the electrons before they enter first matching quadrupoles where the diffused electrons are focused prior to the diffused electrons entering an object. First imaging quadrupoles receive the focused diffused electrons after the focused diffused electrons have been scattered by the object for focusing the scattered electrons. Collimator means receive the scattered electrons and remove scattered electrons that have scattered to large angles. Second imaging quadrupoles receive the collimated scattered electrons and refocus the collimated scattered electrons and map the focused collimated scattered electrons to transverse locations on an image plane representative of the electrons' positions in the object.

  4. Test results of a 90 MHZ integrated circuit sixteen channel analog pipeline for SSC detector calorimetry

    SciTech Connect (OSTI)

    Kleinfelder, S.A.; Levi, M.; Milgrome, O.

    1990-10-01

    A sixteen channel analog transient recorder with 128 cells per channel has been fabricated as an integrated circuit and tested at speeds of up to 90 MHz. The circuit uses a switched capacitor array technology to achieve a simultaneous read and write capability and twelve bit dynamic range. The high performance of this part should satisfy the demanding electronics requirements of calorimeter detectors at the SSC. The circuit parameters and test results are presented. 2 refs., 3 figs., 1 tab.

  5. Modular manifold for integrated fluidics and electronics

    DOE Patents [OSTI]

    Adkins, Douglas Ray (Albuquerque, NM)

    2010-03-30

    An airtight preconcentrator housing and/or a sensor housing for chemical testing, the housing(s) comprising internal dimensions such that a pre-manufactured preconcentrator and/or sensor can be disposed therein. The housings can also comprise electrical contacts disposed therein which align with and thus provide electrical connection to the preconcentrator and/or sensor. The preconcentrator and/or sensor can be easily and quickly replaced.

  6. Grid Integration

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its grid integration subprogram.

  7. Micro Power Electronics Inc | Open Energy Information

    Open Energy Info (EERE)

    Micro Power Electronics Inc Place: Hillsboro, Oregon Zip: 97124-7165 Product: Leading battery system integrator. Coordinates: 43.651735, -90.341144 Show Map Loading map......

  8. Vehicle Technologies Office: 2010 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research is focused on developing revolutionary new power electronics (PE) and electric ... Temperature, High Voltage Fully Integrated Gate Driver Circuit High Temperature, High ...

  9. Procurement Integrity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ------------------------------Chapter 3.1 (Dec 2015) 1 Procurement Integrity [Reference: 41 U.S.C. 423, FAR 3.104, DEAR 903.104] Overview This section discusses the requirements of the Procurement Integrity Act and its impact on Federal employees. Background The Department of Energy (DOE), like most federal agencies, purchases many products and services from the private sector. To preserve the integrity of the Federal procurement process and assure fair treatment of bidders, offerors and

  10. Insolation integrator

    DOE Patents [OSTI]

    Dougherty, John J. (Norristown, PA); Rudge, George T. (Lansdale, PA)

    1980-01-01

    An electric signal representative of the rate of insolation is integrated to determine if it is adequate for operation of a solar energy collection system.

  11. Advanced Power Electronics and Electric Motors Annual Report -- 2013

    SciTech Connect (OSTI)

    Narumanchi, S.; Bennion, K.; DeVoto, D.; Moreno, G.; Rugh, J.; Waye, S.

    2015-01-01

    This report describes the research into advanced liquid cooling, integrated power module cooling, high temperature air cooled power electronics, two-phase cooling for power electronics, and electric motor thermal management by NREL's Power Electronics group in FY13.

  12. Integrated Module Heat Exchanger | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Module Heat Exchanger Integrated Module Heat Exchanger 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ape047_bennion_2012_p.pdf More Documents & Publications Integrated Power Module Cooling Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric Machinery R&D Annual Progress Report Power Electronic Thermal System Performance and Integration

  13. Electron Beam Transport in Advanced Plasma Wave Accelerators

    SciTech Connect (OSTI)

    Williams, Ronald L

    2013-01-31

    The primary goal of this grant was to develop a diagnostic for relativistic plasma wave accelerators based on injecting a low energy electron beam (5-50keV) perpendicular to the plasma wave and observing the distortion of the electron beam's cross section due to the plasma wave's electrostatic fields. The amount of distortion would be proportional to the plasma wave amplitude, and is the basis for the diagnostic. The beat-wave scheme for producing plasma waves, using two CO2 laser beam, was modeled using a leap-frog integration scheme to solve the equations of motion. Single electron trajectories and corresponding phase space diagrams were generated in order to study and understand the details of the interaction dynamics. The electron beam was simulated by combining thousands of single electrons, whose initial positions and momenta were selected by random number generators. The model was extended by including the interactions of the electrons with the CO2 laser fields of the beat wave, superimposed with the plasma wave fields. The results of the model were used to guide the design and construction of a small laboratory experiment that may be used to test the diagnostic idea.

  14. Electron Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Pierre Kennepohl1,2 and Edward Solomon1* 1Department of Chemistry, Stanford University, Stanford, CA 94305 Electron transfer, or the act of moving an electron from one place to another, is amongst the simplest of chemical processes, yet certainly one of the most critical. The process of efficiently and controllably moving electrons around is one of the primary regulation mechanisms in biology. Without stringent control of electrons in living organisms, life could simply not exist. For example,

  15. Communication: Quantum molecular dynamics simulation of liquid...

    Office of Scientific and Technical Information (OSTI)

    Communication: Quantum molecular dynamics simulation of liquid para-hydrogen by nuclear and electron wave packet approach Citation Details In-Document Search Title: Communication:...

  16. The IBA Easy-E-Beam Integrated Processing System

    SciTech Connect (OSTI)

    Cleland, Marshall R.; Galloway, Richard A.; Lisanti, Thomas F.

    2011-06-01

    IBA Industrial Inc., (formerly known as Radiation Dynamics, Inc.) has been making high-energy and medium-energy, direct-current proton and electron accelerators for research and industrial applications for many years. Some industrial applications of high-power electron accelerators are the crosslinking of polymeric materials and products, such as the insulation on electrical wires, multi-conductor cable jackets, heat-shrinkable plastic tubing and film, plastic pipe, foam and pellets, the partial curing of rubber sheet for automobile tire components, and the sterilization of disposable medical devices. The curing (polymerization and crosslinking) of carbon and glass fiber-reinforced composite plastic parts, the preservation of foods and the treatment of waste materials are attractive possibilities for future applications. With electron energies above 1.0 MeV, the radiation protection for operating personnel is usually provided by surrounding the accelerator facility with thick concrete walls. With lower energies, steel and lead panels can be used, which are substantially thinner and more compact than the equivalent concrete walls. IBA has developed a series of electron processing systems called Easy-e-Beam for the medium energy range from 300 keV to 1000 keV. These systems include the shielding as an integral part of a complete radiation processing facility. The basic concepts of the electron accelerator, the product processing equipment, the programmable control system, the configuration of the radiation shielding and some performance characteristics are described in this paper.

  17. A compact electron gun for time-resolved electron diffraction

    SciTech Connect (OSTI)

    Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A.

    2015-01-15

    A novel compact time-resolved electron diffractometer has been built with the primary goal of studying the ultrafast molecular dynamics of photoexcited gas-phase molecules. Here, we discuss the design of the electron gun, which is triggered by a Ti:Sapphire laser, before detailing a series of calibration experiments relating to the electron-beam properties. As a further test of the apparatus, initial diffraction patterns have been collected for thin, polycrystalline platinum samples, which have been shown to match theoretical patterns. The data collected demonstrate the focusing effects of the magnetic lens on the electron beam, and how this relates to the spatial resolution of the diffraction pattern.

  18. NREL: Transmission Grid Integration - Western Wind and Solar Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study Phase 3 Research 3 Research All of the large-scale regional wind and solar integration studies performed by NREL and others have identified the lack of power system dynamic analysis as a significant research gap. Acceptable dynamic performance of the grid in the fractions of a second to one minute following a large disturbance (e.g., loss of a large power plant or a major transmission line) is critical to system reliability, thus there is a need to analyze the dynamic behavior of North

  19. Electronic Structure, Phonon Dynamical Properties, and Capture...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE; USDOE Office of Fossil Energy (FE) Country of Publication: United States Language: English Word Cloud More Like This Full Text Journal Articles DOI: 10.1103...

  20. Consumer Electronics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  1. Efficient Execution of Electronic Structure Calculations on SMP Clusters

    SciTech Connect (OSTI)

    Nurzhan Ustemirov

    2006-05-01

    Applications augmented with adaptive capabilities are becoming common in parallel computing environments. For large-scale scientific applications, dynamic adjustments to a computationally-intensive part may lead to a large pay-off in facilitating efficient execution of the entire application while aiming at avoiding resource contention. Application-specific knowledge, often best revealed during the run-time, is required to initiate and time these adjustments. In particular, General Atomic and Molecular Electronic Structure System (GAMESS) is a program for ab initio quantum chemistry that places significant demands on the high-performance computing platforms. Certain electronic structure calculations are characterized by high consumption of a particular resource, such as CPU, main memory, or disk I/O. This may lead to resource contention among concurrent GAMESS jobs and other programs in the dynamically changing environment. Thus, it is desirable to improve GAMESS calculations by means of dynamic adaptations. In this thesis, we show how an application- or algorithm-specific knowledge may play a significant role in achieving this goal. The choice of implementation is facilitated by a module-driven middleware easily integrated with GAMESS that assesses resource consumption and invokes GAMESS adaptations to the system environment. We show that the throughput of GAMESS jobs may be improved greatly as a result of such adaptations.

  2. Electrochemically grafted polypyrrole changes photoluminescence of electronic states inside nanocrystalline diamond

    SciTech Connect (OSTI)

    Gal?, P. Mal, P.; ?ermk, J.; Kromka, A.; Rezek, B.

    2014-12-14

    Hybrid diamond-organic interfaces are considered attractive for diverse applications ranging from electronics and energy conversion to medicine. Here we use time-resolved and time-integrated photoluminescence spectroscopy in visible spectral range (380700?nm) to study electronic processes in H-terminated nanocrystalline diamond films (NCD) with 150?nm thin, electrochemically deposited polypyrrole (PPy) layer. We observe changes in dynamics of NCD photoluminescence as well as in its time-integrated spectra after polymer deposition. The effect is reversible. We propose a model where the PPy layer on the NCD surface promotes spatial separation of photo-generated charge carriers both in non-diamond carbon phase and in bulk diamond. By comparing different NCD thicknesses we show that the effect goes as much as 200?nm deep inside the NCD film.

  3. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Troxell, Wade

    2011-12-22

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU's overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory's focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

  4. The Klynac: An Integrated Klystron and Linear Accelerator

    SciTech Connect (OSTI)

    Potter, J. M., Schwellenbach, D., Meidinger, A.

    2012-08-07

    The Klynac concept integrates an electron gun, a radio frequency (RF) power source, and a coupled-cavity linear accelerator into a single resonant system

  5. Integrated two-cylinder liquid piston Stirling engine (Journal...

    Office of Scientific and Technical Information (OSTI)

    Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated ...

  6. Synchronous behavior of two coupled electronic neurons

    SciTech Connect (OSTI)

    Pinto, R. D.; Varona, P.; GNB, Departamento Ingenieria Informatica, Universidad Autonoma de Madrid, 28049 Madrid, ; Volkovskii, A. R.; Szuecs, A.; Abarbanel, Henry D. I.; Department of Physics and Marine Physical Laboratory, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0402 ; Rabinovich, M. I.

    2000-08-01

    We report on experimental studies of synchronization phenomena in a pair of analog electronic neurons (ENs). The ENs were designed to reproduce the observed membrane voltage oscillations of isolated biological neurons from the stomatogastric ganglion of the California spiny lobster Panulirus interruptus. The ENs are simple analog circuits which integrate four-dimensional differential equations representing fast and slow subcellular mechanisms that produce the characteristic regular/chaotic spiking-bursting behavior of these cells. In this paper we study their dynamical behavior as we couple them in the same configurations as we have done for their counterpart biological neurons. The interconnections we use for these neural oscillators are both direct electrical connections and excitatory and inhibitory chemical connections: each realized by analog circuitry and suggested by biological examples. We provide here quantitative evidence that the ENs and the biological neurons behave similarly when coupled in the same manner. They each display well defined bifurcations in their mutual synchronization and regularization. We report briefly on an experiment on coupled biological neurons and four-dimensional ENs, which provides further ground for testing the validity of our numerical and electronic models of individual neural behavior. Our experiments as a whole present interesting new examples of regularization and synchronization in coupled nonlinear oscillators. (c) 2000 The American Physical Society.

  7. Refinery Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mary Biddy Sue Jones NREL PNNL This presentation does not contain any proprietary, confidential, or otherwise restricted information DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Refinery Integration 4.1.1.31 NREL 4.1.1.51 PNNL Goal Statement GOALS: Model bio-intermediates insertion points to better define costs & ID opportunities, technical risks, information gaps, research needs Publish results Review with stakeholders 2 Leveraging existing refining infrastructure

  8. Superthermal electron distribution measurements from polarized electron cyclotron emission

    SciTech Connect (OSTI)

    Luce, T.C.; Efthimion, P.C.; Fisch, N.J.

    1988-06-01

    Measurements of the superthermal electron distribution can be made by observing the polarized electron cyclotron emission. The emission is viewed along a constant magnetic field surface. This simplifies the resonance condition and gives a direct correlation between emission frequency and kinetic energy of the emitting electron. A transformation technique is formulated which determines the anisotropy of the distribution and number density of superthermals at each energy measured. The steady-state distribution during lower hybrid current drive and examples of the superthermal dynamics as the runaway conditions is varied are presented for discharges in the PLT tokamak. 15 refs., 8 figs.

  9. Cross sections for electron scattering by propane in the low- and intermediate-energy ranges

    SciTech Connect (OSTI)

    Souza, G. L. C. de; Lee, M.-T.; Sanches, I. P.; Rawat, P.; Iga, I.; Santos, A. S. dos; Machado, L. E.; Sugohara, R. T.; Brescansin, L. M.; Homem, M. G. P.; Lucchese, R. R.

    2010-07-15

    We present a joint theoretical-experimental study on electron scattering by propane (C{sub 3}H{sub 8}) in the low- and intermediate-energy ranges. Calculated elastic differential, integral, and momentum transfer as well as total (elastic + inelastic) and total absorption cross sections are reported for impact energies ranging from 2 to 500 eV. Also, experimental absolute elastic cross sections are reported in the 40- to 500-eV energy range. A complex optical potential is used to represent the electron-molecule interaction dynamics. A theoretical method based on the single-center-expansion close-coupling framework and corrected by the Pade approximant is used to solve the scattering equations. The experimental angular distributions of the scattered electrons are converted to absolute cross sections using the relative flow technique. The comparison of our calculated with our measured results, as well as with other experimental and theoretical data available in the literature, is encouraging.

  10. 43 PARTICLE ACCELERATORS; ELECTRON GUNS; BEAM EMITTANCE; CHARGE

    Office of Scientific and Technical Information (OSTI)

    SPACE 430200* -- Particle Accelerators-- Beam Dynamics, Field Calculations, & Ion Optics The evolution of the electron-beam phase space distribution in laser-driven rf guns is...

  11. Sandia Energy - Scattering Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scattering Dynamics Home Transportation Energy Predictive Simulation of Engines Combustion Chemistry Chemical Dynamics Scattering Dynamics Scattering DynamicsAshley...

  12. Integrated Vehicle Thermal Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management Integrated Vehicle Thermal Management 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vss028_thornton_2010_o.pdf More Documents & Publications Motor Thermal Control Thermal Management of PHEV / EV Charging Systems Power Electronic Thermal System Performance and Integration

  13. Evaluation of Monte Carlo Electron-Transport Algorithms in the...

    Office of Scientific and Technical Information (OSTI)

    Evaluation of Monte Carlo Electron-Transport Algorithms in the Integrated Tiger Series Codes for Stochastic-Media Simulations. Citation Details In-Document Search Title: Evaluation...

  14. Zicom Electronic Security Systems Ltd | Open Energy Information

    Open Energy Info (EERE)

    Security Systems Ltd. Place: Mumbai, Maharashtra, India Zip: 400093 Sector: Solar, Wind energy Product: Mumbai-based electronic security systems integrator. The firm plans to...

  15. Systems Integration Competitive Awards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration Competitive Awards Systems Integration Competitive Awards awards graphic cropped.png Through the SunShot Systems Integration efforts, DOE is funding a range of research and development (R&D) projects to advance technology in four broad, inter-related areas: Grid Performance and Reliability, Dispatchability, Power Electronics and Communications. FUNDING OPPORTUNITY YEAR ANNOUNCED AMOUNT AWARDED SuNLaMP 2015 $59M SHINES 2014 $15M SUNRISE 2013 $4M PREDICTS 2013 $1M National

  16. Electron tube

    DOE Patents [OSTI]

    Suyama, Motohiro (Hamamatsu, JP); Fukasawa, Atsuhito (Hamamatsu, JP); Arisaka, Katsushi (Los Angeles, CA); Wang, Hanguo (North Hills, CA)

    2011-12-20

    An electron tube of the present invention includes: a vacuum vessel including a face plate portion made of synthetic silica and having a surface on which a photoelectric surface is provided, a stem portion arranged facing the photoelectric surface and made of synthetic silica, and a side tube portion having one end connected to the face plate portion and the other end connected to the stem portion and made of synthetic silica; a projection portion arranged in the vacuum vessel, extending from the stem portion toward the photoelectric surface, and made of synthetic silica; and an electron detector arranged on the projection portion, for detecting electrons from the photoelectric surface, and made of silicon.

  17. VIA ELECTRONIC SUBMISSION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    39 MacDougal Street, Third Floor * New York, New York 10012 * (212) 992-8932 * www.policyintegrity.org March 21, 2011 VIA ELECTRONIC SUBMISSION Office of the General Counsel US Department of Energy Washington, DC Attention: Regulatory Burden RFI - Docket No. DOE-HQ-2011-0014-0001 Subject: Response to Request for Information on "Reducing Regulatory Burden," 76 Fed. Reg. 6123 (Feb. 3, 2011) The Institute for Policy Integrity at New York University School of Law submits the following

  18. Including the Effects of Electronic Excitations and Electron-Phonon Coupling in Cascade Simulations

    SciTech Connect (OSTI)

    Duffy, Dorothy |

    2008-07-01

    Radiation damage has traditionally been modeled using cascade simulations however such simulations generally neglect the effects of electron-ion interactions, which may be significant in high energy cascades. A model has been developed which includes the effects of electronic stopping and electron-phonon coupling in Molecular Dynamics simulations by means of an inhomogeneous Langevin thermostat. The energy lost by the atoms to electronic excitations is gained by the electronic system and the energy evolution of the electronic system is modeled by the heat diffusion equation. Energy is exchanged between the electronic system and the atoms in the Molecular Dynamics simulation by means of a Langevin thermostat, the temperature of which is the local electronic temperature. The model is applied to a 10 keV cascade simulation for Fe. (authors)

  19. Beam Dynamics for ARIA

    SciTech Connect (OSTI)

    Ekdahl, Carl August Jr.

    2014-10-14

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  20. NREL: Energy Systems Integration - Systems Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Integration Systems Integration considers the relationships among electricity, thermal, and fuel systems and data and information networks to ensure optimal integration and interoperability across the entire energy system spectrum. Advanced R&D in systems integration ranges from technology innovation to electric, fuel, thermal, and water infrastructure deployment. System integration research areas include: Prototype testing through hardware-in-the-loop Energy system integration

  1. Rydberg hydrogen atom near a metallic surface: Stark regime and ionization dynamics

    SciTech Connect (OSTI)

    Inarrea, Manuel; Salas, J. Pablo; Lanchares, Victor; Pascual, Ana Isabel; Palacian, Jesus F.; Yanguas, Patricia

    2007-11-15

    We investigate the classical dynamics of a hydrogen atom near a metallic surface in the presence of a uniform electric field. To describe the atom-surface interaction we use a simple electrostatic image model. Owing to the axial symmetry of the system, the z-component of the canonical angular momentum P{sub {phi}} is an integral and the electronic dynamics is modeled by a two degrees of freedom Hamiltonian in cylindrical coordinates. The structure and evolution of the phase space as a function of the electric field strength is explored extensively by means of numerical techniques of continuation of families of periodic orbits and Poincare surfaces of section. We find that, due to the presence of the electric field, the atom is strongly polarized through two consecutive pitchfork bifurcations that strongly change the phase space structure. Finally, by means of the phase space transition state theory and the classical spectral theorem, the ionization dynamics of the atom is studied.

  2. Thermoalgebras and path integral

    SciTech Connect (OSTI)

    Khanna, F.C. Malbouisson, A.P.C. Malbouisson, J.M.C. Santana, A.E.

    2009-09-15

    Using a representation for Lie groups closely associated with thermal problems, we derive the algebraic rules of the real-time formalism for thermal quantum field theories, the so-called thermo-field dynamics (TFD), including the tilde conjugation rules for interacting fields. These thermo-group representations provide a unified view of different approaches for finite-temperature quantum fields in terms of a symmetry group. On these grounds, a path integral formalism is constructed, using Bogoliubov transformations, for bosons, fermions and non-abelian gauge fields. The generalization of the results for quantum fields in (S{sup 1}){sup d}xR{sup D-d} topology is addressed.

  3. Rythmos Numerical Integration Package

    Energy Science and Technology Software Center (OSTI)

    2006-09-01

    Rythmos numerically integrates transient differential equations. The differential equations can be explicit or implicit ordinary differential equations ofr formulated as fully implicit differential-algebraic equations. Methods include backward Euler, forward Euler, explicit Runge-Kutta, and implicit BDF at this time. Native support for operator split methods and strict modularity are strong design goals. Forward sensitivity computations will be included in the first release with adjoint sensitivities coming in the near future. Rythmos heavily relies on Thyra formore » linear algebra and nonlinear solver interfaces to AztecOO, Amesos, IFPack, and NOX in Tilinos. Rythmos is specially suited for stiff differential equations and thos applictions where operator split methods have a big advantage, e.g. Computational fluid dynamics, convection-diffusion equations, etc.« less

  4. Integrating Environmental Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrating Environmental Stewardship Integrating Environmental Stewardship Integrating environmental stewardship to enable the national security mission August 1, 2013 graphic depicting the integration of programs that result in environmental stewardship Many Laboratory functions are integrated with environmental stewardship. This Strategy cannot be effective without systematic integration with other related Laboratory functions, such as site planning, project management, and facilities

  5. Dynamic Structural Response and Deformations of Monolayer MoS...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Dynamic Structural Response and Deformations of Monolayer MoS 2 Visualized by Femtosecond Electron Diffraction Citation Details ...

  6. Gated integrator with signal baseline subtraction

    DOE Patents [OSTI]

    Wang, X.

    1996-12-17

    An ultrafast, high precision gated integrator includes an opamp having differential inputs. A signal to be integrated is applied to one of the differential inputs through a first input network, and a signal indicative of the DC offset component of the signal to be integrated is applied to the other of the differential inputs through a second input network. A pair of electronic switches in the first and second input networks define an integrating period when they are closed. The first and second input networks are substantially symmetrically constructed of matched components so that error components introduced by the electronic switches appear symmetrically in both input circuits and, hence, are nullified by the common mode rejection of the integrating opamp. The signal indicative of the DC offset component is provided by a sample and hold circuit actuated as the integrating period begins. The symmetrical configuration of the integrating circuit improves accuracy and speed by balancing out common mode errors, by permitting the use of high speed switching elements and high speed opamps and by permitting the use of a small integrating time constant. The sample and hold circuit substantially eliminates the error caused by the input signal baseline offset during a single integrating window. 5 figs.

