Sample records for integrated dynamic electron

  1. Integrated Dynamic Electron Solutions, Inc. | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAMEnergy Innovation inInspectionIntegrated Dynamic Electron

  2. Electronic Spectroscopy & Dynamics

    SciTech Connect (OSTI)

    Mark Maroncelli, Nancy Ryan Gray

    2010-06-08T23:59:59.000Z

    The Gordon Research Conference (GRC) on Electronic Spectroscopy and Dynamics was held at Colby College, Waterville, NH from 07/19/2009 thru 07/24/2009. The Conference was well-attended with participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. The GRC on Electronic Spectroscopy & Dynamics showcases some of the most recent experimental and theoretical developments in electronic spectroscopy that probes the structure and dynamics of isolated molecules, molecules embedded in clusters and condensed phases, and bulk materials. Electronic spectroscopy is an important tool in many fields of research, and this GRC brings together experts having diverse backgrounds in physics, chemistry, biophysics, and materials science, making the meeting an excellent opportunity for the interdisciplinary exchange of ideas and techniques. Topics covered in this GRC include high-resolution spectroscopy, biological molecules in the gas phase, electronic structure theory for excited states, multi-chromophore and single-molecule spectroscopies, and excited state dynamics in chemical and biological systems.

  3. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- Washington D.C. ape13bennion.pdf More Documents & Publications Power Electronic Thermal System Performance and Integration Integrated Power Module Cooling Vehicle...

  4. Structure, Charge Distribution, and Electron Hopping Dynamics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charge Distribution, and Electron Hopping Dynamics in Magnetite (Fe3O4) (100) Surfaces from First Principles. Structure, Charge Distribution, and Electron Hopping Dynamics in...

  5. Integration of silicon photonics into electronic processes

    E-Print Network [OSTI]

    Orcutt, Jason S.

    Front-end monolithic integration has enabled photonic devices to be fabricated in bulk and thin-SOI CMOS as well as DRAM electronics processes. Utilizing the CMOS generic process model, integration was accomplished on ...

  6. Dynamic imaging with electron microscopy

    ScienceCinema (OSTI)

    Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

    2014-05-30T23:59:59.000Z

    Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

  7. Electronic Relaxation Dynamics in Coupled Metal Nanoparticles

    E-Print Network [OSTI]

    Scherer, Norbert F.

    of hot electrons for photoelectrochemical processes, including solar energy conversion or organic wasteElectronic Relaxation Dynamics in Coupled Metal Nanoparticles Mark J. Feldstein, Christine D

  8. Highly integrated electronics for the star TPC

    SciTech Connect (OSTI)

    Arthur, A.A.; Bieser, F.; Hearn, W.; Kleinfelder, S.; Merrick, T.; Millaud, J.; Noggle, T.; Rai, G.; Ritter, H.G.; Wieman, H. [Lawrence Berkeley Laboratory, CA (United States)

    1991-12-31T23:59:59.000Z

    The concept for the STAR TPC front-end electronics is presented and the progress toward the development of a fully integrated solution is described. It is the goal of the R+D program to develop the complete electronics chain for the STAR central TPC detector at RHIC. It is obvious that solutions chosen e.g. for ALEPH are not adequate for the 150000 channels that need to be instrumented for readout. It will be necessary to perform all the signal processing, digitization and multiplexing directly on the detector in order to reduce per channel cost and the amount of cabling necessary to read out the information. We follow the approach chosen by the EOS TPC project, where the readout electronics on the detector consists of an integrated preamplifier, a hybrid shaping amplifier, an integrated switched capacitor array and a highly multiplexed ADC. The STAR electronics will be further integrated so that approximately 16 channels of the preamplifier, the shaper, the analog store and the ADC will be contained in two integrated circuits located directly on the pad plane.

  9. Intermittent Single-Molecule Interfacial Electron Transfer Dynamics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intermittent Single-Molecule Interfacial Electron Transfer Dynamics. Intermittent Single-Molecule Interfacial Electron Transfer Dynamics. Abstract: We report on single molecule...

  10. Electron dynamics in surface acoustic wave devices

    E-Print Network [OSTI]

    Thorn, Adam Leslie

    2009-10-13T23:59:59.000Z

    -dimensional nanostructures one can create a series of dynamic quantum dots corresponding to the minima of the travelling electric wave, and each dot carries a single electron at the SAW velocity (? 2800 m/s). These devices may be of use in developing future quantum...

  11. Power Electronics and Motor Drives Laboratory Integrating Energy Storage withIntegrating Energy Storage with

    E-Print Network [OSTI]

    Saldin, Dilano

    Power Electronics and Motor Drives Laboratory Integrating Energy Storage withIntegrating Energy Storage with Renewable Energy SystemsRenewable Energy Systems Power Electronics and Motor Drives Introduction Wind Energy Profile Solar Energy Profile Energy Storage Options Role of Industrial Electronics

  12. Molecular Dynamics Investigation of Ferrous-Ferric Electron Transfer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Transfer in a Hydrolyzing Aqueous Solution: Calculation of the pH Molecular Dynamics Investigation of Ferrous-Ferric Electron Transfer in a Hydrolyzing Aqueous Solution:...

  13. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 -- Washington D.C. ape016bennion2010o.pdf More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric...

  14. (MEMS) toroidal magnetics for integrated power electronics

    E-Print Network [OSTI]

    Araghchini, Mohammad

    2013-01-01T23:59:59.000Z

    Power electronics represent a key technology for improving the functionality and performance, and reducing the energy consumption of many systems. However, the size, cost, and performance constraints of conventional power ...

  15. Electron beam dynamics for the ISIS bremsstrahlung beam generation system

    E-Print Network [OSTI]

    Block, Robert E. (Robert Edward)

    2011-01-01T23:59:59.000Z

    An electron beam transport system was designed for use in the Bremsstrahlung Beam Generation System of the Integrated Stand-off Inspection System (ISIS). The purpose of this electron transport system was to provide for ...

  16. Electronic and structural dynamics in transition metal complexes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic and structural dynamics in transition metal complexes - recent results from synchrotron and XFEL experiments Wednesday, March 4, 2015 - 3:00pm SLAC, Redtail Hawk...

  17. Probing attosecond electron dynamics at solid surfaces | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing attosecond electron dynamics at solid surfaces Wednesday, May 13, 2015 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Jrg Osterwalder, Department of Physics,...

  18. Dynamical Electron Mass in a Strong Magnetic Field

    E-Print Network [OSTI]

    S. -Y. Wang

    2008-01-28T23:59:59.000Z

    Motivated by recent interest in understanding properties of strongly magnetized matter, we study the dynamical electron mass generated through approximate chiral symmetry breaking in QED in a strong magnetic field. We reliably calculate the dynamical electron mass by numerically solving the nonperturbative Schwinger-Dyson equations in a consistent truncation within the lowest Landau level approximation. It is shown that the generation of dynamical electron mass in a strong magnetic field is significantly enhanced by the perturbative electron mass that explicitly breaks chiral symmetry in the absence of a magnetic field.

  19. A University of Alabama Fuel Cell Electronic Integration

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    CAVT A University of Alabama Fuel Cell Electronic Integration y Research Center OBJECTIVE ­ Study the ability of hydrogen fuel cells to H2 tank Loads ­ Study the ability of hydrogen fuel cells to respond to rapid load changes MOTIVATION Fuel cell ­ Automotive cycles include rapid load changes (passing

  20. Dynamic Phase Filtering with Integrated Optical Ring Resonators

    E-Print Network [OSTI]

    Adams, Donald Benjamin

    2011-10-21T23:59:59.000Z

    can then help extract complex spectral information. Broadband photonic RF phase shifting for beam steering of a phased array antenna is also shown using dynamically tunable integrated optical ring resonators. Finally all-optical pulse compression...

  1. Dynamics of Synaptically Interacting Integrate-and-Fire Neurons

    E-Print Network [OSTI]

    Coombes, Stephen

    Dynamics of Synaptically Interacting Integrate-and-Fire Neurons by Matthew Philip James A DOCTORAL evidence which suggests that the response of a neuron is strongly dependent upon its previous activity of integrate-and-fire neurons. Self-consistent speeds and periods are determined from integro

  2. Chemical Dynamics at Metal Surfaces: The Role of Electronic Excitation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Dynamics at Metal Surfaces: The Role of Electronic Excitations Mar 06 2015 11:00 AM - 12:00 PM John Tully, Yale University, New Haven, Connecticut Joint Institute for...

  3. Electronic and Magnetization Dynamics of Cobalt Substituted Iron Oxide Nanocrystals

    E-Print Network [OSTI]

    Chen, Tai-Yen

    2011-02-22T23:59:59.000Z

    to excite the weak absorption originating from the intervalence charge transfer transition (IVCT) between Fe2+ and Fe3+ ions of Fe3O4 nanocrystals. The timescale and corresponding relaxation processes of electronic relaxation dynamics of the excited IVCT...

  4. Electron Cooling Dynamics progress update ( December 15, 2003)

    E-Print Network [OSTI]

    Electron Cooling Dynamics progress update ( December 15, 2003) A. Fedotov #12;Goals of the meeting cooling dynamics issues ­ we would like to get input on our present studies and understanding. 2. We would and benchmarking: Vorpal, SimCool and BetaCool ­ this morning 3. We started to study friction force with the Vorpal

  5. Method for integrating microelectromechanical devices with electronic circuitry

    DOE Patents [OSTI]

    Barron, Carole C. (Austin, TX); Fleming, James G. (Albuquerque, NM); Montague, Stephen (Albuquerque, NM)

    1999-01-01T23:59:59.000Z

    A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry on a common substrate. The MEM device can be fabricated within a substrate cavity and encapsulated with a sacrificial material. This allows the MEM device to be annealed and the substrate planarized prior to forming electronic circuitry on the substrate using a series of standard processing steps. After fabrication of the electronic circuitry, the electronic circuitry can be protected by a two-ply protection layer of titanium nitride (TiN) and tungsten (W) during an etch release process whereby the MEM device is released for operation by etching away a portion of a sacrificial material (e.g. silicon dioxide or a silicate glass) that encapsulates the MEM device. The etch release process is preferably performed using a mixture of hydrofluoric acid (HF) and hydrochloric acid (HCI) which reduces the time for releasing the MEM device compared to use of a buffered oxide etchant. After release of the MEM device, the TiN:W protection layer can be removed with a peroxide-based etchant without damaging the electronic circuitry.

  6. DYNAMIC MODELING Commercial Office Building Measurements and Dynamic Integrated

    E-Print Network [OSTI]

    Mease, Kenneth D.

    in significantly increased consumption of natural gas (or other fuels). Implications: 1.Fuel risk · How do the gas infrastructure handle DG (both on the micro and macro scales)? 3.Natural gas or other fuel costs markets? Integration Issues: Regulation Regulation is necessary to make DG economical and safe

  7. Electron Dynamics in Nanostructures in Strong Laser Fields

    SciTech Connect (OSTI)

    Kling, Matthias

    2014-09-11T23:59:59.000Z

    The goal of our research was to gain deeper insight into the collective electron dynamics in nanosystems in strong, ultrashort laser fields. The laser field strengths will be strong enough to extract and accelerate electrons from the nanoparticles and to transiently modify the materials electronic properties. We aimed to observe, with sub-cycle resolution reaching the attosecond time domain, how collective electronic excitations in nanoparticles are formed, how the strong field influences the optical and electrical properties of the nanomaterial, and how the excitations in the presence of strong fields decay.

  8. MODEST-1: Integrating Stellar Evolution and Stellar Dynamics

    E-Print Network [OSTI]

    Piet Hut; Michael M. Shara; Sverre J. Aarseth; Ralf S. Klessen; James C. Lombardi Jr.; Junichiro Makino; Steve McMillan; Onno R. Pols; Peter J. Teuben; Ronald F. Webbink

    2002-11-01T23:59:59.000Z

    We summarize the main results from MODEST-1, the first workshop on MOdeling DEnse STellar systems. Our goal is to go beyond traditional population synthesis models, by introducing dynamical interactions between single stars, binaries, and multiple systems. The challenge is to define and develop a software framework to enable us to combine in one simulation existing computer codes in stellar evolution, stellar dynamics, and stellar hydrodynamics. With this objective, the workshop brought together experts in these three fields, as well as other interested astrophysicists and computer scientists. We report here our main conclusions, questions and suggestions for further steps toward integrating stellar evolution and stellar (hydro)dynamics.

  9. Beam Dynamics Study for TESLA with the Integrated FEL

    E-Print Network [OSTI]

    Beam Dynamics Study for TESLA with the Integrated FEL V.M. Tsakanov Yerevan Physics Institute : : : : : : : : : : : : : : : : : : : : : : : 7 2.3 Conclusion 1 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10 3 The TESLA high based trajectory correction : : : : : : : : : : : : 22 5 Summary 25 1 #12;. 1 Introduction In the TESLA

  10. A correlated-polaron electronic propagator: open electronic dynamics beyond the Born-Oppenheimer approximation

    E-Print Network [OSTI]

    John A. Parkhill; Thomas Markovich; David G. Tempel; Alan Aspuru-Guzik

    2012-10-02T23:59:59.000Z

    In this work we develop a theory of correlated many-electron dynamics dressed by the presence of a finite-temperature harmonic bath. The theory is based on the ab-initio Hamiltonian, and thus well-defined apart from any phenomenological choice of collective basis states or electronic coupling model. The equation-of-motion includes some bath effects non-perturbatively, and can be used to simulate line- shapes beyond the Markovian approximation and open electronic dynamics which are subjects of renewed recent interest. Energy conversion and transport depend critically on the ratio of electron-electron coupling to bath-electron coupling, which is a fitted parameter if a phenomenological basis of many-electron states is used to develop an electronic equation of motion. Since the present work doesn't appeal to any such basis, it avoids this ambiguity. The new theory produces a level of detail beyond the adiabatic Born-Oppenheimer states, but with cost scaling like the Born-Oppenheimer approach. While developing this model we have also applied the time-convolutionless perturbation theory to correlated molecular excitations for the first time. Resonant response properties are given by the formalism without phenomenological parameters. Example propagations with a developmental code are given demonstrating the treatment of electron-correlation in absorption spectra, vibronic structure, and decay in an open system.

  11. An Electronic Prosthesis Mimicking the Dynamic Vestibular Andrei M. Shkela

    E-Print Network [OSTI]

    Tang, William C

    An Electronic Prosthesis Mimicking the Dynamic Vestibular Function Andrei M. Shkela a prosthesis. The sensing element of the prosthesis is a custom designed one-axis MEMS gyroscope. Similarly the corresponding vestibular nerve branch. Our preliminary experimental evaluations of the prosthesis on a rate

  12. An Electronic Prosthesis Mimicking the Dynamic Vestibular Function

    E-Print Network [OSTI]

    Tang, William C

    An Electronic Prosthesis Mimicking the Dynamic Vestibular Function Jiayin Liu Mechanical of a novel MEMS-based electrostimulatory prosthesis cur- rently investigated by this research group [1 a prosthesis that matches the signal recorded from the vestibular nerve in squirrel monkey experiments reported

  13. Simulation of electron cooling dynamic ( December 16, 2003)

    E-Print Network [OSTI]

    approach in BetaCool code also leads to fast cooling of beam core ­ benchmarking in progress different and momentum are being benchmarked cooling #12;Progress · We have better understanding of friction forceSimulation of electron cooling dynamic ( December 16, 2003) A. Fedotov, I. Ben-zvi, Yu. Eidelman, V

  14. On-wafer seamless integration of GaN and Si (100) electronics

    E-Print Network [OSTI]

    Chung, Jinwook

    The high thermal stability of nitride semiconductors allows for the on-wafer integration of (001)Si CMOS electronics and electronic devices based on these semiconductors. This paper describes the technology developed at ...

  15. High-speed silicon electro-optic modulator for electronic photonic integrated circuits

    E-Print Network [OSTI]

    Gan, Fuwan

    2007-01-01T23:59:59.000Z

    The development of future electronic-photonic integrated circuits (EPIC) based on silicon technology critically depends on the availability of CMOS-compatible high-speed modulators that enable the interaction of electronic ...

  16. Photocathode Optimization for a Dynamic Transmission Electron Microscope: Final Report

    SciTech Connect (OSTI)

    Ellis, P; Flom, Z; Heinselman, K; Nguyen, T; Tung, S; Haskell, R; Reed, B W; LaGrange, T

    2011-08-04T23:59:59.000Z

    The Dynamic Transmission Electron Microscope (DTEM) team at Harvey Mudd College has been sponsored by LLNL to design and build a test setup for optimizing the performance of the DTEM's electron source. Unlike a traditional TEM, the DTEM achieves much faster exposure times by using photoemission from a photocathode to produce electrons for imaging. The DTEM team's work is motivated by the need to improve the coherence and current density of the electron cloud produced by the electron gun in order to increase the image resolution and contrast achievable by DTEM. The photoemission test setup is nearly complete and the team will soon complete baseline tests of electron gun performance. The photoemission laser and high voltage power supply have been repaired; the optics path for relaying the laser to the photocathode has been finalized, assembled, and aligned; the internal setup of the vacuum chamber has been finalized and mostly implemented; and system control, synchronization, and data acquisition has been implemented in LabVIEW. Immediate future work includes determining a consistent alignment procedure to place the laser waist on the photocathode, and taking baseline performance measurements of the tantalum photocathode. Future research will examine the performance of the electron gun as a function of the photoemission laser profile, the photocathode material, and the geometry and voltages of the accelerating and focusing components in the electron gun. This report presents the team's progress and outlines the work that remains.

  17. Integrating Renewable Energy Contracts and Wholesale Dynamic Pricing to Serve Aggregate

    E-Print Network [OSTI]

    Oren, Shmuel S.

    1 Integrating Renewable Energy Contracts and Wholesale Dynamic Pricing to Serve Aggregate Flexible energy, dynamic programming. I. INTRODUCTION Dynamic pricing has the potential to materialize the poten many of the operational problems that arise from renewable energy integration through dynamic pricing

  18. Probing Electron Transfer Dynamics at MgO Surfaces by Mg-Atom...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Transfer Dynamics at MgO Surfaces by Mg-Atom Desorption. Probing Electron Transfer Dynamics at MgO Surfaces by Mg-Atom Desorption. Abstract: Desorption of a weakly bound...

  19. Integrated testing of the Thales LPT9510 pulse tube cooler and the iris LCCE electronics

    SciTech Connect (OSTI)

    Johnson, Dean L.; Rodriguez, Jose I.; Carroll, Brian A. [The Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Bustamante, John G. [Georgia Institute of Technology, Atlanta, GA 30332 (United States); Kirkconnell, Carl S.; Luong, Thomas T.; Murphy, J. B.; Haley, Michael F. [Iris Technology, Irvine, CA 92616 (United States)

    2014-01-29T23:59:59.000Z

    The Jet Propulsion Laboratory (JPL) has identified the Thales LPT9510 pulse tube cryocooler as a candidate low cost cryocooler to provide active cooling on future cost-capped scientific missions. The commercially available cooler can provide refrigeration in excess of 2 W at 100K for 60W of power. JPL purchased the LPT9510 cooler for thermal and dynamic performance characterization, and has initiated the flight qualification of the existing cooler design to satisfy near-term JPL needs for this cooler. The LPT9510 has been thermally tested over the heat reject temperature range of 0C to +40C during characterization testing. The cooler was placed on a force dynamometer to measure the selfgenerated vibration of the cooler. Iris Technology has provided JPL with a brass board version of the Low Cost Cryocooler Electronics (LCCE) to drive the Thales cooler during characterization testing. The LCCE provides precision closed-loop temperature control and embodies extensive protection circuitry for handling and operational robustness; other features such as exported vibration mitigation and low frequency input current filtering are envisioned as options that future flight versions may or may not include based upon the mission requirements. JPL has also chosen to partner with Iris Technology for the development of electronics suitable for future flight applications. Iris Technology is building a set of radiation-hard, flight-design electronics to deliver to the Air Force Research Laboratory (AFRL). Test results of the thermal, dynamic and EMC testing of the integrated Thales LPT9510 cooler and Iris LCCE electronics is presented here.

  20. A LAGRANGIAN INTEGRATOR FOR PLANETARY ACCRETION AND DYNAMICS (LIPAD)

    SciTech Connect (OSTI)

    Levison, Harold F. [Department of Space Studies, Southwest Research Institute, Boulder, CO 80302 (United States); Duncan, Martin J. [Department of Physics, Engineering Physics and Astronomy, Queen's University Kingston, Ontario K7L 3N6 (Canada); Thommes, Edward, E-mail: hal@boulder.swri.edu [Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1 (Canada)

    2012-10-01T23:59:59.000Z

    We present the first particle-based Lagrangian code that can follow the collisional/accretional/dynamical evolution of a large number of kilometer-sized planetesimals through the entire growth process of becoming planets. We refer to it as the Lagrangian Integrator for Planetary Accretion and Dynamics or LIPAD. LIPAD is built on top of SyMBA, which is a symplectic N-body integrator. In order to handle the very large number of planetesimals required by planet formation simulations, we introduce the concept of a tracer particle. Each tracer is intended to represent a large number of disk particles on roughly the same orbit and size as one another and is characterized by three numbers: the physical radius, the bulk density, and the total mass of the disk particles represented by the tracer. We developed statistical algorithms that follow the velocity and size evolution of the tracers due to close gravitational encounters and physical collisions with one another. The tracers mainly dynamically interact with the larger objects (planetary embryos) in the normal N-body way. LIPAD's greatest strength is that it can accurately model the wholesale redistribution of planetesimals due to gravitational interaction with the embryos, which has recently been shown to significantly affect the growth rate of planetary embryos. We verify the code via a comprehensive set of tests that compare our results with those of Eulerian and/or direct N-body codes.

  1. Pulsed Power for a Dynamic Transmission Electron Microscope

    SciTech Connect (OSTI)

    dehope, w j; browning, n; campbell, g; cook, e; king, w; lagrange, t; reed, b; stuart, b; Shuttlesworth, R; Pyke, B

    2009-06-25T23:59:59.000Z

    Lawrence Livermore National Laboratory (LLNL) has converted a commercial 200kV transmission electron microscope (TEM) into an ultrafast, nanoscale diagnostic tool for material science studies. The resulting Dynamic Transmission Electron Microscope (DTEM) has provided a unique tool for the study of material phase transitions, reaction front analyses, and other studies in the fields of chemistry, materials science, and biology. The TEM's thermionic electron emission source was replaced with a fast photocathode and a laser beam path was provided for ultraviolet surface illumination. The resulting photoelectron beam gives downstream images of 2 and 20 ns exposure times at 100 and 10 nm spatial resolution. A separate laser, used as a pump pulse, is used to heat, ignite, or shock samples while the photocathode electron pulses, carefully time-synchronized with the pump, function as probe in fast transient studies. The device functions in both imaging and diffraction modes. A laser upgrade is underway to make arbitrary cathode pulse trains of variable pulse width of 10-1000 ns. Along with a fast e-beam deflection scheme, a 'movie mode' capability will be added to this unique diagnostic tool. This talk will review conventional electron microscopy and its limitations, discuss the development and capabilities of DTEM, in particularly addressing the prime and pulsed power considerations in the design and fabrication of the DTEM, and conclude with the presentation of a deflector and solid-state pulser design for Movie-Mode DTEM.

  2. Electron-spin dynamics in elliptically polarized light waves

    E-Print Network [OSTI]

    Heiko Bauke; Sven Ahrens; Rainer Grobe

    2014-11-03T23:59:59.000Z

    We investigate the coupling of the spin angular momentum of light beams with elliptical polarization to the spin degree of freedom of free electrons. It is shown that this coupling, which is of similar origin as the well-known spin-orbit coupling, can lead to spin precession. The spin-precession frequency is proportional to the product of the laser-field's intensity and its spin density. The electron-spin dynamics is analyzed by employing exact numerical methods as well as time-dependent perturbation theory based on the fully relativistic Dirac equation and on the nonrelativistic Pauli equation that is amended by a relativistic correction that accounts for the light's spin density.

  3. Integration of the Optical Replica Ultrashort Electron Bunch Diagnostics with the Current-Enhanced SASE in the LCLS

    E-Print Network [OSTI]

    Ding, Y; Emma, P

    2007-01-01T23:59:59.000Z

    Integration of the Optical Replica Ultrashort Electron Bunch Diagnostics with the Current-Enhanced SASE in the LCLS

  4. Electron-nuclear correlations for photo-induced dynamics in molecular dimers

    E-Print Network [OSTI]

    January 2004; accepted 11 March 2004 Ultrafast photoinduced dynamics of electronic excitation in molecularElectron-nuclear correlations for photo-induced dynamics in molecular dimers Dmitri S. Kilin, Yuri dimers is drastically affected by the dynamic reorganization of inter- and intra- molecular nuclear

  5. GeSi photodetectors and electro-absorption modulators for Si electronic-photonic integrated circuits

    E-Print Network [OSTI]

    Liu, Jifeng, Ph. D. Massachusetts Institute of Technology

    2007-01-01T23:59:59.000Z

    The silicon electronic-photonic integrated circuit (EPIC) has emerged as a promising technology to break through the interconnect bottlenecks in telecommunications and on-chip interconnects. High performance photonic ...

  6. Integrated Dynamic Electron Solutions, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    is developing a low-cost, advanced lithium-ion battery that employs a novel silicon graphene composite material that will substantially improve battery cycle life. When combined...

  7. Integrated Dynamic Electron Solutions, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1, 1999 Inspection of SelectedIG-1CONFERENCE ofLandfill Gas to7AC

  8. Integrated Dynamic Electron Solutions, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1, 1999 Inspection of SelectedIG-1CONFERENCE ofLandfill Gas

  9. Integrated Dynamic Electron Solutions, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1, 1999 Inspection of SelectedIG-1CONFERENCE ofLandfill GasTrakLok

  10. Integrated Dynamic Electron Solutions, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1, 1999 Inspection of SelectedIG-1CONFERENCE ofLandfill GasTrakLok333

  11. Integrated dynamic landscape analysis and modeling system (IDLAMS) : installation manual.

    SciTech Connect (OSTI)

    Li, Z.; Majerus, K. A.; Sundell, R. C.; Sydelko, P. J.; Vogt, M. C.

    1999-02-24T23:59:59.000Z

    The Integrated Dynamic Landscape Analysis and Modeling System (IDLAMS) is a prototype, integrated land management technology developed through a joint effort between Argonne National Laboratory (ANL) and the US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL). Dr. Ronald C. Sundell, Ms. Pamela J. Sydelko, and Ms. Kimberly A. Majerus were the principal investigators (PIs) for this project. Dr. Zhian Li was the primary software developer. Dr. Jeffrey M. Keisler, Mr. Christopher M. Klaus, and Mr. Michael C. Vogt developed the decision analysis component of this project. It was developed with funding support from the Strategic Environmental Research and Development Program (SERDP), a land/environmental stewardship research program with participation from the US Department of Defense (DoD), the US Department of Energy (DOE), and the US Environmental Protection Agency (EPA). IDLAMS predicts land conditions (e.g., vegetation, wildlife habitats, and erosion status) by simulating changes in military land ecosystems for given training intensities and land management practices. It can be used by military land managers to help predict the future ecological condition for a given land use based on land management scenarios of various levels of training intensity. It also can be used as a tool to help land managers compare different land management practices and further determine a set of land management activities and prescriptions that best suit the needs of a specific military installation.

  12. Integrated dynamic landscape analysis and modeling system (IDLAMS) : programmer's manual.

    SciTech Connect (OSTI)

    Klaus, C. M.; Li, Z.; Majerus, K. A.; Sundell, R. C.; Sydelko, P. J.; Vogt, M. C.

    1999-02-24T23:59:59.000Z

    The Integrated Dynamic Landscape Analysis and Modeling System (IDLAMS) is a prototype, integrated land management technology developed through a joint effort between Argonne National Laboratory (ANL) and the US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL). Dr. Ronald C. Sundell, Ms. Pamela J. Sydelko, and Ms. Kimberly A. Majerus were the principal investigators (PIs) for this project. Dr. Zhian Li was the primary software developer. Dr. Jeffrey M. Keisler, Mr. Christopher M. Klaus, and Mr. Michael C. Vogt developed the decision analysis component of this project. It was developed with funding support from the Strategic Environmental Research and Development Program (SERDP), a land/environmental stewardship research program with participation from the US Department of Defense (DoD), the US Department of Energy (DOE), and the US Environmental Protection Agency (EPA). IDLAMS predicts land conditions (e.g., vegetation, wildlife habitats, and erosion status) by simulating changes in military land ecosystems for given training intensities and land management practices. It can be used by military land managers to help predict the future ecological condition for a given land use based on land management scenarios of various levels of training intensity. It also can be used as a tool to help land managers compare different land management practices and further determine a set of land management activities and prescriptions that best suit the needs of a specific military installation.

  13. Dynamic studies of catalysts for biofuel synthesis in an Environmental Transmission Electron Microscope

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Dynamic studies of catalysts for biofuel synthesis in an Environmental Transmission Electron@cen.dtu.dk Keywords: Biofuel, catalysis, environmental TEM The development of transportation fuels from sustainable

  14. Toward integrated PV panels and power electronics using printing technologies

    SciTech Connect (OSTI)

    Ababei, Cristinel; Yuvarajan, Subbaraya [Electrical and Computer Engineering Department, North Dakota State University, Fargo, ND 58108 (United States); Schulz, Douglas L. [Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, ND 58102 (United States)

    2010-07-15T23:59:59.000Z

    In this paper, we review the latest developments in the area of printing technologies with an emphasis on the fabrication of control-embedded photovoltaics (PV) with on-board active and passive devices. We also review the use of power converters and maximum power point tracking (MPPT) circuits with PV panels. Our focus is on the investigation of the simplest implementations of such circuits in view of their integration with solar cells using printing technologies. We see this concept as potentially enabling toward further cost reduction. Besides a discussion as to feasibility, we shall also present some projections and guidelines toward possible integration. (author)

  15. Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel Cell System

    E-Print Network [OSTI]

    Victoria, University of

    Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel Cell System by Alvin Peter, hydrogen and electricity storage, and fuel cells. A special design feature of this test bed is the ability of the author. #12;ii Supervisory Committee Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel

  16. Path Integral Monte Carlo and Density Functional Molecular Dynamics Simulations of Hot, Dense Helium

    E-Print Network [OSTI]

    Militzer, Burkhard

    Path Integral Monte Carlo and Density Functional Molecular Dynamics Simulations of Hot, Dense integral Monte Carlo (PIMC) and density func- tional molecular dynamics (DFT-MD), are applied to study hot excitation mecha- nisms that determine their behavior at high temperature. The helium atom has two ionization

  17. Demand Side Management for Wind Power Integration in Microgrid Using Dynamic Potential Game Theory

    E-Print Network [OSTI]

    Huang, Jianwei

    Demand Side Management for Wind Power Integration in Microgrid Using Dynamic Potential Game Theory, Wind Power Integration, Markov Chain, Dynamic Potential Game Theory, Nash Equilibrium. I. INTRODUCTION the intermittency in wind power generation. Our focus is on an isolated microgrid with one wind turbine, one fast

  18. Integrated system dynamics toolbox for water resources planning.

    SciTech Connect (OSTI)

    Reno, Marissa Devan; Passell, Howard David; Malczynski, Leonard A.; Peplinski, William J.; Tidwell, Vincent Carroll; Coursey, Don (University of Chicago, Chicago, IL); Hanson, Jason (University of New Mexico, Albuquerque, NM); Grimsrud, Kristine (University of New Mexico, Albuquerque, NM); Thacher, Jennifer (University of New Mexico, Albuquerque, NM); Broadbent, Craig (University of New Mexico, Albuquerque, NM); Brookshire, David (University of New Mexico, Albuquerque, NM); Chemak, Janie (University of New Mexico, Albuquerque, NM); Cockerill, Kristan (Cockeril Consulting, Boone, NC); Aragon, Carlos (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Hallett, Heather (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Vivoni, Enrique (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Roach, Jesse

    2006-12-01T23:59:59.000Z

    Public mediated resource planning is quickly becoming the norm rather than the exception. Unfortunately, supporting tools are lacking that interactively engage the public in the decision-making process and integrate over the myriad values that influence water policy. In the pages of this report we document the first steps toward developing a specialized decision framework to meet this need; specifically, a modular and generic resource-planning ''toolbox''. The technical challenge lies in the integration of the disparate systems of hydrology, ecology, climate, demographics, economics, policy and law, each of which influence the supply and demand for water. Specifically, these systems, their associated processes, and most importantly the constitutive relations that link them must be identified, abstracted, and quantified. For this reason, the toolbox forms a collection of process modules and constitutive relations that the analyst can ''swap'' in and out to model the physical and social systems unique to their problem. This toolbox with all of its modules is developed within the common computational platform of system dynamics linked to a Geographical Information System (GIS). Development of this resource-planning toolbox represents an important foundational element of the proposed interagency center for Computer Aided Dispute Resolution (CADRe). The Center's mission is to manage water conflict through the application of computer-aided collaborative decision-making methods. The Center will promote the use of decision-support technologies within collaborative stakeholder processes to help stakeholders find common ground and create mutually beneficial water management solutions. The Center will also serve to develop new methods and technologies to help federal, state and local water managers find innovative and balanced solutions to the nation's most vexing water problems. The toolbox is an important step toward achieving the technology development goals of this center.

  19. Control of ultrafast electron dynamics with shaped femtosecond laser pulses: from atoms to solids

    E-Print Network [OSTI]

    Peinke, Joachim

    Control of ultrafast electron dynamics with shaped femtosecond laser pulses: from atoms to solids;1. Introduction In coherent control shaped femtosecond laser pulses are used as a tool to steer the ultrafast focus on advanced control of ultrafast electron dynamics with shaped femtosecond laser pulses

  20. Dynamics of excess electrons in atomic and molecular clusters

    E-Print Network [OSTI]

    Young, Ryan Michael

    2011-01-01T23:59:59.000Z

    Time-Resolved Dynamics in Acetonitrile Cluster Anions (CH 3Time-resolved dynamics in acetonitrile clusters anions (CH 3resolved dynamics in acetonitrile clusters anions (CH 3 CN)

  1. Millimeter-wave GaN high electron mobility transistors and their integration with silicon electronics

    E-Print Network [OSTI]

    Chung, Jinwook W. (Jinwook Will)

    2011-01-01T23:59:59.000Z

    In spite of the great progress in performance achieved during the last few years, GaN high electron mobility transistors (HEMTs) still have several important issues to be solved for millimeter-wave (30 ~ 300 GHz) applications. ...

  2. Proton-coupled electron transfer reactions in solution: Molecular dynamics with quantum transitions for model systems

    E-Print Network [OSTI]

    Hammes-Schiffer, Sharon

    Proton-coupled electron transfer reactions in solution: Molecular dynamics with quantum transitions A general minimal model for proton-coupled electron transfer PCET reactions in solution is presented. This model consists of three coupled degrees of freedom that represent an electron, a proton, and a solvent

  3. Spectroscopy, polarization and nonadiabatic dynamics of electronically excited Ba(Ar)n clusters: Theory and experiment

    E-Print Network [OSTI]

    Krylov, Anna I.

    Spectroscopy, polarization and nonadiabatic dynamics of electronically excited Ba(Ar)n clusters, France Received 13 September 1995; accepted 17 November 1995 Molecular Dynamics simulations using, a comprehensive picture of the excited state dynamics is given. It is found that upon excitation, energy

  4. Quasioptical design of integrated Doppler backscattering and correlation electron cyclotron emission systems on the DIII-D tokamak

    E-Print Network [OSTI]

    Rhodes, T. L.

    The quasioptical design of a new integrated Doppler backscattering (DBS) and correlation electron cyclotron emission (CECE) system is presented. The design provides for simultaneous measurements of intermediate wavenumber ...

  5. Heat generation from electronics increases with the advent of high-density integrated circuit technology. To

    E-Print Network [OSTI]

    Boyer, Edmond

    circuit technology. To come up with the heat generation, microscale cooling has been thought as a promising technology. Prediction of heat transfer rate is crucial in design of microscale cooling device1 Abstract Heat generation from electronics increases with the advent of high-density integrated

  6. Excited electron dynamics in bulk ytterbium: Time-resolved two-photon photoemission and GW+T ab initio calculations

    E-Print Network [OSTI]

    Aeschlimann, Martin

    relaxation dynamics is played by the electronic structure of the system close to the Fermi level. For exampleExcited electron dynamics in bulk ytterbium: Time-resolved two-photon photoemission and GW+T ab November 2007 The excited electron dynamics in ytterbium is investigated by means of the time-resolved two

  7. Dynamics of a beam of hot electrons propagating through a plasma in the presence of nonthermal electrons

    SciTech Connect (OSTI)

    Khalilpour, H.; Moslehi-Fard, M. [Faculty of Physics, Tabriz University, 51664 Tabriz (Iran, Islamic Republic of); Foroutan, G. [Department of Physics, Faculty of Science, Sahand University of Technology, 51335-1996 Tabriz (Iran, Islamic Republic of); School of Physics, University of Sydney, Sydney, New South Wales 2006 (Australia); Li, B.; Robinson, P. A. [School of Physics, University of Sydney, Sydney, New South Wales 2006 (Australia)

    2009-07-15T23:59:59.000Z

    The dynamics of a beam of hot electrons traveling through a cold plasma and the generation of Langmuir waves are investigated in the presence of a nonthermal tail of electrons in the background distribution function. Using quasilinear simulations, it is shown that in the presence of the nonthermal electrons, the relaxation of the beam distribution function in velocity space is retarded and the Langmuir waves are strongly damped at low velocities. The average velocity of beam propagation is almost constant but its magnitude is larger in the presence of nonthermal electrons than their absence. It is found that the self-similarity of the system is preserved in the presence of nonthermal electrons. The effects of nonthermal electrons on the evolution of gas-dynamical parameters of the beam, including the height of plateau in the beam distribution function, its upper and lower velocity boundaries, and beam velocity width, are also studied. It is found that initially the values of the upper and lower velocity boundaries are almost unaltered, but at large times the lower (upper) boundary velocity is larger (smaller) in the presence of nonthermal electrons than without the nonthermal electrons.

  8. Simultaneous investigation of ultrafast structural dynamics and transient electric field by sub-picosecond electron pulses

    SciTech Connect (OSTI)

    Li, Run-Ze; Zhu, Pengfei; Chen, Long; Chen, Jie, E-mail: jiec@sjtu.edu.cn, E-mail: jzhang1@sjtu.edu.cn; Sheng, Zheng-Ming; Zhang, Jie, E-mail: jiec@sjtu.edu.cn, E-mail: jzhang1@sjtu.edu.cn [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Cao, Jianming [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Physics Department and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310 (United States)

    2014-05-14T23:59:59.000Z

    The ultrafast structure dynamics and surface transient electric field, which are concurrently induced by laser excited electrons of an aluminum nanofilm, have been investigated simultaneously by the same transmission electron diffraction patterns. These two processes are found to be significantly different and distinguishable by tracing the time dependent changes of electron diffraction and deflection angles, respectively. This study also provides a practical means to evaluate simultaneously the effect of transient electric field during the study of structural dynamics under low pump fluence by transmission ultrafast electron diffraction.

  9. Efficient electronic structure calculation for molecular ionization dynamics at high x-ray intensity

    E-Print Network [OSTI]

    Hao, Yajiang; Hanasaki, Kota; Son, Sang-Kil; Santra, Robin

    2015-01-01T23:59:59.000Z

    We present the implementation of an electronic-structure approach dedicated to ionization dynamics of molecules interacting with x-ray free-electron laser (XFEL) pulses. In our scheme, molecular orbitals for molecular core-hole states are represented by linear combination of numerical atomic orbitals that are solutions of corresponding atomic core-hole states. We demonstrate that our scheme efficiently calculates all possible multiple-hole configurations of molecules formed during XFEL pulses. The present method is suitable to investigate x-ray multiphoton multiple ionization dynamics and accompanying nuclear dynamics, providing essential information on the chemical dynamics relevant for high-intensity x-ray imaging.

  10. DYNAMICS OF CURRENT-BASED, POISSON DRIVEN, INTEGRATE-AND-FIRE NEURONAL NETWORKS

    E-Print Network [OSTI]

    Kramer, Peter

    DYNAMICS OF CURRENT-BASED, POISSON DRIVEN, INTEGRATE-AND-FIRE NEURONAL NETWORKS KATHERINE A-based, integrate-and-fire (I&F) neurons with delta-impulse coupling currents and Poisson spike-train external drive are studied. Repeating synchronous total firing events, during which all the neurons fire simultaneously

  11. Integrated Scheduling and Dynamic Optimization of Batch Processes Using State Equipment Networks

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Integrated Scheduling and Dynamic Optimization of Batch Processes Using State Equipment Networks value to existing assets Improving plant reliability 1 J.M. Wassick and J. Ferrio. Extending A batch plant with existing equipment A time horizon to make products Dynamic models of process operations

  12. Integrated Dynamic Optimization and Control in Reservoir Engineering using Locally Identified Linear Models

    E-Print Network [OSTI]

    Van den Hof, Paul

    on dynamic real-time optimization (D- RTO) of waterflooding strategies in petroleum reservoirs haveIntegrated Dynamic Optimization and Control in Reservoir Engineering using Locally Identified, the used large-scale, nonlinear, physics-based reservoir models suffer from vast parametric uncertainty

  13. Coherent two-exciton dynamics measured using two-quantum rephasing two-dimensional electronic spectroscopy

    E-Print Network [OSTI]

    Turner, Daniel B.

    We use fifth-order two-dimensional electronic spectroscopy to measure coherent four-particle dynamics in a semiconductor nanostructure. By using optical polarization control in two-quantum measurements enabled by the COLBERT ...

  14. Integration of dynamic data into reservoir description using streamline approaches

    E-Print Network [OSTI]

    He, Zhong

    2004-11-15T23:59:59.000Z

    -suited for large-scale field applications. We can account for realistic field conditions, such as gravity, and changing field conditions, arising from infill drilling, pattern conversion, and recompletion, etc., during the integration of two-phase production data...

  15. Human Growth and Body Weight Dynamics: An Integrative Systems Model

    E-Print Network [OSTI]

    Rahmandad, Hazhir

    Quantifying human weight and height dynamics due to growth, aging, and energy balance can inform clinical practice and policy analysis. This paper presents the first mechanism-based model spanning full individual life and ...

  16. Trajectory-Wave Approach to Electron Dynamics in Hydrogen Atom

    E-Print Network [OSTI]

    N. T. Valishin; F. T. Valishin; S. A. Moiseev

    2011-02-08T23:59:59.000Z

    In this work we propose a new approach to the explanation of the nature of electron based on the corpuscular-wave monism using the further development of the optical-mechanical analogy to describe the physical reality. In this theory the motion of an electron is considered to occur along a trajectory the presence of which is a reflection of the existence of a particle, as well as it is assumed that any motion is defined by a wave V(x,t). It is assumed that there is an explicit relationship between the trajectory and wave equations of the electron, which are established on the basis of the local variational principle. In this approach, an electron wave propagating in free space takes along the electron trajectory. We used this theory to describe the electron motion in a hydrogen-like atom and found its stationary states. The energies of these states coincide with the known quantum mechanics solutions for the stationary energies of the hydrogen-like atom, however, in our approach the spatial trajectories of the electron have the form of the surfaces, which are formed in the region of nodes of the standing electron wave. These surfaces have the form of spheres for the spherical symmetrical electron states and the radii of these spheres coincide with the radii of the Bohr orbits of these states. Thus, in this approach the trajectory and wave measurements of the electron get a consistent spatial description that is inherent to the picture of the corpuscular-wave monism. We discuss the considerable correspondence of the proposed theory with the quantum mechanics results describing the stationary and non-stationary motions of the electron in the atom and their difference. We believe that measuring of the spatial configuration of the observed electron trajectory surfaces in an atom could be a deep examination of the standard quantum theory.

  17. Dynamic Nuclear Polarization with Single Electron Spins J. R. Petta,1,2

    E-Print Network [OSTI]

    Petta, Jason

    Dynamic Nuclear Polarization with Single Electron Spins J. R. Petta,1,2 J. M. Taylor,1,3 A. C Barbara, California 93106, USA (Received 6 September 2007; published 11 February 2008) We polarize nuclear'' an electron spin and ``flopping'' a nuclear spin. The resulting Overhauser field approaches 80 m

  18. Non-adiabatic molecular dynamics simulation of ultrafast solar cell electron transfer

    E-Print Network [OSTI]

    confinement devices [1­5]. Solar cells of the Graetzel type [6,7] are based on dye sensitized nanocrystalline in solar cells, photocatalysis and photoelectrolysis. The electronic structure of the dye cell; Ultrafast electron transfer; Non-adiabatic molecular dynamics simulation; Dye sensitized titanium

  19. Electronic processes in fast thermite chemical reactions: A first-principles molecular dynamics study

    E-Print Network [OSTI]

    Southern California, University of

    Electronic processes in fast thermite chemical reactions: A first-principles molecular dynamics composites. We have investigated the thermite reaction of Fe2O3 with aluminum by molecular dynamics as thermite reaction, is widely utilized in the synthesis and processing of materials 1 . In addition

  20. Substrate-limited electron dynamics in graphene S. Fratini1,2 and F. Guinea2

    E-Print Network [OSTI]

    Boyer, Edmond

    Substrate-limited electron dynamics in graphene S. Fratini1,2 and F. Guinea2 1Institut Néel dynamics in graphene. We find that the quasiparticle spectrum acquires a finite broadening due to the long-range interaction with the polar modes at the interface between graphene and the substrate. This mechanism results

  1. Dynamic Power Management of Electronic Circuits and Systems Luca Benini GiovanniDe Micheli

    E-Print Network [OSTI]

    De Micheli, Giovanni

    Dynamic Power Management of Electronic Circuits and Systems Luca Benini GiovanniDe Micheli Stanford University Stanford,CA 94305 Abstract- Dynamic power management is a design methodology aiming at controlling approaches to power manage- ment, and we discuss issues related to the design of computer-aided design tools

  2. Ultrafast optical studies of electronic dynamics in semiconductors

    E-Print Network [OSTI]

    Ruzicka, Brian Andrew

    2012-05-31T23:59:59.000Z

    to their limited temporal resolution, electron measurement techniques cannot be used to study these processes on time scales in which the carrier-lattice system is not in equilibrium. However, in contemporary semiconductor devices with nanometer dimensions...

