Integrated Dynamic Electron Solutions, Inc. | Department of Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelBConservationEnergy5975-01 REPORT ONInstitutionalIntegrated2011
Deymier, Pierre
Ab initio molecular-dynamics method based on the restricted path integral: Application on the discretized path-integral representation of quantum particles. Fermi statistics is automatically generated by an effective exchange potential. This path-integral molecular-dynamics method is able to simulate electron
Noll, Daniel; Stancari, Giulio
2015-11-17
An electron lens is planned for the Fermilab Integrable Optics Test Accelerator as a nonlinear element for integrable dynamics, as an electron cooler, and as an electron trap to study space-charge compensation in rings. We present the main design principles and constraints for nonlinear integrable optics. A magnetic configuration of the solenoids and of the toroidal section is laid out. Singleparticle tracking is used to optimize the electron path. Electron beam dynamics at high intensity is calculated with a particle-in-cell code to estimate current limits, profile distortions, and the effects on the circulating beam. In the conclusions, we summarize the main findings and list directions for further work.
Dynamic Transmission Electron Microscopy
Evans, James E.; Jungjohann, K. L.; Browning, Nigel D.
2012-10-12
Dynamic transmission electron microscopy (DTEM) combines the benefits of high spatial resolution electron microscopy with the high temporal resolution of ultrafast lasers. The incorporation of these two components into a single instrument provides a perfect platform for in situ observations of material processes. However, previous DTEM applications have focused on observing structural changes occurring in samples exposed to high vacuum. Therefore, in order to expand the pump-probe experimental regime to more natural environmental conditions, in situ gas and liquid chambers must be coupled with Dynamic TEM. This chapter describes the current and future applications of in situ liquid DTEM to permit time-resolved atomic scale observations in an aqueous environment, Although this chapter focuses mostly on in situ liquid imaging, the same research potential exists for in situ gas experiments and the successful integration of these techniques promises new insights for understanding nanoparticle, catalyst and biological protein dynamics with unprecedented spatiotemporal resolution.
Power Electronic Thermal System Performance and Integration ...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
May 18-22, 2009 -- Washington D.C. ape13bennion.pdf More Documents & Publications Power Electronic Thermal System Performance and Integration Integrated Power Module...
Power Electronic Thermal System Performance and Integration ...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Integrated Vehicle Thermal Management...
Dynamic imaging with electron microscopy
Campbell, Geoffrey; McKeown, Joe; Santala, Melissa
2014-05-30
Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.
Integrability in the mesoscopic dynamics
Artur Sowa
2004-09-12
The Mesoscopic Mechanics (MeM), which has been introduced in a previous paper, is relevant to the electron gas confined to two spatial dimensions. It predicts a special way of collective response of correlated electrons to the external magnetic field. The dynamic variable of this theory is a finite-dimensional operator, which is required to satisfy the mesoscopic Schr\\"{o}dinger equation (cf. text). In this article, we describe general solutions of the mesoscopic Schr\\"{o}dinger equation. Our approach is specific to the problem at hand. It relies on the unique structure of the equation and makes no reference to any other techniques, with the exception of the geometry of unitary groups. In conclusion, a surprising fact comes to light. Namely, the mesoscopic dynamics "filters" through the (microscopic) Schr\\"odinger dynamics as the latter turns out to be a clearly separable part, in fact an autonomous factor, of the evolution. This is a desirable result also from the physical standpoint.
A musical wearable : integrating electronics into clothing
Yang, Yang, S.B. Massachusetts Institute of Technology
2011-01-01
This project is an art project and a science project. Traditional forms of art - music, dance, fashion - are integrated with new technologies - electronics and software - to create an item of clothing, or "wearable", which ...
Electron Transfer Dynamics in Photocatalytic CO2 Conversion ...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Electron Transfer Dynamics in Photocatalytic CO2 Conversion Electron Transfer Dynamics in Photocatalytic CO2 Conversion Coal is the workhorse of our power industry, responsible for...
Deymier, Pierre
VOLUME 81, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 12 OCTOBER 1998 Path-Integral method based on the discretized path integral representation of quantum particles. Fermi statistics is automatically generated by an effective exchange potential. This path-integral molecular dynamics method is able
Proportional Integral Distributed Optimization for Dynamic Network Topologies
Egerstedt, Magnus
Proportional Integral Distributed Optimization for Dynamic Network Topologies Greg Droge, Magnus Egerstedt Abstract--This paper investigates proportional-integral distributed optimization when the underlying informa- tion exchange network is dynamic. Proportional-integral distributed optimization
Electron lenses and cooling for the Fermilab Integrable Optics Test Accelerator
Stancari, G; Lebedev, V; Nagaitsev, S; Prebys, E; Valishev, A
2015-01-01
Recently, the study of integrable Hamiltonian systems has led to nonlinear accelerator lattices with one or two transverse invariants and wide stable tune spreads. These lattices may drastically improve the performance of high-intensity machines, providing Landau damping to protect the beam from instabilities, while preserving dynamic aperture. The Integrable Optics Test Accelerator (IOTA) is being built at Fermilab to study these concepts with 150-MeV pencil electron beams (single-particle dynamics) and 2.5-MeV protons (dynamics with self fields). One way to obtain a nonlinear integrable lattice is by using the fields generated by a magnetically confined electron beam (electron lens) overlapping with the circulating beam. The required parameters are similar to the ones of existing devices. In addition, the electron lens will be used in cooling mode to control the brightness of the proton beam and to measure transverse profiles through recombination. More generally, it is of great interest to investigate whet...
Martin, Milo M. K.
Electronics, Volume 38, Number 8, April 19, 1965 The future of integrated electronics is the future of electron- ics itself. The advantages of integration will bring about a proliferation of electronics, and personal portable communications equipment. The electronic wrist- watch needs only a display to be feasible
Phase-space dynamics of runaway electrons in tokamaks Xiaoyin Guan, Hong Qin, and Nathaniel J. Fisch
Phase-space dynamics of runaway electrons in tokamaks Xiaoyin Guan, Hong Qin, and Nathaniel J of runaway electrons is studied, including the influence of loop voltage, radiation damping, and collisions to simulate the long-term dynamics of a runaway electron. The variational symplectic integrator is able
Integrated test of the TRD Gas System electronics
Roma "La Sapienza", Universitŕ di
Integrated test of the TRD Gas System electronics A. Bartoloni, B. Borgia, F. Bucci, F.R. Spada: the August '04 tests 2 3.1 Test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3.2 Low level tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3
(MEMS) toroidal magnetics for integrated power electronics
Araghchini, Mohammad
2013-01-01
Power electronics represent a key technology for improving the functionality and performance, and reducing the energy consumption of many systems. However, the size, cost, and performance constraints of conventional power ...
(Re-)integration dynamics of the PC platform
Ong, Chin-Ann, 1972-
2004-01-01
Since the 1990's, the PC has come under increasing integration pressure. Many electronic components which had previously existed as separate standalone components have been integrated onto the PC mainboard. Examples include ...
Method for integrating microelectromechanical devices with electronic circuitry
Montague, S.; Smith, J.H.; Sniegowski, J.J.; McWhorter, P.J.
1998-08-25
A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry. The method comprises the steps of forming each MEM device within a cavity below a device surface of the substrate; encapsulating the MEM device prior to forming electronic circuitry on the substrate; and releasing the MEM device for operation after fabrication of the electronic circuitry. Planarization of the encapsulated MEM device prior to formation of the electronic circuitry allows the use of standard processing steps for fabrication of the electronic circuitry. 13 figs.
Method for integrating microelectromechanical devices with electronic circuitry
Montague, Stephen (Albuquerque, NM); Smith, James H. (Albuquerque, NM); Sniegowski, Jeffry J. (Albuquerque, NM); McWhorter, Paul J. (Albuquerque, NM)
1998-01-01
A method for integrating one or more microelectromechanical (MEM) devices with electronic circuitry. The method comprises the steps of forming each MEM device within a cavity below a device surface of the substrate; encapsulating the MEM device prior to forming electronic circuitry on the substrate; and releasing the MEM device for operation after fabrication of the electronic circuitry. Planarization of the encapsulated MEM device prior to formation of the electronic circuitry allows the use of standard processing steps for fabrication of the electronic circuitry.
Title of Dissertation: LONGITUDINAL DYNAMICS OF AN INTENSE ELECTRON BEAM
Anlage, Steven
ABSTRACT Title of Dissertation: LONGITUDINAL DYNAMICS OF AN INTENSE ELECTRON BEAM John Richardson fusion, spallation neutron sources, free-electron lasers, and other applications. In addition, all beams beams. #12;LONGITUDINAL DYNAMICS OF AN INTENSE ELECTRON BEAM By John Richardson Harris. Dissertation
Electron Dynamics in a Beating Electrostatic Wave Magnetic Null Thruster
Electron dynamics in a beating-electrostatic-wave-powered magnetic null thruster are explored in orderElectron Dynamics in a Beating Electrostatic Wave Magnetic Null Thruster Matthew S. Feldman and Edgar Y. Choueiri Electric Propulsion and Plasma Dynamics Laboratory, Princeton, New Jersey, 08544, USA
Electron beam dynamics for the ISIS bremsstrahlung beam generation system
Block, Robert E. (Robert Edward)
2011-01-01
An electron beam transport system was designed for use in the Bremsstrahlung Beam Generation System of the Integrated Stand-off Inspection System (ISIS). The purpose of this electron transport system was to provide for ...
Repeated Auction Games and Learning Dynamics in Electronic Logistics Marketplaces
Bertini, Robert L.
Repeated Auction Games and Learning Dynamics in Electronic Logistics Marketplaces: Complexity still satisfy the customer's level of service demands. Specifically, this chapter considers the reverse
DYNAMIC DATABASE INTEGRATION IN A JDBC DRIVER Terrence Mason
Lawrence, Ramon
-lawrence@uiowa.edu Keywords: integration, database, schema, metadata, annotation, evolution, dynamic, JDBC, conceptualDYNAMIC DATABASE INTEGRATION IN A JDBC DRIVER Terrence Mason Iowa Database and Emerging Iowa Database and Emerging Applications Laboratory, Computer Science University of Iowa Email: ramon
Saldin, Dilano
;Power Electronics and Motor Drives Laboratory Wind and Solar Energy Outlook The U.S. wind power industry Introduction Wind Energy Profile Solar Energy Profile Energy Storage Options Role of Industrial Electronics Energy Storage Integrated with Renewable Energy Energy Storage Analysis for Wind and Solar #12;Power
A University of Alabama Fuel Cell Electronic Integration
Carver, Jeffrey C.
CAVT A University of Alabama Fuel Cell Electronic Integration y Research Center OBJECTIVE Study the ability of hydrogen fuel cells to H2 tank Loads Study the ability of hydrogen fuel cells to respond to rapid load changes MOTIVATION Fuel cell Automotive cycles include rapid load changes (passing
Agent-mediated Integrative Negotiation for Retail Electronic Commerce
. Value-Added, Merchant Differentiation and Market Power Although cross-merchant product comparisonsAgent-mediated Integrative Negotiation for Retail Electronic Commerce Robert H. Guttman and Pattie convenience for consumers and yield more efficient markets, today's first-generation shopping agents
U31: Vehicle Stability and Dynamics: Electronic Stability Control
Petrolino, Joseph; Spezia, Tony; Arant, Michael; Delorenzis, Damon; LaClair, Tim J; Lim, Alvin; Pape, Doug
2011-01-01
A team led by NTRCI is working to improve the roll and yaw stability of heavy duty combination trucks through developing stability algorithms, assembling demonstration hardware, and investigating robust wireless communication. Modern electronic stability control (ESC) products automatically slow a vehicle rounding a corner too quickly or apply individual brakes when necessary to improve the steering characteristics of a vehicle. Air brake systems in North America provide no electronic communication between a tractor and semitrailer, limiting the degree to which control systems can be optimized. Prior research has demonstrated stability improvements where dynamic measurements and control commands are communicated between units of a vehicle. Three related activities were undertaken: (1) Develop an algorithm for the optimum yaw and roll control of a combination vehicle. Vehicle state parameters needed to control the vehicle and the proper brake response were determined. An integrated stability control for the tractor and semitrailer requires communication between the two units. Dynamic models were used to assess the algorithm. (2) Implement the ESC algorithm in the laboratory. Hardware components suitable for the harsh environment for measurement, sensor-to-controller communication, and semitrailer-to-tractor communication and brake actuation were specified and assembled as a working system. The goal was to collect the needed vehicle state information, transmit the information to the ESC system, and then actuate the brakes in response to controller commands. (3) Develop a wireless network with the data rate and reliability necessary to communicate dynamic signals for a vehicle stability control system. Adaptive connectivity-aware, multi-hop routing was selected because it can perform in the harsh environment where packet collisions and fading often will exist. The protocol is to give high priority to urgent messages.
Antenna with distributed strip and integrated electronic components
Rodenbeck, Christopher T. (Albuquerque, NM); Payne, Jason A. (Albuquerque, NM); Ottesen, Cory W. (Albuquerque, NM)
2008-08-05
An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element can be in proximity to a ground conductor and/or arranged as a dipole. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. An antenna can comprise a distributed strip patterned on a printed wiring board, integrated with electronic components mounted on top of or below the distributed strip, and substantially within the extents of the distributed strip. Mounting of electronic components on top of or below the distributed strip has little effect on the performance of the antenna, and allows for realizing the combination of the antenna and integrated components in a compact form. An embodiment of the invention comprises an antenna including a distributed strip, integrated with a battery mounted on the distributed strip.
Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics
Rogers, John A.
-integrated electronics; flexible electronics; semiconductor nanomaterials; stretchable electronics; transfer printing flexible/stretchable electronics, in which semiconductor nanomaterials serve as the active componentsREVIEW Inorganic semiconductor nanomaterials for flexible and stretchable bio
Dynamics of Synaptically Interacting Integrate-and-Fire Neurons
Coombes, Stephen
Dynamics of Synaptically Interacting Integrate-and-Fire Neurons by Matthew Philip James A DOCTORAL evidence which suggests that the response of a neuron is strongly dependent upon its previous activity of integrate-and-fire neurons. Self-consistent speeds and periods are determined from integro
FEATURE ARTICLE Femtosecond Dynamics of Electrons Photoinjected into Organic Semiconductors at
Harris, Charles B.
FEATURE ARTICLE Femtosecond Dynamics of Electrons Photoinjected into Organic Semiconductors, 2001 The layer dependent evolution of the unoccupied electronic structure and electron dynamics be assigned as either image potential states or electron affinity (EA) levels, but rather as hybridized EA
Integrated Dynamic Simulation for Process Optimization and Control
Rubloff, Gary W.
Integrated Dynamic Simulation for Process Optimization and Control G. Brian Lu, Laura L. Tedder Film Deposition · Applications in Process Optimization for Manufacturing and the Environment Process efficient processes, equipment, sensor, and control systems #12;Dynamic Simulators for Sensor-Based Process
Dynamic Genomes of Eukaryotes and the Maintenance of Genomic Integrity
Katz, Laura
Dynamic Genomes of Eukaryotes and the Maintenance of Genomic Integrity Eukaryotes specify a genome to be inherited stably, enabling dynamic rearrangements and amplifications of other genomic elements Laura Wegener Parfrey and Laura A. Katz M any biologists assume that eu- karyotic genomes are transmit- ted stably
Towards Better Integrators for Dissipative Particle Dynamics Simulations
Gerhard Besold; Ilpo Vattulainen; Mikko Karttunen; James M. Polson
2000-10-16
Coarse-grained models that preserve hydrodynamics provide a natural approach to study collective properties of soft-matter systems. Here, we demonstrate that commonly used integration schemes in dissipative particle dynamics give rise to pronounced artifacts in physical quantities such as the compressibility and the diffusion coefficient. We assess the quality of these integration schemes, including variants based on a recently suggested self-consistent approach, and examine their relative performance. Implications of integrator-induced effects are discussed.
Electronic Structure, Phonon Dynamical Properties, and CO2 Capture...
Office of Scientific and Technical Information (OSTI)
Electronic Structure, Phonon Dynamical Properties, and CO2 Capture Capability of Na2-xMxZrO3 ( MLi ,K): Density-Functional Calculations and Experimental Validations Citation...
Electronic Structure, Phonon Dynamical Properties, and CO2 Capture...
Office of Scientific and Technical Information (OSTI)
Journal Article: Electronic Structure, Phonon Dynamical Properties, and CO2 Capture Capability of Na2-xMxZrO3 ( MLi ,K): Density-Functional Calculations and Experimental...
Dynamical many-body localization in an integrable model
Aydin Cem Keser; Sriram Ganeshan; Gil Refael; Victor Galitski
2015-06-17
We investigate dynamical many-body localization and delocalization in an integrable system of periodically-kicked, interacting linear rotors. The Hamiltonian we investigate is linear in momentum, and its Floquet evolution operator is analytically tractable for arbitrary interaction strengths. One of the hallmarks of this model is that depending on certain parameters, it manifest both localization and delocalization in momentum space. We explicitly show that, for this model, the energy being bounded at long times is not a sufficient condition for dynamical localization. Besides integrals of motion associated to the integrability, this model manifests additional integrals of motion, which are the exclusive consequence of dynamical many-body localization. We also propose an experimental scheme, involving voltage-biased Josephson junctions, to realize such many-body kicked models.
Electronic Relaxation Dynamics in Coupled Metal Nanoparticles
Scherer, Norbert F.
that takes into account two competing phenomena: electron inelastic surface scattering (ISS), which tends the ultrafast response to optical excitation. For example, they have promise as optical switches and as sources of hot electrons for photoelectrochemical processes, including solar energy conversion or organic waste
Electron dynamics, gamma and electron-positron production by colliding laser pulses
Jirka, M; Bulanov, S V; Esirkepov, T Zh; Gelfer, E; Bulanov, S S; Weber, S; Korn, G
2015-01-01
The dynamics of an electron bunch irradiated by two focused colliding super-intense laser pulses and the resulting gamma and electron-positron production are studied. Due to attractors of electron dynamics in a standing wave created by colliding pulses the photon emission and pair production, in general, are more efficient with linearly polarized pulses than with circularly polarized ones. The dependence of the key parameters on the laser intensity and wavelength allows to identify the conditions for the cascade development and gamma-electron-positron plasma creation.
Sader, Charles Avery
2015-01-01
Electronic Structure Theory Calculations and Molecular DynamicsElectronic Structure Theory Calculations and Molecular Dynamicsdynamics simulation requires identification of an electronic structure calculation
Method for integrating microelectromechanical devices with electronic circuitry
Barron, Carole C. (Austin, TX); Fleming, James G. (Albuquerque, NM); Montague, Stephen (Albuquerque, NM)
1999-01-01
A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry on a common substrate. The MEM device can be fabricated within a substrate cavity and encapsulated with a sacrificial material. This allows the MEM device to be annealed and the substrate planarized prior to forming electronic circuitry on the substrate using a series of standard processing steps. After fabrication of the electronic circuitry, the electronic circuitry can be protected by a two-ply protection layer of titanium nitride (TiN) and tungsten (W) during an etch release process whereby the MEM device is released for operation by etching away a portion of a sacrificial material (e.g. silicon dioxide or a silicate glass) that encapsulates the MEM device. The etch release process is preferably performed using a mixture of hydrofluoric acid (HF) and hydrochloric acid (HCI) which reduces the time for releasing the MEM device compared to use of a buffered oxide etchant. After release of the MEM device, the TiN:W protection layer can be removed with a peroxide-based etchant without damaging the electronic circuitry.
Electron Dynamics in Nanostructures in Strong Laser Fields
Kling, Matthias
2014-09-11
The goal of our research was to gain deeper insight into the collective electron dynamics in nanosystems in strong, ultrashort laser fields. The laser field strengths will be strong enough to extract and accelerate electrons from the nanoparticles and to transiently modify the materials electronic properties. We aimed to observe, with sub-cycle resolution reaching the attosecond time domain, how collective electronic excitations in nanoparticles are formed, how the strong field influences the optical and electrical properties of the nanomaterial, and how the excitations in the presence of strong fields decay.
Study of the Electron Beam Dynamics in the FERMI @ ELETTRA Linac
2006-01-01
STUDY OF THE ELECTRON BEAM DYNAMICS IN THE FERMI @ ELETTRAAbstract A study of the electron beam dynamics in the linacused to direct the electron beam into one of two undulator
John A. Parkhill; Thomas Markovich; David G. Tempel; Alan Aspuru-Guzik
2012-10-02
In this work we develop a theory of correlated many-electron dynamics dressed by the presence of a finite-temperature harmonic bath. The theory is based on the ab-initio Hamiltonian, and thus well-defined apart from any phenomenological choice of collective basis states or electronic coupling model. The equation-of-motion includes some bath effects non-perturbatively, and can be used to simulate line- shapes beyond the Markovian approximation and open electronic dynamics which are subjects of renewed recent interest. Energy conversion and transport depend critically on the ratio of electron-electron coupling to bath-electron coupling, which is a fitted parameter if a phenomenological basis of many-electron states is used to develop an electronic equation of motion. Since the present work doesn't appeal to any such basis, it avoids this ambiguity. The new theory produces a level of detail beyond the adiabatic Born-Oppenheimer states, but with cost scaling like the Born-Oppenheimer approach. While developing this model we have also applied the time-convolutionless perturbation theory to correlated molecular excitations for the first time. Resonant response properties are given by the formalism without phenomenological parameters. Example propagations with a developmental code are given demonstrating the treatment of electron-correlation in absorption spectra, vibronic structure, and decay in an open system.
Photocathode Optimization for a Dynamic Transmission Electron Microscope: Final Report
Ellis, P; Flom, Z; Heinselman, K; Nguyen, T; Tung, S; Haskell, R; Reed, B W; LaGrange, T
2011-08-04
The Dynamic Transmission Electron Microscope (DTEM) team at Harvey Mudd College has been sponsored by LLNL to design and build a test setup for optimizing the performance of the DTEM's electron source. Unlike a traditional TEM, the DTEM achieves much faster exposure times by using photoemission from a photocathode to produce electrons for imaging. The DTEM team's work is motivated by the need to improve the coherence and current density of the electron cloud produced by the electron gun in order to increase the image resolution and contrast achievable by DTEM. The photoemission test setup is nearly complete and the team will soon complete baseline tests of electron gun performance. The photoemission laser and high voltage power supply have been repaired; the optics path for relaying the laser to the photocathode has been finalized, assembled, and aligned; the internal setup of the vacuum chamber has been finalized and mostly implemented; and system control, synchronization, and data acquisition has been implemented in LabVIEW. Immediate future work includes determining a consistent alignment procedure to place the laser waist on the photocathode, and taking baseline performance measurements of the tantalum photocathode. Future research will examine the performance of the electron gun as a function of the photoemission laser profile, the photocathode material, and the geometry and voltages of the accelerating and focusing components in the electron gun. This report presents the team's progress and outlines the work that remains.
Integrated microfluidics, heaters, and electronic sensors for Lab-on-a-Chip applications
Loh, Tzu Liang
2005-01-01
Microfluidics, microfabricated suspended heaters and electronic field effect sensors have been successfully integrated on a single device chip. This integration enables spatial cycling of as little as 11nL of reagents over ...
Nanometer-precision electron-beam lithography with applications in integrated optics
Hastings, Jeffrey Todd, 1975-
2003-01-01
Scanning electron-beam lithography (SEBL) provides sub-10-nm resolution and arbitrary-pattern generation; however, SEBL's pattern-placement accuracy remains inadequate for future integrated-circuits and integrated-optical ...
High-speed silicon electro-optic modulator for electronic photonic integrated circuits
Gan, Fuwan
2007-01-01
The development of future electronic-photonic integrated circuits (EPIC) based on silicon technology critically depends on the availability of CMOS-compatible high-speed modulators that enable the interaction of electronic ...
Javey, Ali
Integration of suspended carbon nanotube arrays into electronic devices and electromechanical, electrical, and electromechanical measurements. For instance, Tombler et al. have used suspended SWNTs
MIDAS: Multi-device Integrated Dynamic Activity Spaces
Karadkar, Unmil Purushottam
2012-02-14
users to jointly harness the characteristics of all their appliances for a richer information access environment. In this dissertation, I report on the design and development of Multi-device Integrated Dynamic Activity Spaces (MIDAS), a software... example, large images or PDF files cannot be displayed effectively on a mobile phone), another could render these without compromising quality. Thus, the first goal is to design a software architecture that will deliver documents to multiple appliances...
Parameters of Integral Circulant Graphs and Periodic Quantum Dynamics
Nitin Saxena; Simone Severini; Igor Shparlinski
2007-03-26
The intention of the paper is to move a step towards a classification of network topologies that exhibit periodic quantum dynamics. We show that the evolution of a quantum system, whose hamiltonian is identical to the adjacency matrix of a circulant graph, is periodic if and only if all eigenvalues of the graph are integers (that is, the graph is integral). Motivated by this observation, we focus on relevant properties of integral circulant graphs. Specifically, we bound the number of vertices of integral circulant graphs in terms of their degree, characterize bipartiteness and give exact bounds for their diameter. Additionally, we prove that circulant graphs with odd order do not allow perfect state transfer.
Quantifying chaotic dynamics from integrate-and-fire processes
Pavlov, A. N.; Pavlova, O. N.; Mohammad, Y. K.; Kurths, J.
2015-01-15
Characterizing chaotic dynamics from integrate-and-fire (IF) interspike intervals (ISIs) is relatively easy performed at high firing rates. When the firing rate is low, a correct estimation of Lyapunov exponents (LEs) describing dynamical features of complex oscillations reflected in the IF ISI sequences becomes more complicated. In this work we discuss peculiarities and limitations of quantifying chaotic dynamics from IF point processes. We consider main factors leading to underestimated LEs and demonstrate a way of improving numerical determining of LEs from IF ISI sequences. We show that estimations of the two largest LEs can be performed using around 400 mean periods of chaotic oscillations in the regime of phase-coherent chaos. Application to real data is discussed.
A Flexible Active-Matrix Electronic Paper With Integrated Display Driver Using The -Czochralski
A Flexible Active-Matrix Electronic Paper With Integrated Display Driver Using The µ on the display itself. The display is flexible, including the driving electronics. Technology used offers great possibilities for future applications e.g. flexible electronics, three dimensional IC, System-on-Panel, ultra
Research Journal Highlights The silk road to bio-integrated electronics
Rogers, John A.
Research Journal Highlights The silk road to bio-integrated electronics Nature Materials, April 19, 2010 A strategy for making flexible electronic circuits for bio-implants is reported online this week in Nature Materials. Dissolvable silk substrates enable the use of ultrathin, finely spaced electronic
2524 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 5, SEPTEMBER 2008 Integration are with Colorado Power Electronics Center, Department of Elec- trical and Computer Engineering, University
Self-Interacting Electron as a Nonlinear Dynamical System
Vladimir A. Manasson
2006-09-15
We have proposed a simple one-dimensional model of internal particle dynamics. The model is based on the assumption that self-interaction can be represented by a nonlinear feedback and described by a quadratic recurrent map. Charge plays the role of a generalized dynamical variable and a feedback coupling parameter. The model suggests that charge and action quantization stem from the system's dissipative quality and from a hierarchy of supercycle orbits located between period-doubling bifurcations on the Feigenbaum tree. Among the numerical results, we have discovered a link between the quantum of action and the elementary charge. We also found that the fine structure constant can with a good accuracy be expressed exclusively through mathematical constants, including the Feigenbaum delta. We have introduced dimensionless numbers that describe the relative role of the internal particle dynamics when both internal and external dynamics are taken into consideration. We have found these numbers to be close to the electron, proton, and neutron g-factors known from the experiment.
The integration of cryogenic cooling systems with superconducting electronic systems
Green, Michael A.
2011-01-01
applications for superconductivity have low heat loads in aTransactions on Applied Superconductivity t I, P 2615, (Cooling Systems With Superconducting Electronic Systems M.
An integrated 6 MV linear accelerator model from electron gun to dose in a water tank
St Aubin, J.; Steciw, S.; Kirkby, C.; Fallone, B. G. [Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)
2010-05-15
Purpose: The details of a full simulation of an inline side-coupled 6 MV linear accelerator (linac) from the electron gun to the target are presented. Commissioning of the above simulation was performed by using the derived electron phase space at the target as an input into Monte Carlo studies of dose distributions within a water tank and matching the simulation results to measurement data. This work is motivated by linac-MR studies, where a validated full linac simulation is first required in order to perform future studies on linac performance in the presence of an external magnetic field. Methods: An electron gun was initially designed and optimized with a 2D finite difference program using Child's law. The electron gun simulation served as an input to a 6 MV linac waveguide simulation, which consisted of a 3D finite element radio-frequency field solution within the waveguide and electron trajectories determined from particle dynamics modeling. The electron gun design was constrained to match the cathode potential and electron gun current of a Varian 600C, while the linac waveguide was optimized to match the measured target current. Commissioning of the full simulation was performed by matching the simulated Monte Carlo dose distributions in a water tank to measured distributions. Results: The full linac simulation matched all the electrical measurements taken from a Varian 600C and the commissioning process lead to excellent agreements in the dose profile measurements. Greater than 99% of all points met a 1%/1mm acceptance criterion for all field sizes analyzed, with the exception of the largest 40x40 cm{sup 2} field for which 98% of all points met the 1%/1mm acceptance criterion and the depth dose curves matched measurement to within 1% deeper than 1.5 cm depth. The optimized energy and spatial intensity distributions, as given by the commissioning process, were determined to be non-Gaussian in form for the inline side-coupled 6 MV linac simulated. Conclusions: An integrated simulation of an inline side-coupled 6 MV linac has been completed and benchmarked matching all electrical and dosimetric measurements to high accuracy. The results showed non-Gaussian spatial intensity and energy distributions for the linac modeled.
Ding, Y; Emma, P
2007-01-01
Integration of the Optical Replica Ultrashort Electron Bunch Diagnostics with the Current-Enhanced SASE in the LCLS
Frequency dependent dynamical electromechanical response of mixed ionic-electronic conductors
Chen, Long-Qing
Frequency dependent dynamical electromechanical response of mixed ionic-electronic conductors A. N dependent dynamical electromechanical response of mixed ionic-electronic conductors A. N. Morozovska,1,a) E online 9 January 2012) Frequency dependent dynamic electromechanical response of the mixed ionic
Integrated Dynamic Electron Solutions, Inc. | Department of Energy
Broader source: Energy.gov (indexed) [DOE]
novel silicon graphene composite material that will substantially improve battery cycle life. When combined with other advanced battery materials, it could effectively lower...
Integrated Dynamic Electron Solutions, Inc. | Department of Energy
Broader source: Energy.gov (indexed) [DOE]
to recover and reclaim clean water from engines powered by diesel, gasoline or natural gas. Military and commercial applications include transport and stationery power plants,...
Integrated Dynamic Electron Solutions, Inc. | Department of Energy
Broader source: Energy.gov (indexed) [DOE]
Laboratory 10147 likes SH Coatings, based in Dallas, Texas, employs Super Hydrophobic Coating (SHC) technology that protects power systems by preventing ice accumulation on power...
Integrated Dynamic Electron Solutions, Inc. | Department of Energy
Broader source: Energy.gov (indexed) [DOE]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OFBarriersInstitutional changeWebVPNof333 likes
Integrated Dynamic Electron Solutions, Inc. | Department of Energy
Broader source: Energy.gov (indexed) [DOE]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OFBarriersInstitutional changeWebVPNof333 likes333
Integrated Dynamic Electron Solutions, Inc. | Department of Energy
Broader source: Energy.gov (indexed) [DOE]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OFBarriersInstitutional changeWebVPNof333 likes333333
Integrated Dynamic Electron Solutions, Inc. | Department of Energy
Broader source: Energy.gov (indexed) [DOE]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OFBarriersInstitutional changeWebVPNof333
Optimization of hybrid dynamic/steady-state processes using process integration
Grooms, Daniel Douglas
2009-06-02
PROBLEM STATEMENT................................................................ 5 III OPTIMAL SYNTHESIS AND SCHEDULING OF HYBRID DYNAMIC/STEADY-STATE MASS EXCHANGE NETWORKS..................................................................................... 23 IV OPTIMAL SYNTHESIS AND SCHEDULING OF HYBRID DYNAMIC/STEADY-STATE PROPERTY INTEGRATION NETWORKS ......................................................... 24 4.1 Introduction...
Micro-optic elements for a compact opto-electronic integrated neural coprocessor
Herrington, William Frederick, Jr
2015-01-01
The research done for this thesis was aimed at developing the optical elements needed for the Compact Opto-electronic Integrated Neural coprocessor (COIN coprocessor) project. The COIN coprocessor is an implementation of ...
GeSi photodetectors and electro-absorption modulators for Si electronic-photonic integrated circuits
Liu, Jifeng, Ph. D. Massachusetts Institute of Technology
2007-01-01
The silicon electronic-photonic integrated circuit (EPIC) has emerged as a promising technology to break through the interconnect bottlenecks in telecommunications and on-chip interconnects. High performance photonic ...