  7. Gated integrator with signal baseline subtraction

    DOE Patents [OSTI]

    Wang, Xucheng (Lisle, IL)

    1996-01-01

    An ultrafast, high precision gated integrator includes an opamp having differential inputs. A signal to be integrated is applied to one of the differential inputs through a first input network, and a signal indicative of the DC offset component of the signal to be integrated is applied to the other of the differential inputs through a second input network. A pair of electronic switches in the first and second input networks define an integrating period when they are closed. The first and second input networks are substantially symmetrically constructed of matched components so that error components introduced by the electronic switches appear symmetrically in both input circuits and, hence, are nullified by the common mode rejection of the integrating opamp. The signal indicative of the DC offset component is provided by a sample and hold circuit actuated as the integrating period begins. The symmetrical configuration of the integrating circuit improves accuracy and speed by balancing out common mode errors, by permitting the use of high speed switching elements and high speed opamps and by permitting the use of a small integrating time constant. The sample and hold circuit substantially eliminates the error caused by the input signal baseline offset during a single integrating window.

  8. Integrated control system and method

    DOE Patents [OSTI]

    Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin

    2013-10-29

    An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.

  9. Multichannel Pseudogap Kondo Model: Large-N Solution and Quantum-Critical Dynamics

    SciTech Connect (OSTI)

    Vojta, Matthias

    2001-08-27

    We discuss a multichannel SU(N) Kondo model which displays nontrivial zero-temperature phase transitions due to a conduction electron density of states vanishing with a power law at the Fermi level. In a particular large-N limit, the system is described by coupled integral equations corresponding to a dynamic saddle point. We exactly determine the universal low-energy behavior of spectral densities at the scale-invariant fixed points, obtain anomalous exponents, and compute scaling functions describing the crossover near the quantum-critical points. We argue that our findings are relevant to recent experiments on impurity-doped d -wave superconductors.

  10. Dynamical impurity problems

    SciTech Connect (OSTI)

    Emery, V.J.; Kivelson, S.A.

    1993-12-31

    In the past few years there has been a resurgence of interest in dynamical impurity problems, as a result of developments in the theory of correlated electron systems. The general dynamical impurity problem is a set of conduction electrons interacting with an impurity which has internal degrees of freedom. The simplest and earliest example, the Kondo problem, has attracted interest since the mid-sixties not only because of its physical importance but also as an example of a model displaying logarithmic divergences order by order in perturbation theory. It provided one of the earliest applications of the renormalization group method, which is designed to deal with just such a situation. As we shall see, the antiferromagnetic Kondo model is controlled by a strong-coupling fixed point, and the essence of the renormalization group solution is to carry out the global renormalization numerically starting from the original (weak-coupling) Hamiltonian. In these lectures, we shall describe an alternative route in which we identify an exactly solvable model which renormalizes to the same fixed point as the original dynamical impurity problem. This approach is akin to determining the critical behavior at a second order phase transition point by solving any model in a given universality class.

  11. Slow Dynamics of Orbital Domains in Manganite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Slow Dynamics of Orbital Domains in Manganite Slow Dynamics of Orbital Domains in Manganite Print Wednesday, 25 June 2008 00:00 At the ALS, an international team of researchers has used low-energy coherent x rays to extract new knowledge about the correlated motion of groups of self-assembled, outer-lying electrons in the extremely complex electronic system found in manganites. The manganite family of materials has puzzled physicists for years by defying standard models for the motion of

  12. NREL: Energy Systems Integration Facility - Systems Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Integration Systems integration considers the relationships among electricity, thermal, and fuel systems and data and information networks to ensure optimal interoperability across the energy spectrum. The Energy Systems Integration Facility's suite of systems integration laboratories provides advanced capabilities for research, development, and demonstration of key components of future energy systems. Photo of a man and a power quality meter system in a laboratory. The Energy Systems

  13. System Impact Study of the Eastern Grid of Sumba Island, Indonesia: Steady-State and Dynamic System Modeling for the Integration of One and Two 850-kW Wind Turbine Generators

    SciTech Connect (OSTI)

    Oswal, R.; Jain, P.; Muljadi, Eduard; Hirsch, Brian; Castermans, B.; Chandra, J.; Raharjo, S.; Hardison, R.

    2016-01-01

    The goal of this project was to study the impact of integrating one and two 850-kW wind turbine generators into the eastern power system network of Sumba Island, Indonesia. A model was created for the 20-kV distribution network as it existed in the first quarter of 2015 with a peak load of 5.682 MW. Detailed data were collected for each element of the network. Load flow, short-circuit, and transient analyses were performed using DIgSILENT PowerFactory 15.2.1.

  14. Electronic Coupling Dependence of Ultrafast Interfacial Electron...

    Office of Scientific and Technical Information (OSTI)

    Electron Transfer on Nanocrystalline Thin Films and Single Crystal Lian, Tianquan 14 SOLAR ENERGY The long-term goal of the proposed research is to understand electron transfer...

  15. Dynamic analysis of tension-leg platforms

    SciTech Connect (OSTI)

    Morgan, J.R.

    1983-01-01

    The dynamic response of tension-leg platforms subjected to wave loading was investigated using a deterministic dynamic analysis. The model employed in this study is based on coupled nonlinear stiffness coefficients and closed form inertia and drag forcing functions derived using Morison's equation. The forcing functions include relative motion behavior between the fluid particles and the structure. These forcing functions are integrated manually thereby avoiding the need for expensive numerical integration. A set of coupled nonlinear differential equations was integrated sequentially in the time domain using the Newmark beta-method. A computer program was developed to simulate the time history response of the platform motion.

  16. NREL: Distributed Grid Integration - Research Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Staff NREL's distributed grid integration research staff work to strengthen and diversify the electric power system through NREL's Power Systems Engineering Center. Photo of James Cale James Cale, Distributed Energy Systems Integration Group Manager Ph.D., Electrical Engineering, Purdue University M.S., Electrical Engineering, Purdue University B.S., Electrical Engineering, MS&T Dr. James Cale is an expert in the field of power electronics and electrical machine modeling and

  17. Integrating Environmental Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stewardship Many Laboratory functions are integrated with environmental stewardship. This Strategy cannot be effective without systematic integration with other related Laboratory...

  18. Distribution Grid Integration

    Broader source: Energy.gov [DOE]

    The DOE Systems Integration team funds distribution grid integration research and development (R&D) activities to address the technical issues that surround distribution grid planning,...

  19. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  20. Scientists Train Electrons with Microwaves

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists Train Electrons with Microwaves

  1. Polymer electronic devices and materials.

    SciTech Connect (OSTI)

    Schubert, William Kent; Baca, Paul Martin; Dirk, Shawn M.; Anderson, G. Ronald; Wheeler, David Roger

    2006-01-01

    Polymer electronic devices and materials have vast potential for future microsystems and could have many advantages over conventional inorganic semiconductor based systems, including ease of manufacturing, cost, weight, flexibility, and the ability to integrate a wide variety of functions on a single platform. Starting materials and substrates are relatively inexpensive and amenable to mass manufacturing methods. This project attempted to plant the seeds for a new core competency in polymer electronics at Sandia National Laboratories. As part of this effort a wide variety of polymer components and devices, ranging from simple resistors to infrared sensitive devices, were fabricated and characterized. Ink jet printing capabilities were established. In addition to promising results on prototype devices the project highlighted the directions where future investments must be made to establish a viable polymer electronics competency.

  2. Slow Dynamics of Orbital Domains in Manganite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Slow Dynamics of Orbital Domains in Manganite Print At the ALS, an international team of researchers has used low-energy coherent x rays to extract new knowledge about the correlated motion of groups of self-assembled, outer-lying electrons in the extremely complex electronic system found in manganites. The manganite family of materials has puzzled physicists for years by defying standard models for the motion of electrons in crystals. By controlling the properties of the incident x rays, the

  3. Slow Dynamics of Orbital Domains in Manganite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Slow Dynamics of Orbital Domains in Manganite Print At the ALS, an international team of researchers has used low-energy coherent x rays to extract new knowledge about the correlated motion of groups of self-assembled, outer-lying electrons in the extremely complex electronic system found in manganites. The manganite family of materials has puzzled physicists for years by defying standard models for the motion of electrons in crystals. By controlling the properties of the incident x rays, the

  4. Slow Dynamics of Orbital Domains in Manganite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Slow Dynamics of Orbital Domains in Manganite Print At the ALS, an international team of researchers has used low-energy coherent x rays to extract new knowledge about the correlated motion of groups of self-assembled, outer-lying electrons in the extremely complex electronic system found in manganites. The manganite family of materials has puzzled physicists for years by defying standard models for the motion of electrons in crystals. By controlling the properties of the incident x rays, the

  5. Slow Dynamics of Orbital Domains in Manganite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Slow Dynamics of Orbital Domains in Manganite Print At the ALS, an international team of researchers has used low-energy coherent x rays to extract new knowledge about the correlated motion of groups of self-assembled, outer-lying electrons in the extremely complex electronic system found in manganites. The manganite family of materials has puzzled physicists for years by defying standard models for the motion of electrons in crystals. By controlling the properties of the incident x rays, the

  6. Slow Dynamics of Orbital Domains in Manganite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Slow Dynamics of Orbital Domains in Manganite Print At the ALS, an international team of researchers has used low-energy coherent x rays to extract new knowledge about the correlated motion of groups of self-assembled, outer-lying electrons in the extremely complex electronic system found in manganites. The manganite family of materials has puzzled physicists for years by defying standard models for the motion of electrons in crystals. By controlling the properties of the incident x rays, the

  7. Slow Dynamics of Orbital Domains in Manganite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Slow Dynamics of Orbital Domains in Manganite Print At the ALS, an international team of researchers has used low-energy coherent x rays to extract new knowledge about the correlated motion of groups of self-assembled, outer-lying electrons in the extremely complex electronic system found in manganites. The manganite family of materials has puzzled physicists for years by defying standard models for the motion of electrons in crystals. By controlling the properties of the incident x rays, the

  8. Sandia Energy - Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Transmission Grid Integration Transmission Grid...

  9. Sandia Energy - Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Distribution Grid Integration Distribution Grid...

  10. 2013 R&D 100 Award: Movie-mode electron microscope captures nanoscale

    ScienceCinema (OSTI)

    Lagrange, Thomas; Reed, Bryan

    2014-07-21

    A new instrument developed by LLNL scientists and engineers, the Movie Mode Dynamic Transmission Electron Microscope (MM-DTEM), captures billionth-of-a-meter-scale images with frame rates more than 100,000 times faster than those of conventional techniques. The work was done in collaboration with a Pleasanton-based company, Integrated Dynamic Electron Solutions (IDES) Inc. Using this revolutionary imaging technique, a range of fundamental and technologically important material and biological processes can be captured in action, in complete billionth-of-a-meter detail, for the first time. The primary application of MM-DTEM is the direct observation of fast processes, including microstructural changes, phase transformations and chemical reactions, that shape real-world performance of nanostructured materials and potentially biological entities. The instrument could prove especially valuable in the direct observation of macromolecular interactions, such as protein-protein binding and host-pathogen interactions. While an earlier version of the technology, Single Shot-DTEM, could capture a single snapshot of a rapid process, MM-DTEM captures a multiframe movie that reveals complex sequences of events in detail. It is the only existing technology that can capture multiple electron microscopy images in the span of a single microsecond.

  11. Residential Buildings Integration Program

    Broader source: Energy.gov [DOE]

    Residential Buildings Integration Program Presentation for the 2013 Building Technologies Office's Program Peer Review

  12. NREL: Transmission Grid Integration - Wind Integration Datasets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2005, and 2006. These datasets were designed to help energy professionals perform wind integration studies and estimate power production from hypothetical wind plants. For the...

  13. Photodissociation Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photodissociation Dynamics - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  14. Electron beam generation in Tevatron electron lenses

    SciTech Connect (OSTI)

    Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; Tiunov, M.; /Novosibirsk, IYF

    2006-08-01

    New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices.

  15. Integrated Management Tracking System

    Energy Science and Technology Software Center (OSTI)

    2000-03-30

    The Integrated Management Tracking System (IMTS) is a "Web Enabled" Client/Server Business application that provides for the Identification and Resolution of commitments, situations, events and problems. The IMTS engine is written with Microsoft Active Server Pages (ASP) for IIS4. The system provides for reporting, entering, editing, closing and administration over a Intranet, Extranet or Internet. This Application facilitates: Electronic assignment, acceptance and tracking to completion. Email notifications of assigned action. Establishment of Due Dates. Electronicmore » search and retrieval based on keywords in combination with user specified database parameters (Document Type, Date Ranges, etc.). Coded for Trending and Reporting. User selected reports. Various levels of access for reports and administration. The "Server" side of this application consists of a Microsoft Access database running on a NT Server with Internet Information Server (IIS). As the "Client" side of the application runs on any Web browser, this solution is a cost effective, user friendly application that lends itself to organizations not physically colocated in one location providing information immediately available to everyone at once.« less

  16. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  17. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, John S. (Los Alamos, NM); Sheffield, Richard L. (Los Alamos, NM)

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  18. Advanced Integrated Traction System

    SciTech Connect (OSTI)

    Greg Smith; Charles Gough

    2011-08-31

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step towards enabling a smart-grid application. GM under this work assessed 29 technologies; investigated 36 configurations/types power electronics and electric machines, filed 41 invention disclosures; and ensured technology compatibility with vehicle production. Besides the development of a high temperature ETS the development of industrial suppliers took place because of this project. Suppliers of industrial power electronic components are numerous, but there are few that have traction drive knowledge. This makes it difficult to achieve component reliability, durability, and cost requirements necessary of high volume automotive production. The commercialization of electric traction systems for automotive industry requires a strong diverse supplier base. Developing this supplier base is dependent on a close working relationship between the OEM and supplier so that appropriate component requirements can be developed. GM has worked closely with suppliers to develop components for electric traction systems. Components that have been the focus of this project are power modules, capacitors, heavy copper boards, current sensors, and gate drive and controller chip sets. Working with suppliers, detailed component specifications have been developed. Current, voltage, and operation environment during the vehicle drive cycle were evaluated to develop higher resolution/accurate component specifications.

  19. Lithium electrodeposition dynamics in aprotic electrolyte observed in situ

    Office of Scientific and Technical Information (OSTI)

    via transmission electron microscopy (Journal Article) | SciTech Connect Journal Article: Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy Citation Details In-Document Search This content will become publicly available on March 18, 2016 Title: Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy Electrodeposited metallic lithium is an ideal negative battery electrode, but

  20. Electron acoustic wave driven vortices with non-Maxwellian hot electrons in magnetoplasmas

    SciTech Connect (OSTI)

    Haque, Q.; Mirza, Arshad M.; Zakir, U.

    2014-07-15

    Linear dispersion characteristics of the Electron Acoustic Wave (EAW) and the corresponding vortex structures are investigated in a magnetoplasma in the presence of non-Maxwellian hot electrons. In this regard, kappa and Cairns distributed hot electrons are considered. It is noticed that the nonthermal distributions affect the phase velocity of the EAW. Further, it is found that the phase velocity of EAW increases for Cairns and decreases for kappa distributed hot electrons. Nonlinear solutions in the form of dipolar vortices are also obtained for both stationary and non-stationary ions in the presence of kappa distributed hot electrons and dynamic cold electrons. It is found that the amplitude of the nonlinear vortex structures also reduces with kappa factor like the electron acoustic solitons.

  1. Scattering Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scattering Dynamics - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  2. Chemical Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamics - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  3. Dynamic load balancing of applications

    DOE Patents [OSTI]

    Wheat, Stephen R. (Albuquerque, NM)

    1997-01-01

    An application-level method for dynamically maintaining global load balance on a parallel computer, particularly on massively parallel MIMD computers. Global load balancing is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method supports a large class of finite element and finite difference based applications and provides an automatic element management system to which applications are easily integrated.

  4. Dynamic load balancing of applications

    DOE Patents [OSTI]

    Wheat, S.R.

    1997-05-13

    An application-level method for dynamically maintaining global load balance on a parallel computer, particularly on massively parallel MIMD computers is disclosed. Global load balancing is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method supports a large class of finite element and finite difference based applications and provides an automatic element management system to which applications are easily integrated. 13 figs.

  5. Electronic unit integrated into a flexible polymer body (Patent...

    Office of Scientific and Technical Information (OSTI)

    to the metal layer. Authors: Krulevitch, Peter A. 1 ; Maghribi, Mariam N. 2 ; Benett, William J. 2 ; Hamilton, Julie K. 3 ; Rose, Klint A. 4 ; Davidson, James Courtney...

  6. Advanced Integrated Electric Traction System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ape014_smith_2011_o.pdf More Documents & Publications Advanced Integrated Electric Traction System Advanced Integrated Electric Traction System Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report

  7. Controlling Graphene's Electronic Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlling Graphene's Electronic Structure Print Graphene, because of its unusual electron properties, reduced dimensionality, and scale, has enormous potential for use in...

  8. Controlling Graphene's Electronic Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlling Graphene's Electronic Structure Print Wednesday, 25 April 2007 00:00 Graphene, because of its unusual electron properties, reduced dimensionality, and scale,...

  9. Electronic structural and electrochemical properties of lithium zirconates

    Office of Scientific and Technical Information (OSTI)

    and their capabilities of CO2 capture: A first-principles density-functional theory and phonon dynamics approach (Journal Article) | SciTech Connect Journal Article: Electronic structural and electrochemical properties of lithium zirconates and their capabilities of CO2 capture: A first-principles density-functional theory and phonon dynamics approach Citation Details In-Document Search Title: Electronic structural and electrochemical properties of lithium zirconates and their capabilities

  10. Electron Cloud Effects in Accelerators

    SciTech Connect (OSTI)

    Furman, M.A.

    2012-11-30

    Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  11. Generation of Femtosecond Electron Pulses

    SciTech Connect (OSTI)

    Jinamoon, V.; Kusoljariyakul, K.; Rimjaem, S.; Saisut, J.; Thongbai, C.; Vilaithong, T.; Rhodes, M.W.; Wichaisirimongkol, P.; Chumphongphan, S.; Wiedemann, H.; /SLAC, SSRL

    2005-05-09

    At the Fast Neutron Research Facility (FNRF), Chiang Mai University (Thailand), the SURIYA project has been established aiming to produce femtosecond electron pulses utilizing a combination of an S-band thermionic rf gun and a magnetic bunch compressor ({alpha}-magnet). A specially designed rf-gun has been constructed to obtain optimum beam characteristics for the best bunch compression. Simulation results show that bunch lengths as short as about 50 fs rms can be expected at the experimental station. The electron bunch lengths will be determined using autocorrelation of coherent transition radiation (TR) through a Michelson interferometer. The paper discusses beam dynamics studies, design, fabrication and cold tests of the rf-gun as well as presents the project current status and forth-coming experiments.

  12. NREL: Transmission Grid Integration - Solar Integration National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar generation integration studies by providing modeled, coherent sub-hour solar power data, information, and tools. Sub-hour solar power data are used in the Western Wind...

  13. Integrated Vehicle Thermal Management Systems (VTMS) Analysis/Modeling |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Systems (VTMS) Analysis/Modeling Integrated Vehicle Thermal Management Systems (VTMS) Analysis/Modeling 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon vssp_02_thornton.pdf More Documents & Publications Integrated Vehicle Thermal Management Power Electronic Thermal System Performance and Integration Characterization and Development of Advanced Heat Transfer

  14. Novel Packaging to Reduce Stray Inductance in Power Electronics |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Packaging to Reduce Stray Inductance in Power Electronics Novel Packaging to Reduce Stray Inductance in Power Electronics 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ape022_tolbert_2010_p.pdf More Documents & Publications High Power Density Integrated Traction Machine Drive Power Device Packaging High Power Density Integrated Traction Machine Drive

  15. Evolution of entanglement under echo dynamics

    SciTech Connect (OSTI)

    Prosen, Tomaz; Znidaric, Marko [Physics Department, FMF, University of Ljubljana, Ljubljana (Slovenia); Seligman, Thomas H. [Centro de Ciencias Fisicas, University of Mexico (UNAM), Cuernavaca (Mexico)

    2003-04-01

    Echo dynamics and fidelity are often used to discuss stability in quantum-information processing and quantum chaos. Yet fidelity yields no information about entanglement, the characteristic property of quantum mechanics. We study the evolution of entanglement in echo dynamics. We find qualitatively different behavior between integrable and chaotic systems on one hand and between random and coherent initial states for integrable systems on the other. For the latter the evolution of entanglement is given by a classical time scale. Analytic results are illustrated numerically in a Jaynes-Cummings model.

  16. Integrated rural energy planning

    SciTech Connect (OSTI)

    El Mahgary, Y.; Biswas, A.K.

    1985-01-01

    This book presents papers on integrated community energy systems in developing countries. Topics considered include an integrated rural energy system in Sri Lanka, rural energy systems in Indonesia, integrated rural food-energy systems and technology diffusion in India, bringing energy to the rural sector in the Philippines, the development of a new energy village in China, the Niaga Wolof experimental rural energy center, designing a model rural energy system for Nigeria, the Basaisa village integrated field project, a rural energy project in Tanzania, rural energy development in Columbia, and guidelines for the planning, development and operation of integrated rural energy projects.

  17. Multispacecraft observations of the electron current sheet, neighboring magnetic islands, and electron acceleration during magnetotail reconnection

    SciTech Connect (OSTI)

    Chen Lijen; Bessho, Naoki; Bhattacharjee, Amitava; Lefebvre, Bertrand; Vaith, Hans; Puhl-Quinn, Pamela; Torbert, Roy; Asnes, Arne; Fazakerley, Andrew; Khotyaintsev, Yuri; Daly, Patrick

    2009-05-15

    Open questions concerning structures and dynamics of diffusion regions and electron acceleration in collisionless magnetic reconnection are addressed based on data from the four-spacecraft mission Cluster and particle-in-cell simulations. Using time series of electron distribution functions measured by the four spacecraft, distinct electron regions around a reconnection layer are mapped out to set the framework for studying diffusion regions. A spatially extended electron current sheet (ecs), a series of magnetic islands, and bursts of energetic electrons within islands are identified during magnetotail reconnection with no appreciable guide field. The ecs is collocated with a layer of electron-scale electric fields normal to the ecs and pointing toward the ecs center plane. Both the observed electron and ion densities vary by more than a factor of 2 within one ion skin depth north and south of the ecs, and from the ecs into magnetic islands. Within each of the identified islands, there is a burst of suprathermal electrons whose fluxes peak at density compression sites [L.-J. Chen et al., Nat. Phys. 4, 19 (2008)] and whose energy spectra exhibit power laws with indices ranging from 6 to 7.3. These results indicate that the in-plane electric field normal to the ecs can be of the electron scale at certain phases of reconnection, electrons and ions are highly compressible within the ion diffusion region, and for reconnection involving magnetic islands, primary electron acceleration occurs within the islands.