  3. Ultrafast control of strong-field electron dynamics in solids

    E-Print Network [OSTI]

    Vladislav S. Yakovlev; Stanislav Yu. Kruchinin; Tim Paasch-Colberg; Mark I. Stockman; Ferenc Krausz

    2015-02-17T23:59:59.000Z

    We review theoretical foundations and some recent progress related to the quest of controlling the motion of charge carriers with intense laser pulses and optical waveforms. The tools and techniques of attosecond science enable detailed investigations of a relatively unexplored regime of nondestructive strong-field effects. Such extremely nonlinear effects may be utilized to steer electron motion with precisely controlled optical fields and switch electric currents at a rate that is far beyond the capabilities of conventional electronics.

  4. Evaluation of Maxim Module-Integrated Electronics at the DOE Regional Test Centers (Presentation)

    SciTech Connect (OSTI)

    Deline, C.; Sekulic, B.; Barkaszi, S.; Yang, J.; Kahn, S.

    2014-06-01T23:59:59.000Z

    Module-embedded power electronics developed by Maxim Integrated are under evaluation through a partnership with the Department of Energy's Regional Test Center (RTC) program. Field deployments of both conventional modules and electronics-enhanced modules are designed to quantify the performance advantage of Maxim's products under different amounts of interrow shading, and their ability to be deployed at a greater ground-coverage ratio than conventional modules. Simulations in PVSYST have quantified the predicted performance difference between conventional modules and Maxim's modules from interrow shading. Initial performance results have identified diffuse irradiance losses at tighter row spacing for both the Maxim and conventional modules. Comparisons with published models show good agreement with models predicting the greatest diffuse irradiance losses. At tighter row spacing, all of the strings equipped with embedded power electronics outperformed their conventional peers. An even greater performance advantage is predicted to occur in the winter months when the amount of interrow shading mismatch is at a maximum.

  5. Dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons

    SciTech Connect (OSTI)

    Saha, Asit, E-mail: asit-saha123@rediffmail.com, E-mail: prasantachatterjee1@rediffmail.com [Department of Mathematics, Sikkim Manipal Institute of Technology, Majitar, Rangpo, East-Sikkim 737136 (India); Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan-731235 (India); Pal, Nikhil; Chatterjee, Prasanta, E-mail: asit-saha123@rediffmail.com, E-mail: prasantachatterjee1@rediffmail.com [Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan-731235 (India)

    2014-10-15T23:59:59.000Z

    The dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons has been investigated in the framework of perturbed and non-perturbed Kadomtsev-Petviashili (KP) equations. Applying the reductive perturbation technique, we have derived the KP equation in electron-positron-ion magnetoplasma with kappa distributed electrons and positrons. Bifurcations of ion acoustic traveling waves of the KP equation are presented. Using the bifurcation theory of planar dynamical systems, the existence of the solitary wave solutions and the periodic traveling wave solutions has been established. Two exact solutions of these waves have been derived depending on the system parameters. Then, using the Hirota's direct method, we have obtained two-soliton and three-soliton solutions of the KP equation. The effect of the spectral index ? on propagations of the two-soliton and the three-soliton has been shown. Considering an external periodic perturbation, we have presented the quasi periodic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas.

  6. A time-dependent momentum-space density functional theoretical approach for electron transport dynamics in molecular devices

    E-Print Network [OSTI]

    Chu, Shih-I

    for electron transport dynamics in molecular devices Zhongyuan Zhou(a) and Shih-I Chu Department of Chemistry and structures PACS 85.65.+h ­ Molecular electronic devices PACS 71.15.Pd ­ Molecular dynamics calculations (Carr) approach in momentum (P) space for the study of electron transport in molecular devices under arbitrary

  7. Integrated, Low Voltage, DynamicallyIntegrated, Low Voltage, Dynamically Adaptive BuckAdaptive Buck--Boost ConverterBoost Converter

    E-Print Network [OSTI]

    Rincon-Mora, Gabriel A.

    Improvement in battery life Low voltage Single cell operation (Li-ion/NiCd/NiMH/Fuel Cell) Integrated frequency 1 MHz ± 20% Closed-loop bandwidth 50 kHz 1-dB step change response time 20 µsec Full-load efficiency 90 % Control signal Output voltageTpower_change Tresponse Time 1 dB Typical transient response

  8. Postplasma particle dynamics in a Gaseous Electronics Conference RF Reference Cell

    SciTech Connect (OSTI)

    Collins, S.M. [Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85721 (United States)] [Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85721 (United States); Brown, D.A. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); O`Hanlon, J.F.; Carlile, R.N. [Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85721 (United States)] [Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85721 (United States)

    1995-11-01T23:59:59.000Z

    Particle contamination in plasma tools used for the manufacture of very large scale integrated semiconductor devices on silicon wafers is a major cause of yield loss. Understanding the dynamics of particle movement in the postplasma regime is important to explain the process of their transport to the wafer. The movement of particle contamination in a Gaseous Electronics Conference RF Reference Cell in the postplasma regime was investigated using a novel technique. Particle clouds were observed using laser light scattering together with an image intensifier and a monochromator. This technique allowed particle clouds of low density, that could not otherwise be detected, to be seen. Video analysis of the particles showed movement of the cloud front during the first second after the plasma was extinguished. Using the particle terminal velocity to estimate particle size, we estimate diameters of 0.11 {mu}m in argon and 0.05 {mu}m in krypton. The role of the thermophoretic force on particles during the postplasma was shown to be larger than gravitational forces and to dominate particle transport for small particles under the conditions investigated. A temperature gradient of 12 {degree}C/cm was observed to move these particles away from a warm electrode as the plasma was extinguished and the particles were released from the electrostatic confinement forces generated by the plasma. {copyright} {ital 1995} {ital American} {ital Vacuum} {ital Society}

  9. Using femtosecond electron pulses as an imaging tool, we can probe ultrafast dynamics by taking snapshots at different time delays. By using femtosecond electron diffraction (FED),

    E-Print Network [OSTI]

    Weston, Ken

    Abstract Using femtosecond electron pulses as an imaging tool, we can probe ultrafast dynamics correlation. Additionally, ultrafast electron shadow imaging (UESI) can explore the dynamics of laser induced System The femtosecond "camera" mentioned above is comprised of an amplified femtosecond pulsed laser

  10. Integration

    E-Print Network [OSTI]

    Koschorke, Albrecht; Musanovic, Emina

    2013-01-01T23:59:59.000Z

    Integration By Albrecht Koschorkeby Emina Musanovic [Integration (from Lat. integrare, “toa social unity. Social integration is distinct from systemic

  11. Transient Dynamics in Molecular Junctions: Coherent Bichromophoric Molecular Electron Pumps

    E-Print Network [OSTI]

    Roie Volkovich; Uri Peskin

    2010-12-01T23:59:59.000Z

    The possibility of using single molecule junctions as electron pumps for energy conversion and storage is considered. It is argued that the small dimensions of these systems enable to make use of unique intra-molecular quantum coherences in order to pump electrons between two leads and to overcome relaxation processes which tend to suppress the pumping efficiency. In particular, we demonstrate that a selective transient excitation of one chromophore in a bi-chromophoric donor-bridge-acceptor molecular junction model yields currents which transfer charge (electron and holes) unevenly to the two leads in the absence of a bias potential. The utility of this mechanism for charge pumping in steady state conditions is proposed.

  12. Data Integrity and Dynamic Storage Way in Cloud Computing

    E-Print Network [OSTI]

    Dinesh, C

    2011-01-01T23:59:59.000Z

    It is not an easy task to securely maintain all essential data where it has the need in many applications for clients in cloud. To maintain our data in cloud, it may not be fully trustworthy because client doesn't have copy of all stored data. But any authors don't tell us data integrity through its user and CSP level by comparison before and after the data update in cloud. So we have to establish new proposed system for this using our data reading protocol algorithm to check the integrity of data before and after the data insertion in cloud. Here the security of data before and after is checked by client with the help of CSP using our "effective automatic data reading protocol from user as well as cloud level into the cloud" with truthfulness. Also we have proposed the multi-server data comparison algorithm with the calculation of overall data in each update before its outsourced level for server restore access point for future data recovery from cloud data server. Our proposed scheme efficiently checks inte...

  13. Attosecond intramolecular electron dynamics A. Becker1,a

    E-Print Network [OSTI]

    Becker, Andreas

    ), over one half cycle of the oscillation of the laser electric field the ionization rate of the hydrogen of an electron from an atom or molecule is presumably one of the simplest but most central processes in physics field. In tunnel ionization, the combined potential of the Coulomb attraction of the atomic or molecular

  14. OPTIMAL CONTROL OF ATOMIC, MOLECULAR AND ELECTRON DYNAMICS

    E-Print Network [OSTI]

    Kassel, Universität

    , the dream was realized to actively exert control over quantum systems. Active control over the dynamics of quantum mechanical systems is a fascinating perspective in modern physics. Cleavage and creation? The theoretical and experimental development of suitable control schemes is a fascinating prospect of modern

  15. The First Events in Photosynthesis: Electronic Coupling and Energy Transfer Dynamics in the Photosynthetic Reaction Center from Rhodobacter sphaeroides

    E-Print Network [OSTI]

    Scherer, Norbert F.

    The First Events in Photosynthesis: Electronic Coupling and Energy Transfer Dynamics in photosynthesis. The reaction center contains six chlorophyll-like pigments arranged with approximate C2 symmetry

  16. A 3-DoF Experimental Test-Bed for Integrated Attitude Dynamics and Control Research

    E-Print Network [OSTI]

    Tsiotras, Panagiotis

    of the spacecraft are developed for the entire platform both for vari- able and fixed wheel configurations to the center of rotation of the platform for the fixed wheel configuration. The simulation and experimentalA 3-DoF Experimental Test-Bed for Integrated Attitude Dynamics and Control Research Dongwon Jung

  17. Integrating Dynamic Pricing of Electricity into Energy Aware Scheduling for HPC Systems

    E-Print Network [OSTI]

    Sun, Xian-He

    Integrating Dynamic Pricing of Electricity into Energy Aware Scheduling for HPC Systems Xu Yang, Zhou Zhou, Sean Wallace, Zhiling Lan Illinois Institute of Technology, Chicago, IL, USA {xyang56, zzhou Laboratory, Argonne, IL, USA {wtang, smc, papka}@anl.gov ABSTRACT The research literature to date mainly

  18. Integrated vehicle dynamics control via coordination of active front steering and rear braking

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Integrated vehicle dynamics control via coordination of active front steering and rear brakingComputer and Automation Research Institue, Hungarian Academy of Sciences, Kende u. 13-17, H-1111, Budapest, Hungary, Email front steering and rear braking in a driver- assist system for vehicle yaw control. The proposed control

  19. Instabilities in Molecular Dynamics Integrators used in Hybrid Monte Carlo Simulations

    E-Print Network [OSTI]

    B. Joo; UKQCD Collaboration

    2001-10-11T23:59:59.000Z

    We discuss an instability in the leapfrog integration algorithm, widely used in current Hybrid Monte Carlo (HMC) simulations of lattice QCD. We demonstrate the instability in the simple harmonic oscillator (SHO) system where it is manifest. We demonstrate the instability in HMC simulations of lattic QCD with dynamical Wilson-Clover fermions and discuss implications for future simulations of lattice QCD.

  20. A Behavioral Theory of the Merger Dynamics of the post-merger integration process

    E-Print Network [OSTI]

    , organization performance, organizational culture, computer simulation, computational organization theory #12. This study employs computational organization theory (COT) techniques, such as agent-based modelingA Behavioral Theory of the Merger Dynamics of the post-merger integration process Terrill L. Frantz

  1. Ecological Economics 41 (2002) 393408 SPECIAL ISSUE: The Dynamics and Value of Ecosystem Services: Integrating

    E-Print Network [OSTI]

    Vermont, University of

    2002-01-01T23:59:59.000Z

    Ecological Economics 41 (2002) 393­408 SPECIAL ISSUE: The Dynamics and Value of Ecosystem Services to the main ecological, socio­cultural and economic valuation methods. © 2002 Elsevier Science B.V. All rights: Integrating Economic and Ecological Perspectives A typology for the classification, description and valuation

  2. On the dynamics and morphology of extensive tidal mudflats: Integrating remote sensing data

    E-Print Network [OSTI]

    Ezer,Tal

    On the dynamics and morphology of extensive tidal mudflats: Integrating remote sensing data sensing data and inundation models allows the mapping of extensive tidal mudflats in a sub-Arctic estuary changes in mudflats morphology, and 3. mapping previously unobserved mud- flat topographies in order

  3. Calculation of heat capacities of light and heavy water by path-integral molecular dynamics

    E-Print Network [OSTI]

    Nielsen, Steven O.

    reproduces the isotope effect. The heat capacity in the liquid D2O has been calculated to be 10% higher than important in the liquid phase. In fact, in many systems, the heat capacity has an isotope effect, whichCalculation of heat capacities of light and heavy water by path-integral molecular dynamics

  4. Semiclassical (SC) Description of Electronically Non-AdiabaticDynamics via the Initial Value Representation (IVR)

    SciTech Connect (OSTI)

    Ananth, V.; Venkataraman, C.; Miller, W.H.

    2007-06-22T23:59:59.000Z

    The initial value representation (IVR) of semiclassical (SC) theory is used in conjunction with the Meyer-Miller/Stock-Thoss description of electronic degrees of freedom in order to treat electronically non-adiabatic processes. It is emphasized that the classical equations of motion for the nuclear and electronic degrees of freedom that emerge in this description are precisely the Ehrenfest equations of motion (the force on the nuclei is the force averaged over the electronic wavefunction), but that the trajectories given by these equations of motion do not have the usual shortcomings of the traditional Ehrenfest model when they are used within the SC-IVR framework. For example, in the traditional Ehrenfest model (a mixed quantum-classical approach) the nuclear motion emerges from a non-adiabatic encounter on an average potential energy surface (a weighted average according to the population in the various electronic states), while the SC-IVR describes the correct correlation between electronic and nuclear dynamics, i.e., the nuclear motion is on one potential energy surface or the other depending on the electronic state. Calculations using forward-backward versions of SC-IVR theory (FB-IVR) are presented to illustrate this behavior. An even more approximate version of the SC-IVR, the linearized approximation (LSC-IVR), is slightly better than the traditional Ehrenfest model, but since it cannot describe quantum coherence effects, the LSC-IVR is also not able to describe the correct correlation between nuclear and electronic dynamics.

  5. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01T23:59:59.000Z

    4 Inkjet Printed Electronics Using Copper Nanoparticle29 Inkjet Printed Electronics For Multifunctional Compositenanocrystals toward printed electronics,” Nanotechnology,

  6. Entangled valence electron-hole dynamics revealed by stimulated attosecond x-ray Raman scattering

    SciTech Connect (OSTI)

    Healion, Daniel; Zhang, Yu; Biggs, Jason D.; Govind, Niranjan; Mukamel, Shaul

    2012-09-06T23:59:59.000Z

    We show that broadband x-ray pulses can create wavepackets of valence electrons and holes localized in the vicinity of a selected atom (nitrogen, oxygen or sulfur in cysteine) by resonant stimulated Raman scattering. The subsequent dynamics reveals highly correlated motions of entangled electrons and hole quasiparticles. This information goes beyond the time-dependent total charge density derived from x-ray diffraction.

  7. A Graphene Quantum Dot with a Single Electron Transistor as Integrated Charge Sensor

    E-Print Network [OSTI]

    Ling-Jun Wang; Gang Cao; Tao Tu; Hai-Ou Li; Cheng Zhou; Xiao-Jie Hao; Zhan Su; Guang-Can Guo; Guo-Ping Guo; Hong-Wen Jiang

    2010-08-28T23:59:59.000Z

    We have developed an etching process to fabricate a quantum dot and a nearby single electron transistor as a charge detector in a single layer graphene. The high charge sensitivity of the detector is used to probe Coulomb diamonds as well as excited spectrum in the dot, even in the regime where the current through the quantum dot is too small to be measured by conventional transport means. The graphene based quantum dot and integrated charge sensor serve as an essential building block to form a solid-state qubit in a nuclear-spin-free quantum world.

  8. Single-electron quantum dot in Si/SiGe with integrated charge sensing C. B. Simmons,a

    E-Print Network [OSTI]

    Coppersmith, Susan N.

    Single-electron quantum dot in Si/SiGe with integrated charge sensing C. B. Simmons,a Madhu that are important for quantum information processing. Si/SiGe is of interest for semiconductor spin qubits and measurement of a top-gated quantum dot occupied by a single electron in a Si/SiGe heterostructure. Transport

  9. Probing attosecond electron dynamics at solid surfaces | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News, informationPriority Firm ExchangeSynchrotron

  10. Large dynamic range diagnostics for high current electron LINACs

    SciTech Connect (OSTI)

    Evtushenko, P., E-mail: Pavel.Evtushenko@jlab.org [Thomas Jefferson National Accelerator Facility 12000 Jefferson Avenue, Newport News, VA 23606 (United States)

    2013-11-07T23:59:59.000Z

    The Jefferson Lab FEL driver accelerator - Energy Recovery Linac has provided a beam with average current of up to 9 mA and beam energy of 135 MeV. The high power beam operations have allowed developing and testing methods and approaches required to set up and tune such a facility simultaneously for the high beam power and high beam quality required for high performance FEL operations. In this contribution we briefly review this experience and outline problems that are specific to high current - high power non-equilibrium linac beams. While the original strategy for beam diagnostics and tuning have proven to be quite successful, some shortcomings and unresolved issues were also observed. The most important issues are the non-equilibrium (non-Gaussian) nature of the linac beam and the presence of small intensity - large amplitude fraction of the beam a.k.a. beam halo. Thus we also present a list of the possible beam halo sources and discuss possible mitigations means. We argue that for proper understanding and management of the beam halo large dynamic range (>10{sup 6}) transverse and longitudinal beam diagnostics can be used. We also present results of transverse beam profile measurements with the dynamic range approaching 10{sup 5} and demonstrate the effect the increased dynamic range has on the beam characterization, i.e., emittance and Twiss parameters measurements. We also discuss near future work planned in this field and where the JLab FEL facility will be used for beam tests of the developed of new diagnostics.

  11. Electronic Structure and Excited State Dynamics in Biological and Nanoscale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContractElectron-State Hybridization in Heavy-FermionSystems | MIT-Harvard

  12. attosecond electron-hole dynamics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    attosecond electron-hole dynamics First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Entangled Valence...

  13. Dynamic Characterization of Graphene Growth and Etching by Oxygen on Ru(0001) by Photoemission Electron Microscopy

    E-Print Network [OSTI]

    Bao, Xinhe

    Dynamic Characterization of Graphene Growth and Etching by Oxygen on Ru(0001) by Photoemission of graphene on Ru(0001) was investigated by photoemission electron microscopy (PEEM) and scanning tunneling, we show that graphene overlayers with sizes ranging from nanometers to sub-millimeters have been

  14. Modelling dynamics of samples exposed to free-electron-laser radiation with Boltzmann equations

    E-Print Network [OSTI]

    Beata Ziaja; Antonio R. B. de Castro; Edgar Weckert; Thomas Moeller

    2005-12-20T23:59:59.000Z

    We apply Boltzmann equations for modelling the radiation damage in samples irradiated by photons from free electron laser (FEL). We test this method in a study case of a spherically symmetric xenon cluster irradiated with VUV FEL photons. The results obtained demonstrate the potential of the Boltzmann method for describing the complex and non-equilibrium dynamics of samples exposed to FEL radiation.

  15. Evaluation of Maxim Module-Integrated Electronics at the DOE Regional Test Centers: Preprint

    SciTech Connect (OSTI)

    Deline, C.; Sekulic, B.; Stein, J.; Barkaszi, S.; Yang, J.; Kahn, S.

    2014-07-01T23:59:59.000Z

    Module-embedded power electronics developed by Maxim Integrated are under evaluation through a partnership with the Department of Energy's Regional Test Center (RTC) program. Field deployments of both conventional modules and electronics-enhanced modules are designed to quantify the performance advantage of Maxim's products under different amounts of inter-row shading, and their ability to be deployed at a greater ground-coverage-ratio than conventional modules. Simulations in PVSYST have quantified the predicted performance difference between conventional modules and Maxim's modules from inter-row shading. Initial performance results have identified diffuse irradiance losses at tighter row spacing for both the Maxim and conventional modules. Comparisons with published models show good agreement with models predicting the greatest diffuse irradiance losses. At tighter row spacing, all of the strings equipped with embedded power electronics outperformed their conventional peers. An even greater performance advantage is predicted to occur in the winter months when the amount of inter-row shading mismatch is at a maximum.

  16. Dynamic Processes in Biology, Chemistry, and Materials Science: Opportunities for UltraFast Transmission Electron Microscopy - Workshop Summary Report

    SciTech Connect (OSTI)

    Kabius, Bernd C.; Browning, Nigel D.; Thevuthasan, Suntharampillai; Diehl, Barbara L.; Stach, Eric A.

    2012-07-25T23:59:59.000Z

    This report summarizes a 2011 workshop that addressed the potential role of rapid, time-resolved electron microscopy measurements in accelerating the solution of important scientific and technical problems. A series of U.S. Department of Energy (DOE) and National Academy of Science workshops have highlighted the critical role advanced research tools play in addressing scientific challenges relevant to biology, sustainable energy, and technologies that will fuel economic development without degrading our environment. Among the specific capability needs for advancing science and technology are tools that extract more detailed information in realistic environments (in situ or operando) at extreme conditions (pressure and temperature) and as a function of time (dynamic and time-dependent). One of the DOE workshops, Future Science Needs and Opportunities for Electron Scattering: Next Generation Instrumentation and Beyond, specifically addressed the importance of electron-based characterization methods for a wide range of energy-relevant Grand Scientific Challenges. Boosted by the electron optical advancement in the last decade, a diversity of in situ capabilities already is available in many laboratories. The obvious remaining major capability gap in electron microscopy is in the ability to make these direct in situ observations over a broad spectrum of fast (µs) to ultrafast (picosecond [ps] and faster) temporal regimes. In an effort to address current capability gaps, EMSL, the Environmental Molecular Sciences Laboratory, organized an Ultrafast Electron Microscopy Workshop, held June 14-15, 2011, with the primary goal to identify the scientific needs that could be met by creating a facility capable of a strongly improved time resolution with integrated in situ capabilities. The workshop brought together more than 40 leading scientists involved in applying and/or advancing electron microscopy to address important scientific problems of relevance to DOE’s research mission. This workshop built on previous workshops and included three breakout sessions identifying scientific challenges in biology, biogeochemistry, catalysis, and materials science frontier areas of fundamental science that underpin energy and environmental science that would significantly benefit from ultrafast transmission electron microscopy (UTEM). In addition, the current status of time-resolved electron microscopy was examined, and the technologies that will enable future advances in spatio-temporal resolution were identified in a fourth breakout session.

  17. Electronic Structure and Lattice Dynamics of the Magnetic Shape Memory Alloy Co2NiGa

    SciTech Connect (OSTI)

    Siewert, M.; Shapiro, S.; Gruner, M.E.; Dannenberg, A.; Hucht, A.; Xu, G.; Schlagel, D.L.; Lograsso, T.A.; Entel1, P.

    2010-08-20T23:59:59.000Z

    In addition to the prototypical Ni-Mn-based Heusler alloys, the Co-Ni-Ga systems have recently been suggested as another prospective materials class for magnetic shape-memory applications. We provide a characterization of the dynamical properties of this material and their relation to the electronic structure within a combined experimental and theoretical approach. This relies on inelastic neutron scattering to obtain the phonon dispersion while first-principles calculations provide the link between dynamical properties and electronic structure. In contrast to Ni{sub 2}MnGa, where the softening of the TA{sub 2} phonon branch is related to Fermi-surface nesting, our results reveal that the respective anomalies are absent in Co-Ni-Ga, in the phonon dispersions as well as in the electronic structure.

  18. A quantum simulator for molecules: Imaging molecular orbitals and electronic dynamics with ultracold atoms

    E-Print Network [OSTI]

    Lühmann, Dirk-Sören; Sengstock, Klaus

    2015-01-01T23:59:59.000Z

    In the recent years, ultracold atoms in optical lattices have proven their great value as quantum simulators for studying strongly-correlated phases and complex phenomena in solid-state systems. Here we reveal their potential as quantum simulators for molecular physics and propose a technique to image the three-dimensional molecular orbitals with high resolution. The outstanding tunability of ultracold atoms in terms of potential and interaction offer fully-adjustable model systems for gaining deep insight into the electronic structure of molecules. We study the orbitals of an artificial benzene molecule and discuss the effect of tunable interactions in its conjugated pi electron system with special regard to localization and spin order. The dynamical timescale of ultracold atom simulators are on the order milliseconds which allow for the time-resolved monitoring of a broad range of dynamical processes. As an example, we compute the hole dynamics in the conjugated pi system of the artificial benzene molecule.

  19. On the completely integrable Calogero type discretizations of nonlinear Lax integrable dynamical systems and the related Markov type co-adjoint orbits

    E-Print Network [OSTI]

    Anatolij K. Prykarpatski

    2015-01-03T23:59:59.000Z

    The Calogero type matrix discretization scheme is applied to constructing the Lax type integrable discretizations of one wide enough class of nonlinear integrable dynamical systems on functional manifolds. Their Lie-algebraic structure and complete integrability related with co-adjoint orbits on the Markov co-algebras is discussed. It is shown that a set of conservation laws and the associated Poisson structure ensue as a byproduct of the approach devised. Based on the Lie algebras quasi-representation property the limiting procedure of finding the nonlinear dynamical systems on the corresponding functional spaces is demonstrated.

  20. Semiconductor nanowires for future electronics : growth, characterization, device fabrication, and integration

    E-Print Network [OSTI]

    Dayeh, Shadi A.

    2008-01-01T23:59:59.000Z

    en-Sciences, Physics and Electronics, Lebanese University,Devices for Novel Electronics”, Material Research SocietyNanowires for Future Electronics: Growth, Characterization,

  1. Integrating GIS with Distributed Applications Using Dynamic Data-Sharing Mechanisms

    SciTech Connect (OSTI)

    Burnett, Robert A. (BATTELLE (PACIFIC NW LAB)); Tzemos, Spyridon (BATTELLE (PACIFIC NW LAB)); Stoops, LaMar R. (BATTELLE (PACIFIC NW LAB))

    2002-08-21T23:59:59.000Z

    Effective integration of a stand-alone GIS (e.g., ArcView 3.x) into a complex distributed software application requires an efficient, reliable mechanism for passing data and function requests to and from the GIS component. This paper describes the use of dynamic data-sharing and inter-process communication mechanisms to integrate GIS capability into a multi-jurisdictional distributed emergency management information system. These mechanisms include dynamic layer updates from spatial and attribute information shared via a distributed relational database across multiple sites; storage of private and shared ViewMarks to facilitate consistent GIS views; and asynchronous inter-process communication using function queuing and a data sharing library.

  2. A modified numerical integrator of ring polymer Hamiltonian dynamics with constraints

    E-Print Network [OSTI]

    Yunfeng Xiong

    2014-12-01T23:59:59.000Z

    In this paper, a symplectic and time-reversible integrator is proposed of simulating the Hamiltonian dynamics with constraints in path integral molecular dynamics. The constraints are tackled by Matrix Inverted Linearized Constraint algorithm (MILC), while a slight modification is requested under normal mode representation, and the slow force is mollified by Equilibrium method (Equilibrium MOLLY) to ameliorate the numerical resonance. It is demonstrated that the slow force impulse can be evaluated only at the centroid of beads, instead of being evaluated at the positions of each bead independently. Therefore, it not only allows longer time step but also reduces the complexity of computation. The numerical experiment is performed using SPC/E model in 298K with eight beads. Further discussion will involve the application of Equilibrium MOLLY in flexible bond model.

  3. Dynamic nuclear polarization with simultaneous excitation of electronic and nuclear transitions

    E-Print Network [OSTI]

    G. W. Morley; K. Porfyrakis; A. Ardavan; J. van Tol

    2008-05-28T23:59:59.000Z

    Dynamic nuclear polarization transfers spin polarization from electrons to nuclei. We have achieved this by a new method, simultaneously exciting transitions of electronic and nuclear spins. The efficiency of this technique improves with increasing magnetic field. Experimental results are shown for N@C60 with continuous-wave microwaves, which can be expected to produce even higher polarization than the corresponding pulsed techniques for electron spins greater than 1/2. The degree of nuclear polarization in this case can be easily monitored through the intensities of the well resolved hyperfine components in the EPR spectrum. The nuclear spin-lattice relaxation time is orders of magnitude longer than that of the electrons.

  4. Electron dynamics in complex environments with real-time time dependent density functional theory in a QM-MM framework

    SciTech Connect (OSTI)

    Morzan, Uriel N.; Ramírez, Francisco F.; Scherlis, Damián A., E-mail: damian@qi.fcen.uba.ar, E-mail: mcgl@qb.ffyb.uba.ar [Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires (C1428EHA) (Argentina); Oviedo, M. Belén; Sánchez, Cristián G. [Departamento de Matemática y Física, Facultad de Ciencias Químicas, INFIQC, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba (Argentina)] [Departamento de Matemática y Física, Facultad de Ciencias Químicas, INFIQC, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba (Argentina); Lebrero, Mariano C. González, E-mail: damian@qi.fcen.uba.ar, E-mail: mcgl@qb.ffyb.uba.ar [Instituto de Química y Fisicoquímica Biológicas, IQUIFIB, CONICET (Argentina)] [Instituto de Química y Fisicoquímica Biológicas, IQUIFIB, CONICET (Argentina)

    2014-04-28T23:59:59.000Z

    This article presents a time dependent density functional theory (TDDFT) implementation to propagate the Kohn-Sham equations in real time, including the effects of a molecular environment through a Quantum-Mechanics Molecular-Mechanics (QM-MM) hamiltonian. The code delivers an all-electron description employing Gaussian basis functions, and incorporates the Amber force-field in the QM-MM treatment. The most expensive parts of the computation, comprising the commutators between the hamiltonian and the density matrix—required to propagate the electron dynamics—, and the evaluation of the exchange-correlation energy, were migrated to the CUDA platform to run on graphics processing units, which remarkably accelerates the performance of the code. The method was validated by reproducing linear-response TDDFT results for the absorption spectra of several molecular species. Two different schemes were tested to propagate the quantum dynamics: (i) a leap-frog Verlet algorithm, and (ii) the Magnus expansion to first-order. These two approaches were confronted, to find that the Magnus scheme is more efficient by a factor of six in small molecules. Interestingly, the presence of iron was found to seriously limitate the length of the integration time step, due to the high frequencies associated with the core-electrons. This highlights the importance of pseudopotentials to alleviate the cost of the propagation of the inner states when heavy nuclei are present. Finally, the methodology was applied to investigate the shifts induced by the chemical environment on the most intense UV absorption bands of two model systems of general relevance: the formamide molecule in water solution, and the carboxy-heme group in Flavohemoglobin. In both cases, shifts of several nanometers are observed, consistently with the available experimental data.

  5. A closer look at non-uniqueness during dynamic data integration

    E-Print Network [OSTI]

    Cobenas, Rafael H.

    1997-01-01T23:59:59.000Z

    Buenos Aires, Instituto Argentino del Petroleo and Valdez Rojas y Hogg S. A. for providing me the opportunity and the financial support to pursue my Master of Science degree at Texas ASM University. I would also like to thank the following individuals... Closer Look at Non-Uniqueness during Dynamic Data Integration. (December 1997) Rafael H. Cobenas, B. S. , Instituto Tecnologico de Buenos Aires Chair of Advisory Committee: Dr. Akhil Datta-Gupta Characterizing heterogeneous permeable media using...

  6. Phase-space dynamics of runaway electrons in tokamaks Xiaoyin Guan, Hong Qin, and Nathaniel J. Fisch

    E-Print Network [OSTI]

    Phase-space dynamics of runaway electrons in tokamaks Xiaoyin Guan, Hong Qin, and Nathaniel J Received 9 February 2010; accepted 19 July 2010; published online 3 September 2010 The phase-space dynamics. A theoretical model and a numerical algorithm for the runaway dynamics in phase space are developed. Instead

  7. Femtosecond time-resolved photoemission electron microscopy for spatiotemporal imaging of photogenerated carrier dynamics in semiconductors

    SciTech Connect (OSTI)

    Fukumoto, Keiki, E-mail: fukumoto.k.ab@m.titech.ac.jp; Yamada, Yuki; Matsuki, Takashi; Koshihara, Shin-ya [Department of Materials Science, Tokyo Institute of Technology, Oookayama, Meguro-ku, Tokyo 152-8550 (Japan); Japan Science and Technology Agency JST-CREST, Honcho, Kawaguchi, Saitama 332-0012 (Japan); Onda, Ken [Interactive Research Center of Science, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Japan Science and Technology Agency JST-PRESTO, Honcho, Kawaguchi, Saitama 332-0012 (Japan); Mukuta, Tatsuhiko; Tanaka, Sei-ichi [Department of Materials Science, Tokyo Institute of Technology, Oookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-08-15T23:59:59.000Z

    We constructed an instrument for time-resolved photoemission electron microscopy (TR-PEEM) utilizing femtosecond (fs) laser pulses to visualize the dynamics of photogenerated electrons in semiconductors on ultrasmall and ultrafast scales. The spatial distribution of the excited electrons and their relaxation and/or recombination processes were imaged by the proposed TR-PEEM method with a spatial resolution about 100 nm and an ultrafast temporal resolution defined by the cross-correlation of the fs laser pulses (240 fs). A direct observation of the dynamical behavior of electrons on higher resistivity samples, such as semiconductors, by TR-PEEM has still been facing difficulties because of space and/or sample charging effects originating from the high photon flux of the ultrashort pulsed laser utilized for the photoemission process. Here, a regenerative amplified fs laser with a widely tunable repetition rate has been utilized, and with careful optimization of laser parameters, such as fluence and repetition rate, and consideration for carrier lifetimes, the electron dynamics in semiconductors were visualized. For demonstrating our newly developed TR-PEEM method, the photogenerated carrier lifetimes around a nanoscale defect on a GaAs surface were observed. The obtained lifetimes were on a sub-picosecond time scale, which is much shorter than the lifetimes of carriers observed in the non-defective surrounding regions. Our findings are consistent with the fact that structural defects induce mid-gap states in the forbidden band, and that the electrons captured in these states promptly relax into the ground state.

  8. Electron-rich sheath dynamics. I. Transient currents and sheath-plasma instabilities

    SciTech Connect (OSTI)

    Stenzel, R. L. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States); Gruenwald, J.; Ionita, C.; Schrittwieser, R. [Institute for Ion Physics and Applied Physics, University of Innsbruck, A-6020 Innsbruck (Austria)

    2011-06-15T23:59:59.000Z

    The evolution of an electron-rich sheath on a plane electrode has been investigated experimentally. A rapidly rising voltage is applied to a plane gridded electrode in a weakly ionized, low temperature, and field-free discharge plasma. Transient currents during the transition from ion-rich to electron-rich sheath are explained including the current closure. Time-resolved current-voltage characteristics of the electrode are presented. The time scale for the formation of an electron-rich sheath is determined by the ion dynamics and takes about an ion plasma period. When the ions have been expelled from the sheath a high-frequency sheath-plasma instability grows. The electric field contracts into the electron-rich sheath which implies that the potential outside the sheath drops. It occurs abruptly and creates a large current pulse on the electrode which is not a conduction but a displacement current. The expulsion of ions from the vicinity of the electrode lowers the electron density, electrode current, and the frequency of the sheath-plasma oscillations. Electron energization in the sheath creates ionization which reduces the space charge density, hence sheath electric field. The sheath-plasma instability is weakened or vanishes. The ionization rate decreases, and the sheath electric field recovers. A relaxation instability with repeated current transients can arise which is presented in a companion paper. Only for voltages below the ionization potential a quiescent electron rich-sheath is observed.

  9. Integrated Numerical Experiments (INEX) and the Free-Electron Laser Physical Process Code (FELPPC)

    SciTech Connect (OSTI)

    Thode, L.E.; Chan, K.C.D.; Schmitt, M.J.; McKee, J.; Ostic, J.; Elliott, C.J.; McVey, B.D.

    1990-01-01T23:59:59.000Z

    The strong coupling of subsystem elements, such as the accelerator, wiggler, and optics, greatly complicates the understanding and design of a free electron laser (FEL), even at the conceptual level. Given the requirements for high-performance FELs, the strong coupling between the laser subsystems must be included to obtain a realistic picture of the potential operational capability. To address the strong coupling character of the FEL the concept of an Integrated Numerical Experiment (INEX) was proposed. Unique features of the INEX approach are consistency and numerical equivalence of experimental diagnostics. The equivalent numerical diagnostics mitigates the major problem of misinterpretation that often occurs when theoretical and experimental data are compared. The INEX approach has been applied to a large number of accelerator and FEL experiments. Overall, the agreement between INEX and the experiments is very good. Despite the success of INEX, the approach is difficult to apply to trade-off and initial design studies because of the significant manpower and computational requirements. On the other hand, INEX provides a base from which realistic accelerator, wiggler, and optics models can be developed. The Free Electron Laser Physical Process Code (FELPPC) includes models developed from INEX, provides coupling between the subsystems models and incorporates application models relevant to a specific trade-off or design study.

  10. Centrifugal separation and equilibration dynamics in an electron-antiproton plasma

    E-Print Network [OSTI]

    G. B. Andresen; M. D. Ashkezari; M. Baquero-Ruiz; W. Bertsche; P. D. Bowe; E. Butler; C. L. Cesar; S. Chapman; M. Charlton; A. Deller; S. Eriksson; J. Fajans; T. Friesen; M. C. Fujiwara; D. R. Gill; A. Gutierrez; J. S. Hangst; W. N. Hardy; M. E. Hayden; A. J. Humphries; R. Hydomako; S. Jonsell; N. Madsen; S. Menary; P. Nolan; A. Olin; A. Povilus; P. Pusa; F. Robicheaux; E. Sarid; D. M. Silveira; C. So; J. W. Storey; R. I. Thompson; D. P. van der Werf; J. S. Wurtele; Y. Yamazaki

    2011-04-26T23:59:59.000Z

    Charges in cold, multiple-species, non-neutral plasmas separate radially by mass, forming centrifugally-separated states. Here, we report the first detailed measurements of such states in an electron-antiproton plasma, and the first observations of the separation dynamics in any centrifugally-separated system. While the observed equilibrium states are expected and in agreement with theory, the equilibration time is approximately constant over a wide range of parameters, a surprising and as yet unexplained result. Electron-antiproton plasmas play a crucial role in antihydrogen trapping experiments.

  11. Electron beam dynamics in the DARHT-II linear induction accelerator

    SciTech Connect (OSTI)

    Ekdahl, Carl A [Los Alamos National Laboratory; Abeyta, Epifanio O [Los Alamos National Laboratory; Aragon, Paul [Los Alamos National Laboratory; Archuleta, Rita [Los Alamos National Laboratory; Cook, Gerald [Los Alamos National Laboratory; Dalmas, Dale [Los Alamos National Laboratory; Esquibel, Kevin [Los Alamos National Laboratory; Gallegos, Robert A [Los Alamos National Laboratory; Garnett, Robert [Los Alamos National Laboratory; Harrison, James F [Los Alamos National Laboratory; Johnson, Jeffrey B [Los Alamos National Laboratory; Jacquez, Edward B [Los Alamos National Laboratory; Mccuistian, Brian T [Los Alamos National Laboratory; Montoya, Nicholas A [Los Alamos National Laboratory; Nath, Subrata [Los Alamos National Laboratory; Nielsen, Kurt [Los Alamos National Laboratory; Oro, David [Los Alamos National Laboratory; Prichard, Benjamin [Los Alamos National Laboratory; Rowton, Lawrence [Los Alamos National Laboratory; Sanchez, Manolito [Los Alamos National Laboratory; Scarpetti, Raymond [Los Alamos National Laboratory; Schauer, Martin M [Los Alamos National Laboratory; Seitz, Gerald [Los Alamos National Laboratory; Schulze, Martin [Los Alamos National Laboratory; Bender, Howard A [Los Alamos National Laboratory; Broste, William B [Los Alamos National Laboratory; Carlson, Carl A [Los Alamos National Laboratory; Frayer, Daniel K [Los Alamos National Laboratory; Johnson, Douglas E [Los Alamos National Laboratory; Tom, C Y [Los Alamos National Laboratory; Trainham, C [NSTEC/STL; Williams, John [Los Alamos National Laboratory; Genoni, Thomas [VOSS; Hughes, Thomas [VOSS; Toma, Carsten [VOSS

    2008-01-01T23:59:59.000Z

    The DARHT-II linear induction accelerator (LIA) accelerates a 2-kA electron beam to more than 17 MeV. The beam pulse has a greater than 1.5-microsecond flattop region over which the electron kinetic energy is constant to within 1%. The beam dynamics are diagnosed with 21 beam-position monitors located throughout the injector, accelerator, and after the accelerator exit, where we also have beam imaging diagnostics. We discuss the tuning of the injector and accelerator, and present data for the resulting beam dynamics. We discuss the tuning procedures and other methods used to minimize beam motion, which is undesirable for its application as a bremsstrahlung source for multi-pulse radiography of exlosively driven hydrodynamic experiments. We also present beam stability measurements, which we relate to previous stability experiments at lower current and energy.

  12. First-principles calculations of the structural, dynamical, and electronic properties of liquid MgO Bijaya B. Karki,1 Dipesh Bhattarai,1 and Lars Stixrude2,

    E-Print Network [OSTI]

    Stixrude, Lars

    First-principles calculations of the structural, dynamical, and electronic properties of liquid Mg first-principles study,10 the structural, dynamic, and electronic properties of the liquid state are yet, dynamical, and electronic properties of liquid MgO have been investigated over a wide range of pressure 0

  13. Quantum dynamics with fermion coupled coherent states: Theory and application to electron dynamics in laser fields

    SciTech Connect (OSTI)

    Kirrander, Adam [Laboratoire Aime Cotton du CNRS, Universite de Paris-Sud, Batiment 505, F-91405 Orsay (France); Shalashilin, Dmitrii V. [School of Chemistry, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2011-09-15T23:59:59.000Z

    We present an alternate version of the coupled-coherent-state method, specifically adapted for solving the time-dependent Schroedinger equation for multielectron dynamics in atoms and molecules. This theory takes explicit account of the exchange symmetry of fermion particles, and it uses fermion molecular dynamics to propagate trajectories. As a demonstration, calculations in the He atom are performed using the full Hamiltonian and accurate experimental parameters. Single- and double-ionization yields by 160-fs and 780-nm laser pulses are calculated as a function of field intensity in the range 10{sup 14}-10{sup 16} W/cm{sup 2}, and good agreement with experiments by Walker et al. is obtained. Since this method is trajectory based, mechanistic analysis of the dynamics is straightforward. We also calculate semiclassical momentum distributions for double ionization following 25-fs and 795-nm pulses at 1.5x10{sup 15} W/cm{sup 2}, in order to compare them with the detailed experiments by Rudenko et al. For this more challenging task, full convergence is not achieved. However, major effects such as the fingerlike structures in the momentum distribution are reproduced.

  14. Surface residues dynamically organize water bridges to enhance electron transfer between proteins

    E-Print Network [OSTI]

    de la Lande, Aurélien; ?ezá?, Jan; Sanders, Barry C; Salahub, Dennis R; 10.1073/pnas.0914457107

    2010-01-01T23:59:59.000Z

    Cellular energy production depends on electron transfer (ET) between proteins. In this theoretical study, we investigate the impact of structural and conformational variations on the electronic coupling between the redox proteins methylamine dehydrogenase and amicyanin from Paracoccus denitrificans. We used molecular dynamics simulations to generate configurations over a duration of 40ns (sampled at 100fs intervals) in conjunction with an ET pathway analysis to estimate the ET coupling strength of each configuration. In the wild type complex, we find that the most frequently occurring molecular configurations afford superior electronic coupling due to the consistent presence of a water molecule hydrogen-bonded between the donor and acceptor sites. We attribute the persistence of this water bridge to a "molecular breakwater" composed of several hydrophobic residues surrounding the acceptor site. The breakwater supports the function of nearby solvent-organizing residues by limiting the exchange of water molecul...

  15. Dynamics of an electron in a relativistically intense laser field including radiaion reaction

    SciTech Connect (OSTI)

    Galkin, A. L., E-mail: galkin@kapella.gpi.ru [Prokhorov General Physics Institute of the Russian Academy of Science (Russian Federation)

    2012-08-15T23:59:59.000Z

    The dynamics of an electron in a relativistically intense laser pulse field is described with the radiation reaction being taken into account. The study is based on solving the Newton equation with the Lorentz and the radiation reaction forces. Validation is provided for an iteration technique which makes it possible to remove the discrepancies found in the theoretical models of radiation reaction. It is demonstrated that an electron having a high initial velocity and colliding head-on with a laser pulse sheds a considerable part of its kinetic energy due to the radiation reaction. A broadening of the electromagnetic pulse emitted by the electron occurs as a result of the same effect. The findings obtained can be used to experimentally verify the effect of radiation reaction.

  16. Time step rescaling recovers continuous-time dynamical properties for discrete-time Langevin integration of nonequilibrium systems

    E-Print Network [OSTI]

    David A. Sivak; John D. Chodera; Gavin E. Crooks

    2014-04-09T23:59:59.000Z

    When simulating molecular systems using deterministic equations of motion (e.g., Newtonian dynamics), such equations are generally numerically integrated according to a well-developed set of algorithms that share commonly agreed-upon desirable properties. However, for stochastic equations of motion (e.g., Langevin dynamics), there is still broad disagreement over which integration algorithms are most appropriate. While multiple desiderata have been proposed throughout the literature, consensus on which criteria are important is absent, and no published integration scheme satisfies all desiderata simultaneously. Additional nontrivial complications stem from simulating systems driven out of equilibrium using existing stochastic integration schemes in conjunction with recently-developed nonequilibrium fluctuation theorems. Here, we examine a family of discrete time integration schemes for Langevin dynamics, assessing how each member satisfies a variety of desiderata that have been enumerated in prior efforts to construct suitable Langevin integrators. We show that the incorporation of a novel time step rescaling in the deterministic updates of position and velocity can correct a number of dynamical defects in these integrators. Finally, we identify a particular splitting that has essentially universally appropriate properties for the simulation of Langevin dynamics for molecular systems in equilibrium, nonequilibrium, and path sampling contexts.