Finite Temperature Dynamical Correlations in Massive Integrable Quantum Field Theories
F. H. L. Essler; R. M. Konik
2009-10-07
We consider the finite-temperature frequency and momentum dependent two-point functions of local operators in integrable quantum field theories. We focus on the case where the zero temperature correlation function is dominated by a delta-function line arising from the coherent propagation of single particle modes. Our specific examples are the two-point function of spin fields in the disordered phase of the quantum Ising and the O(3) nonlinear sigma models. We employ a Lehmann representation in terms of the known exact zero-temperature form factors to carry out a low-temperature expansion of two-point functions. We present two different but equivalent methods of regularizing the divergences present in the Lehmann expansion: one directly regulates the integral expressions of the squares of matrix elements in the infinite volume whereas the other operates through subtracting divergences in a large, finite volume. Our central results are that the temperature broadening of the line shape exhibits a pronounced asymmetry and a shift of the maximum upwards in energy ("temperature dependent gap"). The field theory results presented here describe the scaling limits of the dynamical structure factor in the quantum Ising and integer spin Heisenberg chains. We discuss the relevance of our results for the analysis of inelastic neutron scattering experiments on gapped spin chain systems such as CsNiCl3 and YBaNiO5.
Collective Dynamics and Coherent Diagnostics of Microbunched Relativistic Electron Beams
Marinelli, Agostino
2012-01-01
Brightness Relativistic Electron Beams for Free-Electrona Thermal Relativistic Electron Beam: Eigenvalue/Eigenmodemicrobunching in the electron beam. The microbunched
Collective Dynamics and Coherent Diagnostics of Microbunched Relativistic Electron Beams
Marinelli, Agostino
2012-01-01
in the diagnostic of compressed electron beams and free-imaging and diagnostics of high-brightness electron beamsfor the diagnostics of compressed electron beams, such as
Open foundry platform for high-performance electronic-photonic integration
Ram, Rajeev J.
Open foundry platform for high-performance electronic-photonic integration Jason S. Orcutt,1 commercial electronic 45 nm SOI-CMOS foundry process. By utilizing existing front-end fabrication processes. Bogaerts, R. Baets, J. M. Fedeli, and L. Fulbert, "Towards foundry approach for silicon photonics: silicon
Transverse dynamics of a relativistic electron beam in an underdense plasma channel
Transverse dynamics of a relativistic electron beam in an underdense plasma channel Andrew A electron beam in a plasma less dense than the beam is analyzed, with particular attention to the electronV electron beam in a 1.5 m plasma cell, with the amplification of beam-centroid offsets on the order of 100
Dunin-Borkowski, Rafal E.
Dynamic studies of catalysts for biofuel synthesis in an Environmental Transmission Electron@cen.dtu.dk Keywords: Biofuel, catalysis, environmental TEM The development of transportation fuels from sustainable
Toward integrated PV panels and power electronics using printing technologies
Ababei, Cristinel; Yuvarajan, Subbaraya; Schulz, Douglas L.
2010-07-15
In this paper, we review the latest developments in the area of printing technologies with an emphasis on the fabrication of control-embedded photovoltaics (PV) with on-board active and passive devices. We also review the use of power converters and maximum power point tracking (MPPT) circuits with PV panels. Our focus is on the investigation of the simplest implementations of such circuits in view of their integration with solar cells using printing technologies. We see this concept as potentially enabling toward further cost reduction. Besides a discussion as to feasibility, we shall also present some projections and guidelines toward possible integration. (author)
Egorov, E. N. Koronovskii, A. A.; Kurkin, S. A.; Hramov, A. E.
2013-11-15
Results of numerical simulations and analysis of the formation and nonlinear dynamics of the squeezed state of a helical electron beam in a vircator with a magnetron injection gun as an electron source and with additional electron deceleration are presented. The ranges of control parameters where the squeezed state can form in such a system are revealed, and specific features of the system dynamics are analyzed. It is shown that the formation of a squeezed state of a nonrelativistic helical electron beam in a system with electron deceleration is accompanied by low-frequency longitudinal dynamics of the space charge.
Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel Cell System
Victoria, University of
Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel Cell System by Alvin Peter, hydrogen and electricity storage, and fuel cells. A special design feature of this test bed is the ability of the author. #12;ii Supervisory Committee Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel
Integrated system dynamics toolbox for water resources planning.
Reno, Marissa Devan; Passell, Howard David; Malczynski, Leonard A.; Peplinski, William J.; Tidwell, Vincent Carroll; Coursey, Don; Hanson, Jason; Grimsrud, Kristine; Thacher, Jennifer; Broadbent, Craig; Brookshire, David; Chemak, Janie; Cockerill, Kristan; Aragon, Carlos , Socorro, NM); Hallett, Heather , Socorro, NM); Vivoni, Enrique , Socorro, NM); Roach, Jesse
2006-12-01
Public mediated resource planning is quickly becoming the norm rather than the exception. Unfortunately, supporting tools are lacking that interactively engage the public in the decision-making process and integrate over the myriad values that influence water policy. In the pages of this report we document the first steps toward developing a specialized decision framework to meet this need; specifically, a modular and generic resource-planning ''toolbox''. The technical challenge lies in the integration of the disparate systems of hydrology, ecology, climate, demographics, economics, policy and law, each of which influence the supply and demand for water. Specifically, these systems, their associated processes, and most importantly the constitutive relations that link them must be identified, abstracted, and quantified. For this reason, the toolbox forms a collection of process modules and constitutive relations that the analyst can ''swap'' in and out to model the physical and social systems unique to their problem. This toolbox with all of its modules is developed within the common computational platform of system dynamics linked to a Geographical Information System (GIS). Development of this resource-planning toolbox represents an important foundational element of the proposed interagency center for Computer Aided Dispute Resolution (CADRe). The Center's mission is to manage water conflict through the application of computer-aided collaborative decision-making methods. The Center will promote the use of decision-support technologies within collaborative stakeholder processes to help stakeholders find common ground and create mutually beneficial water management solutions. The Center will also serve to develop new methods and technologies to help federal, state and local water managers find innovative and balanced solutions to the nation's most vexing water problems. The toolbox is an important step toward achieving the technology development goals of this center.
Micha? Lesiuk; Robert Moszynski
2015-01-08
In this paper, which constitutes the first part of the series, we consider calculation of two-centre Coulomb and hybrid integrals over Slater-type orbitals (STOs). General formulae for these integrals are derived with no restrictions on the values of the quantum numbers and nonlinear parameters. Direct integration over the coordinates of one of the electrons leaves us with the set of overlap-like integrals which are evaluated by using two distinct methods. The first one is based on the transformation to the ellipsoidal coordinates system and the second utilises a recursive scheme for consecutive increase of the angular momenta in the integrand. In both methods simple one-dimensional numerical integrations are used in order to avoid severe digital erosion connected with the straightforward use of the alternative analytical formulae. It is discussed that the numerical integration does not introduce a large computational overhead since the integrands are well-behaved functions, calculated recursively with decent speed. Special attention is paid to the numerical stability of the algorithms. Applicability of the resulting scheme over a large range of the nonlinear parameters is tested on examples of the most difficult integrals appearing in the actual calculations including at most 7i-type functions (l=6).
Non-hypersingular boundary integral equations for 3-D non-planar crack dynamics
Madariaga, RaĂşl
Non-hypersingular boundary integral equations for 3-D non-planar crack dynamics T. Tada, E, are removed by way of a technique of regu- larization based on integration by parts. The variables are denoted, in time and space, of the slip along the crack and a set of integration kernels. Then a limiting process
Calculation of heat capacities of light and heavy water by path-integral molecular dynamics
Nielsen, Steven O.
Calculation of heat capacities of light and heavy water by path-integral molecular dynamics 30 September 2005 As an application of atomistic simulation methods to heat capacities, path-integral has estimated the heat capacities too high, the quantum simulation based on path-integral molecular
Integrated Three-Dimensional Module Heat Exchange for Power Electronics
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLANIs gravity aOverviewISM Integrated SafetyCooling -
Matyushov, Dmitry
Dynamical Arrest of Electron Transfer in Liquid Crystalline Solvents Vitaliy Kapko and Dmitry V Form: May 3, 2006 We argue that electron transfer reactions in slowly relaxing solvents proceed in the nonergodic regime, making the reaction activation barrier strongly dependent on the solvent dynamics
Dynamics of excess electrons in atomic and molecular clusters
Young, Ryan Michael
2011-01-01
A. V. Davis et al. , J. Electron Spec. 108, 203 (2000). O.and M. Anbar, The Hydrated Electron (Wiley-Interscience, Newand M. Anbar, The Hydrated Electron (Wiley-Interscience, New
2003 Electronic Spectroscopy and Dynamics - July 6-11, 2003
Elliot Bernstein
2004-09-10
The Gordon Research Conference (GRC) on 2003 Electronic Spectroscopy and Dynamics - July 6-11, 2003 was held at Bates College, Lewiston, Maine, July 6-11, 2003. The Conference was well-attended with 103 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. In designing the formal speakers program, emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time for formal presentations was limited in the interest of group discussions. In order that more scientists could communicate their most recent results, poster presentation time was scheduled. Attached is a copy of the formal schedule and speaker program and the poster program. In addition to these formal interactions, ''free time'' was scheduled to allow informal discussions. Such discussions are fostering new collaborations and joint efforts in the field.
Chung, Jinwook W. (Jinwook Will)
2011-01-01
In spite of the great progress in performance achieved during the last few years, GaN high electron mobility transistors (HEMTs) still have several important issues to be solved for millimeter-wave (30 ~ 300 GHz) applications. ...
von der Linde, D.
Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation B with an ultrashort laser pulse leads to a disturbance of the free-electron gas out of thermal equilibrium. We investigate theoretically the transient evolution of the distribution function of the electron gas in a metal
Hammes-Schiffer, Sharon
Proton-coupled electron transfer reactions in solution: Molecular dynamics with quantum transitions A general minimal model for proton-coupled electron transfer PCET reactions in solution is presented. This model consists of three coupled degrees of freedom that represent an electron, a proton, and a solvent
Resolved dynamics of single electron tunneling using the RF-SET Julie Helen Love
Devoret, Michel H.
.4 Tunneling Rates in the single Electron Trap . . . . . . . . . . . . . . . . . . . . . . . 49 5 CotunnellingAbstract Resolved dynamics of single electron tunneling using the RF-SET Julie Helen Love 2007 This thesis presents measurements of time resolved single electron tunneling events in a metallic thin film
Structure of Earth's outer radiation belt inferred from long-term electron flux dynamics
Vassiliadis, Dimitrios
mapped the radiation-belt structure by quantifying the electron flux variability over the entire radialStructure of Earth's outer radiation belt inferred from long-term electron flux dynamics D September 2003; published 15 October 2003. [1] We map the spatial structure of the electron belts over
Be Migration Studies at JET and their Interpretation by an Integrated Model for Plasma Impurity Transport and Wall Composition Dynamics
Mentel, ?. M.; Meer, R. van; Gritsenko, O. V.; Baerends, E. J.
2014-06-07
For chemistry an accurate description of bond weakening and breaking is vital. The great advantage of density matrix functionals, as opposed to density functionals, is their ability to describe such processes since they naturally cover both nondynamical and dynamical correlation. This is obvious in the Löwdin-Shull functional, the exact natural orbital functional for two-electron systems. We present in this paper extensions of this functional for the breaking of a single electron pair bond in N-electron molecules, using LiH, BeH{sup +}, and Li{sub 2} molecules as prototypes. Attention is given to the proper formulation of the functional in terms of not just J and K integrals but also the two-electron L integrals (K integrals with a different distribution of the complex conjugation of the orbitals), which is crucial for the calculation of response functions. Accurate energy curves are obtained with extended Löwdin-Shull functionals along the complete dissociation coordinate using full CI calculations as benchmark.
Prospects for Integrating a Hollow Electron Lens into the LHC Collimation System
Smith, Jeffrey Claiborne; /SLAC; Assmann, Ralph; Previtali, Valentina; Shiltsev, Vladimir; Valishev, Alexander; /CERN /Fermilab
2009-08-03
It has been proposed to use a hollow electron lens with the LHC beam collimation system [1]. The hollow electron beam would be used as a beam scraper and positioned at a closer sigma than the primary collimators to increase the halo particle diffusion rate striking the primaries. In this paper we use multi-turn beam tracking simulations to analyze the effectiveness of such a lens when integrated into the LHC collimation system.
Electronic and Magnetization Dynamics of Cobalt Substituted Iron Oxide Nanocrystals
Chen, Tai-Yen
2011-02-22
Knowledge of energy dissipation and relaxation in electron, spin, and lattice degrees of freedom is of fundamental importance from both a technological and scientific point of view. In this dissertation, the electronic and ...
Probing Electron Dynamics with the Laplacian of the Momentum Density
Sukumar, N.; MacDougall, Preston J.; Levit, M. Creon
2012-09-24
This chapter in the above-titled monograph presents topological analysis of the Laplacian of the electron momentum density in organic molecules. It relates topological features in this distribution to chemical and physical properties, particularly aromaticity and electron transport.
Ultrafast Electron Dynamics at Alkali/Ice Structures
Wolf, Martin
trapping sites, i.e. at local potential minima, are formed. Photoinjection of excess electrons into these alkali-ion covered amorphous ice layers, results in the trapping of a solvated electron at an alkali, i.e. pump-probe time delay, the electron transfer is mediated by tunneling through a potential
Rojas Paico, Danny H.
2001-01-01
The integration of dynamic data into reservoir models is known as automatic history matching, and it requires the solution of an inverse problem through the minimization of an objective function. The objective function to ...
High Resolution Simulation of Beam Dynamics in Electron Linacs for Free Electron Lasers
Ryne, R.D.; Venturini, M.; Zholents, A.A.; Qiang, J.
2009-01-05
In this paper we report on large scale multi-physics simulation of beam dynamics in electron linacs for next generation free electron lasers (FELs). We describe key features of a parallel macroparticle simulation code including three-dimensional (3D) space-charge effects, short-range structure wake fields, longitudinal coherent synchrotron radiation (CSR) wake fields, and treatment of radiofrequency (RF) accelerating cavities using maps obtained from axial field profiles. A macroparticle up-sampling scheme is described that reduces the shot noise from an initial distribution with a smaller number of macroparticles while maintaining the global properties of the original distribution. We present a study of the microbunching instability which is a critical issue for future FELs due to its impact on beam quality at the end of the linac. Using parameters of a planned FEL linac at Lawrence Berkeley National Laboratory (LBNL), we show that a large number of macroparticles (beyond 100 million) is needed to control numerical shot noise that drives the microbunching instability. We also explore the effect of the longitudinal grid on simulation results. We show that acceptable results are obtained with around 2048 longitudinal grid points, and we discuss this in view of the spectral growth rate predicted from linear theory. As an application, we present results from simulations using one billion macroparticles of the FEL linac under design at LBNL. We show that the final uncorrelated energy spread of the beam depends not only on the initial uncorrelated energy spread but also depends strongly on the shape of the initial current profile. By using a parabolic initial current profile, 5 keV initial uncorrelated energy spread at 40 MeV injection energy, and improved linac design, those simulations demonstrate that a reasonable beam quality can be achieved at the end of the linac, with the final distribution having about 100 keV energy spread, 2.4 GeV energy, and 1.2 kA peak current.
Aeschlimann, Martin
relaxation dynamics is played by the electronic structure of the system close to the Fermi level. For exampleExcited electron dynamics in bulk ytterbium: Time-resolved two-photon photoemission and GW+T ab November 2007 The excited electron dynamics in ytterbium is investigated by means of the time-resolved two
Evaluation of two-electron integrals for explicit r{sub 12} theories
Valeev, Edward F.; Schaefer, Henry F. III
2000-09-08
We present a practical scheme for the evaluation of nonstandard two-electron molecular integrals that appear in ab initio theories employing explicitly correlated wave functions with linear r{sub 12} terms (''linear r{sub 12}'' methods). In contrast with previous efforts, the target integrals are evaluated recursively via intermediates formulated solely in terms of Cartesian Gaussian functions. All working equations fit conveniently the framework of highly efficient Head-Gordon and Pople method of evaluation of electron repulsion integrals. Thus, only straightforward modifications of existing codes that employ HGP or HGP-PRISM scheme are necessary to implement our approach. High potential of the pathway is realized in a robust practical implementation. (c) 2000 American Institute of Physics.
Efficient electronic structure calculation for molecular ionization dynamics at high x-ray intensity
Hao, Yajiang; Hanasaki, Kota; Son, Sang-Kil; Santra, Robin
2015-01-01
We present the implementation of an electronic-structure approach dedicated to ionization dynamics of molecules interacting with x-ray free-electron laser (XFEL) pulses. In our scheme, molecular orbitals for molecular core-hole states are represented by linear combination of numerical atomic orbitals that are solutions of corresponding atomic core-hole states. We demonstrate that our scheme efficiently calculates all possible multiple-hole configurations of molecules formed during XFEL pulses. The present method is suitable to investigate x-ray multiphoton multiple ionization dynamics and accompanying nuclear dynamics, providing essential information on the chemical dynamics relevant for high-intensity x-ray imaging.
PhD Position Available: integrative biomechanics, computational modeling, nonlinear dynamics
Clewley, Robert
PhD Position Available: integrative biomechanics, computational modeling, nonlinear dynamics and mathematical analysis of biomechanical and neural control systems. We are looking for an excellent and highly.edu/~biodhe/#Research). These are being used to study the Crayfish swim escape mechanism as a case study in integrative biomechanical
DYNAMICS OF CURRENT-BASED, POISSON DRIVEN, INTEGRATE-AND-FIRE NEURONAL NETWORKS
Kramer, Peter
DYNAMICS OF CURRENT-BASED, POISSON DRIVEN, INTEGRATE-AND-FIRE NEURONAL NETWORKS KATHERINE A-based, integrate-and-fire (I&F) neurons with delta-impulse coupling currents and Poisson spike-train external drive are studied. Repeating synchronous total firing events, during which all the neurons fire simultaneously
Turner, Daniel B.
We use fifth-order two-dimensional electronic spectroscopy to measure coherent four-particle dynamics in a semiconductor nanostructure. By using optical polarization control in two-quantum measurements enabled by the COLBERT ...
Single-Particle Dynamics in Electron Storage Rings with Extremely...
Office of Scientific and Technical Information (OSTI)
order of reduction is expected. This requirement of ultra-low emittance presents many design challenges in beam dynamics, including better analysis of maps and improvement of...
Dynamic Phase Filtering with Integrated Optical Ring Resonators
Adams, Donald Benjamin
2011-10-21
Coherent optical signal processing systems typically require dynamic, low-loss phase changes of an optical signal. Waveform generation employing phase modulation is an important application area. In particular, laser radar systems have been shown...
Human Growth and Body Weight Dynamics: An Integrative Systems Model
Rahmandad, Hazhir
Quantifying human weight and height dynamics due to growth, aging, and energy balance can inform clinical practice and policy analysis. This paper presents the first mechanism-based model spanning full individual life and ...
Dynamical Mechanism of Two-Dimensional Plasmon Launching by Swift Electrons
Xiao Lin; Xihang Shi; Fei Gao; Ido Kaminer; Zhaoju Yang; Zhen Gao; Hrvoje Buljan; John D. Joannopoulos; Marin Solja?i?; Hongsheng Chen; Baile Zhang
2015-07-30
Launching of surface plasmons by swift electrons has long been utilized to investigate plasmonic properties of ultrathin, or two-dimensional (2D), electron systems, including graphene plasmons recently. However, spatio-temporal dynamics of this process has never been clearly revealed. This is because the impact of an electron will generate not only plasmons, but also photons, demanding both space and time. Here we address this issue within the framework of classical electromagnetics by showing the dynamical process of 2D plasmon launching by swift electrons on graphene. The launching of 2D plasmons on graphene is not immediate, but is delayed after a hydrodynamic splashing-like process, which occurs during the formation time of transition radiation caused by the electron's impact. This newly revealed process also implies that all previous estimates on the yields of graphene plasmons in electron-energy-loss-spectroscopy have been overestimated.
Dynamic Nuclear Polarization with Single Electron Spins J. R. Petta,1,2
Yacoby, Amir
Dynamic Nuclear Polarization with Single Electron Spins J. R. Petta,1,2 J. M. Taylor,1,3 A. C Barbara, California 93106, USA (Received 6 September 2007; published 11 February 2008) We polarize nuclear'' an electron spin and ``flopping'' a nuclear spin. The resulting Overhauser field approaches 80 m
Rodwell, Mark J. W.
1 Abstract-- InP-based Photonic ICs (PICs), together with closely integrated Electronic ICs, have been exploring more integrated approaches, where only a single photonic integrated circuit (PIC receiver, which contains photos of the PIC and EIC. The PIC contains a widely-tunable SGDBR LO laser (40
PHYSICAL REVIEW B 85, 094109 (2012) Electron dynamics of shocked polyethylene crystal
Goddard III, William A.
2012-01-01
PHYSICAL REVIEW B 85, 094109 (2012) Electron dynamics of shocked polyethylene crystal Patrick L-dynamics simulations of the single shock Hugoniot are reported for a crystalline polyethylene (PE) model. The e. INTRODUCTION The material response of polyethylene (PE) to shock and its behavior in the warm dense matter (WDM
Southern California, University of
Electronic processes in fast thermite chemical reactions: A first-principles molecular dynamics composites. We have investigated the thermite reaction of Fe2O3 with aluminum by molecular dynamics as thermite reaction, is widely utilized in the synthesis and processing of materials 1 . In addition
INDDGO: Integrated Network Decomposition & Dynamic programming for Graph Optimization
Groer, Christopher S; Sullivan, Blair D; Weerapurage, Dinesh P
2012-10-01
It is well-known that dynamic programming algorithms can utilize tree decompositions to provide a way to solve some \\emph{NP}-hard problems on graphs where the complexity is polynomial in the number of nodes and edges in the graph, but exponential in the width of the underlying tree decomposition. However, there has been relatively little computational work done to determine the practical utility of such dynamic programming algorithms. We have developed software to construct tree decompositions using various heuristics and have created a fast, memory-efficient dynamic programming implementation for solving maximum weighted independent set. We describe our software and the algorithms we have implemented, focusing on memory saving techniques for the dynamic programming. We compare the running time and memory usage of our implementation with other techniques for solving maximum weighted independent set, including a commercial integer programming solver and a semi-definite programming solver. Our results indicate that it is possible to solve some instances where the underlying decomposition has width much larger than suggested by the literature. For certain types of problems, our dynamic programming code runs several times faster than these other methods.
Correlated electron dynamics with time-dependent quantum Monte...
Office of Scientific and Technical Information (OSTI)
Our results for the dipole response and the ionization of an atom with un-correlated electrons are in good agreement with the predictions of the conventional time-dependent...
Monopole and topological electron dynamics in adiabatic spintronic and graphene systems
Tan, S.G.; Jalil, M.B.A.; Fujita, T.
2010-08-15
A unified theoretical treatment is presented to describe the physics of electron dynamics in semiconductor and graphene systems. Electron spin's fast alignment with the Zeeman magnetic field (physical or effective) is treated as a form of adiabatic spin evolution which necessarily generates a monopole in magnetic space. One could transform this monopole into the physical and intuitive topological magnetic fields in the useful momentum (K) or real spaces (R). The physics of electron dynamics related to spin Hall, torque, oscillations and other technologically useful spinor effects can be inferred from the topological magnetic fields in spintronic, graphene and other SU(2) systems.
Monopole and Topological Electron Dynamics in Adiabatic Spintronic and Graphene Systems
S. G. Tan; M. B. A. Jalil; Takashi Fujita
2009-01-22
A unified theoretical treatment is presented to describe the physics of electron dynamics in semiconductor and graphene systems. Electron spin fast alignment with the Zeeman magnetic field (physical or effective) is treated as a form of adiabatic spin evolution which necessarily generates a monopole in magnetic space. One could transform this monopole into the physical and intuitive topological magnetic fields in the useful momentum (K) or real spaces (R). The physics of electron dynamics related to spin Hall, torque, oscillations and other technologically useful spinor effects can be inferred from the topological magnetic fields in spintronic, graphene and other SU(2) systems.
Ultrafast optical studies of electronic dynamics in semiconductors
Ruzicka, Brian Andrew
2012-05-31
The dynamics of charge carriers in semiconductors are of fundamental importance for semiconductor applications. This includes studies of energy relaxation, carrier recombination, and carrier transport (both diffusive and ballistic). Due...
Dynamics of Solvated Electrons in Clusters Ryan M. Young,
Neumark, Daniel M.
in Water-Based Cluster Anions 5561 3.3. Dynamics in Halide-Water Clusters 5563 4. Methanol 5564 5. Ammonia 5567 6. Acetonitrile and Primary Amides 5568 7. Benzene, Toluene, and Other Aromatic Solvents 5571 8
Saha, Asit E-mail: prasantachatterjee1@rediffmail.com; Pal, Nikhil; Chatterjee, Prasanta E-mail: prasantachatterjee1@rediffmail.com
2014-10-15
The dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons has been investigated in the framework of perturbed and non-perturbed Kadomtsev-Petviashili (KP) equations. Applying the reductive perturbation technique, we have derived the KP equation in electron-positron-ion magnetoplasma with kappa distributed electrons and positrons. Bifurcations of ion acoustic traveling waves of the KP equation are presented. Using the bifurcation theory of planar dynamical systems, the existence of the solitary wave solutions and the periodic traveling wave solutions has been established. Two exact solutions of these waves have been derived depending on the system parameters. Then, using the Hirota's direct method, we have obtained two-soliton and three-soliton solutions of the KP equation. The effect of the spectral index ? on propagations of the two-soliton and the three-soliton has been shown. Considering an external periodic perturbation, we have presented the quasi periodic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas.
Evaluation of Maxim Module-Integrated Electronics at the DOE Regional Test Centers (Presentation)
Deline, C.; Sekulic, B.; Barkaszi, S.; Yang, J.; Kahn, S.
2014-06-01
Module-embedded power electronics developed by Maxim Integrated are under evaluation through a partnership with the Department of Energy's Regional Test Center (RTC) program. Field deployments of both conventional modules and electronics-enhanced modules are designed to quantify the performance advantage of Maxim's products under different amounts of interrow shading, and their ability to be deployed at a greater ground-coverage ratio than conventional modules. Simulations in PVSYST have quantified the predicted performance difference between conventional modules and Maxim's modules from interrow shading. Initial performance results have identified diffuse irradiance losses at tighter row spacing for both the Maxim and conventional modules. Comparisons with published models show good agreement with models predicting the greatest diffuse irradiance losses. At tighter row spacing, all of the strings equipped with embedded power electronics outperformed their conventional peers. An even greater performance advantage is predicted to occur in the winter months when the amount of interrow shading mismatch is at a maximum.
Chu, Shih-I
and structures PACS 85.65.+h Molecular electronic devices PACS 71.15.Pd Molecular dynamics calculations (Carr for electron transport dynamics in molecular devices Zhongyuan Zhou(a) and Shih-I Chu Department of Chemistry. The electron wave function is calculated by solving this equation in a finite P-space volume. This approach
Electron dynamics in parallel electric and magnetic fields
Christian Bracher; Tobias Kramer; John B. Delos
2005-10-13
We examine the spatial distribution of electrons generated by a fixed energy point source in uniform, parallel electric and magnetic fields. This problem is simple enough to permit analytic quantum and semiclassical solution, and it harbors a rich set of features which find their interpretation in the unusual and interesting properties of the classical motion of the electrons: For instance, the number of interfering trajectories can be adjusted in this system, and the turning surfaces of classical motion contain a complex array of singularities. We perform a comprehensive analysis of both the semiclassical approximation and the quantum solution, and we make predictions that should serve as a guide for future photodetachment experiments.
Dornheim, Tobias; Groth, Simon; Filinov, Alexey; Bonitz, Michael
2015-01-01
The uniform electron gas (UEG) at finite temperature is of high current interest due to its key relevance for many applications including dense plasmas and laser excited solids. In particular, density functional theory heavily relies on accurate thermodynamic data for the UEG. Until recently, the only existing first-principle results had been obtained for $N=33$ electrons with restricted path integral Monte Carlo (RPIMC), for low to moderate density, $r_s = \\overline{r}/a_B \\gtrsim 1$. This data has been complemented by Configuration path integral Monte Carlo (CPIMC) simulations for $r_s \\leq 1$ that substantially deviate from RPIMC towards smaller $r_s$ and low temperature. In this work, we present results from an independent third method---the recently developed permutation blocking path integral Monte Carlo (PB-PIMC) approach [T. Dornheim \\textit{et al.}, NJP \\textbf{17}, 073017 (2015)] which we extend to the UEG. Interestingly, PB-PIMC allows us to perform simulations over the entire density range down to...
Detailed dynamics of electron beams self-trapped and accelerated in a self-modulated laser wakefield
Umstadter, Donald
Detailed dynamics of electron beams self-trapped and accelerated in a self-modulated laser 1999 The electron beam generated in a self-modulated laser-wakefield accelerator is characterized, was measured for 2 MeV electrons. The electron beam was observed to have a multicomponent beam profile
Dynamic Void Growth and Shrinkage in Mg under Electron Irradiation
Xu, W. Z. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Materials Science and Engineering; Zhang, Y. F. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cheng, G. M. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Materials Science and Engineering; Jian, W. W. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Materials Science and Engineering; Millett, P. C. [Univ. of Arkansas, Fayetteville, AR (United States). Dept. of Mecanical Engineering; Koch, C. C. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Materials Science and Engineering; Mathaudhu, S. N. [U.S. Army Research Office, Research Triangle Park, NC (United States). Materials Science Division; Zhu, Y. T. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Materials Science and Engineering
2014-04-30
We report in-situ atomic-scale investigation of void evolution, including growth, coalescence and shrinkage, under electron irradiation. With increasing irradiation dose, the total volume of voids increased linearly, while nucleation rate of new voids decreased slightly, and the total number of voids decreased. Some voids continued to grow while others shrank to disappear, depending on the nature of their interactions with nearby self-interstitial loops. For the first time, surface diffusion of adatoms was observed largely responsible for the void coalescence and thickening. These findings provide fundamental understanding to help with the design and modeling of irradiation-resistant materials.
Large dynamic range diagnostics for high current electron LINACs
Evtushenko, Pavel [JLAB
2013-11-01
The Jefferson Lab FEL driver accelerator - Energy Recovery Linac has provided a beam with average current of up to 9 mA and beam energy of 135 MeV. The high power beam operations have allowed developing and testing methods and approaches required to set up and tune such a facility simultaneously for the high beam power and high beam quality required for high performance FEL operations. In this contribution we briefly review this experience and outline problems that are specific to high current - high power non-equilibrium linac beams. While the original strategy for beam diagnostics and tuning have proven to be quite successful, some shortcomings and unresolved issues were also observed. The most important issues are the non-equilibrium (non-Gaussian) nature of the linac beam and the presence of small intensity - large amplitude fraction of the beam a.k.a. beam halo. Thus we also present a list of the possible beam halo sources and discuss possible mitigations means. We argue that for proper understanding and management of the beam halo large dynamic range (>10{sup 6}) transverse and longitudinal beam diagnostics can be used. We also present results of transverse beam profile measurements with the dynamic range approaching 10{sup 5} and demonstrate the effect the increased dynamic range has on the beam characterization, i.e., emittance and Twiss parameters measurements. We also discuss near future work planned in this field and where the JLab FEL facility will be used for beam tests of the developed of new diagnostics.
Large dynamic range diagnostics for high current electron LINACs
Evtushenko, P., E-mail: Pavel.Evtushenko@jlab.org [Thomas Jefferson National Accelerator Facility 12000 Jefferson Avenue, Newport News, VA 23606 (United States)
2013-11-07
The Jefferson Lab FEL driver accelerator - Energy Recovery Linac has provided a beam with average current of up to 9 mA and beam energy of 135 MeV. The high power beam operations have allowed developing and testing methods and approaches required to set up and tune such a facility simultaneously for the high beam power and high beam quality required for high performance FEL operations. In this contribution we briefly review this experience and outline problems that are specific to high current - high power non-equilibrium linac beams. While the original strategy for beam diagnostics and tuning have proven to be quite successful, some shortcomings and unresolved issues were also observed. The most important issues are the non-equilibrium (non-Gaussian) nature of the linac beam and the presence of small intensity - large amplitude fraction of the beam a.k.a. beam halo. Thus we also present a list of the possible beam halo sources and discuss possible mitigations means. We argue that for proper understanding and management of the beam halo large dynamic range (>10{sup 6}) transverse and longitudinal beam diagnostics can be used. We also present results of transverse beam profile measurements with the dynamic range approaching 10{sup 5} and demonstrate the effect the increased dynamic range has on the beam characterization, i.e., emittance and Twiss parameters measurements. We also discuss near future work planned in this field and where the JLab FEL facility will be used for beam tests of the developed of new diagnostics.
2012 ELECTRONIC SPECTROSCOPY & DYNAMICS GORDON RESEARCH CONFERENCE, JULY 22-27, 2012
Kohler, Bern
2012-07-27
Topics covered in this GRC include high-resolution spectroscopy, coherent electronic energy transport in biology, excited state theory and dynamics, excitonics, electronic spectroscopy of cold and ultracold molecules, and the spectroscopy of nanostructures. Several sessions will highlight innovative techniques such as time-resolved x-ray spectroscopy, frequency combs, and liquid microjet photoelectron spectroscopy that have forged stimulating new connections between gas-phase and condensed-phase work.
Electronic power conditioning for dynamic power conversion in high-power space systems
Hansen, James Michael
1991-01-01
power conversion allows for improved methods of power conditioning. A block diagram of one such system that uses dynamic power conversion is shown in Fig. 4. The blocks labeled Energy Source, Primary Heat Rejection, snd User's Load are the same...ELECTRONIC POWER CONDITIONING FOR DYNAMIC POWER CONVERSION IN HIGH ? POWER SPACE SYSTEMS A Thesis by JAMES MICHAEL HANSEN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...