  18. Torque for electron spin induced by electron permanent electric dipole moment

    SciTech Connect (OSTI)

    Senami, Masato E-mail: akitomo@scl.kyoto-u.ac.jp; Fukuda, Masahiro E-mail: akitomo@scl.kyoto-u.ac.jp; Ogiso, Yoji E-mail: akitomo@scl.kyoto-u.ac.jp; Tachibana, Akitomo E-mail: akitomo@scl.kyoto-u.ac.jp

    2014-10-06

    The spin torque of the electron is studied in relation to the electric dipole moment (EDM) of the electron. The spin dynamics is known to be given by the spin torque and the zeta force in quantum field theory. The effect of the EDM on the torque of the spin brings a new term in the equation of motion of the spin. We study this effect for a solution of the Dirac equation with electromagnetic field.

  19. Computational Fluid Dynamics Library

    Energy Science and Technology Software Center (OSTI)

    2005-03-04

    CFDLib05 is the Los Alamos Computational Fluid Dynamics LIBrary. This is a collection of hydrocodes using a common data structure and a common numerical method, for problems ranging from single-field, incompressible flow, to multi-species, multi-field, compressible flow. The data structure is multi-block, with a so-called structured grid in each block. The numerical method is a Finite-Volume scheme employing a state vector that is fully cell-centered. This means that the integral form of the conservation lawsmore » is solved on the physical domain that is represented by a mesh of control volumes. The typical control volume is an arbitrary quadrilateral in 2D and an arbitrary hexahedron in 3D. The Finite-Volume scheme is for time-unsteady flow and remains well coupled by means of time and space centered fluxes; if a steady state solution is required, the problem is integrated forward in time until the user is satisfied that the state is stationary.« less

  20. Center for Nanophase Materials Sciences (CNMS) - Correlated Electrons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Correlated Electrons

  1. Electron Microscopy Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Microscopy Lab Electron Microscopy Lab Focusing on the study of microstructures with electron and ion beam instruments, including crystallographic and chemical techniques. April 12, 2012 Transmission electron microscope Rob Dickerson examines a multiphase oxide scale using the FEI Titan 80-300 transmission electron microscope. Contact Rob Dickerson (505) 667-6337 Email Rod McCabe (505) 606-1649 Email Pat Dickerson (505) 665-3036 Email Tom Wynn (505) 665-6861 Email Dedicated to the

  2. A Community of Electrons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Community of Electrons 1663 Los Alamos science and technology magazine Latest Issue:October 2015 past issues All Issues » submit A Community of Electrons A new experiment solving the mystery of plutonium's missing magnetism also provides a groundbreaking insight into the overall nature of matter. November 20, 2015 A Community of Electrons With electronic correlations, electrons from many different atoms interact in a coordinated fashion that brings about special material properties. The

  3. Energy transfer dynamics in trimers and aggregates of light-harvesting

    Office of Scientific and Technical Information (OSTI)

    complex II probed by 2D electronic spectroscopy (Journal Article) | SciTech Connect Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy Citation Details In-Document Search Title: Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and

  4. Can the ring polymer molecular dynamics method be interpreted as real time quantum dynamics?

    SciTech Connect (OSTI)

    Jang, Seogjoo; Sinitskiy, Anton V.; Voth, Gregory A.

    2014-04-21

    The ring polymer molecular dynamics (RPMD) method has gained popularity in recent years as a simple approximation for calculating real time quantum correlation functions in condensed media. However, the extent to which RPMD captures real dynamical quantum effects and why it fails under certain situations have not been clearly understood. Addressing this issue has been difficult in the absence of a genuine justification for the RPMD algorithm starting from the quantum Liouville equation. To this end, a new and exact path integral formalism for the calculation of real time quantum correlation functions is presented in this work, which can serve as a rigorous foundation for the analysis of the RPMD method as well as providing an alternative derivation of the well established centroid molecular dynamics method. The new formalism utilizes the cyclic symmetry of the imaginary time path integral in the most general sense and enables the expression of Kubo-transformed quantum time correlation functions as that of physical observables pre-averaged over the imaginary time path. Upon filtering with a centroid constraint function, the formulation results in the centroid dynamics formalism. Upon filtering with the position representation of the imaginary time path integral, we obtain an exact quantum dynamics formalism involving the same variables as the RPMD method. The analysis of the RPMD approximation based on this approach clarifies that an explicit quantum dynamical justification does not exist for the use of the ring polymer harmonic potential term (imaginary time kinetic energy) as implemented in the RPMD method. It is analyzed why this can cause substantial errors in nonlinear correlation functions of harmonic oscillators. Such errors can be significant for general correlation functions of anharmonic systems. We also demonstrate that the short time accuracy of the exact path integral limit of RPMD is of lower order than those for finite discretization of path. The present quantum dynamics formulation also serves as the basis for developing new quantum dynamical methods that utilize the cyclic nature of the imaginary time path integral.

  5. Heterogeneously integrated microsystem-on-a-chip

    DOE Patents [OSTI]

    Chanchani, Rajen (Albuquerque, NM)

    2008-02-26

    A microsystem-on-a-chip comprises a bottom wafer of normal thickness and a series of thinned wafers can be stacked on the bottom wafer, glued and electrically interconnected. The interconnection layer comprises a compliant dielectric material, an interconnect structure, and can include embedded passives. The stacked wafer technology provides a heterogeneously integrated, ultra-miniaturized, higher performing, robust and cost-effective microsystem package. The highly integrated microsystem package, comprising electronics, sensors, optics, and MEMS, can be miniaturized both in volume and footprint to the size of a bottle-cap or less.

  6. Integrated injection-locked semiconductor diode laser

    DOE Patents [OSTI]

    Hadley, G. Ronald (Albuquerque, NM); Hohimer, John P. (Albuquerque, NM); Owyoung, Adelbert (Albuquerque, NM)

    1991-01-01

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet.

  7. Integrated injection-locked semiconductor diode laser

    DOE Patents [OSTI]

    Hadley, G.R.; Hohimer, J.P.; Owyoung, A.

    1991-02-19

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet. 18 figures.

  8. SIAM conference on applications of dynamical systems

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    A conference (Oct.15--19, 1992, Snowbird, Utah; sponsored by SIAM (Society for Industrial and Applied Mathematics) Activity Group on Dynamical Systems) was held that highlighted recent developments in applied dynamical systems. The main lectures and minisymposia covered theory about chaotic motion, applications in high energy physics and heart fibrillations, turbulent motion, Henon map and attractor, integrable problems in classical physics, pattern formation in chemical reactions, etc. The conference fostered an exchange between mathematicians working on theoretical issues of modern dynamical systems and applied scientists. This two-part document contains abstracts, conference program, and an author index.

  9. ICFA Beam Dynamics Newsletter

    SciTech Connect (OSTI)

    Ben-Zvi I.; Kuczewski A.; Altinbas, Z.; Beavis, D.; Belomestnykh,; Dai, J. et al

    2012-07-01

    The Collider-Accelerator Department at Brookhaven National Laboratory is building a high-brightness 500 mA capable Energy Recovery Linac (ERL) as one of its main R&D thrusts towards eRHIC, the polarized electron - hadron collider as an upgrade of the operating RHIC facility. The ERL is in final assembly stages, with injection commisioning starting in October 2012. The objective of this ERL is to serve as a platform for R&D into high current ERL, in particular issues of halo generation and control, Higher-Order Mode (HOM) issues, coherent emissions for the beam and high-brightness, high-power beam generation and preservation. The R&D ERL features a superconducting laser-photocathode RF gun with a high quantum efficiency photoccathode served with a load-lock cathode delivery system, a highly damped 5-cell accelerating cavity, a highly flexible single-pass loop and a comprehensive system of beam instrumentation. In this ICFA Beam Dynamics Newsletter article we will describe the ERL in a degree of detail that is not usually found in regular publications. We will discuss the various systems of the ERL, following the electrons from the photocathode to the beam dump, cover the control system, machine protection etc and summarize with the status of the ERL systems.

  10. Thickness measurement locations of mechanical integrity

    SciTech Connect (OSTI)

    Decker, J.R.; Rivas, N.

    1996-07-01

    This paper will describe the importance of establishing thickness measurement location (TNE) criteria. It will also seek to quantify the frequency of inspections and review the methods for establishing techniques to ensure reliability and repeatability of inspections at TMLs using qualified inspectors. Also discussed will be the most useful way to document the results of an inspection and how to effectively maintain consistency in the mechanical integrity program. It reviews different methods of inspection and uses lessons learned from in-service experience with numerous mechanical projects in the petrochemical industry. The importance of qualified inspectors, quality inspection, electronic data acquisition and electronic data storage will be discussed.

  11. A high dynamic range data acquisition system for a solid-state...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: A high dynamic range data acquisition system for a solid-state electron ... CEEM, Physics Department, Indiana University, Bloomington, Indiana 47408 (United ...

  12. Dissociative electron attachments to ethanol and acetaldehyde: A combined

    Office of Scientific and Technical Information (OSTI)

    experimental and simulation study (Journal Article) | SciTech Connect Dissociative electron attachments to ethanol and acetaldehyde: A combined experimental and simulation study Citation Details In-Document Search Title: Dissociative electron attachments to ethanol and acetaldehyde: A combined experimental and simulation study Dissociation dynamics of the temporary negative ions of ethanol and acetaldehyde formed by the low-energy electron attachments is investigated by using the anion

  13. Wind Energy Integration: Slides

    Wind Powering America (EERE)

    provide information about integrating wind energy into the electricity grid. Wind Energy Integration Photo by Dennis Schroeder, NREL 25907 Wind energy currently contributes significant power to energy portfolios around the world. *U.S. Department of Energy. (August 2015). 2014 Wind Technologies Market Report. Wind Energy Integration In 2014, Denmark led the way with wind power supplying roughly 39% of the country's electricity demand. Ireland, Portugal, and Spain provided more than 20% of their

  14. Residential Buildings Integration (RBI)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Energy Efficiency and Renewable Energy eere.energy.gov David Lee Program Manager Residential Buildings Integration (RBI) April 22, 2014 Residential Buildings Integration (RBI) Mission/Vision The Residential Buildings Integration (RBI) program's mission: To accelerate energy performance improvements in residential buildings by developing, demonstrating, and deploying a suite of cost-effective technologies, tools, and solutions to achieve peak performance in new and existing homes. RBI Vision,

  15. Energy Systems Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration Ben Kroposki, PhD, PE Director, Energy Systems Integration National Renewable Energy Laboratory 2 Reducing investment risk and optimizing systems in a rapidly changing energy world * Increasing penetration of variable RE in grid * Increasing ultra high energy efficiency buildings and controllable loads * New data, information, communications and controls * Electrification of transportation and alternative fuels * Integrating energy storage (stationary and mobile) and thermal

  16. Commercial Buildings Integration (CBI)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 | Energy Efficiency and Renewable Energy eere.energy.gov Arah Schuur Program Manager Commercial Buildings Integration (CBI) April 22, 2014 Commercial Buildings Integration (CBI) 2 Commercial Buildings Integration (CBI) Mission/Vision CBI Mission Accelerate voluntary uptake of significant energy performance improvements in existing and new commercial buildings. CBI Vision: A commercial buildings market where energy performance is a key consideration during construction, operation, renovation,

  17. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Sandia's larger portfolio of renewable energy technology programs (Wind, Solar Power, Geothermal, and Energy Systems Analysis). Transmission Grid Integration The goal of...

  18. Commercial Buildings Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Integration Images courtesy CREE, True Manufacturing, A.O. Smith, Bernstein Associates, Cambridge Engineering, Alliance Laundry Systems, NREL 2 Strategic Fit within ...

  19. Integrating Electricity Subsector

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrating Electricity Subsector Failure Scenarios into a Risk Assessment Methodology ... Executive, Cyber Security Electric Power Research Institute (EPRI) For more information on ...

  20. Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Carbide Thyristors Read More Permalink ECIS-Princeton Power Systems, Inc.: Demand Response Inverter DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, ...

  1. Basis functions for electronic structure calculations on spheres

    SciTech Connect (OSTI)

    Gill, Peter M. W. Loos, Pierre-François Agboola, Davids

    2014-12-28

    We introduce a new basis function (the spherical Gaussian) for electronic structure calculations on spheres of any dimension D. We find general expressions for the one- and two-electron integrals and propose an efficient computational algorithm incorporating the Cauchy-Schwarz bound. Using numerical calculations for the D = 2 case, we show that spherical Gaussians are more efficient than spherical harmonics when the electrons are strongly localized.

  2. Development of an (e,2e) electron momentum spectroscopy apparatus using an ultrashort pulsed electron gun

    SciTech Connect (OSTI)

    Yamazaki, M.; Kasai, Y.; Oishi, K.; Nakazawa, H.; Takahashi, M.

    2013-06-15

    An (e,2e) apparatus for electron momentum spectroscopy (EMS) has been developed, which employs an ultrashort-pulsed incident electron beam with a repetition rate of 5 kHz and a pulse duration in the order of a picosecond. Its instrumental design and technical details are reported, involving demonstration of a new method for finding time-zero. Furthermore, EMS data for the neutral Ne atom in the ground state measured by using the pulsed electron beam are presented to illustrate the potential abilities of the apparatus for ultrafast molecular dynamics, such as by combining EMS with the pump-and-probe technique.

  3. NREL: Energy Systems Integration - Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    archive. Printable Version Energy Systems Integration Home Capabilities Research & Development Facilities Working with Us Publications News Events Energy Systems Integration...

  4. RHIC electron lenses upgrades

    SciTech Connect (OSTI)

    Gu, X.; Altinbas, Z.; Bruno, D.; Binello, S.; Costanzo, M.; Drees, A.; Fischer, W.; Gassner, D. M.; Hock, J.; Hock, K.; Harvey, M.; Luo, Y.; Marusic, A.; Mi, C.; Mernick, K.; Minty, M.; Michnoff, R.; Miller, T. A.; Pikin, A. I.; Robert-Demolaize, G.; Samms, T.; Shrey, T. C.; Schoefer, V.; Tan, Y.; Than, R.; Thieberger, P.; White, S. M.

    2015-05-03

    In the Relativistic Heavy Ion Collider (RHIC) 100 GeV polarized proton run in 2015, two electron lenses were used to partially compensate for the head-on beam-beam effect for the first time. Here, we describe the design of the current electron lens, detailing the hardware modifications made after the 2014 commissioning run with heavy ions. A new electron gun with 15-mm diameter cathode is characterized. The electron beam transverse profile was measured using a YAG screen and fitted with a Gaussian distribution. During operation, the overlap of the electron and proton beams was achieved using the electron backscattering detector in conjunction with an automated orbit control program.

  5. Integrated geologic/engineering study of the Kurten Field waterflood

    SciTech Connect (OSTI)

    Gay, A.L. )

    1990-05-01

    An integrated interpretation of petrographic, geochemical, engineering, and electric-log data was used to evaluate a current waterflood project in Kurten field, Brazos County, Texas. Petrographic studies reveal three sand facies deposited in a dynamic sand ridge environment. Although electric-log porosity is relatively constant throughout the sand body, scanning electron microscope thin section and engineering profile studies reveal the clean well-sorted sand facies to be impermeable due to quartz overgrowths. A quartz-rich bioturbated sand is identified as the reservoir facies, having fewer quartz overgrowths and more authigenic clays. The third sand facies, a clay-rich bioturbated sand, is impermeable due to an overabundance of authigenic and detrital clays. Engineering and production data support this interpretation. A comparison of hydrocarbon composition of the oils, using capillary gas chromatography, supports the conclusion that the well-sorted clean sand contains many permeability barriers and is not a continuous reservoir conducive to waterflooding. Interactive computer interpretation of electric logs, using a combination of sonic and density porosities, deep resistivity, and spontaneous potential, allows the mapping of the sand facies. Water saturations and net oil in place maps reveal the best parts of the field on which to focus the revised waterflood project. This revision should concentrate on the quartz-rich bioturbated sand in the central part of the original unit to result in a more efficient economical secondary recovery program.

  6. Absolute calibration for a broad range single shot electron spectrometer

    SciTech Connect (OSTI)

    Glinec, Y.; Faure, J.; Guemnie-Tafo, A.; Malka, V.; Monard, H.; Larbre, J. P.; De Waele, V.; Marignier, J. L.; Mostafavi, M.

    2006-10-15

    This article gives a detailed description of a single shot electron spectrometer which was used to characterize electron beams produced by laser-plasma interaction. Contrary to conventional electron sources, electron beams from laser-plasma accelerators can produce a broad range of energies. Therefore, diagnosing these electron spectra requires specific attention and experimental development. Here, we provide an absolute calibration of the Lanex Kodak Fine screen on a laser-triggered radio frequency picosecond electron accelerator. The efficiency of scintillating screens irradiated by electron beams has never been investigated so far. This absolute calibration is then compared to charge measurements from an integrating current transformer for quasimonoenergetic electron spectra from laser-plasma interaction.

  7. ASYMMETRIC ELECTRON DISTRIBUTIONS IN THE SOLAR WIND

    SciTech Connect (OSTI)

    Rha, Kicheol; Ryu, Chang-Mo [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)] [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Yoon, Peter H. [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States)] [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States)

    2013-09-20

    A plausible mechanism responsible for producing asymmetric electron velocity distribution functions in the solar wind is investigated by means of one-dimensional electrostatic particle-in-cell (PIC) simulation. A recent paper suggests that the variation in the ion-to-electron temperature ratio influences the nonlinear wave-particle dynamics such that it results in the formation of asymmetric distributions. The present PIC code simulation largely confirms this finding, but quantitative differences between the weak turbulence formalism and the present PIC simulation are also found, suggesting the limitation of the analytical method. The inter-relationship between the asymmetric electron distribution and the ion-to-electron temperature ratio may be a new useful concept for the observation.

  8. Generation of Femtosecond Electron And Photon Pulses

    SciTech Connect (OSTI)

    Thongbai, C.; Jinamoon, V.; Kangrang, M.; Kusoljariyakul, K.; Rimjaem, S.; Saisut, J.; Vilaithong, T.; Rhodes, M.W.; Wichaisirimongkol, P.; Wiedemann, H.; /SLAC

    2006-03-17

    Femtosecond (fs) electron and photon pulses become a tool of increasing importance to study dynamics in ultrafast processes. Such short electron pulses can be generated from a system consisting of a thermionic-cathode RF-gun and a magnetic bunch compressor. The fs electron pulses can be used directly or used as a source to produce equally short electromagnetic radiation pulses via certain kind of radiation production processes. At the Fast Neutron Research Facility (FNRF), Thailand, we are especially interested in production of radiation in Farinfrared and X-ray regime. In the far-infrared wavelengths, the radiation emitted from fs electron pulses is emitted coherently resulting high intensity radiation. In the X-ray regime, development of fs X-ray sources is crucial for application in ultrafast sciene.

  9. NREL: Transmission Grid Integration - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Want updates about future transmission grid integration webinars and publications? Join our mailing list. NREL has an extensive collection of publications related to transmission integration research. Explore the resources below to learn more. Selected Project Publications Read selected publications related to these transmission integration projects: Western Wind and Solar Integration Study Eastern Renewable Generation Integration Study Oahu Wind Integration and Transmission Study

  10. Advanced Power Electronics for LED Drivers: Advanced Technologies for integrated Power Electronics

    SciTech Connect (OSTI)

    2010-09-01

    ADEPT Project: MIT is teaming with Georgia Institute of Technology, Dartmouth College, and the University of Pennsylvania (UPenn) to create more efficient power circuits for energy-efficient light-emitting diodes (LEDs) through advances in 3 related areas. First, the team is using semiconductors made of high-performing gallium nitride grown on a low-cost silicon base (GaN-on-Si). These GaN-on-Si semiconductors conduct electricity more efficiently than traditional silicon semiconductors. Second, the team is developing new magnetic materials and structures to reduce the size and increase the efficiency of an important LED power component, the inductor. This advancement is important because magnetics are the largest and most expensive part of a circuit. Finally, the team is creating an entirely new circuit design to optimize the performance of the new semiconductors and magnetic devices it is using.

  11. Stretchable polymer-based electronic device

    DOE Patents [OSTI]

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter A. (Pleasanton, CA); Davidson, James Courtney (Livermore, CA); Wilson, Thomas S. (Castro Valley, CA); Hamilton, Julie K. (Tracy, CA); Benett, William J. (Livermore, CA); Tovar, Armando R. (San Antonio, TX)

    2008-02-26

    A stretchable electronic circuit or electronic device and a polymer-based process to produce a circuit or electronic device containing a stretchable conducting circuit. The stretchable electronic apparatus has a central longitudinal axis and the apparatus is stretchable in a longitudinal direction generally aligned with the central longitudinal axis. The apparatus comprises a stretchable polymer body and at least one circuit line operatively connected to the stretchable polymer body. The circuit line extends in the longitudinal direction and has a longitudinal component that extends in the longitudinal direction and has an offset component that is at an angle to the longitudinal direction. The longitudinal component and the offset component allow the apparatus to stretch in the longitudinal direction while maintaining the integrity of the circuit line.

  12. Integrated risk information system (IRIS)

    SciTech Connect (OSTI)

    Tuxen, L.

    1990-12-31

    The Integrated Risk Information System (IRIS) is an electronic information system developed by the US Environmental Protection Agency (EPA) containing information related to health risk assessment. IRIS is the Agency`s primary vehicle for communication of chronic health hazard information that represents Agency consensus following comprehensive review by intra-Agency work groups. The original purpose for developing IRIS was to provide guidance to EPA personnel in making risk management decisions. This original purpose for developing IRIS was to guidance to EPA personnel in making risk management decisions. This role has expanded and evolved with wider access and use of the system. IRIS contains chemical-specific information in summary format for approximately 500 chemicals. IRIS is available to the general public on the National Library of Medicine`s Toxicology Data Network (TOXNET) and on diskettes through the National Technical Information Service (NTIS).

  13. Transverse-longitudinal integrated resonator

    DOE Patents [OSTI]

    Hutchinson, Donald P. (Knoxville, TN); Simpson, Marcus L. (Knoxville, TN); Simpson, John T. (Knoxville, TN)

    2003-03-11

    A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.

  14. Parallel Integrated Thermal Management - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Early Stage R&D Early Stage R&D Find More Like This Return to Search Parallel Integrated Thermal Management National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Many current cooling systems for hybrid electric vehicles (HEVs) with a high power electric drive system utilize a low temperature liquid cooling loop for cooling the power electronics system and electric machines associated with the electric

  15. PRIVACY IMPACT ASSESSMENT: Integrated Safety Management Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Safety Management Workshop Registration PIA Template Version 3 - May, 2009 Department of Energy Privacy Impact Assessment (PIA) Guidance is provided in the template. See DOE Order 206.1, Department of Energy Privacy Program, Appendix A, Privacy Impact Assessments, for requirements and additional guidance for conducting a PIA: http://www.directives.doe.gov/pdfs/doe/doetextlneword/206/o2061.pdf Please complete electronically: no hand-written submissions will be accepted. This template

  16. NREL: Distributed Grid Integration - Codes and Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Codes and Standards NREL works with the Institute of Electrical and Electronics Engineers (IEEE) to create consensus standards with participation from industry, utilities, government, and others. These standards guide the integration of renewable and other small electricity generation and storage sources (or "distributed resources," a key aspect of the Smart Grid) into the electric power system. There are two main groups, or families, of standards that NREL works with: IEEE 1547 Family

  17. Quasi-linear analysis of the extraordinary electron wave destabilized by runaway electrons

    SciTech Connect (OSTI)

    Pokol, G. I.; Kmr, A.; Budai, A.; Stahl, A.; Flp, T.