  17. A hybrid electron and photon IMRT planning technique that lowers normal tissue integral patient dose using standard hardware

    SciTech Connect (OSTI)

    Rosca, Florin [Department of Radiation Oncology, Massachusetts General Hospital, Danvers, Massachusetts 01923 (United States)

    2012-06-15T23:59:59.000Z

    Purpose: To present a mixed electron and photon IMRT planning technique using electron beams with an energy range of 6-22 MeV and standard hardware that minimizes integral dose to patients for targets as deep as 7.5 cm. Methods: Ten brain cases, two lung, a thyroid, an abdominal, and a parotid case were planned using two planning techniques: a photon-only IMRT (IMRT) versus a mixed modality treatment (E + IMRT) that includes an enface electron beam and a photon IMRT portion that ensures a uniform target coverage. The electron beam is delivered using a regular cutout placed in an electron cone. The electron energy was chosen to provide a good trade-off between minimizing integral dose and generating a uniform, deliverable plan. The authors choose electron energies that cover the deepest part of PTV with the 65%-70% isodose line. The normal tissue integral dose, the dose for ring structures around the PTV, and the volumes of the 75%, 50%, and 25% isosurfaces were used to compare the dose distributions generated by the two planning techniques. Results: The normal tissue integral dose was lowered by about 20% by the E + IMRT plans compared to the photon-only IMRT ones for most studied cases. With the exception of lungs, the dose reduction associated to the E + IMRT plans was more pronounced further away from the target. The average dose ratio delivered to the 0-2 cm and the 2-4 cm ring structures for brain patients for the two planning techniques were 89.6% and 70.8%, respectively. The enhanced dose sparing away from the target for the brain patients can also be observed in the ratio of the 75%, 50%, and 25% isodose line volumes for the two techniques, which decreases from 85.5% to 72.6% and further to 65.1%, respectively. For lungs, the lateral electron beams used in the E + IMRT plans were perpendicular to the mostly anterior/posterior photon beams, generating much more conformal plans. Conclusions: The authors proved that even using the existing electron delivery hardware, a mixed electron/photon planning technique (E + IMRT) can decrease the normal tissue integral dose compared to a photon-only IMRT plan. Different planning approaches can be enabled by the use of an electron beam directed toward organs at risk distal to the target, which are still spared due the rapid dose fall-off of the electron beam. Examples of such cases are the lateral electron beams in the thoracic region that do not irradiate the heart and contralateral lung, electron beams pointed toward kidneys in the abdominal region, or beams treating brain lesions pointed toward the brainstem or optical apparatus. For brain, electron vertex beams can also be used without irradiating the whole body. Since radiation retreatments become more and more common, minimizing the normal tissue integral dose and the dose delivered to tissues surrounding the target, as enabled by E + IMRT type techniques, should receive more attention.

  18. Electrons as probes of dynamics in molecules and clusters : a contribution from Time Dependent Density Functional Theory

    E-Print Network [OSTI]

    Wopperer, P; Reinhard, P -G; Suraud, E

    2014-01-01T23:59:59.000Z

    Various ways to analyze the dynamical response of clusters and molecules to electromagnetic perturbations exist. Particularly rich information can be obtained from measuring the properties of electrons emitted in the course of the excitation dynamics. Such an analysis of electron signals covers total ionization, Photo-Electron Spectra, Photoelectron Angular Distributions, and ideally combined PES/PAD, with a long history in molecular physics, also increasingly used in cluster physics. Recent progress in the design of new light sources (high intensity and/or frequency, ultra short pulses) opens new possibilities for measurements and thus has renewed the interest on the analysis of dynamical scenarios through these observables, well beyond a simple access to a density of states. This, in turn, has motivated many theoretical investigations of the dynamics of electronic emission for molecules and clusters. A theoretical tool of choice is here Time-Dependent Density Functional Theory (TDDFT) propagated in real tim...

  19. Isotope effects in water as investigated by neutron diffraction and path integral molecular dynamics

    SciTech Connect (OSTI)

    Zeidler, Anita [University of Bath; Salmon, Phil [University of Bath; Fischer, Henry E [Institut Laue-Langevin (ILL); Neuefeind, Joerg C [ORNL; Simonson, J Michael {Mike} [ORNL; Markland, Thomas [Columbia University

    2012-01-01T23:59:59.000Z

    The structure of heavy and light water at 300 K was investigated by using a joint approach in which the method of neutron di raction with oxygen isotope substitution was combined with path integral molecular dynamics simulations. The di raction results, which give intra-molecular O-D and O-H bond distances of 0.985(5) and 0.990(5) A, were found to be in best agreement with those obtained by using the exible anharmonic TTM3-F water model. Both techniques show a di erence of '0.5% between the O-D and O-H intra-molecular bond lengths and the results support a competing quantum e ects model for water in which its structural and dynamical properties are governed by an o set between intra-molecular and inter-molecular quantum contributions. Further consideration of the O-O correlations is needed in order to improve agreement with experiment.

  20. Integration Schemes for Dissipative Particle Dynamics Simulations: From Softly Interacting Systems Towards Hybrid Models

    E-Print Network [OSTI]

    Ilpo Vattulainen; Mikko Karttunen; Gerhard Besold; J. M. Polson

    2002-11-15T23:59:59.000Z

    We examine the performance of various commonly used integration schemes in dissipative particle dynamics simulations. We consider this issue using three different model systems, which characterize a variety of different conditions often studied in simulations. Specifically we clarify the performance of integration schemes in hybrid models, which combine microscopic and meso-scale descriptions of different particles using both soft and hard interactions. We find that in all three model systems many commonly used integrators may give rise to surprisingly pronounced artifacts in physical observables such as the radial distribution function, the compressibility, and the tracer diffusion coefficient. The artifacts are found to be strongest in systems, where interparticle interactions are soft and predominated by random and dissipative forces, while in systems governed by conservative interactions the artifacts are weaker. Our results suggest that the quality of any integration scheme employed is crucial in all cases where the role of random and dissipative forces is important, including hybrid models where the solvent is described in terms of soft potentials.

  1. The dynamics of planetary nebulae in the Galaxy: evidence for a third integral

    E-Print Network [OSTI]

    S. Durand; H. Dejonghe; A. Acker

    1995-12-08T23:59:59.000Z

    We present a dynamical analysis of 673 galactic Planetary Nebulae, using a two-integral axisymmetric model with a Kuzmin-Kutuzov St\\"{a}ckel potential. The method fits the kinematics to the projected moments of a distribution function, by means of Quadratic Programming. The 2.2 $\\mu$m COBE brightness map has been used after correction for the interstellar extinction as a projected star counts map in the modeling, because it constitutes a galactic distribution view of evolved red populations which are considered to be the progenitors of PNe. The model we have obtained provides a 2-integral distribution function for the COBE 2.2 $\\mu$m map, and thus {\\it a fortiori} a deprojection of it, which allows moreover the identification of all the major Galactic components. We derive the density laws for them. The projected velocity dispersions are not well fitted though, especially in the disk, which points at the likely presence of a third integral. If this result can be confirmed by additional data, this would mean that for the first time the presence and importance of a third integral on a global scale is demonstrated.

  2. Design and Application of an Electronic Logbook for Space System Integration and Test Operations

    SciTech Connect (OSTI)

    Kavelaars, Alicia T.; /SLAC /Stanford U., Dept. Aeronaut. Astronaut.; ,

    2006-10-10T23:59:59.000Z

    In the highly technological aerospace world paper is still widely used to document space system integration and test (I&T) operations. E-Logbook is a new technology designed to substitute the most commonly used paper logbooks in space system I&T, such as the connector mate/demate logbook, the flight hardware and flight software component installation logbook, the material mix record logbook and the electronic ground support equipment validation logbook. It also includes new logbook concepts, such as the shift logbook, which optimizes management oversight and the shift hand-over process, and the configuration logbook, which instantly reports on the global I&T state of the space system before major test events or project reviews. The design of E-Logbook focuses not only on a reliable and efficient relational database, but also on an ergonomic human-computer interactive (HCI) system that can help reduce human error and improve I&T management and oversight overall. E-Logbook has been used for the I&T operation of the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) at the Stanford Linear Accelerator Center (SLAC). More than 41,000 records have been created for the different I&T logbooks, with no data having been corrupted or critically lost. 94% of the operators and 100% of the management exposed to E-Logbook prefer it to paper logbooks and recommend its use in the aerospace industry.

  3. Spin dynamics simulation of electron spin relaxation in Ni{sup 2+}(aq)

    SciTech Connect (OSTI)

    Rantaharju, Jyrki, E-mail: jjrantaharju@gmail.com; Mareš, Ji?í, E-mail: jiri.mares@oulu.fi; Vaara, Juha, E-mail: juha.vaara@iki.fi [NMR Research Group, Department of Physics, University of Oulu, P.O. Box 3000, Oulu, FIN-90014 (Finland)

    2014-07-07T23:59:59.000Z

    The ability to quantitatively predict and analyze the rate of electron spin relaxation of open-shell systems is important for electron paramagnetic resonance and paramagnetic nuclear magnetic resonance spectroscopies. We present a combined molecular dynamics (MD), quantum chemistry (QC), and spin dynamics simulation method for calculating such spin relaxation rates. The method is based on the sampling of a MD trajectory by QC calculations, to produce instantaneous parameters of the spin Hamiltonian used, in turn, to numerically solve the Liouville-von Neumann equation for the time evolution of the spin density matrix. We demonstrate the approach by simulating the relaxation of electron spin in an aqueous solution of Ni{sup 2+} ion. The spin-lattice (T{sub 1}) and spin-spin (T{sub 2}) relaxation rates are extracted directly from the simulations of the time dependence of the longitudinal and transverse magnetization, respectively. Good agreement with the available, indirectly obtained experimental data is obtained by our method.

  4. Dynamical mean-field theory using Wannier functions: A flexible route to electronic structure calculations of strongly correlated materials

    E-Print Network [OSTI]

    Boyer, Edmond

    Dynamical mean-field theory using Wannier functions: A flexible route to electronic structure materials with different degrees of structural and electronic complexity, SrVO3 and BaVS3, are investigated calculations of strongly correlated materials F. Lechermann,1,2, * A. Georges,1 A. Poteryaev,1 S. Biermann,1 M

  5. Effects of energy loss on interaction dynamics of energetic electrons with plasmas C. K. Li and R. D. Petrasso

    E-Print Network [OSTI]

    Effects of energy loss on interaction dynamics of energetic electrons with plasmas C. K. Li and R for energetic electrons interacting with plasmas. This model rigorously treats the effects of energy loss upon and energy loss--which previous calculations had erroneously treated as independent in cases where

  6. Nonadiabatic dynamics for processes involving multiple avoided curve crossings: Double proton transfer and proton-coupled electron transfer

    E-Print Network [OSTI]

    Hammes-Schiffer, Sharon

    Nonadiabatic dynamics for processes involving multiple avoided curve crossings: Double proton transfer and proton-coupled electron transfer reactions Jian-Yun Fang and Sharon Hammes June 1997; accepted 26 August 1997 The extension of the surface hopping method ``molecular dynamics

  7. Ab initio molecular-dynamics study of the structural, vibrational, and electronic properties of glassy GeSe 2

    E-Print Network [OSTI]

    Drabold, David

    Ab initio molecular-dynamics study of the structural, vibrational, and electronic properties We present results of an ab initio molecular-dynamics study of glassy GeSe2 using a 216 atom model static structure factors, and ring structures. The total static structure factor and first sharp

  8. Linear and nonlinear dynamics of electron temperature gradient mode in non-Maxwellian plasmas

    SciTech Connect (OSTI)

    Zakir, U.; Qamar, A. [Institute of Physics and Electronics, University of Peshawar, Peshawar (Pakistan)] [Institute of Physics and Electronics, University of Peshawar, Peshawar (Pakistan); Haque, Q. [Theoretical Plasma Physics Division, PINSTECH, Islamabad (Pakistan) [Theoretical Plasma Physics Division, PINSTECH, Islamabad (Pakistan); National Centre for Physics, Islamabad (Pakistan)

    2013-05-15T23:59:59.000Z

    The effect of non-Maxwellian distributed ions on electron temperature gradient mode is investigated. The linear dispersion relation of ?{sub e}?mode is obtained which shows that the behavior of this mode changes in the presence of superthermal ions. The growth rate of ?{sub e}?mode driven linear instability is found and is observed to modify due to nonthermal ions. However, it is found that this leaves the electron energy transport coefficient unchanged. In the nonlinear regime, a dipolar vortex solution is derived which indicates that the dynamic behavior of the vortices changes with the inclusion of kappa distributed ions. The importance of present study with respect to space and laboratory plasmas is also pointed out.

  9. Multiconfiguration time-dependent Hartree-Fock treatment of electronic and nuclear dynamics in diatomic molecules

    SciTech Connect (OSTI)

    Haxton, D. J.; Lawler, K. V. [Chemical Sciences and Ultrafast X-ray Science Laboratory, Lawrence Berkeley National Laboratory, Berkeley, California, 94720 (United States); McCurdy, C. W. [Chemical Sciences and Ultrafast X-ray Science Laboratory, Lawrence Berkeley National Laboratory, Berkeley, California, 94720 (United States); Departments of Applied Science and Chemistry, Davis, California, 95616 (United States)

    2011-06-15T23:59:59.000Z

    The multiconfiguration time-dependent Hartree-Fock (MCTDHF) method is formulated for treating the coupled electronic and nuclear dynamics of diatomic molecules without the Born-Oppenheimer approximation. The method treats the full dimensionality of the electronic motion, uses no model interactions, and is in principle capable of an exact nonrelativistic description of diatomics in electromagnetic fields. An expansion of the wave function in terms of configurations of orbitals whose dependence on internuclear distance is only that provided by the underlying prolate spheroidal coordinate system is demonstrated to provide the key simplifications of the working equations that allow their practical solution. Photoionization cross sections are also computed from the MCTDHF wave function in calculations using short pulses.

  10. Ultrafast time dynamics studies of periodic lattices with free electron laser radiation

    SciTech Connect (OSTI)

    Quevedo, W.; Busse, G.; Hallmann, J.; More, R.; Petri, M.; Rajkovic, I. [Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen (Germany); Krasniqi, F.; Rudenko, A. [Max Planck Advanced Study Group at CFEL, Notkestrasse 85, 22607 Hamburg (Germany); Tschentscher, T. [European XFEL GmbH, Albert-Einstein-Ring 19, 22671 Hamburg (Germany); Stojanovic, N.; Duesterer, S.; Treusch, R.; Tolkiehn, M. [HASYLAB at DESY, Notkestrasse 85, 22607 Hamburg (Germany); Techert, S. [Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen (Germany); Max Planck Advanced Study Group at CFEL, Notkestrasse 85, 22607 Hamburg (Germany)

    2012-11-01T23:59:59.000Z

    It has been proposed that radiation from free electron laser (FEL) at Hamburg (FLASH) can be used for ultrafast time-resolved x-ray diffraction experiments based on the near-infrared (NIR) pump/FEL probe scheme. Here, investigation probing the ultrafast structural dynamics of periodic nano-crystalline organic matter (silver behenate) with such a scheme is reported. Excitation with a femtosecond NIR laser leads to an ultrafast lattice modification which time evolution has been studied through the scattering of vacuum ultraviolet FEL pulses. The found effect last for 6 ps and underpins the possibility for studying nanoperiodic dynamics down to the FEL source time resolution. Furthermore, the possibility of extending the use of silver behenate (AgBh) as a wavelength and temporal calibration tool for experiments with soft x-ray/FEL sources is suggested.

  11. Interfacial electron transfer dynamics of ru(II)-polypy6ridine sensitized TiO2

    SciTech Connect (OSTI)

    Jakubikova, Elena [Los Alamos National Laboratory; Martin, Richard L [Los Alamos National Laboratory; Batista, Enrique R [Los Alamos National Laboratory; Snoeberger, Robert C [YALE UNIV.; Batista, Victor S [YALE UNIV.

    2009-01-01T23:59:59.000Z

    Quantum dynamics simulations combined with density functional theory calculations are applied to study interfacial electron transfer (IET) from pyridine-4-phosphonic acid, [Ru(tpy)(tpy(PO{sub 3}H{sub 2}))]{sup 2+} and [Ru(tpy)(bpy)(H{sub 2}O)-Ru(tpy)(tpy(PO{sub 3}H{sub 2}))]{sup 4+} into the (101) surface of anatase TiO{sub 2}. IET rate from pyridine-4-phosphonic acid attached to the nanoparticle in bidentate mode ({tau} {approx} 100 fs) is an order of magnitude faster than the IET rate of the adsorbate attached in the monodentate mode ({tau} {approx} 1 ps). Upon excitation with visible light, [Ru(tpy)(tpy(PO{sub 3}H{sub 2}))]{sup 2+} attached to TiO{sub 2} in bidentate binding mode will undergo IET with the rate of {approx} 1-10 ps, which is competitive with the excited state decay into the ground state. The probability of electron injection from [Ru(tpy)(bpy)(H{sub 2}O)-Ru(tpy)(tpy(PO{sub 3}H{sub 2}))]{sup 4+} is rather low, as the excitation with visible light localizes the excited electron in the tpy-tpy bridge, which does not have favorable coupling with the TiO{sub 2} nanoparticle. The results are relevant to better understanding of the adsorbate features important for promoting efficient interfacial electron transfer into the semiconductor.

  12. Acceleration and dynamics of an electron in the degenerate and magnetized plasma elliptical waveguide

    SciTech Connect (OSTI)

    Abdoli-Arani, A.; Jazi, B. [Department of Photonics, Faculty of Physics, University of Kashan, Kashan (Iran, Islamic Republic of); Shokri, B. [Physics Department and Laser-Plasma Research Institute, G. C. Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2013-02-15T23:59:59.000Z

    The dynamics and energy gain of an electron in the field of a transverse magnetic wave propagating inside an elliptical degenerate plasma waveguide is analytically investigated by finding the field components of the TM{sub mr} mode in this waveguide. Besides, by solving the relativistic momentum and energy equations the deflection angle and the acceleration gradient of the electron in the waveguide are obtained. Furthermore, the field components of the hybrid mode and the transferred power in the presence of the magnetic field in this waveguide are found. Also by applying the boundary conditions at the plasma-conductor interface, we calculate the dispersion relation. It is shown that the cutoff frequency of this mode is dependent on the plasma density but independent of the magnetic field. Then, a single-electron model for numerical calculations of the electron deflection angle and acceleration gradient inside the magnetized plasma-filled elliptical waveguide is generally presented to be used as a cascading process for the acceleration purposes.

  13. Quantum Chemical Analysis of the Excited State Dynamics of Hydrated Electrons

    E-Print Network [OSTI]

    P. O. J. Scherer; Sighart F. Fischer

    2006-02-01T23:59:59.000Z

    Quantum calculations are performed for an anion water cluster representing the first hydration shell of the solvated electron in solution. The absorption spectra from the ground state, the instant excited states and the relaxed excited states are calculated including CI-SD interactions. Analytic expressions for the nonadiabatic relaxation are presented. It is shown that the 50fs dynamics recently observed after s->p excitation is best accounted for if it is identified with the internal conversion, preceded by an adiabatic relaxation within the excited p state. In addition, transient absorptions found in the infrared are qualitatively reproduced by these calculations .

  14. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    E-Print Network [OSTI]

    Hua Y. Geng

    2014-12-19T23:59:59.000Z

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model, the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4 fold for a two-level implementation, and can be increased to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of $r_{s}=0.912$.

  15. Integrated electronic waste management in Mexico : law, technology and public policy

    E-Print Network [OSTI]

    Gonzalez Llera, Ricardo, 1971-

    2004-01-01T23:59:59.000Z

    What is electronic waste? Why is it considered a problem? What are the public health implications of its mishandling? The electronic industry, a sector that has experienced one of the highest growth rates of the last decade, ...

  16. The reaction dynamics of alkali dimer molecules and electronically excited alkali atoms with simple molecules

    SciTech Connect (OSTI)

    Hou, H. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley National Lab., CA (United States). Chemical Sciences Div.

    1995-12-01T23:59:59.000Z

    This dissertation presents the results from the crossed molecular beam studies on the dynamics of bimolecular collisions in the gas phase. The primary subjects include the interactions of alkali dimer molecules with simple molecules, and the inelastic scattering of electronically excited alkali atoms with O{sub 2}. The reaction of the sodium dimers with oxygen molecules is described in Chapter 2. Two reaction pathways were observed for this four-center molecule-molecule reaction, i.e. the formations of NaO{sub 2} + Na and NaO + NaO. NaO{sub 2} products exhibit a very anisotropic angular distribution, indicating a direct spectator stripping mechanism for this reaction channel. The NaO formation follows the bond breaking of O{sub 2}, which is likely a result of a charge transfer from Na{sub 2} to the excited state orbital of O{sub 2}{sup {minus}}. The scattering of sodium dimers from ammonium and methanol produced novel molecules, NaNH{sub 3} and Na(CH{sub 3}OH), respectively. These experimental observations, as well as the discussions on the reaction dynamics and the chemical bonding within these molecules, will be presented in Chapter 3. The lower limits for the bond dissociation energies of these molecules are also obtained. Finally, Chapter 4 describes the energy transfer between oxygen molecules and electronically excited sodium atoms.

  17. Simulations of the dissociation of small helium clusters with ab initio molecular dynamics in electronically excited states

    SciTech Connect (OSTI)

    Closser, Kristina D.; Head-Gordon, Martin, E-mail: mhg@cchem.berkeley.edu [Department of Chemistry, University of California Berkeley, Berkeley, California 94720 (United States) [Department of Chemistry, University of California Berkeley, Berkeley, California 94720 (United States); Ultrafast X-Ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Gessner, Oliver [Ultrafast X-Ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)] [Ultrafast X-Ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2014-04-07T23:59:59.000Z

    The dynamics resulting from electronic excitations of helium clusters were explored using ab initio molecular dynamics. The simulations were performed with configuration interaction singles and adiabatic classical dynamics coupled to a state-following algorithm. 100 different configurations of He{sub 7} were excited into the 2s and 2p manifold for a total of 2800 trajectories. While the most common outcome (90%) was complete fragmentation to 6 ground state atoms and 1 excited state atom, 3% of trajectories yielded bound, He {sub 2}{sup *}, and <0.5% yielded an excited helium trimer. The nature of the dynamics, kinetic energy release, and connections to experiments are discussed.

  18. Exact solvability, non-integrability, and genuine multipartite entanglement dynamics of the Dicke model

    E-Print Network [OSTI]

    Shu He; Liwei Duan; Qing-Hu Chen

    2015-03-14T23:59:59.000Z

    In this paper, the finite size Dicke model of arbitrary number of qubits is solved analytically in an unified way within extended coherent states. For the $N=2k$ or $2k-1$ Dicke models ($k$ is an integer), the $G$-function, which is only an energy dependent $k \\times k$ determinant, is derived in a transparent manner. The regular spectrum is completely and uniquely given by stable zeros of the $G$-function. The closed-form exceptional eigenvalues are also derived. The level distribution controlled by the pole structure of the $G$-functions suggests non-integrability for $N>1$ model at any finite coupling in the sense of recent criterion in literature. A preliminary application to the exact dynamics of genuine multipartite entanglement in the finite $N$ Dicke model is presented using the obtained exact solutions.

  19. Electronic Data Discovery: Integrating Due Process into CyberForensic Practice

    E-Print Network [OSTI]

    Bagby, John

    and Exchange Commission (SEC), Federal Trade Commission (FTC), Internal Revenue Service (IRS) or the U understood." While such communications practices might seem to avert damaging "smoking gun" revelations as electronic communications, to prove facts at issue in legal proceedings. The term, electronic data discovery

  20. International Congeress on Plasma Physics, Nice, France, 25-29 October 2004 Chaotic particle dynamics in free-electron lasers with coaxial wiggler

    E-Print Network [OSTI]

    Boyer, Edmond

    dynamics in free-electron lasers with coaxial wiggler B. Farokhi and S. Mobarakabadi Islamic Azad University of Arak, Arak, Iran The motion of a relativistic test electron in a free-electron laser orbits. Earlier investigations of chaos in free ­ electron lasers have focused on chaotic behavior

  1. The University of New Mexico An NSF Integrative Graduate

    E-Print Network [OSTI]

    New Mexico, University of

    chemical calculations are capable to describe the electronic structure and complex dynamics in such complex ligands on the electronic structure and observe strong surface-ligand interactions leading to formation.chtm.unm.edu/incbnigert/ Integrating Nanotechnology with Cell Biology and Neuroscience Excited State Dynamics and Energy Transfer

  2. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Meng; Charles, River; Tong, Huimin; Zhang, Lei; Patel, Mili; Wang, Francis; Rames, Matthew J.; Ren, Amy; Rye, Kerry-Anne; Qiu, Xiayang; et al

    2015-03-04T23:59:59.000Z

    Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobicmore »environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL.« less

  3. Structural, electronic, mechanical, and dynamical properties of graphene oxides: A first principles study

    SciTech Connect (OSTI)

    Dabhi, Shweta D. [Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar 364001 (India); Gupta, Sanjay D. [V. B. Institute of Science, Department of Physics, C. U. Shah University, Wadhwan City - 363030, Surendranagar (India); Jha, Prafulla K., E-mail: prafullaj@yahoo.com [Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390002 (India)

    2014-05-28T23:59:59.000Z

    We report the results of a theoretical study on the structural, electronic, mechanical, and vibrational properties of some graphene oxide models (GDO, a-GMO, z-GMO, ep-GMO and mix-GMO) at ambient pressure. The calculations are based on the ab-initio plane-wave pseudo potential density functional theory, within the generalized gradient approximations for the exchange and correlation functional. The calculated values of lattice parameters, bulk modulus, and its first order pressure derivative are in good agreement with other reports. A linear response approach to the density functional theory is used to derive the phonon frequencies. We discuss the contribution of the phonons in the dynamical stability of graphene oxides and detailed analysis of zone centre phonon modes in all the above mentioned models. Our study demonstrates a wide range of energy gap available in the considered models of graphene oxide and hence the possibility of their use in nanodevices.

  4. Electrons and Phonons in amorphous Si: Deformation Potentials and Solutions of the Time Dependent Schrdinger Equation

    E-Print Network [OSTI]

    Drabold, David

    ]. The electronic structure calculations are based upon "FIREBALL96" of Sankey and co-workers [7]. Mat. Res. Soc of the electron dynamics of localized edge states in a-Si at room temperature by integrating the time dependent be computed by directly dealing with the electron dynamics from the time- dependent Schrödinger equation

  5. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01T23:59:59.000Z

    Solar Energy Materials and Solar Cells, vol. 93, 2009, pp.Solar energy materials and solar cells, vol. 91, 2007, pp.to integrate thin-film solar cells and batteries (2)

  6. A study of power electronic building block (PEBB)-based integrated shipboard power systems during reconfiguration

    E-Print Network [OSTI]

    Adediran, Adeoti Taiwo

    2004-09-30T23:59:59.000Z

    concept with electric propulsion, direct current (DC) distribution, and modular technology. In the all electric ship concept, ship propulsion and ship service loads are powered by alternating current (AC) generation. For the IPS, power electronics...

  7. Recommendations for developing and managing an integrated electronic waste policy & infrastructure in the Republic of Mauritius

    E-Print Network [OSTI]

    Ballal, Hrishikesh

    2009-01-01T23:59:59.000Z

    Electronic waste (e-waste) is a rapidly growing problem as well as a business opportunity given the huge volume that is generated. While there are a number policies and philosophies that guide end-of-life handling of ...

  8. Development of an electron-temperature-dependent interatomic potential for molecular dynamics simulation of tungsten under electronic excitation

    E-Print Network [OSTI]

    Alfè, Dario

    simulation of tungsten under electronic excitation S. Khakshouri,1,* D. Alfè,1,2 and D. M. Duffy1,3 1

  9. Coupled electron-nuclear dynamics: Charge migration and charge transfer initiated near a conical intersection

    SciTech Connect (OSTI)

    Mendive-Tapia, David; Vacher, Morgane; Bearpark, Michael J.; Robb, Michael A. [Department of Chemistry, Imperial College London, London SW7 2AZ (United Kingdom)] [Department of Chemistry, Imperial College London, London SW7 2AZ (United Kingdom)

    2013-07-28T23:59:59.000Z

    Coupled electron-nuclear dynamics, implemented using the Ehrenfest method, has been used to study charge migration with fixed nuclei, together with charge transfer when nuclei are allowed to move. Simulations were initiated at reference geometries of neutral benzene and 2-phenylethylamine (PEA), and at geometries close to potential energy surface crossings in the cations. Cationic eigenstates, and the so-called sudden approximation, involving removal of an electron from a correlated ground-state wavefunction for the neutral species, were used as initial conditions. Charge migration without coupled nuclear motion could be observed if the Ehrenfest simulation, using the sudden approximation, was started near a conical intersection where the states were both strongly coupled and quasi-degenerate. Further, the main features associated with charge migration were still recognizable when the nuclear motion was allowed to couple. In the benzene radical cation, starting from the reference neutral geometry with the sudden approximation, one could observe sub-femtosecond charge migration with a small amplitude, which results from weak interaction with higher electronic states. However, we were able to engineer large amplitude charge migration, with a period between 10 and 100 fs, corresponding to oscillation of the electronic structure between the quinoid and anti-quinoid cationic electronic configurations, by distorting the geometry along the derivative coupling vector from the D{sub 6h} Jahn-Teller crossing to lower symmetry where the states are not degenerate. When the nuclear motion becomes coupled, the period changes only slightly. In PEA, in an Ehrenfest trajectory starting from the D{sub 2} eigenstate and reference geometry, a partial charge transfer occurs after about 12 fs near the first crossing between D{sub 1}, D{sub 2} (N{sup +}-Phenyl, N-Phenyl{sup +}). If the Ehrenfest propagation is started near this point, using the sudden approximation without coupled nuclear motion, one observes an oscillation of the spin density – charge migration – between the N atom and the phenyl ring with a period of 4 fs. When the nuclear motion becomes coupled, this oscillation persists in a damped form, followed by an effective charge transfer after 30 fs.

  10. Dynamic environment coupling induce synchronized states in coupled time-delayed electronic circuits

    E-Print Network [OSTI]

    R. Suresh; K. Srinivasan; D. V. Senthilkumar; K. Murali; M. Lakshmanan; J. Kurths

    2014-01-27T23:59:59.000Z

    We experimentally demonstrate the occurrence of various synchronized states in coupled piece-wise linear time-delayed electronic circuits using dynamic environment coupling where the environment has its own intrinsic dynamics via feedback from the circuits. We carry out these experiments in two different coupling configurations, namely mutual and subsystem coupling configurations. Depending upon the coupling strength and the nature of feedback, we observe a transition from nonsynchronization to complete synchronization via phase synchronization and from nonsynchronization to inverse synchronization via inverse-phase synchronization between the circuits in hyperchaotic regime. Snapshots of the time evolution, phase projection plots and localized sets of the circuits as observed experimentally from the oscilloscope, along with supporting numerical simulations confirm the existence of different synchronized states. Further, the transition to different synchronized states can be verified from the changes in the largest Lyapunov exponents, Correlation of Probability of Recurrence and Correlation Coefficient as a function of the coupling strength. We present a detailed linear stability analysis and obtain conditions for different synchronized states.

  11. Structure and Dynamics of the Instantaneous Water/Vapor Interface Revisited by Path-Integral and Ab-Initio Molecular Dynamics Simulations

    E-Print Network [OSTI]

    Kessler, Jan; Spura, Thomas; Karhan, Kristof; Partovi-Azar, Pouya; Hassanali, Ali A; Kühne, Thomas D

    2015-01-01T23:59:59.000Z

    The structure and dynamics of the water/vapor interface is revisited by means of path-integral and second-generation Car-Parrinello ab-initio molecular dynamics simulations in conjunction with an instantaneous surface definition [A. P. Willard and D. Chandler, J. Phys. Chem. B 114, 1954 (2010)]. In agreement with previous studies, we find that one of the OH bonds of the water molecules in the topmost layer is pointing out of the water into the vapor phase, while the orientation of the underlying layer is reversed. Therebetween, an additional water layer is detected, where the molecules are aligned parallel to the instantaneous water surface.

  12. Statistical analysis of the dynamics of secondary electrons in the flare of a high-voltage beam-type discharge

    SciTech Connect (OSTI)

    Demkin, V. P.; Mel'nichuk, S. V. [National Research Tomsk State University, 36, Lenin Ave., 634050 Tomsk (Russian Federation)

    2014-09-15T23:59:59.000Z

    In the present work, results of investigations into the dynamics of secondary electrons with helium atoms in the presence of the reverse electric field arising in the flare of a high-voltage pulsed beam-type discharge and leading to degradation of the primary electron beam are presented. The electric field in the discharge of this type at moderate pressures can reach several hundred V/cm and leads to considerable changes in the kinetics of secondary electrons created in the process of propagation of the electron beam generated in the accelerating gap with a grid anode. Moving in the accelerating electric field toward the anode, secondary electrons create the so-called compensating current to the anode. The character of electron motion and the compensating current itself are determined by the ratio of the field strength to the concentration of atoms (E/n). The energy and angular spectra of secondary electrons are calculated by the Monte Carlo method for different ratios E/n of the electric field strength to the helium atom concentration. The motion of secondary electrons with threshold energy is studied for inelastic collisions of helium atoms and differential analysis is carried out of the collisional processes causing energy losses of electrons in helium for different E/n values. The mechanism of creation and accumulation of slow electrons as a result of inelastic collisions of secondary electrons with helium atoms and selective population of metastable states of helium atoms is considered. It is demonstrated that in a wide range of E/n values the motion of secondary electrons in the beam-type discharge flare has the character of drift. At E/n values characteristic for the discharge of the given type, the drift velocity of these electrons is calculated and compared with the available experimental data.

  13. Detailed dynamics of electron beams self-trapped and accelerated in a self-modulated laser wakefield

    E-Print Network [OSTI]

    Umstadter, Donald

    . These features are explained by analysis and test particle simulations of electron dynamics during acceleration wave,1 such as the plasma wakefield accel- erator, the plasma beat-wave accelerator, the Laser Wake the linear dephasing limit, and explained it, using Particle-In-Cell PIC simulations, as a result

  14. The Integration of On-Line Monitoring and Reconfiguration Functions using EDAA - European design and Automation Association1149.4 Into a Safety Critical Automotive Electronic Control Unit

    E-Print Network [OSTI]

    Jeffrey, C; Prosser, S; Lickess, M; Richardson, A; Riches, S

    2011-01-01T23:59:59.000Z

    This paper presents an innovative application of EDAA - European design and Automation Association 1149.4 and the Integrated Diagnostic Reconfiguration (IDR) as tools for the implementation of an embedded test solution for an Automotive Electronic Control Unit implemented as a fully integrated mixed signal system. The paper described how the test architecture can be used for fault avoidance with results from a hardware prototype presented. The paper concludes that fault avoidance can be integrated into mixed signal electronic systems to handle key failure modes.

  15. An infrared free-electron laser for the Chemical Dynamics Research Laboratory

    SciTech Connect (OSTI)

    Vaughan, D. (comp.)

    1992-04-01T23:59:59.000Z

    This document describes a free-electron laser (FEL) proposed as part of the Chemical Dynamics Research Laboratory (CDRL), a user facility that also incorporates several advanced lasers of conventional design and two beamlines for the ALS. The FEL itself addresses the needs of the chemical sciences community for a high-brightness, tunable source covering a broad region of the infrared spectrum -- from 3 to 50 {mu}m. All of these sources, together with a variety of sophisticated experimental stations, will be housed in a new building to be located adjacent to the ALS. The radiation sources can be synchronized to permit powerful two-color, pump-probe experiments that will further our fundamental understanding of chemical dynamics at the molecular level, especially those aspects relevant to practical issues in combustion chemistry. The technical approach adopted in this design makes use of superconducting radiofrequency (SCRF) accelerating structures. The primary motivation for adopting this approach was to meet the user requirement for wavelength stability equal to one part in 10{sup 4}. Previous studies concluded that a wavelength stability of only one part in 10{sup 3} could be achieved with currently available room-temperature technology. In addition, the superconducting design operates in a continuous-wave (cw) mode and hence offers considerably higher average optical output power. It also allows for various pulse-gating configurations that will permit simultaneous multiuser operations. A summary of the comparative performance attainable with room-temperature and superconducting designs is given. The FEL described in this report provides a continuous train of 30-ps micropulses, with 100{mu}J of optical energy per micropulse, at a repetition rate of 6.1 MHz. The device can also deliver pulses at a cw repetition rate of 12.2 MHz, with a peak power of 50 {mu}J per micropulse. 70 ref.

  16. An infrared free-electron laser for the Chemical Dynamics Research Laboratory. Design report

    SciTech Connect (OSTI)

    Vaughan, D. [comp.

    1992-04-01T23:59:59.000Z

    This document describes a free-electron laser (FEL) proposed as part of the Chemical Dynamics Research Laboratory (CDRL), a user facility that also incorporates several advanced lasers of conventional design and two beamlines for the ALS. The FEL itself addresses the needs of the chemical sciences community for a high-brightness, tunable source covering a broad region of the infrared spectrum -- from 3 to 50 {mu}m. All of these sources, together with a variety of sophisticated experimental stations, will be housed in a new building to be located adjacent to the ALS. The radiation sources can be synchronized to permit powerful two-color, pump-probe experiments that will further our fundamental understanding of chemical dynamics at the molecular level, especially those aspects relevant to practical issues in combustion chemistry. The technical approach adopted in this design makes use of superconducting radiofrequency (SCRF) accelerating structures. The primary motivation for adopting this approach was to meet the user requirement for wavelength stability equal to one part in 10{sup 4}. Previous studies concluded that a wavelength stability of only one part in 10{sup 3} could be achieved with currently available room-temperature technology. In addition, the superconducting design operates in a continuous-wave (cw) mode and hence offers considerably higher average optical output power. It also allows for various pulse-gating configurations that will permit simultaneous multiuser operations. A summary of the comparative performance attainable with room-temperature and superconducting designs is given. The FEL described in this report provides a continuous train of 30-ps micropulses, with 100{mu}J of optical energy per micropulse, at a repetition rate of 6.1 MHz. The device can also deliver pulses at a cw repetition rate of 12.2 MHz, with a peak power of 50 {mu}J per micropulse. 70 ref.

  17. Ultrafast probing of ejection dynamics of Rydberg atoms and molecular fragments from electronically excited helium nanodroplets

    SciTech Connect (OSTI)

    Buenermann, Oliver; Kornilov, Oleg; Neumark, Daniel M. [Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Chemistry, University of California, Berkeley, California 94720 (United States); Haxton, Daniel J.; Gessner, Oliver [Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Leone, Stephen R. [Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Chemistry, University of California, Berkeley, California 94720 (United States); Department of Physics, University of California, Berkeley, California 94720 (United States)

    2012-12-07T23:59:59.000Z

    The ejection dynamics of Rydberg atoms and molecular fragments from electronically excited helium nanodroplets are studied with time-resolved extreme ultraviolet ion imaging spectroscopy. At excitation energies of 23.6 {+-} 0.2 eV, Rydberg atoms in n= 3 and n= 4 states are ejected on different time scales and with significantly different kinetic energy distributions. Specifically, n= 3 Rydberg atoms are ejected with kinetic energies as high as 0.85 eV, but their appearance is delayed by approximately 200 fs. In contrast, n= 4 Rydberg atoms appear within the time resolution of the experiment with considerably lower kinetic energies. Major features in the Rydberg atom kinetic energy distributions for both principal quantum numbers can be described within a simple elastic scattering model of localized perturbed atomic Rydberg atoms that are expelled from the droplet due to their repulsive interaction with the surrounding helium bath. Time-dependent kinetic energy distributions of He{sub 2}{sup +} and He{sub 3}{sup +} ions are presented that support the formation of molecular ions in an indirect droplet ionization process and the ejection of neutral Rydberg dimers on a similar time scale as the n= 3 Rydberg atoms.

  18. Achieving Dynamic Inter-organizational Workflow Management by Integrating Business Processes, Events, and Rules*

    E-Print Network [OSTI]

    Helal, Abdelsalam

    of a dynamic workflow model and a dynamic workflow management system for modeling and controlling the execution model (DWM) described in this paper enables the specification of dynamic properties associated of an enterprise. It allows people and companies to model business processes and to control the execution

  19. Path Integral Molecular Dynamics within the Grand Canonical-like Adaptive Resolution Technique: Quantum-Classical Simulation of Liquid Water

    E-Print Network [OSTI]

    Agarwal, Animesh

    2015-01-01T23:59:59.000Z

    Quantum effects due to the spatial delocalization of light atoms are treated in molecular simulation via the path integral technique. Among several methods, Path Integral (PI) Molecular Dynamics (MD) is nowadays a powerful tool to investigate properties induced by spatial delocalization of atoms; however computationally this technique is very demanding. The abovementioned limitation implies the restriction of PIMD applications to relatively small systems and short time scales. One possible solution to overcome size and time limitation is to introduce PIMD algorithms into the Adaptive Resolution Simulation Scheme (AdResS). AdResS requires a relatively small region treated at path integral level and embeds it into a large molecular reservoir consisting of generic spherical coarse grained molecules. It was previously shown that the realization of the idea above, at a simple level, produced reasonable results for toy systems or simple/test systems like liquid parahydrogen. Encouraged by previous results, in this ...

  20. Investigation of Vortex Structures in Gas-Discharge Nonneutral Electron Plasma: II. Vortex Formation, Evolution and Dynamics

    E-Print Network [OSTI]

    Kervalishvili, N A

    2015-01-01T23:59:59.000Z

    The results of experimental investigations of inhomogeneities of gas-discharge nonneutral electron plasma obtained by using the nonperturbing experimental methods [N.A. Kervalishvili, arXiv:1502.02516 [physics.plasm-ph] (2015)] have been presented. Inhomogeneities are the dense solitary vortex structures stretched along the magnetic field, the lifetime of which is much greater than the time of electron-neutral collisions. The processes of formation, evolution and dynamics of vortex structures were studied. The periodic sequence of these processes is described for different geometries of discharge device.

  1. ITS Version 6 : the integrated TIGER series of coupled electron/photon Monte Carlo transport codes.

    SciTech Connect (OSTI)

    Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William

    2008-04-01T23:59:59.000Z

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of lineartime-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 6, the latest version of ITS, contains (1) improvements to the ITS 5.0 codes, and (2) conversion to Fortran 90. The general user friendliness of the software has been enhanced through memory allocation to reduce the need for users to modify and recompile the code.

  2. Novel scanning electron microscope bulge test technique integrated with loading function

    SciTech Connect (OSTI)

    Li, Chuanwei; Xie, Huimin, E-mail: liuzw@bit.edu.cn, E-mail: xiehm@mail.tsinghua.edu.cn [AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Liu, Zhanwei, E-mail: liuzw@bit.edu.cn, E-mail: xiehm@mail.tsinghua.edu.cn [School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2014-10-15T23:59:59.000Z

    Membranes and film-on-substrate structures are critical elements for some devices in electronics industry and for Micro Electro Mechanical Systems devices. These structures are normally at the scale of micrometer or even nanometer. Thus, the measurement for the mechanical property of these membranes poses a challenge over the conventional measurements at macro-scales. In this study, a novel bulge test method is presented for the evaluation of mechanical property of micro thin membranes. Three aspects are discussed in the study: (a) A novel bulge test with a Scanning Electron Microscope system realizing the function of loading and measuring simultaneously; (b) a simplified Digital Image Correlation method for a height measurement; and (c) an imaging distortion correction by the introduction of a scanning Moiré method. Combined with the above techniques, biaxial modulus as well as Young's modulus of the polyimide film can be determined. Besides, a standard tensile test is conducted as an auxiliary experiment to validate the feasibility of the proposed method.

  3. Performance Tuning of Fock Matrix and Two-Electron Integral Calculations for NWChem on Leading HPC Platforms

    SciTech Connect (OSTI)

    Shan, Hongzhan; Austin, Brian M.; De Jong, Wibe A.; Oliker, Leonid; Wright, Nicholas J.; Apra, Edoardo

    2014-10-01T23:59:59.000Z

    Attaining performance in the evaluation of two-electron repulsion integrals and constructing the Fock matrix is of considerable importance to the computational chemistry community. Due to its numerical complexity improving the performance behavior across a variety of leading supercomputing platforms is an increasing challenge due to the significant diversity in high-performance computing architectures. In this paper, we present our successful tuning methodology for these important numerical methods on the Cray XE6, the Cray XC30, the IBM BG/Q, as well as the Intel Xeon Phi. Our optimization schemes leverage key architectural features including vectorization and simultaneous multithreading, and results in speedups of up to 2.5x compared with the original implementation.

  4. Evolution integrals

    E-Print Network [OSTI]

    Rocco Duvenhage

    2006-05-24T23:59:59.000Z

    A framework analogous to path integrals in quantum physics is set up for abstract dynamical systems in a W*-algebraic setting. We consider spaces of evolutions, defined in a specific way, of a W*-algebra A as an analogue of spaces of classical paths, and show how integrals over such spaces, which we call ``evolution integrals'', lead to dynamics in a Hilbert space on a ``higher level'' which is viewed as an analogue of quantum dynamics obtained from path integrals. The measures with respect to which these integrals are performed are projection valued.

  5. Integrating high-precision U-Pb geochronologic data with dynamic models of earth processes

    E-Print Network [OSTI]

    Blackburn, Terrence (Terrence Joseph)

    2012-01-01T23:59:59.000Z

    Radioisotopic dating can provide critical constraints for understanding the rates of tectonic, dynamic and biologic processes operating on our planet. Improving the interpretation and implementation of geochronologic data ...

  6. Time-dependent restricted-active-space self-consistent-field singles method for many-electron dynamics

    SciTech Connect (OSTI)

    Miyagi, Haruhide; Bojer Madsen, Lars [Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C (Denmark)] [Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C (Denmark)

    2014-04-28T23:59:59.000Z

    The time-dependent restricted-active-space self-consistent-field singles (TD-RASSCF-S) method is presented for investigating TD many-electron dynamics in atoms and molecules. Adopting the SCF notion from the muticonfigurational TD Hartree-Fock (MCTDHF) method and the RAS scheme (single-orbital excitation concept) from the TD configuration-interaction singles (TDCIS) method, the TD-RASSCF-S method can be regarded as a hybrid of them. We prove that, for closed-shell N{sub e}-electron systems, the TD-RASSCF-S wave function can be fully converged using only N{sub e}/2 + 1 ? M ? N{sub e} spatial orbitals. Importantly, based on the TD variational principle, the converged TD-RASSCF-S wave function with M = N{sub e} is more accurate than the TDCIS wave function. The accuracy of the TD-RASSCF-S approach over the TDCIS is illustrated by the calculation of high-order harmonic generation spectra for one-dimensional models of atomic helium, beryllium, and carbon in an intense laser pulse. The electronic dynamics during the process is investigated by analyzing the behavior of electron density and orbitals. The TD-RASSCF-S method is accurate, numerically tractable, and applicable for large systems beyond the capability of the MCTDHF method.