Hammes-Schiffer, Sharon
2011-06-16
Proton-coupled electron transfer (PCET) reactions play an important role in a wide range of biological and chemical processes. The motions of the electrons, transferring protons, solute nuclei, and solvent nuclei occur on a wide range of time scales and are often strongly coupled. As a result, the theoretical description of these processes requires a combination of quantum and classical methods. This Perspective discusses three of the current theoretical challenges in the field of PCET. The first challenge is the calculation of electron proton nonadiabatic effects, which are significant for these reactions because the hydrogen tunneling is often faster than the electronic transition. The second challenge is the modeling of electron transfer coupled to proton transport along hydrogen-bonded networks. The third challenge is the simulation of the ultrafast dynamics of nonequilibrium photoinduced PCET reactions in solution. Insights provided by theoretical studies may assist in the design of more effective catalysts for energy conversion processes. The proton relay portion of this review is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.
Integrating Dynamic Pricing of Electricity into Energy Aware Scheduling for HPC Systems
Sun, Xian-He
Integrating Dynamic Pricing of Electricity into Energy Aware Scheduling for HPC Systems Xu Yang, Zhou Zhou, Sean Wallace, Zhiling Lan Illinois Institute of Technology, Chicago, IL, USA {xyang56, zzhou Laboratory, Argonne, IL, USA {wtang, smc, papka}@anl.gov ABSTRACT The research literature to date mainly
Demand Side Management for Wind Power Integration in Microgrid Using Dynamic Potential Game Theory
Huang, Jianwei
Demand Side Management for Wind Power Integration in Microgrid Using Dynamic Potential Game Theory the intermittency in wind power generation. Our focus is on an isolated microgrid with one wind turbine, one fast supply and demand in an isolated microgrid [2], which is an important concept for renewable energy
Integrating Renewable Energy Contracts and Wholesale Dynamic Pricing to Serve Aggregate
Oren, Shmuel S.
1 Integrating Renewable Energy Contracts and Wholesale Dynamic Pricing to Serve Aggregate Flexible batteries, with renewable energy resources. We formulate a stochastic optimal control problem that describes that renewable energy supply varies unpredictable and beyond the control of the system operator. The impacts
Instabilities in Molecular Dynamics Integrators used in Hybrid Monte Carlo Simulations
B. Joo; UKQCD Collaboration
2001-10-11
We discuss an instability in the leapfrog integration algorithm, widely used in current Hybrid Monte Carlo (HMC) simulations of lattice QCD. We demonstrate the instability in the simple harmonic oscillator (SHO) system where it is manifest. We demonstrate the instability in HMC simulations of lattic QCD with dynamical Wilson-Clover fermions and discuss implications for future simulations of lattice QCD.
A Graphene Quantum Dot with a Single Electron Transistor as Integrated Charge Sensor
Ling-Jun Wang; Gang Cao; Tao Tu; Hai-Ou Li; Cheng Zhou; Xiao-Jie Hao; Zhan Su; Guang-Can Guo; Guo-Ping Guo; Hong-Wen Jiang
2010-08-28
We have developed an etching process to fabricate a quantum dot and a nearby single electron transistor as a charge detector in a single layer graphene. The high charge sensitivity of the detector is used to probe Coulomb diamonds as well as excited spectrum in the dot, even in the regime where the current through the quantum dot is too small to be measured by conventional transport means. The graphene based quantum dot and integrated charge sensor serve as an essential building block to form a solid-state qubit in a nuclear-spin-free quantum world.
Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics
Kang, Jin Sung
2012-01-01
4 Inkjet Printed Electronics Using Copper Nanoparticle29 Inkjet Printed Electronics For Multifunctional Compositenanocrystals toward printed electronics,” Nanotechnology,
Calgary, University of
The electronic version is the official version of this policy. Page 1 of 11 Integrity in Scholarly with respect to integrity in Scholarly Activity and to balance those values appropriately where they come community. Definitions 3 In this policy: a) "Advisor" means any person selected by the Respondent, including
Yarema A. Prykarpatsky; Nikolai N. Bogolubov Jr; Anatoliy K. Prykarpatsky; Valeriy H. Samoylenko
2011-05-22
A gradient-holonomic approach for the Lax type integrability analysis of differentialdiscrete dynamical systems is devised. The asymptotical solutions to the related Lax equation are studied, the related gradient identity is stated. The integrability of a discrete nonlinear Schredinger type dynamical system is treated in detail.
Multi-electron dynamics in the tunnel ionization of correlated quantum systems
Hollstein, Maximilian
2015-01-01
The importance of multi-electron dynamics during the tunnel ionization of a correlated quantum system is investigated. By comparison of the solution of the time-dependent Schr\\"odinger equation (TDSE) with the time-dependent configuration interaction singles approach (TDCIS), we demonstrate the importance of a multi-electron description of the tunnel ionization process especially for weakly confined quantum systems. Within this context, we observe that adiabatic driving by an intense light field can even enhance the correlations between still trapped electrons.
Control of ultrafast electron dynamics with shaped femtosecond laser pulses: from atoms to solids
Peinke, Joachim
focus on advanced control of ultrafast electron dynamics with shaped femtosecond laser pulses of a femtosecond laser pulse, in addition to its temporal envelope and phase. Before we present some recent the photoionization of potassium atoms with a phase-coherent double pulse sequence. Building on this simple example we
PHYSICAL REVIEW B 85, 184301 (2012) Spin-lattice-electron dynamics simulations of magnetic materials
2012-01-01
of experiments on laser-induced demagnetization of iron thin films, and estimate the rates of heat transfer of a magnetic material. They evaluated the total free energies and heat capacities of Fe, Co, and Ni usingPHYSICAL REVIEW B 85, 184301 (2012) Spin-lattice-electron dynamics simulations of magnetic
Miller, William H.
Semiclassical theory of electronically nonadiabatic dynamics: Results of a linearized approximation, California 94720 Received 6 May 1998; accepted 31 July 1998 A linearized approximation to the semiclassical easier to apply than the full SC-IVR because it linearizes the phase difference between interfering
DYNAMICS OF DECAY ELECTRONS AND SYNCHROTRON RADIATION IN A TEV MUON COLLIDER*
McIntyre, Peter
) in a TeV muon col- lider present major challenges as heat loads to the super- conducting magnetsDYNAMICS OF DECAY ELECTRONS AND SYNCHROTRON RADIATION IN A TEV MUON COLLIDER* P. McIntyre and A problems are mitigated. 1 MUON DECAY IN A MUON COLLIDER Ankenbrandt et al. [1] summarize the design
Electron-nuclear correlations for photo-induced dynamics in molecular dimers
of the nuclear equilibrium upon photoexcitation. In the limiting case of resonance between the electronic energy with the overall nuclear wave packet width. The demonstrated quantum relaxation features of the photoinduced dynamics in molecular systems, which play domi- nant roles in a variety of problems in physics, technology
Kabius, Bernd C.; Browning, Nigel D.; Thevuthasan, Suntharampillai; Diehl, Barbara L.; Stach, Eric A.
2012-07-25
This report summarizes a 2011 workshop that addressed the potential role of rapid, time-resolved electron microscopy measurements in accelerating the solution of important scientific and technical problems. A series of U.S. Department of Energy (DOE) and National Academy of Science workshops have highlighted the critical role advanced research tools play in addressing scientific challenges relevant to biology, sustainable energy, and technologies that will fuel economic development without degrading our environment. Among the specific capability needs for advancing science and technology are tools that extract more detailed information in realistic environments (in situ or operando) at extreme conditions (pressure and temperature) and as a function of time (dynamic and time-dependent). One of the DOE workshops, Future Science Needs and Opportunities for Electron Scattering: Next Generation Instrumentation and Beyond, specifically addressed the importance of electron-based characterization methods for a wide range of energy-relevant Grand Scientific Challenges. Boosted by the electron optical advancement in the last decade, a diversity of in situ capabilities already is available in many laboratories. The obvious remaining major capability gap in electron microscopy is in the ability to make these direct in situ observations over a broad spectrum of fast (µs) to ultrafast (picosecond [ps] and faster) temporal regimes. In an effort to address current capability gaps, EMSL, the Environmental Molecular Sciences Laboratory, organized an Ultrafast Electron Microscopy Workshop, held June 14-15, 2011, with the primary goal to identify the scientific needs that could be met by creating a facility capable of a strongly improved time resolution with integrated in situ capabilities. The workshop brought together more than 40 leading scientists involved in applying and/or advancing electron microscopy to address important scientific problems of relevance to DOE’s research mission. This workshop built on previous workshops and included three breakout sessions identifying scientific challenges in biology, biogeochemistry, catalysis, and materials science frontier areas of fundamental science that underpin energy and environmental science that would significantly benefit from ultrafast transmission electron microscopy (UTEM). In addition, the current status of time-resolved electron microscopy was examined, and the technologies that will enable future advances in spatio-temporal resolution were identified in a fourth breakout session.
Evaluation of Maxim Module-Integrated Electronics at the DOE Regional Test Centers: Preprint
Deline, C.; Sekulic, B.; Stein, J.; Barkaszi, S.; Yang, J.; Kahn, S.
2014-07-01
Module-embedded power electronics developed by Maxim Integrated are under evaluation through a partnership with the Department of Energy's Regional Test Center (RTC) program. Field deployments of both conventional modules and electronics-enhanced modules are designed to quantify the performance advantage of Maxim's products under different amounts of inter-row shading, and their ability to be deployed at a greater ground-coverage-ratio than conventional modules. Simulations in PVSYST have quantified the predicted performance difference between conventional modules and Maxim's modules from inter-row shading. Initial performance results have identified diffuse irradiance losses at tighter row spacing for both the Maxim and conventional modules. Comparisons with published models show good agreement with models predicting the greatest diffuse irradiance losses. At tighter row spacing, all of the strings equipped with embedded power electronics outperformed their conventional peers. An even greater performance advantage is predicted to occur in the winter months when the amount of inter-row shading mismatch is at a maximum.
Anatolij K. Prykarpatski
2015-01-03
The Calogero type matrix discretization scheme is applied to constructing the Lax type integrable discretizations of one wide enough class of nonlinear integrable dynamical systems on functional manifolds. Their Lie-algebraic structure and complete integrability related with co-adjoint orbits on the Markov co-algebras is discussed. It is shown that a set of conservation laws and the associated Poisson structure ensue as a byproduct of the approach devised. Based on the Lie algebras quasi-representation property the limiting procedure of finding the nonlinear dynamical systems on the corresponding functional spaces is demonstrated.
Dynamic nuclear polarization with simultaneous excitation of electronic and nuclear transitions
G. W. Morley; K. Porfyrakis; A. Ardavan; J. van Tol
2008-05-28
Dynamic nuclear polarization transfers spin polarization from electrons to nuclei. We have achieved this by a new method, simultaneously exciting transitions of electronic and nuclear spins. The efficiency of this technique improves with increasing magnetic field. Experimental results are shown for N@C60 with continuous-wave microwaves, which can be expected to produce even higher polarization than the corresponding pulsed techniques for electron spins greater than 1/2. The degree of nuclear polarization in this case can be easily monitored through the intensities of the well resolved hyperfine components in the EPR spectrum. The nuclear spin-lattice relaxation time is orders of magnitude longer than that of the electrons.
Dayeh, Shadi A.
2008-01-01
en-Sciences, Physics and Electronics, Lebanese University,Devices for Novel Electronics”, Material Research SocietyNanowires for Future Electronics: Growth, Characterization,
Morzan, Uriel N.; Ramírez, Francisco F.; Scherlis, Damián A. E-mail: mcgl@qb.ffyb.uba.ar; Lebrero, Mariano C. González E-mail: mcgl@qb.ffyb.uba.ar
2014-04-28
This article presents a time dependent density functional theory (TDDFT) implementation to propagate the Kohn-Sham equations in real time, including the effects of a molecular environment through a Quantum-Mechanics Molecular-Mechanics (QM-MM) hamiltonian. The code delivers an all-electron description employing Gaussian basis functions, and incorporates the Amber force-field in the QM-MM treatment. The most expensive parts of the computation, comprising the commutators between the hamiltonian and the density matrix—required to propagate the electron dynamics—, and the evaluation of the exchange-correlation energy, were migrated to the CUDA platform to run on graphics processing units, which remarkably accelerates the performance of the code. The method was validated by reproducing linear-response TDDFT results for the absorption spectra of several molecular species. Two different schemes were tested to propagate the quantum dynamics: (i) a leap-frog Verlet algorithm, and (ii) the Magnus expansion to first-order. These two approaches were confronted, to find that the Magnus scheme is more efficient by a factor of six in small molecules. Interestingly, the presence of iron was found to seriously limitate the length of the integration time step, due to the high frequencies associated with the core-electrons. This highlights the importance of pseudopotentials to alleviate the cost of the propagation of the inner states when heavy nuclei are present. Finally, the methodology was applied to investigate the shifts induced by the chemical environment on the most intense UV absorption bands of two model systems of general relevance: the formamide molecule in water solution, and the carboxy-heme group in Flavohemoglobin. In both cases, shifts of several nanometers are observed, consistently with the available experimental data.
Integrating GIS with Distributed Applications Using Dynamic Data-Sharing Mechanisms
Burnett, Robert A. ); Tzemos, Spyridon ); Stoops, LaMar R. )
2002-08-21
Effective integration of a stand-alone GIS (e.g., ArcView 3.x) into a complex distributed software application requires an efficient, reliable mechanism for passing data and function requests to and from the GIS component. This paper describes the use of dynamic data-sharing and inter-process communication mechanisms to integrate GIS capability into a multi-jurisdictional distributed emergency management information system. These mechanisms include dynamic layer updates from spatial and attribute information shared via a distributed relational database across multiple sites; storage of private and shared ViewMarks to facilitate consistent GIS views; and asynchronous inter-process communication using function queuing and a data sharing library.
Electron nuclear dynamics of proton collisions with methane at 30 eV D. Jacquemin,a)
Morales, Jorge Alberto
Electron nuclear dynamics of proton collisions with methane at 30 eV D. Jacquemin,a) J. A. Morales nuclear dynamics END . The results from this theoretical approach, which does not invoke the BornOppenheimer approximation and does not impose any constraints on the nuclear dynamics, are compared to the results from time
Hamilton dynamics for the Lefschetz thimble integration akin to the complex Langevin method
Fukushima, Kenji
2015-01-01
The Lefschetz thimble method, i.e., the integration along the steepest descent cycles, is an idea to evade the sign problem by complexifying the theory. We discuss that such steepest descent cycles can be identified as ground-state wave-functions of a supersymmetric Hamilton dynamics, which is described with a framework akin to the complex Langevin method. We numerically construct the wave-functions on a grid using a toy model and confirm their well-localized behavior.
Hamilton dynamics for the Lefschetz thimble integration akin to the complex Langevin method
Kenji Fukushima; Yuya Tanizaki
2015-09-11
The Lefschetz thimble method, i.e., the integration along the steepest descent cycles, is an idea to evade the sign problem by complexifying the theory. We discuss that such steepest descent cycles can be identified as ground-state wave-functions of a supersymmetric Hamilton dynamics, which is described with a framework akin to the complex Langevin method. We numerically construct the wave-functions on a grid using a toy model and confirm their well-localized behavior.
Dynamic Complexity Study of Nuclear Reactor and Process Heat Application Integration
J'Tia Patrice Taylor; David E. Shropshire
2009-09-01
Abstract This paper describes the key obstacles and challenges facing the integration of nuclear reactors with process heat applications as they relate to dynamic issues. The paper also presents capabilities of current modeling and analysis tools available to investigate these issues. A pragmatic approach to an analysis is developed with the ultimate objective of improving the viability of nuclear energy as a heat source for process industries. The extension of nuclear energy to process heat industries would improve energy security and aid in reduction of carbon emissions by reducing demands for foreign derived fossil fuels. The paper begins with an overview of nuclear reactors and process application for potential use in an integrated system. Reactors are evaluated against specific characteristics that determine their compatibility with process applications such as heat outlet temperature. The reactor system categories include light water, heavy water, small to medium, near term high-temperature, and far term high temperature reactors. Low temperature process systems include desalination, district heating, and tar sands and shale oil recovery. High temperature processes that support hydrogen production include steam reforming, steam cracking, hydrogen production by electrolysis, and far-term applications such as the sulfur iodine chemical process and high-temperature electrolysis. A simple static matching between complementary systems is performed; however, to gain a true appreciation for system integration complexity, time dependent dynamic analysis is required. The paper identifies critical issues arising from dynamic complexity associated with integration of systems. Operational issues include scheduling conflicts and resource allocation for heat and electricity. Additionally, economic and safety considerations that could impact the successful integration of these systems are considered. Economic issues include the cost differential arising due to an integrated system and the economic allocation of electricity and heat resources. Safety issues include changes in regulatory constraints imposed on the facilities. Modeling and analysis tools, such as System Dynamics for time dependent operational and economic issues and RELAP5 3D for chemical transient affects, are evaluated. The results of this study advance the body of knowledge toward integration of nuclear reactors and process heat applications.
Simulation of the relativistic electron dynamics and acceleration in a linearly-chirped laser pulse
Jisrawi, Najeh M; Salamin, Yousef I
2014-01-01
Theoretical investigations are presented, and their results are discussed, of the laser acceleration of a single electron by a chirped pulse. Fields of the pulse are modeled by simple plane-wave oscillations and a $\\cos^2$ envelope. The dynamics emerge from analytic and numerical solutions to the relativistic Lorentz-Newton equations of motion of the electron in the fields of the pulse. All simulations have been carried out by independent Mathematica and Python codes, with identical results. Configurations of acceleration from a position of rest as well as from injection, axially and sideways, at initial relativistic speeds are studied.
Dynamical characteristics of Rydberg electrons released by a weak electric field
Diesen, Elias; Richter, Martin; Kunitski, Maksim; Dörner, Reinhard; Rost, Jan M
2015-01-01
The dynamics of ultra-slow electrons in the combined potential of an ionic core and a static electric field is discussed. With state-of-the-art detection it is possible to create such electrons through strong intense-field photo-absorption and to detect them via high-resolution time-of-flight spectroscopy despite their very low kinetic energy. The characteristic feature of their momentum spectrum, which emerges at the same position for different laser orientations, is derived and could be revealed experimentally with an energy resolution of the order of 1meV.
Centrifugal separation and equilibration dynamics in an electron-antiproton plasma
G. B. Andresen; M. D. Ashkezari; M. Baquero-Ruiz; W. Bertsche; P. D. Bowe; E. Butler; C. L. Cesar; S. Chapman; M. Charlton; A. Deller; S. Eriksson; J. Fajans; T. Friesen; M. C. Fujiwara; D. R. Gill; A. Gutierrez; J. S. Hangst; W. N. Hardy; M. E. Hayden; A. J. Humphries; R. Hydomako; S. Jonsell; N. Madsen; S. Menary; P. Nolan; A. Olin; A. Povilus; P. Pusa; F. Robicheaux; E. Sarid; D. M. Silveira; C. So; J. W. Storey; R. I. Thompson; D. P. van der Werf; J. S. Wurtele; Y. Yamazaki
2011-04-26
Charges in cold, multiple-species, non-neutral plasmas separate radially by mass, forming centrifugally-separated states. Here, we report the first detailed measurements of such states in an electron-antiproton plasma, and the first observations of the separation dynamics in any centrifugally-separated system. While the observed equilibrium states are expected and in agreement with theory, the equilibration time is approximately constant over a wide range of parameters, a surprising and as yet unexplained result. Electron-antiproton plasmas play a crucial role in antihydrogen trapping experiments.
Controlling high-frequency collective electron dynamics via single-particle complexity
N. Alexeeva; M. T. Greenaway; A. G. Balanov; O. Makarovsky; A. Patanč; M. B. Gaifullin; F. Kusmartsev; T. M. Fromhold
2012-07-21
We demonstrate, through experiment and theory, enhanced high-frequency current oscillations due to magnetically-induced conduction resonances in superlattices. Strong increase in the ac power originates from complex single-electron dynamics, characterized by abrupt resonant transitions between unbound and localized trajectories, which trigger and shape propagating charge domains. Our data demonstrate that external fields can tune the collective behavior of quantum particles by imprinting configurable patterns in the single-particle classical phase space.
Stixrude, Lars
First-principles calculations of the structural, dynamical, and electronic properties of liquid Mg first-principles study,10 the structural, dynamic, and electronic properties of the liquid state are yet, dynamical, and electronic properties of liquid MgO have been investigated over a wide range of pressure 0
On the electron dynamics during island coalescence in asymmetric magnetic reconnection
Cazzola, Emanuele; Markidis, Stefano; Goldman, Martin V; Newman, David L; Lapenta, Giovanni
2015-01-01
We present an analysis of the electron dynamics during rapid island merging in asymmetric magnetic reconnection. We consider a doubly periodic system with two asymmetric transitions. The upper layer is an asymmetric Harris sheet initially perturbed to promote a single reconnection site. The lower layer is a tangential discontinuity that promotes the formation of many X-points, separated by rapidly merging islands. Across both layers the magnetic field and the density have a strong jump, but the pressure is held constant. Our analysis focuses on the consequences of electron energization during island coalescence. We focus first on the parallel and perpendicular components of the electron temperature to establish the presence of possible anisotropies and non-gyrotropies. Thanks to the direct comparison between the two different layers simulated, we can distinguish three main types of behavior characteristic of three different regions of interest. The first type represents the regions where traditional asymmetri...
Dynamics of an electron in a relativistically intense laser field including radiaion reaction
Galkin, A. L., E-mail: galkin@kapella.gpi.ru [Prokhorov General Physics Institute of the Russian Academy of Science (Russian Federation)
2012-08-15
The dynamics of an electron in a relativistically intense laser pulse field is described with the radiation reaction being taken into account. The study is based on solving the Newton equation with the Lorentz and the radiation reaction forces. Validation is provided for an iteration technique which makes it possible to remove the discrepancies found in the theoretical models of radiation reaction. It is demonstrated that an electron having a high initial velocity and colliding head-on with a laser pulse sheds a considerable part of its kinetic energy due to the radiation reaction. A broadening of the electromagnetic pulse emitted by the electron occurs as a result of the same effect. The findings obtained can be used to experimentally verify the effect of radiation reaction.
Integrability and nonintegrability of quantum systems. II. Dynamics in quantum phase space
Zhang, Weimin (Department of Physics, FM-15, University of Washington, Seattle, WA (USA) Department of Physics and Atmospheric Science, Drexel University, Philadelphia, PA (USA)); Feng, D.H.; Yuan, Jianmin (Department of Physics and Atmospheric Science, Drexel University, Philadelphia, PA (USA))
1990-12-15
Based on the concepts of integrability and nonintegrability of a quantum system presented in a previous paper (Zhang, Feng, Yuan, and Wang, Phys. Rev. A 40, 438 (1989)), a realization of the dynamics in the quantum phase space is now presented. For a quantum system with dynamical group {ital G-script} and in one of its unitary irreducible-representation carrier spaces {ital h-german}{sub {Lambda}}, the quantum phase space is a 2{ital M}{sub {Lambda}}-dimensional topological space, where {ital M}{sub {Lambda}} is the quantum-dynamical degrees of freedom. This quantum phase space is isomorphic to a coset space {ital G-script}/{ital H-script} via the unitary exponential mapping of the elementary excitation operator subspace of {ital g-script} (algebra of {ital G-script}), where {ital H-script} ({contained in}{ital G-script}) is the maximal stability subgroup of a fixed state in {ital h-german}{sub {Lambda}}. The phase-space representation of the system is realized on {ital G-script}/{ital H-script}, and its classical analogy can be obtained naturally. It is also shown that there is consistency between quantum and classical integrability. Finally, a general algorithm for seeking the manifestation of quantum chaos'' via the classical analogy is provided. Illustrations of this formulation in several important quantum systems are presented.
Lehman, Brad
of these circuits are being proposed in 30 W 100 W range, and have great potential for telecommunication power670 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 18, NO. 2, MARCH 2003 Integrated Magnetic Full Wave Converter With Flexible Output Inductor Liang Yan, Student Member, IEEE, Dayu Qu, Member, IEEE
CROSSING OF AN INCOHERENT INTEGRAL RESONANCE IN THE ELECTRON RING ACCELERATOR
Pellegrini, Claudio
2008-01-01
CROSSING OF AN INCOHERENT INTEGRAL RESONANCE IN THE ELECTRONCROSSING OF AN I ~JCOHEREl'lT INTEGRAL RJintegral betatron resonance oscillation
Phoha, Vir V.
An Interactive Dynamic Model for Integrating Knowledge Management Methods and Knowledge Sharing Technology in a Traditional Classroom Vir V. Phoha Computer Science Louisiana Tech University Ruston, LA Management methods and Knowledge Sharing technology to integrate the acquisition of skills and relevant
Wopperer, P; Reinhard, P -G; Suraud, E
2014-01-01
Various ways to analyze the dynamical response of clusters and molecules to electromagnetic perturbations exist. Particularly rich information can be obtained from measuring the properties of electrons emitted in the course of the excitation dynamics. Such an analysis of electron signals covers total ionization, Photo-Electron Spectra, Photoelectron Angular Distributions, and ideally combined PES/PAD, with a long history in molecular physics, also increasingly used in cluster physics. Recent progress in the design of new light sources (high intensity and/or frequency, ultra short pulses) opens new possibilities for measurements and thus has renewed the interest on the analysis of dynamical scenarios through these observables, well beyond a simple access to a density of states. This, in turn, has motivated many theoretical investigations of the dynamics of electronic emission for molecules and clusters. A theoretical tool of choice is here Time-Dependent Density Functional Theory (TDDFT) propagated in real tim...
Design method of dynamical decoupling sequences integrated with optimal control theory
Yutaka Tabuchi; Masahiro Kitagawa
2012-08-26
A method for synthesizing dynamical decoupling (DD) sequences is presented, which can tailor these sequences to a given set of qubits, environments, instruments, and available resources using partial information of the system. The key concept behind the generation of the DD sequences involves not only extricating the strong dependence on the coupling strengths according to the "optimal control," but also exploiting the "refocus" technique used conventionally to obtain DD sequences. The concept is a generalized one that integrates optimal control and designing of DD sequences.
Effects of energy loss on interaction dynamics of energetic electrons with plasmas C. K. Li and R for energetic electrons interacting with plasmas. This model rigorously treats the effects of energy loss upon and energy loss--which previous calculations had erroneously treated as independent in cases where
Linear Boltzmann equation as the long time dynamics of an electron weakly coupled to a phonon eld
Linear Boltzmann equation as the long time dynamics of an electron weakly coupled to a phonon #12 that in the weak coupling limit the Wigner distribution of the electron density matrix converges to the solution of the linear Boltzmann equation globally in time. The collision kernel is identi#12;ed as the sum
Boyer, Edmond
Dynamical mean-field theory using Wannier functions: A flexible route to electronic structure materials with different degrees of structural and electronic complexity, SrVO3 and BaVS3, are investigated calculations of strongly correlated materials F. Lechermann,1,2, * A. Georges,1 A. Poteryaev,1 S. Biermann,1 M
Dynamics of Longitudinal Phase-Space Modulations in an rf Compressor for Electron Beams
Venturini, M.; Migliorati, M.; Ronsivalle, C.; Ferrario, M.; Vaccarezza, C.
2010-05-21
Free Electron Lasers (FELs) operating in the UV or x-ray radiation spectrum require peak beam currents that are generally higher than those obtainable by present electron sources, thus making bunch compression necessary. Compression, however, may heighten the effects of collective forces and degrade the beam quality. In this paper they provide a framework for investigating some of these effects in rf compressors by focusing on the longitudinal dynamics of small-amplitude density perturbations, which have the potential to cause the disruptive appearance of the so-called microbunching instability. They develop a linear theory valid for low-to-moderate compression factors under the assumption of a 1D impedance model of longitudinal space charge and provide validation against macroparticle simulations.
Haxton, Dan; Adaniya, Hidihito; Slaughter, Dan; Rudek, B.; Osipov, Timur; Weber, Thorsten; Rescigno, Tom; McCurdy, Bill; Belkacem, Ali
2011-06-08
Following prior work on the lower-energy resonances, we apply techniques of momentum imaging and ab initio scattering calculations to the process of dissociative electron attachment to water via the highest-energy {sup 2}B{sub 2} resonance. We focus on the H{sup -} anion fragment, which is produced via dynamics passing through and avoiding the conical intersection with the lower A{sub 1} state, leading to OH ((sup 2}{Pi}#5;) and OH ({sup 2}{Sigma}#6;), respectively. The momentum imaging technique, when combined with theoretical calculations on the attachment amplitude and dissociation dynamics, demonstrates that the angular distributions provide a signature of the location of the conical intersection in the space of nuclear con#12;gurations.
Abdoli-Arani, A.; Jazi, B. [Department of Photonics, Faculty of Physics, University of Kashan, Kashan (Iran, Islamic Republic of); Shokri, B. [Physics Department and Laser-Plasma Research Institute, G. C. Shahid Beheshti University, Tehran (Iran, Islamic Republic of)
2013-02-15
The dynamics and energy gain of an electron in the field of a transverse magnetic wave propagating inside an elliptical degenerate plasma waveguide is analytically investigated by finding the field components of the TM{sub mr} mode in this waveguide. Besides, by solving the relativistic momentum and energy equations the deflection angle and the acceleration gradient of the electron in the waveguide are obtained. Furthermore, the field components of the hybrid mode and the transferred power in the presence of the magnetic field in this waveguide are found. Also by applying the boundary conditions at the plasma-conductor interface, we calculate the dispersion relation. It is shown that the cutoff frequency of this mode is dependent on the plasma density but independent of the magnetic field. Then, a single-electron model for numerical calculations of the electron deflection angle and acceleration gradient inside the magnetized plasma-filled elliptical waveguide is generally presented to be used as a cascading process for the acceleration purposes.
Interfacial electron transfer dynamics of ru(II)-polypy6ridine sensitized TiO2
Jakubikova, Elena [Los Alamos National Laboratory; Martin, Richard L [Los Alamos National Laboratory; Batista, Enrique R [Los Alamos National Laboratory; Snoeberger, Robert C [YALE UNIV.; Batista, Victor S [YALE UNIV.
2009-01-01
Quantum dynamics simulations combined with density functional theory calculations are applied to study interfacial electron transfer (IET) from pyridine-4-phosphonic acid, [Ru(tpy)(tpy(PO{sub 3}H{sub 2}))]{sup 2+} and [Ru(tpy)(bpy)(H{sub 2}O)-Ru(tpy)(tpy(PO{sub 3}H{sub 2}))]{sup 4+} into the (101) surface of anatase TiO{sub 2}. IET rate from pyridine-4-phosphonic acid attached to the nanoparticle in bidentate mode ({tau} {approx} 100 fs) is an order of magnitude faster than the IET rate of the adsorbate attached in the monodentate mode ({tau} {approx} 1 ps). Upon excitation with visible light, [Ru(tpy)(tpy(PO{sub 3}H{sub 2}))]{sup 2+} attached to TiO{sub 2} in bidentate binding mode will undergo IET with the rate of {approx} 1-10 ps, which is competitive with the excited state decay into the ground state. The probability of electron injection from [Ru(tpy)(bpy)(H{sub 2}O)-Ru(tpy)(tpy(PO{sub 3}H{sub 2}))]{sup 4+} is rather low, as the excitation with visible light localizes the excited electron in the tpy-tpy bridge, which does not have favorable coupling with the TiO{sub 2} nanoparticle. The results are relevant to better understanding of the adsorbate features important for promoting efficient interfacial electron transfer into the semiconductor.
Initial-state dependence of the quench dynamics in integrable quantum systems
Rigol, Marcos [Department of Physics,Georgetown University, Washington, DC 20057 (United States); Fitzpatrick, Mattias [Department of Physics,Georgetown University, Washington, DC 20057 (United States); Department of Physics, Middlebury College, Middlebury, Vermont 05753 (United States)
2011-09-15
We identify and study classes of initial states in integrable quantum systems that, after the relaxation dynamics following a sudden quench, lead to near-thermal expectation values of few-body observables. In the systems considered here, those states are found to be insulating ground states of lattice hard-core boson Hamiltonians. We show that, as a suitable parameter in the initial Hamiltonian is changed, those states become closer to Fock states (products of single site states) as the outcome of the relaxation dynamics becomes closer to the thermal prediction. At the same time, the energy density approaches a Gaussian. Furthermore, the entropy associated with the generalized canonical and generalized grand-canonical ensembles, introduced to describe observables in integrable systems after relaxation, approaches that of the conventional canonical and grand-canonical ensembles. We argue that those classes of initial states are special because a control parameter allows one to tune the distribution of conserved quantities to approach the one in thermal equilibrium. This helps in understanding the approach of all the quantities studied to their thermal expectation values. However, a finite-size scaling analysis shows that this behavior should not be confused with thermalization as understood for nonintegrable systems.
Quantum Chemical Analysis of the Excited State Dynamics of Hydrated Electrons
P. O. J. Scherer; Sighart F. Fischer
2006-02-01
Quantum calculations are performed for an anion water cluster representing the first hydration shell of the solvated electron in solution. The absorption spectra from the ground state, the instant excited states and the relaxed excited states are calculated including CI-SD interactions. Analytic expressions for the nonadiabatic relaxation are presented. It is shown that the 50fs dynamics recently observed after s->p excitation is best accounted for if it is identified with the internal conversion, preceded by an adiabatic relaxation within the excited p state. In addition, transient absorptions found in the infrared are qualitatively reproduced by these calculations .