    2014-10-15

    Runaway electrons with strongly anisotropic distributions present in post-disruption tokamak plasmas can destabilize the extraordinary electron (EXEL) wave. The present work investigates the dynamics of the quasi-linear evolution of the EXEL instability for a range of different plasma parameters using a model runaway distribution function valid for highly relativistic runaway electron beams produced primarily by the avalanche process. Simulations show a rapid pitch-angle scattering of the runaway electrons in the high energy tail on the 1001000??s time scale. Due to the wave-particle interaction, a modification to the synchrotron radiation spectrum emitted by the runaway electron population is foreseen, exposing a possible experimental detection method for such an interaction.

  18. Catalac free electron laser

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM)

    1982-01-01

    A catalac free electron laser using a rf linac (catalac) which acts as a catalyst to accelerate an electron beam in an initial pass through the catalac and decelerate the electron beam during a second pass through the catalac. During the second pass through the catalac, energy is extracted from the electron beam and transformed to energy of the accelerating fields of the catalac to increase efficiency of the device. Various embodiments disclose the use of post linacs to add electron beam energy extracted by the wiggler and the use of supplementary catalacs to extract energy at various energy peaks produced by the free electron laser wiggler to further enhance efficiency of the catalac free electron laser. The catalac free electron laser can be used in conjunction with a simple resonator, a ring resonator or as an amplifier in conjunction with a master oscillator laser.

  19. Electron Heat Transport Measured

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science program. *Electronic address: tbiewer@pppl.gov Electronic address: cbforest@wisc.edu 1 A. B. Rechester and T. H. Stix, Phys. Rev. Lett. 36, 587 (1976). 2 J. D....

  20. Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2011-10-13

    The Systems Integration (SI) subprogram works closely with industry, universities, and the national laboratories to overcome technical barriers to the large-scale deployment of solar technologies. To support these goals, the subprogram invests primarily in four areas: grid integration, technology validation, solar resource assessment, and balance of system development.

  1. Integrating Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

  2. Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    The Systems Integration (SI) subprogram works closely with industry, universities, and the national laboratories to overcome technical barriers to the large-scale deployment of solar technologies. To support these goals, the subprogram invests primarily in four areas: grid integration, technology validation, solar resource assessment, and balance of system development.

  3. Power Electronics Block Set

    Energy Science and Technology Software Center (OSTI)

    2008-12-31

    The software consists of code that will allow rapid prototyping of advanced power electronics for use in renewable energy systems.

  4. Controlling Graphene's Electronic Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlling Graphene's Electronic Structure Print Graphene, because of its unusual electron properties, reduced dimensionality, and scale, has enormous potential for use in ultrafast electronic transistors. It exhibits high conductivity and an anomalous quantum Hall effect (a phenomenon exhibited by certain semiconductor devices at low temperatures and high magnetic fields). Among its novel properties, graphene's electrical charge carriers (electrons and holes) move through a solid with

  5. Controlling Graphene's Electronic Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlling Graphene's Electronic Structure Print Graphene, because of its unusual electron properties, reduced dimensionality, and scale, has enormous potential for use in ultrafast electronic transistors. It exhibits high conductivity and an anomalous quantum Hall effect (a phenomenon exhibited by certain semiconductor devices at low temperatures and high magnetic fields). Among its novel properties, graphene's electrical charge carriers (electrons and holes) move through a solid with

  6. Controlling Graphene's Electronic Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlling Graphene's Electronic Structure Print Graphene, because of its unusual electron properties, reduced dimensionality, and scale, has enormous potential for use in ultrafast electronic transistors. It exhibits high conductivity and an anomalous quantum Hall effect (a phenomenon exhibited by certain semiconductor devices at low temperatures and high magnetic fields). Among its novel properties, graphene's electrical charge carriers (electrons and holes) move through a solid with

  7. Controlling Graphene's Electronic Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlling Graphene's Electronic Structure Print Graphene, because of its unusual electron properties, reduced dimensionality, and scale, has enormous potential for use in ultrafast electronic transistors. It exhibits high conductivity and an anomalous quantum Hall effect (a phenomenon exhibited by certain semiconductor devices at low temperatures and high magnetic fields). Among its novel properties, graphene's electrical charge carriers (electrons and holes) move through a solid with

  8. Controlling Graphene's Electronic Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlling Graphene's Electronic Structure Controlling Graphene's Electronic Structure Print Wednesday, 25 April 2007 00:00 Graphene, because of its unusual electron properties, reduced dimensionality, and scale, has enormous potential for use in ultrafast electronic transistors. It exhibits high conductivity and an anomalous quantum Hall effect (a phenomenon exhibited by certain semiconductor devices at low temperatures and high magnetic fields). Among its novel properties, graphene's

  9. Controlling Graphene's Electronic Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlling Graphene's Electronic Structure Print Graphene, because of its unusual electron properties, reduced dimensionality, and scale, has enormous potential for use in ultrafast electronic transistors. It exhibits high conductivity and an anomalous quantum Hall effect (a phenomenon exhibited by certain semiconductor devices at low temperatures and high magnetic fields). Among its novel properties, graphene's electrical charge carriers (electrons and holes) move through a solid with

  10. Sandia Energy - Chemical Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Dynamics Home Transportation Energy Predictive Simulation of Engines Combustion Chemistry Chemical Dynamics Chemical DynamicsAshley Otero2015-10-28T02:45:37+00:00...

  11. Electron Microscopy Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Electron Microscopy Center Argonne Home > EMC > EMC Home Electron Microscopy Center Web Site has moved This page has moved to http://www.anl.gov/cnm/group/electron-microscopy-center. UChicago Argonne LLC Privacy & Security Notice

  12. Electron-beam-evaporated thin films of hafnium dioxide for fabricating

    Office of Scientific and Technical Information (OSTI)

    electronic devices (Journal Article) | SciTech Connect Electron-beam-evaporated thin films of hafnium dioxide for fabricating electronic devices Citation Details In-Document Search This content will become publicly available on June 17, 2016 Title: Electron-beam-evaporated thin films of hafnium dioxide for fabricating electronic devices Thin films of hafnium dioxide (HfO2) are widely used as the gate oxide in fabricating integrated circuits because of their high dielectric constants. In this

  13. Average dynamics of a finite set of coupled phase oscillators

    SciTech Connect (OSTI)

    Dima, Germn C. Mindlin, Gabriel B.

    2014-06-15

    We study the solutions of a dynamical system describing the average activity of an infinitely large set of driven coupled excitable units. We compared their topological organization with that reconstructed from the numerical integration of finite sets. In this way, we present a strategy to establish the pertinence of approximating the dynamics of finite sets of coupled nonlinear units by the dynamics of its infinitely large surrogate.

  14. High G MEMS integrated accelerometer

    SciTech Connect (OSTI)

    Davies, B.R.; Barron, C.C.; Montague, S.; Smith, J.H.; Murray, J.R.; Christenson, T.R.; Bateman, V.I.

    1996-12-31

    This paper describes the design and implementation of a surface micromachined accelerometer for measuring very high levels of acceleration (up to 50,000 G). Both the mechanical and electronic portions of the sensor were integrated on a single substrate using a process developed at Sandia National Laboratories. In this process, the mechanical components of the sensor were first fabricated at the bottom of a trench etched into the water substrate. The trench was then filled with oxide and sealed to protect the mechanical components during subsequent microelectronics processing. The wafer surface was then planarized in preparation for CMOS processing using Chemical Mechanical Polishing (CMP). Next, the CMOS electronics were fabricated on areas of the wafer adjacent to the embedded structures. Finally, the mechanical structures were released and the sensor tested. The mechanical structure of the sensor consisted of two polysilicon plate masses suspended by multiple springs (cantilevered beam structures) over corresponding polysilicon plates fixed to the substrate to form two parallel plate capacitors. The first polysilicon plate mass was suspended using compliant springs (cantilever beams) and acted as a variable capacitor during sensor acceleration. The second polysilicon plate mass was suspended using very stiff springs and acted as a fixed capacitor during acceleration. Acceleration was measured by comparing the capacitance of the variable capacitor (compliant suspension) with the fixed capacitance (stiff suspension).

  15. Laser-to-hot-electron conversion limitations in relativistic laser matter

    Office of Scientific and Technical Information (OSTI)

    interactions due to multi-picosecond dynamics. (Journal Article) | DOE PAGES Laser-to-hot-electron conversion limitations in relativistic laser matter interactions due to multi-picosecond dynamics. This content will become publicly available on April 20, 2016 « Prev Next » Title: Laser-to-hot-electron conversion limitations in relativistic laser matter interactions due to multi-picosecond dynamics. High-energy short-pulse lasers are pushing the limits of plasma-based particle acceleration,

  16. Laser spectroscopy and dynamics of transient species

    SciTech Connect (OSTI)

    Clouthier, D.J.

    1993-12-01

    The goal of this program is to study the vibrational and electronic spectra and excited state dynamics of a number of transient sulfur and oxygen species. A variety of supersonic jet techniques, as well as high resolution FT-IR and intracavity dye laser spectroscopy, have been applied to these studies.

  17. OPERATIONS ELECTRONIC LOGBOOK EXPERIENCE AT BNL.

    SciTech Connect (OSTI)

    SATOGATA,T.; CAMPBELL,I.; MARR,G.; SAMPSON,P.

    2002-06-02

    A web-based system for electronic logbooks, ''elog'', developed at Fermilab (FNAL), has been adopted for use by AGS and RHIC operations and physicists at BNL for the 2001-2 fixed target and collider runs. This paper describes the main functional and technical issues encountered in the first year of electronic logbook use, including security, search and indexing, sequencer integration, archival, and graphics management. We also comment on organizational experience and planned changes for the next facility run starting in September 2002.

  18. Integrated assessment briefs

    SciTech Connect (OSTI)

    1995-04-01

    Integrated assessment can be used to evaluate and clarify resource management policy options and outcomes for decision makers. The defining characteristics of integrated assessment are (1) focus on providing information and analysis that can be understood and used by decision makers rather than for merely advancing understanding and (2) its multidisciplinary approach, using methods, styles of study, and considerations from a broader variety of technical areas than would typically characterize studies produced from a single disciplinary standpoint. Integrated assessment may combine scientific, social, economic, health, and environmental data and models. Integrated assessment requires bridging the gap between science and policy considerations. Because not everything can be valued using a single metric, such as a dollar value, the integrated assessment process also involves evaluating trade-offs among dissimilar attributes. Scientists at Oak Ridge National Laboratory (ORNL) recognized the importance and value of multidisciplinary approaches to solving environmental problems early on and have pioneered the development of tools and methods for integrated assessment over the past three decades. Major examples of ORNL`s experience in the development of its capabilities for integrated assessment are given.

  19. Electron Transfer Dynamics in Efficient Molecular Solar Cells

    SciTech Connect (OSTI)

    Meyer, Gerald John

    2014-10-01

    This research provided new mechanistic insights into surface mediated photochemical processes relevant to solar energy conversion. In this past three years our research has focused on oxidation photo-redox chemistry and on the role surface electric fields play on basic spectroscopic properties of molecular-semiconductor interfaces. Although this research as purely fundamental science, the results and their interpretation have relevance to applications in dye sensitized and photogalvanic solar cells as well as in the storage of solar energy in the form of chemical bonds.

  20. Correlated electron dynamics with time-dependent quantum Monte...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Journal Name: Journal of Chemical Physics; Journal Volume: 135; Journal Issue: 4; Other Information: (c) 2011 American Institute of Physics; Country of input: ...

  1. Single-Particle Dynamics in Electron Storage Rings with Extremely...

    Office of Scientific and Technical Information (OSTI)

    we have refined transfer maps of common elements in storage rings and developed a new method to compute the resonance driving terms as they are built up along a beamline....

  2. Individual identification of free hole and electron dynamics...

    Office of Scientific and Technical Information (OSTI)

    as an understanding of this behavior is essential for improving the performance of solar cells composed of CIGS thin films. A characteristic double-peak structure due to the...

  3. Longitudinal dynamics of twin electron bunches in the Linac Coherent...

    Office of Scientific and Technical Information (OSTI)

    Beams Additional Journal Information: Journal Volume: 18; Journal Issue: 3; Journal ID: ISSN 1098-4402 Publisher: American Physical Society Sponsoring Org: USDOE Country of...

  4. Interfacial electron transfer dynamics of photosensitized zinc oxide nanoclusters

    SciTech Connect (OSTI)

    Murakoshi, Kei; Yanagida, Shozo; Capel, M.

    1997-06-01

    The authors have prepared and characterized photosensitized zinc oxide (ZnO) nanoclusters, dispersed in methanol, using carboxylated coumarin dyes for surface adsorption. Femtosecond time-resolved emission spectroscopy allows the authors to measure the photo-induced charge carrier injection rate constant from the adsorbed photosensitizer to the n-type semiconductor nanocluster. These results are compared with other photosensitized semiconductors.

  5. Electron Elevator: Excitations across the Band Gap via a Dynamical...

    Office of Scientific and Technical Information (OSTI)

    Have feedback or suggestions for a way to improve these results? Save Share this Record Citation Formats MLA APA Chicago Bibtex Export Metadata Endnote Excel CSV XML Save to My ...

  6. Integration of space weather into space situational awareness

    SciTech Connect (OSTI)

    Reeves, Geoffrey D

    2010-11-09

    Rapid assessment of space weather effects on satellites is a critical step in anomaly resolution and satellite threat assessment. That step, however, is often hindered by a number of factors including timely collection and delivery of space weather data and the inherent com plexity of space weather information. As part of a larger, integrated space situational awareness program, Los Alamos National Laboratory has developed prototype operational space weather tools that run in real time and present operators with customized, user-specific information. The Dynamic Radiation Environment Assimilation Model (DREAM) focuses on the penetrating radiation environment from natural or nuclear-produced radiation belts. The penetrating radiation environment is highly dynamic and highly orbit-dependent. Operators often must rely only on line plots of 2 MeV electron flux from the NOAA geosynchronous GOES satellites which is then assumed to be representative of the environment at the satellite of interest. DREAM uses data assimilation to produce a global, real-time, energy dependent specification. User tools are built around a distributed service oriented architecture (SOA) which will allow operators to select any satellite from the space catalog and examine the environment for that specific satellite and time of interest. Depending on the application operators may need to examine instantaneous dose rates and/or dose accumulated over various lengths of time. Further, different energy thresholds can be selected depending on the shielding on the satellite or instrument of interest. In order to rapidly assess the probability that space weather was the cause of anomalous operations, the current conditions can be compared against the historical distribution of radiation levels for that orbit. In the simplest operation a user would select a satellite and time of interest and immediately see if the environmental conditions were typical, elevated, or extreme based on how often those conditions occur in that orbit. This allows users to rapidly rule in or out environmental causes of anomalies. The same user interface can also allow users to drill down for more detailed quantitative information. DREAM can be run either from a distributed web-based user interface or as a stand-alone application for secure operations. In this paper we discuss the underlying structure of the DREAM model and demonstrate the user interface that we have developed . We also present some prototype data products and user interfaces for DREAM and discuss how space environment information can be seamlessly integrated into operational SSA systems.

  7. Frontiers of in situ electron microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Haimei; Zhu, Yimei; Meng, Shirley Ying

    2015-01-01

    In situ transmission electron microscopy (TEM) has become an increasingly important tool for materials characterization. It provides key information on the structural dynamics of a material during transformations and the correlation between structure and properties of materials. With the recent advances in instrumentation, including aberration corrected optics, sample environment control, the sample stage, and fast and sensitive data acquisition, in situ TEM characterization has become more and more powerful. In this article, a brief review of the current status and future opportunities of in situ TEM is included. It also provides an introduction to the six articles covered by inmore » this issue of MRS Bulletin explore the frontiers of in situ electron microscopy, including liquid and gas environmental TEM, dynamic four-dimensional TEM, nanomechanics, ferroelectric domain switching studied by in situ TEM, and state-of-the-art atomic imaging of light elements (i.e., carbon atoms) and individual defects.« less

  8. Predissociation dynamics of lithium iodide

    SciTech Connect (OSTI)

    Schmidt, H.; Vangerow, J. von; Stienkemeier, F.; Mudrich, M.; Bogomolov, A. S.; Baklanov, A. V.; Reich, D. M.; Skomorowski, W.; Koch, C. P.

    2015-01-28

    The predissociation dynamics of lithium iodide (LiI) in the first excited A-state is investigated for molecules in the gas phase and embedded in helium nanodroplets, using femtosecond pump-probe photoionization spectroscopy. In the gas phase, the transient Li{sup +} and LiI{sup +} ion signals feature damped oscillations due to the excitation and decay of a vibrational wave packet. Based on high-level ab initio calculations of the electronic structure of LiI and simulations of the wave packet dynamics, the exponential signal decay is found to result from predissociation predominantly at the lowest avoided X-A potential curve crossing, for which we infer a coupling constant V{sub XA} = 650(20) cm{sup ?1}. The lack of a pump-probe delay dependence for the case of LiI embedded in helium nanodroplets indicates fast droplet-induced relaxation of the vibrational excitation.

  9. Wellbore Integrity Network

    SciTech Connect (OSTI)

    Carey, James W.; Bachu, Stefan

    2012-06-21

    In this presentation, we review the current state of knowledge on wellbore integrity as developed in the IEA Greenhouse Gas Programme's Wellbore Integrity Network. Wells are one of the primary risks to the successful implementation of CO{sub 2} storage programs. Experimental studies show that wellbore materials react with CO{sub 2} (carbonation of cement and corrosion of steel) but the impact on zonal isolation is unclear. Field studies of wells in CO{sub 2}-bearing fields show that CO{sub 2} does migrate external to casing. However, rates and amounts of CO{sub 2} have not been quantified. At the decade time scale, wellbore integrity is driven by construction quality and geomechanical processes. Over longer time-scales (> 100 years), chemical processes (cement degradation and corrosion) become more important, but competing geomechanical processes may preserve wellbore integrity.

  10. Energy Systems Integration

    Broader source: Energy.gov [DOE]

    Presentationgiven at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meetingcovers the National Renewable Energy Laboratory's Energy Systems Integration Facility (ESIF) and its capabilities.

  11. Systems Integration Competitive Awards

    Broader source: Energy.gov [DOE]

    Through the SunShot Systems Integration efforts, DOE is funding a range of research and development (R&D) projects to advance balance of system hardware technologies, such as racking systems...

  12. Systems Integration Competitive Awards

    Broader source: Energy.gov [DOE]

    Through the SunShot Systems Integration efforts, DOE is funding a range of research and development (R&D) projects to advance technology in four broad, inter-related areas:Grid Performance and...

  13. Electronics Stewardship | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electronics Stewardship Electronics Stewardship Mission The team promotes sustainable management of LM's electronic equipment, as deemed appropriate for LM operations and approved ...

  14. PEV Integration with Renewables (Presentation)

    SciTech Connect (OSTI)

    Markel, T.

    2014-06-18

    This presentation discusses current research at NREL on integrating plug-in electric vehicles with the grid and using renewable energy to charge the grid. The Electric Vehicle Grid Integration (EVGI) and Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) are addressing the opportunities and technical requirements for vehicle grid integration that will increase marketability and lead to greater petroleum reduction.

  15. Technology Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration Technology Integration 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Vehicle Technologies Plenary PDF icon vtpn02_smith_ti_2011_o.pdf More Documents & Publications Technology Integration Overview Technology Integration Overview Technology Integration Overview

  16. Deep Trek High Temperature Electronics Project

    SciTech Connect (OSTI)

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  17. IDC Integrated Master Plan.

    SciTech Connect (OSTI)

    Clifford, David J.; Harris, James M.

    2014-12-01

    This is the IDC Re-Engineering Phase 2 project Integrated Master Plan (IMP). The IMP presents the major accomplishments planned over time to re-engineer the IDC system. The IMP and the associate Integrated Master Schedule (IMS) are used for planning, scheduling, executing, and tracking the project technical work efforts. REVISIONS Version Date Author/Team Revision Description Authorized by V1.0 12/2014 IDC Re- engineering Project Team Initial delivery M. Harris

  18. integrated-transportation-models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Archive Integrated Transportation Models Workshop at ITM 2012 April 29, 2012 Hyatt Regency Tampa Hosted by: The Transportation Research and Analysis Computing Center at Argonne National Laboratory This email address is being protected from spambots. You need JavaScript enabled to view it. The aim of the workshop was to provide an opportunity for researchers and practitioners to discuss recent research results that can support a wider application of integrated transportation models,

  19. Center for Integrated Nanotechnologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADEPS » MPA » MPA-CINT Center for Integrated Nanotechnologies Nanomaterials integration is one of many approaches we take in addressing a range of challenges, from human health to national defense. Contact Us CINT Co-Director Quanxi Jia Email Deputy Group Leader Kristin Omberg Email Group Office (505) 667-9243 First in-situ images of void collapse in explosives Los Alamos researchers and collaborators demonstrated a crucial diagnostic for studying how voids affect explosives under shock

  20. Integrated and Engineered Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated and Engineered Systems Integrated and Engineered Systems National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Contact thumbnail of Business Development Executive Miranda Intrator Business Development Executive Richard P. Feynmnan Center for Innovation (505) 665-8315 Email Engineers at Los Alamos create, design, and build the

  1. Integrating Program Component Executables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrating Program Component Executables on Distributed Memory Architectures via MPH Chris Ding and Yun He Computational Research Division, Lawrence Berkeley National Laboratory University of California, Berkeley, CA 94720, USA chqding@lbl.gov, yhe@lbl.gov Abstract A growing trend in developing large and complex ap- plications on today's Teraflop computers is to integrate stand-alone and/or semi-independent program components into a comprehensive simulation package. One example is the climate

  2. Integrative Genomics Building

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrative Genomics Building Community Berkeley Global Campus Environmental Documents Tours Community Programs Friends of Berkeley Lab ⇒ Navigate Section Community Berkeley Global Campus Environmental Documents Tours Community Programs Friends of Berkeley Lab Project Description The Integrative Genomics Building (IGB) is proposed to be an approximately 77,000 gsf, four-story research and office building constructed in the former Bevatron area - a fully developed site in the geographic

  3. Commercial Buildings Integration Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Integration Program Arah Schuur Program Manager arah.schuur@ee.doe.gov April 2, 2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Vision Commercial buildings are constructed, operated, renovated and transacted with energy performance in mind and net zero ready commercial buildings are common and cost-effective. Commercial Buildings Integration Program Mission Accelerate voluntary uptake of significant energy performance improvements

  4. Electron localization of anions probed by nitrile vibrations

    SciTech Connect (OSTI)

    Mani, Tomoyasu; Grills, David C.; Newton, Marshall D.; Miller, John R.