  7. An integral-balance nonlinear model to simulate changes in soil moisture, groundwater and surface runoff dynamics at the hillslope scale

    E-Print Network [OSTI]

    Jay, Laurent O.

    An integral-balance nonlinear model to simulate changes in soil moisture, groundwater and surface-state integral-balance model for soil moisture and groundwater dynamics. Development of the model was motivated. Ã? 2014 Elsevier Ltd. All rights reserved. 1. Introduction Recent studies on the modeling

  8. Integrating Heterogeneous Healthcare Datasets and Visual Analytics for Disease Bio-surveillance and Dynamics

    SciTech Connect (OSTI)

    Ramanathan, Arvind [ORNL] [ORNL; Pullum, Laura L [ORNL] [ORNL; Steed, Chad A [ORNL] [ORNL; Quinn, Shannon [University of Pittsburgh School of Medicine, Pittsburgh PA] [University of Pittsburgh School of Medicine, Pittsburgh PA; Chennubhotla, Chakra [University of Pittsburgh School of Medicine, Pittsburgh PA] [University of Pittsburgh School of Medicine, Pittsburgh PA; Parker, Tara L [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    n this paper, we present an overview of the big data chal- lenges in disease bio-surveillance and then discuss the use of visual analytics for integrating data and turning it into knowl- edge. We will explore two integration scenarios: (1) combining text and multimedia sources to improve situational awareness and (2) enhancing disease spread model data with real-time bio-surveillance data. Together, the proposed integration methodologies can improve awareness about when, where and how emerging diseases can affect wide geographic regions.

  9. A Dynamic Market Mechanism for Integration of Renewables and Demand Response

    E-Print Network [OSTI]

    Knudsen, Jesper

    2015-04-21T23:59:59.000Z

    The most formidable challenge in assembling a Smart Grid is the integration of a high penetration of renewables. Demand Response, a largely promising concept, is increasingly discussed as a means to cope with the intermittent ...

  10. Developing an integrated building design tool by coupling building energy simulation and computational fluid dynamics programs

    E-Print Network [OSTI]

    Zhai, Zhiqiang, 1971-

    2003-01-01T23:59:59.000Z

    Building energy simulation (ES) and computational fluid dynamics (CFD) can play important roles in building design by providing essential information to help design energy-efficient, thermally comfortable and healthy ...

  11. Integrated method to create optimal dynamic strategic plans for corporate technology start-ups

    E-Print Network [OSTI]

    Mikati, Samir Omar

    2009-01-01T23:59:59.000Z

    This thesis presents an innovative method for evaluating and dynamically planning the development of uncertain technology investments. Its crux centers on a paradigm shift in the way managers assess investments, toward an ...

  12. Femtosecond Xray Absorption Spectroscopy at a Hard Xray Free Electron Laser: Application to Spin Crossover Dynamics

    E-Print Network [OSTI]

    Ihee, Hyotcherl

    Femtosecond Xray Absorption Spectroscopy at a Hard Xray Free Electron Laser: Application to Spin Rennes 1, F35042, Rennes, France ABSTRACT: X-ray free electron lasers (XFELs) deliver short ( operated in femtosecond laser slicing mode15 ). The development of new X-ray facilities such as X-ray free

  13. Ultrafast dynamics of hot electrons and holes in copper: Excitation, energy relaxation, and transport effects

    E-Print Network [OSTI]

    Wolf, Martin

    , and transport effects E. Knoesel, A. Hotzel, and M. Wolf Fritz-Haber-Institut der MPG, Faradayweg 4-6, D-14195 calculation, a simulation of the ballistic transport effect and its implication on the observed electron process for a hot electron is scattering with a ``cold'' elec- tron below the Fermi level, because

  14. A Comparison of Electron-Transfer Dynamics inIonic Liquids and Neutral Solvents

    SciTech Connect (OSTI)

    Wishart J. F.; Lee, H.Y.; Issa, J.B.; Isied, S.S.; Castner, Jr., E.W.; Pan, Y.; Hussey, C.L.; Lee, K.S.

    2012-03-01T23:59:59.000Z

    The effect of ionic liquids on photoinduced electron-transfer reactions in a donor-bridge-acceptor system is examined for two ionic liquid solvents, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide and tributylmethylammonium bis(trifluoromethylsulfonyl)amide. The results are compared with those for the same system in methanol and acetonitrile solution. Electron-transfer rates were measured using time-resolved fluorescence quenching for the donor-bridge-acceptor system comprising a 1-N,1-N-dimethylbenzene-1,4-diamine donor, a proline bridge, and a coumarin 343 acceptor. The photoinduced electron-transfer processes are in the inverted regime (-{Delta}G > {lambda}) in all four solvents, with driving forces of -1.6 to -1.9 eV and estimated reorganization energies of about 1.0 eV. The observed electron-transfer kinetics have broadly distributed rates that are generally slower in the ionic liquids compared to the neutral solvents, which also have narrower rate distributions. To describe the broad distributions of electron-transfer kinetics, we use two different models: a distribution of exponential lifetimes and a discrete sum of exponential lifetimes. Analysis of the donor-acceptor electronic coupling shows that for ionic liquids this intramolecular electron-transfer reaction should be treated using a solvent-controlled electron-transfer model.

  15. Effect of the Presence of Iodide on the Electron Injection Dynamics of Dye-Sensitized TiO2-Based Solar Cells

    E-Print Network [OSTI]

    McCusker, James K.

    dynamics of dye-sensitized TiO2-based solar cells have been investigated to determine the effectsEffect of the Presence of Iodide on the Electron Injection Dynamics of Dye-Sensitized TiO2-Based Solar Cells Amanda L. Smeigh, Jordan E. Katz, Bruce S. Brunschwig,*,,§ Nathan S. Lewis,*, and James K

  16. Dynamic stability of the Solar System: Statistically inconclusive results from ensemble integrations

    E-Print Network [OSTI]

    Zeebe, Richard E

    2015-01-01T23:59:59.000Z

    Due to the chaotic nature of the Solar System, the question of its long-term stability can only be answered in a statistical sense, for instance, based on numerical ensemble integrations of nearby orbits. Destabilization of the inner planets, leading to close encounters and/or collisions can be initiated through a large increase in Mercury's eccentricity, with a currently assumed likelihood of ~1%. However, little is known at present about the robustness of this number. Here I report ensemble integrations of the full equations of motion of the eight planets and Pluto over 5 Gyr, including contributions from general relativity. The results show that different numerical algorithms lead to statistically different results for the evolution of Mercury's eccentricity (eM). For instance, starting at present initial conditions (eM ~= 0.21), Mercury's maximum eccentricity achieved over 5 Gyr is on average significantly higher in symplectic ensemble integrations using heliocentricthan Jacobi coordinates and stricter er...

  17. Improving approximate-optimized effective potentials by imposing exact conditions: Theory and applications to electronic statics and dynamics

    SciTech Connect (OSTI)

    Kurzweil, Yair; Head-Gordon, Martin [Department of Chemistry, University of California at Berkeley, Berkeley, California 94720 (United States) and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2009-07-15T23:59:59.000Z

    We develop a method that can constrain any local exchange-correlation potential to preserve basic exact conditions. Using the method of Lagrange multipliers, we calculate for each set of given Kohn-Sham orbitals a constraint-preserving potential which is closest to the given exchange-correlation potential. The method is applicable to both the time-dependent (TD) and independent cases. The exact conditions that are enforced for the time-independent case are Galilean covariance, zero net force and torque, and Levy-Perdew virial theorem. For the time-dependent case we enforce translational covariance, zero net force, Levy-Perdew virial theorem, and energy balance. We test our method on the exchange (only) Krieger-Li-Iafrate (xKLI) approximate-optimized effective potential for both cases. For the time-independent case, we calculated the ground state properties of some hydrogen chains and small sodium clusters for some constrained xKLI potentials and Hartree-Fock (HF) exchange. The results (total energy, Kohn-Sham eigenvalues, polarizability, and hyperpolarizability) indicate that enforcing the exact conditions is not important for these cases. On the other hand, in the time-dependent case, constraining both energy balance and zero net force yields improved results relative to TDHF calculations. We explored the electron dynamics in small sodium clusters driven by cw laser pulses. For each laser pulse we compared calculations from TD constrained xKLI, TD partially constrained xKLI, and TDHF. We found that electron dynamics such as electron ionization and moment of inertia dynamics for the constrained xKLI are most similar to the TDHF results. Also, energy conservation is better by at least one order of magnitude with respect to the unconstrained xKLI. We also discuss the problems that arise in satisfying constraints in the TD case with a non-cw driving force.

  18. Adjustment of ablation shapes and subwavelength ripples based on electron dynamics control by designing femtosecond laser pulse trains

    SciTech Connect (OSTI)

    Yuan Yanping; Jiang Lan; Li Xin; Wang Cong [Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Lu Yongfeng [Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0511 (United States)

    2012-11-15T23:59:59.000Z

    A quantum model is proposed to investigate femtosecond laser pulse trains processing of dielectrics by including the plasma model with the consideration of laser particle-wave duality. Central wavelengths (400 nm and 800 nm) strongly impact the surface plasmon field distribution, the coupling field intensity distribution (between the absorbed intensity and the surface plasma), and the distribution of transient localized free electron density in the material. This, in turn, significantly changes the localized transient optical/thermal properties during laser materials processing. The effects of central wavelengths on ablation shapes and subwavelength ripples are discussed. The simulation results show that: (1) ablation shapes and the spacing of subwavelength ripples can be adjusted by localized transient electron dynamics control using femtosecond laser pulse trains; (2) the adjustment of the radii of ablation shapes is stronger than that of the periods of subwavelength ripples.

  19. Characterization and light-induced dynamics of alkanethiol-capped gold nanoparticles supracrystals by small-angle ultrafast electron diffraction

    E-Print Network [OSTI]

    Mancini, Giulia Fulvia; Pennacchio, Francesco; Reguera, Javier; Stellacci, Francesco; Carbone, Fabrizio

    2015-01-01T23:59:59.000Z

    Metal nanoparticles (NPs) are promising candidates for applications from electronics to medicine. Their metallic core provides some key properties, e.g. magnetization, plasmonic response or conductivity, with the ligand molecules providing others like solubility, assembly or interaction with biomolecules. Even more properties can be engineered when these NPs are used as building blocks to form supracrystals. The formation of these supracrystals depends upon a complex interplay between many forces, some stemming from the core, some from the ligand. At present, there is no known approach to characterize the local order of ligand molecules in such complex supracrystals or their dynamics, with a spatial resolution ranging from the NPs cores and their ligands, to the larger scale domains arrangement. Here, we develop a methodology based on small-angle ultrafast electron diffraction to characterize different two-dimensional supracrystals of alkanethiol-coated gold nanoparticles with femtosecond time, sub-nanometer ...

  20. Electron beam dynamics in the long-pulse, high-current DARHT-II linear induction accelerator

    SciTech Connect (OSTI)

    Ekdahl, Carl A [Los Alamos National Laboratory; Abeyta, Epifanio O [Los Alamos National Laboratory; Aragon, Paul [Los Alamos National Laboratory; Archuleta, Rita [Los Alamos National Laboratory; Cook, Gerald [Los Alamos National Laboratory; Dalmas, Dale [Los Alamos National Laboratory; Esquibel, Kevin [Los Alamos National Laboratory; Gallegos, Robert A [Los Alamos National Laboratory; Garnett, Robert [Los Alamos National Laboratory; Harrison, James F [Los Alamos National Laboratory; Johnson, Jeffrey B [Los Alamos National Laboratory; Jacquez, Edward B [Los Alamos National Laboratory; Mccuistian, Brian T [Los Alamos National Laboratory; Montoya, Nicholas A [Los Alamos National Laboratory; Nath, Subrato [Los Alamos National Laboratory; Nielsen, Kurt [Los Alamos National Laboratory; Oro, David [Los Alamos National Laboratory; Prichard, Benjamin [Los Alamos National Laboratory; Rowton, Lawrence [Los Alamos National Laboratory; Sanchez, Manolito [Los Alamos National Laboratory; Scarpetti, Raymond [Los Alamos National Laboratory; Schauer, Martin M [Los Alamos National Laboratory; Seitz, Gerald [Los Alamos National Laboratory; Schulze, Martin [Los Alamos National Laboratory; Bender, Howard A [Los Alamos National Laboratory; Broste, William B [Los Alamos National Laboratory; Carlson, Carl A [Los Alamos National Laboratory; Frayer, Daniel K [Los Alamos National Laboratory; Johnson, Douglas E [Los Alamos National Laboratory; Tom, C Y [Los Alamos National Laboratory; Williams, John [Los Alamos National Laboratory; Hughes, Thomas [Los Alamos National Laboratory; Anaya, Richard [LLNL; Caporaso, George [LLNL; Chambers, Frank [LLNL; Chen, Yu - Jiuan [LLNL; Falabella, Steve [LLNL; Guethlein, Gary [LLNL; Raymond, Brett [LLNL; Richardson, Roger [LLNL; Trainham, C [NSTEC/STL; Watson, Jim [LLNL; Weir, John [LLNL; Genoni, Thomas [VOSS; Toma, Carsten [VOSS

    2009-01-01T23:59:59.000Z

    The DARHT-II linear induction accelerator (LIA) now accelerates 2-kA electron beams to more than 17 MeV. This LIA is unique in that the accelerated current pulse width is greater than 2 microseconds. This pulse has a flat-top region where the final electron kinetic energy varies by less than 1% for more than 1.5 microseconds. The long risetime of the 6-cell injector current pulse is 0.5 {micro}s, which can be scraped off in a beam-head cleanup zone before entering the 68-cell main accelerator. We discuss our experience with tuning this novel accelerator; and present data for the resulting beam transport and dynamics. We also present beam stability data, and relate these to previous stability experiments at lower current and energy.

  1. Beam dynamics performances and applications of a low-energy electron-beam magnetic bunch compressor

    E-Print Network [OSTI]

    Prokop, C R; Carlsten, B E; Church, M

    2013-01-01T23:59:59.000Z

    Many front-end applications of electron linear accelerators rely on the production of temporally-compressed bunches. The shortening of electron bunches is often realized with magnetic bunch compressors located in high-energy sections of accelerators. Magnetic compression is subject to collective effects including space charge and self interaction via coherent synchrotron radiation. In this paper we explore the application of magnetic compression to low-energy ($\\sim 40$ MeV), high-charge (nC) electron bunches with low normalized transverse emittances ($< 5$ $\\mu$m).

  2. High temperature electron spin dynamics in bulk cubic GaN: Nanosecond spin lifetimes far above room-temperature

    SciTech Connect (OSTI)

    Buß, J. H.; Schaefer, A.; Hägele, D.; Rudolph, J. [Arbeitsgruppe Spektroskopie der kondensierten Materie, Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum (Germany); Schupp, T.; As, D. J. [Department of Physics, University of Paderborn, Warburger Str. 100, D-33095 Paderborn (Germany)

    2014-11-03T23:59:59.000Z

    The electron spin dynamics in n-doped bulk cubic GaN is investigated for very high temperatures from 293?K up to 500?K by time-resolved Kerr-rotation spectroscopy. We find extraordinarily long spin lifetimes exceeding 1?ns at 500?K. The temperature dependence of the spin relaxation time is in qualitative agreement with predictions of Dyakonov-Perel theory, while the absolute experimental times are an order of magnitude shorter than predicted. Possible reasons for this discrepancy are discussed, including the role of phase mixtures of hexagonal and cubic GaN as well as the impact of localized carriers.

  3. Nonadiabatic dynamics of electron transfer in solution: Explicit and implicit solvent treatments that include multiple relaxation time scales

    SciTech Connect (OSTI)

    Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon, E-mail: shs3@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States)] [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States)

    2014-01-21T23:59:59.000Z

    The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents for a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible systems.

  4. Longitudinal Dynamics of Twin Electron Bunches in a High-energy Linac

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Zhen; Ding, Yuantao; Marinelli, Agostino; Huang, Zhirong

    2015-03-01T23:59:59.000Z

    The recent development of two-color x-ray free-electron lasers, as well as the successful demonstration of high-gradient witness bunch acceleration in a plasma, have generated strong interest in electron bunch trains, where two or more electron bunches are generated, accelerated and compressed in the same accelerating bucket. In this paper we give a detailed analysis of a twin-bunch technique in a high-energy linac. This method allows the generation of two electron bunches with high peak current and independent control of time delay and energy separation. We #12;find that the wake#12;fields in the accelerator structures play an important role in the twin-bunch compression, and through analysis show that they can be used to extend the available time delay range. Based on the theoretical model and simulations we propose several methods to achieve larger time delay.

  5. Electron dynamics of the buffer layer and bilayer graphene on SiC

    SciTech Connect (OSTI)

    Shearer, Alex J.; Caplins, Benjamin W.; Suich, David E.; Harris, Charles B., E-mail: cbharris@berkeley.edu [Department of Chemistry, University of California at Berkeley, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Johns, James E. [Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455 (United States); Hersam, Mark C. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States)

    2014-06-09T23:59:59.000Z

    Angle- and time-resolved two-photon photoemission (TPPE) was used to investigate electronic states in the buffer layer of 4H-SiC(0001). An image potential state (IPS) series was observed on this strongly surface-bound buffer layer, and dispersion measurements indicated free-electron-like behavior for all states in this series. These results were compared with TPPE taken on bilayer graphene, which also show the existence of a free-electron-like IPS series. Lifetimes for the n?=?2, and n?=?3 states were obtained from time-resolved TPPE; slightly increased lifetimes were observed in the bilayer graphene sample for the n?=?2 the n?=?3 states. Despite the large band gap of graphene at the center of the Brillouin zone, the lifetime results demonstrate that the graphene layers do not behave as a simple tunneling barrier, suggesting that the buffer layer and graphene overlayers play a direct role in the decay of IPS electrons.

  6. Dynamics of coupled electron-nucleon motion in a laser field

    SciTech Connect (OSTI)

    Hartmann, F.X.; Garcia, K.K.; Munro, J.K. Jr.; Noid, D.W.

    1987-01-01T23:59:59.000Z

    Energy transfer processes in single particle coupled nucleon-electron models interacting with an intense laser field are studied using semi-classical quantization of the coupled classical Hamiltonian. 11 refs., 2 figs.

  7. Aqueous systems from first-principles : structure, dynamics and electron-transfer reactions

    E-Print Network [OSTI]

    Sit, Patrick Hoi Land

    2006-01-01T23:59:59.000Z

    In this thesis, we show for the first time how it is possible to calculated fully from first-principles the diabatic free-energy surfaces of electron-transfer reactions. The excitation energy corresponding to the transfer ...

  8. Longitudinal Dynamics of Twin Electron Bunches in a High-energy Linac

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Zhen; Tsinghua University, Beijing; Ding, Yuantao; Marinelli, Agostino; Huang, Zhirong

    2015-03-01T23:59:59.000Z

    The recent development of two-color x-ray free-electron lasers, as well as the successful demonstration of high-gradient witness bunch acceleration in a plasma, have generated strong interest in electron bunch trains, where two or more electron bunches are generated, accelerated and compressed in the same accelerating bucket. In this paper we give a detailed analysis of a twin-bunch technique in a high-energy linac. This method allows the generation of two electron bunches with high peak current and independent control of time delay and energy separation. We #12;find that the wake#12;fields in the accelerator structures play an important role in the twin-bunchmore »compression, and through analysis show that they can be used to extend the available time delay range. Based on the theoretical model and simulations we propose several methods to achieve larger time delay.« less

  9. Integrating Models and Simulations of Continuous Dynamics into SysML

    E-Print Network [OSTI]

    In this paper, we combine modeling constructs from SysML and Modelica to improve the support for Model, structures, functions, and behaviors. Complementing these SysML constructs, the Modelica language has emerged and the corresponding Modelica models; and the integration of simulation experiments with other SysML constructs

  10. Towards an Integrated Framework for Development and Environment Policy: The Dynamics of

    E-Print Network [OSTI]

    Kammen, Daniel M.

    of Environmental Kuznets Curves MAJID EZZATI Resources for the Future, Washington, DC, USA, and World Health * University of California, Berkeley, USA Summary. Ð Environmental Kuznets curves (EKCs) have recently received policy, environmental change, economic growth, environmental Kuznets curves, system dynamics 1

  11. Ecological Economics 41 (2002) 375392 SPECIAL ISSUE: The Dynamics and Value of Ecosystem Services: Integrating

    E-Print Network [OSTI]

    Vermont, University of

    2002-01-01T23:59:59.000Z

    synthesis of these concepts in order to address the issue of valuation of ecosystem services. We wantEcological Economics 41 (2002) 375­392 SPECIAL ISSUE: The Dynamics and Value of Ecosystem Services is to elucidate concepts of value and methods of valuation that will assist in guiding human decisions vis

  12. Mapping of Reservoir Properties and Facies Through Integration of Static and Dynamic Data

    SciTech Connect (OSTI)

    Reynolds, Albert C.; Oliver, Dean S.; Zhang, Fengjun; Dong, Yannong; Skjervheim, Jan Arild; Liu, Ning

    2003-03-10T23:59:59.000Z

    The goal of this project was to develop computationally efficient automatic history matching techniques for generating geologically plausible reservoir models which honor both static and dynamic data. Solution of this problem was necessary for the quantification of uncertainty in future reservoir performance predictions and for the optimization of reservoir management.

  13. Variational integrators for the dynamics of thermo-elastic solids with finite speed thermal waves

    E-Print Network [OSTI]

    Pablo Mata A; Adrian J Lew

    2014-03-15T23:59:59.000Z

    This paper formulates variational integrators for finite element discretizations of deformable bodies with heat conduction in the form of finite speed thermal waves. The cornerstone of the construction consists in taking advantage of the fact that the Green-Naghdi theory of type II for thermo-elastic solids has a Hamiltonian structure. Thus, standard techniques to construct variational integrators can be applied to finite element discretizations of the problem. The resulting discrete-in-time trajectories are then consistent with the laws of thermodynamics for these systems: for an isolated system, they exactly conserve the total entropy, and nearly exactly conserve the total energy over exponentially long periods of time. Moreover, linear and angular momenta are also exactly conserved whenever the exact system does. For definiteness, we construct an explicit second-order accurate algorithm for affine tetrahedral elements in two and three-dimensions, and demonstrate its performance with numerical examples.

  14. The structural, electronic and dynamic properties of the L1{sub 2}- type Co{sub 3}Ti alloy

    SciTech Connect (OSTI)

    Arikan, Nihat [Ahi Evran Üniversitesi E?itim Fakültesi, ?lkö?retim Bölümü, K?r?ehir (Turkey); Özduran, Mustafa [Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Fizik Bölümü, K?r?ehir (Turkey)

    2014-10-06T23:59:59.000Z

    The structural, electronic and dynamic properties of the cubic Co{sub 3}Ti alloy in L1{sub 2} structure have been investigated using a pseudopotential plane wave (PP-PW) method within the generalized gradient approximation proposed by Perdew–Burke–Ernzerhof (GGA-PBE). The structural properties, including the lattice constant, the bulk modulus and its pressure derivative agree reasonably with the previous results. The density of state (DOS), projected density of state (PDOS) and electronic band structure are also reported. The DOS shows that Co{sub 3}Ti alloy has a metallic character since the energy bands cross the Fermi level. The density of states at Fermi level mainly comes from the Co-3d states. Phonon dispersion curves and their corresponding total densities of states were obtained using a linear response in the framework of the density functional perturbation theory. All computed phonon frequencies are no imaginer and thus, Co{sub 3}Ti alloy is dynamically stable. The zone center phonon modes have been founded to be 9.307, 9.626 and 13.891 THz for Co{sub 3}Ti.

  15. Ab initio molecular dynamics simulations reveal localization and time evolution dynamics of an excess electron in heterogeneous CO{sub 2}–H{sub 2}O systems

    SciTech Connect (OSTI)

    Liu, Ping; Zhao, Jing; Liu, Jinxiang; Zhang, Meng; Bu, Yuxiang, E-mail: byx@sdu.edu.cn [School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 (China)] [School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 (China)

    2014-01-28T23:59:59.000Z

    In view of the important implications of excess electrons (EEs) interacting with CO{sub 2}–H{sub 2}O clusters in many fields, using ab initio molecular dynamics simulation technique, we reveal the structures and dynamics of an EE associated with its localization and subsequent time evolution in heterogeneous CO{sub 2}–H{sub 2}O mixed media. Our results indicate that although hydration can increase the electron-binding ability of a CO{sub 2} molecule, it only plays an assisting role. Instead, it is the bending vibrations that play the major role in localizing the EE. Due to enhanced attraction of CO{sub 2}, an EE can stably reside in the empty, low-lying ?{sup *} orbital of a CO{sub 2} molecule via a localization process arising from its initial binding state. The localization is completed within a few tens of femtoseconds. After EE trapping, the ?OCO angle of the core CO{sub 2}{sup ?} oscillates in the range of 127°?142°, with an oscillation period of about 48 fs. The corresponding vertical detachment energy of the EE is about 4.0 eV, which indicates extreme stability of such a CO{sub 2}-bound solvated EE in [CO{sub 2}(H{sub 2}O){sub n}]{sup ?} systems. Interestingly, hydration occurs not only on the O atoms of the core CO{sub 2}{sup ?} through formation of O?H–O H–bond(s), but also on the C atom, through formation of a C?H–O H–bond. In the latter binding mode, the EE cloud exhibits considerable penetration to the solvent water molecules, and its IR characteristic peak is relatively red-shifted compared with the former. Hydration on the C site can increase the EE distribution at the C atom and thus reduce the C?H distance in the C?H–O H–bonds, and vice versa. The number of water molecules associated with the CO{sub 2}{sup ?} anion in the first hydration shell is about 4?7. No dimer-core (C{sub 2}O{sub 4}{sup ?}) and core-switching were observed in the double CO{sub 2} aqueous media. This work provides molecular dynamics insights into the localization and time evolution dynamics of an EE in heterogeneous CO{sub 2}–H{sub 2}O media.

  16. Integrating Random Matrix Theory Predictions with Short-Time Dynamical Effects in Chaotic Systems

    E-Print Network [OSTI]

    A. Matthew Smith; Lev Kaplan

    2010-06-29T23:59:59.000Z

    We discuss a modification to Random Matrix Theory eigenstate statistics, that systematically takes into account the non-universal short-time behavior of chaotic systems. The method avoids diagonalization of the Hamiltonian, instead requiring only a knowledge of short-time dynamics for a chaotic system or ensemble of similar systems. Standard Random Matrix Theory and semiclassical predictions are recovered in the limits of zero Ehrenfest time and infinite Heisenberg time, respectively. As examples, we discuss wave function autocorrelations and cross-correlations, and show that significant improvement in accuracy is obtained for simple chaotic systems where comparison can be made with brute-force diagonalization. The accuracy of the method persists even when the short-time dynamics of the system or ensemble is known only in a classical approximation. Further improvement in the rate of convergence is obtained when the method is combined with the correlation function bootstrapping approach introduced previously.

  17. INVESTIGATION OF A DYNAMIC POWER LINE RATING CONCEPT FOR IMPROVED WIND ENERGY INTEGRATION OVER COMPLEX TERRAIN

    SciTech Connect (OSTI)

    Jake P. Gentle; Kurt S Myers; Tyler B Phillips; Inanc Senocak; Phil Anderson

    2014-08-01T23:59:59.000Z

    Dynamic Line Rating (DLR) is a smart grid technology that allows the rating of power line to be based on real-time conductor temperature dependent on local weather conditions. In current practice overhead power lines are generally given a conservative rating based on worst case weather conditions. Using historical weather data collected over a test bed area, we demonstrate there is often additional transmission capacity not being utilized with the current static rating practice. We investigate a new dynamic line rating methodology using computational fluid dynamics (CFD) to determine wind conditions along transmission lines at dense intervals. Simulated results are used to determine conductor temperature by calculating the transient thermal response of the conductor under variable environmental conditions. In calculating the conductor temperature, we use both a calculation with steady-state assumption and a transient calculation. Under low wind conditions, steady-state assumption predicts higher conductor temperatures that could lead to curtailments, whereas transient calculations produce conductor temperatures that are significantly lower, implying the availability of additional transmission capacity.

  18. Dynamic Imaging of Au-nanoparticles via Scanning Electron Microscopy in a Graphene Wet Cell

    E-Print Network [OSTI]

    Wayne Yang; Yuning Zhang; Michael Hilke; Walter Reisner

    2015-06-10T23:59:59.000Z

    High resolution nanoscale imaging in liquid environments is crucial for studying molecular interactions in biological and chemical systems. In particular, electron microscopy is the gold-standard tool for nanoscale imaging, but its high-vacuum requirements make application to in-liquid samples extremely challenging. Here we present a new graphene based wet cell device where high resolution SEM (scanning electron microscope) and Energy Dispersive X-rays (EDX) analysis can be performed directly inside a liquid environment. Graphene is an ideal membrane material as its high transparancy, conductivity and mechanical strength can support the high vacuum and grounding requirements of a SEM while enabling maximal resolution and signal. In particular, we obtain high resolution (graphene wet cell and EDX analysis of nanoparticle composition in the liquid enviornment. Our obtained resolution surpasses current conventional silicon nitride devices imaged in both SEM and TEM under much higher electron doses.

  19. The VENUS/NWChem Software Package. Tight Coupling Between Chemical Dynamics Simulations and Electronic Structure Theory

    SciTech Connect (OSTI)

    Lourderaj, Upakarasamy; Sun, Rui; De Jong, Wibe A.; Windus, Theresa L.; Hase, William L.

    2014-03-01T23:59:59.000Z

    The interface for VENUS and NWChem, and the resulting software package for direct dynamics simulations are described. The coupling of the two codes is considered to be a tight coupling. The two codes are compiled and linked together and act as one executable with data being passed between the two codes through routine calls. The advantages of this type of coupling are discussed. The interface has been designed to have as little interference as possible with the core codes of both VENUS and NWChem. VENUS is the code that propagates the direct dynamics trajectories and, therefore, is the program that drives the overall execution of VENUS/NWChem. VENUS has remained an essentially sequential code, which uses the highly parallel structure of NWChem. Subroutines of the interface which accomplish the data transmission and communication between the two computer programs are described. Recent examples of the use of VENUS/NWChem for direct dynamics simulations are summarized.

  20. Direct observation of ultrafast many-body electron dynamics in a strongly-correlated ultracold Rydberg gas

    E-Print Network [OSTI]

    Nobuyuki Takei; Christian Sommer; Claudiu Genes; Guido Pupillo; Haruka Goto; Kuniaki Koyasu; Hisashi Chiba; Matthias Weidemüller; Kenji Ohmori

    2015-04-14T23:59:59.000Z

    Many-body interactions govern a variety of important quantum phenomena ranging from superconductivity and magnetism in condensed matter to solvent effects in chemistry. Understanding those interactions beyond mean field is a holy grail of modern sciences. AMO physics with advanced laser technologies has recently emerged as a new platform to study quantum many-body systems. One of its latest developments is the study of long-range interactions among ultracold particles to reveal the effects of many-body correlations. Rydberg atoms distinguish themselves by their large dipole moments and tunability of dipolar interactions. Most of ultracold Rydberg experiments have been performed with narrow-band lasers in the Rydberg blockade regime. Here we demonstrate an ultracold Rydberg gas in a complementary regime, where electronic coherence is created using a broadband picosecond laser pulse, thus circumventing the Rydberg blockade to induce strong many-body correlations. The effects of long-range Rydberg interactions have been investigated by time-domain Ramsey interferometry with attosecond precision. This approach allows for the real-time observation of coherent and ultrafast many-body dynamics in which the electronic coherence is modulated by the interaction-induced correlations. The modulation evolves more rapidly than expected for two-body correlations by several orders of magnitude. We have actively controlled such ultrafast many-body dynamics by tuning the principal quantum number and the population of the Rydberg state. The observed Ramsey interferograms are well reproduced by a theoretical model beyond mean-field approximation, which can be relevant to other similar many-body phenomena in condensed matter physics and chemistry. Our new approach opens a new avenue to observe and manipulate nonequilibrium dynamics of strongly-correlated quantum many-body systems on the ultrafast timescale.

  1. Dynamics of the electric current in an ideal electron gas: a sound mode inside the quasi-particles

    E-Print Network [OSTI]

    Grozdanov, Sašo

    2015-01-01T23:59:59.000Z

    We study the equation of motion for the Noether current in an electron gas within the framework of the Schwinger-Keldysh Closed-Time-Path formalism. The equation is shown to be highly non-linear and irreversible even for a non-interacting, ideal gas of electrons at non-zero density. We truncate the linearised equation of motion, written as the Laurent series in Fourier space, so that the resulting expressions are local in time, both at zero and at small finite temperatures. Furthermore, we show that the one-loop Coulomb interactions only alter the physical picture quantitatively, while preserving the characteristics of the dynamics that the electric current exhibits in the absence of interactions. As a result of the composite nature of the Noether current, composite sound waves are found to be the dominant IR collective excitations at length scales between the inverse Fermi momentum and the mean free path that would exist in an interacting electron gas. We also discuss the difference and the transition betwee...

  2. Dynamics of the electric current in an ideal electron gas: a sound mode inside the quasi-particles

    E-Print Network [OSTI]

    Sašo Grozdanov; Janos Polonyi

    2015-01-26T23:59:59.000Z

    We study the equation of motion for the Noether current in an electron gas within the framework of the Schwinger-Keldysh Closed-Time-Path formalism. The equation is shown to be highly non-linear and irreversible even for a non-interacting, ideal gas of electrons at non-zero density. We truncate the linearised equation of motion, written as the Laurent series in Fourier space, so that the resulting expressions are local in time, both at zero and at small finite temperatures. Furthermore, we show that the one-loop Coulomb interactions only alter the physical picture quantitatively, while preserving the characteristics of the dynamics that the electric current exhibits in the absence of interactions. As a result of the composite nature of the Noether current, composite sound waves are found to be the dominant IR collective excitations at length scales between the inverse Fermi momentum and the mean free path that would exist in an interacting electron gas. We also discuss the difference and the transition between the hydrodynamical regime of an ideal gas, defined in this work, and the hydrodynamical regime in phenomenological hydrodynamics, which is normally used for the description of interacting gases.

  3. Combining nanocalorimetry and dynamic transmission electron microscopy for in situ characterization of materials processes under rapid heating and cooling

    SciTech Connect (OSTI)

    Grapes, Michael D., E-mail: mgrapes1@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Materials Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); LaGrange, Thomas; Reed, Bryan W.; Campbell, Geoffrey H. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Friedman, Lawrence H.; LaVan, David A., E-mail: david.lavan@nist.gov [Materials Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Weihs, Timothy P., E-mail: weihs@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2014-08-15T23:59:59.000Z

    Nanocalorimetry is a chip-based thermal analysis technique capable of analyzing endothermic and exothermic reactions at very high heating and cooling rates. Here, we couple a nanocalorimeter with an extremely fast in situ microstructural characterization tool to identify the physical origin of rapid enthalpic signals. More specifically, we describe the development of a system to enable in situ nanocalorimetry experiments in the dynamic transmission electron microscope (DTEM), a time-resolved TEM capable of generating images and electron diffraction patterns with exposure times of 30 ns–500 ns. The full experimental system consists of a modified nanocalorimeter sensor, a custom-built in situ nanocalorimetry holder, a data acquisition system, and the DTEM itself, and is capable of thermodynamic and microstructural characterization of reactions over a range of heating rates (10{sup 2} K/s–10{sup 5} K/s) accessible by conventional (DC) nanocalorimetry. To establish its ability to capture synchronized calorimetric and microstructural data during rapid transformations, this work describes measurements on the melting of an aluminum thin film. We were able to identify the phase transformation in both the nanocalorimetry traces and in electron diffraction patterns taken by the DTEM. Potential applications for the newly developed system are described and future system improvements are discussed.

  4. ON QUIET-TIME SOLAR WIND ELECTRON DISTRIBUTIONS IN DYNAMICAL EQUILIBRIUM WITH LANGMUIR TURBULENCE

    SciTech Connect (OSTI)

    Zaheer, S. [Permanent address: Department of Physics, Forman Christian College, Lahore, Punjab 54000, Pakistan. (Pakistan); Yoon, P. H. [Also at SSR, KHU, Yongin, Korea. (Korea, Republic of)

    2013-10-01T23:59:59.000Z

    A recent series of papers put forth a self-consistent theory of an asymptotically steady-state electron distribution function and Langmuir turbulence intensity. The theory was developed in terms of the ? distribution which features Maxwellian low-energy electrons and a non-Maxwellian energetic power-law tail component. The present paper discusses a generalized ? distribution that features a Davydov-Druyvesteyn type of core component and an energetic power-law tail component. The physical motivation for such a generalization is so that the model may reflect the influence of low-energy electrons interacting with low-frequency kinetic Alfvénic turbulence as well as with high-frequency Langmuir turbulence. It is shown that such a solution and the accompanying Langmuir wave spectrum rigorously satisfy the balance requirement between the spontaneous and induced emission processes in both the particle and wave kinetic equations, and approximately satisfy the similar balance requirement between the spontaneous and induced scattering processes, which are nonlinear. In spite of the low velocity modification of the electron distribution function, it is shown that the resulting asymptotic velocity power-law index ?, where f{sub e} ? v {sup –?} is close to the average index observed during the quiet-time solar wind condition, i.e., ? ? O(6.5) whereas ?{sub average} ? 6.69, according to observation.

  5. Nonadiabatic Molecular Dynamics Study of Electron Transfer from Alizarin to the Hydrated Ti4+ Ion

    E-Print Network [OSTI]

    The dye-sensitized nanocrystalline solar cell, also known as the Gra¨tzel cell, is a promising alternative that forms the basis of the Gra¨tzel type solar cell. The experimental data and electronic structure to the more costly traditional solar cell.1-5 It employs organic or transition-metal- based chromophores

  6. Dynamic and Electronic Transport Properties of DNA Translocation through Graphene Nanopores

    E-Print Network [OSTI]

    Cuniberti, Gianaurelio

    alternative for accurate and low-cost DNA read- outs has been explored by means of single-molecule sequencing an energy shift, we observed that the graphene pore manifests selectiveness toward DNA nucleobases. KEYWORDS techniques using artificial nanopore membranes mostly fabricated via ion/electron beam techniques. Biological

  7. A dynamic approach to integrated hedging for feedlots in the Texas High Plains

    E-Print Network [OSTI]

    Johnston, Larry D

    1977-01-01T23:59:59.000Z

    . The dynamic approach to hedging involved broadening the feed- lot's planning horizon to include a two-month planning period prior to placing company owned cattle on feed as well as extending the decision- making process into the feeding peri. od once cattle... beginning each month. The strategies were evaluated in terms of mean and variability of per head returns. As a basis for comparison, the Cash Market Operation feeding company owned cattle without hedging was simu- lated over the same 47 periods, yielding...

  8. Implementation of an integrated op-amp based chaotic neuron model and observation of its chaotic dynamics

    SciTech Connect (OSTI)

    Jung, Jinwoo; Lee, Jewon; Song, Hanjung [School of Nano Engineering, Inje University, Gimhae, Gyungnam (Korea, Republic of)

    2011-03-15T23:59:59.000Z

    This paper presents a fully integrated circuit implementation of an operational amplifier (op-amp) based chaotic neuron model with a bipolar output function, experimental measurements, and analyses of its chaotic behavior. The proposed chaotic neuron model integrated circuit consists of several op-amps, sample and hold circuits, a nonlinear function block for chaotic signal generation, a clock generator, a nonlinear output function, etc. Based on the HSPICE (circuit program) simulation results, approximated empirical equations for analyses were formulated. Then, the chaotic dynamical responses such as bifurcation diagrams, time series, and Lyapunov exponent were calculated using these empirical equations. In addition, we performed simulations about two chaotic neuron systems with four synapses to confirm neural network connections and got normal behavior of the chaotic neuron such as internal state bifurcation diagram according to the synaptic weight variation. The proposed circuit was fabricated using a 0.8-{mu}m single poly complementary metal-oxide semiconductor technology. Measurements of the fabricated single chaotic neuron with {+-}2.5 V power supplies and a 10 kHz sampling clock frequency were carried out and compared with the simulated results.

  9. EXPERIENCE IN REDUCING ELECTRON CLOUD AND DYNAMIC PRESSURE RISE IN WARM AND COLD REGIONS IN RHIC.

    SciTech Connect (OSTI)

    ZHANG, S.Y.; AHRENS,L.; ALLESI, J.; BAI, M.; BLASKIEWICZ, M.; CAMERON, P.; CONNOLLY, R.; DREES, A.; FISCHER, W.; GULLOTTA, J.; HE, P.; HSEUH, H.C.; HUANG, H.; LEE, R.; LITVINENKO, V.; MACKAY, W.W.; MONTAG, C.; NICOLETTI, A.; OERTER, B.; PILAT, F.; PTITSYN, V.; ROSER, T.; SATOGATA, T.; SMART, L.; SYNDSTRUP, L.; TEPIKIAN, S.; THIEBERGER, P.; TRBOJEVIC, D.; WEI, J.; ZENO, K.

    2006-06-23T23:59:59.000Z

    The large scale application of non-evaporable getter coating in RHIC has been effective in reducing the electron cloud. Since beams with higher intensity and smaller bunch spacing became possible in operation, the emittance growth is of concern. Study results are reported together with experiences of machine improvements: saturated NEG coatings, anti-grazing ridges in warm sections, and the pre-pumping in cryogenic regions.

  10. Integrated Dynamic Gloabal Modeling of Land Use, Energy and Economic Growth

    SciTech Connect (OSTI)

    Atul Jain, University of Illinois, Urbana-Champaign, IL

    2009-10-14T23:59:59.000Z

    The overall objective of this collaborative project is to integrate an existing general equilibrium energy-economic growth model with a biogeochemical cycles and biophysical models in order to more fully explore the potential contribution of land use-related activities to future emissions scenarios. Land cover and land use change activities, including deforestation, afforestation, and agriculture management, are important source of not only CO2, but also non-CO2 GHGs. Therefore, contribution of land-use emissions to total emissions of GHGs is important, and consequently their future trends are relevant to the estimation of climate change and its mitigation. This final report covers the full project period of the award, beginning May 2006, which includes a sub-contract to Brown University later transferred to the National Center for Atmospheric Research (NCAR) when Co-PI Brian O'Neill changed institutional affiliations.

  11. Dynamic system characterization of an integral test facility of an advanced PWR

    E-Print Network [OSTI]

    Smith, Simon Gregory

    1995-01-01T23:59:59.000Z

    gives: P = pph&+p gh + p RT Differentiating with respect to time leads to, dp dp/ dhf dp dh dp gh. + p g ? + ? gh + p g ? s+ ? sRT+ p R? dt dt t / dt d? s dt dt t dt For a fixed tank with area A, -dhf/dt can be substituted for dhs/dt, and (H - hf...) for hs, dp dp/ dh/ dp dh& dp dT gh + pg ? + ? sg(H ? h) ? p g ? + ? RT+ p R? dt dt / /g dt dt / s dt dt & dt (] 2) 16 Since pt is approximately constant, or changes very slowly compared to other dynamic changes in the system: dpf Substituting...

  12. Femtosecond soft x-ray spectroscopy of solvated transition metal complexes: Deciphering the interplay of electronic and structural dynamics

    SciTech Connect (OSTI)

    Huse, Nils; Cho, Hana; Hong, Kiryong; Jamula, Lindsey; de Groot, Frank M. F.; Kim, Tae Kyu; McCusker, James K.; Schoenlein, Robert W.

    2011-03-09T23:59:59.000Z

    We present the first implementation of femtosecond soft X-ray spectroscopy as an ultrafast direct probe of the excited-state valence orbitals in solution-phase molecules. This method is applied to photoinduced spin crossover of [Fe(tren(py)3)]2+, where the ultrafast spinstate conversion of the metal ion, initiated by metal-to-ligand charge-transfer excitation, is directly measured using the intrinsic spin-state selectivity of the soft X-ray L-edge transitions. Our results provide important experimental data concerning the mechanism of ultrafast spin-state conversion and subsequent electronic and structural dynamics, highlighting the potential of this technique to study ultrafast phenomena in the solution phase.

  13. Time-resolved reflectivity techniques for dynamic studies of electron beam recrystallization of silicon-on-insulator films

    SciTech Connect (OSTI)

    Timans, P.J.; McMahon, R.A.; Ahmed, H.

    1988-11-07T23:59:59.000Z

    A time-resolved reflectivity (TRR) technique has been developed for dynamic studies of swept beam heating of silicon-on-insulator (SOI) materials. The method exploits the temperature dependence of the reflectivity of SOI films to allow noncontact temperature measurement with high spatial and temporal resolution. This technique is of considerable practical importance for beam processing, since it allows the temperature distribution induced by a beam being scanned across a specimen to be determined. The temperature distribution produced by a line electron beam swept across a SOI specimen was experimentally measured and found to be consistent with a theoretical prediction. The TRR technique can also be used to study melting and will prove useful for characterizing zone melting recrystallization, where thermal modeling is often inadequate for the complex structures involved.

  14. Statistical mechanics and Vlasov equation allow for a simplified hamiltonian description of single pass free electron laser saturated dynamics

    E-Print Network [OSTI]

    Andrea Antoniazzi; Yves Elskens; Duccio Fanelli; Stefano Ruffo

    2006-01-17T23:59:59.000Z

    A reduced Hamiltonian formulation to reproduce the saturated regime of a single pass free electron laser, around perfect tuning, is here discussed. Asymptotically, $N\\_m$ particles are found to organize in a dense cluster, that evolves as an individual massive unit. The remaining particles fill the surrounding uniform sea, spanning a finite portion of phase space, approximately delimited by the average momenta $\\omega\\_+$ and $\\omega\\_-$. These quantities enter the model as external parameters, which can be self-consistently determined within the proposed theoretical framework. To this aim, we make use of a statistical mechanics treatment of the Vlasov equation, that governs the initial amplification process. Simulations of the reduced dynamics are shown to successfully capture the oscillating regime observed within the original $N$-body picture.