Hot electron dynamics in graphene (Thesis/Dissertation) | SciTech Connect
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article)lasers (JournalArchitectures.Thesis/Dissertation: Hot electron dynamics
Chen, Yan (Yan Henry), 1976-
2005-01-01
Radio Frequency Identification (RFID) technology, an important component in the enterprise IT infrastructure, must be integrated into the legacy IT system. This thesis studies how RFID technology can be integrated into the ...
Dynamical Stability of an Ion in a Linear Trap as a Solid-State Problem of Electron Localization
G. P. Berman; A. R. Bishop; D. F. V. James; R. J. Hughes; D. I. Kamenev
2000-12-18
When an ion confined in a linear ion trap interacts with a coherent laser field, the internal degrees of freedom, related to the electron transitions, couple to the vibrational degree of freedom of the ion. As a result of this interaction, quantum dynamics of the vibrational degree of freedom becomes complicated, and in some ranges of parameters even chaotic. We analyze the vibrational ion dynamics using a formal analogy with the solid-state problem of electron localization. In particular, we show how the resonant approximation used in analysis of the ion dynamics, leads to a transition from a two-dimensional (2D) to a one-dimensional problem (1D) of electron localization. The localization length in the solid-state problem is estimated in cases of weak and strong interaction between the cites of the 2D cell by using the methods of resonance perturbation theory, common in analysis of 1D time-dependent dynamical systems.
Hua Y. Geng
2014-12-19
A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model, the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4 fold for a two-level implementation, and can be increased to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of $r_{s}=0.912$.
Integrated electronic waste management in Mexico : law, technology and public policy
Gonzalez Llera, Ricardo, 1971-
2004-01-01
What is electronic waste? Why is it considered a problem? What are the public health implications of its mishandling? The electronic industry, a sector that has experienced one of the highest growth rates of the last decade, ...
Micha? Lesiuk; Robert Moszynski
2015-01-08
In this paper we consider calculation of two-centre exchange integrals over Slater-type orbitals (STOs). We apply the Neumann expansion of the Coulomb interaction potential and consider calculation of all basic quantities which appear in the resulting expression. Analytical closed-form equations for all auxiliary quantities have already been known but they suffer from large digital erosion when some of the parameters are large or small. We derive two differential equations which are obeyed by the most di?cult basic integrals. Taking them as a starting point, useful series expansions for small parameter values or asymptotic expansions for large parameter values are systematically derived. The resulting novel expansions replace the corresponding analytical expressions when the latter introduce significant cancellations. Additionally, we reconsider numerical integration of some necessary quantities and present a new way to calculate the integrand with a controlled precision. All proposed methods are combined to lead to a general, stable algorithm. We perform extensive numerical tests of the introduced expressions to verify their validity and usefulness. Advances reported here provide methodology to compute two-electron exchange integrals over STOs for a broad range of the nonlinear parameters and large angular momenta.
Quantum path integral molecular dynamics simulations on transport properties of dense liquid helium
Kang, Dongdong; Sun, Huayang; Yuan, Jianmin
2015-01-01
Transport properties of dense liquid helium under the conditions of planet's core and cool atmosphere of white dwarfs have been investigated by using the improved centroid path-integral simulations combined with density functional theory. The self-diffusion is largely higher and the shear viscosity is notably lower predicted with the quantum mechanical description of the nuclear motion compared with the description by Newton equation. The results show that nuclear quantum effects (NQEs), which depends on the temperature and density of the matter via the thermal de Broglie wavelength and the ionization of electrons, are essential for the transport properties of dense liquid helium at certain astrophysical conditions. The Stokes-Einstein relation between diffusion and viscosity in strongly coupled regime is also examined to display the influences of NQEs.
Magnetization dynamics: path-integral formalism for the stochastic Landau-Lifshitz-Gilbert equation
Camille Aron; Daniel G. Barci; Leticia F. Cugliandolo; Zochil Gonzalez Arenas; Gustavo S. Lozano
2014-12-31
We construct a path-integral representation of the generating functional for the dissipative dynamics of a classical magnetic moment as described by the stochastic generalization of the Landau-Lifshitz-Gilbert equation proposed by Brown, with the possible addition of spin-torque terms. In the process of constructing this functional in the Cartesian coordinate system, we critically revisit this stochastic equation. We present it in a form that accommodates for any discretization scheme thanks to the inclusion of a drift term. The generalized equation ensures the conservation of the magnetization modulus and the approach to the Gibbs-Boltzmann equilibrium in the absence of non-potential and time-dependent forces. The drift term vanishes only if the mid-point Stratonovich prescription is used. We next reset the problem in the more natural spherical coordinate system. We show that the noise transforms non-trivially to spherical coordinates acquiring a non-vanishing mean value in this coordinate system, a fact that has been often overlooked in the literature. We next construct the generating functional formalism in this system of coordinates for any discretization prescription. The functional formalism in Cartesian or spherical coordinates should serve as a starting point to study different aspects of the out-of-equilibrium dynamics of magnets. Extensions to colored noise, micro-magnetism and disordered problems are straightforward.
Adediran, Adeoti Taiwo
2004-09-30
conversion is to be utilized to convert alternating current (AC) generation to direct current (DC) distribution. As state-of-the-art power electronics, the Navy plans to use power electronic building blocks (PEBB) technology in its IPS. A U.S. naval shipboard...
E. N. Egorov; A. E. Hramov
2006-06-27
The effect of the strength of the focusing magnetic field on chaotic dynamic processes occurring inan electron beam with a virtual cathode, as well as on the processes whereby the structures form in the beamand interact with each other, is studied by means of two-dimensional numerical simulations based on solving a self-consistent set of Vlasov-Maxwell equations. It is shown that, as the focusing magnetic field is decreased,the dynamics of an electron beam with a virtual cathode becomes more complicated due to the formation andinteraction of spatio-temporal longitudinal and transverse structures in the interaction region of a vircator. The optimum efficiency of the interaction of an electron beam with the electromagnetic field of the vircator isachieved at a comparatively weak external magnetic field and is determined by the fundamentally two-dimensional nature of the motion of the beam electrons near the virtual cathode.
Boyer, Edmond
University of Arak, Arak, Iran The motion of a relativistic test electron in a free-electron laser dynamics in free-electron lasers with coaxial wiggler B. Farokhi and S. Mobarakabadi Islamic Azad orbits. Earlier investigations of chaos in free electron lasers have focused on chaotic behavior
Jan L. Cie?li?ski; Anatolij K. Prykarpatski
2014-03-27
We investigate discretizations of the integrable discrete nonlinear Schr\\"odinger dynamical system and related symplectic structures. We develop an effective scheme of invariant reducing the corresponding infinite system of ordinary differential equations to an equivalent finite system of ordinary differential equations with respect to the evolution parameter. We construct a finite set of recurrent algebraic regular relations allowing to generate solutions of the discrete nonlinear Schr\\"odinger dynamical system and we discuss the related functional spaces of solutions. Finally, we discuss the Fourier transform approach to studying the solution set of the discrete nonlinear Schr\\"odinger dynamical system and its functional-analytical aspects.
Dabhi, Shweta D. [Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar 364001 (India); Gupta, Sanjay D. [V. B. Institute of Science, Department of Physics, C. U. Shah University, Wadhwan City - 363030, Surendranagar (India); Jha, Prafulla K., E-mail: prafullaj@yahoo.com [Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390002 (India)
2014-05-28
We report the results of a theoretical study on the structural, electronic, mechanical, and vibrational properties of some graphene oxide models (GDO, a-GMO, z-GMO, ep-GMO and mix-GMO) at ambient pressure. The calculations are based on the ab-initio plane-wave pseudo potential density functional theory, within the generalized gradient approximations for the exchange and correlation functional. The calculated values of lattice parameters, bulk modulus, and its first order pressure derivative are in good agreement with other reports. A linear response approach to the density functional theory is used to derive the phonon frequencies. We discuss the contribution of the phonons in the dynamical stability of graphene oxides and detailed analysis of zone centre phonon modes in all the above mentioned models. Our study demonstrates a wide range of energy gap available in the considered models of graphene oxide and hence the possibility of their use in nanodevices.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Zhang, Meng; Charles, River; Tong, Huimin; Zhang, Lei; Patel, Mili; Wang, Francis; Rames, Matthew J.; Ren, Amy; Rye, Kerry-Anne; Qiu, Xiayang; et al
2015-03-04
Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobicmore »environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL.« less
Dynamics of soft Nanomaterials captured by transmission electron microscopy in liquid water
Proetto, Maria T.; Rush, Anthony M.; Chien, Miao-Ping; Abellan Baeza, Patricia; Patterson, Joseph P.; Thompson, Matthew P.; Olson, Norman H.; Moore, Curtis E.; Rheingold, Arnold L.; Andolina, Christopher; Millstone, Jill; Howell, Stephen B.; Browning, Nigel D.; Evans, James E.; Gianneschi, Nathan C.
2014-01-14
In this paper we present in situ transmission electron microscopy (TEM) of soft, synthetic nanoparticles with a comparative analysis using conventional TEM methods. This comparison is made with the simple aim of describing what is an unprecedented example of in situ imaging by TEM. However, we contend the technique will quickly become essential in the characterization of analogous systems, especially where dynamics are of interest in the solvated state. In this case, particles were studied which were obtained from the direct polymerization of an oxaliplatin analog, designed for an ongoing program in novel chemotherapeutic delivery systems. The resulting nanoparticles provided sufficient contrast for facile imaging in situ, and point toward key design parameters that enable this new characterization approach for organic nanomaterials. We describe the preparation of the synthetic micellar nanoparticles to- gether with their characterization in liquid water.
Movileanu, Liviu
Utilization of Smart Materials and Predictive Modeling to Integrate Intracellular Dynamics polarization will be induced in individual cells using "smart substrates" and patterns in intracellular important structures inside cells. New "smart" material will be used to trigger changes to cell movement
Prinari, Barbara
Dynamics of PDE, Vol.1, No.3, 239-299, 2004 Integrable Nonlinear Schr¨odinger Systems 16, 2004. Abstract. Nonlinear Schr¨odinger (NLS) systems are important examples of physically; Secondary 78. Key words and phrases. Nonlinear Schr¨odinger systems, inverse scattering transform, soliton
Mendive-Tapia, David; Vacher, Morgane; Bearpark, Michael J.; Robb, Michael A.
2013-07-28
Coupled electron-nuclear dynamics, implemented using the Ehrenfest method, has been used to study charge migration with fixed nuclei, together with charge transfer when nuclei are allowed to move. Simulations were initiated at reference geometries of neutral benzene and 2-phenylethylamine (PEA), and at geometries close to potential energy surface crossings in the cations. Cationic eigenstates, and the so-called sudden approximation, involving removal of an electron from a correlated ground-state wavefunction for the neutral species, were used as initial conditions. Charge migration without coupled nuclear motion could be observed if the Ehrenfest simulation, using the sudden approximation, was started near a conical intersection where the states were both strongly coupled and quasi-degenerate. Further, the main features associated with charge migration were still recognizable when the nuclear motion was allowed to couple. In the benzene radical cation, starting from the reference neutral geometry with the sudden approximation, one could observe sub-femtosecond charge migration with a small amplitude, which results from weak interaction with higher electronic states. However, we were able to engineer large amplitude charge migration, with a period between 10 and 100 fs, corresponding to oscillation of the electronic structure between the quinoid and anti-quinoid cationic electronic configurations, by distorting the geometry along the derivative coupling vector from the D{sub 6h} Jahn-Teller crossing to lower symmetry where the states are not degenerate. When the nuclear motion becomes coupled, the period changes only slightly. In PEA, in an Ehrenfest trajectory starting from the D{sub 2} eigenstate and reference geometry, a partial charge transfer occurs after about 12 fs near the first crossing between D{sub 1}, D{sub 2} (N{sup +}-Phenyl, N-Phenyl{sup +}). If the Ehrenfest propagation is started near this point, using the sudden approximation without coupled nuclear motion, one observes an oscillation of the spin density – charge migration – between the N atom and the phenyl ring with a period of 4 fs. When the nuclear motion becomes coupled, this oscillation persists in a damped form, followed by an effective charge transfer after 30 fs.
Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics
Kang, Jin Sung
2012-01-01
to integrate thin-film solar cells and batteries (2)methods for thin-film solar cells and batteries (4) Developamorphous silicon thin-film solar cell. Part number TX3-25
The University of New Mexico An NSF Integrative Graduate
New Mexico, University of
chemical calculations are capable to describe the electronic structure and complex dynamics in such complex ligands on the electronic structure and observe strong surface-ligand interactions leading to formation.chtm.unm.edu/incbnigert/ Integrating Nanotechnology with Cell Biology and Neuroscience Excited State Dynamics and Energy Transfer
Ballal, Hrishikesh
2009-01-01
Electronic waste (e-waste) is a rapidly growing problem as well as a business opportunity given the huge volume that is generated. While there are a number policies and philosophies that guide end-of-life handling of ...
Electronic Data Discovery: Integrating Due Process into CyberForensic Practice
Bagby, John
management (ERM) practices. Eventually every company, not-for-profit (NFP), non-governmental organization is so pivotal in litigation. The costs of electronic records management (ERM) and of responding
Tentzeris, Manos
. Tentzeris Georgia Electronic Design Center, School of Electrical and Computer Engineering, Georgia Institute friendly but can also undergo large reel to reel processing and is one of the cheapest materials known
Drabold, David
]. The electronic structure calculations are based upon "FIREBALL96" of Sankey and co-workers [7]. Mat. Res. Soc of the electron dynamics of localized edge states in a-Si at room temperature by integrating the time dependent be computed by directly dealing with the electron dynamics from the time- dependent SchrĂ¶dinger equation
Demkin, V. P.; Mel'nichuk, S. V.
2014-09-15
In the present work, results of investigations into the dynamics of secondary electrons with helium atoms in the presence of the reverse electric field arising in the flare of a high-voltage pulsed beam-type discharge and leading to degradation of the primary electron beam are presented. The electric field in the discharge of this type at moderate pressures can reach several hundred V/cm and leads to considerable changes in the kinetics of secondary electrons created in the process of propagation of the electron beam generated in the accelerating gap with a grid anode. Moving in the accelerating electric field toward the anode, secondary electrons create the so-called compensating current to the anode. The character of electron motion and the compensating current itself are determined by the ratio of the field strength to the concentration of atoms (E/n). The energy and angular spectra of secondary electrons are calculated by the Monte Carlo method for different ratios E/n of the electric field strength to the helium atom concentration. The motion of secondary electrons with threshold energy is studied for inelastic collisions of helium atoms and differential analysis is carried out of the collisional processes causing energy losses of electrons in helium for different E/n values. The mechanism of creation and accumulation of slow electrons as a result of inelastic collisions of secondary electrons with helium atoms and selective population of metastable states of helium atoms is considered. It is demonstrated that in a wide range of E/n values the motion of secondary electrons in the beam-type discharge flare has the character of drift. At E/n values characteristic for the discharge of the given type, the drift velocity of these electrons is calculated and compared with the available experimental data.
Integrated two-dimensional simulations of dynamic hohlraum driven inertial fusion capsule implosions
Slutz, S. A.; Peterson, K. J.; Vesey, R. A.; Lemke, R. W.; Bailey, J. E.; Varnum, W.; Ruiz, C. L.; Cooper, G. W.; Chandler, G. A.; Rochau, G. A.; Mehlhorn, T. A. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1186 (United States)
2006-10-15
Simulations have been useful for improving the design of dynamic hohlraums for the purpose of imploding inertial fusion capsules [S. A. Slutz, J. E. Bailey, G. A. Chandler et al., Phys. Plasmas 10, 1875 (2003)]. These design changes, which have resulted in capsule implosions with hot dense cores [J. E. Bailey, G. A. Chandler, S. A. Slutz et al., Phys. Rev. Lett. 92, 085002 (2004)] and the production of thermonuclear neutrons [C. L. Ruiz, G. Cooper, S. A. Slutz et al., Phys. Rev. Lett. 93, 015001 (2005)], were based primarily on a series of one-dimensional numerical simulations, which treated the dynamic hohlraum and the capsule implosion separately. In this paper we present simulations which are fully integrated to include the implosion of wire arrays onto foam convertors, the implosion of the capsule imbedded in the foam, and the absorption of radiation into the electrodes. These simulations yield predictions that are in remarkably good agreement with measured values considering the complexity of the problem, which spans more than 100 ns of wire implosion with the subsequent capsule implosion on a few ns timescale. For example, the predicted neutron yields are less than a factor of 2 higher than the measured values, while the predicted shock velocity is about 30% higher than the measured value. The spectroscopically inferred imploded capsule gas core temperatures are somewhat lower than predicted by the simulations, while the gas densities are about a factor of 2 higher. Simulations indicate that a more slowly rising radiation drive temperature yields higher core densities and lower temperatures and thus better agreement with experimental measurements. Possible reasons for a more slowly rising radiation drive are discussed.
Fischer, Ingo
IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 42, NO. 4, APRIL 2006 381 Self-Pulsation Dynamics in Narrow Stripe Semiconductor Lasers Pascal Landais, Member, IEEE, Stephen A. Lynch, Senior Member, IEEE, James O'Gorman, Ingo Fischer, and Wolfgang Elsäßer, Senior Member, IEEE Abstract--In this paper, we
van Stokkum, Ivo
J. Phys. Chem. 1994, 98, 10539-10549 10539 Excited-State Conformational Dynamics of Flexibly and Semirigidly Bridged Electron Donor- Acceptor Systems in Solution. Influence of Temperature and Solvent was either a flexible trimethylene chain or a semirigid piperidine ring. Photoexcitation of the semirigidly
Jeffrey, C; Prosser, S; Lickess, M; Richardson, A; Riches, S
2011-01-01
This paper presents an innovative application of EDAA - European design and Automation Association 1149.4 and the Integrated Diagnostic Reconfiguration (IDR) as tools for the implementation of an embedded test solution for an Automotive Electronic Control Unit implemented as a fully integrated mixed signal system. The paper described how the test architecture can be used for fault avoidance with results from a hardware prototype presented. The paper concludes that fault avoidance can be integrated into mixed signal electronic systems to handle key failure modes.
Electronic unit integrated into a flexible polymer body (Patent) | SciTech
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) | SciTech(Journal Article)at the Linaclong-rangeConnect Electronic
Novel scanning electron microscope bulge test technique integrated with loading function
Li, Chuanwei; Xie, Huimin E-mail: xiehm@mail.tsinghua.edu.cn; Liu, Zhanwei E-mail: xiehm@mail.tsinghua.edu.cn
2014-10-15
Membranes and film-on-substrate structures are critical elements for some devices in electronics industry and for Micro Electro Mechanical Systems devices. These structures are normally at the scale of micrometer or even nanometer. Thus, the measurement for the mechanical property of these membranes poses a challenge over the conventional measurements at macro-scales. In this study, a novel bulge test method is presented for the evaluation of mechanical property of micro thin membranes. Three aspects are discussed in the study: (a) A novel bulge test with a Scanning Electron Microscope system realizing the function of loading and measuring simultaneously; (b) a simplified Digital Image Correlation method for a height measurement; and (c) an imaging distortion correction by the introduction of a scanning Moiré method. Combined with the above techniques, biaxial modulus as well as Young's modulus of the polyimide film can be determined. Besides, a standard tensile test is conducted as an auxiliary experiment to validate the feasibility of the proposed method.
Shan, Hongzhan; Austin, Brian M.; De Jong, Wibe A.; Oliker, Leonid; Wright, Nicholas J.; Apra, Edoardo
2014-10-01
Attaining performance in the evaluation of two-electron repulsion integrals and constructing the Fock matrix is of considerable importance to the computational chemistry community. Due to its numerical complexity improving the performance behavior across a variety of leading supercomputing platforms is an increasing challenge due to the significant diversity in high-performance computing architectures. In this paper, we present our successful tuning methodology for these important numerical methods on the Cray XE6, the Cray XC30, the IBM BG/Q, as well as the Intel Xeon Phi. Our optimization schemes leverage key architectural features including vectorization and simultaneous multithreading, and results in speedups of up to 2.5x compared with the original implementation.
Multiscale Gyrokinetics for Rotating Tokamak Plasmas II: Reduced Models for Electron Dynamics
Abel, I G
2012-01-01
In this paper, we extend the multiscale approch developed in [Abel et. al., Rep. Prog. Phys., in press] by exploiting the scale separation between ions and the electrons. The gyrokinetic equation is expanded in powers of the electron to ion mass ratio, which provides a rigorous method for deriving the reduced electron model. We prove that ion-scale electromagnetic turbulence cannot change the magnetic topology, and argue that to lowest order the magnetic field lies on fluctuating flux surfaces. These flux surfaces are used to construct magnetic coordinates, and in these coordinates a closed system of equations for the electron response to ion-scale turbulence is derived. All fast electron timescales have been eliminated from these equations. We also use these magnetic surfaces to construct transport equations for electrons and for electron heat in terms of the reduced electron model.
Electron fishbone dynamics studies in tokamaks using the XHMGC code , S. Briguglio1
Vlad, Gregorio
by suprathermal electrons. Ion fish- bones were first observed experimentally (PDX) [1], opening the path to full
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear ProfileMultiferroicAward | DepartmentElectron thermal
Cai, D; Snell, C M; Beardmore, K M; Cai, David; Gronbech-Jensen, Niels; Snell, Charles M.; Beardmore, Keith M.
1996-01-01
It is crucial to have a good phenomenological model of electronic stopping power for modeling the physics of ion implantation into crystalline silicon. In the spirit of the Brandt-Kitagawa effective charge theory, we develop a model for electronic stopping power for an ion, which can be factorized into (i) a globally averaged effective charge taking into account effects of close and distant collisions by target electrons with the ion, and (ii) a local charge density dependent electronic stopping power for a proton. This phenomenological model is implemented into both molecular dynamics and Monte Carlo simulations. There is only one free parameter in the model, namely, the one electron radius rs0 for unbound electrons. By fine tuning this parameter, it is shown that the model can work successfully for both boron and arsenic implants. We report that the results of the dopant profile simulation for both species are in excellent agreement with the experimental profiles measured by secondary-ion mass spectrometry(...
Miyagi, Haruhide; Bojer Madsen, Lars [Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C (Denmark)] [Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C (Denmark)
2014-04-28
The time-dependent restricted-active-space self-consistent-field singles (TD-RASSCF-S) method is presented for investigating TD many-electron dynamics in atoms and molecules. Adopting the SCF notion from the muticonfigurational TD Hartree-Fock (MCTDHF) method and the RAS scheme (single-orbital excitation concept) from the TD configuration-interaction singles (TDCIS) method, the TD-RASSCF-S method can be regarded as a hybrid of them. We prove that, for closed-shell N{sub e}-electron systems, the TD-RASSCF-S wave function can be fully converged using only N{sub e}/2 + 1 ? M ? N{sub e} spatial orbitals. Importantly, based on the TD variational principle, the converged TD-RASSCF-S wave function with M = N{sub e} is more accurate than the TDCIS wave function. The accuracy of the TD-RASSCF-S approach over the TDCIS is illustrated by the calculation of high-order harmonic generation spectra for one-dimensional models of atomic helium, beryllium, and carbon in an intense laser pulse. The electronic dynamics during the process is investigated by analyzing the behavior of electron density and orbitals. The TD-RASSCF-S method is accurate, numerically tractable, and applicable for large systems beyond the capability of the MCTDHF method.
Integrating high-precision U-Pb geochronologic data with dynamic models of earth processes
Blackburn, Terrence (Terrence Joseph)
2012-01-01
Radioisotopic dating can provide critical constraints for understanding the rates of tectonic, dynamic and biologic processes operating on our planet. Improving the interpretation and implementation of geochronologic data ...
Dynamic Supernetworks for the Co-Evolution and Emergence of Integrated Social and
Nagurney, Anna
Internet Transportation/logistical networks Other infrastructure networks such as Energy/Power networks, logistical, and/or financial networks. They may be multilevel as when they formalize the study of supply-Making Supply Chain Networks with Electronic Commerce Financial Networks with Electronic Transactions Reverse
Morozovska, Anna N.; Morozovsky, Nicholas V.; Eliseev, Eugene A.; Varenyk, Olexandr V.; Kim, Yunseok; Strelcov, Evgheni; Tselev, Alexander; Kalinin, Sergei V.
2014-08-14
We performed self-consistent modelling of nonlinear electrotransport and electromechanical response of thin films of mixed ionic-electronic conductors (MIEC) allowing for steric effects of mobile charged defects (ions, protons, or vacancies), electron degeneration, and Vegard stresses. We establish correlations between the features of the nonlinear space-charge dynamics, current-voltage, and bending-voltage curves for different types of the film electrodes. A pronounced ferroelectric-like hysteresis of the bending-voltage loops and current maxima on the double hysteresis current-voltage loops appear for the electron-transport electrodes. The double hysteresis loop with pronounced humps indicates a memristor-type resistive switching. The switching occurs due to the strong nonlinear coupling between the electronic and ionic subsystems. A sharp meta-stable maximum of the electron density appears near one open electrode and moves to another one during the periodic change of applied voltage. Our results can explain the nonlinear nature and correlation of electrical and mechanical memory effects in thin MIEC films. The analytical expression proving that the electrically induced bending of MIEC films can be detected by interferometric methods is derived.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Canton, Sophie E.; Kjćr, Kasper S.; Vankó, György; van Driel, Tim B.; Adachi, Shin -ichi; Bordage, Amélie; Bressler, Christian; Chabera, Pavel; Christensen, Morten; Dohn, Asmus O.; et al
2015-03-02
Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances.more »Thus experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined.« less
Chen, Ray
, cost-effective roll-to-roll fabrication of electronic and photonic sys- tems on flexible substrates has-board optical interconnects using microlens integrated 45 mir- ror couplers compatible with the roll-to-roll-temperature process and wet- coating process of large areas suitable for almost all kinds of substrates are key
A Dynamic Market Mechanism for Integration of Renewables and Demand Response
Knudsen, Jesper
2015-04-21
The most formidable challenge in assembling a Smart Grid is the integration of a high penetration of renewables. Demand Response, a largely promising concept, is increasingly discussed as a means to cope with the intermittent ...
Wolf, Martin
, and transport effects E. Knoesel, A. Hotzel, and M. Wolf Fritz-Haber-Institut der MPG, Faradayweg 4-6, D-14195 calculation, a simulation of the ballistic transport effect and its implication on the observed electron process for a hot electron is scattering with a ``cold'' elec- tron below the Fermi level, because
Yu, J. M.; Balbuena, P. B.; Budzien, J. L.; Leung, Kevin
2011-02-22
We applied static and dynamic hybrid functional density functional theory (DFT) calculations to study the interactions of one and two excess electrons with ethylene carbonate (EC) liquid and clusters. Optimal structures of (EC)_{n} and (EC)_{n}^{-} clusters devoid of Li_{+} ions, n = 1–6, were obtained. The excess electron was found to be localized on a single EC in all cases, and the EC dimeric radical anion exhibits a reduced barrier associated with the breaking of the ethylene carbon–oxygen covalent bond compared to EC_{-}. In ab initio molecular dynamics (AIMD) simulations of EC_{-} solvated in liquid EC, large fluctuations in the carbonyl carbon–oxygen bond lengths were observed. AIMD simulations of a two-electron attack on EC in EC liquid and on Li metal surfaces yielded products similar to those predicted using nonhybrid DFT functionals, except that CO release did not occur for all attempted initial configurations in the liquid state.
Polis, Gary A.; Anderson, Wendy B.; Holt, Robert D.
1997-01-01
We focus on the implications of movement, landscape variables, and spatial heterogeneity for food web dynamics. Movements of nutrients, detritus, prey, and consumers among habitats are ubiquitous in diverse biomes and can ...
Integrated method to create optimal dynamic strategic plans for corporate technology start-ups
Mikati, Samir Omar
2009-01-01
This thesis presents an innovative method for evaluating and dynamically planning the development of uncertain technology investments. Its crux centers on a paradigm shift in the way managers assess investments, toward an ...
Zhai, Zhiqiang, 1971-
2003-01-01
Building energy simulation (ES) and computational fluid dynamics (CFD) can play important roles in building design by providing essential information to help design energy-efficient, thermally comfortable and healthy ...
Electron beam dynamics in the long-pulse, high-current DARHT-II linear induction accelerator
Ekdahl, Carl A; Abeyta, Epifanio O; Aragon, Paul; Archuleta, Rita; Cook, Gerald; Dalmas, Dale; Esquibel, Kevin; Gallegos, Robert A; Garnett, Robert; Harrison, James F; Johnson, Jeffrey B; Jacquez, Edward B; Mccuistian, Brian T; Montoya, Nicholas A; Nath, Subrato; Nielsen, Kurt; Oro, David; Prichard, Benjamin; Rowton, Lawrence; Sanchez, Manolito; Scarpetti, Raymond; Schauer, Martin M; Seitz, Gerald; Schulze, Martin; Bender, Howard A; Broste, William B; Carlson, Carl A; Frayer, Daniel K; Johnson, Douglas E; Tom, C Y; Williams, John; Hughes, Thomas; Anaya, Richard; Caporaso, George; Chambers, Frank; Chen, Yu - Jiuan; Falabella, Steve; Guethlein, Gary; Raymond, Brett; Richardson, Roger; Trainham, C; Weir, John; Genoni, Thomas; Toma, Carsten
2009-01-01
The DARHT-II linear induction accelerator (LIA) now accelerates 2-kA electron beams to more than 17 MeV. This LIA is unique in that the accelerated current pulse width is greater than 2 microseconds. This pulse has a flat-top region where the final electron kinetic energy varies by less than 1% for more than 1.5 microseconds. The long risetime of the 6-cell injector current pulse is 0.5 {micro}s, which can be scraped off in a beam-head cleanup zone before entering the 68-cell main accelerator. We discuss our experience with tuning this novel accelerator; and present data for the resulting beam transport and dynamics. We also present beam stability data, and relate these to previous stability experiments at lower current and energy.
Hyeon-Deuk, Kim; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 ; Ando, Koji
2014-05-07
Liquid para-hydrogen (p-H{sub 2}) is a typical quantum liquid which exhibits strong nuclear quantum effects (NQEs) and thus anomalous static and dynamic properties. We propose a real-time simulation method of wave packet (WP) molecular dynamics (MD) based on non-empirical intra- and inter-molecular interactions of non-spherical hydrogen molecules, and apply it to condensed-phase p-H{sub 2}. The NQEs, such as WP delocalization and zero-point energy, are taken into account without perturbative expansion of prepared model potential functions but with explicit interactions between nuclear and electron WPs. The developed MD simulation for 100 ps with 1200 hydrogen molecules is realized at feasible computational cost, by which basic experimental properties of p-H{sub 2} liquid such as radial distribution functions, self-diffusion coefficients, and shear viscosities are all well reproduced.
Beam dynamics study of a 30?MeV electron linear accelerator to drive a neutron source
Kumar, Sandeep; Yang, Haeryong; Kang, Heung-Sik
2014-02-14
An experimental neutron facility based on 32?MeV/18.47?kW electron linac has been studied by means of PARMELA simulation code. Beam dynamics study for a traveling wave constant gradient electron accelerator is carried out to reach the preferential operation parameters (E?=?30?MeV, P?=?18?kW, dE/E?electron energy is required to produce acceptable neutron flux. The final neutron flux is estimated to be 5?×?10{sup 11}?n/cm{sup 2}/s/mA. Future development will be the real design of a 30?MeV electron linac based on S band traveling wave.
Buß, J. H.; Schaefer, A.; Hägele, D.; Rudolph, J. [Arbeitsgruppe Spektroskopie der kondensierten Materie, Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum (Germany); Schupp, T.; As, D. J. [Department of Physics, University of Paderborn, Warburger Str. 100, D-33095 Paderborn (Germany)
2014-11-03
The electron spin dynamics in n-doped bulk cubic GaN is investigated for very high temperatures from 293?K up to 500?K by time-resolved Kerr-rotation spectroscopy. We find extraordinarily long spin lifetimes exceeding 1?ns at 500?K. The temperature dependence of the spin relaxation time is in qualitative agreement with predictions of Dyakonov-Perel theory, while the absolute experimental times are an order of magnitude shorter than predicted. Possible reasons for this discrepancy are discussed, including the role of phase mixtures of hexagonal and cubic GaN as well as the impact of localized carriers.
Dynamic stability of the Solar System: Statistically inconclusive results from ensemble integrations
Zeebe, Richard E
2015-01-01
Due to the chaotic nature of the Solar System, the question of its long-term stability can only be answered in a statistical sense, for instance, based on numerical ensemble integrations of nearby orbits. Destabilization of the inner planets, leading to close encounters and/or collisions can be initiated through a large increase in Mercury's eccentricity, with a currently assumed likelihood of ~1%. However, little is known at present about the robustness of this number. Here I report ensemble integrations of the full equations of motion of the eight planets and Pluto over 5 Gyr, including contributions from general relativity. The results show that different numerical algorithms lead to statistically different results for the evolution of Mercury's eccentricity (eM). For instance, starting at present initial conditions (eM ~= 0.21), Mercury's maximum eccentricity achieved over 5 Gyr is on average significantly higher in symplectic ensemble integrations using heliocentricthan Jacobi coordinates and stricter er...