    2015-08-02

    Localization and delocalization of electrons is a key concept in chemistry, and is one of the important factors determining the efficiency of electron transport through organic conjugated molecules, which have potential to act as “molecular wires”. This, in turn, substantially influences the efficiencies of organic solar cells and other molecular electronic devices. It is also necessary to understand the electronic energy landscape and the dynamics of electrons through molecular chain that govern their transport capabilities in one-dimensional conjugated chains so that we can better define the design principles of conjugated molecules for their applications. We show that nitrile ν(C≡N) vibrations respond to the degree of electron localization in nitrile-substituted organic anions by utilizing time-resolved infrared (TRIR) detection combined with pulse radiolysis. Measurements of a series of aryl nitrile anions allow us to construct a semi-empirical calibration curve between the changes in the ν(C≡N) IR shifts and the changes in the electronic charges from the neutral to the anion states in the nitriles; more electron localization in the nitrile anion results in larger IR shifts. Furthermore, the IR linewidth in anions can report a structural change accompanying changes in the electronic density distribution. Probing the shift of the nitrile ν(C≡N) IR vibrational bands enables us to determine how the electron is localized in anions of nitrile-functionalized oligofluorenes, considered as organic mixed-valence compounds. We estimate the diabatic electron transfer distance, electronic coupling strengths, and energy barriers in these organic mixed-valence compounds. The analysis reveals a dynamic picture, showing that the electron is moving back and forth within the oligomers with a small activation energy of ≤ kBT, likely controlled by the movement of dihedral angles between monomer units. Thus, implications for the electron transport capability in "molecular wires" are discussed.

  5. Electron localization of anions probed by nitrile vibrations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mani, Tomoyasu; Grills, David C.; Newton, Marshall D.; Miller, John R.

    2015-08-02

    Localization and delocalization of electrons is a key concept in chemistry, and is one of the important factors determining the efficiency of electron transport through organic conjugated molecules, which have potential to act as “molecular wires”. This, in turn, substantially influences the efficiencies of organic solar cells and other molecular electronic devices. It is also necessary to understand the electronic energy landscape and the dynamics of electrons through molecular chain that govern their transport capabilities in one-dimensional conjugated chains so that we can better define the design principles of conjugated molecules for their applications. We show that nitrile ν(C≡N) vibrationsmore » respond to the degree of electron localization in nitrile-substituted organic anions by utilizing time-resolved infrared (TRIR) detection combined with pulse radiolysis. Measurements of a series of aryl nitrile anions allow us to construct a semi-empirical calibration curve between the changes in the ν(C≡N) IR shifts and the changes in the electronic charges from the neutral to the anion states in the nitriles; more electron localization in the nitrile anion results in larger IR shifts. Furthermore, the IR linewidth in anions can report a structural change accompanying changes in the electronic density distribution. Probing the shift of the nitrile ν(C≡N) IR vibrational bands enables us to determine how the electron is localized in anions of nitrile-functionalized oligofluorenes, considered as organic mixed-valence compounds. We estimate the diabatic electron transfer distance, electronic coupling strengths, and energy barriers in these organic mixed-valence compounds. The analysis reveals a dynamic picture, showing that the electron is moving back and forth within the oligomers with a small activation energy of ≤ kBT, likely controlled by the movement of dihedral angles between monomer units. Thus, implications for the electron transport capability in "molecular wires" are discussed.« less

  6. Electron emitting filaments for electron discharge devices

    DOE Patents [OSTI]

    Leung, K.N.; Pincosy, P.A.; Ehlers, K.W.

    1983-06-10

    Electrons are copiously emitted by a device comprising a loop-shaped filament made of lanthanum hexaboride. The filament is directly heated by an electrical current produced along the filament by a power supply connected to the terminal legs of the filament. To produce a filament, a diamond saw or the like is used to cut a slice from a bar made of lanthanum hexaboride. The diamond saw is then used to cut the slice into the shape of a loop which may be generally rectangular, U-shaped, hairpin-shaped, zigzag-shaped, or generally circular. The filaments provide high electron emission at a relatively low operating temperature, such as 1600/sup 0/C. To achieve uniform heating, the filament is formed with a cross section which is tapered between the opposite ends of the filament to compensate for nonuniform current distribution along the filament due to the emission of electrons from the filament.

  7. Electron emitting filaments for electron discharge devices

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Pincosy, Philip A. (Oakland, CA); Ehlers, Kenneth W. (Alamo, CA)

    1988-01-01

    Electrons are copiously emitted by a device comprising a loop-shaped filament made of lanthanum hexaboride. The filament is directly heated by an electrical current produced along the filament by a power supply connected to the terminal legs of the filament. To produce a filament, a diamond saw or the like is used to cut a slice from a bar made of lanthanum hexaboride. The diamond saw is then used to cut the slice into the shape of a loop which may be generally rectangular, U-shaped, hairpin-shaped, zigzag-shaped, or generally circular. The filaments provide high electron emission at a relatively low operating temperature, such as 1600.degree. C. To achieve uniform heating, the filament is formed with a cross section which is tapered between the opposite ends of the filament to compensate for non-uniform current distribution along the filament due to the emission of electrons from the filament.

  8. Effect of Coulomb interaction on multi-electronwave packet dynamics

    SciTech Connect (OSTI)

    Shiokawa, T.; Takada, Y.; Konabe, S.; Hatsugai, Y.; Muraguchi, M.; Endoh, T.; Shiraishi, K.

    2013-12-04

    We have investigated the effect of Coulomb interaction on electron transport in a one-dimensional nanoscale structure using a multi-electron wave packet approach. To study the time evolution, we numerically solve the time-dependent Hartree-Fock equation, finding that the electron wave packet dynamics strongly depends on the Coulomb interaction strength. When the Coulomb interaction is large, each electron wave packet moves separately in the presence of an electric field. With weak Coulomb interaction, however, the electron wave packets overlap, forming and moving as one collective wave packet.

  9. DIRECTIONS AND TIPS FOR USING INTEGRITY Accessing Integrity:

    Office of Environmental Management (EM)

    DIRECTIONS AND TIPS FOR USING INTEGRITY Accessing Integrity: The website address for Integrity is www.integrity.gov. When you get to the website, click on the yellow box labeled "Login to Integrity." Integrity is connected to the OMB MAX Central Authentication Service. Employees who have previously used OMB MAX should use their MAX user ID and password. Do not use the CIC or PIV login option. This is not enabled for DOE Integrity filers. If you used Integrity last year, you have an OMB

  10. Field emission electron source

    DOE Patents [OSTI]

    Zettl, Alexander Karlwalter (Kensington, CA); Cohen, Marvin Lou (Berkeley, CA)

    2000-01-01

    A novel field emitter material, field emission electron source, and commercially feasible fabrication method is described. The inventive field emission electron source produces reliable electron currents of up to 400 mA/cm.sup.2 at 200 volts. The emitter is robust and the current it produces is not sensitive to variability of vacuum or the distance between the emitter tip and the cathode. The novel emitter has a sharp turn-on near 100 volts.

  11. Ceramic Electron Multiplier

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Comby, G.

    1996-10-01

    The Ceramic Electron Multipliers (CEM) is a compact, robust, linear and fast multi-channel electron multiplier. The Multi Layer Ceramic Technique (MLCT) allows to build metallic dynodes inside a compact ceramic block. The activation of the metallic dynodes enhances their secondary electron emission (SEE). The CEM can be used in multi-channel photomultipliers, multi-channel light intensifiers, ion detection, spectroscopy, analysis of time of flight events, particle detection or Cherenkov imaging detectors. (auth)

  12. Electronic Recordkeeping System Questionnaire

    Energy Savers [EERE]

    5 (04/2015) U.S. DEPARTMENT OF ENERGY Electronic Recordkeeping System Questionnaire INSTRUCTIONS: System owners should work in consultation with their organization's records contacts to ensure the accurate completion of a separate questionnaire for each electronic recordkeeping system. Federal regulations require proper address of recordkeeping requirements and disposition before approving new electronic information systems (EIS) or enhancements to existing EISes. OMB Circular A-130 requires

  13. Procurement Integrity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrity Procurement Integrity PDF icon Procurement Integrity More Documents & Publications POLICY FLASH 2016-04 AcqGuide3pt1.doc&#0; Chapter 3 - Improper Business Practices

  14. 2008 Annual Merit Review Results Summary - 16. Technology Integration and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education | Department of Energy 6. Technology Integration and Education 2008 Annual Merit Review Results Summary - 16. Technology Integration and Education DOE Vehicle Technologies Annual Merit Review PDF icon 2008_merit_review_16.pdf More Documents & Publications 2008 Annual Merit Review Results Summary - 5. Advanced Power Electronics 2008 Annual Merit Review Results Summary - 14. Vehicle Systems and Simulation 2008 Annual Merit Review Results Summary - 10. Fuels Technologies

  15. Controlling Graphene's Electronic Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    charge carriers (electrons and holes) move through a solid with effectively zero mass and constant velocity, like photons. Graphene's intrinsically low scattering rate from defects...

  16. Controlling Graphene's Electronic Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spectroscopy (ARPES) at ALS Beamline 7.0.1, a team of scientists from the ALS and Germany characterized the electronic band structure and successfully controlled the gap...

  17. Dissociative electron attachment studies on acetone

    SciTech Connect (OSTI)

    Prabhudesai, Vaibhav S. Tadsare, Vishvesh; Ghosh, Sanat; Gope, Krishnendu; Davis, Daly; Krishnakumar, E.

    2014-10-28

    Dissociative electron attachment (DEA) to acetone is studied in terms of the absolute cross section for various fragment channels in the electron energy range of 020 eV. H{sup ?} is found to be the most dominant fragment followed by O{sup ?} and OH{sup ?} with only one resonance peak between 8 and 9 eV. The DEA dynamics is studied by measuring the angular distribution and kinetic energy distribution of fragment anions using Velocity Slice Imaging technique. The kinetic energy and angular distribution of H{sup ?} and O{sup ?} fragments suggest a many body break-up for the lone resonance observed. The ab initio calculations show that electron is captured in the multi-centered anti-bonding molecular orbital which would lead to a many body break-up of the resonance.

  18. Nonequilibrium quasiparticle relaxation dynamics in single crystals of

    Office of Scientific and Technical Information (OSTI)

    hole- and electron-doped BaFe2As2 (Journal Article) | SciTech Connect Nonequilibrium quasiparticle relaxation dynamics in single crystals of hole- and electron-doped BaFe2As2 Citation Details In-Document Search Title: Nonequilibrium quasiparticle relaxation dynamics in single crystals of hole- and electron-doped BaFe2As2 Authors: Torchinsky, Darius H. ; McIver, James W. ; Hsieh, David ; Chen, G. F. ; Luo, J. L. ; Wang, N. L. ; Gedik, Nuh Publication Date: 2011-09-13 OSTI Identifier: 1100755

  19. Integrity Automotive | Open Energy Information

    Open Energy Info (EERE)

    Product: Joint venture between Kentucky businessman Randal Waldman of Integrity Manufacturing and California-based electric car maker Zap. References: Integrity Automotive1...

  20. Washington: Integrated Transportation Programs & Coordinated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Transportation Programs & Coordinated Regional Planning Washington: Integrated Transportation Programs & Coordinated Regional Planning November 6, 2013 - 5:42pm Addthis ...

  1. Tungsten polyoxometalate molecules as active nodes for dynamic carrier exchange in hybrid molecular/semiconductor capacitors

    SciTech Connect (OSTI)

    Balliou, A.; Douvas, A. M.; Normand, P.; Argitis, P.; Glezos, N.; Tsikritzis, D.; Kennou, S.

    2014-10-14

    In this work we study the utilization of molecular transition metal oxides known as polyoxometalates (POMs), in particular the Keggin structure anions of the formula PW₁₂O₄₀³⁻, as active nodes for potential switching and/or fast writing memory applications. The active molecules are being integrated in hybrid Metal-Insulator/POM molecules-Semiconductor capacitors, which serve as prototypes allowing investigation of critical performance characteristics towards the design of more sophisticated devices. The charging ability as well as the electronic structure of the molecular layer is probed by means of electrical characterization, namely, capacitance-voltage and current-voltage measurements, as well as transient capacitance measurements, C (t), under step voltage polarization. It is argued that the transient current peaks observed are manifestations of dynamic carrier exchange between the gate electrode and specific molecular levels, while the transient C (t) curves under conditions of molecular charging can supply information for the rate of change of the charge that is being trapped and de-trapped within the molecular layer. Structural characterization via surface and cross sectional scanning electron microscopy as well as atomic force microscopy, spectroscopic ellipsometry, UV and Fourier-transform IR spectroscopies, UPS, and XPS contribute to the extraction of accurate electronic structure characteristics and open the path for the design of new devices with on-demand tuning of their interfacial properties via the controlled preparation of the POM layer.

  2. Materials for Stretchable Electronics - Electronic Eyeballs, Brain Monitors and Other Applications

    ScienceCinema (OSTI)

    Rogers, John A. [University of Illinois, Urbana Champaign, Illinois, United States

    2010-01-08

    Electronic circuits that involve transistors and related components on thin plastic sheets or rubber slabs offer mechanical properties (e.g. bendability, stretchability) and other features (e.g. lightweight, rugged construction) which cannot be easily achieved with technologies that use rigid, fragile semiconductor wafer or glass substrates.  Device examples include personal or structural health monitors and electronic eye imagers, in which the electronics must conform to complex curvilinear shapes or flex/stretch during use.  Our recent work accomplishes these technology outcomes by use of single crystal inorganic nanomaterials in ?wavy? buckled configurations on elastomeric supports.  This talk will describe key fundamental materials and mechanics aspects of these approaches, as well as engineering features of their use in individual transistors, photodiodes and integrated circuits.  Cardiac and brain monitoring devices provide examples of application in biomedicine; hemispherical electronic eye cameras illustrate new capacities for bio-inspired device design.

  3. Electronic Mail Analysis Capability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08

    Establishes the pilot program to test the Department of Energy (DOE) Electronic Mail Analysis Capability (EMAC), which will be used to monitor and analyze outgoing and incoming electronic mail (e-mail) from the National Nuclear Security Administration (NNSA) and DOE laboratories that are engaged in nuclear weapons design or work involving special nuclear material. No cancellation.

  4. Partially integrated exhaust manifold

    DOE Patents [OSTI]

    Hayman, Alan W; Baker, Rodney E

    2015-01-20

    A partially integrated manifold assembly is disclosed which improves performance, reduces cost and provides efficient packaging of engine components. The partially integrated manifold assembly includes a first leg extending from a first port and terminating at a mounting flange for an exhaust gas control valve. Multiple additional legs (depending on the total number of cylinders) are integrally formed with the cylinder head assembly and extend from the ports of the associated cylinder and terminate at an exit port flange. These additional legs are longer than the first leg such that the exit port flange is spaced apart from the mounting flange. This configuration provides increased packaging space adjacent the first leg for any valving that may be required to control the direction and destination of exhaust flow in recirculation to an EGR valve or downstream to a catalytic converter.

  5. Casimir force between integrable and chaotic pistons

    SciTech Connect (OSTI)

    Alvarez, Ezequiel; Mazzitelli, Francisco D.; Wisniacki, Diego A. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, and Instituto de Fisica de Buenos Aires, Concejo Nacional de Investigaciones Cientificas y Tecnicas, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Monastra, Alejandro G. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, Concejo Nacional de Investigaciones Cientificas y Tecnicas, Avenida General Paz 1499, 1650 San Martin (Argentina)

    2010-11-15

    We have computed numerically the Casimir force between two identical pistons inside a very long cylinder, considering different shapes for the pistons. The pistons can be considered quantum billiards, whose spectrum determines the vacuum force. The smooth part of the spectrum fixes the force at short distances and depends only on geometric quantities like the area or perimeter of the piston. However, correcting terms to the force, coming from the oscillating part of the spectrum which is related to the classical dynamics of the billiard, could be qualitatively different for classically integrable or chaotic systems. We have performed a detailed numerical analysis of the corresponding Casimir force for pistons with regular and chaotic classical dynamics. For a family of stadium billiards, we have found that the correcting part of the Casimir force presents a sudden change in the transition from regular to chaotic geometries. This suggests that there could be signatures of quantum chaos in the Casimir effect.

  6. Electron: Cluster interactions

    SciTech Connect (OSTI)

    Scheidemann, A.A.; Kresin, V.V.; Knight, W.D.

    1994-02-01

    Beam depletion spectroscopy has been used to measure absolute total inelastic electron-sodium cluster collision cross sections in the energy range from E {approximately} 0.1 to E {approximately} 6 eV. The investigation focused on the closed shell clusters Na{sub 8}, Na{sub 20}, Na{sub 40}. The measured cross sections show an increase for the lowest collision energies where electron attachment is the primary scattering channel. The electron attachment cross section can be understood in terms of Langevin scattering, connecting this measurement with the polarizability of the cluster. For energies above the dissociation energy the measured electron-cluster cross section is energy independent, thus defining an electron-cluster interaction range. This interaction range increases with the cluster size.

  7. High brightness electron accelerator

    DOE Patents [OSTI]

    Sheffield, Richard L. (Los Alamos, NM); Carlsten, Bruce E. (Los Alamos, NM); Young, Lloyd M. (Los Alamos, NM)

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  8. Electrons and Mirror Symmetry

    ScienceCinema (OSTI)

    Kumar, Krishna

    2009-09-01

    The neutral weak force between an electron and a target particle, mediated by the Z boson, can be isolated by measuring the fractional change under a mirror reflection of the scattering probability of relativistic longitudinally polarized electrons off unpolarized targets. This technique yields neutral weak force measurements at a length scale of 1 femtometer, in contrast to high energy collider measurements that probe much smaller length scales. Study of the variation of the weak force over a range of length scales provides a stringent test of theory, complementing collider measurements. We describe a recent measurement of the neutral weak force between two electrons by the E158 experiment at the Stanford Linear Accelerator Center. While the weak force between an electron and positron has been extensively studied, that between two electrons had never directly been measured. We conclude by discussing prospects for even more precise measurements at future facilities.

  9. Electrons trajectories around a bubble regime in intense laser plasma interaction

    SciTech Connect (OSTI)

    Lu, Ding; Xie, Bai-Song; Ali Bake, Muhammad; Sang, Hai-Bo; Zhao, Xue-Yan; Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 ; Wu, Hai-Cheng

    2013-06-15

    Some typical electrons trajectories around a bubble regime in intense laser plasma interaction are investigated theoretically. By considering a modification of the fields and ellipsoid bubble shape due to the presence of residual electrons in the bubble regime, we study in detail the electrons nonlinear dynamics with or without laser pulse. To examine the electron dynamical behaviors, a set of typical electrons, which locate initially at the front of the bubble, on the transverse edge and at the bottom of the bubble respectively, are chosen for study. It is found that the range of trapped electrons in the case with laser pulse is a little narrower than that without laser pulse. The partial phase portraits for electrons around the bubble are presented numerically and their characteristic behaviors are discussed theoretically. Implication of our results on the high quality electron beam generation is also discussed briefly.

  10. Earth materials and earth dynamics

    SciTech Connect (OSTI)

    Bennett, K; Shankland, T.

    2000-11-01

    In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  11. Brownian dynamics without Green's functions

    SciTech Connect (OSTI)

    Delong, Steven; Donev, Aleksandar; Usabiaga, Florencio Balboa; Delgado-Buscalioni, Rafael; Griffith, Boyce E.; Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, New York 10016

    2014-04-07

    We develop a Fluctuating Immersed Boundary (FIB) method for performing Brownian dynamics simulations of confined particle suspensions. Unlike traditional methods which employ analytical Green's functions for Stokes flow in the confined geometry, the FIB method uses a fluctuating finite-volume Stokes solver to generate the action of the response functions on the fly. Importantly, we demonstrate that both the deterministic terms necessary to capture the hydrodynamic interactions among the suspended particles, as well as the stochastic terms necessary to generate the hydrodynamically correlated Brownian motion, can be generated by solving the steady Stokes equations numerically only once per time step. This is accomplished by including a stochastic contribution to the stress tensor in the fluid equations consistent with fluctuating hydrodynamics. We develop novel temporal integrators that account for the multiplicative nature of the noise in the equations of Brownian dynamics and the strong dependence of the mobility on the configuration for confined systems. Notably, we propose a random finite difference approach to approximating the stochastic drift proportional to the divergence of the configuration-dependent mobility matrix. Through comparisons with analytical and existing computational results, we numerically demonstrate the ability of the FIB method to accurately capture both the static (equilibrium) and dynamic properties of interacting particles in flow.

  12. Bayesian Integrated Microbial Forensics

    SciTech Connect (OSTI)

    Jarman, Kristin H.; Kreuzer-Martin, Helen W.; Wunschel, David S.; Valentine, Nancy B.; Cliff, John B.; Petersen, Catherine E.; Colburn, Heather A.; Wahl, Karen L.

    2008-06-01

    In the aftermath of the 2001 anthrax letters, researchers have been exploring ways to predict the production environment of unknown source microorganisms. Different mass spectral techniques are being developed to characterize components of a microbes culture medium including water, carbon and nitrogen sources, metal ions added, and the presence of agar. Individually, each technique has the potential to identify one or two ingredients in a culture medium recipe. However, by integrating data from multiple mass spectral techniques, a more complete characterization is possible. We present a Bayesian statistical approach to integrated microbial forensics and illustrate its application on spores grown in different culture media.

  13. Integrated heterodyne terahertz transceiver

    DOE Patents [OSTI]

    Wanke, Michael C. (Albuquerque, NM); Lee, Mark (Albuquerque, NM); Nordquist, Christopher D. (Albuquerque, NM); Cich, Michael J. (Albuquerque, NM)

    2012-09-25

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. A terahertz signal can be received by an antenna connected to the mixer, an end facet or sidewall of the laser, or through a separate active section that can amplify the incident signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  14. Integrated heterodyne terahertz transceiver

    DOE Patents [OSTI]

    Lee, Mark (Albuquerque, NM); Wanke, Michael C. (Albuquerque, NM)

    2009-06-23

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. An antenna connected to the Schottky diode receives a terahertz signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  15. Dynamic interaction potential and the scattering cross sections of the semiclassical plasma particles

    SciTech Connect (OSTI)

    Dzhumagulova, K. N.; Shalenov, E. O.; Gabdullina, G. L.

    2013-04-15

    The dynamic model of the charged particles interaction in non-ideal semiclassical plasma is presented. This model takes into account the quantum mechanical diffraction effect and the dynamic screening effect. On the basis of the dynamic interaction potential, the electron scattering cross sections are investigated. Comparison with the results obtained on the basis of other models and conclusions were made.

  16. Simulations of Gaussian electron guns for RHIC electron lens

    SciTech Connect (OSTI)

    Pikin, A.

    2014-02-28

    Simulations of two versions of the electron gun for RHIC electron lens are presented. The electron guns have to generate an electron beam with Gaussian radial profile of the electron beam density. To achieve the Gaussian electron emission profile on the cathode we used a combination of the gun electrodes and shaping of the cathode surface. Dependence of electron gun performance parameters on the geometry of electrodes and the margins for electrodes positioning are presented.

  17. Laser induced electron acceleration in an ion-channel guiding

    SciTech Connect (OSTI)

    Esmaeilzadeh, Mahdi; Taghavi, Amin; Hanifpour, Maryam

    2011-09-15

    Direct electron acceleration by a propagating laser pulse of circular polarization in an ion-channel guiding is studied by developing a relativistic three-dimensional single particle code. The electron chaotic dynamic is also studied using time series, power spectrum, and Liapunov exponent. It is found that the electron motion is regular (non-chaotic) for laser pulse with short time duration, while for long enough time duration, the electron motion may be chaotic. In the case of non-chaotic motion, the electron can gain and retain very high energy in the presence of ion-channel before reaching the steady-state, whereas in the case of chaotic motion, the electron gains energy and then loses it very rapidly in an unpredictable manner.