  15. Ultrafast transmission electron microscopy on dynamic process of a CDW transition in 1T-TaSe2

    E-Print Network [OSTI]

    Sun, Shuaishuai; Li, Zhongwen; Cao, Gaolong; Liu, Y; Lu, W J; Sun, Y P; Tian, Huanfang; HuaixinYang,; Li, Jianqi

    2015-01-01T23:59:59.000Z

    Four-dimensional ultrafast transmission electron microscopy (4D-UTEM) measurements reveal a rich variety of structural dynamic phenomena at a phase transition in the charge-density-wave (CDW) 1T-TaSe2. Through the photoexcitation, remarkable changes on both the CDW intensity and orientation are clearly observed associated with the transformation from a commensurate (C) into an incommensurate (IC) phase in a time-scale of about 3 ps. Moreover, the transient states show up a notable "structurally isosbestic point" at a wave vector of qiso where the C and IC phases yield their diffracting efficiencies in an equally ratio. This fact demonstrates that the crystal planes parallel to qiso adopts visibly common structural features in these two CDW phases. The second-order characters observed in this nonequilibrium phase transition have been also analyzed based on the time-resolved structural data.

  16. Integrated Dynamic Analysis of Floating Offshore Wind Turbines Bjrn Skaare*, Tor David Hanson*, Finn Gunnar Nielsen*, Rune Yttervik*, Anders Melchior Hansen**,

    E-Print Network [OSTI]

    Integrated Dynamic Analysis of Floating Offshore Wind Turbines Bjørn Skaare*, Tor David Hanson on land and in shallow waters offshore. Wind turbines at sea are a good solution because achieve better energy efficiency at sea than on land. Presently, offshore wind turbines are installed

  17. 1146 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 35, NO. 8, AUGUST 1999 Three-Dimensional Integrated Optics Using Polymers

    E-Print Network [OSTI]

    Optics Using Polymers Sean M. Garner, Sang-Shin Lee, Vadim Chuyanov, Antao Chen, Araz Yacoubian, William-dimensional (3-D) optical integrated circuits possible using polymers. Fabrication techniques of shadow reactive integrated optic structures are demonstrated. Vertical waveguide bends exhibit excess losses of

  18. Photochemical charge separation in zeolites: Electron transfer dynamics, nanocrystals and zeolitic membranes. Final technical report

    SciTech Connect (OSTI)

    Dutta, Prabir K.

    2001-09-30T23:59:59.000Z

    Aluminosilicate zeolites provide an excellent host for photochemical charge separation. Because of the constraints provided by the zeolite, the back electron transfer from the reduced acceptor to the oxidized sensitizer is slowed down. This provides the opportunity to separate the charge and use it in a subsequent reaction for water oxidation and reduction. Zeolite-based ruthenium oxide catalysts have been found to be efficient for the water splitting process. This project has demonstrated the usefulness of zeolite hosts for photolytic splitting of water.

  19. Gas mixing system for imaging of nanomaterials under dynamic environments by environmental transmission electron microscopy

    SciTech Connect (OSTI)

    Akatay, M. Cem [School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States)] [School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Zvinevich, Yury; Ribeiro, Fabio H., E-mail: fabio@purdue.edu, E-mail: estach@bnl.gov [Forney Hall of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Baumann, Philipp [Computer Sciences, University of Applied Sciences of Northeastern Switzerland, 4132 Muttenz, Switzerland and Department of Physics, Yeshiva University, New York, New York 10016 (United States)] [Computer Sciences, University of Applied Sciences of Northeastern Switzerland, 4132 Muttenz, Switzerland and Department of Physics, Yeshiva University, New York, New York 10016 (United States); Stach, Eric A., E-mail: fabio@purdue.edu, E-mail: estach@bnl.gov [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2014-03-15T23:59:59.000Z

    A gas mixing manifold system that is capable of delivering a stable pressure stream of a desired composition of gases into an environmental transmission electron microscope has been developed. The system is designed to provide a stable imaging environment upon changes of either the composition of the gas mixture or upon switching from one gas to another. The design of the system is described and the response of the pressure inside the microscope, the sample temperature, and sample drift in response to flow and composition changes of the system are reported.

  20. Electron spin resonance investigation of Mn^{2+} ions and their dynamics in manganese doped SrTiO_3

    E-Print Network [OSTI]

    V. V. Laguta; I. V. Kondakova; I. P. Bykov; M. D. Glinchuk; P. M. Vilarinho; A. Tkach; L. Jastrabik

    2007-02-28T23:59:59.000Z

    Using electron spin resonance, lattice position and dynamic properties of Mn2+ ions were studied in 0.5 and 2 % manganese doped SrTiO3 ceramics prepared by conventional mixed oxide method. The measurements showed that Mn2+ ions substitute preferably up to 97 % for Sr if the ceramics is prepared with a deficit of Sr ions. Motional narrowing of the Mn2+ ESR spectrum was observed when temperature increases from 120 K to 240-250 K that was explained as a manifestation of off-center position of this ion at the Sr site. From the analysis of the ESR spectra the activation energy Ea = 86 mV and frequency factor 1/?0 ? (2-10)x10^(-14) 1/s for jumping of the impurity between symmetrical off-center positions were determined. Both values are in agreement with those derived previously from dielectric relaxation. This proves the origin of dielectric anomalies in SrTiO3:Mn as those produced by the reorientation dynamics of Mn2+ dipoles.

  1. Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Levantino, Matteo; Schirò, Giorgio; Lemke, Henrik Till; Cottone, Grazia; Glownia, James Michael; Zhu, Diling; Chollet, Mathieu; Ihee, Hyotcherl; Cupane, Antonio; Cammarata, Marco

    2015-04-02T23:59:59.000Z

    Light absorption can trigger biologically relevant protein conformational changes. The light induced structural rearrangement at the level of a photoexcited chromophore is known to occur in the femtosecond timescale and is expected to propagate through the protein as a quake-like intramolecular motion. Here we report direct experimental evidence of such ‘proteinquake’ observed in myoglobin through femtosecond X-ray solution scattering measurements performed at the Linac Coherent Light Source X-ray free-electron laser. An ultrafast increase of myoglobin radius of gyration occurs within 1 picosecond and is followed by a delayed protein expansion. As the system approaches equilibrium it undergoes damped oscillations withmore »a ~3.6-picosecond time period. Our results unambiguously show how initially localized chemical changes can propagate at the level of the global protein conformation in the picosecond timescale.« less

  2. Molecular dynamic simulations of electric microfield distributions in a nonideal electron-positron plasma

    SciTech Connect (OSTI)

    Sadykova, S. P.; Ebeling, W.; Sokolov, I. M. [Humboldt-Universitaet zu Berlin (Germany); Valuev, I. A. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2010-12-15T23:59:59.000Z

    A symmetric model of a two-component plasma is considered and the distributions of electric microfields acting on charged and neutral particles are calculated using the method of molecular dynamics at a fixed temperature of T = 30000 K and different values of the coupling parameter 0.2 {<=} {Gamma} {<=} 1.2. Changes in these distributions with varying {Gamma} are discussed. Special attention is paid to the behavior of the distribution tails. The behavior of these tails at a neutral point is shown to agree with the tails of the Holtsmark distribution, whereas the tails of the distribution at a charge are considerably heavier and are characterized by the exponent that varies within the range from -2.2 up to -1.8 as {Gamma} increases.

  3. Modeling surfaces in the context of pulsed-power : work functions, electron emission and dynamic response.

    SciTech Connect (OSTI)

    Cochrane, Kyle Robert (Ktech Corporation, Albuquerque, NM); Chantrenne, Sophie (SAIC, Albuquerque, NM); Mattsson, Thomas Kjell Rene; Faleev, Sergey V. (SNAMI Inc., AL)

    2009-09-01T23:59:59.000Z

    The ability to quickly understand and deal with issues on ZR, or to virtually design a future ZX accelerator, requires a physics-based capability to simulate all key pulsed power components. Highly important for gas switches and transmission lines are surface phenomena: thermionic emission, photoemission, field emission, and ion-surface dynamics. These are complex processes even at normal conditions, when coupled to the dynamic environment in pulsed power components, the current state of the art of understanding is not at the level of science based predictive modeling. Modeling efforts at the macroscopic level (finite element based hydrodynamic simulations) require detailed information of these processes to yield more reliable results. This is the final report of an LDRD project in the science of extreme environments investment area; the project was focused on describing the physics of surfaces of materials of interest in pulsed-power components. We have calculated the temperature dependence of work functions for metals from first principles using density functional theory (DFT) as well as investigated the effect of initial oxidation and alloying. By using the GW method, we have gone beyond DFT to calculate work functions for Al. The GW work required base-lining the GW results for different systems, since GW lacks a description of total energy. Lastly, we investigated the more macroscopic physics of how a surface and bulk material responds to a very high current under a short time, representative for current loads in pulsed-power components, with emphasis on materials modeling. These simulations were made using two hydrodynamic codes, ALEGRA and MACH2, in order to focus on the materials models themselves.

  4. An infrared free electron laser system for the proposed Chemical Dynamics Research Laboratory at LBL based on a 500 MHz superconducting linac

    SciTech Connect (OSTI)

    Kim, K.J.; Byrns, R.; Chattopadhyay, S.; Donahue, R.; Edighoffer, J.; Gough, R.; Hoyer, E.; Leemans, W.; Staples, J.; Taylor, B.; Xie, M.

    1992-09-01T23:59:59.000Z

    We describe a new design of the Infrared Free Electron Laser (IRFEL) for the proposed Chemical Dynamics Research Laboratory (CDRL) at LBL. The design and choice of parameters are dictated by the unique requirements of the CDRL scientific program. The accelerator system is based on the 500 MHz superconducting cavity technology to achieve a wavelength stability of 10{sup {minus}4}.

  5. An infrared free electron laser system for the proposed Chemical Dynamics Research Laboratory at LBL based on a 500 MHz superconducting linac

    SciTech Connect (OSTI)

    Kim, K.J.; Byrns, R.; Chattopadhyay, S.; Donahue, R.; Edighoffer, J.; Gough, R.; Hoyer, E.; Leemans, W.; Staples, J.; Taylor, B.; Xie, M.

    1992-09-01T23:59:59.000Z

    We describe a new design of the Infrared Free Electron Laser (IRFEL) for the proposed Chemical Dynamics Research Laboratory (CDRL) at LBL. The design and choice of parameters are dictated by the unique requirements of the CDRL scientific program. The accelerator system is based on the 500 MHz superconducting cavity technology to achieve a wavelength stability of 10[sup [minus]4].

  6. Electrical/Electronic Engineering

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Electrical/Electronic Engineering Technology The Division of Engineering of Science in Electrical/Electronic Engineering Technology Get ready for a dynamic career in Electrical/Electronic Engineering Technology. Possible applications

  7. Instrumentation and Beam Dynamics Study of Advanced Electron-Photon Facility in Indiana University

    SciTech Connect (OSTI)

    Luo, Tianhuan; /Indiana U.

    2011-08-01T23:59:59.000Z

    The Advanced eLectron-PHoton fAcility (ALPHA) is a compact electron accelerator under construction and being commissioned at the Indiana University Center for Exploration of Energy and Matter (CEEM). In this thesis, we have studied the refurbished Cooler Injector Synchrotron (CIS) RF cavity using both the transmission line model and SUPERFISH simulation. Both low power and high power RF measurements have been carried out to characterize the cavity. Considering the performance limit of ferrite, we have designed a new ferrite loaded, co-axial quarter wave like cavity with similar structure but a more suitable ferrite material. We have also designed a traveling wave stripline kicker for fast extraction by POISSON and Microwave Studio. The strips geometry is trimmed to maximize the uniformity of the kicking field and match the impedance of the power cables. The time response simulation shows the kicker is fast enough for machine operation. The pulsed power supply requirement has also been specified. For the beam diagnosis in the longitudinal direction, we use a wideband Wall Gap Monitor (WGM) served in CIS. With proper shielding and amplification to get good WGM signal, we have characterized the injected and extracted beam signal in single pass commissioning, and also verified the debunching effect of the ALPHA storage ring. A modulation-demodulation signal processing method is developed to measure the current and longitudinal profile of injected beam. By scanning the dipole strength in the injection line, we have reconstructed the tomography of the longitudinal phase space of the LINAC beam. In the accumulation mode, ALPHA will be operated under a low energy and high current condition, where intra beam scattering (IBS) becomes a dominant effect on the beam emittance. A self consistent simulation, including IBS effect, gas scattering and linear coupling, has been carried out to calculate the emittance of the stored beam.

  8. D. Mundy UKAIS PhD Consortium 2003. Providing a Secure Solution For The Integration Of Electronic

    E-Print Network [OSTI]

    Kent, University of

    for the patient on a paper prescription form. The health care provider signs this form by hand. The patient can Prescription Transfer Within The United Kingdom National Health Service D.P.Mundy Abstract This paper provides could be integrated successfully into the UK National Health Service (NHS), was developed. The described

  9. Synergico: a method for systematic integration of energy efficiency into the design process of electr(on)ic equipment

    E-Print Network [OSTI]

    Boyer, Edmond

    : ecodesign method; energy efficiency, electrical and electronic products 1. Introduction Energy consumption has been a major concern for several decades. Indeed, both private and public sectors have been aware-efficient Europe" and aims at a 20% saving by 2020 by imposing energy efficiency criteria in all economic sectors

  10. Integrated Kinetic Simulation of Laser-Plasma Interactions, Fast-Electron Generation and Transport in Fast Ignition

    SciTech Connect (OSTI)

    Kemp, A; Cohen, B; Divol, L

    2009-11-16T23:59:59.000Z

    We present new results on the physics of short-pulse laser-matter interaction of kilojoule-picosecond pulses at full spatial and temporal scale, using a new approach that combines a 3D collisional electromagnetic Particle-in-Cell code with an MHD-hybrid model of high-density plasma. In the latter, collisions damp out plasma waves, and an Ohm's law with electron inertia effects neglected determines the electric field. In addition to yielding orders of magnitude in speed-up while avoiding numerical instabilities, this allows us to model the whole problem in a single unified framework: the laser-plasma interaction at sub-critical densities, energy deposition at relativistic critical densities, and fast-electron transport in solid densities. Key questions such as the multi-picosecond temporal evolution of the laser energy conversion into hot electrons, the impact of return currents on the laser-plasma interaction, and the effect of self-generated electric and magnetic fields on electron transport will be addressed. We will report applications to current experiments.

  11. In-situ Study of Dynamic Phenomena at Metal Nanosolder Interfaces Using Aberration Corrected Scanning Transmission Electron Microcopy.

    SciTech Connect (OSTI)

    Lu, Ping

    2014-10-01T23:59:59.000Z

    Controlling metallic nanoparticle (NP) interactions plays a vital role in the development of new joining techniques (nanosolder) that bond at lower processing temperatures but remain viable at higher temperatures. The pr imary objective of this project is t o develop a fundamental understanding of the actual reaction processes, associated atomic mechanisms, and the resulting microstructure that occur during thermally - driven bond formation concerning metal - metal nano - scale (<50nm) interfaces. In this LDRD pr oject, we have studied metallic NPs interaction at the elevated temperatures by combining in - situ transmission electron microscopy (TEM ) using an aberration - corrected scanning transmission electron microscope (AC - STEM) and atomic - scale modeling such as m olecular dynamic (MD) simulations. Various metallic NPs such as Ag, Cu and Au are synthesized by chemical routines. Numerous in - situ e xperiments were carried out with focus of the research on study of Ag - Cu system. For the first time, using in - situ STEM he ating experiments , we directly observed t he formation of a 3 - dimensional (3 - D) epitaxial Cu - Ag core - shell nanoparticle during the thermal interaction of Cu and Ag NPs at elevated temperatures (150 - 300 o C). The reaction takes place at temperatures as low as 150 o C and was only observed when care was taken to circumvent the effects of electron beam irradiation during STEM imaging. Atomic - scale modeling verified that the Cu - Ag core - shell structure is energetically favored, and indicated that this phenomenon is a nano - scale effect related to the large surface - to - volume ratio of the NPs. The observation potentially can be used for developing new nanosolder technology that uses Ag shell as the %22glue%22 that stic ks the particles of Cu together. The LDRD has led to several journal publications and numerous conference presentations, and a TA. In addition, we have developed new TEM characterization techniques and phase - field modeling tools that can be used for future materials research at Sandia. Acknowledgeme nts This work was supported by the Laboratory Directed Research and Development (LDRD) program of Sandia National Laboratories. Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidia ry of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000.

  12. Electron-ion dynamics in laser-assisted desorption of hydrogen atoms from H-Si(111) surface

    SciTech Connect (OSTI)

    Bubin, Sergiy; Varga, Kalman [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States)

    2011-09-15T23:59:59.000Z

    In the framework of real time real space time-dependent density functional theory we have studied the electron-ion dynamics of a hydrogen-terminated silicon surface H-Si(111) subjected to intense laser irradiation. Two surface fragments of different sizes have been used in the simulations. When the intensity and duration of the laser exceed certain levels (which depend on the wavelength) we observe the desorption of the hydrogen atoms, while the underlying silicon layer remains essentially undamaged. Upon further increase of the laser intensity, the chemical bonds between silicon atoms break as well. The results of the simulations suggest that with an appropriate choice of laser parameters it should be possible to remove the hydrogen layer from the H-Si(111) surface in a matter of a few tens of femtoseconds. We have also observed that at high laser field intensities (2-4 V/A in this work) the desorption occurs even when the laser frequency is smaller than the optical gap of the silicon surface fragments. Therefore, nonlinear phenomena must play an essential role in such desorption processes.

  13. Effect of pulse error accumulation on dynamical decoupling of the electron spins of phosphorus donors in silicon

    E-Print Network [OSTI]

    Zhi-Hui Wang; Wenxian Zhang; A. M. Tyryshkin; S. A. Lyon; J. W. Ager; E. E. Haller; V. V. Dobrovitski

    2012-01-03T23:59:59.000Z

    Dynamical decoupling (DD) is an efficient tool for preserving quantum coherence in solid-state spin systems. However, the imperfections of real pulses can ruin the performance of long DD sequences. We investigate the accumulation and compensation of different pulse errors in DD using the electron spins of phosphorus donors in silicon as a test system. We study periodic DD sequences (PDD) based on spin rotations about two perpendicular axes, and their concatenated and symmetrized versions. We show that pulse errors may quickly destroy some spin states, but maintain other states with high fidelity over long times. Pulse sequences based on spin rotations about $x$ and $y$ axes outperform those based on $x$ and $z$ axes due to the accumulation of pulse errors. Concatenation provides an efficient way to suppress the impact of pulse errors, and can maintain high fidelity for all spin components: pulse errors do not accumulate (to first order) as the concatenation level increases, despite the exponential increase in the number of pulses. Our theoretical model gives a clear qualitative picture of the error accumulation, and produces results in quantitative agreement with the experiments.

  14. An enhanced sector integration model for output and dose distribution calculation of irregular concave shaped electron beams

    SciTech Connect (OSTI)

    Gajewski, Romuald [Department of Medical Physics, Sydney West Cancer Network, Westmead, New South Wales 2145 (Australia)

    2009-07-15T23:59:59.000Z

    A comprehensive method of output factor and dose distribution calculation for electron beams has been developed. It allows one to calculate the output factors and isodose distributions in water of arbitrary shaped electron fields with excellent accuracy even for the cases of concaved, small, elongated beams, and extended source to surface distances (SSDs). The method requires two sets of data: Depth dose distribution per monitor unit for circular cutouts and depth dose distributions per monitor unit for circular blocks (plugs), both for two SSDs, one reference of 100 cm and second extended one. The method has been extensively tested using a combination of different irregular cutouts and various SSDs for the 6 and 9 MeV electron beams. The calculated values agreed with the measured data well within 1% for output factors and below 1 for {gamma} (gamma test) for isodose distributions. The computer program has been developed to facilitate the method for practical application. The method has been used for almost 8 years considerably cutting workload in the department.

  15. Rapid Laser Induced Crystallization of Amorphous NiTi Films Observed by Nanosecond Dynamic Transmission Electron Microscopy (DTEM)

    SciTech Connect (OSTI)

    LaGrange, T; Campbell, G H; Browning, N D; Reed, B W; Grummon, D S

    2010-03-01T23:59:59.000Z

    The crystallization processes of the as-deposited, amorphous NiTi thin films have been studied in detail using techniques such as differential scanning calorimetry and, in-situ TEM. The kinetic data have been analyzed in terms of Johnson-Mehl-Avrami-Kolomogrov (JMAK) semi-empirical formula. The kinetic parameters determined from this analysis have been useful in defining process control parameters for tailoring microstructural features and shape memory properties. Due to the commercial push to shrink thin film-based devices, unique processing techniques have been developed using laser-based annealing to spatially control the microstructure evolution down to sub-micron levels. Nanosecond, pulse laser annealing is particularly attractive since it limits the amount of peripheral heating and unwanted microstructural changes to underlying or surrounding material. However, crystallization under pulsed laser irradiation can differ significantly from conventional thermal annealing, e.g., slow heating in a furnace. This is especially true for amorphous NiTi materials and relevant for shape memory thin film based microelectromechanical systems (MEMS) applications. There is little to no data on the crystallization kinetics of NiTi under pulsed laser irradiation, primarily due to the high crystallization rates intrinsic to high temperature annealing and the spatial and temporal resolution limits of standard techniques. However, with the high time and spatial resolution capabilities of the dynamic transmission electron microscope (DTEM) constructed at Lawrence Livermore National Laboratory, the rapid nucleation events occurring from pulsed laser irradiation can be directly observed and nucleation rates can be quantified. This paper briefly explains the DTEM approach and how it used to investigate the pulsed laser induced crystallization processes in NiTi and to determine kinetic parameters.

  16. Very long transients, irregular firing, and chaotic dynamics in networks of randomly connected inhibitory integrate-and-fire neurons

    E-Print Network [OSTI]

    Brunel, Nicolas

    inhibitory integrate-and-fire neurons Rüdiger Zillmer,1,2,3 Nicolas Brunel,1,2 and David Hansel1,2 1

  17. Ultrafast probing of the x-ray-induced lattice and electron dynamics in graphite at atomic-resolution

    SciTech Connect (OSTI)

    Hau-Riege, S

    2010-10-07T23:59:59.000Z

    We used LCLS pulses to excite thin-film and bulk graphite with various different microstructures, and probed the ultrafast ion and electron dynamics through Bragg and x-ray Thomson scattering (XRTS). We pioneered XRTS at LCLS, making this technique viable for other users. We demonstrated for the first time that the LCLS can be used to characterize warm-dense-matter through Bragg and x-ray Thomson scattering. The warm-dense-matter conditions were created using the LCLS beam. Representative examples of the results are shown in the Figure above. In our experiment, we utilized simultaneously both Bragg and two Thomson spectrometers. The Bragg measurements as a function of x-ray fluence and pulse length allows us to characterize the onset of atomic motion at 2 keV with the highest resolution to date. The Bragg detector was positioned in back-reflection, providing us access to scattering data with large scattering vectors (nearly 4{pi}/{lambda}). We found a clear difference between the atomic dynamics for 70 and 300 fs pulses, and we are currently in the process of comparing these results to our models. The outcome of this comparison will have important consequences for ultrafast diffractive imaging, for which it is still not clear if atomic resolution can truly be achieved. The backward x-ray Thomson scattering data suggests that the average graphite temperature and ionization was 10 eV and 1.0, respectively, which agrees with our models. In the forward scattering data, we observed an inelastic feature in the Thomson spectrum that our models currently do not reproduce, so there is food for thought. We are in the process of writing these results up. Depending on if we can combine the Bragg and Thomson data or not, we plan to publish them in a single paper (e.g. Nature or Science) or as two separate papers (e.g. two Phys. Rev. Lett.). We will present the first analysis of the results at the APS Plasma Meeting in November 2010. We had a fantastic experience performing our experiment at the LCLS, and we are grateful to the beamline scientists and all the support personnel for enabling this experiment. A major hurdle was the very short transition time of two days, which despite all our preparations did not give us sufficient time to test the full system before the start of the beam time. We further were not able to make optimal use of the beam time since we had to exchange samples in the middle of the 36-hours shift. An additional 12-hours break could have avoided this. Finally, our experiment would have benefitted from the best possible focus, but 5 shifts do not allow performing the experiment while fine-tuning the focusing optics.

  18. A Framework for Dynamic Hard/Soft Fusion David L. Hall

    E-Print Network [OSTI]

    Mullen, Tracy

    /asymmetric warfare cases where the observational capabilities and opportunities for traditional electronic ("Hard on the ongoing development ofa research framework for dynamic integration of information from hard (electronic" henceforth) sensors is limited. This is especially related to the urban warfare case

  19. Isomorphic classical molecular dynamics model for an excess electronin a supercritical fluid

    SciTech Connect (OSTI)

    Miller III, Thomas F.

    2008-08-04T23:59:59.000Z

    Ring polymer molecular dynamics (RPMD) is used to directly simulate the dynamics of an excess electron in a supercritical fluid over a broad range of densities. The accuracy of the RPMD model is tested against numerically exact path integral statistics through the use of analytical continuation techniques. At low fluid densities, the RPMD model substantially underestimates the contribution of delocalized states to the dynamics of the excess electron. However, with increasing solvent density, the RPMD model improves, nearly satisfying analytical continuation constraints at densities approaching those of typical liquids. In the high density regime, quantum dispersion substantially decreases the self-diffusion of the solvated electron. In this regime where the dynamics of the electron is strongly coupled to the dynamics of the atoms in the fluid, trajectories that can reveal diffusive motion of the electron are long in comparison to {beta}{h_bar}.

  20. Dynamic

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell: Gas productionDynamic , and Static ,

  1. Using X-ray free-electron lasers for probing of complex interaction dynamics of ultra-intense lasers with solid matter

    SciTech Connect (OSTI)

    Kluge, T., E-mail: t.kluge@hzdr.de; Huang, L. G.; Metzkes, J.; Bussmann, M. [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany)] [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany); Gutt, C. [Universität Siegen, D-57068 Siegen (Germany)] [Universität Siegen, D-57068 Siegen (Germany); Schramm, U.; Cowan, T. E. [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany) [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany); Technische Universität Dresden, D-01062 Dresden (Germany)

    2014-03-15T23:59:59.000Z

    We demonstrate the potential of X-ray free-electron lasers (XFEL) to advance the understanding of complex plasma dynamics by allowing for the first time nanometer and femtosecond resolution at the same time in plasma diagnostics. Plasma phenomena on such short timescales are of high relevance for many fields of physics, in particular in the ultra-intense ultra-short laser interaction with matter. Highly relevant yet only partially understood phenomena become directly accessible in experiment. These include relativistic laser absorption at solid targets, creation of energetic electrons and electron transport in warm dense matter, including the seeding and development of surface and beam instabilities, ambipolar expansion, shock formation, and dynamics at the surfaces or at buried layers. In this paper, we focus on XFEL plasma probing for high power laser matter interactions based on quantitative calculations using synthesized data and evaluate the feasibility of various imaging and scattering techniques with special focus on the small angle X-ray scattering technique.

  2. Long-time electron spin storage via dynamical suppression of hyperfine-induced decoherence in a quantum dot

    E-Print Network [OSTI]

    by the nuclear spin environment in a quantum dot can be substantially increased by subjecting the electron and characterized. The impact of system and control nonidealities is also assessed, including the effect.125336 PACS number s : 03.67.Pp, 03.65.Yz, 75.10.Jm, 02.60.Cb I. INTRODUCTION Electron and nuclear spin

  3. Design of a superconducting linear accelerator for an Infrared Free Electron Laser of the proposed Chemical Dynamics Research Laboratory at LBL

    SciTech Connect (OSTI)

    Chattopadhyay, S.; Byrns, R.; Donahue, R.; Edighoffer, J.; Gough, R.; Hoyer, E.; Kim, K.J.; Leemans, W.; Staples, J.; Taylor, B.; Xie, M.

    1992-08-01T23:59:59.000Z

    An accelerator complex has recently been designed at LBL as part of an Infrared Free Electron Laser facility in support of a proposed Chemical Dynamics Research Laboratory. We will outline the choice of parameters and design philosophy, which are strongly driven by the demand of reliable and spectrally stable operation of the FEL for very special scientific experiments. The design is based on a 500 MHz recirculating superconducting electron linac with highest energy reach of about 60 MeV. The accelerator is injected with beams prepared by a specially designed gun-buncher system and incorporates a near-isochronous and achromatic recirculation line tunable over a wide range of beam energies. The stability issues considered to arrive at the specific design will be outlined.

  4. Extending the Capabilities of the Mooring Analysis Program: A Survey of Dynamic Mooring Line Theories for Integration into FAST: Preprint

    SciTech Connect (OSTI)

    Masciola, M.; Jonkman, J.; Robertson, A.

    2014-03-01T23:59:59.000Z

    Techniques to model dynamic mooring lines come in various forms. The most widely used models include either a heuristic representation of the physics (such as a Lumped-Mass, LM, system), a Finite-Element Analysis (FEA) discretization of the lines (discretized in space), or a Finite-Difference (FD) model (which is discretized in both space and time). In this paper, we explore the features of the various models, weigh the advantages of each, and propose a plan for implementing one dynamic mooring line model into the open-source Mooring Analysis Program (MAP). MAP is currently used as a module for the FAST offshore wind turbine computer-aided engineering (CAE) tool to model mooring systems quasi-statically, although dynamic mooring capabilities are desired. Based on the exploration in this manuscript, the lumped-mass representation is selected for implementation in MAP based on its simplicity, computational cost, and ability to provide similar physics captured by higher-order models.

  5. Dynamic simulation and load-following control of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture

    SciTech Connect (OSTI)

    Bhattacharyya, D,; Turton, R.; Zitney, S.

    2012-01-01T23:59:59.000Z

    Load-following control of future integrated gasification combined cycle (IGCC) plants with pre-combustion CO{sub 2} capture is expected to be far more challenging as electricity produced by renewable energy is connected to the grid and strict environmental limits become mandatory requirements. To study control performance during load following, a plant-wide dynamic simulation of a coal-fed IGCC plant with CO{sub 2} capture has been developed. The slurry-fed gasifier is a single-stage, downward-fired, oxygen-blown, entrained-flow type with a radiant syngas cooler (RSC). The syngas from the outlet of the RSC goes to a scrubber followed by a two-stage sour shift process with inter-stage cooling. The acid gas removal (AGR) process is a dual-stage physical solvent-based process for selective removal of H{sub 2}S in the first stage and CO{sub 2} in the second stage. Sulfur is recovered using a Claus unit with tail gas recycle to the AGR. The recovered CO{sub 2} is compressed by a split-shaft multistage compressor and sent for sequestration after being treated in an absorber with triethylene glycol for dehydration. The clean syngas is sent to two advanced “F”-class gas turbines (GTs) partially integrated with an elevated-pressure air separation unit. A subcritical steam cycle is used for heat recovery steam generation. A treatment unit for the sour water strips off the acid gases for utilization in the Claus unit. The steady-state model developed in Aspen Plus® is converted to an Aspen Plus Dynamics® simulation and integrated with MATLAB® for control studies. The results from the plant-wide dynamic model are compared qualitatively with the data from a commercial plant having different configuration, operating condition, and feed quality than what has been considered in this work. For load-following control, the GT-lead with gasifier-follow control strategy is considered. A modified proportional–integral–derivative (PID) control is considered for the syngas pressure control. For maintaining the desired CO{sub 2} capture rate while load-following, a linear model predictive controller (LMPC) is implemented in MATLAB®. A combined process and disturbance model is identified by considering a number of model forms and choosing the final model based on an information-theoretic criterion. The performance of the LMPC is found to be superior to the conventional PID control for maintaining CO{sub 2} capture rates in an IGCC power plant while load following.

  6. A time-dependent momentum-space density functional theoretical approach for electron transport dynamics in molecular devices

    E-Print Network [OSTI]

    Chu, Shih-I; Zhou, Zhongyuan

    2009-10-27T23:59:59.000Z

    We propose a time-dependent density functional theoretical (TDDFT) approach in momentum (\\mathcal{P} ) space for the study of electron transport in molecular devices under arbitrary biases. The basic equation of motion, which is a time...

  7. Non-intrusive and structure preserving multiscale integration of stiff ODEs, SDEs and Hamiltonian systems with hidden slow dynamics via flow averaging

    E-Print Network [OSTI]

    Tao, Molei; Marsden, Jerrold E

    2009-01-01T23:59:59.000Z

    We introduce a new class of integrators for stiff ODEs as well as SDEs. These integrators are (i) {\\it Multiscale}: they are based on flow averaging and so do not resolve the fast variables but rather employ step-sizes determined by slow variables (ii) {\\it Basis}: the method is based on averaging the flow of the given dynamical system (which may have hidden slow and fast processes) instead of averaging the instantaneous drift of assumed separated slow and fast processes. This bypasses the need for identifying explicitly (or numerically) the slow or fast variables. (iii) {\\it Non intrusive}: A pre-existing numerical scheme resolving the microscopic time scale can be used as a black box and turned into one of the integrators in this paper by simply turning the large coefficients on over a microscopic timescale and off during a mesoscopic timescale. (iv) {\\it Convergent over two scales}: strongly over slow processes and in the sense of measures over fast ones. (v) {\\it Structure preserving}: For stiff Hamiltoni...

  8. Single Pass Electron Cooling Simulations for MEIC

    SciTech Connect (OSTI)

    Bell, G. I. [Tech-X Corp.; Pogorelov, I. V. [Tech-X Corp.; Schwartz, B. T. [Tech-X Corp.; Zhang, Yuhong [JLAB; Zhang, He [JLAB

    2013-12-01T23:59:59.000Z

    Cooling of medium energy protons is critical for the proposed Jefferson Lab Medium Energy Ion Collider (MEIC). We present simulations of electron cooling of protons up to 60 GeV. In the beam frame in which the proton and electrons are co-propagating, their motion is non-relativistic. We use a binary collision model which treats the cooling process as the sum of a large number of two-body collisions which are calculated exactly. This model can treat even very close collisions between an electron and ion with high accuracy. We also calculate dynamical friction using a delta-f PIC model. The code VSim (formerly Vorpal) is used to perform the simulations. We compare the friction rates with that obtained by a 3D integral over electron velocities which is used by BETACOOL.

  9. Dynamic Phase Shifts in Nanoscale Distance Measurements by Double...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by Double Electron Electron Resonance (DEER)† . Abstract: The off-resonant pump pulse used in double electron electron resonance (DEER) measurements produces dynamic...

  10. THE JOURNAL OF CHEMICAL PHYSICS 134, 074107 (2011) Multistage ab initio quantum wavepacket dynamics for electronic structure

    E-Print Network [OSTI]

    Iyengar, Srinivasan S.

    2011-01-01T23:59:59.000Z

    systems6­16 and solar energy conversion and storage.55­57 The intensity of current research effort, and external fields Alexander B. Pacheco and Srinivasan S. Iyengara) Department of Chemistry and Department solvated electron chemistry30­41 plays an impor- tant role. In materials chemistry, active research

  11. Introduction to Structure and Dynamics: Inaugural Issue

    E-Print Network [OSTI]

    White, Douglas R.; Manlove, Robert; Colby, B. N.; Garfias, Robert; Bell, Duran

    2005-01-01T23:59:59.000Z

    the premier issue of Structure and Dynamics, an electronicFor this great boon, Structure and Dynamics in particular iselectronic journals, Structure and Dynamics will be widely

  12. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2009 1413 On-Chip-Integrated Nanowire Device Platform With

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    On-Chip-Integrated Nanowire Device Platform With Controllable Nanogap for Manipulation, Capturing, Member, IEEE Abstract--We propose and demonstrate nanowire (NW) de- vice platforms on-chip integrated using electric-field-assisted self-assembly. This platform integrates from nanoprobes to mi- croprobes

  13. Studies in Nonlinear Dynamics & Econometrics

    E-Print Network [OSTI]

    Studies in Nonlinear Dynamics & Econometrics Volume 8, Issue 3 2004 Article 1 The Long Memory in Nonlinear Dynamics & Econometrics is produced by The Berkeley Electronic Press (bepress). http

  14. First principles molecular dynamics without self-consistent field optimization

    E-Print Network [OSTI]

    Souvatzis, Petros

    2013-01-01T23:59:59.000Z

    We present a first principles molecular dynamics approach that is based on time-reversible ex- tended Lagrangian Born-Oppenheimer molecular dynamics [Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. The optimization-free dynamics keeps the computational cost to a minimum and typically provides molecular trajectories that closely follow the exact Born-Oppenheimer potential energy surface. Only one single diagonalization and Hamiltonian (or Fockian) costruction are required in each integration time step. The proposed dy- namics is derived for a general free-energy potential surface valid at finite electronic temperatures within hybrid density functional theory. Even in the event of irregular functional behavior that may cause a dynamical instability, the optimization-free limit represents an ideal starting guess for force calculations that may require a more elaborate iterative electronic ground state optimization. Our optimization-free dynamics thus represents ...

  15. 2013 IREP Symposium-Bulk Power System Dynamics and Control IX (IREP), August 25-30, 2013, Rethymnon, Greece A Production Simulation Tool for Systems with an Integrated Concentrated Solar

    E-Print Network [OSTI]

    Gross, George

    , Rethymnon, Greece A Production Simulation Tool for Systems with an Integrated Concentrated Solar Plant2013 IREP Symposium-Bulk Power System Dynamics and Control ­IX (IREP), August 25-30, 2013 of the growing interest in effectively harnessing renewable energy resources. The concentrated solar plant (CSP

  16. Laser-induced electron localization in H$_2^+$: Mixed quantum-classical dynamics based on the exact time-dependent potential energy surface

    E-Print Network [OSTI]

    Suzuki, Yasumitsu; Maitra, Neepa T; Gross, E K U

    2015-01-01T23:59:59.000Z

    We study the exact nuclear time-dependent potential energy surface (TDPES) for laser-induced electron localization with a view to eventually developing a mixed quantum-classical dynamics method for strong-field processes. The TDPES is defined within the framework of the exact factorization [A. Abedi, N. T. Maitra, and E. K. U. Gross, Phys. Rev. Lett. 105, 123002 (2010)] and contains the exact effect of the couplings to the electronic subsystem and to any external fields within a scalar potential. We compare its features with those of the quasistatic potential energy surfaces (QSPES) often used to analyse strong-field processes. We show that the gauge-independent component of the TDPES has a mean-field-like character very close to the density-weighted average of the QSPESs. Oscillations in this component are smoothened out by the gauge-dependent component, and both components are needed to yield the correct force on the nuclei. Once the localization begins to set in, the gradient of the exact TDPES tracks one ...

  17. Quasilinear dynamics of a cloud of hot electrons propagating through a plasma with decreasing density and temperature

    SciTech Connect (OSTI)

    Foroutan, G. [Department of Physics, Faculty of Science, Sahand University of Technology, Tabriz 51335-1996 (Iran, Islamic Republic of); School of Physics, The University of Sydney, Sydney NSW 2006 (Australia); Khalilpour, H.; Moslehi-Fard, M. [Faculty of Physics, Tabriz University, Tabriz 51664 (Iran, Islamic Republic of); Li, B.; Robinson, P. A. [School of Physics, University of Sydney, Sydney NSW 2006 (Australia)

    2008-12-15T23:59:59.000Z

    The effects of plasma inhomogeneities on the propagation of a cloud of hot electrons through a cold background plasma and generation of Langmuir waves are investigated using numerical simulations of the quasilinear equations. It is found that in a plasma with decreasing density the quasilinear relaxation of the electron distribution in velocity space is accelerated and the levels of the generated Langmuir waves are enhanced. The magnitude of the induced emission rate is increased and its maximum value moves to lower velocities. Due to density gradient the height of plateau shows an increase at small distances and a corresponding decrease at large distances. It is also found that in a plasma with decreasing temperature, the relaxation of the beam is retarded, the spectral density of Langmuir waves is broadened, and the height of the plateau decreases below its value in a uniform plasma. In the presence of both density and temperature gradients, at given position, the height and upper boundary of the plateau and the level of Langmuir waves are all increased at small velocities. The spatial expansion of the beam is increased by the plasma inhomogeneities, but its average velocity of propagation decreases. Initially, at a given position, the velocity at the upper boundary of the plateau is smaller in the presence of the density gradient than in the uniform plasma but the reverse is true at longer times. Due to temperature gradient, at large times and small distances, the upper boundary of the plateau is increased above its value in the uniform plasma. Because of fast relaxation, the value of the lower boundary of the plateau in the plasma with decreasing density is always less than its value in the uniform plasma. It is found that the local velocity of the beam decreases when the density gradient is present. The local velocity spread of the beam remains unchanged during the propagation of the beam in the uniform plasma, but increases in the presence of inhomogeneities.

  18. The Integration of On-Line Monitoring and Reconfiguration Functions using IEEE1149.4 Into a Safety Critical Automotive Electronic Control Unit

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    into mixed signal electronic systems to handle key failure modes. 1 Introduction Today's motor vehicles noise is reduced, auto/intelligent calibration can be realised, connector count can be reduced the underlying electronics. Location Typical Continuous Max Temperature Vibration Level Fluid Exposure On Engine

  19. Integrated power electronics using a ferrite%3CU%2B2010%3Ebased low%3CU%2B2010%3Etemperature co%3CU%2B2010%3Efired ceramic materials system.

    SciTech Connect (OSTI)

    Schofield, Daryl (NASCENTechnology, Watertown, SD); Schare, Joshua M.; Hettler, Chad; Roesler, Alexander William; Slama, George (NASCENTechnology, Watertown, SD); Abel, David (NASCENTechnology, Watertown, SD)

    2010-05-01T23:59:59.000Z

    This paper discusses a new approach to making hybrid power electronic circuits by combining a low-temperature (850 C to 950 C) co-fired ceramic (LTCC) substrate, planar LTCC ferrite transformers/inductors and integrated passive components into a multilayer monolithic package using a ferrite-based LTCC material system. A ferrite tape functions as the base material for this LTCC system. The material system includes physically and chemically compatible dielectric paste, dielectric tape and conductor materials which can be co-fired with the base ferrite LTCC tape to create sintered devices with excellent magnetic coupling, high permeability ({approx}400), high resistivity (> 10{sup 12} {Omega} {center_dot} cm) and good saturation ({approx}0.3 T). The co-fired ferrite and dielectric materials can be used as a substrate for attaching or housing semiconductor components and other discrete devices that are part of the power electronics system. Furthermore, the ability to co-fire the ferrite with dielectric and conductor materials allows for the incorporation of embedded passives in the multilayer structure to create hybrid power electronic circuits. Overall this thick film material set offers a unique approach to making hybrid power electronics and could potentially allow a size reduction for many commercial dc-dc converter and other power electronic circuits.

  20. Quasilinear dynamics of a cloud of hot electrons propagating through a plasma in the presence of an externally applied uniform electric field

    SciTech Connect (OSTI)

    Foroutan, G.; Robinson, P. A.; Zahed, H.; Li, B.; Cairns, I. H. [Physics Department, Faculty of Science, Sahand University of Technology, 51335-1996, Tabriz, Iran and School of Physics, University of Sydney, NSW 2006, Sydney (Australia); School of Physics, University of Sydney, NSW 2006, Sydney (Australia); Physics Department, Faculty of Science, Sahand University of Technology, 51335-1996, Tabriz (Iran, Islamic Republic of); School of Physics, University of Sydney, NSW 2006, Sydney (Australia)

    2007-12-15T23:59:59.000Z

    The propagation of a cloud of hot electrons through a plasma and the generation of Langmuir waves are investigated in the presence of an externally applied uniform electric field. Using numerical simulations of the quasilinear equations the evolution of the electron distribution function and the spectral density of Langmuir waves are monitored in coordinate and velocity space. It is found that the Langmuir waves are enhanced in the presence of the electric field and the distribution functions of the beam and Langmuir waves diffuse toward large velocities. The overall self-similar characteristic of the system is preserved in the presence of the electric field. The average beam velocity is no longer constant and increases with time along its trajectory, but the acceleration is much less than that of free streaming particles. The beam number density plateaus in coordinate space and large scale, small amplitude fluctuations develop on the top of this plateau. The level of the fluctuations depends on the strength of the electric field. We also investigated the influence of the external electric field on the evolution of gas-dynamical parameters such as the height of the plateau in the beam distribution function in velocity space, its upper velocity boundary, and the local velocity spread of the beam. Due to the finite quasilinear relaxation time and spatial inhomogeneity of the electron beam, different parts of the beam are in different states of relaxation. In the region of partial relaxation the plateau is specified by both upper and lower velocity boundaries. The upper boundary of plateau increases linearly with the strength of the electric field but the lower boundary is independent of it. Contrary to the free streaming of a beam in an electric field or quasilinear relaxation in the absence of the electric field, the local velocity spread of the beam increases during its propagation. Some of the electrons at the back of the beam are also transferred by the electric field to its front, so that the height of plateau increases at large distan0009c.

  1. An Infrared Free Electron Laser System for the Proposed Chemical Dynamics Research Laboratory at LBL Based on a 500 MHz Superconducting Linac

    E-Print Network [OSTI]

    Kim, K.-J.

    2011-01-01T23:59:59.000Z

    International Free Electron Laser Conference, Kobe, Japan,2 i An Infrared Free Electron Laser System for the ProposedDE93 004723 AN INFRARED FREE ELECTRON LASER SYSTEM FOR THE

  2. Design of a Superconducting Linear Accelerator for an Infrared Free Electron Laser of the Proposed Chemical Dynamics Research Laboratory at LBL

    E-Print Network [OSTI]

    Chattopadhyay, S.

    2011-01-01T23:59:59.000Z

    see "An Infrared Free-Electron Laser for CDRL," LBL Pub-FOR AN INFRARED FREE ELECTRON LASER OF 1HE PROPOSED CHEMICALFOR AN INFRARED FREE ELECTRON LASER OF THE PROPOSED CHEMICAL

  3. Integrating Experiment and Theory in Electrochemical Surface Science: Studies on the Molecular Adsorption on Noble-Metal Electrode Surfaces by Density Functional Theory, Electron Spectroscopy, and Electrochemistry

    E-Print Network [OSTI]

    Javier, Alnald Caintic

    2013-08-05T23:59:59.000Z

    Computational techniques based on density functional theory (DFT) and experimental methods based on electrochemistry (EC), electrochemical scanning tunneling microscopy (EC-STM), and high-resolution electron energy loss spectroscopy (HREELS) were...