Naseer Ahmed; Muhammad Usman
2007-09-28
Based on the d'Alembert-Lagrange-Poincar\\'{e} variational principle, we formulate general equations of motion for mechanical systems subject to nonlinear nonholonomic constraints, that do not involve Lagrangian undetermined multipliers. We write these equations in a canonical form called the Poincar\\'{e}-Hamilton equations, and study a version of corresponding Poincar\\'{e}-Cartan integral invariant which are derived by means of a type of asynchronous variation of the Poincar\\'{e} variables of the problem that involve the variation of the time. As a consequence, it is shown that the invariance of a certain line integral under the motion of a mechanical system of the type considered characterizes the Poincar\\'{e}-Hamilton equations as underlying equations of the motion. As a special case, an invariant analogous to Poincar\\'{e} linear integral invariant is obtained.
Effects of disorder on electron spin dynamics in a semiconductor quantum well
Loss, Daniel
characterizes the disorder potential. Using our knowledge of the DOS, a simple model estimates the temperature-doped semiconductors2,3 . Previous work also suggested that the spin dephasing rate of the electrons is suppressed
Dynamic electron correlation in interactions of light with matter formulated in b-space
Lev Kaplan; J. H. McGuire
2015-09-02
Scattering of beams of light and matter from multi-electron atomic targets is formulated in the position representation of quantum mechanics. This yields expressions for the probability amplitude, a(b), for a wide variety of processes. Here the spatial parameter b is the distance of closest approach of incoming particles traveling on a straight line with the center of the atomic target. The correlated probability amplitude, a(b), reduces to a relatively simple product of single electron probability amplitudes in the widely used independent electron approximation limit, where the correlation effects of the Coulomb interactions between the atomic electrons disappear. As an example in which a(b} has an explicit dependence on b}, we consider transversely finite vortex beams of twisted photons that lack the translational invariance of infinite plane-wave beams. Some experimental considerations and future applications are briefly considered.
Electron dynamics of the buffer layer and bilayer graphene on SiC
Shearer, Alex J.; Caplins, Benjamin W.; Suich, David E.; Harris, Charles B., E-mail: cbharris@berkeley.edu [Department of Chemistry, University of California at Berkeley, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Johns, James E. [Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455 (United States); Hersam, Mark C. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States)
2014-06-09
Angle- and time-resolved two-photon photoemission (TPPE) was used to investigate electronic states in the buffer layer of 4H-SiC(0001). An image potential state (IPS) series was observed on this strongly surface-bound buffer layer, and dispersion measurements indicated free-electron-like behavior for all states in this series. These results were compared with TPPE taken on bilayer graphene, which also show the existence of a free-electron-like IPS series. Lifetimes for the n?=?2, and n?=?3 states were obtained from time-resolved TPPE; slightly increased lifetimes were observed in the bilayer graphene sample for the n?=?2 the n?=?3 states. Despite the large band gap of graphene at the center of the Brillouin zone, the lifetime results demonstrate that the graphene layers do not behave as a simple tunneling barrier, suggesting that the buffer layer and graphene overlayers play a direct role in the decay of IPS electrons.
Longitudinal Dynamics of Twin Electron Bunches in a High-energy Linac
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Zhang, Zhen [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Tsinghua University, Beijing (China); Ding, Yuantao [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Marinelli, Agostino [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Huang, Zhirong [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
2015-03-01
The recent development of two-color x-ray free-electron lasers, as well as the successful demonstration of high-gradient witness bunch acceleration in a plasma, have generated strong interest in electron bunch trains, where two or more electron bunches are generated, accelerated and compressed in the same accelerating bucket. In this paper we give a detailed analysis of a twin-bunch technique in a high-energy linac. This method allows the generation of two electron bunches with high peak current and independent control of time delay and energy separation. We #12;find that the wake#12;fields in the accelerator structures play an important role in the twin-bunch compression, and through analysis show that they can be used to extend the available time delay range. Based on the theoretical model and simulations we propose several methods to achieve larger time delay.
Longitudinal Dynamics of Twin Electron Bunches in a High-energy Linac
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Zhang, Zhen; Tsinghua University, Beijing; Ding, Yuantao; Marinelli, Agostino; Huang, Zhirong
2015-03-01
The recent development of two-color x-ray free-electron lasers, as well as the successful demonstration of high-gradient witness bunch acceleration in a plasma, have generated strong interest in electron bunch trains, where two or more electron bunches are generated, accelerated and compressed in the same accelerating bucket. In this paper we give a detailed analysis of a twin-bunch technique in a high-energy linac. This method allows the generation of two electron bunches with high peak current and independent control of time delay and energy separation. We #12;find that the wake#12;fields in the accelerator structures play an important role in the twin-bunchmore »compression, and through analysis show that they can be used to extend the available time delay range. Based on the theoretical model and simulations we propose several methods to achieve larger time delay.« less
Aqueous systems from first-principles : structure, dynamics and electron-transfer reactions
Sit, Patrick Hoi Land
2006-01-01
In this thesis, we show for the first time how it is possible to calculated fully from first-principles the diabatic free-energy surfaces of electron-transfer reactions. The excitation energy corresponding to the transfer ...
Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon, E-mail: shs3@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States)] [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States)
2014-01-21
The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents for a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible systems.
Integrating Models and Simulations of Continuous Dynamics into SysML
In this paper, we combine modeling constructs from SysML and Modelica to improve the support for Model, structures, functions, and behaviors. Complementing these SysML constructs, the Modelica language has emerged and the corresponding Modelica models; and the integration of simulation experiments with other SysML constructs
Mapping of Reservoir Properties and Facies Through Integration of Static and Dynamic Data
Reynolds, Albert C.; Oliver, Dean S.; Zhang, Fengjun; Dong, Yannong; Skjervheim, Jan Arild; Liu, Ning
2003-03-10
The goal of this project was to develop computationally efficient automatic history matching techniques for generating geologically plausible reservoir models which honor both static and dynamic data. Solution of this problem was necessary for the quantification of uncertainty in future reservoir performance predictions and for the optimization of reservoir management.
Towards an Integrated Framework for Development and Environment Policy: The Dynamics of
Kammen, Daniel M.
of Environmental Kuznets Curves MAJID EZZATI Resources for the Future, Washington, DC, USA, and World Health * University of California, Berkeley, USA Summary. Đ Environmental Kuznets curves (EKCs) have recently received policy, environmental change, economic growth, environmental Kuznets curves, system dynamics 1
Coarse-gradient Langevin algorithms for dynamic data integration and uncertainty quantification
Hou, Thomas Yizhao
greatly affect the production and decision making on well drilling. Better decisions can be made online 22 May 2006 Abstract The main goal of this paper is to design an efficient sampling technique- tions of the permeability field conditioned to the dynamic data, such as the production data, as well
The structural, electronic and dynamic properties of the L1{sub 2}- type Co{sub 3}Ti alloy
Arikan, Nihat; Özduran, Mustafa
2014-10-06
The structural, electronic and dynamic properties of the cubic Co{sub 3}Ti alloy in L1{sub 2} structure have been investigated using a pseudopotential plane wave (PP-PW) method within the generalized gradient approximation proposed by Perdew–Burke–Ernzerhof (GGA-PBE). The structural properties, including the lattice constant, the bulk modulus and its pressure derivative agree reasonably with the previous results. The density of state (DOS), projected density of state (PDOS) and electronic band structure are also reported. The DOS shows that Co{sub 3}Ti alloy has a metallic character since the energy bands cross the Fermi level. The density of states at Fermi level mainly comes from the Co-3d states. Phonon dispersion curves and their corresponding total densities of states were obtained using a linear response in the framework of the density functional perturbation theory. All computed phonon frequencies are no imaginer and thus, Co{sub 3}Ti alloy is dynamically stable. The zone center phonon modes have been founded to be 9.307, 9.626 and 13.891 THz for Co{sub 3}Ti.
Dynamic Imaging of Au-nanoparticles via Scanning Electron Microscopy in a Graphene Wet Cell
Wayne Yang; Yuning Zhang; Michael Hilke; Walter Reisner
2015-06-10
High resolution nanoscale imaging in liquid environments is crucial for studying molecular interactions in biological and chemical systems. In particular, electron microscopy is the gold-standard tool for nanoscale imaging, but its high-vacuum requirements make application to in-liquid samples extremely challenging. Here we present a new graphene based wet cell device where high resolution SEM (scanning electron microscope) and Energy Dispersive X-rays (EDX) analysis can be performed directly inside a liquid environment. Graphene is an ideal membrane material as its high transparancy, conductivity and mechanical strength can support the high vacuum and grounding requirements of a SEM while enabling maximal resolution and signal. In particular, we obtain high resolution (graphene wet cell and EDX analysis of nanoparticle composition in the liquid enviornment. Our obtained resolution surpasses current conventional silicon nitride devices imaged in both SEM and TEM under much higher electron doses.
Algwari, Q. Th. [Centre for Plasma Physics, School of Maths and Physics, Queen's University Belfast, University Road, Belfast, Northern Ireland BT7 1NN (United Kingdom); Electronic Department, College of Electronics Engineering, Mosul University, Mosul 41002 (Iraq); O'Connell, D. [Centre for Plasma Physics, School of Maths and Physics, Queen's University Belfast, University Road, Belfast, Northern Ireland BT7 1NN (United Kingdom); York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom)
2011-09-19
The excitation dynamics within the main plasma production region and the plasma jets of a kHz atmospheric pressure dielectric barrier discharge (DBD) jet operated in helium was investigated. Within the dielectric tube, the plasma ignites as a streamer-type discharge. Plasma jets are emitted from both the powered and grounded electrode end; their dynamics are compared and contrasted. Ignition of these jets are quite different; the jet emitted from the powered electrode is ignited with a slight time delay to plasma ignition inside the dielectric tube, while breakdown of the jet at the grounded electrode end is from charging of the dielectric and is therefore dependent on plasma production and transport within the dielectric tube. Present streamer theories can explain these dynamics.
Quantum Shock Waves - the case for non-linear effects in dynamics of electronic liquids
Eldad Bettelheim; Alexander G. Abanov; Paul Wiegmann
2006-06-29
Using the Calogero model as an example, we show that the transport in interacting non-dissipative electronic systems is essentially non-linear. Non-linear effects are due to the curvature of the electronic spectrum near the Fermi energy. As is typical for non-linear systems, propagating wave packets are unstable. At finite time shock wave singularities develop, the wave packet collapses, and oscillatory features arise. They evolve into regularly structured localized pulses carrying a fractionally quantized charge - {\\it soliton trains}. We briefly discuss perspectives of observation of Quantum Shock Waves in edge states of Fractional Quantum Hall Effect and a direct measurement of the fractional charge.
Tunable mega-ampere electron current propagation in solids by dynamic control of lattice melt
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
MacLellan, D.? A.; Carroll, D.? C.; Gray, R.? J.; Booth, N.; Burza, M.; Desjarlais, M.? P.; Du, F.; Neely, D.; Powell, H.? W.; Robinson, A.? P.?L.; et al
2014-10-31
The influence of lattice-melt-induced resistivity gradients on the transport of mega-ampere currents of fast electrons in solids is investigated numerically and experimentally using laser-accelerated protons to induce isochoric heating. Tailoring the heating profile enables the resistive magnetic fields which strongly influence the current propagation to be manipulated. This tunable laser-driven process enables important fast electron beam properties, including the beam divergence, profile, and symmetry to be actively tailored, and without recourse to complex target manufacture.
DYNAMIC STABILITY OF THE SOLAR SYSTEM: STATISTICALLY INCONCLUSIVE RESULTS FROM ENSEMBLE INTEGRATIONS
Zeebe, Richard E.
2015-01-01
Due to the chaotic nature of the solar system, the question of its long-term stability can only be answered in a statistical sense, for instance, based on numerical ensemble integrations of nearby orbits. Destabilization of the inner planets, leading to close encounters and/or collisions can be initiated through a large increase in Mercury's eccentricity, with a currently assumed likelihood of ?1%. However, little is known at present about the robustness of this number. Here I report ensemble integrations of the full equations of motion of the eight planets and Pluto over 5 Gyr, including contributions from general relativity. The results show that different numerical algorithms lead to statistically different results for the evolution of Mercury's eccentricity (e{sub M}). For instance, starting at present initial conditions (e{sub M}?0.21), Mercury's maximum eccentricity achieved over 5 Gyr is, on average, significantly higher in symplectic ensemble integrations using heliocentric rather than Jacobi coordinates and stricter error control. In contrast, starting at a possible future configuration (e{sub M}?0.53), Mercury's maximum eccentricity achieved over the subsequent 500 Myr is, on average, significantly lower using heliocentric rather than Jacobi coordinates. For example, the probability for e{sub M} to increase beyond 0.53 over 500 Myr is >90% (Jacobi) versus only 40%-55% (heliocentric). This poses a dilemma because the physical evolution of the real system—and its probabilistic behavior—cannot depend on the coordinate system or the numerical algorithm chosen to describe it. Some tests of the numerical algorithms suggest that symplectic integrators using heliocentric coordinates underestimate the odds for destabilization of Mercury's orbit at high initial e{sub M}.
Integrating Random Matrix Theory Predictions with Short-Time Dynamical Effects in Chaotic Systems
A. Matthew Smith; Lev Kaplan
2010-06-29
We discuss a modification to Random Matrix Theory eigenstate statistics, that systematically takes into account the non-universal short-time behavior of chaotic systems. The method avoids diagonalization of the Hamiltonian, instead requiring only a knowledge of short-time dynamics for a chaotic system or ensemble of similar systems. Standard Random Matrix Theory and semiclassical predictions are recovered in the limits of zero Ehrenfest time and infinite Heisenberg time, respectively. As examples, we discuss wave function autocorrelations and cross-correlations, and show that significant improvement in accuracy is obtained for simple chaotic systems where comparison can be made with brute-force diagonalization. The accuracy of the method persists even when the short-time dynamics of the system or ensemble is known only in a classical approximation. Further improvement in the rate of convergence is obtained when the method is combined with the correlation function bootstrapping approach introduced previously.
Zhou, R. J.; Hu, L. Q.; Li, E. Z.; Xu, M.; Zhong, G. Q.; Xu, L. Q.; Lin, S. Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)
2013-03-15
The nature of runaway electrons is such that the confinement and dynamics of the electrons can be strongly affected by magnetic fluctuations in plasma. Experimental results in the HT-7 tokamak indicated significant losses of runaway electrons due to magnetic fluctuations, but the loss processes did not only rely on the fluctuation amplitude. Efficient radial runaway transport required that there were no more than small regions of the plasma volume in which there was very low transport of runaways. A radial runaway diffusion coefficient of D{sub r} Almost-Equal-To 10 m{sup 2}s{sup -1} was derived for the loss processes, and diffusion coefficient near the resonant magnetic surfaces and shielding factor #Greek Upsilon With Hook Symbol#=0.8 were deduced. Test particle equations were used to analyze the effect of magnetic fluctuations on runaway dynamics. It was found that the maximum energy that runaways can gain is very sensitive to the value of {alpha}{sub s} (i.e., the fraction of plasma volume with reduced transport). {alpha}{sub s}=(0.28-0.33) was found for the loss processes in the experiment, and maximum runaway energy could be controlled in the range of E=(4 MeV-6 MeV) in this case. Additionally, to control the maximum runaway energy below 5 MeV, the normalized electric field needed to be under a critical value D{sub {alpha}}=6.8, and the amplitude normalized magnetic fluctuations b(tilde sign) needed to be at least of the order of b(tilde sign) Almost-Equal-To 3 Multiplication-Sign 10{sup -5}.
Nobuyuki Takei; Christian Sommer; Claudiu Genes; Guido Pupillo; Haruka Goto; Kuniaki Koyasu; Hisashi Chiba; Matthias Weidemüller; Kenji Ohmori
2015-04-14
Many-body interactions govern a variety of important quantum phenomena ranging from superconductivity and magnetism in condensed matter to solvent effects in chemistry. Understanding those interactions beyond mean field is a holy grail of modern sciences. AMO physics with advanced laser technologies has recently emerged as a new platform to study quantum many-body systems. One of its latest developments is the study of long-range interactions among ultracold particles to reveal the effects of many-body correlations. Rydberg atoms distinguish themselves by their large dipole moments and tunability of dipolar interactions. Most of ultracold Rydberg experiments have been performed with narrow-band lasers in the Rydberg blockade regime. Here we demonstrate an ultracold Rydberg gas in a complementary regime, where electronic coherence is created using a broadband picosecond laser pulse, thus circumventing the Rydberg blockade to induce strong many-body correlations. The effects of long-range Rydberg interactions have been investigated by time-domain Ramsey interferometry with attosecond precision. This approach allows for the real-time observation of coherent and ultrafast many-body dynamics in which the electronic coherence is modulated by the interaction-induced correlations. The modulation evolves more rapidly than expected for two-body correlations by several orders of magnitude. We have actively controlled such ultrafast many-body dynamics by tuning the principal quantum number and the population of the Rydberg state. The observed Ramsey interferograms are well reproduced by a theoretical model beyond mean-field approximation, which can be relevant to other similar many-body phenomena in condensed matter physics and chemistry. Our new approach opens a new avenue to observe and manipulate nonequilibrium dynamics of strongly-correlated quantum many-body systems on the ultrafast timescale.
ON QUIET-TIME SOLAR WIND ELECTRON DISTRIBUTIONS IN DYNAMICAL EQUILIBRIUM WITH LANGMUIR TURBULENCE
Zaheer, S.; Yoon, P. H.
2013-10-01
A recent series of papers put forth a self-consistent theory of an asymptotically steady-state electron distribution function and Langmuir turbulence intensity. The theory was developed in terms of the ? distribution which features Maxwellian low-energy electrons and a non-Maxwellian energetic power-law tail component. The present paper discusses a generalized ? distribution that features a Davydov-Druyvesteyn type of core component and an energetic power-law tail component. The physical motivation for such a generalization is so that the model may reflect the influence of low-energy electrons interacting with low-frequency kinetic Alfvénic turbulence as well as with high-frequency Langmuir turbulence. It is shown that such a solution and the accompanying Langmuir wave spectrum rigorously satisfy the balance requirement between the spontaneous and induced emission processes in both the particle and wave kinetic equations, and approximately satisfy the similar balance requirement between the spontaneous and induced scattering processes, which are nonlinear. In spite of the low velocity modification of the electron distribution function, it is shown that the resulting asymptotic velocity power-law index ?, where f{sub e} ? v {sup –?} is close to the average index observed during the quiet-time solar wind condition, i.e., ? ? O(6.5) whereas ?{sub average} ? 6.69, according to observation.
Diessel, Oliver
and Instrumentation Oliver Diessel School of Computer Science & Engineering University of New South Wales, Sydney NSW the capabilities of this technology with respect to applications in electronic measurement and instrumentation can be used to implement any digital circuit for which there are sufficient resources available
Nonadiabatic Molecular Dynamics Study of Electron Transfer from Alizarin to the Hydrated Ti4+ Ion
to the more costly traditional solar cell.1-5 It employs organic or transition-metal- based chromophores that forms the basis of the Gra¨tzel type solar cell. The experimental data and electronic structure The dye-sensitized nanocrystalline solar cell, also known as the Gra¨tzel cell, is a promising alternative
Dynamics of an electron confined to a "hybrid plane" and interacting with a magnetic field
Raffaele Carlone; Pavel Exner
2010-12-13
We discuss spectral and resonance properties of a Hamiltonian describing motion of an electron moving on a "hybrid surface" consisting on a halfline attached by its endpoints to a plane under influence of a constant magnetic field which interacts with its spin through a Rashba-type term.
Jake P. Gentle; Kurt S Myers; Tyler B Phillips; Inanc Senocak; Phil Anderson
2014-08-01
Dynamic Line Rating (DLR) is a smart grid technology that allows the rating of power line to be based on real-time conductor temperature dependent on local weather conditions. In current practice overhead power lines are generally given a conservative rating based on worst case weather conditions. Using historical weather data collected over a test bed area, we demonstrate there is often additional transmission capacity not being utilized with the current static rating practice. We investigate a new dynamic line rating methodology using computational fluid dynamics (CFD) to determine wind conditions along transmission lines at dense intervals. Simulated results are used to determine conductor temperature by calculating the transient thermal response of the conductor under variable environmental conditions. In calculating the conductor temperature, we use both a calculation with steady-state assumption and a transient calculation. Under low wind conditions, steady-state assumption predicts higher conductor temperatures that could lead to curtailments, whereas transient calculations produce conductor temperatures that are significantly lower, implying the availability of additional transmission capacity.
Grapes, Michael D.; LaGrange, Thomas; Reed, Bryan W.; Campbell, Geoffrey H.; Friedman, Lawrence H.; LaVan, David A.; Weihs, Timothy P.
2014-08-15
Nanocalorimetry is a chip-based thermal analysis technique capable of analyzing endothermic and exothermic reactions at very high heating and cooling rates. Here, we couple a nanocalorimeter with an extremely fast in situ microstructural characterization tool to identify the physical origin of rapid enthalpic signals. More specifically, we describe the development of a system to enable in situ nanocalorimetry experiments in the dynamic transmission electron microscope (DTEM), a time-resolved TEM capable of generating images and electron diffraction patterns with exposure times of 30 ns–500 ns. The full experimental system consists of a modified nanocalorimeter sensor, a custom-built in situ nanocalorimetry holder, a data acquisition system, and the DTEM itself, and is capable of thermodynamic and microstructural characterization of reactions over a range of heating rates (10{sup 2} K/s–10{sup 5} K/s) accessible by conventional (DC) nanocalorimetry. To establish its ability to capture synchronized calorimetric and microstructural data during rapid transformations, this work describes measurements on the melting of an aluminum thin film. We were able to identify the phase transformation in both the nanocalorimetry traces and in electron diffraction patterns taken by the DTEM. Potential applications for the newly developed system are described and future system improvements are discussed.
Dynamics of the electric current in an ideal electron gas: a sound mode inside the quasi-particles
Sašo Grozdanov; Janos Polonyi
2015-09-03
We study the equation of motion for the Noether current in an electron gas within the framework of the Schwinger-Keldysh Closed-Time-Path formalism. The equation is shown to be highly non-linear and irreversible even for a non-interacting, ideal gas of electrons at non-zero density. We truncate the linearised equation of motion, written as the Laurent series in Fourier space, so that the resulting expressions are local in time, both at zero and at small finite temperatures. Furthermore, we show that the one-loop Coulomb interactions only alter the physical picture quantitatively, while preserving the characteristics of the dynamics that the electric current exhibits in the absence of interactions. As a result of the composite nature of the Noether current, {\\it composite sound} waves are found to be the dominant IR collective excitations at length scales between the inverse Fermi momentum and the mean free path that would exist in an interacting electron gas. We also discuss the difference and the transition between the hydrodynamical regime of an ideal gas, defined in this work, and the hydrodynamical regime in phenomenological hydrodynamics, which is normally used for the description of interacting gases.
Dynamics of the electric current in an ideal electron gas: a sound mode inside the quasi-particles
Grozdanov, Sašo
2015-01-01
We study the equation of motion for the Noether current in an electron gas within the framework of the Schwinger-Keldysh Closed-Time-Path formalism. The equation is shown to be highly non-linear and irreversible even for a non-interacting, ideal gas of electrons at non-zero density. We truncate the linearised equation of motion, written as the Laurent series in Fourier space, so that the resulting expressions are local in time, both at zero and at small finite temperatures. Furthermore, we show that the one-loop Coulomb interactions only alter the physical picture quantitatively, while preserving the characteristics of the dynamics that the electric current exhibits in the absence of interactions. As a result of the composite nature of the Noether current, composite sound waves are found to be the dominant IR collective excitations at length scales between the inverse Fermi momentum and the mean free path that would exist in an interacting electron gas. We also discuss the difference and the transition betwee...
An integral manifold approach to reduced order dynamic modeling of synchronous machines
Sauer, P.W.; Ahmed-Zaid, S.; Kokotovic, P.V.
1988-02-01
The concept of integral manifolds is used to systematically create improved reduced order models of synchronous machines. The approach is illustrated through a detailed example of a single machine connected to an infinite bus. The example shows the advantages of the manifold approach and also clarifies several issues about reduced order models of synchronous machines. The basic objective of the method is to include the effects of more complex models without actually including the additional differential equations. This is illustrated by including the effects of stator transients and damper windings on the swing equation without including the differential equations.
Jung, Jinwoo; Lee, Jewon; Song, Hanjung [School of Nano Engineering, Inje University, Gimhae, Gyungnam (Korea, Republic of)
2011-03-15
This paper presents a fully integrated circuit implementation of an operational amplifier (op-amp) based chaotic neuron model with a bipolar output function, experimental measurements, and analyses of its chaotic behavior. The proposed chaotic neuron model integrated circuit consists of several op-amps, sample and hold circuits, a nonlinear function block for chaotic signal generation, a clock generator, a nonlinear output function, etc. Based on the HSPICE (circuit program) simulation results, approximated empirical equations for analyses were formulated. Then, the chaotic dynamical responses such as bifurcation diagrams, time series, and Lyapunov exponent were calculated using these empirical equations. In addition, we performed simulations about two chaotic neuron systems with four synapses to confirm neural network connections and got normal behavior of the chaotic neuron such as internal state bifurcation diagram according to the synaptic weight variation. The proposed circuit was fabricated using a 0.8-{mu}m single poly complementary metal-oxide semiconductor technology. Measurements of the fabricated single chaotic neuron with {+-}2.5 V power supplies and a 10 kHz sampling clock frequency were carried out and compared with the simulated results.
Integrated Dynamic Gloabal Modeling of Land Use, Energy and Economic Growth
Atul Jain, University of Illinois, Urbana-Champaign, IL Brian O'Neill, NCAR, Boulder, CO
2009-10-14
The overall objective of this collaborative project is to integrate an existing general equilibrium energy-economic growth model with a biogeochemical cycles and biophysical models in order to more fully explore the potential contribution of land use-related activities to future emissions scenarios. Land cover and land use change activities, including deforestation, afforestation, and agriculture management, are important source of not only CO2, but also non-CO2 GHGs. Therefore, contribution of land-use emissions to total emissions of GHGs is important, and consequently their future trends are relevant to the estimation of climate change and its mitigation. This final report covers the full project period of the award, beginning May 2006, which includes a sub-contract to Brown University later transferred to the National Center for Atmospheric Research (NCAR) when Co-PI Brian O'Neill changed institutional affiliations.
B. G. Konopelchenko; G. Ortenzi
2012-06-13
Quasiclassical approximation in the intrinsic description of the vortex filament dynamics is discussed. Within this approximation the governing equations are given by elliptic system of quasi-linear PDEs of the first order. Dispersionless Da Rios system and dispersionless Hirota equation are among them. They describe motion of vortex filament with slow varying curvature and torsion without or with axial flow. Gradient catastrophe for governing equations is studied. It is shown that geometrically this catastrophe manifests as a fast oscillation of a filament curve around the rectifying plane which resembles the flutter of airfoils. Analytically it is the elliptic umbilic singularity in the terminology of the catastrophe theory. It is demonstrated that its double scaling regularization is governed by the Painleve' I equation.
Akatay, M. Cem; Zvinevich, Yury; Ribeiro, Fabio H. E-mail: estach@bnl.gov; Baumann, Philipp; Stach, Eric A. E-mail: estach@bnl.gov
2014-03-15
A gas mixing manifold system that is capable of delivering a stable pressure stream of a desired composition of gases into an environmental transmission electron microscope has been developed. The system is designed to provide a stable imaging environment upon changes of either the composition of the gas mixture or upon switching from one gas to another. The design of the system is described and the response of the pressure inside the microscope, the sample temperature, and sample drift in response to flow and composition changes of the system are reported.
Optics Using Polymers Sean M. Garner, Sang-Shin Lee, Vadim Chuyanov, Antao Chen, Araz Yacoubian, William-dimensional (3-D) optical integrated circuits possible using polymers. Fabrication techniques of shadow reactive integrated optic structures are demonstrated. Vertical waveguide bends exhibit excess losses of
Integrated Dynamic Analysis of Floating Offshore Wind Turbines Bjřrn Skaare*, Tor David Hanson of floating wind turbines exposed to forces from wind, waves and current has been developed for Hydro Oil & Energy's floating wind turbine concept, HYWIND. Two existing, independent, computer program systems
Tayebi, Amin; Paladhi, Pavel Roy; Udpa, Lalita; Udpa, Satish; Rothwell, Edward
2015-01-01
An electronically reconfigurable dual-band-reflectarray antenna is presented in this paper. The tunable unit cell, a ring loaded square patch with a single varactor diode connected across the gap between the ring and the patch, is modeled using both a full-wave solver and an equivalent circuit. The parameters of the equivalent circuit are calculated independently of the simulation and experiment using analysis techniques employed in frequency selective surfaces. The reflection phase of the proposed unit cell is shown to provide an excellent phase range of 335$^{\\circ}$ in F band and 340$^{\\circ}$ in S band. Results from the analysis are used to design and build a 10x10 element reflectarray antenna. The high tuning phase range of each element allows the fabricated reflectarray to demonstrate a very broad steering range of up to $\\pm$60$^{\\circ}$ in both frequency bands.
Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Levantino, Matteo; Schirň, Giorgio; Lemke, Henrik Till; Cottone, Grazia; Glownia, James Michael; Zhu, Diling; Chollet, Mathieu; Ihee, Hyotcherl; KAIST, Daejeon; Cupane, Antonio; et al
2015-04-02
Light absorption can trigger biologically relevant protein conformational changes. The light induced structural rearrangement at the level of a photoexcited chromophore is known to occur in the femtosecond timescale and is expected to propagate through the protein as a quake-like intramolecular motion. Here we report direct experimental evidence of such ‘proteinquake’ observed in myoglobin through femtosecond X-ray solution scattering measurements performed at the Linac Coherent Light Source X-ray free-electron laser. An ultrafast increase of myoglobin radius of gyration occurs within 1 picosecond and is followed by a delayed protein expansion. As the system approaches equilibrium it undergoes damped oscillations withmore »a ~3.6-picosecond time period. Our results unambiguously show how initially localized chemical changes can propagate at the level of the global protein conformation in the picosecond timescale.« less
Shankaran, Harish; Zhang, Yi; Chrisler, William B.; Ewald, Jonathan A.; Wiley, H. S.; Resat, Haluk
2012-10-02
The epidermal growth factor receptor (EGFR) belongs to the ErbB family of receptor tyrosine kinases, and controls a diverse set of cellular responses relevant to development and tumorigenesis. ErbB activation is a complex process involving receptor-ligand binding, receptor dimerization, phosphorylation, and trafficking (internalization, recycling and degradation), which together dictate the spatio-temporal distribution of active receptors within the cell. The ability to predict this distribution, and elucidation of the factors regulating it, would help to establish a mechanistic link between ErbB expression levels and the cellular response. Towards this end, we constructed mathematical models for deconvolving the contributions of receptor dimerization and phosphorylation to EGFR activation, and to examine the dependence of these processes on sub-cellular location. We collected experimental datasets for EGFR activation dynamics in human mammary epithelial cells, with the specific goal of model parameterization, and used the data to estimate parameters for several alternate models. Model-based analysis indicated that: 1) signal termination via receptor dephosphorylation in late endosomes, prior to degradation, is an important component of the response, 2) less than 40% of the receptors in the cell are phosphorylated at any given time, even at saturating ligand doses, and 3) receptor dephosphorylation rates at the cell surface and early endosomes are comparable. We validated the last finding by measuring EGFR dephosphorylation rates at various times following ligand addition both in whole cells, and in endosomes using ELISAs and fluorescent imaging. Overall, our results provide important information on how EGFR phosphorylation levels are regulated within cells. Further, the mathematical model described here can be extended to determine receptor dimer abundances in cells co-expressing various levels of ErbB receptors. This study demonstrates that an iterative cycle of experiments and modeling can be used to gain mechanistic insight regarding complex cell signaling networks.
Motomichi Tashiro; Keiji Morokuma
2006-12-21
Low-energy electron impact excitations of N$_2$ molecules are studied using the fixed-bond R-matrix method based on state-averaged complete active space SCF orbitals. Thirteen target electronic states of N$_2$ are included in the model within a valence configuration interaction representations of the target states. Integrated as well as differential cross sections of the $A^{3} \\Sigma_{u}^{+}$, $B^{3} \\Pi_{g}$, $W^{3} \\Delta_{u}$, ${B'}^{3} \\Sigma_{u}^{-}$, ${a'}^{1} \\Sigma_{u}^{-}$, $a^{1} \\Pi_{g}$, $w^{1} \\Delta_{u}$ and $C^{3} \\Pi_{u}$ states are calculated and compared with the previous experimental measurements. These excitations, especially of the higher four states, have not been studied enough theoretically in the previous literature. In general, good agreements are observed both in the integrated and differential cross sections. However, some discrepancies are seen in the integrated cross sections of the $A^{3} \\Sigma_{u}^{+}$ and $C^{3} \\Pi_{u}$ states, especially around a peak structure.
Milisavljevic, S.; Rabasovic, M. S.; Sevic, D.; Marinkovic, B. P.; Pejcev, V.; Filipovic, D. M.; Sharma, Lalita; Srivastava, Rajesh; Stauffer, A. D.