  18. Biochemical Platform Processing Integration

    SciTech Connect (OSTI)

    2006-06-01

    The objective of this project is to facilitate deployment of enzyme-based biomass conversion technology. The immediate goal is to explore integration issues that impact process performance and to demonstrate improved performance of the lower-cost enzymes being developed by Genencor and Novozymes.

  19. Integrated Safety Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25

    The order ensures that DOE/NNSA, systematically integrates safety into management and work practices at all levels, so that missions are accomplished efficiently while protecting the workers, the public, and the environment. Supersedes DOE M 450.4-1 and DOE M 411.1-1C

  20. Integrated Landscape Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 23, 2015 Ian Bonner Idaho National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information Sustainability Technology Area 4.2.1.20 Integrated Landscape Management 2 | Bioenergy Technologies Office PROJECT GOAL * OBJECTIVE - Develop model based innovative landscape design methods that estimate increased biomass availability, improve soil, water, and air quality, and reduce grower losses through subfield management decisions.

  1. Integrated Safety Management (ISM)

    Broader source: Energy.gov [DOE]

    Integrated Safety Management provides a platform for active sharing of the ISM-related documents, tools, and processes being utilized across the Department to accomplish the goals of ISM. You'll find archival documents and procedures as well as information on the very latest innovative approaches being undertaken to improve safety management.

  2. Bioluminescent bioreporter integrated circuit

    DOE Patents [OSTI]

    Simpson, Michael L. (Knoxville, TN); Sayler, Gary S. (Blaine, TN); Paulus, Michael J. (Knoxville, TN)

    2000-01-01

    Disclosed are monolithic bioelectronic devices comprising a bioreporter and an OASIC. These bioluminescent bioreporter integrated circuit are useful in detecting substances such as pollutants, explosives, and heavy-metals residing in inhospitable areas such as groundwater, industrial process vessels, and battlefields. Also disclosed are methods and apparatus for environmental pollutant detection, oil exploration, drug discovery, industrial process control, and hazardous chemical monitoring.

  3. Integrating Electricity Subsector

    Office of Environmental Management (EM)

    Integrating Electricity Subsector Failure Scenarios into a Risk Assessment Methodology 3002001181 | DEC 2013 Program Leads Jason D. Christopher Technical Lead, Cyber Security Capabilities & Risk Management Department of Energy (DOE), Office of Electricity Delivery and Energy Reliability (OE) Annabelle Lee Senior Technical Executive, Cyber Security Electric Power Research Institute (EPRI) For more information on the DOE's cyber security risk management programs, please contact

  4. Integrated Safety Management Policy

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25

    The policy establishes DOE's expectation for safety, including integrated safety management that will enable the Departments mission goals to be accomplished efficiently while ensuring safe operations at all departmental facilities and activities. Supersedes DOE P 450.4, DOE P 411.1, DOE P 441.1, DOE P 450.2A, and DOE P 450.7

  5. Coherent electron cooling

    SciTech Connect (OSTI)

    Litvinenko,V.

    2009-05-04

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation is still too feeble, while the efficiency of two other cooling methods, stochastic and electron, falls rapidly either at high bunch intensities (i.e. stochastic of protons) or at high energies (e-cooling). In this talk a specific scheme of a unique cooling technique, Coherent Electron Cooling, will be discussed. The idea of coherent electron cooling using electron beam instabilities was suggested by Derbenev in the early 1980s, but the scheme presented in this talk, with cooling times under an hour for 7 TeV protons in the LHC, would be possible only with present-day accelerator technology. This talk will discuss the principles and the main limitations of the Coherent Electron Cooling process. The talk will describe the main system components, based on a high-gain free electron laser driven by an energy recovery linac, and will present some numerical examples for ions and protons in RHIC and the LHC and for electron-hadron options for these colliders. BNL plans a demonstration of the idea in the near future.

  6. Aerogels for electronics

    SciTech Connect (OSTI)

    Hrubesh, L.W.

    1994-10-01

    In addition to their other exceptional properties, aerogels also exhibit unusual dielectric and electronic properties due to their nano-sized structures and high porosities. For example, aerogels have the lowest dielectric constants measured for a solid material (having values approaching 1.0); they have exceptionally high dielectric resistivities and strengths (i.e., ability to insulate very high voltages); they exhibit low dielectric loss at microwave frequencies; and some aerogels are electrically conductive and photoconductive. These properties are being exploited to provide the next generation of materials for energy storage, low power consumption, and ultra-fast electronics. We are working toward adapting these unusual materials for microelectronic applications, particularly, making thin aerogel films for dielectric substrates and for energy storage devices such as supercapacitors. Measurements are presented in this paper for the dielectric and electronic properties of aerogels, including the dielectric constant, loss factor, dielectric and electrical conductivity, volume resistivity, and dielectric strength. We also describe methods to form and characterize thin aerogel films which are being developed for numerous electronic applications. Finally, some of the electronic applications proposed for aerogels are presented. Commercialization of aerogels for electronics must await further feasibility, prototype development, and cost studies, but they are one of the key materials and are sure to have a major impact on future electronics.

  7. VUV studies of molecular photofragmentation dynamics

    SciTech Connect (OSTI)

    White, M.G.

    1993-12-01

    State-resolved, photoion and photoelectron methods are used to study the neutral fragmentation and ionization dynamics of small molecules relevant to atmospheric and combustion chemistry. Photodissociation and ionization are initiated by coherent VUV radiation and the fragmentation dynamics are extracted from measurements of product rovibronic state distributions, kinetic energies and angular distributions. The general aim of these studies is to investigate the multichannel interactions between the electronic and nuclear motions which determine the evolution of the photoexcited {open_quotes}complex{close_quotes} into the observed asymptotic channels.

  8. Shared and Dynamic Libraries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    flag instructs the compiler wrappers (i.e., ftn, cc, CC) to prepare a dynamically linked executable. edison01% ftn -dynamic -o dynexample.x dynexample.f90 There used to be...

  9. Power Line Integrity Monitor and Repeater

    Energy Science and Technology Software Center (OSTI)

    2005-09-30

    The Idaho National Laboratory (INL) has developed a power system integrity monitor and repeater that provide real time status of the integrity of the physical structure of power poles and transmission towers. It may be applied to other structures, such as pipelines or cell towers, which have multiple segments that can cover hundreds of miles. Sensors and on-board processing provide indication of tampering or impending damage to the structure with information provided to the centralmore » operations center or supervisory control and data acquisition (SCADA) for mitigative actions. This software runs on a series of small, inexpensive, low power electronic sensor platforms that are mounted on each tower of an electric power transmission or distribution system for the purpose of communicating system integrity to a central location. The software allows each platform to: 1) interface with sensors that monitor tower integrity, 2) record and analyze events, 3) communicate sensor information to other sensor platforms located on adjacent towers or to a central monitoring location, and 4) derive, conserve, and store platform power from the transmission of electric power.« less

  10. Observation of dynamic water microadsorption on Au surface

    SciTech Connect (OSTI)

    Huang, Xiaokang, E-mail: xiaokang.huang@tqs.com; Gupta, Gaurav; Gao, Weixiang; Tran, Van; Nguyen, Bang; McCormick, Eric; Cui, Yongjie; Yang, Yinbao; Hall, Craig; Isom, Harold [TriQuint Semiconductor, Inc., 500 W Renner Road, Richardson, Texas 75080 (United States)

    2014-05-15

    Experimental and theoretical research on water wettability, adsorption, and condensation on solid surfaces has been ongoing for many decades because of the availability of new materials, new detection and measurement techniques, novel applications, and different scales of dimensions. Au is a metal of special interest because it is chemically inert, has a high surface energy, is highly conductive, and has a relatively high melting point. It has wide applications in semiconductor integrated circuitry, microelectromechanical systems, microfluidics, biochips, jewelry, coinage, and even dental restoration. Therefore, its surface condition, wettability, wear resistance, lubrication, and friction attract a lot of attention from both scientists and engineers. In this paper, the authors experimentally investigated Au{sub 2}O{sub 3} growth, wettability, roughness, and adsorption utilizing atomic force microscopy, scanning electron microscopy, reflectance spectrometry, and contact angle measurement. Samples were made using a GaAs substrate. Utilizing a super-hydrophilic Au surface and the proper surface conditions of the surrounding GaAs, dynamic microadsorption of water on the Au surface was observed in a clean room environment. The Au surface area can be as small as 12??m{sup 2}. The adsorbed water was collected by the GaAs groove structure and then redistributed around the structure. A model was developed to qualitatively describe the dynamic microadsorption process. The effective adsorption rate was estimated by modeling and experimental data. Devices for moisture collection and a liquid channel can be made by properly arranging the wettabilities or contact angles of different materials. These novel devices will be very useful in microfluid applications or biochips.

  11. Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Machinery R&D Annual Progress Report | Department of Energy Power Electronics and Electric Machinery R&D Annual Progress Report Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric Machinery R&D Annual Progress Report PDF icon 2008_apeem_report.pdf More Documents & Publications Characterization and Development of Advanced Heat Transfer Technologies An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices

  12. Thermal Stress and Reliability for Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Machines | Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ape_14_okeefe.pdf More Documents & Publications Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Power Electronic Thermal System Performance and Integration Thermal Performance and Reliability of Bonded Interfaces

  13. Systems Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration Systems Integration The breadth and complexity of the overall Hydrogen and Fuel Cells Program RD&D effort, as well as the interaction of program elements, requires an integrated approach to reduce risk and maximize the potential for success. The focus of systems integration is to understand the complex interactions among program areas, components, and the tradeoffs between them. Systems Integration ensures all requirements are being addressed, tracks and measures the

  14. Shared and Dynamic Libraries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shared and Dynamic Libraries Shared and Dynamic Libraries The Hopper system can support applications that use dynamic shared libraries (DSL) on the compute nodes. Some "out-of-the-box" applications require DSLs and some popular applications like Python use DSLs as well. Using System Shared and Dynamic Libraries "System" DSLs include those that support software packages found in "typical" Linux distributions, e.g. Python and Perl. To build an application that will

  15. Electronic structure of disordered conjugated polymers: Polythiophenes

    SciTech Connect (OSTI)

    Vukmirovic, Nenad; Wang, Lin-Wang

    2008-11-26

    Electronic structure of disordered semiconducting conjugated polymers was studied. Atomic structure was found from a classical molecular dynamics simulation and the charge patching method was used to calculate the electronic structure with the accuracy similar to the one of density functional theory in local density approximation. The total density of states, the local density of states at different points in the system and the wavefunctions of several states around the gap were calculated in the case of poly(3-hexylthiophene) (P3HT) and polythiophene (PT) systems to gain insight into the origin of disorder in the system, the degree of carrier localization and the role of chain interactions. The results indicated that disorder in the electronic structure of alkyl substituted polythiophenes comes from disorder in the conformation of individualchains, while in the case of polythiophene there is an additional contribution due to disorder in the electronic coupling between the chains. Each of the first several wavefunctions in the conduction and valence band of P3HT is localized over several rings of a single chain. It was shown that the localization can be caused in principle both by ring torsions and chain bending, however the effect of ring torsions is much stronger. PT wavefunctions are more complicated due to larger interchain electronic coupling and are not necessarily localized on a single chain.

  16. Parallel Molecular Dynamics Program for Molecules

    Energy Science and Technology Software Center (OSTI)

    1995-03-07

    ParBond is a parallel classical molecular dynamics code that models bonded molecular systems, typically of an organic nature. It uses classical force fields for both non-bonded Coulombic and Van der Waals interactions and for 2-, 3-, and 4-body bonded (bond, angle, dihedral, and improper) interactions. It integrates Newton''s equation of motion for the molecular system and evaluates various thermodynamical properties of the system as it progresses.

  17. Ab initio non-relativistic spin dynamics

    SciTech Connect (OSTI)

    Ding, Feizhi; Goings, Joshua J.; Li, Xiaosong; Frisch, Michael J.

    2014-12-07

    Many magnetic materials do not conform to the (anti-)ferromagnetic paradigm where all electronic spins are aligned to a global magnetization axis. Unfortunately, most electronic structure methods cannot describe such materials with noncollinear electron spin on account of formally requiring spin alignment. To overcome this limitation, it is necessary to generalize electronic structure methods and allow each electron spin to rotate freely. Here, we report the development of an ab initio time-dependent non-relativistic two-component spinor (TDN2C), which is a generalization of the time-dependent Hartree-Fock equations. Propagating the TDN2C equations in the time domain allows for the first-principles description of spin dynamics. A numerical tool based on the Hirshfeld partitioning scheme is developed to analyze the time-dependent spin magnetization. In this work, we also introduce the coupling between electron spin and a homogenous magnetic field into the TDN2C framework to simulate the response of the electronic spin degrees of freedom to an external magnetic field. This is illustrated for several model systems, including the spin-frustrated Li{sub 3} molecule. Exact agreement is found between numerical and analytic results for Larmor precession of hydrogen and lithium atoms. The TDN2C method paves the way for the ab initio description of molecular spin transport and spintronics in the time domain.

  18. Electron Microscope Facility

    ScienceCinema (OSTI)

    None

    2010-01-08

    Brookhaven Lab is home to one of only a few Scanning Transmision Electron Microscope (STEM) machines in the world and one of the few that can image single heavy atoms.

  19. Wide Bandgap Power Electronics

    Broader source: Energy.gov (indexed) [DOE]

    Wide Bandgap Power Electronics 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 1 4 2. Technology Assessment and Potential ................................................................................................. 3 5 2.1 Performance advances in SiC ........................................................................................................ 3 6 2.2

  20. Controlling Graphene's Electronic Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    momentum because the electrons are restricted to motion in a two-dimensional plane. The Dirac crossing points are at energy ED. 2D Perfection in a 3D World Graphene, a perfect...

  1. High Density Polymer-Based Integrated Electgrode Array

    DOE Patents [OSTI]

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter A. (Pleasanton, CA); Davidson, James Courtney (Livermore, CA); Hamilton, Julie K. (Tracy, CA)

    2006-04-25

    A high density polymer-based integrated electrode apparatus that comprises a central electrode body and a multiplicity of arms extending from the electrode body. The central electrode body and the multiplicity of arms are comprised of a silicone material with metal features in said silicone material that comprise electronic circuits.

  2. High Power Density Integrated Traction Machine Drive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ape024_wang_2010_p.pdf More Documents & Publications High Power Density Integrated Traction Machine Drive Novel Packaging to Reduce Stray Inductance in Power Electronics Power Device Packaging

  3. Solar Electric Grid Integration- Advanced Concepts (SEGIS-AC) Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the Solar Electric Grid Integration – Advanced Concepts (SEGIS-AC) program, DOE is funding solar projects that are targeting ways to develop power electronics and build smarter, more...

  4. Electronics Stewardship | Department of Energy

    Energy Savers [EERE]

    Electronics Stewardship Electronics Stewardship DOE is committed to responsible environmental stewardship of its electronics, including computers, displays, printers and cell phones. In order to comply with Executive Order 13693, Planning for Federal Sustainability in the Next Decade, and other statutory requirements, DOE policy and actions support the following principles of electronic stewardship: procuring environmentally sustainable electronics, including EPEAT-registered, ENERGY STAR

  5. Free electron laser

    DOE Patents [OSTI]

    Villa, Francesco (Alameda, CA)

    1990-01-01

    A high gain, single-pass free electron laser formed of a high brilliance electron injector source, a linear accelerator which imparts high energy to the electron beam, and an undulator capable of extremely high magnetic fields, yet with a very short period. The electron injector source is the first stage (gap) of the linear accelerator or a radial line transformer driven by fast circular switch. The linear accelerator is formed of a plurality of accelerating gaps arranged in series. These gaps are energized in sequence by releasing a single pulse of energy which propagates simultaneously along a plurality of transmission lines, each of which feeds the gaps. The transmission lines are graduated in length so that pulse power is present at each gap as the accelerated electrons pass therethrough. The transmission lines for each gap are open circuited at their ends. The undualtor has a structure similar to the accelerator, except that the transmission lines for each gap are substantially short circuited at their ends, thus converting the electric field into magnetic field. A small amount of resistance is retained in order to generate a small electric field for replenishing the electron bunch with the energy lost as it traverses through the undulator structure.

  6. Ultrafast carriers dynamics in filled-skutterudites

    SciTech Connect (OSTI)

    Guo, Liang; Xu, Xianfan; Salvador, James R.

    2015-06-08

    Carrier dynamics of filled-skutterudites, an important class of thermoelectric materials, is investigated using ultrafast optical spectroscopy. By tuning the wavelength of the probe laser, charge transfers at different electronic energy levels are interrogated. Analysis based on the Kramers-Kronig relation explains the complex spectroscopy data, which is mainly due to band filling caused by photo-excited carriers and free carrier absorption. The relaxation time of hot carriers is found to be about 0.40.6 ps, depending on the electronic energy level, and the characteristic time for carrier-phonon equilibrium is about 0.95 ps. These studies of carrier dynamics, which fundamentally determines the transport properties of thermoelectric material, can provide guidance for the design of materials.

  7. Integrated turbomachine oxygen plant

    SciTech Connect (OSTI)

    Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

    2014-06-17

    An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

  8. Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Grid Integration - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  9. integrated-land-use

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Integrated Land Use and Transportation Planning Tool for Sydney, Australia Dr. Matthew Berryman, University of Wollongong Monday, November 28, 2011 - 1pm Argonne TRACC Building 222, Room D-233 The SMART Infrastructure Facility at the University of Wollongong, Australia, has been building an agent-based model to explore the feedbacks between transportation and land use. We focus on livability as a key driver of agent's location choice, and in addition to transport we include factors such as:

  10. Commercial Buildings Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Integration Images courtesy CREE, True Manufacturing, A.O. Smith, Bernstein Associates, Cambridge Engineering, Alliance Laundry Systems, NREL 2 Strategic Fit within Building Technologies Office 3 4 In the U.S., packaged units: * condition 40 billion square feet of the commercial building floor space * consume 2,100 trillion Btu of primary energy annually Many RTUs are past their typical life span, functioning at much lower efficiency levels than new units, and are ready to be replaced.

  11. Integrated Safety Management Policy

    Energy Savers [EERE]

    INTEGRATED SAFETY MANAGEMENT SYSTEM DESCRIPTION U.S. DEPARTMENT OF ENERGY Office of Environmental Management Headquarters May 2008 Preparation: Braj K. sin& Occupational Safety and Health Manager Office of Safety Management Concurrence: Chuan-Fu wu Director, Offlce of Safety Management Deputy Assistant Secretary for safe& Management andoperations Operations Officer for 1 Environmental Management Approval: Date p/-g Date Environmental Management TABLE OF CONTENTS

  12. Integrative Bioengineering Institute

    SciTech Connect (OSTI)

    Eddington, David; Magin,L,Richard; Hetling, John; Cho, Michael

    2009-01-09

    Microfabrication enables many exciting experimental possibilities for medicine and biology that are not attainable through traditional methods. However, in order for microfabricated devices to have an impact they must not only provide a robust solution to a current unmet need, but also be simple enough to seamlessly integrate into standard protocols. Broad dissemination of bioMEMS has been stymied by the common aim of replacing established and well accepted protocols with equally or more complex devices, methods, or materials. The marriage of a complex, difficult to fabricate bioMEMS device with a highly variable biological system is rarely successful. Instead, the design philosophy of my lab aims to leverage a beneficial microscale phenomena (e.g. fast diffusion at the microscale) within a bioMEMS device and adapt to established methods (e.g. multiwell plate cell culture) and demonstrate a new paradigm for the field (adapt instead of replace). In order for the field of bioMEMS to mature beyond novel proof-of-concept demonstrations, researchers must focus on developing systems leveraging these phenomena and integrating into standard labs, which have largely been ignored. Towards this aim, the Integrative Bioengineering Institute has been established.

  13. Diffuse-dynamic multiparameter diffractometry: A review

    SciTech Connect (OSTI)

    Molodkin, V. B. Shpak, A. P.; Kovalchuk, M. V.; Nosik, V. L.; Machulin, V. F.

    2010-12-15

    The results reported at the Conference on Application of X-Rays, Synchrotron Radiation, Neutrons, and Electrons in Nano-, Bio-, Information-, and Cognitive Technologies (RSNE-NBIC 2009) are briefly reviewed. This review is based on a cycle of studies [1-6] where a new method for studying the structure of real crystals-diffuse-dynamic multiparameter diffractometry (DDMD)-was proposed and substantiated.

  14. High Efficiency Integrated Package

    SciTech Connect (OSTI)

    Ibbetson, James

    2013-09-15

    Solid-state lighting based on LEDs has emerged as a superior alternative to inefficient conventional lighting, particularly incandescent. LED lighting can lead to 80 percent energy savings; can last 50,000 hours 2-50 times longer than most bulbs; and contains no toxic lead or mercury. However, to enable mass adoption, particularly at the consumer level, the cost of LED luminaires must be reduced by an order of magnitude while achieving superior efficiency, light quality and lifetime. To become viable, energy-efficient replacement solutions must deliver system efficacies of ? 100 lumens per watt (LPW) with excellent color rendering (CRI > 85) at a cost that enables payback cycles of two years or less for commercial applications. This development will enable significant site energy savings as it targets commercial and retail lighting applications that are most sensitive to the lifetime operating costs with their extended operating hours per day. If costs are reduced substantially, dramatic energy savings can be realized by replacing incandescent lighting in the residential market as well. In light of these challenges, Cree proposed to develop a multi-chip integrated LED package with an output of > 1000 lumens of warm white light operating at an efficacy of at least 128 LPW with a CRI > 85. This product will serve as the light engine for replacement lamps and luminaires. At the end of the proposed program, this integrated package was to be used in a proof-of-concept lamp prototype to demonstrate the components viability in a common form factor. During this project Cree SBTC developed an efficient, compact warm-white LED package with an integrated remote color down-converter. Via a combination of intensive optical, electrical, and thermal optimization, a package design was obtained that met nearly all project goals. This package emitted 1295 lm under instant-on, room-temperature testing conditions, with an efficacy of 128.4 lm/W at a color temperature of ~2873K and 83 CRI. As such, the packages performance exceeds DOEs warm-white phosphor LED efficacy target for 2013. At the end of the program, we assembled an A19 sized demonstration bulb housing the integrated package which met Energy Star intensity variation requirements. With further development to reduce overall component cost, we anticipate that an integrated remote converter package such as developed during this program will find application in compact, high-efficacy LED-based lamps, particularly those requiring omnidirectional emission.

  15. NREL: Transmission Grid Integration - Oahu Wind Integration and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Study Oahu Wind Integration and Transmission Study The Oahu Wind Integration and Transmission Study examined the integration of renewable energy as part of the Hawaii Clean Energy Initiative's Energy Agreement. The agreement includes a commitment to integrate up to 400 megawatts (MW) of offshore wind energy from Molokai or Lanai and transmit it to Oahu via undersea cable systems. The Hawaii Clean Energy Initiative also includes an aggressive mandate for the state of Hawaii to

  16. NREL: Transmission Grid Integration - Wind Integration National Dataset

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (WIND) Toolkit Wind Integration National Dataset (WIND) Toolkit Obtain the WIND Toolkit Please note: the WIND Toolkit is simulated wind power data to be used in renewable integration studies. Please read the associated validation reports and use the data appropriately. The Wind Integration National Dataset (WIND) Toolkit is an update and expansion of the Eastern and Western Wind Datasets, and is intended to support the next generation of integration studies. The WIND Toolkit includes

  17. Cooling system for electronic components

    DOE Patents [OSTI]

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2015-12-15

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  18. Integrated Deployment and the Energy Systems Integration Facility: Workshop Proceedings

    SciTech Connect (OSTI)

    Kroposki, B.; Werner, M.; Spikes, A.; Komomua, C.