  4. Dirac charge dynamics in graphene by infrared spectroscopy

    SciTech Connect (OSTI)

    Martin, Michael C; Li, Z.Q.; Henriksen, E.A.; Jiang, Z.; Hao, Z.; Martin, Michael C; Kim, P.; Stormer, H.L.; Basov, Dimitri N.

    2008-04-29T23:59:59.000Z

    A remarkable manifestation of the quantum character of electrons in matter is offered by graphene, a single atomic layer of graphite. Unlike conventional solids where electrons are described with the Schrödinger equation, electronic excitations in graphene are governed by the Dirac hamiltonian. Some of the intriguing electronic properties of graphene, such as massless Dirac quasiparticles with linear energy-momentum dispersion, have been confirmed by recent observations. Here, we report an infrared spectromicroscopy study of charge dynamics in graphene integrated in gated devices. Our measurements verify the expected characteristics of graphene and, owing to the previously unattainable accuracy of infrared experiments, also uncover significant departures of the quasiparticle dynamics from predictions made for Dirac fermions in idealized, free-standing graphene. Several observations reported here indicate the relevance of many-body interactions to the electromagnetic response of graphene.

  5. Spin and charge dynamics of the two-dimensional {ital t}-{ital J} model at intermediate electron densities: Absence of spin-charge separation

    SciTech Connect (OSTI)

    Eder, R.; Ohta, Y. [Department of Applied Physics, Nagoya University, Nagoya 464-01 (Japan)] [Department of Applied Physics, Nagoya University, Nagoya 464-01 (Japan)

    1995-05-01T23:59:59.000Z

    We present an exact diagonalization study of the dynamical spin and density correlation functions in small clusters of the {ital t}-{ital J} model, focusing on the regime of intermediate and low electron densities, {rho}{sub {ital e}}{lt}0.5. In two dimensions (2D) both correlation functions agree remarkably well with the convolution of the single-particle spectral function, i.e., the simplest estimate possible within a Fermi-liquid picture. Deviations from the convolution are shown to originate from symmetry-related selection rules, which are unaccounted for in the convolution estimate. For all fillngs under consideration, we show that the low-energy peaks originate from particle-hole excitations between the Fermi momenta, as expected for a Fermi liquid. We contrast this with the behavior in 1D, where spin and density correlation function show the differences characteristic of spin-charge separation and where neither correlation function is approximated well by the convolution.

  6. Massively-parallel electron dynamics calculations in real-time and real-space: Toward applications to nanostructures of more than ten-nanometers in size

    SciTech Connect (OSTI)

    Noda, Masashi; Ishimura, Kazuya; Nobusada, Katsuyuki [Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585 (Japan); Yabana, Kazuhiro; Boku, Taisuke [Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan)

    2014-05-15T23:59:59.000Z

    A highly efficient program of massively parallel calculations for electron dynamics has been developed in an effort to apply the method to optical response of nanostructures of more than ten-nanometers in size. The approach is based on time-dependent density functional theory calculations in real-time and real-space. The computational code is implemented by using simple algorithms with a finite-difference method in space derivative and Taylor expansion in time-propagation. Since the computational program is free from the algorithms of eigenvalue problems and fast-Fourier-transformation, which are usually implemented in conventional quantum chemistry or band structure calculations, it is highly suitable for massively parallel calculations. Benchmark calculations using the K computer at RIKEN demonstrate that the parallel efficiency of the program is very high on more than 60?000 CPU cores. The method is applied to optical response of arrays of C{sub 60} orderly nanostructures of more than 10 nm in size. The computed absorption spectrum is in good agreement with the experimental observation.

  7. In situ investigation of explosive crystallization in a-Ge: Experimental determination of the interface response function using dynamic transmission electron microscopy

    SciTech Connect (OSTI)

    Nikolova, Liliya; MacLeod, Jennifer M.; Ibrahim, Heide [Centre Énergie, Matériaux, Télécommunications, Institut National de la Recherche Scientifique, 1650 Lionel Boulet boulevard, Varennes, Quebec J3X 1S2 (Canada); Stern, Mark J.; Siwick, Bradley J., E-mail: rosei@emt.inrs.ca, E-mail: lagrange2@llnl.gov, E-mail: bradley.siwick@mcgill.ca [Center for the Physics of Materials, Departments of Physics and Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 2K6 (Canada); Reed, Bryan W.; Campbell, Geoffrey H.; LaGrange, Thomas, E-mail: rosei@emt.inrs.ca, E-mail: lagrange2@llnl.gov, E-mail: bradley.siwick@mcgill.ca [Condensed Matter and Materials Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); Rosei, Federico, E-mail: rosei@emt.inrs.ca, E-mail: lagrange2@llnl.gov, E-mail: bradley.siwick@mcgill.ca [Centre Énergie, Matériaux, Télécommunications, Institut National de la Recherche Scientifique, 1650 Lionel Boulet boulevard, Varennes, Quebec J3X 1S2 (Canada); Centre for Self-Assembled Chemical Structures, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 2K6 (Canada)

    2014-09-07T23:59:59.000Z

    The crystallization of amorphous semiconductors is a strongly exothermic process. Once initiated the release of latent heat can be sufficient to drive a self-sustaining crystallization front through the material in a manner that has been described as explosive. Here, we perform a quantitative in situ study of explosive crystallization in amorphous germanium using dynamic transmission electron microscopy. Direct observations of the speed of the explosive crystallization front as it evolves along a laser-imprinted temperature gradient are used to experimentally determine the complete interface response function (i.e., the temperature-dependent front propagation speed) for this process, which reaches a peak of 16?m/s. Fitting to the Frenkel-Wilson kinetic law demonstrates that the diffusivity of the material locally/immediately in advance of the explosive crystallization front is inconsistent with those of a liquid phase. This result suggests a modification to the liquid-mediated mechanism commonly used to describe this process that replaces the phase change at the leading amorphous-liquid interface with a change in bonding character (from covalent to metallic) occurring in the hot amorphous material.

  8. Calculation of the transverse kicks generated by the bends of a hollow electron lens

    SciTech Connect (OSTI)

    Stancari, Giulio

    2014-03-25T23:59:59.000Z

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam in high-energy accelerators. They were used in the Fermilab Tevatron collider for abort-gap clearing, beam-beam compensation, and halo scraping. A beam-beam compensation scheme based upon electron lenses is currently being implemented in the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. This work is in support of a conceptual design of hollow electron beam scraper for the Large Hadron Collider. It also applies to the implementation of nonlinear integrable optics with electron lenses in the Integrable Optics Test Accelerator at Fermilab. We consider the axial asymmetries of the electron beam caused by the bends that are used to inject electrons into the interaction region and to extract them. A distribution of electron macroparticles is deposited on a discrete grid enclosed in a conducting pipe. The electrostatic potential and electric fields are calculated using numerical Poisson solvers. The kicks experienced by the circulating beam are estimated by integrating the electric fields over straight trajectories. These kicks are also provided in the form of interpolated analytical symplectic maps for numerical tracking simulations, which are needed to estimate the effects of the electron lens imperfections on proton lifetimes, emittance growth, and dynamic aperture. We outline a general procedure to calculate the magnitude of the transverse proton kicks, which can then be generalized, if needed, to include further refinements such as the space-charge evolution of the electron beam, magnetic fields generated by the electron current, and longitudinal proton dynamics.

  9. MEng & BEng Programmes Department of Electronic & Electrical Engineering

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    MEng & BEng Programmes Department of Electronic & Electrical Engineering Electrical & Electronic Engineering Computer Systems Engineering Electrical Power Engineering Electronic Engineering with Space Science & Technology Electronic & Communication Engineering Integrated Mechanical & Electrical Engineering

  10. Density functional theory study of the structural, electronic, lattice dynamical, and thermodynamic properties of Li4SiO4 and its capability for CO2 capture

    SciTech Connect (OSTI)

    Duan, Yuhua; Parlinski, K.

    2011-01-01T23:59:59.000Z

    The structural, electronic, lattice dynamical, optical, thermodynamic, and CO{sub 2} capture properties of monoclinic and triclinic phases of Li{sub 4}SiO{sub 4} are investigated by combining density functional theory with phonon lattice dynamics calculations. We found that these two phases have some similarities in their bulk and thermodynamic properties. The calculated bulk modulus and the cohesive energies of these two phases are close to each other. Although both of them are insulators, the monoclinic phase of Li{sub 4}SiO{sub 4} has a direct band gap of 5.24 eV while the triclinic Li{sub 4}SiO{sub 4} phase has an indirect band gap of 4.98 eV. In both phases of Li{sub 4}SiO{sub 4}, the s orbital of O mainly contributes to the lower-energy second valence band (VB{sub 2}) and the p orbitals contribute to the fist valence band (VB{sub 1}) and the conduction bands (CBs). The s orbital of Si mainly contributes to the lower portions of the VB1 and VB{sub 2}, and Si p orbitals mainly contribute to the higher portions of the VB{sub 1} and VB{sub 2}. The s and p orbitals of Li contribute to both VBs and to CBs, and Li p orbitals have a higher contribution than the Li s orbital. There is possibly a phonon soft mode existing in triclinic {gamma}-Li{sub 4}SiO{sub 4}; in the monoclinic Li{sub 4}SiO{sub 4}, there are three phonon soft modes, which correspond to the one type of Li disordered over a few sites. Their LO-TO splitting indicates that both phases of Li{sub 4}SiO{sub 4} are polar anisotropic materials. The calculated infrared absorption spectra for LO and TO modes are different for these two phases of Li{sub 4}SiO{sub 4}. The calculated relationships of the chemical potential versus temperature and CO{sub 2} pressure for reaction of Li{sub 4}SiO{sub 4} with CO{sub 2} shows that Li{sub 4}SiO{sub 4} could be a good candidate for a high-temperature CO{sub 2} sorbent while used for postcombustion capture technology.

  11. Electronic, structural, phonon dynamical, and CO{sub 2} capture properties of LiMZrO{sub 3} (M=Na, K) by ab initio thermodynamic investigation

    SciTech Connect (OSTI)

    Duan, Yuhua

    2014-01-01T23:59:59.000Z

    The electronic, structural and phonon properties of LiMZrO{sub 3} (M=Na, K) were investigated by the density functional theory and lattice phonon dynamics. Their thermodynamic properties for CO{sub 2} absorption/desorption were analyzed in comparison with the corresponding M{sub 2}ZrO{sub 3}. Two substituted configurations of LiMZrO{sub 3} were created from Li{sub 2}ZrO{sub 3}. Both types of LiNaZrO3 have direct band gaps with values of 3.84 eV and 3.49 eV respectively. While in the case of LiKZrO{sub 3}, one type has an indirect band gap of 3.79 eV between ? and M high symmetric points while another has a direct band gap of 3.12 eV. The phonon dispersions and phonon density of states of LiMZrO{sub 3} were calculated with the direct method. From the calculated thermodynamic properties of LiMZrO{sub 3} reacting with CO{sub 2}, our results showed that by doping Na into Li{sub 2}ZrO{sub 3}, the obtained new solid LiNaZrO{sub 3} has better performance as a CO{sub 2} sorbent applying to post-combustion capture technology. For K doping into Li{sub 2}ZrO{sub 3}, our calculated thermodynamic results showed that the new solid LiKZrO{sub 3} does not gain improvement on its CO{sub 2} capture performance because its regeneration temperature is much higher than Li{sub 2}ZrO{sub 3}.

  12. Interaction Region Design and Detector Integration at JLab's MEIC

    SciTech Connect (OSTI)

    Lin, Fanglei [JLAB; Brindza, Paul D. [JLAB; Derbenev, Yaroslav S. [JLAB; Ent, Rolf [JLAB; Morozov, Vasiliy [JLAB; Nadel-Turonski, Pawel A. [JLAB; Zhang, Yuhong [JLAB; Hyde, Charles E. [ODU; Sullivan, Michael [SLAC

    2013-12-01T23:59:59.000Z

    The Electron Ion Collider (EIC) will be a next-generation facility for the study of the strong interaction (QCD). JLab?s MEIC is designed for high luminosities of up to 10^34 cm^-2 s^-1. This is achieved in part due to an aggressively small beta-star, which imposes stringent requirements on the collider rings? dynamical properties. Additionally, one of the unique features of MEIC is a full-acceptance detector with a dedicated, small-angle, high-resolution detection system, capable of covering a wide range of momenta (and charge-to-mass ratios) with respect to the original ion beam to enable access to new physics. The detector design relies on a number of features, such as a 50 mrad beam crossing angle, large-aperture ion and electron final focusing quads and spectrometer dipoles as well as a large machine-element-free detection space downstream of the final focusing quads. We present an interaction region design developed with close integration of the detector and beam dynamical aspects. The dynamical aspect of the design rests on a symmetry-based concept for compensation of non-linear effects. The optics and geometry have been optimized to accommodate the detection requirements and to ensure the interaction region?s modularity for easiness of integration into the collider ring lattices. As a result, the design offers an excellent detector performance combined with the necessary non-linear dynamical properties.

  13. Ultrafast supercontinuum fiber-laser based pump-probe scanning magneto-optical Kerr effect microscope for the investigation of electron spin dynamics in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution

    SciTech Connect (OSTI)

    Henn, T.; Kiessling, T., E-mail: tobias.kiessling@physik.uni-wuerzburg.de; Ossau, W.; Molenkamp, L. W. [Physikalisches Institut (EP3), Universität Würzburg, 97074 Würzburg (Germany)] [Physikalisches Institut (EP3), Universität Würzburg, 97074 Würzburg (Germany); Biermann, K.; Santos, P. V. [Paul-Drude-Institut für Festkörperelektronik, 10117 Berlin (Germany)] [Paul-Drude-Institut für Festkörperelektronik, 10117 Berlin (Germany)

    2013-12-15T23:59:59.000Z

    We describe a two-color pump-probe scanning magneto-optical Kerr effect microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast “white light” supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables the investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of the instrument.

  14. Parameter identification using experimental nonlinear dynamics and chaos

    E-Print Network [OSTI]

    Chancellor, Roy Scott

    1993-01-01T23:59:59.000Z

    LIST OF FIGURES NOMENCLATURE . . CHAPTER xl xvl INTRODUCTION 1. 1 1. 2 1. 3 Review of Recent Crack Detection Literature Approach to Crack Detection Using Nonlinear Vibration Analysis Objectives 4 5 APPLICATION OF NONLINEAR DYNAMICS... III EXPERIMENTAL SETUP . 18 3. 1 3. 2 3. 3 3. 4 Overview . Overview of Complete Test Setup Vibration Hardware Electronic Integration Circuit 18 18 20 22 TABLE OF CONTENTS (continued) CHAPTER Page 3. 4. 1 Theory 3. 4. 2 Circuit Design...

  15. Thermal Stress and Reliability for Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Power Electronic Thermal System Performance and Integration...

  16. Dynamics of Anisotropic Universes

    E-Print Network [OSTI]

    Jerome Perez

    2006-03-30T23:59:59.000Z

    We present a general study of the dynamical properties of Anisotropic Bianchi Universes in the context of Einstein General Relativity. Integrability results using Kovalevskaya exponents are reported and connected to general knowledge about Bianchi dynamics. Finally, dynamics toward singularity in Bianchi type VIII and IX universes are showed to be equivalent in some precise sence.

  17. Modification of Defect Structures in Graphene by Electron Irradiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modification of Defect Structures in Graphene by Electron Irradiation: Ab Initio Molecular Dynamics Simulations. Modification of Defect Structures in Graphene by Electron...

  18. Electron localization following attosecond molecular photoionization

    E-Print Network [OSTI]

    Kling, Matthias

    - second pump­probe strategies as a powerful tool for investigating the complex molecular dynamics , their use in studying atomic photo- excitation and photoionization6,7 and electron dynamics in solids8 has and biomolecular complexes11,12 . Extremely fast molecular dynamics involving electron correlation can also

  19. ITS version 5.0 :the integrated TIGER series of coupled electron/Photon monte carlo transport codes with CAD geometry.

    SciTech Connect (OSTI)

    Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William

    2005-09-01T23:59:59.000Z

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2) multigroup codes with adjoint transport capabilities, (3) parallel implementations of all ITS codes, (4) a general purpose geometry engine for linking with CAD or other geometry formats, and (5) the Cholla facet geometry library. Moreover, the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.

  20. Sandia National Laboratories: Decision Support for Integrated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    platforms (i.e., system dynamics to detailed energywater management models) with geospatial databases and visualization tools. Further, this framework will integrate analysis...

  1. Electronic and Vibrational Properties of Low-Dimensional Heterogeneous Systems: Materials and Device Perspectives

    E-Print Network [OSTI]

    Neupane, Mahesh Raj

    2015-01-01T23:59:59.000Z

    electronic structure calculation package QUANTUM ESPRESSO [311]. MD Calculation Molecular dynamics (

  2. Ab initio simulations of two-dimensional electronic spectra: The SOS//QM/MM approach

    E-Print Network [OSTI]

    Rivalta, I; Nenov, A; Cerullo, G; Mukamel, S; Garavelli, M; Garavelli, M

    2013-01-01T23:59:59.000Z

    calculations. Conclusions Two-dimensional electronic spectroscopy holds great potential for studying structure, dynamics,

  3. Calculation of two-centre two-electron integrals over Slater-type orbitals revisited. III. Case study of the beryllium dimer

    E-Print Network [OSTI]

    Micha? Lesiuk; Micha? Przybytek; Monika Musia?; Bogumi? Jeziorski; Robert Moszynski

    2015-01-20T23:59:59.000Z

    In this paper we present results of ab-initio calculations for the beryllium dimer with basis set of Slater-type orbitals (STOs). Nonrelativistic interaction energy of the system is determined using the frozen-core full configuration interaction calculations combined with high-level coupled cluster correction for inner-shell effects. Newly developed STOs basis sets, ranging in quality from double to sextuple zeta, are used in these computations. Principles of their construction are discussed and several atomic benchmarks are presented. Relativistic effects of order ${\\alpha}^2$ are calculated perturbatively by using the Breit-Pauli Hamiltonian and are found to be significant. We also estimate the leading-order QED effects. Influence of the adiabatic correction is found to be negligible. Finally, the interaction energy of the beryllium dimer is determined to be 929.0$\\,\\pm\\,$1.9 $cm^{-1}$, in a very good agreement with the recent experimental value. The results presented here appear to be the most accurate ab-initio calculations for the beryllium dimer available in the literature up to date and probably also one of the most accurate calculations for molecular systems containing more than four electrons.

  4. Medical Device Integration Copyright 2010 The University of Vermont

    E-Print Network [OSTI]

    Hayden, Nancy J.

    Case Study Medical Device Integration Copyright© 2010 The University of Vermont Physiologic Monitor232 Portable Device Patient Patient Patient Clinician Clinician ICU Biomedical EHR Device Integration. Challenge: Determine the feasibility of biomedical device integration to the electronic health record

  5. Correlated exciton dynamics in semiconductor nanostructures

    E-Print Network [OSTI]

    Wen, Patrick, Ph. D. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    The absorption and dissipation of energy in semiconductor nanostructures are often determined by excited electron dynamics. In semiconductors, one fundamentally important electronic state is an exciton, an excited electron ...

  6. PROGRESS ON THE INTERACTION REGION DESIGN AND DETECTOR INTEGRATION AT JLAB'S MEIC

    SciTech Connect (OSTI)

    Morozov, Vasiliy; Brindza, Paul; Camsonne, Alexandre; Derbenev, Yaroslav; Ent, Rolf; Gaskell, David; Lin, Fanglei; Nadel-Turonski, Pawel; Ungaro, Maurizio; Zhang, Yuhong; Hyde, Charles; Park, Kijun; Sullivan, Michael; Zhao, Zhiwen

    2014-07-01T23:59:59.000Z

    One of the unique features of JLab's Medium-energy Electron-Ion Collider (MEIC) is a full-acceptance detector with a dedicated, small-angle, high-resolution detection system, capable of covering a wide range of momenta (and charge-to-mass ratios) with respect to the original ion beam to enable access to new physics. We present an interaction region design developed with close integration of the detection and beam dynamical aspects. The dynamical aspect of the design rests on a symmetry-based concept for compensation of non-linear effects. The optics and geometry have been optimized to accommodate the detection requirements and to ensure the interaction region's modularity for ease of integration into the collider ring lattices. As a result, the design offers an excellent detector performance combined with the necessary provisions for non-linear dynamical optimization.

  7. First principles molecular dynamics without self-consistent field optimization

    SciTech Connect (OSTI)

    Souvatzis, Petros, E-mail: petros.souvatsiz@fysik.uu.se [Department of Physics and Astronomy, Division of Materials Theory, Uppsala University, Box 516, SE-75120 Uppsala (Sweden)] [Department of Physics and Astronomy, Division of Materials Theory, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Niklasson, Anders M. N., E-mail: amn@lanl.gov [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-01-28T23:59:59.000Z

    We present a first principles molecular dynamics approach that is based on time-reversible extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. The optimization-free dynamics keeps the computational cost to a minimum and typically provides molecular trajectories that closely follow the exact Born-Oppenheimer potential energy surface. Only one single diagonalization and Hamiltonian (or Fockian) construction are required in each integration time step. The proposed dynamics is derived for a general free-energy potential surface valid at finite electronic temperatures within hybrid density functional theory. Even in the event of irregular functional behavior that may cause a dynamical instability, the optimization-free limit represents a natural starting guess for force calculations that may require a more elaborate iterative electronic ground state optimization. Our optimization-free dynamics thus represents a flexible theoretical framework for a broad and general class of ab initio molecular dynamics simulations.

  8. The electronic properties and lattice dynamics of (Na{sub 0.5}Bi{sub 0.5})TiO{sub 3}: From cubic to tetragonal and rhombohedral phases

    SciTech Connect (OSTI)

    Lü, Hongfeng [Department of Applied Physics, College of Science, China Agricultural University, Beijing 100083 (China); Wang, Shanying [Department of Physics, Tsinghua University, Beijing 100084 (China); Wang, Xiaosu, E-mail: xiaosuwang@cau.edu.cn [Department of Applied Physics, College of Science, China Agricultural University, Beijing 100083 (China); Department of Physics, Tsinghua University, Beijing 100084 (China)

    2014-03-28T23:59:59.000Z

    The structural, electronic and dynamical properties of the cubic, tetragonal and rhombohedral phases of a lead-free ferroelectrics, (Na{sub 0.5}Bi{sub 0.5})TiO{sub 3} (NBT), have been studied with a density functional formalism. The direct band gap is determined to be 2?3?eV for three phases, suggesting them to be good optical material. The equilibrium structures were given, and the importance of Bi atom in the low-symmetry ferroelectric phases were investigated with the electron localization functions analysis. The vibration modes at the ? point were calculated to provide a basis for analyzing the Raman and IR spectra. Soft modes were found in both the cubic and the tetragonal phases, providing a clue in understanding the ferroelectric phase transition in NBT.

  9. A Radiation-Hard Dual Channel 4-bit Pipeline for a 12-bit 40 MS/s ADC Prototype with extended Dynamic Range for the ATLAS Liquid Argon Calorimeter Readout Electronics Upgrade at the CERN LHC

    E-Print Network [OSTI]

    Jayanth Kuppambatti; Jaroslav Ban; Timothy Andeen; Peter Kinget; Gustaaf Brooijmans

    2013-07-31T23:59:59.000Z

    The design of a radiation-hard dual channel 12-bit 40 MS/s pipeline ADC with extended dynamic range is presented, for use in the readout electronics upgrade for the ATLAS Liquid Argon Calorimeters at the CERN Large Hadron Collider. The design consists of two pipeline A/D channels with four Multiplying Digital-to-Analog Converters with nominal 12-bit resolution each. The design, fabricated in the IBM 130 nm CMOS process, shows a performance of 68 dB SNDR at 18 MHz for a single channel at 40 MS/s while consuming 55 mW/channel from a 2.5 V supply, and exhibits no performance degradation after irradiation. Various gain selection algorithms to achieve the extended dynamic range are implemented and tested.

  10. Chaotic electron dynamics around a single elliptically shaped antidot High Magnetic Field Laboratory CNRS, Boite Postale 166, F-38042 Grenoble, France

    E-Print Network [OSTI]

    Gusev, Guennady

    , Boite Postale 166, F-38042 Grenoble, France J. C. Portal High Magnetic Field Laboratory CNRS, Boite, Russia Received 30 April 1996 The classical dynamics of a charged particle colliding ballistically around

  11. Two-element free-electron lasers

    SciTech Connect (OSTI)

    Shih, C.; Yariv, A.

    1980-02-01T23:59:59.000Z

    The interaction between the electrons and the radiation in a free-electrons laser leads to a shift and a spread of the electron velocity distribution. The electron dynamics of a two-element system are studied in the small signal region. It is found that the efficiency and gain can be increased through introduction of an adjustable drift distance between two identical wigglers.

  12. Electron radiography

    DOE Patents [OSTI]

    Merrill, Frank E.; Morris, Christopher

    2005-05-17T23:59:59.000Z

    A system capable of performing radiography using a beam of electrons. Diffuser means receive a beam of electrons and diffuse the electrons before they enter first matching quadrupoles where the diffused electrons are focused prior to the diffused electrons entering an object. First imaging quadrupoles receive the focused diffused electrons after the focused diffused electrons have been scattered by the object for focusing the scattered electrons. Collimator means receive the scattered electrons and remove scattered electrons that have scattered to large angles. Second imaging quadrupoles receive the collimated scattered electrons and refocus the collimated scattered electrons and map the focused collimated scattered electrons to transverse locations on an image plane representative of the electrons' positions in the object.

  13. Electronic Excitations Transform Structure of Ceramics | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Ti atoms; O vacancies, VO, are small spheres with blue cores. Ab initio molecular dynamics calculations reveal that electronic excitations induce a structural instability that...

  14. Advanced Power Electronics and Electric Motors Annual Report -- 2013

    SciTech Connect (OSTI)

    Narumanchi, S.; Bennion, K.; DeVoto, D.; Moreno, G.; Rugh, J.; Waye, S.

    2015-01-01T23:59:59.000Z

    This report describes the research into advanced liquid cooling, integrated power module cooling, high temperature air cooled power electronics, two-phase cooling for power electronics, and electric motor thermal management by NREL's Power Electronics group in FY13.

  15. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. , 2012 1 Dynamic Driver Supply Voltage Scaling for Organic

    E-Print Network [OSTI]

    Pedram, Massoud

    Dynamic Driver Supply Voltage Scaling for Organic Light Emitting Diode Displays Donghwa Shin, Student, Fellow, IEEE Abstract--Organic light emitting diode (OLED) display is a self-illuminating device]. On the other hand, an organic light emitting diode (OLED) is self-illuminating using organic light emission

  16. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 4, DECEMBER 1999 463 Dynamic Algorithm Transformations (DAT)--A

    E-Print Network [OSTI]

    Shanbhag, Naresh R.

    Dynamic Algorithm Transformations (DAT)--A Systematic Approach to Low-Power Reconfigurable Signal transformations (DAT's) for designing low-power reconfigurable signal-processing systems are presented. Index Terms-- Algorithm transformations, low-power, recon- figurable computing, signal processing. I

  17. Integrating Historical Imagery and Sediment Radioisotopes to Shed Light on Long-Term Rangeland Dynamics and Ecosystem Services at the Watershed Scale

    E-Print Network [OSTI]

    Berg, Matthew

    2014-04-15T23:59:59.000Z

    of such transitions and much more so regarding the effects on hydrology and sediment dynamics in these areas. Using a watershed approach in the Lampasas Cut Plain of Texas, we applied object-oriented classification methods and hand-digitizing of historical aerial...

  18. Investigation of a FAST-OrcaFlex Coupling Module for Integrating Turbine and Mooring Dynamics of Offshore Floating Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Masciola, M.; Robertson, A.; Jonkman, J.; Driscoll, F.

    2011-10-01T23:59:59.000Z

    To enable offshore floating wind turbine design, the following are required: accurate modeling of the wind turbine structural dynamics, aerodynamics, platform hydrodynamics, a mooring system, and control algorithms. Mooring and anchor design can appreciably affect the dynamic response of offshore wind platforms that are subject to environmental loads. From an engineering perspective, system behavior and line loads must be studied well to ensure the overall design is fit for the intended purpose. FAST (Fatigue, Aerodynamics, Structures and Turbulence) is a comprehensive simulation tool used for modeling land-based and offshore wind turbines. In the case of a floating turbine, continuous cable theory is used to emulate mooring line dynamics. Higher modeling fidelity can be gained through the use of finite element mooring theory. This can be achieved through the FASTlink coupling module, which couples FAST with OrcaFlex, a commercial simulation tool used for modeling mooring line dynamics. In this application, FAST is responsible for capturing the aerodynamic loads and flexure of the wind turbine and its tower, and OrcaFlex models the mooring line and hydrodynamic effects below the water surface. This paper investigates the accuracy and stability of the FAST/OrcaFlex coupling operation.

  19. State-Dependent Electron Delocalization Dynamics at the Solute-Solvent Interface: Soft X-ray Absorption Spectroscopy and Ab Initio Calculations

    E-Print Network [OSTI]

    Bokarev, Sergey I; Suljoti, Edlira; Kühn, Oliver; Aziz, Emad F

    2013-01-01T23:59:59.000Z

    Non-radiative decay channels in the L-edge fluorescence spectra from transition metal-aqueous solutions give rise to spectral dips in X-ray transmission spectra. Their origin is unraveled here using partial and inverse partial fluorescence yields on the micro-jet combined with multi-reference ab initio electronic structure calculations. Comparing Fe2+, Fe3+, and Co2+ systems we demonstrate unequivocally that spectral dips are due to a state-dependent electron delocalization within the manifold of d-orbitals.

  20. Electron Beam Transport in Advanced Plasma Wave Accelerators

    SciTech Connect (OSTI)

    Williams, Ronald L

    2013-01-31T23:59:59.000Z

    The primary goal of this grant was to develop a diagnostic for relativistic plasma wave accelerators based on injecting a low energy electron beam (5-50keV) perpendicular to the plasma wave and observing the distortion of the electron beam's cross section due to the plasma wave's electrostatic fields. The amount of distortion would be proportional to the plasma wave amplitude, and is the basis for the diagnostic. The beat-wave scheme for producing plasma waves, using two CO2 laser beam, was modeled using a leap-frog integration scheme to solve the equations of motion. Single electron trajectories and corresponding phase space diagrams were generated in order to study and understand the details of the interaction dynamics. The electron beam was simulated by combining thousands of single electrons, whose initial positions and momenta were selected by random number generators. The model was extended by including the interactions of the electrons with the CO2 laser fields of the beat wave, superimposed with the plasma wave fields. The results of the model were used to guide the design and construction of a small laboratory experiment that may be used to test the diagnostic idea.

  1. PHYSICAL REVIEW A 84, 043423 (2011) Dynamic of rescattering-electron wave packets in strong and short-wavelength laser fields

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    and short-wavelength laser fields: Roles of Coulomb potential and excited states Yanjun Chen* Beijing and molecules exposed in strong and short- wavelength (shorter than 800 nm) laser fields. Our simulations show the potential, to explain the electronic response in intense and relatively high-frequency laser fields. DOI: 10

  2. Electronic copy available at: http://ssrn.com/abstract=1493525 Title: From crude law to civil relations: the dynamics and potential resolution of

    E-Print Network [OSTI]

    Electronic copy available at: http://ssrn.com/abstract=1493525 Title: From crude law to civil and transformation of intractable conflict is presented. The formal model translates the insights of the Crude Law: http://ssrn.com/abstract=1493525 1 Running head: Crude Law and conflict From crude law to civil

  3. Power Electronics | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project OfficePower Electronics Power Electronics Power electronics

  4. Grid Integration

    SciTech Connect (OSTI)

    Not Available

    2008-09-01T23:59:59.000Z

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its grid integration subprogram.

  5. An Ab-Initio approach to the dynamics ofAn Ab-Initio approach to the dynamics of electrons and excitons in solids drivenelectrons and excitons in solids driven

    E-Print Network [OSTI]

    Marini, Andrea

    Motivations and experimental evidences #12;Pump&Probe experimentsPump&Probe experiments An ultra-short laser pulse pumpsAn ultra-short laser pulse pumps electrons in the conductionelectrons in the conduction The non and excitons in solids drivenelectrons and excitons in solids driven out-of-equilibrium by strong laser

  6. Final Scientific/Technical Report, DE-FG02-06ER64171, Integrated Nucleic Acid System for In-Field Monitoring of Microbial Community Dynamics and Metabolic Activity – Subproject to Co-PI Eric E. Roden

    SciTech Connect (OSTI)

    Eric E. Roden

    2009-07-08T23:59:59.000Z

    This report summarizes research conducted in conjunction with a project entitled “Integrated Nucleic Acid System for In-Field Monitoring of Microbial Community Dynamics and Metabolic Activity”, which was funded through the Integrative Studies Element of the former NABIR Program (now the Environmental Remediation Sciences Program) within the Office of Biological and Environmental Research. Dr. Darrell Chandler (originally at Argonne National Laboratory, now with Akonni Biosystems) was the overall PI/PD for the project. The overall project goals were to (1) apply a model iron-reducer and sulfate-reducer microarray and instrumentation systems to sediment and groundwater samples from the Scheibe et al. FRC Area 2 field site, UMTRA sediments, and other DOE contaminated sites; (2) continue development and expansion of a 16S rRNA/rDNA¬-targeted probe suite for microbial community dynamics as new sequences are obtained from DOE-relevant sites; and (3) address the fundamental molecular biology and analytical chemistry associated with the extraction, purification and analysis of functional genes and mRNA in environmental samples. Work on the UW subproject focused on conducting detailed batch and semicontinuous culture reactor experiments with uranium-contaminated FRC Area 2 sediment. The reactor experiments were designed to provide coherent geochemical and microbiological data in support of microarray analyses of microbial communities in Area 2 sediments undergoing biostimulation with ethanol. A total of four major experiments were conducted (one batch and three semicontinuous culture), three of which (the batch and two semicontinuous culture) provided samples for DNA microarray analysis. A variety of other molecular analyses (clone libraries, 16S PhyloChip, RT-PCR, and T-RFLP) were conducted on parallel samples from the various experiments in order to provide independent information on microbial community response to biostimulation.

  7. Photon Echo Studies on Coherence Dynamics in the Photosynthetic Bacterial Reaction Center

    E-Print Network [OSTI]

    Ryu, Seungwan

    2013-01-01T23:59:59.000Z

    molecular understanding of electronic and vibrational couplings governing the dynamics of excitation

  8. Ultrafast Strong-Field Vibrational Dynamics Studied by Femtosecond Extreme-Ultraviolet Transient Absorption Spectroscopy

    E-Print Network [OSTI]

    Hosler, Erik Robert

    2013-01-01T23:59:59.000Z

    dynamics. Tunnel ionization rate determinations are employed to model the pump, while electronic structure calculations

  9. Modular manifold for integrated fluidics and electronics

    DOE Patents [OSTI]

    Adkins, Douglas Ray (Albuquerque, NM)

    2010-03-30T23:59:59.000Z

    An airtight preconcentrator housing and/or a sensor housing for chemical testing, the housing(s) comprising internal dimensions such that a pre-manufactured preconcentrator and/or sensor can be disposed therein. The housings can also comprise electrical contacts disposed therein which align with and thus provide electrical connection to the preconcentrator and/or sensor. The preconcentrator and/or sensor can be easily and quickly replaced.

  10. PROBING DYNAMICS OF ELECTRON ACCELERATION WITH RADIO AND X-RAY SPECTROSCOPY, IMAGING, AND TIMING IN THE 2002 APRIL 11 SOLAR FLARE

    SciTech Connect (OSTI)

    Fleishman, Gregory D.; Nita, Gelu M.; Gary, Dale E. [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Kontar, Eduard P. [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2013-05-10T23:59:59.000Z

    Based on detailed analysis of radio and X-ray observations of a flare on 2002 April 11 augmented by realistic three-dimensional modeling, we have identified a radio emission component produced directly at the flare acceleration region. This acceleration region radio component has distinctly different (1) spectrum, (2) light curves, (3) spatial location, and, thus, (4) physical parameters from those of the separately identified trapped or precipitating electron components. To derive evolution of physical parameters of the radio sources we apply forward fitting of the radio spectrum time sequence with the gyrosynchrotron source function with five to six free parameters. At the stage when the contribution from the acceleration region dominates the radio spectrum, the X-ray- and radio-derived electron energy spectral indices agree well with each other. During this time the maximum energy of the accelerated electron spectrum displays a monotonic increase with time from {approx}300 keV to {approx}2 MeV over roughly one minute duration indicative of an acceleration process in the form of growth of the power-law tail; the fast electron residence time in the acceleration region is about 2-4 s, which is much longer than the time of flight and so requires a strong diffusion mode there to inhibit free-streaming propagation. The acceleration region has a relatively strong magnetic field, B {approx} 120 G, and a low thermal density, n{sub e} {approx}< 2 Multiplication-Sign 10{sup 9} cm{sup -3}. These acceleration region properties are consistent with a stochastic acceleration mechanism.

  11. The IBA Easy-E-Beam Integrated Processing System

    SciTech Connect (OSTI)

    Cleland, Marshall R.; Galloway, Richard A.; Lisanti, Thomas F. [IBA Industrial, Inc., 151 Heartland Blvd., Edgewood, NY 11717 (United States)

    2011-06-01T23:59:59.000Z

    IBA Industrial Inc., (formerly known as Radiation Dynamics, Inc.) has been making high-energy and medium-energy, direct-current proton and electron accelerators for research and industrial applications for many years. Some industrial applications of high-power electron accelerators are the crosslinking of polymeric materials and products, such as the insulation on electrical wires, multi-conductor cable jackets, heat-shrinkable plastic tubing and film, plastic pipe, foam and pellets, the partial curing of rubber sheet for automobile tire components, and the sterilization of disposable medical devices. The curing (polymerization and crosslinking) of carbon and glass fiber-reinforced composite plastic parts, the preservation of foods and the treatment of waste materials are attractive possibilities for future applications. With electron energies above 1.0 MeV, the radiation protection for operating personnel is usually provided by surrounding the accelerator facility with thick concrete walls. With lower energies, steel and lead panels can be used, which are substantially thinner and more compact than the equivalent concrete walls. IBA has developed a series of electron processing systems called Easy-e-Beam for the medium energy range from 300 keV to 1000 keV. These systems include the shielding as an integral part of a complete radiation processing facility. The basic concepts of the electron accelerator, the product processing equipment, the programmable control system, the configuration of the radiation shielding and some performance characteristics are described in this paper.

  12. Dynamical steering in an electron transfer surface reaction: Oriented NO(v = 3, 0.08 < E{sub i} < 0.89 eV) relaxation in collisions with a Au(111) surface

    SciTech Connect (OSTI)

    Bartels, Nils; Golibrzuch, Kai; Bartels, Christof; Schäfer, Tim, E-mail: tschaef4@gwdg.de [Institute of Physical Chemistry, Georg-August University of Göttingen, Tammannstraße 6, 37077 Göttingen (Germany)] [Institute of Physical Chemistry, Georg-August University of Göttingen, Tammannstraße 6, 37077 Göttingen (Germany); Chen, Li [Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen (Germany)] [Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen (Germany); Auerbach, Daniel J.; Wodtke, Alec M. [Institute of Physical Chemistry, Georg-August University of Göttingen, Tammannstraße 6, 37077 Göttingen (Germany) [Institute of Physical Chemistry, Georg-August University of Göttingen, Tammannstraße 6, 37077 Göttingen (Germany); Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen (Germany)

    2014-02-07T23:59:59.000Z

    We report measurements of the incidence translational energy dependence of steric effects in collisions of NO(v = 3) molecules with a Au(111) surface using a recently developed technique to orient beams of vibrationally excited NO molecules at incidence energies of translation between 0.08 and 0.89 eV. Incidence orientation dependent vibrational state distributions of scattered molecules are detected by means of resonance enhanced multiphoton ionization spectroscopy. Molecules oriented with the N-end towards the surface exhibit a higher vibrational relaxation probability than those oriented with the O-end towards the surface. This strong orientation dependence arises from the orientation dependence of the underlying electron transfer reaction responsible for the vibrational relaxation. At reduced incidence translational energy, we observe a reduced steric effect. This reflects dynamical steering and re-orientation of the NO molecule upon its approach to the surface.

  13. Molecular Structure and Free Energy Landscape for Electron Transport in the Deca-Heme Cytochrome MtrF

    SciTech Connect (OSTI)

    Breuer, Marian; Zarzycki, Piotr P.; Shi, Liang; Clarke, Thomas; Edwards, Marcus; Butt, Julea N.; Richardson, David J.; Fredrickson, Jim K.; Zachara, John M.; Blumberger, Jochen; Rosso, Kevin M.

    2012-12-01T23:59:59.000Z

    The free energy profile for electron flow through the bacterial deca-heme cytochrome MtrF has been computed using thermodynamic integration and classical molecular dynamics. The extensive calculations on two versions of the structure help validate the method and results, because differences in the profiles can be related to differences in the charged amino acids local to specific heme groups. First estimates of reorganization free energies ? yield a range consistent with expectations for partially solvent exposed cofactors, and reveal an activation energy range surmountable for electron flow. Future work will aim at increasing the accuracy of ? with polarizable force field dynamics and quantum chemical energy gap calculations, as well as quantum chemical computation of electronic coupling matrix elements.

  14. Development of the doppler electron velocimeter: theory.

    SciTech Connect (OSTI)

    Reu, Phillip L.

    2007-03-01T23:59:59.000Z

    Measurement of dynamic events at the nano-scale is currently impossible. This paper presents the theoretical underpinnings of a method for making these measurements using electron microscopes. Building on the work of Moellenstedt and Lichte who demonstrated Doppler shifting of an electron beam with a moving electron mirror, further work is proposed to perfect and utilize this concept in dynamic measurements. Specifically, using the concept of ''fringe-counting'' with the current principles of transmission electron holography, an extension of these methods to dynamic measurements is proposed. A presentation of the theory of Doppler electron wave shifting is given, starting from the development of the de Broglie wave, up through the equations describing interference effects and Doppler shifting in electron waves. A mathematical demonstration that Doppler shifting is identical to the conceptually easier to understand idea of counting moving fringes is given by analogy to optical interferometry. Finally, potential developmental experiments and uses of a Doppler electron microscope are discussed.

  15. Insolation integrator

    DOE Patents [OSTI]

    Dougherty, John J. (Norristown, PA); Rudge, George T. (Lansdale, PA)

    1980-01-01T23:59:59.000Z

    An electric signal representative of the rate of insolation is integrated to determine if it is adequate for operation of a solar energy collection system.

  16. Liquid-state polaron theory of the hydrated electron revisited

    E-Print Network [OSTI]

    James P. Donley; David R. Heine; Caleb A. Tormey; David T. Wu

    2014-12-25T23:59:59.000Z

    The quantum path integral/classical liquid-state theory of Chandler and co-workers, created to describe an excess electron in solvent, is re-examined for the hydrated electron. The portion that models electron-water density correlations is replaced by two equations: the range optimized random phase approximation (RO-RPA), and the DRL approximation to the "two-chain" equation, both shown previously to describe accurately the static structure and thermodynamics of strongly charged polyelectrolyte solutions. The static equilibrium properties of the hydrated electron are analyzed using five different electron-water pseudopotentials. The theory is then compared with data from mixed quantum/classical Monte Carlo and molecular dynamics simulations using these same pseudopotentials. It is found that the predictions of the RO-RPA and DRL-based polaron theories are similar and improve upon previous theory, with values for almost all properties analyzed in reasonable quantitative agreement with the available simulation data. Also, it is found using the Larsen, Glover and Schwartz pseudopotential that the theories give values for the solvation free energy that are at least three times larger than that from experiment.

  17. On-Wafer Integration of Nitrides and Si Devices: Bringing the Power of Polarization to Si

    E-Print Network [OSTI]

    Chung, Jinwook

    The seamless integration of AlGaN/GaN transistors and Si CMOS electronics on the same chip will revolutionize digital and mixed signal electronics. In this talk we describe our group's effort on demonstrating this integration. ...

  18. Approximation of the Time-Dependent Electronic Schrodinger Equation by

    E-Print Network [OSTI]

    Koch, Othmar

    ], [2]. Large-scale computations of electronic structure and dynamics pose extremely challenging powerful standard tools in electronic structure calculations of atoms and small molecules. Similar to DFT-dependent electronic Schr¨odinger equa- tion (TDSE) arising in ultrafast laser dynamics, which was first proposed in [1

  19. Studies of advanced integrated nano-photonic devices in silicon

    E-Print Network [OSTI]

    Dahlem, Marcus

    2011-01-01T23:59:59.000Z

    Electronic-photonic integrated circuits (EPICs) are a promising technology for overcoming bandwidth and power-consumption bottlenecks of traditional integrated circuits. Silicon is a good candidate for building such devices, ...

  20. Efficient Execution of Electronic Structure Calculations on SMP Clusters

    SciTech Connect (OSTI)

    Nurzhan Ustemirov

    2006-05-01T23:59:59.000Z

    Applications augmented with adaptive capabilities are becoming common in parallel computing environments. For large-scale scientific applications, dynamic adjustments to a computationally-intensive part may lead to a large pay-off in facilitating efficient execution of the entire application while aiming at avoiding resource contention. Application-specific knowledge, often best revealed during the run-time, is required to initiate and time these adjustments. In particular, General Atomic and Molecular Electronic Structure System (GAMESS) is a program for ab initio quantum chemistry that places significant demands on the high-performance computing platforms. Certain electronic structure calculations are characterized by high consumption of a particular resource, such as CPU, main memory, or disk I/O. This may lead to resource contention among concurrent GAMESS jobs and other programs in the dynamically changing environment. Thus, it is desirable to improve GAMESS calculations by means of dynamic adaptations. In this thesis, we show how an application- or algorithm-specific knowledge may play a significant role in achieving this goal. The choice of implementation is facilitated by a module-driven middleware easily integrated with GAMESS that assesses resource consumption and invokes GAMESS adaptations to the system environment. We show that the throughput of GAMESS jobs may be improved greatly as a result of such adaptations.

  1. Non-Integrability of a weakly integrable Hamiltonian system

    E-Print Network [OSTI]

    Giuseppe Pucacco; Kjell Rosquist

    2003-08-29T23:59:59.000Z

    The geometric approach to mechanics based on the Jacobi metric allows to easily construct natural mechanical systems which are integrable (actually separable) at a fixed value of the energy. The aim of the present paper is to investigate the dynamics of a simple prototype system outside the zero-energy hypersurface. We find that the general situation is that in which integrability is not preserved at arbitrary values of the energy. The structure of the Hamiltonian in the separating coordinates at zero energy allows a perturbation treatment of this system at energies slightly different from zero, by which we obtain an analytical proof of non-integrability.