2007-08-15
Experimental measurements of electron impact excitation of the 6p7s {sup 3}P{sub 0,1} states of Pb atoms have been made at incident electron energies E{sub 0}=10, 20, 40, 60, 80, and 100 eV and scattering angles from 10 deg. to 150 deg. In addition, relativistic distorted-wave calculations have been carried out at these energies. The data obtained include the differential (DCS), integral (Q{sub I}), momentum transfer (Q{sub M}), and viscosity (Q{sub V}) cross sections. Absolute values for the differential cross sections have been obtained by normalizing the relative DCSs at 10 deg. to the experimental DCS values of [S. Milisavljevic, M. S. Rabasovic, D. Sevic, V. Pejcev, D. M. Filipovic, L. Sharma, R. Srivastava, A. D. Stauffer, and B. P. Marinkovic, Phys. Rev. A 75, 052713 (2007)]. The integrated cross sections were determined by numerical integration of the absolute DCSs. The experimental results have been compared with the corresponding calculations and good agreement is obtained.
Onken, Christopher A.; Ferrarese, Laura [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Valluri, Monica; Brown, Jonathan S. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); McGregor, Peter J. [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Peterson, Bradley M.; Pogge, Richard W. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Bentz, Misty C. [Department of Physics and Astronomy, Georgia State University, 25 Park Place, Office 610, Atlanta, GA 30303 (United States); Vestergaard, Marianne [Dark Cosmology Centre, The Niels Bohr Institute, Copenhagen University, Juliane Maries Vej 30, DK-2100 Copenhagen Ř (Denmark); Storchi-Bergmann, Thaisa [Universidade Federal do Rio Grande do Sul, Instituto de Física, CP 15051, Porto Alegre 91501-970, RS (Brazil); Riffel, Rogemar A., E-mail: christopher.onken@anu.edu.au, E-mail: mvalluri@umich.edu [Departamento de Física, Centro de Cięncias Naturais e Exatas, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil)
2014-08-10
We present a revised measurement of the mass of the central black hole (M{sub BH} ) in the Seyfert 1 galaxy NGC 4151. The new stellar dynamical mass measurement is derived by applying an axisymmetric orbit-superposition code to near-infrared integral field data obtained using adaptive optics with the Gemini Near-infrared Integral Field Spectrograph (NIFS). When our models attempt to fit both the NIFS kinematics and additional low spatial resolution kinematics, our results depend sensitively on how ?{sup 2} is computed—probably a consequence of complex bar kinematics that manifest immediately outside the nuclear region. The most robust results are obtained when only the high spatial resolution kinematic constraints in the nuclear region are included in the fit. Our best estimates for the black hole mass and H-band mass-to-light ratio are M{sub BH} ? 3.76 ± 1.15 × 10{sup 7} M{sub ?} (1? error) and Y{sub H} ? 0.34 ± 0.03 M{sub ?}/L{sub ?} (3? error), respectively (the quoted errors reflect the model uncertainties). Our black hole mass measurement is consistent with estimates from both reverberation mapping (3.57{sub ?0.37}{sup +0.45}×10{sup 7} M{sub ?}) and gas kinematics (3.0{sub ?2.2}{sup +0.75}×10{sup 7} M{sub ?}; 1? errors), and our best-fit mass-to-light ratio is consistent with the photometric estimate of Y{sub H} = 0.4 ± 0.2 M{sub ?}/L{sub ?}. The NIFS kinematics give a central bulge velocity dispersion ?{sub c} = 116 ± 3 km s{sup –1}, bringing this object slightly closer to the M{sub BH}-? relation for quiescent galaxies. Although NGC 4151 is one of only a few Seyfert 1 galaxies in which it is possible to obtain a direct dynamical black hole mass measurement—and thus, an independent calibration of the reverberation mapping mass scale—the complex bar kinematics makes it less than ideally suited for this purpose.
van Stokkum, Ivo
852 J. Phys. Chem. 1994, 98, 852-866 ConformationalDynamics of Flexibly and Semirigidly Bridged Electron Donor-Acceptor Systems As Revealed by Spectrotemporal Parameterization of Fluorescence I. H.M. van: a flexible trimethylene chain and a semirigid piperidine ring. In moderately polar solvents (6 > 3.5) only
Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Farfurnik, D.; Jarmola, A.; Pham, L. M.; Wang, Z. H.; Dobrovitski, V. V.; Walsworth, R. L.; Budker, D.; Bar-Gill, N.
2015-08-24
We demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T1 effects and DD microwave pulses are used to increase the transverse coherence time T2 from ~0.7ms up to ~30ms. Furthermore, we extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We also identify that the optimal control scheme for preservingmore »an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.« less
Lu, Ping
2014-10-01
Controlling metallic nanoparticle (NP) interactions plays a vital role in the development of new joining techniques (nanosolder) that bond at lower processing temperatures but remain viable at higher temperatures. The pr imary objective of this project is t o develop a fundamental understanding of the actual reaction processes, associated atomic mechanisms, and the resulting microstructure that occur during thermally - driven bond formation concerning metal - metal nano - scale (<50nm) interfaces. In this LDRD pr oject, we have studied metallic NPs interaction at the elevated temperatures by combining in - situ transmission electron microscopy (TEM ) using an aberration - corrected scanning transmission electron microscope (AC - STEM) and atomic - scale modeling such as m olecular dynamic (MD) simulations. Various metallic NPs such as Ag, Cu and Au are synthesized by chemical routines. Numerous in - situ e xperiments were carried out with focus of the research on study of Ag - Cu system. For the first time, using in - situ STEM he ating experiments , we directly observed t he formation of a 3 - dimensional (3 - D) epitaxial Cu - Ag core - shell nanoparticle during the thermal interaction of Cu and Ag NPs at elevated temperatures (150 - 300 o C). The reaction takes place at temperatures as low as 150 o C and was only observed when care was taken to circumvent the effects of electron beam irradiation during STEM imaging. Atomic - scale modeling verified that the Cu - Ag core - shell structure is energetically favored, and indicated that this phenomenon is a nano - scale effect related to the large surface - to - volume ratio of the NPs. The observation potentially can be used for developing new nanosolder technology that uses Ag shell as the %22glue%22 that stic ks the particles of Cu together. The LDRD has led to several journal publications and numerous conference presentations, and a TA. In addition, we have developed new TEM characterization techniques and phase - field modeling tools that can be used for future materials research at Sandia. Acknowledgeme nts This work was supported by the Laboratory Directed Research and Development (LDRD) program of Sandia National Laboratories. Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidia ry of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000.
Lehman, Brad
Isolated Two-Inductor Boost Converter: Analysis, Design and Experimentation Liang Yan, Student Member, IEEE-inductor boost converter.1 All magnetic components are integrated into one magnetic assembly. Two inductor has been built. Experimental and simulation results verify the analysis. Index Terms--Boost converter
Kemp, A; Cohen, B; Divol, L
2009-11-16
We present new results on the physics of short-pulse laser-matter interaction of kilojoule-picosecond pulses at full spatial and temporal scale, using a new approach that combines a 3D collisional electromagnetic Particle-in-Cell code with an MHD-hybrid model of high-density plasma. In the latter, collisions damp out plasma waves, and an Ohm's law with electron inertia effects neglected determines the electric field. In addition to yielding orders of magnitude in speed-up while avoiding numerical instabilities, this allows us to model the whole problem in a single unified framework: the laser-plasma interaction at sub-critical densities, energy deposition at relativistic critical densities, and fast-electron transport in solid densities. Key questions such as the multi-picosecond temporal evolution of the laser energy conversion into hot electrons, the impact of return currents on the laser-plasma interaction, and the effect of self-generated electric and magnetic fields on electron transport will be addressed. We will report applications to current experiments.
LaGrange, T; Campbell, G H; Browning, N D; Reed, B W; Grummon, D S
2010-03-01
The crystallization processes of the as-deposited, amorphous NiTi thin films have been studied in detail using techniques such as differential scanning calorimetry and, in-situ TEM. The kinetic data have been analyzed in terms of Johnson-Mehl-Avrami-Kolomogrov (JMAK) semi-empirical formula. The kinetic parameters determined from this analysis have been useful in defining process control parameters for tailoring microstructural features and shape memory properties. Due to the commercial push to shrink thin film-based devices, unique processing techniques have been developed using laser-based annealing to spatially control the microstructure evolution down to sub-micron levels. Nanosecond, pulse laser annealing is particularly attractive since it limits the amount of peripheral heating and unwanted microstructural changes to underlying or surrounding material. However, crystallization under pulsed laser irradiation can differ significantly from conventional thermal annealing, e.g., slow heating in a furnace. This is especially true for amorphous NiTi materials and relevant for shape memory thin film based microelectromechanical systems (MEMS) applications. There is little to no data on the crystallization kinetics of NiTi under pulsed laser irradiation, primarily due to the high crystallization rates intrinsic to high temperature annealing and the spatial and temporal resolution limits of standard techniques. However, with the high time and spatial resolution capabilities of the dynamic transmission electron microscope (DTEM) constructed at Lawrence Livermore National Laboratory, the rapid nucleation events occurring from pulsed laser irradiation can be directly observed and nucleation rates can be quantified. This paper briefly explains the DTEM approach and how it used to investigate the pulsed laser induced crystallization processes in NiTi and to determine kinetic parameters.
Kjelstrup, Signe
Interface Film Resistivities for Heat and Mass TransferssIntegral Relations Verified by Non; In Final Form: July 6, 2006 Integral relations that predict interface film transfer coefficients) the interface film, where transport processes are driven by jumps in temperature and chemical potential; and (3
del Alamo, Jesús A.
event is characterized by a fast release of trapped charge through a temperature-independent tunneling-resistance, FET, GaN, high electron-mobility transistor (HEMT), transient, trapping. I. INTRODUCTION IN THE last3190 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 60, NO. 10, OCTOBER 2013 Methodology for the Study
Kluge, T., E-mail: t.kluge@hzdr.de; Huang, L. G.; Metzkes, J.; Bussmann, M. [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany)] [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany); Gutt, C. [Universität Siegen, D-57068 Siegen (Germany)] [Universität Siegen, D-57068 Siegen (Germany); Schramm, U.; Cowan, T. E. [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany) [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany); Technische Universität Dresden, D-01062 Dresden (Germany)
2014-03-15
We demonstrate the potential of X-ray free-electron lasers (XFEL) to advance the understanding of complex plasma dynamics by allowing for the first time nanometer and femtosecond resolution at the same time in plasma diagnostics. Plasma phenomena on such short timescales are of high relevance for many fields of physics, in particular in the ultra-intense ultra-short laser interaction with matter. Highly relevant yet only partially understood phenomena become directly accessible in experiment. These include relativistic laser absorption at solid targets, creation of energetic electrons and electron transport in warm dense matter, including the seeding and development of surface and beam instabilities, ambipolar expansion, shock formation, and dynamics at the surfaces or at buried layers. In this paper, we focus on XFEL plasma probing for high power laser matter interactions based on quantitative calculations using synthesized data and evaluate the feasibility of various imaging and scattering techniques with special focus on the small angle X-ray scattering technique.
Röder, Beate
Dynamics from Pump-Probe Signals S. Ramakrishna* and F. Willig Hahn-Meitner-Institut, 14109 Berlin, Germany Numerical calculations of pump-probe signals corresponding to excited-state absorption of the molecular to model the pump-probe dynamics. The continuum of semiconductor states, namely, its conduction-band levels
Kanicki, Jerzy
-matrix organic light- emitting display (AM-OLED), bottom gate, corbino, dynamic measurement, dynamic response. INTRODUCTION TO DATE, the active-matrix organic light-emitting dis- play (AM-OLED) has attracted many interests of Normal and Corbino a-Si:H TFTs for AM-OLEDs Hojin Lee, Chun-Sung Chiang, and Jerzy Kanicki, Senior Member
ELECTRONIC CHARTS INTRODUCTION
New Hampshire, University of
199 CHAPTER 14 ELECTRONIC CHARTS INTRODUCTION 1400. The Importance of Electronic Charts Since. Electronic charts automate the process of integrating real-time positions with the chart display and allow is expected to take and plot a fix every three minutes. An electronic chart system can do it once per second
Skovorodko, P. A.; Sharafutdinov, R. G.
2014-12-09
The paper is devoted to experimental and numerical study of the gas jet technical device for obtaining axisymmetric flow with low pressure in its near axis region. The studied geometry of the device is typical of that used in the plasma generator consisting of an electron gun with a hollow (plasma) cathode and a double supersonic ring nozzle. The geometry of the nozzles as well as the relation between the gas flow rates through the nozzles providing the electron beam extraction into the region with increased pressure are tested both experimentally and numerically. The maximum external pressure of about 0.25 bar that does not disturb the electron beam is achieved.
Whitaker, Mr. Bret [APEI, Inc.; Cole, Mr. Zach [APEI, Inc.; Passmore, Mr. Brandon [APEI, Inc.; Martin, Daniel [APEI, Inc.; Mcnutt, Tyler [APEI, Inc.; Lostetter, Dr. Alex [APEI, Inc.; Ericson, Milton Nance [ORNL; Frank, Steven Shane [ORNL; Britton Jr, Charles L [ORNL; Marlino, Laura D [ORNL; Mantooth, Alan [University of Arkansas; Francis, Dr. Matt [University of Arkansas; Lamichhane, Ranjan [University of Arkansas; Shepherd, Dr. Paul [University of Arkansas; Glover, Dr. Michael [University of Arkansas
2015-01-01
This paper presents the testing results of an all-silicon carbide (SiC) intelligent power module (IPM) for use in future high-density power electronics applications. The IPM has high-temperature capability and contains both SiC power devices and SiC gate driver integrated circuits (ICs). The high-temperature capability of the SiC gate driver ICs allows for them to be packaged into the power module and be located physically close to the power devices. This provides a distinct advantage by reducing the gate driver loop inductance, which promotes high frequency operation, while also reducing the overall volume of the system through higher levels of integration. The power module was tested in a bridgeless-boost converter to showcase the performance of the module in a system level application. The converter was initially operated with a switching frequency of 200 kHz with a peak output power of approximately 5 kW. The efficiency of the converter was then evaluated experimentally and optimized by increasing the overdrive voltage on the SiC gate driver ICs. Overall a peak efficiency of 97.7% was measured at 3.0 kW output. The converter s switching frequency was then increased to 500 kHz to prove the high frequency capability of the power module was then pushed to its limits and operated at a switching frequency of 500 kHz. With no further optimization of components, the converter was able to operate under these conditions and showed a peak efficiency of 95.0% at an output power of 2.1 kW.
Willingale, L.; Thomas, A. G. R.; Maksimchuk, A; Krushelnick, K. [Center for Ultrafast Optical Science, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109 (United States)] [Center for Ultrafast Optical Science, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109 (United States); Morace, A. [University of California-San Diego, La Jolla, California 92093 (United States) [University of California-San Diego, La Jolla, California 92093 (United States); Universitŕ di Milano-Biocca, Piazza della Scienza 3, 20126 Milano (Italy); Bartal, T.; Kim, J.; Beg, F. N. [University of California-San Diego, La Jolla, California 92093 (United States)] [University of California-San Diego, La Jolla, California 92093 (United States); Stephens, R. B.; Wei, M. S. [General Atomics, San Diego, California 92121 (United States)] [General Atomics, San Diego, California 92121 (United States)
2013-12-15
Simultaneous experimental measurements of copper K{sub ?} imaging and the maximum target normal sheath acceleration proton energies from the rear target surface are compared for various target thicknesses. For the T-cubed laser (?4 J, 400 fs) at an intensity of ?2 × 10{sup 19} W cm{sup ?2}, the hot electron divergence is determined to be ?{sub HWHM}?22{sup °} using a K{sub ?} imaging diagnostic. The maximum proton energies are measured to follow the expected reduction with increasing target thickness. Numerical modeling produces copper K{sub ?} trends for both signal level and electron beam divergence that are in good agreement with the experiment. A geometric model describing the electron beam divergence reproduces the maximum proton energy trends observed from the experiment and the fast electron density and the peak electric field observed in the numerical modeling.
Masciola, M.; Jonkman, J.; Robertson, A.
2014-03-01
Techniques to model dynamic mooring lines come in various forms. The most widely used models include either a heuristic representation of the physics (such as a Lumped-Mass, LM, system), a Finite-Element Analysis (FEA) discretization of the lines (discretized in space), or a Finite-Difference (FD) model (which is discretized in both space and time). In this paper, we explore the features of the various models, weigh the advantages of each, and propose a plan for implementing one dynamic mooring line model into the open-source Mooring Analysis Program (MAP). MAP is currently used as a module for the FAST offshore wind turbine computer-aided engineering (CAE) tool to model mooring systems quasi-statically, although dynamic mooring capabilities are desired. Based on the exploration in this manuscript, the lumped-mass representation is selected for implementation in MAP based on its simplicity, computational cost, and ability to provide similar physics captured by higher-order models.
Klippel, Alexander
Institute of Water Resources and Hydropower Research (IWHR) A1 Fuxing Road, Haidian District Beijing, P of this representation with scientific modeling of dynamic hazard development, and (3) application of automated reasoning, such as drought, tsunami, hurricane, flood, wildfire, and earthquake, are likely to become ever more costly
Thermal Stress and Reliability for Advanced Power Electronics...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
& Publications Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Power Electronic Thermal System Performance and Integration Thermal...
chsm.Rev. 1992. 92.463-480 463 Dynamical Solvent Effects on Activated Electron-Transfer Reactions
Turro, Nicholas J.
influencesexerted by the solvating environment upon the kinetics of electron- transfer (ET)proteases, either solvent influences upon AG' attributed to the reactionfree energy, AGO, whereas the former describesthe only mildly by the "slow" nuclear solvent modes. In addition to such energetic factors, however, one
Birattari, Mauro
Methods in the Dynamic Assessment of Power Components Loading Capability Domenico Villacci, Member, IEEE loading of power components in the deregulated electricity market demands reliable assessment models- ticular, we focus on the problem of forecasting the hot-spot temper- ature of a mineral
Linear Boltzmann equation as the long time dynamics of an electron weakly coupled to a phonon field
Laszlo Erdos
2001-08-29
We consider the long time evolution of a quantum particle weakly interacting with a phonon field. We show that in the weak coupling limit the Wigner distribution of the electron density matrix converges to the solution of the linear Boltzmann equation globally in time. The collision kernel is identified as the sum of an emission and an absorption term that depend on the equilibrium distribution of the free phonon modes.
Modeste Nguimdo, Romain, E-mail: Romain.Nguimdo@vub.ac.be [Applied Physics Research Group, APHY, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel (Belgium); Tchitnga, Robert [Laboratory of Electronics, Automation and Signal Processing, Department of Physics, University of Dschang, P.O. Box 67, Dschang (Cameroon)] [Laboratory of Electronics, Automation and Signal Processing, Department of Physics, University of Dschang, P.O. Box 67, Dschang (Cameroon); Woafo, Paul [Laboratory of Modelling and Simulation in Engineering and Biological Physics, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé (Cameroon)] [Laboratory of Modelling and Simulation in Engineering and Biological Physics, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé (Cameroon)
2013-12-15
We numerically investigate the possibility of using a coupling to increase the complexity in simplest chaotic two-component electronic circuits operating at high frequency. We subsequently show that complex behaviors generated in such coupled systems, together with the post-processing are suitable for generating bit-streams which pass all the NIST tests for randomness. The electronic circuit is built up by unidirectionally coupling three two-component (one active and one passive) oscillators in a ring configuration through resistances. It turns out that, with such a coupling, high chaotic signals can be obtained. By extracting points at fixed interval of 10?ns (corresponding to a bit rate of 100?Mb/s) on such chaotic signals, each point being simultaneously converted in 16-bits (or 8-bits), we find that the binary sequence constructed by including the 10(or 2) least significant bits pass statistical tests of randomness, meaning that bit-streams with random properties can be achieved with an overall bit rate up to 10×100 Mb/s =1Gbit/s (or 2×100 Mb/s =200 Megabit/s). Moreover, by varying the bias voltages, we also investigate the parameter range for which more complex signals can be obtained. Besides being simple to implement, the two-component electronic circuit setup is very cheap as compared to optical and electro-optical systems.
Jessica L.M. Gutknecht and Kathryn M. Docherty
2011-11-01
Microorganisms (Bacteria, Archaea and Fungi) are the gate-keepers of many ecosystem-scale biogeochemical cycles. Although there have been measurable changes in ecosystem function due to human activities such as greenhouse gas production, nutrient loading, land-use change, and water consumption, few studies have connected microbial community dynamics with these changes in ecosystem function. Specifically, very little is known about how global changes will induce important functional changes in microbial biodiversity. Even less is known about how microbial functional changes could alter rates of nutrient cycling or whether microbial communities have enough functional redundancy that changes will have little impact on overall process rates. The proposed symposium will provide an overview of this emerging research area, with emphasis on linking the microorganisms directly to important ecological functions under the influence of global change dynamics. The session will include both broad overviews as well as specific case-studies by researchers who examine microbial communities from a variety of taxonomic levels and from various environments. The session will begin broadly, with speakers discussing how microbial communities may inform ecosystem-scale global change studies, and help to make microbial ecological knowledge more tangible for a broad range of ecologists. The session will continue with case studies of microbial community information informing process in global change experiments. Finally, the session will close with speakers discussing how microbial community information might fit into global change models, and what types of information are useful for future studies. We have requested that speakers particularly incorporate their views on what types of microbial data is useful and informative in the context of larger ecosystem processes. We foresee that this session could serve as a focal point for global change microbial ecologists to meet and discuss their field at the ESA 2010 General Meeting. However, more importantly, the session will provide for a broad range of interests for ecosystem ecologists, theoretical ecologists, and global change biologists, and will foster communication between these groups to generate informative microbial community data in the future.
Takei, Nobuyuki; Genes, Claudiu; Pupillo, Guido; Goto, Haruka; Koyasu, Kuniaki; Chiba, Hisashi; Weidemüller, Matthias; Ohmori, Kenji
2015-01-01
Many-body interactions govern a variety of important quantum phenomena ranging from superconductivity and magnetism in condensed matter to solvent effects in chemistry. Understanding those interactions beyond mean field is a holy grail of modern sciences. AMO physics with advanced laser technologies has recently emerged as a new platform to study quantum many-body systems. One of its latest developments is the study of long-range interactions among ultracold particles to reveal the effects of many-body correlations. Rydberg atoms distinguish themselves by their large dipole moments and tunability of dipolar interactions. Most of ultracold Rydberg experiments have been performed with narrow-band lasers in the Rydberg blockade regime. Here we demonstrate an ultracold Rydberg gas in a complementary regime, where electronic coherence is created using a broadband picosecond laser pulse, thus circumventing the Rydberg blockade to induce strong many-body correlations. The effects of long-range Rydberg interactions h...
Rekik, Najeh; Freedman, Holly; Hanna, Gabriel [Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 (Canada); Hsieh, Chang-Yu [Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6 (Canada)
2013-04-14
We apply two approximate solutions of the quantum-classical Liouville equation (QCLE) in the mapping representation to the simulation of the laser-induced response of a quantum subsystem coupled to a classical environment. These solutions, known as the Poisson Bracket Mapping Equation (PBME) and the Forward-Backward (FB) trajectory solutions, involve simple algorithms in which the dynamics of both the quantum and classical degrees of freedom are described in terms of continuous variables, as opposed to standard surface-hopping solutions in which the classical degrees of freedom hop between potential energy surfaces dictated by the discrete adiabatic state of the quantum subsystem. The validity of these QCLE-based solutions is tested on a non-trivial electron transfer model involving more than two quantum states, a time-dependent Hamiltonian, strong subsystem-bath coupling, and an initial energy shift between the donor and acceptor states that depends on the strength of the subsystem-bath coupling. In particular, we calculate the time-dependent population of the photoexcited donor state in response to an ultrafast, on-resonance pump pulse in a three-state model of an electron transfer complex that is coupled asymmetrically to a bath of harmonic oscillators through the optically dark acceptor state. Within this approach, the three-state electron transfer complex is treated quantum mechanically, while the bath oscillators are treated classically. When compared to the more accurate QCLE-based surface-hopping solution and to the numerically exact quantum results, we find that the PBME solution is not capable of qualitatively capturing the population dynamics, whereas the FB solution is. However, when the subsystem-bath coupling is decreased (which also decreases the initial energy shift between the donor and acceptor states) or the initial shift is removed altogether, both the PBME and FB results agree better with the QCLE-based surface-hopping results. These findings highlight the challenges posed by various conditions such as a time-dependent external field, the strength of the subsystem-bath coupling, and the degree of asymmetry on the accuracy of the PBME and FB algorithms.
Random walk approach to spin dynamics in a two-dimensional electron gas with spin-orbit coupling
Yang, Luyi; Orenstein, J.; Lee, Dung-Hai
2010-09-27
We introduce and solve a semiclassical random walk (RW) model that describes the dynamics of spin polarization waves in zinc-blende semiconductor quantum wells. We derive the dispersion relations for these waves, including the Rashba, linear and cubic Dresselhaus spin-orbit interactions, as well as the effects of an electric field applied parallel to the spin polarization wave vector. In agreement with calculations based on quantum kinetic theory [P. Kleinert and V. V. Bryksin, Phys. Rev. B 76, 205326 (2007)], the RW approach predicts that spin waves acquire a phase velocity in the presence of the field that crosses zero at a nonzero wave vector, q{sub 0}. In addition, we show that the spin-wave decay rate is independent of field at q{sub 0} but increases as (q-q{sub 0}){sup 2} for q {ne} q{sub 0}. These predictions can be tested experimentally by suitable transient spin grating experiments.
Electron Cyclotron Resonances in Electron Cloud Dynamics
Celata, C. M.
2008-01-01
z positions in the International Linear Collider positrondesign for the International Linear Collider (ILC). We have
Watching Electrons Transfer from Metals to Insulators using Two Photon Photoemission
Johns, James E.
2010-01-01
principles calculations of hot-electron lifetimes in metals.Harris, Femtosecond studies of electron tunneling at metal-M. , Electronic structure and electron dynamics at Si(100).
J. Zhou; S.-K. Rhee; C. Schadt; T. Gentry; Z. He; X. Li; X. Liu; J. Liebich; S.C. Chong; L. Wu
2004-03-17
To effectively monitor microbial populations involved in various important processes, a 50-mer-based oligonucleotide microarray was developed based on known genes and pathways involved in: biodegradation, metal resistance and reduction, denitrification, nitrification, nitrogen fixation, methane oxidation, methanogenesis, carbon polymer decomposition, and sulfate reduction. This array contains approximately 2000 unique and group-specific probes with <85% similarity to their non-target sequences. Based on artificial probes, our results showed that at hybridization conditions of 50 C and 50% formamide, the 50-mer microarray hybridization can differentiate sequences having <88% similarity. Specificity tests with representative pure cultures indicated that the designed probes on the arrays appeared to be specific to their corresponding target genes. Detection limits were about 5-10ng genomic DNA in the absence of background DNA, and 50-100ng ({approx}1.3{sup o} 10{sup 7} cells) in the presence background DNA. Strong linear relationships between signal intensity and target DNA and RNA concentration were observed (r{sup 2} = 0.95-0.99). Application of this microarray to naphthalene-amended enrichments and soil microcosms demonstrated that composition of the microflora varied depending on incubation conditions. While the naphthalene-degrading genes from Rhodococcus-type microorganisms were dominant in enrichments, the genes involved in naphthalene degradation from Gram-negative microorganisms such as Ralstonia, Comamonas, and Burkholderia were most abundant in the soil microcosms (as well as those for polyaromatic hydrocarbon and nitrotoluene degradation). Although naphthalene degradation is widely known and studied in Pseudomonas, Pseudomonas genes were not detected in either system. Real-time PCR analysis of 4 representative genes was consistent with microarray-based quantification (r{sup 2} = 0.95). Currently, we are also applying this microarray to the study of several different microbial communities and processes at the NABIR-FRC in Oak Ridge, TN. One project involves the monitoring of the development and dynamics of the microbial community of a fluidized bed reactor (FBR) used for reducing nitrate and the other project monitors microbial community responses to stimulation of uranium reducing populations via ethanol donor additions in situ and in a model system. Additionally, we are developing novel strategies for increasing microarray hybridization sensitivity. Finally, great improvements to our methods of probe design were made by the development of a new computer program, CommOligo. CommOligo designs unique and group-specific oligo probes for whole-genomes, metagenomes, and groups of environmental sequences and uses a new global alignment algorithm to design single or multiple probes for each gene or group. We are now using this program to design a more comprehensive functional gene array for environmental studies. Overall, our results indicate that the 50mer-based microarray technology has potential as a specific and quantitative tool to reveal the composition of microbial communities and their dynamics important to processes within contaminated environments.
Hajimiri, Ali
circuit platform. This paper reviews some of the challenges and opportunities for mm-wave ICs and presents-end) can be directly ported to an integrated setting, the true potential of such integrated platforms can, such as automotive radar at 24 GHz and 77 GHz, which can provide features such as autonomous cruise con- trol
Javier, Alnald Caintic
2013-08-05
Computational techniques based on density functional theory (DFT) and experimental methods based on electrochemistry (EC), electrochemical scanning tunneling microscopy (EC-STM), and high-resolution electron energy loss spectroscopy (HREELS) were...
Noda, Masashi; Ishimura, Kazuya; Nobusada, Katsuyuki [Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585 (Japan); Yabana, Kazuhiro; Boku, Taisuke [Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan)
2014-05-15
A highly efficient program of massively parallel calculations for electron dynamics has been developed in an effort to apply the method to optical response of nanostructures of more than ten-nanometers in size. The approach is based on time-dependent density functional theory calculations in real-time and real-space. The computational code is implemented by using simple algorithms with a finite-difference method in space derivative and Taylor expansion in time-propagation. Since the computational program is free from the algorithms of eigenvalue problems and fast-Fourier-transformation, which are usually implemented in conventional quantum chemistry or band structure calculations, it is highly suitable for massively parallel calculations. Benchmark calculations using the K computer at RIKEN demonstrate that the parallel efficiency of the program is very high on more than 60?000 CPU cores. The method is applied to optical response of arrays of C{sub 60} orderly nanostructures of more than 10 nm in size. The computed absorption spectrum is in good agreement with the experimental observation.
Hartmann, S., E-mail: steffen.hartmann@etit.tu-chemnitz.de; Blaudeck, T.; Hermann, S.; Wunderle, B. [Technische Universität Chemnitz, Reichenhainer Str. 70, 09126 Chemnitz (Germany); Hölck, O. [Technische Universität Chemnitz, Reichenhainer Str. 70, 09126 Chemnitz (Germany); Fraunhofer IZM Berlin, Gustav-Meyer-Allee 25, 13355 Berlin (Germany); Schulz, S. E.; Gessner, T. [Technische Universität Chemnitz, Reichenhainer Str. 70, 09126 Chemnitz (Germany); Fraunhofer ENAS Chemnitz, Technologie-Campus 3, 09126 Chemnitz (Germany)
2014-04-14
In this paper, we present our results of experimental and numerical pull-out tests on carbon nanotubes (CNTs) embedded in palladium. We prepared simple specimens by employing standard silicon wafers, physical vapor deposition of palladium and deposition of CNTs with a simple drop coating technique. An AFM cantilever with known stiffness connected to a nanomanipulation system was utilized inside a scanning electron microscope (SEM) as a force sensor to determine forces acting on a CNT during the pull-out process. SEM-images of the cantilever attached to a CNT have been evaluated for subsequent displacement steps with greyscale correlation to determine the cantilever deflection. We compare the experimentally obtained pull-out forces with values of numerical investigations by means of molecular dynamics and give interpretations for deviations according to material impurities or defects and their influence on the pull-out data. We find a very good agreement of force data from simulation and experiment, which is 17 nN and in the range of 10–61 nN, respectively. Our findings contribute to the ongoing research of the mechanical characterization of CNT-metal interfaces. This is of significant interest for the design of future mechanical sensors utilizing the intrinsic piezoresistive effect of CNTs or other future devices incorporating CNT-metal interfaces.
Yoon, Hyungsuk Alexander
1996-12-01
Studies of surface structure and dynamics of atoms and molecules on metal surfaces are presented. My research has focused on understanding the nature of adsorbate-adsorbate and adsorbate-substrate interactions through surface studies of coverage dependency and coadsorption using both scanning tunneling microscopy (STM) and low energy electron diffraction (LEED). The effect of adsorbate coverage on the surface structures of sulfur on Pt(111) and Rh(111) was examined. On Pt(111), sulfur forms p(2x2) at 0.25 ML of sulfur, which transforms into a more compressed ({radical}3x{radical}3)R30{degrees} at 0.33 ML. On both structures, it was found that sulfur adsorbs only in fcc sites. When the coverage of sulfur exceeds 0.33 ML, it formed more complex c({radical}3x7)rect structure with 3 sulfur atoms per unit cell. In this structure, two different adsorption sites for sulfur atoms were observed - two on fcc sites and one on hcp site within the unit cell.
Calculation of the transverse kicks generated by the bends of a hollow electron lens
Stancari, Giulio
2014-03-25
Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam in high-energy accelerators. They were used in the Fermilab Tevatron collider for abort-gap clearing, beam-beam compensation, and halo scraping. A beam-beam compensation scheme based upon electron lenses is currently being implemented in the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. This work is in support of a conceptual design of hollow electron beam scraper for the Large Hadron Collider. It also applies to the implementation of nonlinear integrable optics with electron lenses in the Integrable Optics Test Accelerator at Fermilab. We consider the axial asymmetries of the electron beam caused by the bends that are used to inject electrons into the interaction region and to extract them. A distribution of electron macroparticles is deposited on a discrete grid enclosed in a conducting pipe. The electrostatic potential and electric fields are calculated using numerical Poisson solvers. The kicks experienced by the circulating beam are estimated by integrating the electric fields over straight trajectories. These kicks are also provided in the form of interpolated analytical symplectic maps for numerical tracking simulations, which are needed to estimate the effects of the electron lens imperfections on proton lifetimes, emittance growth, and dynamic aperture. We outline a general procedure to calculate the magnitude of the transverse proton kicks, which can then be generalized, if needed, to include further refinements such as the space-charge evolution of the electron beam, magnetic fields generated by the electron current, and longitudinal proton dynamics.