    2013-01-01

    This report summarizes the workshop entitled: Integrated Deployment and the Energy Systems Integration Facility. In anticipation of the opening of the ESIF, NREL held the workshop August 21-23, 2012 and invited participants from utilities, government, industry, and academia to discuss renewable integration challenges and discover new ways to meet them by taking advantage of the ESIF's capabilities.

  19. Electron microscope phase enhancement

    DOE Patents [OSTI]

    Jin, Jian; Glaeser, Robert M.

    2010-06-15

    A microfabricated electron phase shift element is used for modifying the phase characteristics of an electron beam passing though its center aperture, while not affecting the more divergent portion of an incident beam to selectively provide a ninety-degree phase shift to the unscattered beam in the back focal plan of the objective lens, in order to realize Zernike-type, in-focus phase contrast in an electron microscope. One application of the element is to increase the contrast of an electron microscope for viewing weakly scattering samples while in focus. Typical weakly scattering samples include biological samples such as macromolecules, or perhaps cells. Preliminary experimental images demonstrate that these devices do apply a ninety degree phase shift as expected. Electrostatic calculations have been used to determine that fringing fields in the region of the scattered electron beams will cause a negligible phase shift as long as the ratio of electrode length to the transverse feature-size aperture is about 5:1. Calculations are underway to determine the feasibility of aspect smaller aspect ratios of about 3:1 and about 2:1.

  20. Manasa Electronics | Open Energy Information

    Open Energy Info (EERE)

    Manasa Electronics Jump to: navigation, search Name: Manasa Electronics Place: Ghaziabad, Uttar Pradesh, India Zip: 201 005 Sector: Solar Product: Ghaziabad-based manufacturer of...

  1. Electron Trapping by Molecular Vibration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Trapping by Molecular Vibration Print In photoelectron spectroscopy experiments performed at the ALS, a group of researchers has found that electronic transitions normally...

  2. The Future of Electron Microscopy

    SciTech Connect (OSTI)

    Zheng, Haimei

    2015-05-06

    Berkeley Lab scientist Haimei Zheng discusses the future of electron microscopy and her breakthrough research into examining liquids using an electron microscope.

  3. Tim Kuneli, Electronics Maintenance Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tim Kuneli, Electronics Maintenance Group Print The recent ALS power supply failure was one of the most challenging projects that Electronics Engineer Technical Superintendent Tim...

  4. Tokyo Electron | Open Energy Information

    Open Energy Info (EERE)

    Electron Jump to: navigation, search Name: Tokyo Electron Place: Tokyo, Tokyo, Japan Zip: 107-8481 Product: As a leading global supplier of semiconductor production equipment,...

  5. Circular free-electron laser

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Kurnit, Norman A. (Santa Fe, NM); Cooper, Richard K. (Los Alamos, NM)

    1984-01-01

    A high efficiency, free electron laser utilizing a circular relativistic electron beam accelerator and a circular whispering mode optical waveguide for guiding optical energy in a circular path in the circular relativistic electron beam accelerator such that the circular relativistic electron beam and the optical energy are spatially contiguous in a resonant condition for free electron laser operation. Both a betatron and synchrotron are disclosed for use in the present invention. A free electron laser wiggler is disposed around the circular relativistic electron beam accelerator for generating a periodic magnetic field to transform energy from the circular relativistic electron beam to optical energy.

  6. Quantum-mechanical picture of peripheral chiral dynamics (Journal Article)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Quantum-mechanical picture of peripheral chiral dynamics Citation Details In-Document Search Title: Quantum-mechanical picture of peripheral chiral dynamics The nucleon's peripheral transverse charge and magnetization densities are computed in chiral effective field theory. The densities are represented in first-quantized form, as overlap integrals of chiral light-front wave functions describing the transition of the nucleon to soft pion-nucleon intermediate states. The

  7. Terahertz chiral metamaterials with giant and dynamically tunable optical

    Office of Scientific and Technical Information (OSTI)

    activity (Journal Article) | SciTech Connect Journal Article: Terahertz chiral metamaterials with giant and dynamically tunable optical activity Citation Details In-Document Search Title: Terahertz chiral metamaterials with giant and dynamically tunable optical activity We demonstrated giant optical activity using a chiral metamaterial composed of an array of conjugated bilayer metal structures. The chiral metamaterials were further integrated with photoactive inclusions to accomplish a wide

  8. NREL: Energy Systems Integration - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Stay up-to-date with the latest energy systems integration news from NREL with the following resources. Energy Systems Integration Newsletter Read a monthly recap of NREL's...

  9. Electronic structure of cobalt nanocrystals suspended inliquid

    SciTech Connect (OSTI)

    Liu, Hongjian; Guo, Jinghua; Yin, Yadong; Augustsson, Andreas; Dong, Chungli; Nordgren, Joseph; Chang, Chinglin; Alivisatos, Paul; Thornton, Geoff; Ogletree, D. Frank; Requejo, Felix G.; de Groot, Frank; Salmeron, Miquel

    2007-07-16

    The electronic structure of cobalt nanocrystals suspended in liquid as a function of size has been investigated using in-situ x-ray absorption and emission spectroscopy. A sharp absorption peak associated with the ligand molecules is found that increases in intensity upon reducing the nanocrystal size. X-ray Raman features due to d-d and to charge-transfer excitations of ligand molecules are identified. The study reveals the local symmetry of the surface of {var_epsilon}-Co phase nanocrystals, which originates from a dynamic interaction between Co nanocrystals and surfactant + solvent molecules.

  10. Electron launching voltage monitor

    DOE Patents [OSTI]

    Mendel, C.W.; Savage, M.E.

    1992-03-17

    An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors. 5 figs.

  11. Electron launching voltage monitor

    DOE Patents [OSTI]

    Mendel, Clifford W. (Albuquerque, NM); Savage, Mark E. (Albuquerque, NM)

    1992-01-01

    An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors.

  12. Foil Electron Multiplier

    DOE Patents [OSTI]

    Funsten, Herbert O. (Los Alamos, NM); Baldonado, Juan R. (Los Alamos, NM); Dors, Eric E. (Los Alamos, NM); Harper, Ronnie W. (Los Alamos, NM); Skoug, Ruth M. (Los Alamos, NM)

    2006-03-28

    An apparatus for electron multiplication by transmission that is designed with at least one foil having a front side for receiving incident particles and a back side for transmitting secondary electrons that are produced from the incident particles transiting through the foil. The foil thickness enables the incident particles to travel through the foil and continue on to an anode or to a next foil in series with the first foil. The foil, or foils, and anode are contained within a supporting structure that is attached within an evacuated enclosure. An electrical power supply is connected to the foil, or foils, and the anode to provide an electrical field gradient effective to accelerate negatively charged incident particles and the generated secondary electrons through the foil, or foils, to the anode for collection.

  13. Front and backside processed thin film electronic devices

    DOE Patents [OSTI]

    Yuan, Hao-Chih (Madison, WI); Wang, Guogong (Madison, WI); Eriksson, Mark A. (Madison, WI); Evans, Paul G. (Madison, WI); Lagally, Max G. (Madison, WI); Ma, Zhenqiang (Middleton, WI)

    2010-10-12

    This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  14. Sandia Energy - Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Energy Assurance, Energy Surety, Grid Integration, Infrastructure Security, Microgrid, News, News & Events, Renewable Energy, Systems Analysis, Systems Engineering,...

  15. NREL: Energy Systems Integration - Subscribe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Energy Systems Integration eNewsletter is a quarterly newsletter designed to keep industry partners, stakeholders, associations, and educational institutes up to date on the new Energy Systems Integration Facility and energy systems integration activities at NREL. Subscribe Please provide the following information to subscribe to the Energy Systems Integration eNewsletter. The mailing list addresses are never sold, rented, distributed, or disclosed in any way. * indicates required Email

  16. Integrated Assessment | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontenttimes-integrated-assessment-model-0,h Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance...

  17. Integrated Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Validation » Integrated Projects Integrated Projects To maximize overall system efficiencies, reduce costs, and optimize component development, optimized integrated hydrogen and fuel cell systems must be developed and validated. Novel new approaches such as Power Parks, which "marry" the transportation and electricity generation markets in synergistic ways, and integrated renewable hydrogen production systems, which combine electrolysis powered by wind, solar, and other

  18. PEP-II Transverse Feedback Electronics Upgrade

    SciTech Connect (OSTI)

    Weber, J.M.; Chin, M.J.; Doolittle, L.R.; Akre, R.; /SLAC

    2006-03-13

    The PEP-II B Factory at the Stanford Linear Accelerator Center (SLAC) requires an upgrade of the transverse feedback system electronics. The new electronics require 12-bit resolution and a minimum sampling rate of 238 Msps. A Field Programmable Gate Array (FPGA) is used to implement the feedback algorithm. The FPGA also contains an embedded PowerPC 405 (PPC-405) processor to run control system interface software for data retrieval, diagnostics, and system monitoring. The design of this system is based on the Xilinx{reg_sign} ML300 Development Platform, a circuit board set containing an FPGA with an embedded processor, a large memory bank, and other peripherals. This paper discusses the design of a digital feedback system based on an FPGA with an embedded processor. Discussion will include specifications, component selection, and integration with the ML300 design.

  19. PEP-II Transverse Feedback Electronics Upgrade

    SciTech Connect (OSTI)

    Weber, J.; Chin, M.; Doolittle, L.; Akre, R.

    2005-05-09

    The PEP-II B Factory at the Stanford Linear Accelerator Center (SLAC) requires an upgrade of the transverse feedback system electronics. The new electronics require 12-bit resolution and a minimum sampling rate of 238 Msps. A Field Programmable Gate Array (FPGA) is used to implement the feedback algorithm. The FPGA also contains an embedded PowerPC 405 (PPC-405) processor to run control system interface software for data retrieval, diagnostics, and system monitoring. The design of this system is based on the Xilinx(R) ML300 Development Platform, a circuit board set containing an FPGA with an embedded processor, a large memory bank, and other peripherals. This paper discusses the design of a digital feedback system based on an FPGA with an embedded processor. Discussion will include specifications, component selection, and integration with the ML300 design.

  20. Integrated Project Team RM

    Office of Environmental Management (EM)

    Integrated Project Team (IPT) Review Module March 2010 CD-0 This R O 0 Review Modul OFFICE OF Inte C CD-1 le was piloted F ENVIRO Standard R grated P Rev Critical Decis CD-2 M at the OR U 23 incorporated ONMENTAL Review Plan Project Te view Module sion (CD) Ap CD March 2010 33 Disposition in the Review L MANAGE n (SRP) eam (IPT e pplicability D-3 Project in 200 Module. EMENT T) CD-4 09. Lessons lea Post Ope arned have been eration n Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The

  1. Integrated optical XY coupler

    DOE Patents [OSTI]

    Vawter, G. Allen (Albuquerque, NM); Hadley, G. Ronald (Albuquerque, NM)

    1997-01-01

    An integrated optical XY coupler having two converging input waveguide arms meeting in a central section and a central output waveguide arm and two diverging flanking output waveguide arms emanating from the central section. In-phase light from the input arms constructively interfers in the central section to produce a single mode output in the central output arm with the rest of the light being collected in the flanking output arms. Crosstalk between devices on a substrate is minimized by this collection of the out-of-phase light by the flanking output arms of the XY coupler.

  2. Integrated optical XY coupler

    DOE Patents [OSTI]

    Vawter, G.A.; Hadley, G.R.

    1997-05-06

    An integrated optical XY coupler having two converging input waveguide arms meeting in a central section and a central output waveguide arm and two diverging flanking output waveguide arms emanating from the central section. In-phase light from the input arms constructively interferes in the central section to produce a single mode output in the central output arm with the rest of the light being collected in the flanking output arms. Crosstalk between devices on a substrate is minimized by this collection of the out-of-phase light by the flanking output arms of the XY coupler. 9 figs.

  3. Multifuctional integrated sensors (MFISES).

    SciTech Connect (OSTI)

    Homeijer, Brian D.; Roozeboom, Clifton

    2015-10-01

    Many emerging IoT applications require sensing of multiple physical and environmental parameters for: completeness of information, measurement validation, unexpected demands, improved performance. For example, a typical outdoor weather station measures temperature, humidity, barometric pressure, light intensity, rainfall, wind speed and direction. Existing sensor technologies do not directly address the demand for cost, size, and power reduction in multi-paramater sensing applications. Industry sensor manufacturers have developed integrated sensor systems for inertial measurements that combine accelerometers, gyroscopes, and magnetometers, but do not address environmental sensing functionality. In existing research literature, a technology gap exists between the functionality of MEMS sensors and the real world applications of the sensors systems.

  4. Precision electron polarimetry

    SciTech Connect (OSTI)

    Chudakov, Eugene A.

    2013-11-01

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. M{\\o}ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at ~300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100\\%-polarized electron target for M{\\o}ller polarimetry.

  5. Xyce(™) Parallel Electronic Simulator

    Energy Science and Technology Software Center (OSTI)

    2013-10-03

    The Xyce Parallel Electronic Simulator simulates electronic circuit behavior in DC, AC, HB, MPDE and transient mode using standard analog (DAE) and/or device (PDE) device models including several age and radiation aware devices. It supports a variety of computing platforms (both serial and parallel) computers. Lastly, it uses a variety of modern solution algorithms dynamic parallel load-balancing and iterative solvers.! ! Xyce is primarily used to simulate the voltage and current behavior of a circuitmore » network (a network of electronic devices connected via a conductive network). As a tool, it is mainly used for the design and analysis of electronic circuits.! ! Kirchoff's conservation laws are enforced over a network using modified nodal analysis. This results in a set of differential algebraic equations (DAEs). The resulting nonlinear problem is solved iteratively using a fully coupled Newton method, which in turn results in a linear system that is solved by either a standard sparse-direct solver or iteratively using Trilinos linear solver packages, also developed at Sandia National Laboratories.« less

  6. Dynamical principles in neuroscience

    SciTech Connect (OSTI)

    Rabinovich, Mikhail I.; Varona, Pablo; Selverston, Allen I.; Abarbanel, Henry D. I.

    2006-10-15

    Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?.

  7. Protein Dynamics and Biocatalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Dynamics and Biocatalysis Protein Dynamics and Biocatalysis 1998 Annual Report Grand Challenge Projects biocatalysis.gif A model of the Michaelis complex for the TEM-1/penicillin system from molecular dynamics simulations. Investigators: P. A. Bash, Northwestern University Medical School and M. Karplus, Harvard University Research Objectives A guiding principle of molecular biology is that the structure of a biomolecule defines its function. This principle is especially true in the case

  8. Computational Fluid Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scour-tracc-cfd TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Computational Fluid Dynamics Overview of CFD: Video Clip with Audio Computational fluid dynamics (CFD) research uses mathematical and computational models of flowing fluids to describe and predict fluid response in problems of interest, such as the flow of air around a moving vehicle or the flow of water and sediment in a river. Coupled with appropriate and prototypical

  9. Time resolved electron microscopy for in situ experiments

    SciTech Connect (OSTI)

    Campbell, Geoffrey H. McKeown, Joseph T.; Santala, Melissa K.

    2014-12-15

    Transmission electron microscopy has functioned for decades as a platform for in situ observation of materials and processes with high spatial resolution. Yet, the dynamics often remain elusive, as they unfold too fast to discern at these small spatial scales under traditional imaging conditions. Simply shortening the exposure time in hopes of capturing the action has limitations, as the number of electrons will eventually be reduced to the point where noise overtakes the signal in the image. Pulsed electron sources with high instantaneous current have successfully shortened exposure times (thus increasing the temporal resolution) by about six orders of magnitude over conventional sources while providing the necessary signal-to-noise ratio for dynamic imaging. We describe here the development of this new class of microscope and the principles of its operation, with examples of its application to problems in materials science.

  10. Nonlinear electron acoustic waves in presence of shear magnetic field

    SciTech Connect (OSTI)

    Dutta, Manjistha; Khan, Manoranjan; Ghosh, Samiran; Chakrabarti, Nikhil

    2013-12-15

    Nonlinear electron acoustic waves are studied in a quasineutral plasma in the presence of a variable magnetic field. The fluid model is used to describe the dynamics of two temperature electron species in a stationary positively charged ion background. Linear analysis of the governing equations manifests dispersion relation of electron magneto sonic wave. Whereas, nonlinear wave dynamics is being investigated by introducing Lagrangian variable method in long wavelength limit. It is shown from finite amplitude analysis that the nonlinear wave characteristics are well depicted by KdV equation. The wave dispersion arising in quasineutral plasma is induced by transverse magnetic field component. The results are discussed in the context of plasma of Earth's magnetosphere.

  11. ILC Polarized Electron Source Design and R&D Program

    SciTech Connect (OSTI)

    Brachmann, A.; Sheppard, J.; Zhou, F.; Poelker, M.; /SLAC

    2012-04-06

    The R and D program for the ILC electron focuses on three areas. These are the source drive laser system, the electron gun and photo cathodes necessary to produce a highly polarized electron beam. Currently, the laser system and photo cathode development take place at SLAC's 'ILC Injector Test facility', which is an integrated lab (laser and gun) that allows the production of the electron beam and is equipped with a set of diagnostics, necessary to characterize the source performance. Development of the ILC electron gun takes place at Jefferson Lab, where advanced concepts and technologies for HV DC electron guns for polarized beams are being developed. The goal is to combine both efforts at one facility to demonstrate an electron beam with ILC specifications, which are electron beam charge and polarization as well as the cathode's lifetime. The source parameters are summarized in Table 1. The current schematic design of the ILC central complex is depicted in Figure 1. The electron and positron sources are located and laid out approximately symmetric on either side of the damping rings.

  12. Protein Dynamics and Biocatalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biocatalysis.gif A model of the Michaelis complex for the TEM-1penicillin system from molecular dynamics simulations. Investigators: P. A. Bash, Northwestern University Medical...

  13. Shared and Dynamic Libraries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Some "out-of-the-box" applications require DSLs and some popular applications like Python use DSLs as well. Using System Shared and Dynamic Libraries "System" DSLs include...

  14. Integrating preconcentrator heat controller

    DOE Patents [OSTI]

    Bouchier, Francis A. (Albuquerque, NM); Arakaki, Lester H. (Edgewood, NM); Varley, Eric S. (Albuquerque, NM)

    2007-10-16

    A method and apparatus for controlling the electric resistance heating of a metallic chemical preconcentrator screen, for example, used in portable trace explosives detectors. The length of the heating time-period is automatically adjusted to compensate for any changes in the voltage driving the heating current across the screen, for example, due to gradual discharge or aging of a battery. The total deposited energy in the screen is proportional to the integral over time of the square of the voltage drop across the screen. Since the net temperature rise, .DELTA.T.sub.s, of the screen, from beginning to end of the heating pulse, is proportional to the total amount of heat energy deposited in the screen during the heating pulse, then this integral can be calculated in real-time and used to terminate the heating current when a pre-set target value has been reached; thereby providing a consistent and reliable screen temperature rise, .DELTA.T.sub.s, from pulse-to-pulse.

  15. Dynamic frequency tuning of electric and magnetic metamaterial response

    Office of Scientific and Technical Information (OSTI)

    (Patent) | SciTech Connect Patent: Dynamic frequency tuning of electric and magnetic metamaterial response Citation Details In-Document Search Title: Dynamic frequency tuning of electric and magnetic metamaterial response A geometrically modifiable resonator is comprised of a resonator disposed on a substrate, and a means for geometrically modifying the resonator. The geometrically modifiable resonator can achieve active optical and/or electronic control of the frequency response in

  16. Dynamic voltage compensation on distribution feeders using flywheel energy storage

    SciTech Connect (OSTI)

    Weissbach, R.S.; Karady, G.G.; Farmer, R.G.

    1999-04-01

    Advancements in power electronics bearings and materials have made flywheel energy storage systems a viable alternative to electrochemical batteries. A future application of such a device is as an uninterruptible power supply for critical loads on a distribution feeder. However, the same power electronics and flywheel system could also be used for dynamic voltage compensation. A comparison is made between series and parallel connection of such dynamic compensation techniques used to maintain rated load voltage on distribution feeders when there are momentary dips in the supply voltage. For each case a mathematical model is presented and analyzed. The two cases are compared and the series compensation technique is more effective.

  17. MEIC electron cooling program

    SciTech Connect (OSTI)

    Derbenev, Yaroslav S.; Zhang, Yuhong

    2014-12-01

    Cooling of proton and ion beams is essential for achieving high luminosities (up to above 1034 cm-2s-1) for MEIC, a Medium energy Electron-Ion Collider envisioned at JLab [1] for advanced nuclear science research. In the present conceptual design, we utilize the conventional election cooling method and adopted a multi-staged cooling scheme for reduction of and maintaining low beam emittances [2,3,4]. Two electron cooling facilities are required to support the scheme: one is a low energy (up to 2 MeV) DC cooler installed in the MEIC ion pre-booster (with the proton kinetic energy up to 3 GeV); the other is a high electron energy (up to 55 MeV) cooler in the collider ring (with the proton kinetic energy from 25 to 100 GeV). The high energy cooler, which is based on the ERL technology and a circulator ring, utilizes a bunched electron beam to cool bunched proton or ion beams. To complete the MEIC cooling concept and a technical design of the ERL cooler as well as to develop supporting technologies, an R&D program has been initiated at Jefferson Lab and significant progresses have been made since then. In this study, we present a brief description of the cooler design and a summary of the progress in this cooling R&D.

  18. MEIC electron cooling program

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Derbenev, Yaroslav S.; Zhang, Yuhong

    2014-12-01

    Cooling of proton and ion beams is essential for achieving high luminosities (up to above 1034 cm-2s-1) for MEIC, a Medium energy Electron-Ion Collider envisioned at JLab [1] for advanced nuclear science research. In the present conceptual design, we utilize the conventional election cooling method and adopted a multi-staged cooling scheme for reduction of and maintaining low beam emittances [2,3,4]. Two electron cooling facilities are required to support the scheme: one is a low energy (up to 2 MeV) DC cooler installed in the MEIC ion pre-booster (with the proton kinetic energy up to 3 GeV); the other is amore » high electron energy (up to 55 MeV) cooler in the collider ring (with the proton kinetic energy from 25 to 100 GeV). The high energy cooler, which is based on the ERL technology and a circulator ring, utilizes a bunched electron beam to cool bunched proton or ion beams. To complete the MEIC cooling concept and a technical design of the ERL cooler as well as to develop supporting technologies, an R&D program has been initiated at Jefferson Lab and significant progresses have been made since then. In this study, we present a brief description of the cooler design and a summary of the progress in this cooling R&D.« less

  19. Photodissociation dynamics of hydroxybenzoic acids

    SciTech Connect (OSTI)

    Yang Yilin; Dyakov, Yuri; Lee, Y. T.; Ni, Chi-Kung; Sun Yilun; Hu Weiping

    2011-01-21

    Aromatic amino acids have large UV absorption cross-sections and low fluorescence quantum yields. Ultrafast internal conversion, which transforms electronic excitation energy to vibrational energy, was assumed to account for the photostability of amino acids. Recent theoretical and experimental investigations suggested that low fluorescence quantum yields of phenol (chromophore of tyrosine) are due to the dissociation from a repulsive excited state. Radicals generated from dissociation may undergo undesired reactions. It contradicts the observed photostability of amino acids. In this work, we explored the photodissociation dynamics of the tyrosine chromophores, 2-, 3- and 4-hydroxybenzoic acid in a molecular beam at 193 nm using multimass ion imaging techniques. We demonstrated that dissociation from the excited state is effectively quenched for the conformers of hydroxybenzoic acids with intramolecular hydrogen bonding. Ab initio calculations show that the excited state and the ground state potential energy surfaces change significantly for the conformers with intramolecular hydrogen bonding. It shows the importance of intramolecular hydrogen bond in the excited state dynamics and provides an alternative molecular mechanism for the photostability of aromatic amino acids upon irradiation of ultraviolet photons.