  2. Integrated Daylight Harvesting and Occupancy Detection Using Digital Imaging

    E-Print Network [OSTI]

    Salvaggio, Carl

    Integrated Daylight Harvesting and Occupancy Detection Using Digital Imaging Abhijit Sarkar dynamic range CMOS video camera to integrate daylight harvesting and occupancy sensing functionalities by these sensors. The prototype involves three algorithms, daylight estimation, occupancy detection and lighting

  3. Improved Electrical Conductivity of Graphene Films Integrated with Metal Nanowires

    E-Print Network [OSTI]

    tin oxide films in electrochromic (EC) devices. The successful integration of such graphene/NW films. KEYWORDS: Graphene, nanowires, transparent conductive films, electrochromic devices Due to low electron

  4. The Klynac: An Integrated Klystron and Linear Accelerator

    SciTech Connect (OSTI)

    Potter, J. M., Schwellenbach, D., Meidinger, A.

    2012-08-07T23:59:59.000Z

    The Klynac concept integrates an electron gun, a radio frequency (RF) power source, and a coupled-cavity linear accelerator into a single resonant system

  5. ERP SOURCE ESTIMATION BY INTEGRATION OF ANATOMICAL AND

    E-Print Network [OSTI]

    ERP SOURCE ESTIMATION BY INTEGRATION OF ANATOMICAL AND DYNAMICAL CONSTRAINTS Thesis submitted a small EEG signal analysis project under his supervision, in which I applied blind source separation

  6. Photonic integrated circuits for optical logic applications

    E-Print Network [OSTI]

    Williams, Ryan Daniel

    2007-01-01T23:59:59.000Z

    The optical logic unit cell is the photonic analog to transistor-transistor logic in electronic devices. Active devices such as InP-based semiconductor optical amplifiers (SOA) emitting at 1550 nm are vertically integrated ...

  7. Scientific Innovation Through Integration Investing in Innovation

    E-Print Network [OSTI]

    of living tissues and cells as well as quantitative investigation of molecular interaction dynamics and molecular chemical-state information simultaneously. Next-generation metabolomics characterization-photon fluorescence microscope: Seamlessly integrates nonlinear two-photon excitation, laser scanning confocal

  8. Cross sections for electron scattering by propane in the low- and intermediate-energy ranges

    SciTech Connect (OSTI)

    Souza, G. L. C. de; Lee, M.-T.; Sanches, I. P.; Rawat, P.; Iga, I.; Santos, A. S. dos; Machado, L. E.; Sugohara, R. T.; Brescansin, L. M.; Homem, M. G. P.; Lucchese, R. R. [Departamento de Quimica, UFSCar, 13565-905 Sao Carlos, SP (Brazil); Departamento de Fisica, UFSCar, 13565-905 Sao Carlos, SP (Brazil); Instituto de Fisica 'Gleb Wataghin', UNICAMP, 13083-970 Campinas, SP (Brazil); Departamento de Fisica, UFSC, 88010-970 Florianopolis, SC (Brazil); Department of Chemistry, Texas A and M University, College Station, Texas 7784-3255 (United States)

    2010-07-15T23:59:59.000Z

    We present a joint theoretical-experimental study on electron scattering by propane (C{sub 3}H{sub 8}) in the low- and intermediate-energy ranges. Calculated elastic differential, integral, and momentum transfer as well as total (elastic + inelastic) and total absorption cross sections are reported for impact energies ranging from 2 to 500 eV. Also, experimental absolute elastic cross sections are reported in the 40- to 500-eV energy range. A complex optical potential is used to represent the electron-molecule interaction dynamics. A theoretical method based on the single-center-expansion close-coupling framework and corrected by the Pade approximant is used to solve the scattering equations. The experimental angular distributions of the scattered electrons are converted to absolute cross sections using the relative flow technique. The comparison of our calculated with our measured results, as well as with other experimental and theoretical data available in the literature, is encouraging.

  9. Time, dynamics and chaos. Integrating Poincare's "non-integrable systems"

    SciTech Connect (OSTI)

    Prigogine, I.

    1990-01-01T23:59:59.000Z

    This report discusses the nature of time. The author attempts to resolve the conflict between the concept of time reversibility in classical and quantum mechanics with the macroscopic world's irreversibility of time. (LSP)

  10. Integrated Mechanical & Electrical Engineering (IMEE)

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    Integrated Mechanical & Electrical Engineering (IMEE) Department of Electronic & Electrical and electrical engineering are in great demand because of their ability to work on complex interdisciplinary and become an expert in the core areas of both mechanical and electrical engineering. Subject aims

  11. Solar Wind Electrons and Langmuir Turbulence , D.E. Larson

    E-Print Network [OSTI]

    California at Berkeley, University of

    electron VDFs contain high-energy tail [9] which is typically described as thermal core plus superthermal are in dynamical equilibrium with quasi-thermal noise turbulence. Customary theories of superthermal electrons

  12. Reduced electronic density matrices, effective Hamiltonians, and nonlinear susceptibilities of conjugated polyenes

    E-Print Network [OSTI]

    Mukamel, Shaul

    -acceptor substituted Hexatrienes demonstrate the interplay of electronic structure and dynamics, and the correlation the calculation of the optical response onto the dynam- ics of coupled electronic oscillators and suggests, which in turn controls the electronic dynamics. We further explore which characteristics of the ground

  13. Superthermal electron distribution measurements from polarized electron cyclotron emission

    SciTech Connect (OSTI)

    Luce, T.C.; Efthimion, P.C.; Fisch, N.J.

    1988-06-01T23:59:59.000Z

    Measurements of the superthermal electron distribution can be made by observing the polarized electron cyclotron emission. The emission is viewed along a constant magnetic field surface. This simplifies the resonance condition and gives a direct correlation between emission frequency and kinetic energy of the emitting electron. A transformation technique is formulated which determines the anisotropy of the distribution and number density of superthermals at each energy measured. The steady-state distribution during lower hybrid current drive and examples of the superthermal dynamics as the runaway conditions is varied are presented for discharges in the PLT tokamak. 15 refs., 8 figs.

  14. THz Dynamic Nuclear Polarization NMR

    E-Print Network [OSTI]

    Nanni, Emilio Alessandro

    Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The ...

  15. Microelectronic Devices and Circuits - 2006 Electronic Edition

    E-Print Network [OSTI]

    Fonstad, Clifton

    2006-10-01T23:59:59.000Z

    Combining semiconductor device physics and modeling with electronic circuit analysis and practice in a single sophomore/junior level microelectronics course, this textbook offers an integrated approach so students can truly ...

  16. On the Topic of Motion Integrals

    E-Print Network [OSTI]

    Bertinato, Christopher

    2013-04-02T23:59:59.000Z

    An integral of motion is a function of the states of a dynamical system that is constant along the system’s trajectories. Integrals are known for their utility as a means of reducing the dimension of a system, effectively leaving only one...

  17. Direct Observation of Optically Induced Transient Structures in Graphite Using Ultrafast Electron Crystallography

    E-Print Network [OSTI]

    initio density functional calculations, we trace the governing mechanism back to electronic structure changes in the electronic properties, direct de- termination of lattice structural dynamics from opticalDirect Observation of Optically Induced Transient Structures in Graphite Using Ultrafast Electron

  18. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Wade Troxell

    2011-09-30T23:59:59.000Z

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation â?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSUâ??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratoryâ??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

  19. Solid-State Dynamic Nuclear Polarization at 263 GHz: Spectrometer Design and Experimental Results

    E-Print Network [OSTI]

    Rosay, Melanie

    Dynamic Nuclear Polarization (DNP) experiments transfer polarization from electron spins to nuclear spins with microwave irradiation of the electron spins for enhanced sensitivity in nuclear magnetic resonance (NMR) ...

  20. Dynamic Voltage Regulation Using Distributed Energy Resources

    SciTech Connect (OSTI)

    Xu, Yan [ORNL; Rizy, D Tom [ORNL; Li, Fangxing [ORNL; Kueck, John D [ORNL

    2007-01-01T23:59:59.000Z

    Many distributed energy resources (DE) are near load centres and equipped with power electronics converters to interface with the grid, therefore it is feasible for DE to provide ancillary services such as voltage regulation, nonactive power compensation, and power factor correction. A synchronous condenser and a microturbine with an inverter interface are implemented in parallel in a distribution system to regulate the local voltage. Voltage control schemes of the inverter and the synchronous condenser are developed. The experimental results show that both the inverter and the synchronous condenser can regulate the local voltage instantaneously, while the dynamic response of the inverter is faster than the synchronous condenser; and that integrated voltage regulation (multiple DE perform voltage regulation) can increase the voltage regulation capability, increase the lifetime of the equipment, and reduce the capital and operation costs.

  1. Dynamics of the Aharonov-Bohm effect

    E-Print Network [OSTI]

    Neven Simicevic

    2010-03-24T23:59:59.000Z

    The time-dependent Dirac equation is solved using the three-dimensional Finite Difference-Time Domain (FDTD) method. The dynamics of the electron wave packet in a vector potential is studied in the arrangements associated with the Aharonov-Bohm effect. The solution of the Dirac equation showed a change in the velocity of the electron wave packet even in a region where no fields of the unperturbed solenoid acted on the electron. The solution of the Dirac equation qualitatively agreed with the prediction of classical dynamics under the assumption that the dynamics was defined by the conservation of generalized or canonical momentum of the electron.

  2. California Lithium Battery, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Integrated Dynamic Electron Solutions, Inc. Lawrence Livermore National Laboratory 333 likes Integrated Dynamic Electron Solutions, Inc., based in Belmont, California, uses Dynamic...

  3. Modal aerosol dynamics modeling

    SciTech Connect (OSTI)

    Whitby, E.R.; McMurry, P.H.; Shankar, U.; Binkowski, F.S.

    1991-02-01T23:59:59.000Z

    The report presents the governing equations for representing aerosol dynamics, based on several different representations of the aerosol size distribution. Analytical and numerical solution techniques for these governing equations are also reviewed. Described in detail is a computationally efficient numerical technique for simulating aerosol behavior in systems undergoing simultaneous heat transfer, fluid flow, and mass transfer in and between the gas and condensed phases. The technique belongs to a general class of models known as modal aerosol dynamics (MAD) models. These models solve for the temporal and spatial evolution of the particle size distribution function. Computational efficiency is achieved by representing the complete aerosol population as a sum of additive overlapping populations (modes), and solving for the time rate of change of integral moments of each mode. Applications of MAD models for simulating aerosol dynamics in continuous stirred tank aerosol reactors and flow aerosol reactors are provided. For the application to flow aerosol reactors, the discussion is developed in terms of considerations for merging a MAD model with the SIMPLER routine described by Patankar (1980). Considerations for incorporating a MAD model into the U.S. Environmental Protection Agency's Regional Particulate Model are also described. Numerical and analytical techniques for evaluating the size-space integrals of the modal dynamics equations (MDEs) are described. For multimodal logonormal distributions, an analytical expression for the coagulation integrals of the MDEs, applicable for all size regimes, is derived, and is within 20% of accurate numerical evaluation of the same moment coagulation integrals. A computationally efficient integration technique, based on Gauss-Hermite numerical integration, is also derived.

  4. Self-integration of nanowires into circuits via guided growth

    E-Print Network [OSTI]

    Joselevich, Ernesto

    Self-integration of nanowires into circuits via guided growth Mark Schvartzmana , David Tsiviona discrete nanowires (NWs) with nanoscale precision on a substrate is the key to their integration applied this approach for the integration of 14 discrete NWs into an electronic circuit operat- ing

  5. Electron tube

    DOE Patents [OSTI]

    Suyama, Motohiro (Hamamatsu, JP); Fukasawa, Atsuhito (Hamamatsu, JP); Arisaka, Katsushi (Los Angeles, CA); Wang, Hanguo (North Hills, CA)

    2011-12-20T23:59:59.000Z

    An electron tube of the present invention includes: a vacuum vessel including a face plate portion made of synthetic silica and having a surface on which a photoelectric surface is provided, a stem portion arranged facing the photoelectric surface and made of synthetic silica, and a side tube portion having one end connected to the face plate portion and the other end connected to the stem portion and made of synthetic silica; a projection portion arranged in the vacuum vessel, extending from the stem portion toward the photoelectric surface, and made of synthetic silica; and an electron detector arranged on the projection portion, for detecting electrons from the photoelectric surface, and made of silicon.

  6. Polymeric Electro-optic Modulators: From Chromophore Design to Integration with Semiconductor Very Large Scale Integration

    E-Print Network [OSTI]

    Polymeric Electro-optic Modulators: From Chromophore Design to Integration with Semiconductor Very Large Scale Integration Electronics and Silica Fiber Optics L. Dalton, A. Harper, A. Ren, F. Wang, G California, Los Angeles, California 90089-1661 Chromophores with optimized second-order optical nonlinearity

  7. NREL: Energy Systems Integration - Energy Systems Integration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Printable Version Energy Systems Integration Facility Newsroom The Energy Systems Integration Facility (ESIF) will be one of the only megawatt-scale test facilities in the United...

  8. Integrated production and maintenance scheduling

    E-Print Network [OSTI]

    Whitaker, Laura Oakes

    1996-01-01T23:59:59.000Z

    to simultaneously solve the electronic assembly plannmg and scheduling problem. Khoshnevis er a/ (1994) show that the integration of the assembly planning and scheduling process is possible, and favorable results can be obtained. The system developed consists... of an initial planning model, which is a rule- based model, and a simultaneous assembly planner/scheduler module, which takes the assembly plans from the initial module and schedules work, given a set of constrained resources. Dagnio (1994) discusses research...

  9. Quantum mechanical ab-initio simulation of the electron screening effect in metal deuteride crystals

    E-Print Network [OSTI]

    Huke, A; Chun, S M; Biller, A; Heide, P

    2008-01-01T23:59:59.000Z

    In antecedent experiments the electron screening energies of the d+d reactions in metallic environments have been determined to be enhanced by an order of magnitude in comparison to the case of gaseous deuterium targets. The analytical models describing averaged material properties have not been able to explain the experimental results so far. Therefore, a first effort has been undertaken to simulate the dynamics of reacting deuterons in a metallic lattice by means of an ab-initio Hartree-Fock calculation of the total electrostatic force between the lattice and the successively approaching deuterons via path integration. The calculations have been performed for Li and Ta, clearly showing a migration of electrons from host metallic to the deuterium atoms. However, in order to avoid more of the necessary simplifications in the model the utilization of a massive parallel supercomputer would be required.

  10. Quantum mechanical ab-initio simulation of the electron screening effect in metal deuteride crystals

    E-Print Network [OSTI]

    A. Huke; K. Czerski; S. M. Chun; A. Biller; P. Heide

    2008-03-07T23:59:59.000Z

    In antecedent experiments the electron screening energies of the d+d reactions in metallic environments have been determined to be enhanced by an order of magnitude in comparison to the case of gaseous deuterium targets. The analytical models describing averaged material properties have not been able to explain the experimental results so far. Therefore, a first effort has been undertaken to simulate the dynamics of reacting deuterons in a metallic lattice by means of an ab-initio Hartree-Fock calculation of the total electrostatic force between the lattice and the successively approaching deuterons via path integration. The calculations have been performed for Li and Ta, clearly showing a migration of electrons from host metallic to the deuterium atoms. However, in order to avoid more of the necessary simplifications in the model the utilization of a massive parallel supercomputer would be required.

  11. Integrated control system and method

    DOE Patents [OSTI]

    Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin

    2013-10-29T23:59:59.000Z

    An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.

  12. Automatic Radar Antenna Scan Type Recognition in Electronic

    E-Print Network [OSTI]

    Barshan, Billur

    Automatic Radar Antenna Scan Type Recognition in Electronic Warfare BILLUR BARSHAN BAHAEDDIN ERAVCI in electronic warfare (EW). The stages of the algorithm are scan period estimation, preprocessing (normalization Continuous-wave EW Electronic warfare EM Electromagnetic LFM Linear frequency modulation DTW Dynamic time

  13. Computing Partial Eigenvalue Sum in Electronic Structure Calculations

    E-Print Network [OSTI]

    Bai, Zhaojun

    and CPU time. In the application of electronic structure calculations in molecular dynamics, the newComputing Partial Eigenvalue Sum in Electronic Structure Calculations Z. Bai M. Faheyy G. Golubz M where computation of the total energy of an electronic structure requires the evaluation of partial

  14. Solution of Large Eigenvalue Problems in Electronic Structure Calculations \\Lambda

    E-Print Network [OSTI]

    Stathopoulos, Andreas

    Solution of Large Eigenvalue Problems in Electronic Structure Calculations \\Lambda Y. Saad y , A the structural and electronic properties of complex systems is one of the outstanding problems in condensed external perturbations. For example, it may be desirable in certain cases to follow the dynamics of atoms/electrons

  15. The structure of electronic states in amorphous silicon

    E-Print Network [OSTI]

    Drabold, David

    the structure and dynamics of electron states in amorphous Si. The nature of the states near the gap at zeroThe structure of electronic states in amorphous silicon David A. Drabold,* Uwe Stephan, Jianjun for amorphous Si, which are of particular interest for efficient ab initio calculation of electronic properties

  16. A Simple Kinetic Model for Singlet Fission: A Role of Electronic and Entropic Contributions to Macroscopic Rates

    E-Print Network [OSTI]

    Krylov, Anna I.

    electronic structure calculations with the experimental observables. We aim at establishing a theoretical in molecular solids and model compounds. The electronic structure aspects of SF have received considerable quantities by modeling complicated nonadiabatic dynamics encompassing several interacting electronic states

  17. CVSys: A Coordination Framework for Dynamic and Fully Distributed Cardiovascular Modeling and Simulation

    E-Print Network [OSTI]

    California at Irvine, University of

    CVSys: A Coordination Framework for Dynamic and Fully Distributed Cardiovascular Modeling and dynamic simulation control. This coordination framework uniquely incorporates attributes of open indigenous and a more integrated system representation. Dynamic simulation control serves to interject new

  18. Chaotic Dynamics in Multidimensional Transition States Ali Allahem1, a)

    E-Print Network [OSTI]

    Chaotic Dynamics in Multidimensional Transition States Ali Allahem1, a) and Thomas Bartsch1, b consequences of normal hyperbolicity20,21 : a)Electronic mail: a.allahem@lboro.ac.uk b)Electronic mail: t.bartsch

  19. [Inelastic electron scattering from surfaces]. [Progress report

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    This program uses ab-initio and multiple scattering to study surface dynamical processes; high-resolution electron-energy loss spectroscopy is used in particular. Off-specular excitation cross sections are much larger if electron energies are in the LEED range (50--300 eV). The analyses have been extended to surfaces of ordered alloys. Phonon eigenvectors and eigenfrequencies were used as inputs to electron-energy-loss multiple scattering cross section calculations. Work on low-energy electron and positron holography is mentioned.

  20. Electron decay at IceCube

    E-Print Network [OSTI]

    Lynch, Morgan H

    2015-01-01T23:59:59.000Z

    In this paper we apply the formalism of Accelerated Quantum Dynamics (AQD) to the radiative stopping of highly relativistic electrons in ice. We compute the lifetime of electrons to decay into muons as well as the spectrum of the emitted muons. The energy of the emitted muon depends on the deceleration of the electron and this correlation can be used to tag the event and confirm the prediction. The results predict the acceleration-induced decay of electrons at IceCube energies. This experimental setting has the potential to establish the existence of the Unruh effect as well investigate the role of high acceleration in particle physics.

  1. Global Dynamics in Galactic Triaxial Systems I

    E-Print Network [OSTI]

    Pablo M. Cincotta; Claudia M. Giordano; Josefa Perez; .

    2006-04-21T23:59:59.000Z

    In this paper we present a theoretical analysis of the global dynamics in a triaxial galactic system using a 3D integrable Hamiltonian as a simple representation. We include a thorough discussion on the effect of adding a generic non--integrable perturbation to the global dynamics of the system. We adopt the triaxial Stackel Hamiltonian as the integrable model and compute its resonance structure in order to understand its global dynamics when a perturbation is introduced. Also do we take profit of this example in order to provide a theoretical discussion about diffussive processes taking place in phase space.

  2. Probing Ultrafast Solvation Dynamics with High Repetition-Rate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast X-Ray Spectroscopy as a Probe of Nonequilibrium Dynamics in Ruthenium Complexes The Electronic Origin of Photoinduced Strain Modifying Proteins to Combat Disease Higher...

  3. Excitation and recombination dynamics of vacancy-related spin centers in silicon carbide

    SciTech Connect (OSTI)

    Hain, T. C.; Hertel, T. [Institute of Physical and Theoretical Chemistry, Julius-Maximilian University of Würzburg, 97074 Würzburg (Germany); Fuchs, F.; Astakhov, G. V., E-mail: astakhov@physik.uni-wuerzburg.de [Experimental Physics VI, Julius-Maximilian University of Würzburg, 97074 Würzburg (Germany); Soltamov, V. A. [Ioffe Physical-Technical Institute, 194021 St. Petersburg (Russian Federation); Baranov, P. G. [Ioffe Physical-Technical Institute, 194021 St. Petersburg (Russian Federation); St. Petersburg State Polytechnical University, 195251 St. Petersburg (Russian Federation); Dyakonov, V., E-mail: dyakonov@physik.uni-wuerzburg.de [Experimental Physics VI, Julius-Maximilian University of Würzburg, 97074 Würzburg (Germany); Bavarian Center for Applied Energy Research (ZAE Bayern), 97074 Würzburg (Germany)

    2014-04-07T23:59:59.000Z

    We generate silicon vacancy related defects in high-quality epitaxial silicon carbide layers by means of electron irradiation. By controlling the irradiation fluence, the defect concentration is varied over several orders of magnitude. We establish the excitation profile for optical pumping of these defects and evaluate the optimum excitation wavelength of 770?nm. We also measure the photoluminescence dynamics at room temperature and find a monoexponential decay with a characteristic lifetime of 6.1?ns. The integrated photoluminescence intensity depends linear on the excitation power density up to 20?kW/cm{sup 2}, indicating a relatively small absorption cross section of these defects.

  4. Sandia National Laboratories: Power Electronics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home AboutMeeting: ProgramFebruaryJunePower Electronics

  5. ELECTRONIC WARFARE NOVEMBER 2012

    E-Print Network [OSTI]

    US Army Corps of Engineers

    FM 3-36 ELECTRONIC WARFARE NOVEMBER 2012 DISTRIBUTION RESTRICTION: Approved for public release Electronic Warfare Contents Page PREFACE..............................................................................................................iv Chapter 1 ELECTRONIC WARFARE OVERVIEW ............................................................ 1

  6. Electronic dendrometer

    DOE Patents [OSTI]

    Sauer, deceased, Ronald H. (late of Richland, WA); Beedlow, Peter A. (Kennewick, WA)

    1985-01-01T23:59:59.000Z

    Disclosed is a dendrometer for use on soft stemmed herbaceous plants. The dendrometer uses elongated jaws to engage the plant stem securely but without appreciable distortion or collapse of the stem. A transducer made of flexible, noncorrodible and temperature stable material spans between the jaws which engage the plant stem. Strain gauges are attached at appropriate locations on a transducer member and are connected to a voltage source and voltmeter to monitor changes in plant stem size. A microprocessor can be used to integrate the plant stem size information with other relevant environmental parameters and the data can be recorded on magnetic tape or used in other data processing equipment.

  7. 2013 R&D 100 Award: Movie-mode electron microscope captures nanoscale

    SciTech Connect (OSTI)

    Lagrange, Thomas; Reed, Bryan

    2014-04-03T23:59:59.000Z

    A new instrument developed by LLNL scientists and engineers, the Movie Mode Dynamic Transmission Electron Microscope (MM-DTEM), captures billionth-of-a-meter-scale images with frame rates more than 100,000 times faster than those of conventional techniques. The work was done in collaboration with a Pleasanton-based company, Integrated Dynamic Electron Solutions (IDES) Inc. Using this revolutionary imaging technique, a range of fundamental and technologically important material and biological processes can be captured in action, in complete billionth-of-a-meter detail, for the first time. The primary application of MM-DTEM is the direct observation of fast processes, including microstructural changes, phase transformations and chemical reactions, that shape real-world performance of nanostructured materials and potentially biological entities. The instrument could prove especially valuable in the direct observation of macromolecular interactions, such as protein-protein binding and host-pathogen interactions. While an earlier version of the technology, Single Shot-DTEM, could capture a single snapshot of a rapid process, MM-DTEM captures a multiframe movie that reveals complex sequences of events in detail. It is the only existing technology that can capture multiple electron microscopy images in the span of a single microsecond.

  8. 2013 R&D 100 Award: Movie-mode electron microscope captures nanoscale

    ScienceCinema (OSTI)

    Lagrange, Thomas; Reed, Bryan

    2014-07-21T23:59:59.000Z

    A new instrument developed by LLNL scientists and engineers, the Movie Mode Dynamic Transmission Electron Microscope (MM-DTEM), captures billionth-of-a-meter-scale images with frame rates more than 100,000 times faster than those of conventional techniques. The work was done in collaboration with a Pleasanton-based company, Integrated Dynamic Electron Solutions (IDES) Inc. Using this revolutionary imaging technique, a range of fundamental and technologically important material and biological processes can be captured in action, in complete billionth-of-a-meter detail, for the first time. The primary application of MM-DTEM is the direct observation of fast processes, including microstructural changes, phase transformations and chemical reactions, that shape real-world performance of nanostructured materials and potentially biological entities. The instrument could prove especially valuable in the direct observation of macromolecular interactions, such as protein-protein binding and host-pathogen interactions. While an earlier version of the technology, Single Shot-DTEM, could capture a single snapshot of a rapid process, MM-DTEM captures a multiframe movie that reveals complex sequences of events in detail. It is the only existing technology that can capture multiple electron microscopy images in the span of a single microsecond.

  9. Free-Electron Laser-Powered Electron Paramagnetic Resonance Spectroscopy

    E-Print Network [OSTI]

    Takahashi, S; Edwards, D T; van Tol, J; Ramian, G; Han, S; Sherwin, M S

    2012-01-01T23:59:59.000Z

    Electron paramagnetic resonance (EPR) spectroscopy interrogates unpaired electron spins in solids and liquids to reveal local structure and dynamics; for example, EPR has elucidated parts of the structure of protein complexes that have resisted all other techniques in structural biology. EPR can also probe the interplay of light and electricity in organic solar cells and light-emitting diodes, and the origin of decoherence in condensed matter, which is of fundamental importance to the development of quantum information processors. Like nuclear magnetic resonance (NMR), EPR spectroscopy becomes more powerful at high magnetic fields and frequencies, and with excitation by coherent pulses rather than continuous waves. However, the difficulty of generating sequences of powerful pulses at frequencies above 100 GHz has, until now, confined high-power pulsed EPR to magnetic fields of 3.5 T and below. Here we demonstrate that ~1 kW pulses from a free-electron laser (FEL) can power a pulsed EPR spectrometer at 240 GHz...

  10. Microfluidic Integration into Neural Implants University of Southern California, Los Angeles, CA

    E-Print Network [OSTI]

    Meng, Ellis

    Microfluidic Integration into Neural Implants E. Meng1 1 University of Southern California, Los technological deficiencies can be addressed by integrating microfluidics with electrodes and electrochemical sensors. Multimodality neural interfaces that combine electronics and microfluidics open new possibilities

  11. Micro-opto-mechanical switching and tuning for integrated optical systems

    E-Print Network [OSTI]

    Nielson, Gregory Nolan, 1974-

    2004-01-01T23:59:59.000Z

    Integrated optical circuits have the potential to lower manufacturing and operating costs and enhance the functionality of optical systems in a manner similar to what has been achieved by integrating electronic circuits. ...

  12. Beam Dynamics for ARIA

    E-Print Network [OSTI]

    Ekdahl, Carl

    2015-01-01T23:59:59.000Z

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  13. Polymer electronic devices and materials.

    SciTech Connect (OSTI)

    Schubert, William Kent; Baca, Paul Martin; Dirk, Shawn M.; Anderson, G. Ronald; Wheeler, David Roger

    2006-01-01T23:59:59.000Z

    Polymer electronic devices and materials have vast potential for future microsystems and could have many advantages over conventional inorganic semiconductor based systems, including ease of manufacturing, cost, weight, flexibility, and the ability to integrate a wide variety of functions on a single platform. Starting materials and substrates are relatively inexpensive and amenable to mass manufacturing methods. This project attempted to plant the seeds for a new core competency in polymer electronics at Sandia National Laboratories. As part of this effort a wide variety of polymer components and devices, ranging from simple resistors to infrared sensitive devices, were fabricated and characterized. Ink jet printing capabilities were established. In addition to promising results on prototype devices the project highlighted the directions where future investments must be made to establish a viable polymer electronics competency.

  14. Manipulation of the distance of light-induced electron transfer within a semi-rigid donor(amine)/acceptor(terpyridine) assembly via

    E-Print Network [OSTI]

    structure calculations qualitatively reproduce the experimental observations. From the calculations interest in the kinetics and dynamics of electron transfer (ET) reac- tions, including reactions kinetics and dynamics studies: `how far is the electron transferred?' At first glance, this would appear

  15. Manifold Integration: Data Integration on Multiple Manifolds

    E-Print Network [OSTI]

    Choi, Hee Youl

    2011-08-08T23:59:59.000Z

    MANIFOLD INTEGRATION: DATA INTEGRATION ON MULTIPLE MANIFOLDS A Dissertation by HEE YOUL CHOI Submitted to the O?ce of Graduate Studies of Texas A&M University in partial fulflllment of the requirements for the degree of DOCTOR OF PHILOSOPHY... May 2010 Major Subject: Computer Science MANIFOLD INTEGRATION: DATA INTEGRATION ON MULTIPLE MANIFOLDS A Dissertation by HEE YOUL CHOI Submitted to the O?ce of Graduate Studies of Texas A&M University in partial fulflllment of the requirements...

  16. Numerical Integration Numerical Summation

    E-Print Network [OSTI]

    Cohen, Henri

    Numerical Integration Numerical Summation Numerical Extrapolation Numerical Recipes for Multiprecision Computations #12;Numerical Integration Numerical Summation Numerical Extrapolation Multiprecision, integration, summation, extrapolation, evaluation of continued fractions, Euler products and sums, complete

  17. Using an electronic lab notebook to facilitate Research Data Management at the University of Edinburgh 

    E-Print Network [OSTI]

    Goddard, Nigel

    2014-08-26T23:59:59.000Z

    This paper examines how adoption of an electronic lab notebook can facilitate a research data management programme, using the design and integration of the RSpace electronic lab notebook at the University of Edinburgh ...

  18. Electron acoustic wave driven vortices with non-Maxwellian hot electrons in magnetoplasmas

    SciTech Connect (OSTI)

    Haque, Q. [Theoretical Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); National Center for Physics Shahdrah Valley Road, Islamabad 44000 (Pakistan); Mirza, Arshad M. [Theoretical Plasma Physics Group, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Zakir, U. [Institute of Physics and Electronics, University of Peshawar, and Khyber Pakhtun Khwa 25000 (Pakistan); Department of Physics, University of Malakand Chakdara Dir(L), Khyber Pakhtun Khwa 18800 Pakistan (Pakistan)

    2014-07-15T23:59:59.000Z

    Linear dispersion characteristics of the Electron Acoustic Wave (EAW) and the corresponding vortex structures are investigated in a magnetoplasma in the presence of non-Maxwellian hot electrons. In this regard, kappa and Cairns distributed hot electrons are considered. It is noticed that the nonthermal distributions affect the phase velocity of the EAW. Further, it is found that the phase velocity of EAW increases for Cairns and decreases for kappa distributed hot electrons. Nonlinear solutions in the form of dipolar vortices are also obtained for both stationary and non-stationary ions in the presence of kappa distributed hot electrons and dynamic cold electrons. It is found that the amplitude of the nonlinear vortex structures also reduces with kappa factor like the electron acoustic solitons.

  19. Electronic Circuit Realization of the Logistic Map

    E-Print Network [OSTI]

    Madhekar Suneel

    2006-03-11T23:59:59.000Z

    An electronic circuit realization of the logistic difference equation is presented using analog electronics. The behavior of the realized system is evaluated against computer simulations of the same. The circuit is found to exhibit the entire range of dynamics of the logistic equation: fixed points, periodicity, period doubling, chaos and intermittency. Quantitative measurements of the dynamics of the realized system are presented and are found to be in good agreement with the theoretical values. Some possible applications of such a realization are briefly discussed.

  20. Strong mechanical driving of a single electron spin

    E-Print Network [OSTI]

    Arne Barfuss; Jean Teissier; Elke Neu; Andreas Nunnenkamp; Patrick Maletinsky

    2015-03-23T23:59:59.000Z

    Quantum devices for sensing and computing applications require coherent quantum systems which can be manipulated in a fast and robust way. Such quantum control is typically achieved using external electric or magnetic fields which drive the system's orbital or spin degrees of freedom. However, most of these approaches require complex and unwieldy antenna or gate structures, and with few exceptions are limited to the regime of weak driving. Here, we present a novel approach to strongly and coherently drive a single electron spin in the solid state using internal strain fields in an integrated quantum device. Specifically, we study individual Nitrogen-Vacancy (NV) spins embedded in diamond mechanical oscillators and exploit the intrinsic strain coupling between spin and oscillator to strongly drive the spins. As hallmarks of the strong driving regime, we directly observe the energy spectrum of the emerging phonon-dressed states and employ our strong, continuous driving for enhancement of the NV spin coherence time. Our results constitute a first step towards strain-driven, integrated quantum devices and open new perspectives to investigate unexplored regimes of strongly driven multi-level systems and to study exotic spin dynamics in hybrid spin-oscillator devices.

  1. Elastic electron scattering from formic acid

    SciTech Connect (OSTI)

    Trevisan, Cynthia S.; Orel, Ann E.; Rescigno, Thomas N.

    2006-07-31T23:59:59.000Z

    Following our earlier study on the dynamics of low energy electron attachment to formic acid, we report the results of elastic low-energy electron collisions with formic acid. Momentum transfer and angular differential cross sections were obtained by performing fixed-nuclei calculations employing the complex Kohn variational method. We make a brief description of the technique used to account for the polar nature of this polyatomic target and compare our results with available experimental data.

  2. Network structure and dynamics of hydrogenated amorphous silicon D.A. Drabold *, T.A. Abtew, F. Inam, Y. Pan

    E-Print Network [OSTI]

    Drabold, David

    upon reasonable calculations of the electron-lattice coupling and molecular dynamic simulationNetwork structure and dynamics of hydrogenated amorphous silicon D.A. Drabold *, T.A. Abtew, F on the network or lattice dynamics of the system, both in the electronic ground state and in an electronic

  3. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  4. The Cauchy Integral Formula

    E-Print Network [OSTI]

    Steve Bell

    2009-06-24T23:59:59.000Z

    Feb 23, 2009 ... Cauchy Integral Formula basics. I'm using the enumerate environment on this slide. 1. The Cauchy Integral Formula was discovered by Cauchy ...

  5. Structural Fluctuations, Spin, Reorganization Energy, and Tunneling Energy Control of Intramolecular Electron Transfer

    E-Print Network [OSTI]

    Kurnikova, Maria

    calculations of electronic couplings, molecular dynamics simulations of molecular geometries, and Poisson exists to interpret electron-transfer (ET) reactions and their dependence upon molecular structure.1Structural Fluctuations, Spin, Reorganization Energy, and Tunneling Energy Control

  6. Role of electron-electron interference in ultrafast time-resolved imaging of electronic wavepackets

    SciTech Connect (OSTI)

    Dixit, Gopal [Center for Free-Electron Laser Science, DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Santra, Robin [Center for Free-Electron Laser Science, DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Department of Physics, University of Hamburg, D-20355 Hamburg (Germany)

    2013-04-07T23:59:59.000Z

    Ultrafast time-resolved x-ray scattering is an emerging approach to image the dynamical evolution of the electronic charge distribution during complex chemical and biological processes in real-space and real-time. Recently, the differences between semiclassical and quantum-electrodynamical (QED) theory of light-matter interaction for scattering of ultrashort x-ray pulses from the electronic wavepacket were formally demonstrated and visually illustrated by scattering patterns calculated for an electronic wavepacket in atomic hydrogen [G. Dixit, O. Vendrell, and R. Santra, Proc. Natl. Acad. Sci. U.S.A. 109, 11636 (2012)]. In this work, we present a detailed analysis of time-resolved x-ray scattering from a sample containing a mixture of non-stationary and stationary electrons within both the theories. In a many-electron system, the role of scattering interference between a non-stationary and several stationary electrons to the total scattering signal is investigated. In general, QED and semiclassical theory provide different results for the contribution from the scattering interference, which depends on the energy resolution of the detector and the x-ray pulse duration. The present findings are demonstrated by means of a numerical example of x-ray time-resolved imaging for an electronic wavepacket in helium. It is shown that the time-dependent scattering interference vanishes within semiclassical theory and the corresponding patterns are dominated by the scattering contribution from the time-independent interference, whereas the time-dependent scattering interference contribution do not vanish in the QED theory and the patterns are dominated by the scattering contribution from the non-stationary electron scattering.

  7. Collective dynamics in sparse networks

    E-Print Network [OSTI]

    Stefano Luccioli; Simona Olmi; Antonio Politi; Alessandro Torcini

    2012-08-03T23:59:59.000Z

    The microscopic and macroscopic dynamics of random networks is investigated in the strong-dilution limit (i.e. for sparse networks). By simulating chaotic maps, Stuart-Landau oscillators, and leaky integrate-and-fire neurons, we show that a finite connectivity (of the order of a few tens) is able to sustain a nontrivial collective dynamics even in the thermodynamic limit. Although the network structure implies a non-additive dynamics, the microscopic evolution is extensive (i.e. the number of active degrees of freedom is proportional to the number of network elements).

  8. Connecting curves for dynamical systems

    E-Print Network [OSTI]

    R. Gilmore; Jean-Marc Ginoux; Timothy Jones; C. Letellier; U. S. Freitas

    2010-03-08T23:59:59.000Z

    We introduce one dimensional sets to help describe and constrain the integral curves of an $n$ dimensional dynamical system. These curves provide more information about the system than the zero-dimensional sets (fixed points) do. In fact, these curves pass through the fixed points. Connecting curves are introduced using two different but equivalent definitions, one from dynamical systems theory, the other from differential geometry. We describe how to compute these curves and illustrate their properties by showing the connecting curves for a number of dynamical systems.

  9. Systems integration for global sustainability

    E-Print Network [OSTI]

    2015-01-01T23:59:59.000Z

    Le, A. Z. Khan, Improving integration for integrated coastal347 ISSUE 6225 Systems integration for global sustainabilitySUSTAINABILITY Systems integration for global sustainability

  10. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20T23:59:59.000Z

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  11. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, John S. (Los Alamos, NM); Sheffield, Richard L. (Los Alamos, NM)

    1987-01-01T23:59:59.000Z

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  12. Future advances: Stretchable silicon-based electronics http://www.whatistheword.com/story/SciTech_418.html 1 of 1 12/21/2005 5:57 PM

    E-Print Network [OSTI]

    Rogers, John A.

    electronics devices can be built on "rubber substrates." The researchers have detailed their efforts integrated device elements on rubber represents a new form of stretchable, high-performance electronicsFuture advances: Stretchable silicon-based electronics http

  13. Governor Cuomo, GE Announce Power Electronics Manufacturing Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    enable the expansion and growth of both major corporate partners and small and medium-sized enterprises within a vibrant power electronics device and systems integration eco-system...

  14. DYNAMIC RISK MANAGEMENT IN ELECTRICITY PORTFOLIO OPTIMIZATION

    E-Print Network [OSTI]

    Eichhorn, Andreas

    DYNAMIC RISK MANAGEMENT IN ELECTRICITY PORTFOLIO OPTIMIZATION VIA POLYHEDRAL RISK FUNCTIONALS the dynamic decision structure appropriately. In energy risk management, which is typically carried out ex, for integrating risk management into a stochastic optimization framework, risk has to be quantified in a definite

  15. Turnitin Moodle Direct Integration

    E-Print Network [OSTI]

    de Lijser, Peter

    Turnitin Moodle® Direct Integration Instructor User Manual Turnitin Moodle Integration Manual: 1. Turnitin Moodle Integration Manual: 2 Contents Instructor User Manual 1 Creating a Turnitin Assignment 3 Accessing GradeMark® 15 Glossary 16 #12;Instructor User Manual Turnitin Moodle Integration Manual: 3

  16. Extending SysML for Integration with Solver-based

    E-Print Network [OSTI]

    Shapiro, Benjamin

    by integrated models of: Model-based Systems Engineering Requirements Accelerate at of 4 m/s2 100 kw hydraulic;Overview § Motivation and approach § Dynamic simulation overview § SysML extension § Detailed example § Transforming to simulation formats § Summary #12;Overview § Motivation and approach § Dynamic simulation

  17. Single Molecule Spectroscopy of Electron Transfer

    SciTech Connect (OSTI)

    Michael Holman; Ling Zang; Ruchuan Liu; David M. Adams

    2009-10-20T23:59:59.000Z

    The objectives of this research are threefold: (1) to develop methods for the study electron transfer processes at the single molecule level, (2) to develop a series of modifiable and structurally well defined molecular and nanoparticle systems suitable for detailed single molecule/particle and bulk spectroscopic investigation, (3) to relate experiment to theory in order to elucidate the dependence of electron transfer processes on molecular and electronic structure, coupling and reorganization energies. We have begun the systematic development of single molecule spectroscopy (SMS) of electron transfer and summaries of recent studies are shown. There is a tremendous need for experiments designed to probe the discrete electronic and molecular dynamic fluctuations of single molecules near electrodes and at nanoparticle surfaces. Single molecule spectroscopy (SMS) has emerged as a powerful method to measure properties of individual molecules which would normally be obscured in ensemble-averaged measurement. Fluctuations in the fluorescence time trajectories contain detailed molecular level statistical and dynamical information of the system. The full distribution of a molecular property is revealed in the stochastic fluctuations, giving information about the range of possible behaviors that lead to the ensemble average. In the case of electron transfer, this level of understanding is particularly important to the field of molecular and nanoscale electronics: from a device-design standpoint, understanding and controlling this picture of the overall range of possible behaviors will likely prove to be as important as designing ia the ideal behavior of any given molecule.

  18. An Integrated Assessment of Geochemical and Community Structure Determinants of Metal Reduction Rates in Subsurface Sediments

    SciTech Connect (OSTI)

    Joel E. Kostka

    2008-03-24T23:59:59.000Z

    This project represented a joint effort between Oak Ridge National Laboratory (ORNL), the University of Tennessee (UT), and Florida State University (FSU). ORNL served as the lead in-stitution with Dr. A.V. Palumbo responsible for project coordination, integration, and deliver-ables. In situ uranium bioremediation is focused on biostimulating indigenous microorganisms through a combination of pH neutralization and the addition of large amounts of electron donor. Successful biostimulation of U(VI) reduction has been demonstrated in the field and in the laboratory. However, little data is available on the dynamics of microbial populations capable of U(VI) reduction, and the differences in the microbial community dynamics between proposed electron donors have not been explored. In order to elucidate the potential mechanisms of U(VI) reduction for optimization of bioremediation strategies, structure-function relationships of microbial populations were investigated in microcosms of subsurface materials cocontaminated with radionuclides and nitrate from the Oak Ridge Field Research Center (ORFRC), Oak Ridge, Tennessee.

  19. Advanced Integrated Traction System

    SciTech Connect (OSTI)

    Greg Smith; Charles Gough

    2011-08-31T23:59:59.000Z

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step towards enabling a smart-grid application. GM under this work assessed 29 technologies; investigated 36 configurations/types power electronics and electric machines, filed 41 invention disclosures; and ensured technology compatibility with vehicle production. Besides the development of a high temperature ETS the development of industrial suppliers took place because of this project. Suppliers of industrial power electronic components are numerous, but there are few that have traction drive knowledge. This makes it difficult to achieve component reliability, durability, and cost requirements necessary of high volume automotive production. The commercialization of electric traction systems for automotive industry requires a strong diverse supplier base. Developing this supplier base is dependent on a close working relationship between the OEM and supplier so that appropriate component requirements can be developed. GM has worked closely with suppliers to develop components for electric traction systems. Components that have been the focus of this project are power modules, capacitors, heavy copper boards, current sensors, and gate drive and controller chip sets. Working with suppliers, detailed component specifications have been developed. Current, voltage, and operation environment during the vehicle drive cycle were evaluated to develop higher resolution/accurate component specifications.

  20. ECE 331: Electronics Principles Pre-requisites

    E-Print Network [OSTI]

    Schumacher, Russ

    ECE 331: Electronics Principles Pre-requisites: - ECE202 and MATH340 or MATH345 Phasors, Impedance and Integral Calculus Kirchhoff's Law - Can connect devices and evaluate bias circuits and time- varying device properties (e.g. threshold voltage) from measured data - Can use LabView to derive I

  1. Nanotubes, Nanowires and Nano-electronics

    E-Print Network [OSTI]

    Pulfrey, David L.

    composites have applications in integrated circuits, photonics, solar cells, and displays. ECE professor promising light sensitivity, and which could be used for developing future solar cells. Advances in Nano industrial uses. One potential application for single-walled nanotubes is electron emitters for flat-panel

  2. Natural Dynamics for Combinatorial Optimization

    E-Print Network [OSTI]

    Ovchinnikov, Igor V

    2015-01-01T23:59:59.000Z

    Stochastic and or natural dynamical systems (DSs) are dominated by sudden nonlinear processes such as neuroavalanches, gamma-ray bursts, solar flares, earthquakes etc. that exhibit scale-free statistics. These behaviors also occur in many nanosystems. On phase diagrams, these DSs belong to a finite-width phase that separates the phases of thermodynamic equilibrium and ordinary chaotic dynamics, and that is known under such names as intermittency, noise-induced chaos, and self-organized criticality. Within the recently formulated approximation-free cohomological theory of stochastic differential equations, the noise-induced chaos can be roughly interpreted as a noise-induced overlap between regular (integrable) and chaotic (non-integrable) deterministic dynamics so that DSs in this phase inherit the properties of the both. Here, we analyze this unique set of properties and conclude that such DSs must be the most efficient natural optimizers. Based on this understanding, we propose the method of the natural dyn...