MEng & BEng Programmes Department of Electronic & Electrical Engineering
Burton, Geoffrey R.
MEng & BEng Programmes Department of Electronic & Electrical Engineering Electrical & Electronic Engineering Computer Systems Engineering Electrical Power Engineering Electronic Engineering with Space Science & Technology Electronic & Communication Engineering Integrated Mechanical & Electrical Engineering
Simulations of electron channeling in bent silicon crystal
Sushko, G B; Korol, A V; Greiner, Walter; Solov'yov, A V; Polozkov, R G; Ivanov, V K
2013-01-01
We report on the results of theoretical simulations of the electron channeling in a bent silicon crystal. The dynamics of ultra-relativistic electrons in the crystal is computed using the newly developed part [1] of the MBN Explorer package [2,3], which simulates classical trajectories of in a crystalline medium by integrating the relativistic equations of motion with account for the interaction between the projectile and crystal atoms. A Monte Carlo approach is employed to sample the incoming electrons and to account for thermal vibrations of the crystal atoms. The electron channeling along Si(110) crystallographic planes are studied for the projectile energies 195--855 MeV and different curvatures of the bent crystal.
Whitaker, Mr. Bret [APEI, Inc.; Cole, Mr. Zach [APEI, Inc.; Passmore, Mr. Brandon [APEI, Inc.; Mcnutt, Tyler [APEI, Inc.; Lostetter, Dr. Alex [APEI, Inc.; Ericson, Milton Nance [ORNL; Frank, Steven [ORNL; Britton Jr, Charles L [ORNL; Marlino, Laura D [ORNL; Mantooth, Alan [University of Arkansas; Francis, Matt [APEI, Inc.; Lamichhane, Ranjan [APEI, Inc.; Shepherd, Paul [APEI, Inc.; Glover, Michael [APEI, Inc.
2014-01-01
This paper presents a high-temperature capable intelligent power module that contains SiC power devices and SiC gate driver integrated circuits (ICs). The high-temperature capability of the SiC gate driver ICs allows for them to be packaged into the power module and be located physically close to the power devices. This provides a distinct advantage by reducing the gate driver loop inductance, which promotes high frequency operation, while also reducing the overall volume of the system through higher levels of integration. The power module was tested in a bridgeless-boost converter (Fig. 1) to determine the performance of the module in a system level application. The converter was operated with a switching frequency of 200 kHz with a peak output power of approximately 5 kW. The peak efficiency was found to be 97.5% at 2.9 kW.
Duan, Yuhua
2014-01-01
The electronic, structural and phonon properties of LiMZrO{sub 3} (M=Na, K) were investigated by the density functional theory and lattice phonon dynamics. Their thermodynamic properties for CO{sub 2} absorption/desorption were analyzed in comparison with the corresponding M{sub 2}ZrO{sub 3}. Two substituted configurations of LiMZrO{sub 3} were created from Li{sub 2}ZrO{sub 3}. Both types of LiNaZrO3 have direct band gaps with values of 3.84 eV and 3.49 eV respectively. While in the case of LiKZrO{sub 3}, one type has an indirect band gap of 3.79 eV between ? and M high symmetric points while another has a direct band gap of 3.12 eV. The phonon dispersions and phonon density of states of LiMZrO{sub 3} were calculated with the direct method. From the calculated thermodynamic properties of LiMZrO{sub 3} reacting with CO{sub 2}, our results showed that by doping Na into Li{sub 2}ZrO{sub 3}, the obtained new solid LiNaZrO{sub 3} has better performance as a CO{sub 2} sorbent applying to post-combustion capture technology. For K doping into Li{sub 2}ZrO{sub 3}, our calculated thermodynamic results showed that the new solid LiKZrO{sub 3} does not gain improvement on its CO{sub 2} capture performance because its regeneration temperature is much higher than Li{sub 2}ZrO{sub 3}.
Henn, T.; Kiessling, T., E-mail: tobias.kiessling@physik.uni-wuerzburg.de; Ossau, W.; Molenkamp, L. W. [Physikalisches Institut (EP3), Universität Würzburg, 97074 Würzburg (Germany)] [Physikalisches Institut (EP3), Universität Würzburg, 97074 Würzburg (Germany); Biermann, K.; Santos, P. V. [Paul-Drude-Institut für Festkörperelektronik, 10117 Berlin (Germany)] [Paul-Drude-Institut für Festkörperelektronik, 10117 Berlin (Germany)
2013-12-15
We describe a two-color pump-probe scanning magneto-optical Kerr effect microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast “white light” supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables the investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of the instrument.
Interaction Region Design and Detector Integration at JLab's MEIC
Lin, Fanglei; Brindza, Paul D.; Derbenev, Yaroslav S.; Ent, Rolf; Morozov, Vasiliy; Nadel-Turonski, Pawel A.; Zhang, Yuhong; Hyde, Charles E.; Sullivan, Michael
2013-12-01
The Electron Ion Collider (EIC) will be a next-generation facility for the study of the strong interaction (QCD). JLab?s MEIC is designed for high luminosities of up to 10^34 cm^-2 s^-1. This is achieved in part due to an aggressively small beta-star, which imposes stringent requirements on the collider rings? dynamical properties. Additionally, one of the unique features of MEIC is a full-acceptance detector with a dedicated, small-angle, high-resolution detection system, capable of covering a wide range of momenta (and charge-to-mass ratios) with respect to the original ion beam to enable access to new physics. The detector design relies on a number of features, such as a 50 mrad beam crossing angle, large-aperture ion and electron final focusing quads and spectrometer dipoles as well as a large machine-element-free detection space downstream of the final focusing quads. We present an interaction region design developed with close integration of the detector and beam dynamical aspects. The dynamical aspect of the design rests on a symmetry-based concept for compensation of non-linear effects. The optics and geometry have been optimized to accommodate the detection requirements and to ensure the interaction region?s modularity for easiness of integration into the collider ring lattices. As a result, the design offers an excellent detector performance combined with the necessary non-linear dynamical properties.
Marsalek, Ondrej
2015-01-01
Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ab initio ring polymer contraction (AI-RPC) scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive pro...
Version 2.0 Extended Hylleraas threeelectron integral
Pachucki, Krzysztof
Version 2.0 Extended Hylleraas threeÂelectron integral Krzysztof Pachucki # and Mariusz Puchalski expression for the threeÂelectron Hylleraas integral involving the inverse quadratic power of one inter. INTRODUCTION The subject of this work is the extended threeÂelectron Hylleraas integrals involving 1/r 2 ij
Micha? Lesiuk; Micha? Przybytek; Monika Musia?; Bogumi? Jeziorski; Robert Moszynski
2015-01-20
In this paper we present results of ab-initio calculations for the beryllium dimer with basis set of Slater-type orbitals (STOs). Nonrelativistic interaction energy of the system is determined using the frozen-core full configuration interaction calculations combined with high-level coupled cluster correction for inner-shell effects. Newly developed STOs basis sets, ranging in quality from double to sextuple zeta, are used in these computations. Principles of their construction are discussed and several atomic benchmarks are presented. Relativistic effects of order ${\\alpha}^2$ are calculated perturbatively by using the Breit-Pauli Hamiltonian and are found to be significant. We also estimate the leading-order QED effects. Influence of the adiabatic correction is found to be negligible. Finally, the interaction energy of the beryllium dimer is determined to be 929.0$\\,\\pm\\,$1.9 $cm^{-1}$, in a very good agreement with the recent experimental value. The results presented here appear to be the most accurate ab-initio calculations for the beryllium dimer available in the literature up to date and probably also one of the most accurate calculations for molecular systems containing more than four electrons.
Energy Storage & Power Electronics 2008 Peer Review - Energy...
Broader source: Energy.gov (indexed) [DOE]
Systems Security Publications Library Energy Storage Power Electronics Advanced Modeling Grid Research Transmission Reliability Renewable Energy Integration Small Business...
Neupane, Mahesh Raj
2015-01-01
electronic structure calculation package QUANTUM ESPRESSO [311]. MD Calculation Molecular dynamics (
Ab initio simulations of two-dimensional electronic spectra: The SOS//QM/MM approach
Rivalta, I; Nenov, A; Cerullo, G; Mukamel, S; Garavelli, M; Garavelli, M
2013-01-01
calculations. Conclusions Two-dimensional electronic spectroscopy holds great potential for studying structure, dynamics,
Necessity of integral formalism
Yong Tao
2011-10-06
To describe the physical reality, there are two ways of constructing the dynamical equation of field, differential formalism and integral formalism. The importance of this fact is firstly emphasized by Yang in case of gauge field [Phys. Rev. Lett. 33 (1974) 445], where the fact has given rise to a deeper understanding for Aharonov-Bohm phase and magnetic monopole [Phys. Rev. D. 12 (1975) 3845]. In this paper we shall point out that such a fact also holds in general wave function of matter, it may give rise to a deeper understanding for Berry phase. Most importantly, we shall prove a point that, for general wave function of matter, in the adiabatic limit, there is an intrinsic difference between its integral formalism and differential formalism. It is neglect of this difference that leads to an inconsistency of quantum adiabatic theorem pointed out by Marzlin and Sanders [Phys. Rev. Lett. 93 (2004) 160408]. It has been widely accepted that there is no physical difference of using differential operator or integral operator to construct the dynamical equation of field. Nevertheless, our study shows that the Schrodinger differential equation (i.e., differential formalism for wave function) shall lead to vanishing Berry phase and that the Schrodinger integral equation (i.e., integral formalism for wave function), in the adiabatic limit, can satisfactorily give the Berry phase. Therefore, we reach a conclusion: There are two ways of describing physical reality, differential formalism and integral formalism; but the integral formalism is a unique way of complete description.
Bailey, David H.; Borwein, Jonathan M.; Crandall, Richard E.
2006-01-01
Box integrals D.H. Bailey ? J.M. Borwein † April 3,Abstract. By a “box integral” we mean here an expectation |r· dr n . The study of box integrals leads one naturally into
Jayanth Kuppambatti; Jaroslav Ban; Timothy Andeen; Peter Kinget; Gustaaf Brooijmans
2013-07-31
The design of a radiation-hard dual channel 12-bit 40 MS/s pipeline ADC with extended dynamic range is presented, for use in the readout electronics upgrade for the ATLAS Liquid Argon Calorimeters at the CERN Large Hadron Collider. The design consists of two pipeline A/D channels with four Multiplying Digital-to-Analog Converters with nominal 12-bit resolution each. The design, fabricated in the IBM 130 nm CMOS process, shows a performance of 68 dB SNDR at 18 MHz for a single channel at 40 MS/s while consuming 55 mW/channel from a 2.5 V supply, and exhibits no performance degradation after irradiation. Various gain selection algorithms to achieve the extended dynamic range are implemented and tested.
TRIPLE INTEGRALS Studying triple integrals
Knopf, Dan
TRIPLE INTEGRALS Studying triple integrals of functions of three variables is a natural step up from the two variable case. It's a very important one for applications. Now the domain of integration in 3- space as double integrals, which in turn were expressed as repeated integrals. As a result
Correlated exciton dynamics in semiconductor nanostructures
Wen, Patrick, Ph. D. Massachusetts Institute of Technology
2013-01-01
The absorption and dissipation of energy in semiconductor nanostructures are often determined by excited electron dynamics. In semiconductors, one fundamentally important electronic state is an exciton, an excited electron ...
Gusev, Guennady
, Boite Postale 166, F-38042 Grenoble, France J. C. Portal High Magnetic Field Laboratory CNRS, Boite, Russia Received 30 April 1996 The classical dynamics of a charged particle colliding ballistically around
Merrill, Frank E.; Morris, Christopher
2005-05-17
A system capable of performing radiography using a beam of electrons. Diffuser means receive a beam of electrons and diffuse the electrons before they enter first matching quadrupoles where the diffused electrons are focused prior to the diffused electrons entering an object. First imaging quadrupoles receive the focused diffused electrons after the focused diffused electrons have been scattered by the object for focusing the scattered electrons. Collimator means receive the scattered electrons and remove scattered electrons that have scattered to large angles. Second imaging quadrupoles receive the collimated scattered electrons and refocus the collimated scattered electrons and map the focused collimated scattered electrons to transverse locations on an image plane representative of the electrons' positions in the object.
First principles molecular dynamics without self-consistent field optimization
Souvatzis, Petros; Niklasson, Anders M. N.
2014-01-28
We present a first principles molecular dynamics approach that is based on time-reversible extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. The optimization-free dynamics keeps the computational cost to a minimum and typically provides molecular trajectories that closely follow the exact Born-Oppenheimer potential energy surface. Only one single diagonalization and Hamiltonian (or Fockian) construction are required in each integration time step. The proposed dynamics is derived for a general free-energy potential surface valid at finite electronic temperatures within hybrid density functional theory. Even in the event of irregular functional behavior that may cause a dynamical instability, the optimization-free limit represents a natural starting guess for force calculations that may require a more elaborate iterative electronic ground state optimization. Our optimization-free dynamics thus represents a flexible theoretical framework for a broad and general class of ab initio molecular dynamics simulations.
PROGRESS ON THE INTERACTION REGION DESIGN AND DETECTOR INTEGRATION AT JLAB'S MEIC
Morozov, Vasiliy; Brindza, Paul; Camsonne, Alexandre; Derbenev, Yaroslav; Ent, Rolf; Gaskell, David; Lin, Fanglei; Nadel-Turonski, Pawel; Ungaro, Maurizio; Zhang, Yuhong; Hyde, Charles; Park, Kijun; Sullivan, Michael; Zhao, Zhiwen
2014-07-01
One of the unique features of JLab's Medium-energy Electron-Ion Collider (MEIC) is a full-acceptance detector with a dedicated, small-angle, high-resolution detection system, capable of covering a wide range of momenta (and charge-to-mass ratios) with respect to the original ion beam to enable access to new physics. We present an interaction region design developed with close integration of the detection and beam dynamical aspects. The dynamical aspect of the design rests on a symmetry-based concept for compensation of non-linear effects. The optics and geometry have been optimized to accommodate the detection requirements and to ensure the interaction region's modularity for ease of integration into the collider ring lattices. As a result, the design offers an excellent detector performance combined with the necessary provisions for non-linear dynamical optimization.
Advanced Power Electronics and Electric Motors Annual Report -- 2013
Narumanchi, S.; Bennion, K.; DeVoto, D.; Moreno, G.; Rugh, J.; Waye, S.
2015-01-01
This report describes the research into advanced liquid cooling, integrated power module cooling, high temperature air cooled power electronics, two-phase cooling for power electronics, and electric motor thermal management by NREL's Power Electronics group in FY13.
Pedram, Massoud
Dynamic Driver Supply Voltage Scaling for Organic Light Emitting Diode Displays Donghwa Shin, Student, Fellow, IEEE Abstract--Organic light emitting diode (OLED) display is a self-illuminating device]. On the other hand, an organic light emitting diode (OLED) is self-illuminating using organic light emission
Masciola, M.; Robertson, A.; Jonkman, J.; Driscoll, F.
2011-10-01
To enable offshore floating wind turbine design, the following are required: accurate modeling of the wind turbine structural dynamics, aerodynamics, platform hydrodynamics, a mooring system, and control algorithms. Mooring and anchor design can appreciably affect the dynamic response of offshore wind platforms that are subject to environmental loads. From an engineering perspective, system behavior and line loads must be studied well to ensure the overall design is fit for the intended purpose. FAST (Fatigue, Aerodynamics, Structures and Turbulence) is a comprehensive simulation tool used for modeling land-based and offshore wind turbines. In the case of a floating turbine, continuous cable theory is used to emulate mooring line dynamics. Higher modeling fidelity can be gained through the use of finite element mooring theory. This can be achieved through the FASTlink coupling module, which couples FAST with OrcaFlex, a commercial simulation tool used for modeling mooring line dynamics. In this application, FAST is responsible for capturing the aerodynamic loads and flexure of the wind turbine and its tower, and OrcaFlex models the mooring line and hydrodynamic effects below the water surface. This paper investigates the accuracy and stability of the FAST/OrcaFlex coupling operation.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Nilson, P. M.; Solodov, A. A.; Davies, J. R.; Theobald, W.; Mileham, C.; Stoeckl, C.; Begishev, I. A.; Zuegel, J. D.; Froula, D. H.; Betti, R.; et al
2015-09-25
Time-resolved K? spectroscopy measurements from high-intensity laser interactions with thin-foil solid targets are reviewed. Thin Cu foils were irradiated with 1- to 10-J, 1-ps pulses at focused intensities from 1018 to 1019 W/cm2. The experimental data show K?-emission pulse widths from 3 to 6 ps, increasing with laser intensity. The time-resolved K?-emission data are compared to a hot-electron transport and K?-production model that includes collisional electron-energy coupling, resistive heating, and electromagnetic field effects. The experimental data show good agreement with the model when a reduced ponderomotive scaling is used to describe the initial mean hot-electron energy over the relevant intensitymore »range.« less
Bokarev, Sergey I; Suljoti, Edlira; Kühn, Oliver; Aziz, Emad F
2013-01-01
Non-radiative decay channels in the L-edge fluorescence spectra from transition metal-aqueous solutions give rise to spectral dips in X-ray transmission spectra. Their origin is unraveled here using partial and inverse partial fluorescence yields on the micro-jet combined with multi-reference ab initio electronic structure calculations. Comparing Fe2+, Fe3+, and Co2+ systems we demonstrate unequivocally that spectral dips are due to a state-dependent electron delocalization within the manifold of d-orbitals.
Mueser, Martin
" This electronic auxiliary material contains supportive evidence for claims made in the main text. STRUCTURAL PROPERTIES To give an impression of the various systems analyzed in the main part of our letter, a few conditions. In the main part of our manuscript we claim that our model reproduces the correct static features
McCusker, James K.
Solar Cells Amanda L. Smeigh, Jordan E. Katz, Bruce S. Brunschwig,*,,§ Nathan S. Lewis,*, and James K dynamics of dye-sensitized TiO2-based solar cells have been investigated to determine the effects -/I- were fully functional solar cells whose steady-state photocurrents were directly measured. In (n
Electron Beam Transport in Advanced Plasma Wave Accelerators
Williams, Ronald L
2013-01-31
The primary goal of this grant was to develop a diagnostic for relativistic plasma wave accelerators based on injecting a low energy electron beam (5-50keV) perpendicular to the plasma wave and observing the distortion of the electron beam's cross section due to the plasma wave's electrostatic fields. The amount of distortion would be proportional to the plasma wave amplitude, and is the basis for the diagnostic. The beat-wave scheme for producing plasma waves, using two CO2 laser beam, was modeled using a leap-frog integration scheme to solve the equations of motion. Single electron trajectories and corresponding phase space diagrams were generated in order to study and understand the details of the interaction dynamics. The electron beam was simulated by combining thousands of single electrons, whose initial positions and momenta were selected by random number generators. The model was extended by including the interactions of the electrons with the CO2 laser fields of the beat wave, superimposed with the plasma wave fields. The results of the model were used to guide the design and construction of a small laboratory experiment that may be used to test the diagnostic idea.
Sponsored by Nanotechnology Seminar Program Electronics on Anything: How Thin Film
Fisher, Frank
including electronically active and flexible materials. Our group has been working on the hybrid integrationSponsored by Nanotechnology Seminar Program Electronics on Anything: How Thin Film Electronics University ABSTRACT: Silicon electronics have revolutionized the processing and handling of information
J. L. Alonso; J. Clemente-Gallardo; P. Echenique-Robba; J. A. Jover-Galtier
2013-09-02
In spite of the relevance of the proposal introduced in the recent work A. Abedi, N. T. Maitra and E. K. U. Gross, J. Chem. Phys. 137, 22A530, 2012, there is an important ingredient which is missing. Namely, the proof that the norms of the electronic and nuclear wavefunctions which are the solutions to the nonlinear equations of motion are preserved by the evolution. To prove the conservation of these norms is precisely the objective of this Comment.
Not Available
2008-09-01
Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its grid integration subprogram.
Modular manifold for integrated fluidics and electronics
Adkins, Douglas Ray (Albuquerque, NM)
2010-03-30
An airtight preconcentrator housing and/or a sensor housing for chemical testing, the housing(s) comprising internal dimensions such that a pre-manufactured preconcentrator and/or sensor can be disposed therein. The housings can also comprise electrical contacts disposed therein which align with and thus provide electrical connection to the preconcentrator and/or sensor. The preconcentrator and/or sensor can be easily and quickly replaced.
Hosler, Erik Robert
2013-01-01
dynamics. Tunnel ionization rate determinations are employed to model the pump, while electronic structure calculations
Integral Transformation and MP2 Energy Project C. David Sherrill
Sherrill, David
Integral Transformation and MP2 Energy Project C. David Sherrill School of Chemistry) A program to compute the MP2 energy of a closed- shell molecule, using one- and two-electron MO integrals read from PSI; and (2) a program to transform one- and two-electron integrals from the AO basis
A compact electron gun for time-resolved electron diffraction
Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A.
2015-01-15
A novel compact time-resolved electron diffractometer has been built with the primary goal of studying the ultrafast molecular dynamics of photoexcited gas-phase molecules. Here, we discuss the design of the electron gun, which is triggered by a Ti:Sapphire laser, before detailing a series of calibration experiments relating to the electron-beam properties. As a further test of the apparatus, initial diffraction patterns have been collected for thin, polycrystalline platinum samples, which have been shown to match theoretical patterns. The data collected demonstrate the focusing effects of the magnetic lens on the electron beam, and how this relates to the spatial resolution of the diffraction pattern.
Dougherty, John J. (Norristown, PA); Rudge, George T. (Lansdale, PA)
1980-01-01
An electric signal representative of the rate of insolation is integrated to determine if it is adequate for operation of a solar energy collection system.
Galá?, P. Malý, P.; ?ermák, J.; Kromka, A.; Rezek, B.
2014-12-14
Hybrid diamond-organic interfaces are considered attractive for diverse applications ranging from electronics and energy conversion to medicine. Here we use time-resolved and time-integrated photoluminescence spectroscopy in visible spectral range (380–700?nm) to study electronic processes in H-terminated nanocrystalline diamond films (NCD) with 150?nm thin, electrochemically deposited polypyrrole (PPy) layer. We observe changes in dynamics of NCD photoluminescence as well as in its time-integrated spectra after polymer deposition. The effect is reversible. We propose a model where the PPy layer on the NCD surface promotes spatial separation of photo-generated charge carriers both in non-diamond carbon phase and in bulk diamond. By comparing different NCD thicknesses we show that the effect goes as much as 200?nm deep inside the NCD film.
Approximation of the Time-Dependent Electronic Schrodinger Equation by
Koch, Othmar
], [2]. Large-scale computations of electronic structure and dynamics pose extremely challenging powerful standard tools in electronic structure calculations of atoms and small molecules. Similar to DFT-dependent electronic SchrÂ¨odinger equa- tion (TDSE) arising in ultrafast laser dynamics, which was first proposed in [1
Imperial College London EEE 1L1 Autumn 2009 E2.2 Analogue Electronics E2.2 Analogue Electronics
Papavassiliou, Christos
Imperial College London EEE 1L1 Autumn 2009 E2.2 Analogue Electronics E2.2 Analogue Electronics Autumn 2009 E2.2 Analogue Electronics What analogue electronics is · Engineering, i.e. the analysis EEE 3L1 Autumn 2009 E2.2 Analogue Electronics analogue electronics is not only · CMOS integrated
Mathematics 658 Nonlinear Dynamics and Geometic Mechanics
Bloch, Anthony
Mathematics 658 Nonlinear Dynamics and Geometic Mechanics Instructor: Anthony M. Bloch. Office of ordinary differential equations and dynamical systems, with applications to various mechanical and physical geometry, nonlinear stability theory, Lagrangian and Hamiltonian mechanics, integrable systems, reduction
Protein-directed dynamic combinatorial chemistry
Bhat, Venugopal T.
2011-11-23
Dynamic combinatorial chemistry (DCC) is a novel approach to medicinal chemistry which integrates the synthesis and screening of small molecule libraries into a single step. The concept uses reversible chemical reactions to present a dynamic library...
Hane, J.K.
1995-05-01
Wavelength and composition dependence of the time-resolved luminescence were examined. Effects of macroscopic composition gradient and microscopic alloy disorder on e{sup {minus}}-h{sup +} pair dynamics were probed. Materials with both increasing and decreasing S content with distance from the surface were examined, where 0{le} {times} {le}1 over the full range. In these graded materials, the band gap energy also varies with position. The graded semiconductor luminescence shows strong wavelength dependence, showing diffusion in both band gap and concentration gradients. A bottleneck in the diffusion is attributed to localization occurring primarily in the materials with greatest alloy disorder, i.e. around CdS{sub 0.5}Se{sub 0.50}. Homogeneous materials were studied for x = 0, 0.25, 0.50, 0.75, 1; the time-resolved luminescence depends strongly on the composition. The mixed compositions have longer decay constants than CdS and CdSe. Observed lifetimes agree with a picture of localized states induced by the alloy disorder. For a given homogeneous crystal, no wavelength dependence of the time decays was observed. Picosecond luminescence upconversion spectroscopy was used to study further the dependence of the luminescence on composition. Large nonexponential character in the decay functions was observed in the alloys; this long time tail can be attributed to a broad distribution of relaxation times as modeled by the Kohlrausch exponential.
Efficient Execution of Electronic Structure Calculations on SMP Clusters
Nurzhan Ustemirov
2006-05-01
Applications augmented with adaptive capabilities are becoming common in parallel computing environments. For large-scale scientific applications, dynamic adjustments to a computationally-intensive part may lead to a large pay-off in facilitating efficient execution of the entire application while aiming at avoiding resource contention. Application-specific knowledge, often best revealed during the run-time, is required to initiate and time these adjustments. In particular, General Atomic and Molecular Electronic Structure System (GAMESS) is a program for ab initio quantum chemistry that places significant demands on the high-performance computing platforms. Certain electronic structure calculations are characterized by high consumption of a particular resource, such as CPU, main memory, or disk I/O. This may lead to resource contention among concurrent GAMESS jobs and other programs in the dynamically changing environment. Thus, it is desirable to improve GAMESS calculations by means of dynamic adaptations. In this thesis, we show how an application- or algorithm-specific knowledge may play a significant role in achieving this goal. The choice of implementation is facilitated by a module-driven middleware easily integrated with GAMESS that assesses resource consumption and invokes GAMESS adaptations to the system environment. We show that the throughput of GAMESS jobs may be improved greatly as a result of such adaptations.
Studies of advanced integrated nano-photonic devices in silicon
Dahlem, Marcus
2011-01-01
Electronic-photonic integrated circuits (EPICs) are a promising technology for overcoming bandwidth and power-consumption bottlenecks of traditional integrated circuits. Silicon is a good candidate for building such devices, ...
Solar Electric Grid Integration - Advanced Concepts (SEGIS-AC...
Broader source: Energy.gov (indexed) [DOE]
Solar Electric Grid Integration - Advanced Concepts (SEGIS-AC) program, DOE is funding solar projects that are targeting ways to develop power electronics and build smarter, more...
Print-based Manufacturing of Integrated, Low Cost, High Performance...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
(L3) Integrated Optimized * Electronics (PCB, Driver, LED's) * Heatsink * Housing * Optics On Track to meet Project End Goal Next Steps Equipment readiness , Process validation,...
The Klynac: An Integrated Klystron and Linear Accelerator
Potter, J. M., Schwellenbach, D., Meidinger, A.
2012-08-07
The Klynac concept integrates an electron gun, a radio frequency (RF) power source, and a coupled-cavity linear accelerator into a single resonant system
Communication: Quantum molecular dynamics simulation of liquid...
Office of Scientific and Technical Information (OSTI)
Communication: Quantum molecular dynamics simulation of liquid para-hydrogen by nuclear and electron wave packet approach Citation Details In-Document Search Title: Communication:...
Cross sections for electron scattering by propane in the low- and intermediate-energy ranges
Souza, G. L. C. de; Lee, M.-T.; Sanches, I. P.; Rawat, P.; Iga, I.; Santos, A. S. dos; Machado, L. E.; Sugohara, R. T.; Brescansin, L. M.; Homem, M. G. P.; Lucchese, R. R.
2010-07-15
We present a joint theoretical-experimental study on electron scattering by propane (C{sub 3}H{sub 8}) in the low- and intermediate-energy ranges. Calculated elastic differential, integral, and momentum transfer as well as total (elastic + inelastic) and total absorption cross sections are reported for impact energies ranging from 2 to 500 eV. Also, experimental absolute elastic cross sections are reported in the 40- to 500-eV energy range. A complex optical potential is used to represent the electron-molecule interaction dynamics. A theoretical method based on the single-center-expansion close-coupling framework and corrected by the Pade approximant is used to solve the scattering equations. The experimental angular distributions of the scattered electrons are converted to absolute cross sections using the relative flow technique. The comparison of our calculated with our measured results, as well as with other experimental and theoretical data available in the literature, is encouraging.
Photonic integrated circuits for optical logic applications
Williams, Ryan Daniel
2007-01-01
The optical logic unit cell is the photonic analog to transistor-transistor logic in electronic devices. Active devices such as InP-based semiconductor optical amplifiers (SOA) emitting at 1550 nm are vertically integrated ...
ContentsContents1133integration integration
Vickers, James
ContentsContents1133integration integration 1. Basic concepts of integration 2. Definite integrals 3. The area bounded by a curve 4. Integration by parts 5. Integration by substitution and using partial fractions 6. Integration of trigonometric functions Learning outcomes In this workbook you
Evaluation of Monte Carlo Electron-Transport Algorithms in the...
Office of Scientific and Technical Information (OSTI)
Evaluation of Monte Carlo Electron-Transport Algorithms in the Integrated Tiger Series Codes for Stochastic-Media Simulations. Citation Details In-Document Search Title: Evaluation...
A New Center for Organic Electronics at Masdar Institute | Stanford...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
such as different colors and design for portable electronics and building integrated photovoltaic (ii) large area detectors with potential applications in the medical,...
Synchronous behavior of two coupled electronic neurons
Pinto, R. D.; Varona, P.; GNB, Departamento Ingenieria Informatica, Universidad Autonoma de Madrid, 28049 Madrid, ; Volkovskii, A. R.; Szuecs, A.; Abarbanel, Henry D. I.; Department of Physics and Marine Physical Laboratory, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0402 ; Rabinovich, M. I.
2000-08-01
We report on experimental studies of synchronization phenomena in a pair of analog electronic neurons (ENs). The ENs were designed to reproduce the observed membrane voltage oscillations of isolated biological neurons from the stomatogastric ganglion of the California spiny lobster Panulirus interruptus. The ENs are simple analog circuits which integrate four-dimensional differential equations representing fast and slow subcellular mechanisms that produce the characteristic regular/chaotic spiking-bursting behavior of these cells. In this paper we study their dynamical behavior as we couple them in the same configurations as we have done for their counterpart biological neurons. The interconnections we use for these neural oscillators are both direct electrical connections and excitatory and inhibitory chemical connections: each realized by analog circuitry and suggested by biological examples. We provide here quantitative evidence that the ENs and the biological neurons behave similarly when coupled in the same manner. They each display well defined bifurcations in their mutual synchronization and regularization. We report briefly on an experiment on coupled biological neurons and four-dimensional ENs, which provides further ground for testing the validity of our numerical and electronic models of individual neural behavior. Our experiments as a whole present interesting new examples of regularization and synchronization in coupled nonlinear oscillators. (c) 2000 The American Physical Society.
Integrability Singular reduction
Patrick, George
Motivation Integrability Singular reduction Integration of Singular quotients Summary References Singular reduction of Poisson manifolds and integrability Rui L. Fernandes1 Joint work with J.P. Ortega Fernandes Singular reduction and integrability #12;Motivation Integrability Singular reduction Integration
Integrated Mechanical & Electrical Engineering (IMEE)
Burton, Geoffrey R.
Integrated Mechanical & Electrical Engineering (IMEE) Department of Electronic & Electrical and electrical engineering are in great demand because of their ability to work on complex interdisciplinary and become an expert in the core areas of both mechanical and electrical engineering. Subject aims
Superthermal electron distribution measurements from polarized electron cyclotron emission
Luce, T.C.; Efthimion, P.C.; Fisch, N.J.
1988-06-01
Measurements of the superthermal electron distribution can be made by observing the polarized electron cyclotron emission. The emission is viewed along a constant magnetic field surface. This simplifies the resonance condition and gives a direct correlation between emission frequency and kinetic energy of the emitting electron. A transformation technique is formulated which determines the anisotropy of the distribution and number density of superthermals at each energy measured. The steady-state distribution during lower hybrid current drive and examples of the superthermal dynamics as the runaway conditions is varied are presented for discharges in the PLT tokamak. 15 refs., 8 figs.
Microelectronic Devices and Circuits - 2006 Electronic Edition
Fonstad, Clifton
2006-10-01
Combining semiconductor device physics and modeling with electronic circuit analysis and practice in a single sophomore/junior level microelectronics course, this textbook offers an integrated approach so students can truly ...