  20. Ultrafast studies of solution dynamics

    SciTech Connect (OSTI)

    Woodruff, W.H.; Dyer, R.B.; Callender, R.H.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Fast chemical dynamics generally must be initiated photochemically. This limits the applicability of modern laser methods for following the structural changes that occur during chemical and biological reactions to those systems that have an electronic chromophore that has a significant yield of photoproduct when excited. This project has developed a new and entirely general approach to ultrafast initiation of reactions in solution: laser-induced temperature jump (T-jump). The results open entire new fields of study of ultrafast molecular dynamics in solution. The authors have demonstrated the T-jump technique on time scales of 50 ps and longer, and have applied it to study of the fast events in protein folding. They find that a general lifetime of alpha-helix formation is ca 100 ns, and that tertiary folds (in apomyoglobin) form in ca 100 {mu}s.

  1. Diamondoid monolayers as electron emitters

    DOE Patents [OSTI]

    Yang, Wanli (El Cerrito, CA); Fabbri, Jason D. (San Francisco, CA); Melosh, Nicholas A. (Menlo Park, CA); Hussain, Zahid (Orinda, CA); Shen, Zhi-Xun (Stanford, CA)

    2012-04-10

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  2. Diamondoid monolayers as electron emitters

    DOE Patents [OSTI]

    Yang, Wanli; Fabbri, Jason D.; Melosh, Nicholas A.; Hussain, Zahid; Shen, Zhi-Xun

    2013-10-29

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  3. Dynamic Event Tree Analysis Through RAVEN

    SciTech Connect (OSTI)

    A. Alfonsi; C. Rabiti; D. Mandelli; J. Cogliati; R. A. Kinoshita; A. Naviglio

    2013-09-01

    Conventional Event-Tree (ET) based methodologies are extensively used as tools to perform reliability and safety assessment of complex and critical engineering systems. One of the disadvantages of these methods is that timing/sequencing of events and system dynamics is not explicitly accounted for in the analysis. In order to overcome these limitations several techniques, also know as Dynamic Probabilistic Risk Assessment (D-PRA), have been developed. Monte-Carlo (MC) and Dynamic Event Tree (DET) are two of the most widely used D-PRA methodologies to perform safety assessment of Nuclear Power Plants (NPP). In the past two years, the Idaho National Laboratory (INL) has developed its own tool to perform Dynamic PRA: RAVEN (Reactor Analysis and Virtual control ENvironment). RAVEN has been designed in a high modular and pluggable way in order to enable easy integration of different programming languages (i.e., C++, Python) and coupling with other application including the ones based on the MOOSE framework, developed by INL as well. RAVEN performs two main tasks: 1) control logic driver for the new Thermo-Hydraulic code RELAP-7 and 2) post-processing tool. In the first task, RAVEN acts as a deterministic controller in which the set of control logic laws (user defined) monitors the RELAP-7 simulation and controls the activation of specific systems. Moreover, RAVEN also models stochastic events, such as components failures, and performs uncertainty quantification. Such stochastic modeling is employed by using both MC and DET algorithms. In the second task, RAVEN processes the large amount of data generated by RELAP-7 using data-mining based algorithms. This paper focuses on the first task and shows how it is possible to perform the analysis of dynamic stochastic systems using the newly developed RAVEN DET capability. As an example, the Dynamic PRA analysis, using Dynamic Event Tree, of a simplified pressurized water reactor for a Station Black-Out scenario is presented.

  4. Integrated Solar Power Converters: Wafer-Level Sub-Module Integrated DC/DC Converter

    SciTech Connect (OSTI)

    2012-02-09

    Solar ADEPT Project: CU-Boulder is developing advanced power conversion components that can be integrated into individual solar panels to improve energy yields. The solar energy that is absorbed and collected by a solar panel is converted into useable energy for the grid through an electronic component called an inverter. Many large, conventional solar energy systems use one, central inverter to convert energy. CU-Boulder is integrating smaller, microinverters into individual solar panels to improve the efficiency of energy collection. The Universitys microinverters rely on electrical components that direct energy at high speeds and ensure that minimal energy is lost during the conversion processimproving the overall efficiency of the power conversion process. CU-Boulder is designing its power conversion devices for use on any type of solar panel.

  5. Integrated fluorescence analysis system

    DOE Patents [OSTI]

    Buican, Tudor N. (Los Alamos, NM); Yoshida, Thomas M. (Los Alamos, NM)

    1992-01-01

    An integrated fluorescence analysis system enables a component part of a sample to be virtually sorted within a sample volume after a spectrum of the component part has been identified from a fluorescence spectrum of the entire sample in a flow cytometer. Birefringent optics enables the entire spectrum to be resolved into a set of numbers representing the intensity of spectral components of the spectrum. One or more spectral components are selected to program a scanning laser microscope, preferably a confocal microscope, whereby the spectrum from individual pixels or voxels in the sample can be compared. Individual pixels or voxels containing the selected spectral components are identified and an image may be formed to show the morphology of the sample with respect to only those components having the selected spectral components. There is no need for any physical sorting of the sample components to obtain the morphological information.

  6. Integrated optical sensor

    DOE Patents [OSTI]

    Watkins, A.D.; Smartt, H.B.; Taylor, P.L.

    1994-01-04

    An integrated optical sensor for arc welding having multifunction feedback control is described. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties. 6 figures.

  7. Integrated optical sensor

    DOE Patents [OSTI]

    Watkins, Arthur D. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); Taylor, Paul L. (Idaho Falls, ID)

    1994-01-01

    An integrated optical sensor for arc welding having multifunction feedback control. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties.

  8. Integrated Environmental Control Model

    Energy Science and Technology Software Center (OSTI)

    1999-09-03

    IECM is a powerful multimedia engineering software program for simulating an integrated coal-fired power plant. It provides a capability to model various conventional and advanced processes for controlling air pollutant emissions from coal-fired power plants before, during, or after combustion. The principal purpose of the model is to calculate the performance, emissions, and cost of power plant configurations employing alternative environmental control methods. The model consists of various control technology modules, which may be integratedmore » into a complete utility plant in any desired combination. In contrast to conventional deterministic models, the IECM offers the unique capability to assign probabilistic values to all model input parameters, and to obtain probabilistic outputs in the form of cumulative distribution functions indicating the likelihood of dofferent costs and performance results. A Graphical Use Interface (GUI) facilitates the configuration of the technologies, entry of data, and retrieval of results.« less

  9. Vehicle Technologies Office: Integration, Validation and Testing...

    Broader source: Energy.gov (indexed) [DOE]

    Integration Laboratory to integrate, validate, and test advanced vehicle technologies. ... To integrate and test vehicle components and subsystems, DOE's national laboratories use ...

  10. Green Integrated Design | Open Energy Information

    Open Energy Info (EERE)

    Integrated Design Jump to: navigation, search Logo: Green Integrated Design Name: Green Integrated Design Place: Tempe, Arizona Zip: 85283 Number of Employees: 1-10 Year Founded:...

  11. NREL: Transmission Grid Integration - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Western Wind Dataset, and Wind Integration National Dataset (WIND) Toolkit. Solar Power Data for Integration Studies The Solar Power Data for Integration Studies consist of...

  12. Technology Integration Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vtpn02_ti_smith_2012_o.pdf More Documents & Publications Technology Integration Overview Technology Integration Overview Vehicle Technologies Office Merit Review 2014: Technology Integration Overview

  13. Power Integrations Inc | Open Energy Information

    Open Energy Info (EERE)

    Integrations Inc Jump to: navigation, search Name: Power Integrations Inc Place: San Jose, California Zip: 95138 Product: Supplier of high-voltage analog integrated circuits used...

  14. ARM Data Integrator

    Energy Science and Technology Software Center (OSTI)

    2014-02-06

    The Atmospheric Radiation Measurement (ARM) Data Integrator (ADI) streamlines the development of scientific algorithms and analysis of time-series NetCDF data, and improves the content and consistency of the output data products produced by these algorithms. The framework automates the process of retrieving and preparing data for analysis, and allows users to design output data products through a graphical interface. It also provides a modular, flexible software development architecture that scientists can use to generate C,more » Python, and IDL source code templates that embed the pre and post processing logic allowing the scientist to focus on only their science. The input data, preprocessing, and output data specifications of algorithms are defined through a graphical interface and stored in a database. ADI implements workflow for data integration and supports user access to data through a library of software modules. Data preprocess capabilities supported include automated retrieval of data from input files, merging the retrieved data into appropriately sized chunks, and transformation of the data onto a common coordinate system grid. Through the graphical interface, users can view the details of both their data products and those in the ARM catalog and allows developers to use existing data product to build new data products. Views of the output data products include an overlay of how the design meets ARM archive’s data standards providing the user with a visual cue indicating where their output violates an archive standard. The ADI libraries access the information provided through the GUI via a Postgres database. The ADI framework and its supporting components can significantly decrease the time and cost of implementing scientific algorithms while improving the ability of scientists to disseminate their results.« less

  15. Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis

    SciTech Connect (OSTI)

    Li, W.; Thorne, R. M.; Bortnik, J.; Baker, D. N.; Reeves, G. D.; Kanekal, S. G.; Spence, H. E.; Green, J. C.

    2015-09-07

    In this study by determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations (>1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged southward Bz, high solar wind speed, and low dynamic pressure are critical for electron acceleration to >1 MeV energies in the heart of the outer radiation belt. We also evaluate chorus wave evolution using the superposed epoch analysis for the identified efficient and inefficient acceleration events and find that chorus wave intensity is much stronger and lasts longer during efficient electron acceleration events, supporting the scenario that chorus waves play a key role in MeV electron acceleration.

  16. High-performance computing of electron microstructures

    SciTech Connect (OSTI)

    Bishop, A. [Los Alamos National Lab., NM (United States); Birnir, B.; Galdrikian, B.; Wang, L. [Univ. of California, Santa Barbara, CA (United States)

    1998-12-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project was a collaboration between the Quantum Institute at the University of California-Santa Barbara (UCSB) and the Condensed Matter and Statistical Physics Group at LANL. The project objective, which was successfully accomplished, was to model quantum properties of semiconductor nanostructures that were fabricated and measured at UCSB using dedicated molecular-beam epitaxy and free-electron laser facilities. A nonperturbative dynamic quantum theory was developed for systems driven by time-periodic external fields. For such systems, dynamic energy spectra of electrons and photons and their corresponding wave functions were obtained. The results are in good agreement with experimental investigations. The algorithms developed are ideally suited for massively parallel computing facilities and provide a fundamental advance in the ability to predict quantum-well properties and guide their engineering. This is a definite step forward in the development of nonlinear optical devices.

  17. The effect of electron-electron interaction induced dephasing on electronic transport in graphene nanoribbons

    SciTech Connect (OSTI)

    Kahnoj, Sina Soleimani; Touski, Shoeib Babaee; Pourfath, Mahdi E-mail: pourfath@iue.tuwien.ac.at

    2014-09-08

    The effect of dephasing induced by electron-electron interaction on electronic transport in graphene nanoribbons is theoretically investigated. In the presence of disorder in graphene nanoribbons, wavefunction of electrons can set up standing waves along the channel and the conductance exponentially decreases with the ribbon's length. Employing the non-equilibrium Green's function formalism along with an accurate model for describing the dephasing induced by electron-electron interaction, we show that this kind of interaction prevents localization and transport of electrons remains in the diffusive regime where the conductance is inversely proportional to the ribbon's length.

  18. NREL: Transmission Grid Integration - Solar Power Data for Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Power Data for Integration Studies The Solar Power Data for Integration Studies are synthetic solar photovoltaic (PV) power plant data points for the United States for the year 2006. The data are intended for use by energy professionals such as transmission planners, utility planners, project developers, and university researchers who perform solar integration studies and need to estimate power production from hypothetical solar plants. Alert! The solar power datasets are modeled

  19. Simulations of the ILC Electron Gun and ElectronBunching System

    SciTech Connect (OSTI)

    Haakonsen, C.B.; /McGill U.

    2006-08-30

    The International Linear Collider (ILC) is a proposed electron-positron collider, expected to provide insight into important questions in particle physics. A part of the global R&D effort for the ILC is the design of its electron gun and electron bunching system. The present design of the bunching system has two sub-harmonic bunchers, one operating at 108 MHz and one at 433MHz, and two 5-cell 1.3 GHz (L-band) bunchers. This bunching system has previously been simulated using the Phase and Radial Motion in Electron Linear Accelerators (PARMELA) software, and those simulations indicated that the design provides sufficient bunching and acceleration. Due to the complicated dynamics governing the electrons in the bunching system we decided to verify and expand the PARMELA results using the more recent and independent simulation software General Particle Tracer (GPT). GPT tracks the motion and interactions of a set of macro particles, each of which represent a number of electrons, and provides a variety of analysis capabilities. To provide initial conditions for the macro particles, a method was developed for deriving the initial conditions from detailed simulations of particle trajectories in the electron gun. These simulations were performed using the Egun software. For realistic simulation of the L-band bunching cavities, their electric and magnetic fields were calculated using the Superfish software and imported into GPT. The GPT simulations arrived at similar results to the PARMELA simulations for sub-harmonic bunching. However, using GPT it was impossible to achieve an efficient bunching performance of the first L-band bunching cavity. To correct this, the first L-band buncher cell was decoupled from the remaining 4 cells and driven as an independent cavity. Using this modification we attained results similar to the PARMELA simulations. Although the modified bunching system design performed as required, the modifications are technically challenging to implement. Further work is needed to optimize the L-Band buncher design.

  20. 3D circuit integration for Vertex and other detectors

    SciTech Connect (OSTI)

    Yarema, Ray; /Fermilab

    2007-09-01

    High Energy Physics continues to push the technical boundaries for electronics. There is no area where this is truer than for vertex detectors. Lower mass and power along with higher resolution and radiation tolerance are driving forces. New technologies such as SOI CMOS detectors and three dimensional (3D) integrated circuits offer new opportunities to meet these challenges. The fundamentals for SOI CMOS detectors and 3D integrated circuits are discussed. Examples of each approach for physics applications are presented. Cost issues and ways to reduce development costs are discussed.

  1. custom electronic circuitry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    custom electronic circuitry - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  2. Xyce parallel electronic simulator.

    SciTech Connect (OSTI)

    Keiter, Eric Richard; Mei, Ting; Russo, Thomas V.; Rankin, Eric Lamont; Schiek, Richard Louis; Thornquist, Heidi K.; Fixel, Deborah A.; Coffey, Todd Stirling; Pawlowski, Roger Patrick; Santarelli, Keith R.

    2010-05-01

    This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users' Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users' Guide.

  3. Atmosphere to Electrons program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Electrons program - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  4. Via Electronic Submission

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Via Electronic Submission January 22, 2015 Mr. David Henderson U.S. Department of Energy Office of Nuclear Energy Mailstop NE-52 19901 Germantown Road Germantown, Maryland 20874-1290 Re: Excess Uranium Management: Effects of DOE Transfers of Excess Uranium on Domestic Uranium Mining, Conversion and Enrichment Industries: Request for Information Dear Mr. Henderson: URENCO USA Inc. ("UUSA, Inc.") appreciates the opportunity to submit comments to assist the Department of Energy (DOE) in

  5. Integrated Multiscale Modeling of Molecular Computing Devices

    SciTech Connect (OSTI)

    Weinan E

    2012-03-29

    The main bottleneck in modeling transport in molecular devices is to develop the correct formulation of the problem and efficient algorithms for analyzing the electronic structure and dynamics using, for example, the time-dependent density functional theory. We have divided this task into several steps. The first step is to developing the right mathematical formulation and numerical algorithms for analyzing the electronic structure using density functional theory. The second step is to study time-dependent density functional theory, particularly the far-field boundary conditions. The third step is to study electronic transport in molecular devices. We are now at the end of the first step. Under DOE support, we have made subtantial progress in developing linear scaling and sub-linear scaling algorithms for electronic structure analysis. Although there has been a huge amount of effort in the past on developing linear scaling algorithms, most of the algorithms developed suffer from the lack of robustness and controllable accuracy. We have made the following progress: (1) We have analyzed thoroughly the localization properties of the wave-functions. We have developed a clear understanding of the physical as well as mathematical origin of the decay properties. One important conclusion is that even for metals, one can choose wavefunctions that decay faster than any algebraic power. (2) We have developed algorithms that make use of these localization properties. Our algorithms are based on non-orthogonal formulations of the density functional theory. Our key contribution is to add a localization step into the algorithm. The addition of this localization step makes the algorithm quite robust and much more accurate. Moreover, we can control the accuracy of these algorithms by changing the numerical parameters. (3) We have considerably improved the Fermi operator expansion (FOE) approach. Through pole expansion, we have developed the optimal scaling FOE algorithm.

  6. Electrical Power Grid Delivery Dynamic Analysis: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    SciTech Connect (OSTI)

    Diana K. Grauer; Michael E. Reed

    2011-11-01

    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  7. Electronic DOE Information Security System (eDISS) PIA, Office of Health

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety and Security | Department of Energy DOE Information Security System (eDISS) PIA, Office of Health Safety and Security Electronic DOE Information Security System (eDISS) PIA, Office of Health Safety and Security Electronic DOE Information Security System (eDISS) PIA, Office of Health Safety and Security PDF icon Electronic DOE Information Security System (eDISS) PIA, Office of Health Safety and Security More Documents & Publications Integrated Safety Management Workshop

  8. NREL: Transmission Grid Integration - Western Wind and Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Generation Integration Study Oahu Wind Integration & Transmission Study Hawaii Solar Integration Study Solar Integration National Dataset Toolkit Wholesale Electricity...

  9. ELECTRON COOLING STUDY FOR MEIC

    SciTech Connect (OSTI)

    He, Zhang; Douglas, David R.; Derbenev, Yaroslav S.; Zhang, Yuhong

    2015-09-01

    Electron cooling of the ion beams is one critical R&D to achieve high luminosities in JLab's MEIC proposal. In the present MEIC design, a multi-staged cooling scheme is adapted, which includes DC electron cooling in the booster ring and bunched beam electron cooling in the collider ring at both the injection energy and the collision energy. We explored the feasibility of using both magnetized and non-magnetized electron beam for cooling, and concluded that a magnetized electron beam is necessary. Electron cooling simulation results for the newly updated MEIC design is also presented.

  10. NREL: Electricity Integration Research - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webmaster Please enter your name and email address in the boxes provided, then type your message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Electricity Integration Research Home Distributed Grid Integration Transmission Grid Integration Facilities Working with Us Did you find what you needed? Yes 1 No 0 Thank you for your

  11. NREL: Energy Systems Integration - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Photo of a group of men in front of a computer visualization screen. NREL's energy systems integration research capabilities include high-resolution data visualization. Here, Secretary of Energy Ernest Moniz experiences a 3D wind turbine model during a tour of the Energy Systems Integration Facility. Photo by Dennis Schroeder, NREL NREL has unique research capabilities, experienced staff, and state-of-the-art equipment to find solutions to the challenges of effectively integrating

  12. Grid Integration | Department of Energy

    Energy Savers [EERE]

    You are here Home » Research & Development » Grid Integration Grid Integration Grid Integration The Wind Program works with electric grid operators, utilities, regulators, and industry to create new strategies for incorporating increasing amounts of wind energy into the power system while maintaining economic and reliable operation of the grid. Utilities have been increasingly deploying wind power to provide larger portions of electricity generation. However, many utilities also express

  13. Grid Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Grid Integration Grid Integration Grid Integration The Wind Program works with electric grid operators, utilities, regulators, and industry to create new strategies for incorporating increasing amounts of wind energy into the power system while maintaining economic and reliable operation of the grid. Utilities have been increasingly deploying wind power to provide larger portions of electricity generation. However, many utilities also express concerns about wind

  14. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    SciTech Connect (OSTI)

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  15. Single electron beam rf feedback free electron laser

    DOE Patents [OSTI]

    Brau, C.A.; Stein, W.E.; Rockwood, S.D.

    1981-02-11

    A free electron laser system and electron beam system for a free electron laser which uses rf feedback to enhance efficiency are described. Rf energy is extracted from a single electron beam by decelerating cavities and energy is returned to accelerating cavities using rf returns, such as rf waveguides, rf feedthroughs, resonant feedthroughs, etc. This rf energy is added to rf klystron energy to reduce the required input energy and thereby enhance energy efficiency of the system.

  16. Electronic Coupling Dependence of Ultrafast Interfacial Electron Transfer

    Office of Scientific and Technical Information (OSTI)

    on Nanocrystalline Thin Films and Single Crystal (Technical Report) | SciTech Connect Electronic Coupling Dependence of Ultrafast Interfacial Electron Transfer on Nanocrystalline Thin Films and Single Crystal Citation Details In-Document Search Title: Electronic Coupling Dependence of Ultrafast Interfacial Electron Transfer on Nanocrystalline Thin Films and Single Crystal × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's

  17. Energy Storage & Power Electronics 2008 Peer Review - Power Electronics

    Office of Environmental Management (EM)

    (PE) Systems Presentations | Department of Energy Power Electronics (PE) Systems Presentations Energy Storage & Power Electronics 2008 Peer Review - Power Electronics (PE) Systems Presentations The 2008 Peer Review Meeting for the DOE Energy Storage and Power Electronics Program (ESPE) was held in Washington DC on Sept. 29-30, 2008. Current and completed program projects were presented and reviewed by a group of industry professionals. The 2008 agenda was composed of 28 projects that

  18. Nonlinear model for thermal effects in free-electron lasers

    SciTech Connect (OSTI)

    Peter, E. Endler, A. Rizzato, F. B.

    2014-11-15

    In the present work, we extend results of a previous paper [Peter et al., Phys. Plasmas 20, 12?3104 (2013)] and develop a semi-analytical model to account for thermal effects on the nonlinear dynamics of the electron beam in free-electron lasers. We relax the condition of a cold electron beam but still use the concept of compressibility, now associated with a warm beam model, to evaluate the time scale for saturation and the peak laser intensity in high-gain regimes. Although vanishing compressibilites and the associated divergent densities are absent in warm models, a series of discontinuities in the electron density precede the saturation process. We show that full wave-particle simulations agree well with the predictions of the model.

  19. NREL: Energy Systems Integration - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    houses research to overcome challenges related to the interconnection of distributed energy systems with and the integration of clean energy technologies into the electricity...

  20. ORISE: Integrated Safety Management (ISM)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    minimization and pollution prevention. All ORAU programs and departments actively pursue continuous improvement, and the addition of Integrated Safety Management (ISM) concepts...