  3. Ultra-high-frequency chaos in a time-delay electronic device with band-limited feedback

    E-Print Network [OSTI]

    Illing, Lucas

    Ultra-high-frequency chaos in a time-delay electronic device with band-limited feedback Lucas- dynamical electronic device. It consists of a transistor-based nonlinearity, commercially of such a device, we explore the dynamics of an electronic circuit that consists of a simple transistor

  4. FREE-ELECTRON LASERS

    E-Print Network [OSTI]

    Sessler, A.M.

    2008-01-01T23:59:59.000Z

    Variable-Wiggler Free-Electron-Laser Oscillat.ion. Phys. :_.The Los Alamos Free Electron Laser: Accelerator Perfoemance.First Operation of a Free-Electron Laser. Phys . __ Rev~.

  5. FREE ELECTRON LASERS

    E-Print Network [OSTI]

    Colson, W.B.

    2008-01-01T23:59:59.000Z

    1984). Colson, W. B. , "Free electron laser theory," Ph.D.aspects of the free electron laser," Laser Handbook i,Quant. Elect. Bendor Free Electron Laser Conference, Journal

  6. Chapter 9: Electronics

    E-Print Network [OSTI]

    Spieler, Helmuth G

    2008-01-01T23:59:59.000Z

    R. Armstrong Contents Electronics 9.1 Introduction 9.2measurements 9.11 Digital electronics 9.11.1 Logic elementsProblems page 1 vii Electronics This chapter was contributed

  7. electronic reprint Acta Crystallographica Section B

    E-Print Network [OSTI]

    Vocadlo, Lidunka

    electronic reprint Acta Crystallographica Section B Structural Science ISSN 0108-7681 Structures, concluding that a CsCl-type structure would be the thermo- dynamically most stable phase for pressures calculations Lidunka Vocadlo, Geoffrey D. Price and I. G. Wood Copyright © International Union

  8. Stability of the electron cyclotron resonance

    E-Print Network [OSTI]

    Joachim Asch; Olivier Bourget; Cédric Meresse

    2014-12-30T23:59:59.000Z

    We consider the magnetic AC Stark effect for the quantum dynamics of a single particle in the plane under the influence of an oscillating homogeneous electric and a constant perpendicular magnetic field. We prove that the electron cyclotron resonance is insensitive to impurity potentials.

  9. Wind Integration Study Methods (Presentation)

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.

    2011-04-01T23:59:59.000Z

    This presentation provides an overview of common elements, differences, integration costs, and errors in integration analysis.

  10. A continuum-atomistic method for incorporating Joule heating into classical molecular dynamics simulations

    E-Print Network [OSTI]

    Brenner, Donald W.

    binding electronic structure calculations, pertur- bation models, and quantum-classical Hamiltonians [6 depends on the degree of approximation used in solving the electronic structure problem, which can add-scale molecular dynamics (MD) simulation is not to model electron dynamics, but rather to numerically solve

  11. Shannon Entropy Based Time-Dependent Deterministic Sampling for Efficient "On-the-Fly" Quantum Dynamics

    E-Print Network [OSTI]

    Iyengar, Srinivasan S.

    Dynamics and Electronic Structure David Hocker, Xiaohu Li, and Srinivasan S. Iyengar* Department) approximates the electronic structure alongside the nuclei to simulate molecular dynamics. When AIMD techniques in electronic structure calculation. The approach is quantum-classical40,57-63 and involves the synergy between

  12. Computational Improvements to Quantum Wave Packet ab Initio Molecular Dynamics Using a Potential-Adapted,

    E-Print Network [OSTI]

    Iyengar, Srinivasan S.

    electronic structure calculations (at the level of density functional theory, Hartree-Fock, post- Hartree approach to treat the simultaneous dynamics of electrons and nuclei. The method is based on a synergy-H-Cl]- and [CH3-H-Cl]- along with simultaneous dynamical treatment of the electrons and classical nuclei, through

  13. Modelling and simulation of multidisciplinary dynamic systems Lead: A. Fakri.

    E-Print Network [OSTI]

    Baudoin, Geneviève

    Modelling and simulation of multidisciplinary dynamic systems Lead: A. Fakri. Permanent members: P. Integration of various engineering disciplines and the consideration of the dynamic control need a concurrent suited for the energy exchanges to study multidisciplinary dynamic engineering systems modelling. Our

  14. Stochastic modeling of lift and drag dynamics under turbulent conditions

    E-Print Network [OSTI]

    Peinke, Joachim

    measurement. The model is being developed with the aim to integrate it into a general wind energy converter dynamics, drag dynamics. 1 Introduction Wind energy converters (WECs) are permanently exposed to turbulent.peinke@forwind.de in every second, which imposes different risks. The dynamical nature of the wind has a significant impact

  15. Collisional relaxation of electrons in a warm plasma and accelerated nonthermal electron spectra in solar flares

    E-Print Network [OSTI]

    Kontar, E P; Emslie, A G; Bian, N H

    2015-01-01T23:59:59.000Z

    Extending previous studies of nonthermal electron transport in solar flares which include the effects of collisional energy diffusion and thermalization of fast electrons, we present an analytic method to infer more accurate estimates of the accelerated electron spectrum in solar flares from observations of the hard X-ray spectrum. Unlike for the standard cold-target model, the spatial characteristics of the flaring region, especially the necessity to consider a finite volume of hot plasma in the source, need to be taken into account in order to correctly obtain the injected electron spectrum from the source-integrated electron flux spectrum (a quantity straightforwardly obtained from hard X-ray observations). We show that, for a given source-integrated electron flux spectrum, the overall power in the injected electrons could be reduced by an order of magnitude or more relative to its cold-target value. Indeed, the extent of electron thermalization can be significant enough to nullify the need to introduce an...

  16. Controlling Graphene's Electronic Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlling Graphene's Electronic Structure Print Wednesday, 25 April 2007 00:00 Graphene, because of its unusual electron properties, reduced dimensionality, and scale, has...

  17. Controlling Graphene's Electronic Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlling Graphene's Electronic Structure Print Graphene, because of its unusual electron properties, reduced dimensionality, and scale, has enormous potential for use in...

  18. Electron Microscopy Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Microscopy Center Argonne Home > EMC > EMC Home Electron Microscopy Center Web Site has moved This page has moved to http:www.anl.govcnmgroupelectron-microscopy-cente...

  19. Practical Witness for Electronic Coherences

    E-Print Network [OSTI]

    Allan S. Johnson; Joel Yuen-Zhou; Alán Aspuru-Guzik; Jacob J. Krich

    2014-08-13T23:59:59.000Z

    The origin of the coherences in two-dimensional spectroscopy of photosynthetic complexes remains disputed. Recently it has been shown that in the ultrashort-pulse limit, oscillations in a frequency-integrated pump-probe signal correspond exclusively to electronic coherences, and thus such experiments can be used to form a test for electronic vs. vibrational oscillations in such systems. Here we demonstrate a method for practically implementing such a test, whereby pump-probe signals are taken at several different pulse durations and used to extrapolate to the ultrashort-pulse limit. We present analytic and numerical results determining requirements for pulse durations and the optimal choice of pulse central frequency, which can be determined from an absorption spectrum. Our results suggest that for numerous systems the required experiment could be implemented by many ultrafast spectroscopy laboratories using pulses of tens of femtoseconds in duration. Such experiments could resolve the standing debate over the nature of coherences in photosynthetic complexes.

  20. Complex Dynamics

    E-Print Network [OSTI]

    Complex Dynamics Bernardo Da Costa, Koushik Ramachandran, Jingjing Qu, and I had a two semester learning seminar in complex analysis and potential ...

  1. Efficient Nanoporous Silicon Membranes for Integrated Microfluidic Separation and Sensing Systems

    SciTech Connect (OSTI)

    Ileri, N; L?tant, S E; Britten, J; Nguyen, H; Larson, C; Zaidi, S; Palazoglu, A; Faller, R; Tringe, J W; Stroeve, P

    2009-04-06T23:59:59.000Z

    Nanoporous devices constitute emerging platforms for selective molecule separation and sensing, with great potential for high throughput and economy in manufacturing and operation. Acting as mass transfer diodes similar to a solid-state device based on electron conduction, conical pores are shown to have superior performance characteristics compared to traditional cylindrical pores. Such phenomena, however, remain to be exploited for molecular separation. Here we present performance results from silicon membranes created by a new synthesis technique based on interferometric lithography. This method creates millimeter sized planar arrays of uniformly tapered nanopores in silicon with pore diameter 100 nm or smaller, ideally-suited for integration into a multi-scale microfluidic processing system. Molecular transport properties of these devices are compared against state-of-the-art polycarbonate track etched (PCTE) membranes. Mass transfer rates of up to fifteen-fold greater than commercial sieve technology are obtained. Complementary results from molecular dynamics simulations on molecular transport are reported.

  2. Buried waste integrated demonstration technology integration process

    SciTech Connect (OSTI)

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01T23:59:59.000Z

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD).

  3. Buried waste integrated demonstration technology integration process

    SciTech Connect (OSTI)

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01T23:59:59.000Z

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE`s Office of Technology Development (OTD).

  4. Analysis and optimization of a free-electron laser with an irregular waveguide

    E-Print Network [OSTI]

    V. A. Goryashko

    2010-04-08T23:59:59.000Z

    Using a time-dependent approach the analysis and optimization of a planar FEL-amplifier with an axial magnetic field and an irregular waveguide is performed. By applying methods of nonlinear dynamics three-dimensional equations of motion and the excitation equation are partly integrated in an analytical way. As a result, a self-consistent reduced model of the FEL is built in special phase space. The reduced model is the generalization of the Colson-Bonifacio model and takes into account the intricate dynamics of electrons in the pump magnetic field and the intramode scattering in the irregular waveguide. The reduced model and concepts of evolutionary computation are used to find optimal waveguide profiles. The numerical simulation of the original non-simplified model is performed to check the effectiveness of found optimal profiles. The FEL parameters are chosen to be close to the parameters of the experiment (S. Cheng et al. IEEE Trans. Plasma Sci. 1996, vol. 24, p. 750), in which a sheet electron beam with the moderate thickness interacts with the TE01 mode of a rectangular waveguide. The results strongly indicate that one can improve the efficiency by a factor of five or six if the FEL operates in the magnetoresonance regime and if the irregular waveguide with the optimized profile is used.

  5. Electron Cloud Effects in Accelerators

    SciTech Connect (OSTI)

    Furman, M.A.

    2012-11-30T23:59:59.000Z

    Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  6. Torque for electron spin induced by electron permanent electric dipole moment

    SciTech Connect (OSTI)

    Senami, Masato, E-mail: senami@me.kyoto-u.ac.jp, E-mail: akitomo@scl.kyoto-u.ac.jp; Fukuda, Masahiro, E-mail: senami@me.kyoto-u.ac.jp, E-mail: akitomo@scl.kyoto-u.ac.jp; Ogiso, Yoji, E-mail: senami@me.kyoto-u.ac.jp, E-mail: akitomo@scl.kyoto-u.ac.jp; Tachibana, Akitomo, E-mail: senami@me.kyoto-u.ac.jp, E-mail: akitomo@scl.kyoto-u.ac.jp [Department of Micro Engineering, Kyoto University, Kyoto 615-8540 (Japan)

    2014-10-06T23:59:59.000Z

    The spin torque of the electron is studied in relation to the electric dipole moment (EDM) of the electron. The spin dynamics is known to be given by the spin torque and the zeta force in quantum field theory. The effect of the EDM on the torque of the spin brings a new term in the equation of motion of the spin. We study this effect for a solution of the Dirac equation with electromagnetic field.

  7. Image formation modeling in cryo-electron microscopy Milos Vulovic a,b

    E-Print Network [OSTI]

    Rieger, Bernd

    dam- age which limits the integrated electron flux that can be used, resulting in a poor signal's scattering properties, microscope optics, and detector response. The specimen interaction potential contrast, changes due to the integrated electron flux, thickness, inelastic scattering, detective quantum

  8. Transmission Commercial Project Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improvement (CBPI) Customer Forum Energy Imbalance Market Generator Interconnection Reform Implementation Network Integration Transmission Service (NT Service) Network Open...

  9. Electronics, Electrical Engineering

    E-Print Network [OSTI]

    SCHOOL OF Electronics, Electrical Engineering and Computer Science IS IN YOUR HANDS THE FUTURE #12;SCHOOL OF Electronics, Electrical Engineering and Computer Science2 CAREERS IN ELECTRONICS, ELECTRICAL Belfast. Ranked among the top 100 in the world for Electrical and Electronic Engineering (QS World

  10. Heterogeneously integrated microsystem-on-a-chip

    DOE Patents [OSTI]

    Chanchani, Rajen (Albuquerque, NM)

    2008-02-26T23:59:59.000Z

    A microsystem-on-a-chip comprises a bottom wafer of normal thickness and a series of thinned wafers can be stacked on the bottom wafer, glued and electrically interconnected. The interconnection layer comprises a compliant dielectric material, an interconnect structure, and can include embedded passives. The stacked wafer technology provides a heterogeneously integrated, ultra-miniaturized, higher performing, robust and cost-effective microsystem package. The highly integrated microsystem package, comprising electronics, sensors, optics, and MEMS, can be miniaturized both in volume and footprint to the size of a bottle-cap or less.

  11. Integrated injection-locked semiconductor diode laser

    DOE Patents [OSTI]

    Hadley, G. Ronald (Albuquerque, NM); Hohimer, John P. (Albuquerque, NM); Owyoung, Adelbert (Albuquerque, NM)

    1991-01-01T23:59:59.000Z

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet.

  12. Integrated injection-locked semiconductor diode laser

    DOE Patents [OSTI]

    Hadley, G.R.; Hohimer, J.P.; Owyoung, A.

    1991-02-19T23:59:59.000Z

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet. 18 figures.

  13. Coherent control of plasma dynamics

    E-Print Network [OSTI]

    He, Z -H; Lebailly, V; Nees, J A; Krushelnick, K; Thomas, A G R

    2015-01-01T23:59:59.000Z

    Coherent control of a system involves steering an interaction to a final coherent state by controlling the phase of an applied field. Plasmas support coherent wave structures that can be generated by intense laser fields. Here, we demonstrate the coherent control of plasma dynamics in a laser wakefield electron acceleration experiment. A genetic algorithm is implemented using a deformable mirror with the electron beam signal as feedback, which allows a heuristic search for the optimal wavefront under laser-plasma conditions that is not known a priori. We are able to improve both the electron beam charge and angular distribution by an order of magnitude. These improvements do not simply correlate with having the `best' focal spot, since the highest quality vacuum focal spot produces a greatly inferior electron beam, but instead correspond to the particular laser phase that steers the plasma wave to a final state with optimal accelerating fields.

  14. Electronic Systems for Radiation Detection in Space and High Energy Physics Applications

    E-Print Network [OSTI]

    Valerio, Pierpaolo; Ballabriga, Rafael

    This Ph.D. thesis focuses on the analysis and development of novel solution for electronics system for radiation detector, especially suited for space and high energy physics applications. The many blocks of a readout system were studied to develop complete systems, investigating where the performances can be improved over state of the art technologies. Two different architectures, suitable for different applications, were studied: Fractional Packet Counting, for High Dynamic Range (HDR) integrating imagers and CLICpix, an example of high-accuracy hybrid photon counting detector. The main specifications of the two systems were anayzed and solutions were proposed and implemented to meet them. A CLICpix prototype has been designed, fabricated using a commercial 65 nm CMOS technology and tested (characterization is still ongoing). The technology used for the prototype has also been characterized and validated for High Energy Physics (HEP) use and radiation hard design.

  15. Wave regularity in curve integrable spacetimes

    E-Print Network [OSTI]

    Yafet Sanchez Sanchez

    2015-02-23T23:59:59.000Z

    The idea of defining a gravitational singularity as an obstruction to the dynamical evolution of a test field (described by a PDE) rather than the dynamical evolution of a particle (described by a geodesics) is explored. In particular, the concept of wave regularity is introduced which serves to show that the classical singularities in curve integrable spacetimes do not interrupt the well-posedness of the wave equation. The techniques used also provide arguments that can be extended to establish when a classically singular spacetime remains singular in a semi-classical picture.

  16. The integration of cryogenic cooling systems with superconducting electronic systems

    E-Print Network [OSTI]

    Green, Michael A.

    2011-01-01T23:59:59.000Z

    including hydrogen, which has very good thennal properties)Hydrogen is a special case. It has good heat transfer properties

  17. Higher temperature power electronics for larger-scale mechatronic integration

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    temperature" means different things to different applications. In high voltage systems (such as power to hybrid or full electric cars), the cost of the electrical system is higher than the internal combustion. In hybrid vehicles, it is possible to take advantage of the ICE cooling loop to extract heat from the power

  18. Integrating Security Solutions to Support nanoCMOS Electronics Research

    E-Print Network [OSTI]

    Sinnott, R.O.

    Sinnott,R.O. Asenov,A. Bayliss,C. Davenhall,C. Doherty,T. Harbulot,B. Jones,M. Martin,D. Millar,C. Roy,G. Roy,S. Stewart,G. Watt,J. IEEE International Symposium on Parallel and Distributed Processing Systems with Applications, Sydney Australia, December 2008.

  19. Power Electronic Thermal System Performance and Integration | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of60 DATE:AnnualDepartmentEnergy &Energy 10

  20. Power Electronic Thermal System Performance and Integration | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of60 DATE:AnnualDepartmentEnergy &Energy

  1. Integrated Three-Dimensional Module Heat Exchange for Power Electronics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other NewsSpin andInterim DataCooling - Energy Innovation

  2. Future Electron-Hadron Colliders

    SciTech Connect (OSTI)

    Litvinenko, V.

    2010-05-23T23:59:59.000Z

    Outstanding research potential of electron-hadron colliders (EHC) was clearly demonstrated by first - and the only - electron-proton collider HERA (DESY, Germany). Physics data from HERA revealed new previously unknown facets of Quantum Chromo-Dynamics (QCD). EHC is an ultimate microscope probing QCD in its natural environment, i.e. inside the hadrons. In contrast with hadrons, electrons are elementary particles with known initial state. Hence, scattering electrons from hadrons provides a clearest pass to their secrets. It turns EHC into an ultimate machine for high precision QCD studies and opens access to rich physics with a great discovery potential: solving proton spin puzzle, observing gluon saturation or physics beyond standard model. Access to this physics requires high-energy high-luminosity EHCs and a wide reach in the center-of-mass (CM) energies. This paper gives a brief overview of four proposed electron-hadron colliders: ENC at GSI (Darmstadt, Germany), ELIC/MEIC at TJNAF (Newport News, VA, USA), eRHIC at BNL (Upton, NY, USA) and LHeC at CERN (Geneva, Switzerland). Future electron-hadron colliders promise to deliver very rich physics not only in the quantity but also in the precision. They are aiming at very high luminosity two-to-four orders of magnitude beyond the luminosity demonstrated by the very successful HERA. While ENC and LHeC are on opposite side of the energy spectrum, eRHIC and ELIC are competing for becoming an electron-ion collider (EIC) in the U.S. Administrations of BNL and Jlab, in concert with US DoE office of Nuclear Physics, work on the strategy for down-selecting between eRHIC and ELIC. The ENC, EIC and LHeC QCD physics programs to a large degree are complimentary to each other and to the LHC physics. In last decade, an Electron Ion Collider (EIC) collaboration held about 25 collaboration meetings to develop physics program for EIC with CM energy {approx}100 GeV. One of these meetings was held at GSI, where ENC topic was in the center of discussions. First dedicated LHeC workshop was held in 2008, with a number of dedicated workshops following it. Intense accelerator R&D program is needed to address the challenges posed by the EIC.

  3. Development of an (e,2e) electron momentum spectroscopy apparatus using an ultrashort pulsed electron gun

    SciTech Connect (OSTI)

    Yamazaki, M.; Kasai, Y.; Oishi, K.; Nakazawa, H.; Takahashi, M. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan)

    2013-06-15T23:59:59.000Z

    An (e,2e) apparatus for electron momentum spectroscopy (EMS) has been developed, which employs an ultrashort-pulsed incident electron beam with a repetition rate of 5 kHz and a pulse duration in the order of a picosecond. Its instrumental design and technical details are reported, involving demonstration of a new method for finding time-zero. Furthermore, EMS data for the neutral Ne atom in the ground state measured by using the pulsed electron beam are presented to illustrate the potential abilities of the apparatus for ultrafast molecular dynamics, such as by combining EMS with the pump-and-probe technique.

  4. Electron stars for holographic metallic criticality

    SciTech Connect (OSTI)

    Hartnoll, Sean A.; Tavanfar, Alireza [Center for the Fundamental Laws of Nature, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2011-02-15T23:59:59.000Z

    We refer to the ground state of a gravitating, charged ideal fluid of fermions held at a finite chemical potential as an ''electron star.'' In a holographic setting, electron stars are candidate gravity duals for strongly interacting finite fermion density systems. We show how electron stars develop an emergent Lifshitz scaling at low energies. This IR scaling region is a consequence of the two-way interaction between emergent quantum critical bosonic modes and the finite density of fermions. By integrating from the IR region to an asymptotically AdS{sub 4} spacetime, we compute basic properties of the electron stars, including their electrical conductivity. We emphasize the challenge of connecting UV and IR physics in strongly interacting finite density systems.

  5. Electron stars for holographic metallic criticality

    E-Print Network [OSTI]

    Sean A. Hartnoll; Alireza Tavanfar

    2011-01-06T23:59:59.000Z

    We refer to the ground state of a gravitating, charged ideal fluid of fermions held at a finite chemical potential as an `electron star'. In a holographic setting, electron stars are candidate gravity duals for strongly interacting finite fermion density systems. We show how electron stars develop an emergent Lifshitz scaling at low energies. This IR scaling region is a consequence of the two way interaction between emergent quantum critical bosonic modes and the finite density of fermions. By integrating from the IR region to an asymptotically AdS_4 spacetime, we compute basic properties of the electron stars, including their electrical conductivity. We emphasize the challenge of connecting UV and IR physics in strongly interacting finite density systems.

  6. ASYMMETRIC ELECTRON DISTRIBUTIONS IN THE SOLAR WIND

    SciTech Connect (OSTI)

    Rha, Kicheol; Ryu, Chang-Mo [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)] [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Yoon, Peter H. [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States)] [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States)

    2013-09-20T23:59:59.000Z

    A plausible mechanism responsible for producing asymmetric electron velocity distribution functions in the solar wind is investigated by means of one-dimensional electrostatic particle-in-cell (PIC) simulation. A recent paper suggests that the variation in the ion-to-electron temperature ratio influences the nonlinear wave-particle dynamics such that it results in the formation of asymmetric distributions. The present PIC code simulation largely confirms this finding, but quantitative differences between the weak turbulence formalism and the present PIC simulation are also found, suggesting the limitation of the analytical method. The inter-relationship between the asymmetric electron distribution and the ion-to-electron temperature ratio may be a new useful concept for the observation.

  7. Exciton coherence lifetimes from electronic structure

    E-Print Network [OSTI]

    Parkhill, John; Aspuru-Guzik, Alan

    2011-01-01T23:59:59.000Z

    We model the coherent energy transfer of an electronic excitation within covalently linked aromatic homodimers from first-principles, to answer whether the usual models of the bath calculated via detailed electronic structure calculations can reproduce the key dynamics. For these systems the timescales of coherent transport are experimentally known from time-dependent polarization anisotropy measurements, and so we can directly assess the whether current techniques might be predictive for this phenomenon. Two choices of electronic basis states are investigated, and their relative merits discussed regarding the predictions of the perturbative model. The coupling of the electronic degrees of freedom to the nuclear degrees of freedom is calculated rather than assumed, and the fluorescence anisotropy decay is directly reproduced. Surprisingly we find that although TDDFT absolute energies are routinely in error by orders of magnitude more than the coupling energy, the coherent transport properties of these dimers ...

  8. Community-oriented information integration

    E-Print Network [OSTI]

    Katsis, Ioannis

    2009-01-01T23:59:59.000Z

    2.6.1 Community-oriented Integration . . 2.6.2Chapter 5 Integration Conclusions and FutureFigure Community-oriented Integration Architecture . . . .

  9. Art Integration and Cognitive Development

    E-Print Network [OSTI]

    Baker, Dawn

    2013-01-01T23:59:59.000Z

    journal on arts integration in schools and communities. 1(Art Integration and Cognitive Development Dawn Baker,in the curriculum. Art integration involves learning core

  10. Motion Integration Using Competitive Priors

    E-Print Network [OSTI]

    Wu, Shuang; Lu, Hongjing; Lee, Alan; Yuille, Alan

    2009-01-01T23:59:59.000Z

    to investigate motion integration across orientation andspace. VSS 2006. Motion integration using competitive priorsMotion integration using competitive priors Shuang Wu 1 ,

  11. Motion Integration Using Competitive Priors

    E-Print Network [OSTI]

    Shuang Wu; Hongjing Lu; Alan Lee; Alan Yuille

    2011-01-01T23:59:59.000Z

    to investigate motion integration across orientation andspace. VSS 2006. Motion integration using competitive priorsMotion integration using competitive priors Shuang Wu 1 ,

  12. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration Energy Supply Transformation Needed On February 20, 2013, in DETL, Distribution Grid Integration, Energy, Energy Assurance, Energy Surety, Grid Integration,...

  13. Development of an alternating integrator for magnetic measurements for experimental advanced superconducting tokamak

    SciTech Connect (OSTI)

    Liu, D. M., E-mail: dmliu@live.cn; Zhao, W. Z.; He, Y. G.; Chen, B. [School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009 (China); Wan, B. N.; Shen, B.; Huang, J.; Liu, H. Q. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2014-11-15T23:59:59.000Z

    A high-performance integrator is one of the key electronic devices for reliably controlling plasma in the experimental advanced superconducting tokamak for long pulse operation. We once designed an integrator system of real-time drift compensation, which has a low integration drift. However, it is not feasible for really continuous operations due to capacitive leakage error and nonlinearity error. To solve the above-mentioned problems, this paper presents a new alternating integrator. In the new integrator, the integrator system of real-time drift compensation is adopted as one integral cell while two such integral cells work alternately. To achieve the alternate function, a Field Programmable Gate Array built in the digitizer is utilized. The performance test shows that the developed integrator with the integration time constant of 20 ms has a low integration drift (<15 mV) for 1000?s.

  14. Accelerated molecular dynamics methods: introduction and recent developments

    SciTech Connect (OSTI)

    Uberuaga, Blas Pedro [Los Alamos National Laboratory; Voter, Arthur F [Los Alamos National Laboratory; Perez, Danny [Los Alamos National Laboratory; Shim, Y [UNIV OF TOLEDO; Amar, J G [UNIV OF TOLEDO

    2009-01-01T23:59:59.000Z

    A long-standing limitation in the use of molecular dynamics (MD) simulation is that it can only be applied directly to processes that take place on very short timescales: nanoseconds if empirical potentials are employed, or picoseconds if we rely on electronic structure methods. Many processes of interest in chemistry, biochemistry, and materials science require study over microseconds and beyond, due either to the natural timescale for the evolution or to the duration of the experiment of interest. Ignoring the case of liquids xxx, the dynamics on these time scales is typically characterized by infrequent-event transitions, from state to state, usually involving an energy barrier. There is a long and venerable tradition in chemistry of using transition state theory (TST) [10, 19, 23] to directly compute rate constants for these kinds of activated processes. If needed dynamical corrections to the TST rate, and even quantum corrections, can be computed to achieve an accuracy suitable for the problem at hand. These rate constants then allow them to understand the system behavior on longer time scales than we can directly reach with MD. For complex systems with many reaction paths, the TST rates can be fed into a stochastic simulation procedure such as kinetic Monte Carlo xxx, and a direct simulation of the advance of the system through its possible states can be obtained in a probabilistically exact way. A problem that has become more evident in recent years, however, is that for many systems of interest there is a complexity that makes it difficult, if not impossible, to determine all the relevant reaction paths to which TST should be applied. This is a serious issue, as omitted transition pathways can have uncontrollable consequences on the simulated long-time kinetics. Over the last decade or so, we have been developing a new class of methods for treating the long-time dynamics in these complex, infrequent-event systems. Rather than trying to guess in advance what reaction pathways may be important, we return instead to a molecular dynamics treatment, in which the trajectory itself finds an appropriate way to escape from each state of the system. Since a direct integration of the trajectory would be limited to nanoseconds, while we are seeking to follow the system for much longer times, we modify the dynamics in some way to cause the first escape to happen much more quickly, thereby accelerating the dynamics. The key is to design the modified dynamics in a way that does as little damage as possible to the probability for escaping along a given pathway - i.e., we try to preserve the relative rate constants for the different possible escape paths out of the state. We can then use this modified dynamics to follow the system from state to state, reaching much longer times than we could reach with direct MD. The dynamics within any one state may no longer be meaningful, but the state-to-state dynamics, in the best case, as we discuss in the paper, can be exact. We have developed three methods in this accelerated molecular dynamics (AMD) class, in each case appealing to TST, either implicitly or explicitly, to design the modified dynamics. Each of these methods has its own advantages, and we and others have applied these methods to a wide range of problems. The purpose of this article is to give the reader a brief introduction to how these methods work, and discuss some of the recent developments that have been made to improve their power and applicability. Note that this brief review does not claim to be exhaustive: various other methods aiming at similar goals have been proposed in the literature. For the sake of brevity, our focus will exclusively be on the methods developed by the group.

  15. Semiclassical analysis of the electron-nuclear coupling in electronic non-adiabatic processes

    E-Print Network [OSTI]

    Agostini, Federica; Gross, E K U

    2015-01-01T23:59:59.000Z

    In the context of the exact factorization of the electron-nuclear wave function, the coupling between electrons and nuclei beyond the adiabatic regime is encoded (i) in the time-dependent vector and scalar potentials and (ii) in the electron-nuclear coupling operator. The former appear in the Schroedinger-like equation that drives the evolution of the nuclear degrees of freedom, whereas the latter is responsible for inducing non-adiabatic effects in the electronic evolution equation. As we have devoted previous studies to the analysis of the vector and scalar potentials, in this paper we focus on the properties of the electron-nuclear coupling operator, with the aim of describing a numerical procedure to approximate it within a semiclassical treatment of the nuclear dynamics.

  16. TheRate: Program for Ab Initio Direct Dynamics Calculations of Thermal and

    E-Print Network [OSTI]

    Truong, Thanh N.

    , and the convergence of the rate constants with respect to the number of electronic structure calculations. 1998 John is that such limited potential energy information may be obtained from accurate electronic structure calculations-- --Dynamics Calculations of Thermal and Vibrational

  17. An Integrated Experimental and Computational Investigation into the Dynamic Loads and Free-surface Wave-Field Perturbations Induced by Head-Sea Regular Waves on a 1/8.25 Scale-Model of the R/V ATHENA

    E-Print Network [OSTI]

    Ratcliffe, Toby; O'Shea, Thomas T; Fu, Thomas; Russell, Lauren; Dommermuth, Douglas G

    2014-01-01T23:59:59.000Z

    A 1/8.25 scale-model of the U.S. Navy Research Vessel ATHENA was tested in regular head-sea waves to obtain data for validation of computational fluid dynamics (CFD) predictive tools. The experiments were performed in the David Taylor Model Basin at the Naval Surface Warfare Center (NSWC). With the model towed fixed in head-seas, horizontal and vertical loads on the model were obtained at two Froude numbers, $F_r=0.25$ and $F_r=0.43$. The model was run at two conditions of head-sea wavelengths corresponding to $\\lambda=2L_o$ and $\\lambda=1/2L_o$ with $H/\\lambda=0.03$, where $L_o$ is the length of the model and $H=2 a$ is the wave height. The wave field perturbations induced by the head-sea waves were quantified from free-surface images generated by a laser light sheet. Predictions of the horizontal and vertical loads on the model in regular head sea waves were made with the Numerical Flow Analysis (NFA) code. Numerical predictions of the wave-field perturbations were compared with the experimental data and th...

  18. Large-Scale First-Principles Molecular Dynamics simulations on the BlueGene/L Platform

    E-Print Network [OSTI]

    Franchetti, Franz

    . Keywords Electronic structure. Molecular Dynamics. Ab initio simulations. First-principles simulations of the electronic properties of the system. The electronic structure calculation is the most time-consuming part the past three decades to the development of efficient implementations of the electronic structure

  19. Chaos in an ion-channel free-electron laser with realistic helical wiggler

    SciTech Connect (OSTI)

    Esmaeilzadeh, Mahdi [Department of Physics, Iran University of Science and Technology, Narmak, Tehran 16844 (Iran, Islamic Republic of); Taghavi, Amin [Department of Applied Science, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of)

    2012-11-15T23:59:59.000Z

    Chaotic behavior of an electron motion in a free-electron laser with realistic helical wiggler and ion-channel guiding is studied using Poincare surface-of-section maps. The effects of a realistic electron beam density on chaotic electron dynamics are investigated by considering an electron beam with Gaussian density profile in radial distance. The effects of self-fields on chaotic electron dynamics are investigated for different Gaussian beam parameters, and the results are compared with those of uniform electron beam. It is shown that the electron chaotic behavior can be controlled by changing the Gaussian beam parameter. Also, the chaotic behavior can be controlled by increasing the ion-channel and/or the electron beam densities.

  20. Stiff subcircuit islands of diamondlike carbon for stretchable electronics Stphanie P. Lacoura

    E-Print Network [OSTI]

    Suo, Zhigang

    2006 Stretchable electronics on elastomeric substrates requires fragile and brittle device materials electronics is how to integrate stiff and fragile device materials such as silicon with compliant elastomeric formats. Our approach toward the fabrication of stretch- able electronics has been to fabricate devices

  1. Harsh environments electronics : downhole applications.

    SciTech Connect (OSTI)

    Vianco, Paul Thomas

    2011-03-01T23:59:59.000Z

    The development and operational sustainment of renewable (geothermal) and non-renewable (fossil fuel) energy resources will be accompanied by increasingly higher costs factors: exploration and site preparation, operational maintenance and repair. Increased government oversight in the wake of the Gulf oil spill will only add to the cost burden. It is important to understand that downhole conditions are not just about elevated temperatures. It is often construed that military electronics are exposed to the upper limit in terms of extreme service environments. Probably the harshest of all service conditions for electronics and electrical equipment are those in oil, gas, and geothermal wells. From the technology perspective, advanced materials, sensors, and microelectronics devices are benefificial to the exploration and sustainment of energy resources, especially in terms of lower costs. Besides the need for the science that creates these breakthroughs - there is also a need for sustained engineering development and testing. Downhole oil, gas, and geothermal well applications can have a wide range of environments and reliability requirements: Temperature, Pressure, Vibration, Corrosion, and Service duration. All too frequently, these conditions are not well-defifined because the application is labeled as 'high temperature'. This ambiguity is problematic when the investigation turns to new approaches for electronic packaging solutions. The objective is to develop harsh environment, electronic packaging that meets customer requirements of cost, performance, and reliability. There are a number of challenges: (1) Materials sets - solder alloys, substrate materials; (2) Manufacturing process - low to middle volumes, low defect counts, new equipment technologies; and (3) Reliability testing - requirements documents, test methods and modeling, relevant standards documents. The cost to develop and sustain renewable and non-renewable energy resources will continue to escalate within the industry. Downhole electronics can provide a very cost-effective approach for well exploration and sustainment (data logging). However, the harsh environments are a 'game-changer' in terms defining materials, assembly processes and the long-term reliability of downhole electronic systems. The system-level approach will enable the integration of each of these contributors - materials, processes, and reliability - in order to deliver cost-effective electronics that meet customer requirements.

  2. Free electron laser with bunched relativistic electron beam and electrostatic longitudinal wiggler

    SciTech Connect (OSTI)

    Sepehri Javan, Nasser [Department of Physics, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil (Iran, Islamic Republic of)

    2010-06-15T23:59:59.000Z

    The system of the nonlinear nonstationary equations describing spatial-temporal dynamics of the amplitudes of an undulator radiation and a space charge wave of a relativistic electron beam in the resonator is obtained. The electrostatic longitudinal wiggler is considered. A bunch of the electron beam injects to the resonator, at the ends of which two mirrors are placed. After the interaction of electrons of bunch with radiation in the presence of wiggler and after amplifying electromagnetic pulse, a part of radiation is reflected back by semitransparent mirror. Then, it reaches to the initial of the system where the other mirror is placed. Synchronously, when the pulse is reflecting, the other electron bunch enters to the resonator and interacts with the pulse. This operation has simulated until saturation of growth of the electromagnetic pulse. The dynamics of the problem is simulated by the method of macro particles. The dynamics of pulse amplification, motion of the electrons, and spectra of output radiation in each stage are simulated.

  3. Bump formation in the runaway electron tail

    E-Print Network [OSTI]

    Decker, J; Fülöp, T

    2015-01-01T23:59:59.000Z

    Runaway electrons are generated in a magnetized plasma when the parallel electric field exceeds a critical value. For such electrons with energies typically reaching tens of MeV, the Abraham-Lorentz-Dirac (ALD) radiation force, in reaction to the synchrotron emission, is significant and can be the dominant process limiting the electron acceleration. The effect of the ALD-force on runaway electron dynamics in a homogeneous plasma is investigated using the relativistic finite-difference Fokker-Planck codes LUKE [Decker & Peysson, Report EUR-CEA-FC-1736, Euratom-CEA, (2004)] and CODE [Landreman et al, Comp. Phys. Comm. 185, 847 (2014)]. Under the action of the ALD force, we find that a bump is formed in the tail of the electron distribution function if the electric field is sufficiently large. We also observe that the energy of runaway electrons in the bump increases with the electric field amplitude, while the population increases with the bulk electron temperature. The presence of the bump divides the elec...

  4. Introduction Linear Dynamics

    E-Print Network [OSTI]

    Zeghib, Abdelghani

    Introduction Results Linear Dynamics Lorentz Dynamics Actions of discrete groups on stationary Piccione) Geodeycos Meeting, Lyon, 28-30 April 2010 Abdelghani Zeghib Dynamics on Lorentz manifolds #12;Introduction Results Linear Dynamics Lorentz Dynamics Motivations and questions Examples 1 Introduction

  5. Carrier dynamics in Beryllium doped low-temperature-grown InGaAs/InAlAs

    SciTech Connect (OSTI)

    Globisch, B., E-mail: Bjoern.Globisch@hhi.fraunhofer.de; Dietz, R. J. B.; Stanze, D.; Göbel, T.; Schell, M. [Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, Einsteinufer 37, 10587 Berlin (Germany)

    2014-04-28T23:59:59.000Z

    The electron and hole dynamics in low-temperature-grown InGaAs/InAlAs multiple quantum well structures are studied by optical pump-probe transmission measurements for Beryllium (Be) doping levels between 3?×?10{sup 17}?cm{sup ?3} and 4?×?10{sup 18}?cm{sup ?3}. We investigate electron dynamics in the limit cases of unsaturated and completely saturated electron trapping. By expanding a rate equation model in these limits, the details of carrier dynamics are revealed. Electrons are trapped by ionized arsenic antisites, whereas recombination occurs between trapped electrons and holes trapped by negatively charged Be dopants.

  6. Transverse-longitudinal integrated resonator

    DOE Patents [OSTI]

    Hutchinson, Donald P. (Knoxville, TN); Simpson, Marcus L. (Knoxville, TN); Simpson, John T. (Knoxville, TN)

    2003-03-11T23:59:59.000Z

    A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.

  7. Integrated risk information system (IRIS)

    SciTech Connect (OSTI)

    Tuxen, L. [Environmental Protection Agency, Washington, DC (United States)

    1990-12-31T23:59:59.000Z

    The Integrated Risk Information System (IRIS) is an electronic information system developed by the US Environmental Protection Agency (EPA) containing information related to health risk assessment. IRIS is the Agency`s primary vehicle for communication of chronic health hazard information that represents Agency consensus following comprehensive review by intra-Agency work groups. The original purpose for developing IRIS was to provide guidance to EPA personnel in making risk management decisions. This original purpose for developing IRIS was to guidance to EPA personnel in making risk management decisions. This role has expanded and evolved with wider access and use of the system. IRIS contains chemical-specific information in summary format for approximately 500 chemicals. IRIS is available to the general public on the National Library of Medicine`s Toxicology Data Network (TOXNET) and on diskettes through the National Technical Information Service (NTIS).

  8. Coherent Terahertz Polarization Control through Manipulation of Electron Trajectories Haidan Wen1

    E-Print Network [OSTI]

    Coherent Terahertz Polarization Control through Manipulation of Electron Trajectories Haidan Wen1 for manipulating and controlling the electron dy- namics associated with nonlinear light-matter interactions) The dynamics of ionized electrons in a plasma can be controlled by synthetic optical fields composed

  9. A new ONERA-CNES Slot Electron Model A. Sicard-Piet1

    E-Print Network [OSTI]

    A new ONERA-CNES Slot Electron Model A. Sicard-Piet1 , D. Boscher1 , D. Lazaro1 , S. Bourdarie1 , G-- A new model of electron flux in the Slot Region has been developed at ONERA. This model is based the dynamics of electron flux in the slot region. Index terms- Energetic particles-Slot region-Radiation belts

  10. PetaScale Calculations of the Electronic Structures of Nanostructures with Hundreds of Thousands of Processors

    E-Print Network [OSTI]

    PetaScale Calculations of the Electronic Structures of Nanostructures with Hundreds of Thousands in the material science category. The DFT can be used to calculate the electronic structure, the charge density. To understand the electronic structures of such systems and the corresponding carrier dynamics is essential

  11. Interaction effects on dynamical localization in driven helium

    E-Print Network [OSTI]

    Felix Jörder; Klaus Zimmermann; Alberto Rodriguez; Andreas Buchleitner

    2014-08-22T23:59:59.000Z

    Dynamical localization prevents driven atomic systems from fast fragmentation by hampering the excitation process. We present numerical simulations within a collinear model of microwave-driven helium Rydberg atoms and prove that dynamical localization survives the impact of electron-electron interaction, even for doubly excited states in the presence of fast autoionization. We conclude that the effect of electron-electron repulsion on localization can be described by an appropriate rescaling of the atomic level density and of the external field with the strength of the interaction.

  12. Catalac free electron laser

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM)

    1982-01-01T23:59:59.000Z

    A catalac free electron laser using a rf linac (catalac) which acts as a catalyst to accelerate an electron beam in an initial pass through the catalac and decelerate the electron beam during a second pass through the catalac. During the second pass through the catalac, energy is extracted from the electron beam and transformed to energy of the accelerating fields of the catalac to increase efficiency of the device. Various embodiments disclose the use of post linacs to add electron beam energy extracted by the wiggler and the use of supplementary catalacs to extract energy at various energy peaks produced by the free electron laser wiggler to further enhance efficiency of the catalac free electron laser. The catalac free electron laser can be used in conjunction with a simple resonator, a ring resonator or as an amplifier in conjunction with a master oscillator laser.

  13. Matter & Energy Electronics

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    See also: Matter & Energy Electronics· Detectors· Technology· Construction· Sports Science Electronic Tongue Tastes Wine Variety, Vintage (Aug. 12, 2008) -- You don't need a wine expert to Advance

  14. NREL: Transmission Grid Integration - Wind Integration Datasets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmission Planning andStudy PhaseWind

  15. Magnetic turbulent electron transport in a reversed field pinch

    SciTech Connect (OSTI)

    Schoenberg, K.; Moses, R.

    1990-01-01T23:59:59.000Z

    A model of magnetic turbulent electron transport is presented. The model, based on the thermal conduction theory of Rechester and Rosenbluth, entails a Boltzmann description of electron dynamics in the long mean-free-path limit and quantitatively describes the salient features of superthermal electron measurements in the RFP edge plasma. Included are predictions of the mean superthermal electron energy, current density, and power flux asymmetry. A discussion of the transport model, the assumptions implicit in the model, and the relevance of this work to more general issue of magnetic turbulent transport in toroidal systems is presented. 32 refs., 3 figs.

  16. Dynamic load balancing of applications

    DOE Patents [OSTI]

    Wheat, S.R.

    1997-05-13T23:59:59.000Z

    An application-level method for dynamically maintaining global load balance on a parallel computer, particularly on massively parallel MIMD computers is disclosed. Global load balancing is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method supports a large class of finite element and finite difference based applications and provides an automatic element management system to which applications are easily integrated. 13 figs.

  17. Achromatic and Isochronous Electron Beam Transport for Free Electron Lasers

    E-Print Network [OSTI]

    Bengtsson, J.

    2011-01-01T23:59:59.000Z

    Beamlines for Free Electron Lasers," LBL-28880 Preprint (Thirteenth mtemational Free Electron Laser Conference, SantaTransport for Tunable Free Electron Lasers 1. Bengtsson and

  18. Energy Storage & Power Electronics 2008 Peer Review - Power Electronic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics (PE) Systems Presentations Energy Storage & Power Electronics 2008 Peer Review - Power Electronics (PE) Systems Presentations The 2008 Peer Review Meeting for the...

  19. Neutrinos in the Electron

    E-Print Network [OSTI]

    E. L. Koschmieder

    2006-09-26T23:59:59.000Z

    We will show that one half of the rest mass of the electron is equal to the sum of the rest masses of electron neutrinos and that the other half of the rest mass of the electron is given by the energy in the sum of electric oscillations. With this composition we can explain the rest mass, the electric charge, the spin and the magnetic moment of the electron.

  20. Chromatic and Dispersive Effects in Nonlinear Integrable Optics

    E-Print Network [OSTI]

    Webb, Stephen D; Valishev, Alexander; Nagaitsev, Sergei N; Danilov, Viatcheslav V

    2015-01-01T23:59:59.000Z

    Proton accumulator rings and other circular hadron accelerators are susceptible to intensity-driven parametric instabilities because the zero-current charged particle dynamics are characterized by a single tune. Landau damping can suppress these instabilities, which requires energy spread in the beam or introducing nonlinear magnets such as octupoles. However, this approach reduces dynamic aperture. Nonlinear integrable optics can suppress parametric instabilities independent of energy spread in the distribution, while preserving the dynamic aperture. This novel approach promises to reduce particle losses and enable order-of-magnitude increases in beam intensity. In this paper we present results, obtained using the Lie operator formalism, on how chromaticity and dispersion affect particle orbits in integrable optics. We conclude that chromaticity in general breaks the integrability, unless the vertical and horizontal chromaticities are equal. Because of this, the chromaticity correcting magnets can be weaker ...