43 PARTICLE ACCELERATORS; ELECTRON GUNS; BEAM EMITTANCE; CHARGE
Office of Scientific and Technical Information (OSTI)
SPACE 430200* -- Particle Accelerators-- Beam Dynamics, Field Calculations, & Ion Optics The evolution of the electron-beam phase space distribution in laser-driven rf guns is...
Mukamel, Shaul
-acceptor substituted Hexatrienes demonstrate the interplay of electronic structure and dynamics, and the correlation the calculation of the optical response onto the dynam- ics of coupled electronic oscillators and suggests, which in turn controls the electronic dynamics. We further explore which characteristics of the ground
On the Topic of Motion Integrals
Bertinato, Christopher
2013-04-02
An integral of motion is a function of the states of a dynamical system that is constant along the system’s trajectories. Integrals are known for their utility as a means of reducing the dimension of a system, effectively leaving only one...
Including the Effects of Electronic Excitations and Electron-Phonon Coupling in Cascade Simulations
Duffy, Dorothy |
2008-07-01
Radiation damage has traditionally been modeled using cascade simulations however such simulations generally neglect the effects of electron-ion interactions, which may be significant in high energy cascades. A model has been developed which includes the effects of electronic stopping and electron-phonon coupling in Molecular Dynamics simulations by means of an inhomogeneous Langevin thermostat. The energy lost by the atoms to electronic excitations is gained by the electronic system and the energy evolution of the electronic system is modeled by the heat diffusion equation. Energy is exchanged between the electronic system and the atoms in the Molecular Dynamics simulation by means of a Langevin thermostat, the temperature of which is the local electronic temperature. The model is applied to a 10 keV cascade simulation for Fe. (authors)
AN INTEGRATED ENVIRONMENT FOR CONCEPTUAL DESIGN, SYNTHESIS
Utah, University of
. Methodology for dynamic analysis of open kinematic chains which is indepen- dent of speci c joint trajectoriesAN INTEGRATED ENVIRONMENT FOR CONCEPTUAL DESIGN, SYNTHESIS AND ANALYSIS OF DYNAMIC FRAME STRUCTURES llment of the requirements for the degree of Doctor of Philosophy Department of Mechanical Engineering
initio density functional calculations, we trace the governing mechanism back to electronic structure changes in the electronic properties, direct de- termination of lattice structural dynamics from opticalDirect Observation of Optically Induced Transient Structures in Graphite Using Ultrafast Electron
Smart Grid Integration Laboratory
Wade Troxell
2011-09-30
The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation â?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSUâ??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratoryâ??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.
DYNAMIC MODELING Commercial Office Building Measurements and Dynamic Integrated
Mease, Kenneth D.
mean higher capital costs · Currently, non-renewable generators cannot sell power back to the grid the gas infrastructure handle DG (both on the micro and macro scales)? 3.Natural gas or other fuel costs Distributed Energy Resources · Absorption cooling and heating equipment · Thermal energy storage · Electrical
Dynamic Electronic Control of Catalytic Converters | Department...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Commonalities between Non-road and On-road Diesel Emissions Diesel Injection Shear-Stress Advanced Nozzle (DISSAN) Microstructural Contol of the Porous Si3N4 Ceramics Consisted...
Dynamic characteristics of an oscillating electron tube
Hull, Lewis Madison
1918-01-01
detecting device, whose behavior was shroud ed in mystery and apparently governed by no consistent laws or principles, to a most unique position in the radio field; its immense variety of possible applications in both in laboratory measurements... assumptions have been made: RIf negligible compared with VQ. RCB n " " 1. In practice, when the tube is put in oscillation with this arrangement of inductances a number of harmonic frequencies is present. These frequencies were first detect ed...
Femtosecond Studies of Electron Dynamics at Interfaces
Harris, Charles B.
B. HARRIS*,, Department of Chemistry, University of California, Berkeley, California 94720, and Chemical Sciences Division, Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California at the interface can drastically affect carrier transport properties and the performance of devices. To develop
Suyama, Motohiro (Hamamatsu, JP); Fukasawa, Atsuhito (Hamamatsu, JP); Arisaka, Katsushi (Los Angeles, CA); Wang, Hanguo (North Hills, CA)
2011-12-20
An electron tube of the present invention includes: a vacuum vessel including a face plate portion made of synthetic silica and having a surface on which a photoelectric surface is provided, a stem portion arranged facing the photoelectric surface and made of synthetic silica, and a side tube portion having one end connected to the face plate portion and the other end connected to the stem portion and made of synthetic silica; a projection portion arranged in the vacuum vessel, extending from the stem portion toward the photoelectric surface, and made of synthetic silica; and an electron detector arranged on the projection portion, for detecting electrons from the photoelectric surface, and made of silicon.
Integrated structural health monitoring.
Farrar, C. R. (Charles R.)
2001-01-01
Structural health monitoring is the implementation of a damage detection strategy for aerospace, civil and mechanical engineering infrastructure. Typical damage experienced by this infrastructure might be the development of fatigue cracks, degradation of structural connections, or bearing wear in rotating machinery. The goal of the research effort reported herein is to develop a robust and cost-effective structural health monitoring solution by integrating and extending technologies from various engineering and information technology disciplines. It is the authors opinion that all structural health monitoring systems must be application specific. Therefore, a specific application, monitoring welded moment resisting steel frame connections in structures subjected to seismic excitation, is described along with the motivation for choosing this application. The structural health monitoring solution for this application will integrate structural dynamics, wireless data acquisition, local actuation, micro-electromechanical systems (MEMS) technology, and statistical pattern recognition algorithms. The proposed system is based on an assessment of the deficiencies associated with many current structural health monitoring technologies including past efforts by the authors. This paper provides an example of the integrated approach to structural health monitoring being undertaken at Los Alamos National Laboratory and summarizes progress to date on various aspects of the technology development.
Critical Review of Path Integral Formulation
Takehisa Fujita
2008-01-13
The path integral formulation in quantum mechanics corresponds to the first quantization since it is just to rewrite the quantum mechanical amplitude into many dimensional integrations over discretized coordinates $x_n$. However, the path integral expression cannot be connected to the dynamics of classical mechanics, even though, superficially, there is some similarity between them. Further, the field theory path integral in terms of many dimensional integrations over fields does not correspond to the field quantization. We clarify the essential difference between Feynman's original formulation of path integral in QED and the modern version of the path integral method prevailing in lattice field theory calculations, and show that the former can make a correct second quantization while the latter cannot quantize fields at all and its physical meaning is unknown.
Wu, Jingbo; Wood, Christopher D; Mistry, Divyang; Li, Lianhe; Muchenje, Wilson; Rosamond, Mark C; Chen, Li; Linfield, Edmund H; Davies, A Giles; Cunningham, John E
2015-01-01
Terahertz time domain spectroscopy employing free-space radiation has frequently been used to probe the elementary excitations of low-dimensional systems. The diffraction limit blocks its use for the in-plane study of individual laterally defined nanostructures, however. Here, we demonstrate a planar terahertz-frequency plasmonic circuit in which photoconductive material is monolithically integrated with a two-dimensional electron system. Plasmons with a broad spectral range (up to ~400 GHz) are excited by injecting picosecond-duration pulses, generated and detected by a photoconductive semiconductor, into a high mobility two-dimensional electron system. Using voltage modulation of a Schottky gate overlying the two-dimensional electron system, we form a tuneable plasmonic cavity, and observe electrostatic manipulation of the plasmon resonances. Our technique offers a direct route to access the picosecond dynamics of confined transport in a broad range of lateral nanostructures.
Hacker, Randi; Greene, Megan
2009-01-28
. The Japanese: firefly connection goes back to the 8th Century when poets used them to represent human passions. But pollution and development have depleted the number of fireflies. So what's a New Year's reveler to do? Buy Denshi Hotaru, life-sized, electronic...
Polymeric Electro-optic Modulators: From Chromophore Design to Integration with Semiconductor Very Large Scale Integration Electronics and Silica Fiber Optics L. Dalton, A. Harper, A. Ren, F. Wang, G California, Los Angeles, California 90089-1661 Chromophores with optimized second-order optical nonlinearity
Rydberg hydrogen atom near a metallic surface: Stark regime and ionization dynamics
Inarrea, Manuel; Salas, J. Pablo; Lanchares, Victor; Pascual, Ana Isabel; Palacian, Jesus F.; Yanguas, Patricia
2007-11-15
We investigate the classical dynamics of a hydrogen atom near a metallic surface in the presence of a uniform electric field. To describe the atom-surface interaction we use a simple electrostatic image model. Owing to the axial symmetry of the system, the z-component of the canonical angular momentum P{sub {phi}} is an integral and the electronic dynamics is modeled by a two degrees of freedom Hamiltonian in cylindrical coordinates. The structure and evolution of the phase space as a function of the electric field strength is explored extensively by means of numerical techniques of continuation of families of periodic orbits and Poincare surfaces of section. We find that, due to the presence of the electric field, the atom is strongly polarized through two consecutive pitchfork bifurcations that strongly change the phase space structure. Finally, by means of the phase space transition state theory and the classical spectral theorem, the ionization dynamics of the atom is studied.
Residential Buildings Integration (RBI)
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
7 RBI Priorities for FY15 and Beyond Integrating Advanced Technologies for Homes: * Building integrated renewables * IAQVentilation solutions * Integrated high performance...
Gasoline and Diesel Fuel Update (EIA)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYear JanDecade Year-0per6,167,3715) Integrating
Liu, Jian; Miller, William H.
2008-01-01
in a single phase space integral—beyond the linearizedreplace the phase space integral in Eq. (2.1) by a timeclassical dynamics of the path integral beads of the quantum
Gated integrator with signal baseline subtraction
Wang, X.
1996-12-17
An ultrafast, high precision gated integrator includes an opamp having differential inputs. A signal to be integrated is applied to one of the differential inputs through a first input network, and a signal indicative of the DC offset component of the signal to be integrated is applied to the other of the differential inputs through a second input network. A pair of electronic switches in the first and second input networks define an integrating period when they are closed. The first and second input networks are substantially symmetrically constructed of matched components so that error components introduced by the electronic switches appear symmetrically in both input circuits and, hence, are nullified by the common mode rejection of the integrating opamp. The signal indicative of the DC offset component is provided by a sample and hold circuit actuated as the integrating period begins. The symmetrical configuration of the integrating circuit improves accuracy and speed by balancing out common mode errors, by permitting the use of high speed switching elements and high speed opamps and by permitting the use of a small integrating time constant. The sample and hold circuit substantially eliminates the error caused by the input signal baseline offset during a single integrating window. 5 figs.
Gated integrator with signal baseline subtraction
Wang, Xucheng (Lisle, IL)
1996-01-01
An ultrafast, high precision gated integrator includes an opamp having differential inputs. A signal to be integrated is applied to one of the differential inputs through a first input network, and a signal indicative of the DC offset component of the signal to be integrated is applied to the other of the differential inputs through a second input network. A pair of electronic switches in the first and second input networks define an integrating period when they are closed. The first and second input networks are substantially symmetrically constructed of matched components so that error components introduced by the electronic switches appear symmetrically in both input circuits and, hence, are nullified by the common mode rejection of the integrating opamp. The signal indicative of the DC offset component is provided by a sample and hold circuit actuated as the integrating period begins. The symmetrical configuration of the integrating circuit improves accuracy and speed by balancing out common mode errors, by permitting the use of high speed switching elements and high speed opamps and by permitting the use of a small integrating time constant. The sample and hold circuit substantially eliminates the error caused by the input signal baseline offset during a single integrating window.
Switched Control of Electron Nuclear Spin Systems
Navin Khaneja
2007-07-11
In this article, we study control of electron-nuclear spin dynamics at magnetic field strengths where the Larmor frequency of the nucleus is comparable to the hyperfine coupling strength. The quantization axis for the nuclear spin differs from the static B_0 field direction and depends on the state of the electron spin. The quantization axis can be switched by flipping the state of electron spin, allowing for universal control on nuclear spin states. We show that by performing a sequence of flips (each followed by a suitable delay), we can perform any desired rotation on the nuclear spins, which can also be conditioned on the state of the electron spin. These operations, combined with electron spin rotations can be used to synthesize any unitary transformation on the coupled electron-nuclear spin system. We discuss how these methods can be used for design of experiments for transfer of polarization from the electron to the nuclear spins.
Kerby, L.A. [Calpine Corp., San Jose, CA (United States)
1995-11-01
A continuing challenge facing the independent power industry is building better plants at lower cost. Price considerations have forced many developers to re-focus their capabilities to create viable, new alternatives to traditional turnkey project contracts. Prompted by such pressures, Calpine Corp. recently created its own internal, integrated solution to project development which provides more control and input for a project owner and manager while establishing a solid set of guarantees to non-recourse lenders through a program of warranties and overall insurance coverage. The proof case for Calpine-Construct is the Sumas Project, a 125 MW gas-fired cogeneration plant in Sumas, WA, near the Canadian border. The Sumas project demonstrates how owners, suppliers and contractors, working together on site, can be readily able to solve construction problems.
Design of an Electron Gun using Computer Optimization
Design of an Electron Gun using Computer Optimization B. M. Lewis H. T. Tran Department geometry of the system. This optimization framework, to be considered in the context of electron guns the methods of shape optimization to design the cathode of an electron gun. The dynamical equations modeling
Computing Partial Eigenvalue Sum in Electronic Structure Calculations
Bai, Zhaojun
and CPU time. In the application of electronic structure calculations in molecular dynamics, the newComputing Partial Eigenvalue Sum in Electronic Structure Calculations Z. Bai M. Faheyy G. Golubz M where computation of the total energy of an electronic structure requires the evaluation of partial
The structure of electronic states in amorphous silicon
Drabold, David
the structure and dynamics of electron states in amorphous Si. The nature of the states near the gap at zeroThe structure of electronic states in amorphous silicon David A. Drabold,* Uwe Stephan, Jianjun for amorphous Si, which are of particular interest for efficient ab initio calculation of electronic properties
Solution of Large Eigenvalue Problems in Electronic Structure Calculations \\Lambda
Stathopoulos, Andreas
Solution of Large Eigenvalue Problems in Electronic Structure Calculations \\Lambda Y. Saad y , A the structural and electronic properties of complex systems is one of the outstanding problems in condensed external perturbations. For example, it may be desirable in certain cases to follow the dynamics of atoms/electrons
String theory and integrable systems
Nissimov, Emil R; Nissimov, Emil; Pacheva, Svetlana
1993-01-01
This is mainly a brief review of some key achievements in a `hot'' area of theoretical and mathematical physics. The principal aim is to outline the basic structures underlying {\\em integrable} quantum field theory models with {\\em infinite-dimensional} symmetry groups which display a radically new type of {\\em quantum group} symmetries. Certain particular aspects are elaborated upon with some detail: integrable systems of Kadomtsev-Petviashvili type and their reductions appearing in matrix models of strings; Hamiltonian approach to Lie-Poisson symmetries; quantum field theory approach to two-dimensional relativistic integrable models with dynamically broken conformal invariance. All field-theoretic models in question are of primary relevance to diverse branches of physics ranging from nonlinear hydrodynamics to string theory of fundamental particle interactions at ultra-high energies.
Integrated control system and method
Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin
2013-10-29
An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.
Krylov, Anna I.
electronic structure calculations with the experimental observables. We aim at establishing a theoretical in molecular solids and model compounds. The electronic structure aspects of SF have received considerable quantities by modeling complicated nonadiabatic dynamics encompassing several interacting electronic states
[Inelastic electron scattering from surfaces]. [Progress report
Not Available
1993-10-01
This program uses ab-initio and multiple scattering to study surface dynamical processes; high-resolution electron-energy loss spectroscopy is used in particular. Off-specular excitation cross sections are much larger if electron energies are in the LEED range (50--300 eV). The analyses have been extended to surfaces of ordered alloys. Phonon eigenvectors and eigenfrequencies were used as inputs to electron-energy-loss multiple scattering cross section calculations. Work on low-energy electron and positron holography is mentioned.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating SolarConstruction Review BasicConsumer-Electronics
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear ProfileMultiferroicAward |ElectronFluctuations3 Pierre
Electronic Coupling Dependence of Ultrafast Interfacial Electron...
Office of Scientific and Technical Information (OSTI)
Electron Transfer on Nanocrystalline Thin Films and Single Crystal Lian, Tianquan 14 SOLAR ENERGY The long-term goal of the proposed research is to understand electron transfer...
2013 R&D 100 Award: Movie-mode electron microscope captures nanoscale
Lagrange, Thomas; Reed, Bryan
2014-07-21
A new instrument developed by LLNL scientists and engineers, the Movie Mode Dynamic Transmission Electron Microscope (MM-DTEM), captures billionth-of-a-meter-scale images with frame rates more than 100,000 times faster than those of conventional techniques. The work was done in collaboration with a Pleasanton-based company, Integrated Dynamic Electron Solutions (IDES) Inc. Using this revolutionary imaging technique, a range of fundamental and technologically important material and biological processes can be captured in action, in complete billionth-of-a-meter detail, for the first time. The primary application of MM-DTEM is the direct observation of fast processes, including microstructural changes, phase transformations and chemical reactions, that shape real-world performance of nanostructured materials and potentially biological entities. The instrument could prove especially valuable in the direct observation of macromolecular interactions, such as protein-protein binding and host-pathogen interactions. While an earlier version of the technology, Single Shot-DTEM, could capture a single snapshot of a rapid process, MM-DTEM captures a multiframe movie that reveals complex sequences of events in detail. It is the only existing technology that can capture multiple electron microscopy images in the span of a single microsecond.
Ekdahl, Carl August Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-10-14
Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.
Tong, Xiao-Min; Chu, Shih-I
1998-01-01
We present a self-interaction-free time-dependent density-functional theory (TDDFT) for nonperturbative treatment of multiphoton processes of many-electron atomic systems in intense laser fields. The theory is based on the ...
Chu, Xi; Chu, Shih-I
2001-11-14
We present a time-dependent density-functional theory (TDDFT) with proper asymptotic long-range potential for nonperturbative treatment of multiphoton processes of many-electron molecular systems in intense laser fields. ...
Microfluidic Integration into Neural Implants University of Southern California, Los Angeles, CA
Meng, Ellis
Microfluidic Integration into Neural Implants E. Meng1 1 University of Southern California, Los technological deficiencies can be addressed by integrating microfluidics with electrodes and electrochemical sensors. Multimodality neural interfaces that combine electronics and microfluidics open new possibilities
Sandia Energy - Scattering Dynamics
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Scattering Dynamics Home Transportation Energy Predictive Simulation of Engines Combustion Chemistry Chemical Dynamics Scattering Dynamics Scattering DynamicsAshley...
Dynamics and architectures of innovation systems
Chen, Po Chia, S.M. Massachusetts Institute of Technology
2011-01-01
Innovation processes are multifaceted. Different studies usually focus on different facets of innovations without being integrated into a complete innovation system. In this thesis, system dynamics and system architecture ...
structure calculations qualitatively reproduce the experimental observations. From the calculations interest in the kinetics and dynamics of electron transfer (ET) reac- tions, including reactions kinetics and dynamics studies: `how far is the electron transferred?' At first glance, this would appear
Borissova, Daniela
4 8 A Technology for Electronic Energy Meters Intelligent Accounting Using Distributed Database processing to allow the adequate information integration and resource control in the energy distribution the energy distribution enterprise information. Reading the electronic energy meters is made through
Electron acoustic wave driven vortices with non-Maxwellian hot electrons in magnetoplasmas
Haque, Q.; Mirza, Arshad M.; Zakir, U.
2014-07-15
Linear dispersion characteristics of the Electron Acoustic Wave (EAW) and the corresponding vortex structures are investigated in a magnetoplasma in the presence of non-Maxwellian hot electrons. In this regard, kappa and Cairns distributed hot electrons are considered. It is noticed that the nonthermal distributions affect the phase velocity of the EAW. Further, it is found that the phase velocity of EAW increases for Cairns and decreases for kappa distributed hot electrons. Nonlinear solutions in the form of dipolar vortices are also obtained for both stationary and non-stationary ions in the presence of kappa distributed hot electrons and dynamic cold electrons. It is found that the amplitude of the nonlinear vortex structures also reduces with kappa factor like the electron acoustic solitons.
Shielding and Securing Integrated Circuits with Sensors Davood Shahrjerdi
Shielding and Securing Integrated Circuits with Sensors Davood Shahrjerdi , Jeyavijayan Rajendran Defense (SHIELD) is envisioned to en- able advanced supply chain hardware authentication and tracing capabilities. The suggested SHIELD is expected to be a ultra- lower power, minuscule electronic component
S. Manay; A. J. Yezzi; B. W. Hong; S. Soatto
2004-01-01
Projective curvature and integral invariants. IJCV, 40(3):a database of 23 shapes. Integral Invariant Signatures 7. A.C. Lopez, and J. M. Morel. Integral and local a?ne invariant
Manay, S; Hong, B W; Yezzi, A J; Soatto, Stefano
2004-01-01
Projective curvature and integral invariants. IJCV, 40(3):a database of 23 shapes. Integral Invariant Signatures 7. A.C. Lopez, and J. M. Morel. Integral and local a?ne invariant
Connecting curves for dynamical systems
R. Gilmore; Jean-Marc Ginoux; Timothy Jones; C. Letellier; U. S. Freitas
2010-03-08
We introduce one dimensional sets to help describe and constrain the integral curves of an $n$ dimensional dynamical system. These curves provide more information about the system than the zero-dimensional sets (fixed points) do. In fact, these curves pass through the fixed points. Connecting curves are introduced using two different but equivalent definitions, one from dynamical systems theory, the other from differential geometry. We describe how to compute these curves and illustrate their properties by showing the connecting curves for a number of dynamical systems.
Optically pulsed electron accelerator
Fraser, J.S.; Sheffield, R.L.
1985-05-20
An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.
Optically pulsed electron accelerator
Fraser, John S. (Los Alamos, NM); Sheffield, Richard L. (Los Alamos, NM)
1987-01-01
An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.
Broader source: Energy.gov [DOE]
The DOE Systems Integration team funds distribution grid integration research and development (R&D) activities to address the technical issues that surround distribution grid planning,...
Thermal Control & System Integration
Broader source: Energy.gov [DOE]
The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....
Steve Bell
2009-06-24
Feb 23, 2009 ... Cauchy Integral Formula basics. I'm using the enumerate environment on this slide. 1. The Cauchy Integral Formula was discovered by Cauchy ...
Feb 23, 2009 ... Cauchy Integral Formula basics I'm using the enumerate environment on this slide. The Cauchy Integral Formula was discovered by Cauchy.
Kurnikova, Maria
calculations of electronic couplings, molecular dynamics simulations of molecular geometries, and Poisson exists to interpret electron-transfer (ET) reactions and their dependence upon molecular structure.1Structural Fluctuations, Spin, Reorganization Energy, and Tunneling Energy Control
August 1993 INTEGRATED HATCHERY OPERATIONS TEAM
1992 DOE/BP-60629-7 #12;This report was funded by the Bonneville Power Administration (BPA), U, 162 electronic pages (BPA Report DOE/BP-60629-7) This report and other BPA Fish and Wildlife-3621 Please include title, author, and DOE/BP number in the request. #12;INTEGRATED HATCHERY OPERATIONS TEAM
Flexible Displays With Nanostructured Integrated Power
Rubloff, Gary W.
Background and Motivation Impact of Fabrication process on Performance and Reliability. 3D Integration Fabrication Methods Transfer Printing Photolithography with LT Processing #12;Successful Implementation of Transfer Printing #12;#12;#12;#12;#12;#12;Second Fabrication Technology For Flexible Electronics
Drabold, David
upon reasonable calculations of the electron-lattice coupling and molecular dynamic simulationNetwork structure and dynamics of hydrogenated amorphous silicon D.A. Drabold *, T.A. Abtew, F on the network or lattice dynamics of the system, both in the electronic ground state and in an electronic
Electron beam generation in Tevatron electron lenses
Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; Tiunov, M.; /Novosibirsk, IYF
2006-08-01
New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices.
Integrated assessment of the sustainability of biomass
Pennycook, Steve
Integrated assessment of the sustainability of biomass supply chains Dr. Floor van der Hilst · Previous work on sustainable biomass supply chains: Land use change modeling Dynamic Cost supply chains Future work and potential collaboration #12;Rationale · The total demand for biomass for energy
DYNAMIC RISK MANAGEMENT IN ELECTRICITY PORTFOLIO OPTIMIZATION
Römisch, Werner
DYNAMIC RISK MANAGEMENT IN ELECTRICITY PORTFOLIO OPTIMIZATION VIA POLYHEDRAL RISK FUNCTIONALS the dynamic decision structure appropriately. In energy risk management, which is typically carried out ex, for integrating risk management into a stochastic optimization framework, risk has to be quantified in a definite
Analog Integrated Circuits and Signal Processing
Ayers, Joseph
-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self and power consumption. In addition, with a digitally controlled capacitive offset calibration technique Due to fast-speed, low-power consumption, high-input impedance and full-swing output, CMOS dynamic
Integrated optical circuit engineering IV: SPIE volume 704
Mentzer, M.A.; Sriram, S.
1987-01-01
This book contains papers arranged under the following headings: Lithium niobate devices; Silicon integrated optic; Waveguide phenomena; Coupling considerations; Processing technology; Nonlinear guided-wave optics; Integrated optics for fiber systems; Systems considerations and applications; and Processing of guided-wave opto- electronic materials II.
Two-beam detuned-cavity electron accelerator structure
Jiang, Y.; Hirshfield, J. L. [Beam Physics Laboratory, Yale University, New Haven, CT 06511 (United States); Beam Physics Laboratory, Yale University, New Haven, CT 06511 (United States) and Omega-P, Inc., New Haven, CT 06510 (United States)
2012-12-21
Progress has been made in the theory, development, cavity design and optimization, beam dynamics study, beam transport design, and hardware construction for studies of a detuned two-beam electron accelerator structure.
M. Zyskin
2010-05-12
For nice functions, invariant means over integral currents (certain generalized surfaces), can be uniquely defined.
Spieler, Helmuth G
2008-01-01
R. Armstrong Contents Electronics 9.1 Introduction 9.2measurements 9.11 Digital electronics 9.11.1 Logic elementsProblems page 1 vii Electronics This chapter was contributed
Natural Dynamics for Combinatorial Optimization
Ovchinnikov, Igor V
2015-01-01
Stochastic and or natural dynamical systems (DSs) are dominated by sudden nonlinear processes such as neuroavalanches, gamma-ray bursts, solar flares, earthquakes etc. that exhibit scale-free statistics. These behaviors also occur in many nanosystems. On phase diagrams, these DSs belong to a finite-width phase that separates the phases of thermodynamic equilibrium and ordinary chaotic dynamics, and that is known under such names as intermittency, noise-induced chaos, and self-organized criticality. Within the recently formulated approximation-free cohomological theory of stochastic differential equations, the noise-induced chaos can be roughly interpreted as a noise-induced overlap between regular (integrable) and chaotic (non-integrable) deterministic dynamics so that DSs in this phase inherit the properties of the both. Here, we analyze this unique set of properties and conclude that such DSs must be the most efficient natural optimizers. Based on this understanding, we propose the method of the natural dyn...
Casey, Jennifer Ryan
2014-01-01
Cavity and Non-cavity Hydrated Elec- tron at the Air/Waterrelaxation dynamics at water/air interfaces. J. Chem.Electronic states at the water/air interface. J. Phys. Chem.
Emery, V.J. [Brookhaven National Lab., Upton, NY (United States); Kivelson, S.A. [California Univ., Los Angeles, CA (United States). Dept. of Physics
1993-12-31
In the past few years there has been a resurgence of interest in dynamical impurity problems, as a result of developments in the theory of correlated electron systems. The general dynamical impurity problem is a set of conduction electrons interacting with an impurity which has internal degrees of freedom. The simplest and earliest example, the Kondo problem, has attracted interest since the mid-sixties not only because of its physical importance but also as an example of a model displaying logarithmic divergences order by order in perturbation theory. It provided one of the earliest applications of the renormalization group method, which is designed to deal with just such a situation. As we shall see, the antiferromagnetic Kondo model is controlled by a strong-coupling fixed point, and the essence of the renormalization group solution is to carry out the global renormalization numerically starting from the original (weak-coupling) Hamiltonian. In these lectures, we shall describe an alternative route in which we identify an exactly solvable model which renormalizes to the same fixed point as the original dynamical impurity problem. This approach is akin to determining the critical behavior at a second order phase transition point by solving any model in a given universality class.
Chen Lijen; Bessho, Naoki; Bhattacharjee, Amitava; Lefebvre, Bertrand; Vaith, Hans; Puhl-Quinn, Pamela; Torbert, Roy; Asnes, Arne; Fazakerley, Andrew; Khotyaintsev, Yuri; Daly, Patrick
2009-05-15
Open questions concerning structures and dynamics of diffusion regions and electron acceleration in collisionless magnetic reconnection are addressed based on data from the four-spacecraft mission Cluster and particle-in-cell simulations. Using time series of electron distribution functions measured by the four spacecraft, distinct electron regions around a reconnection layer are mapped out to set the framework for studying diffusion regions. A spatially extended electron current sheet (ecs), a series of magnetic islands, and bursts of energetic electrons within islands are identified during magnetotail reconnection with no appreciable guide field. The ecs is collocated with a layer of electron-scale electric fields normal to the ecs and pointing toward the ecs center plane. Both the observed electron and ion densities vary by more than a factor of 2 within one ion skin depth north and south of the ecs, and from the ecs into magnetic islands. Within each of the identified islands, there is a burst of suprathermal electrons whose fluxes peak at density compression sites [L.-J. Chen et al., Nat. Phys. 4, 19 (2008)] and whose energy spectra exhibit power laws with indices ranging from 6 to 7.3. These results indicate that the in-plane electric field normal to the ecs can be of the electron scale at certain phases of reconnection, electrons and ions are highly compressible within the ion diffusion region, and for reconnection involving magnetic islands, primary electron acceleration occurs within the islands.
Advanced Integrated Traction System
Greg Smith; Charles Gough
2011-08-31
The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step towards enabling a smart-grid application. GM under this work assessed 29 technologies; investigated 36 configurations/types power electronics and electric machines, filed 41 invention disclosures; and ensured technology compatibility with vehicle production. Besides the development of a high temperature ETS the development of industrial suppliers took place because of this project. Suppliers of industrial power electronic components are numerous, but there are few that have traction drive knowledge. This makes it difficult to achieve component reliability, durability, and cost requirements necessary of high volume automotive production. The commercialization of electric traction systems for automotive industry requires a strong diverse supplier base. Developing this supplier base is dependent on a close working relationship between the OEM and supplier so that appropriate component requirements can be developed. GM has worked closely with suppliers to develop components for electric traction systems. Components that have been the focus of this project are power modules, capacitors, heavy copper boards, current sensors, and gate drive and controller chip sets. Working with suppliers, detailed component specifications have been developed. Current, voltage, and operation environment during the vehicle drive cycle were evaluated to develop higher resolution/accurate component specifications.
Pseudopotential for the electron-electron interaction
Lloyd-Williams, J H; Conduit, G J
2015-01-01
We propose a pseudopotential for the electron-electron Coulomb interaction to improve the efficiency of many-body electronic structure calculations. The pseudopotential accurately replicates the scattering properties of the Coulomb interaction, and recovers the analytical solution for two electrons in a parabolic trap. A case study for the homogeneous electron gas using the diffusion Monte Carlo and configuration interaction methods recovers highly accurate values for the ground state energy, and the smoother potential reduces the computational cost by a factor of ~30. Finally, we demonstrate the use of the pseudopotential to study isolated lithium and beryllium atoms.
Stability of the electron cyclotron resonance
Joachim Asch; Olivier Bourget; Cédric Meresse
2015-10-15
We consider the magnetic AC Stark effect for the quantum dynamics of a single particle in the plane under the influence of an oscillating homogeneous electric and a constant perpendicular magnetic field. We prove that the electron cyclotron resonance is insensitive to impurity potentials.
electronic reprint Acta Crystallographica Section B
Vocadlo, Lidunka
electronic reprint Acta Crystallographica Section B Structural Science ISSN 0108-7681 Structures, concluding that a CsCl-type structure would be the thermo- dynamically most stable phase for pressures calculations Lidunka Vocadlo, Geoffrey D. Price and I. G. Wood Copyright © International Union
Controlling Graphene's Electronic Structure
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Controlling Graphene's Electronic Structure Print Wednesday, 25 April 2007 00:00 Graphene, because of its unusual electron properties, reduced dimensionality, and scale, has...
Kontar, E P; Emslie, A G; Bian, N H
2015-01-01
Extending previous studies of nonthermal electron transport in solar flares which include the effects of collisional energy diffusion and thermalization of fast electrons, we present an analytic method to infer more accurate estimates of the accelerated electron spectrum in solar flares from observations of the hard X-ray spectrum. Unlike for the standard cold-target model, the spatial characteristics of the flaring region, especially the necessity to consider a finite volume of hot plasma in the source, need to be taken into account in order to correctly obtain the injected electron spectrum from the source-integrated electron flux spectrum (a quantity straightforwardly obtained from hard X-ray observations). We show that, for a given source-integrated electron flux spectrum, the overall power in the injected electrons could be reduced by an order of magnitude or more relative to its cold-target value. Indeed, the extent of electron thermalization can be significant enough to nullify the need to introduce an...
Wind Integration Study Methods (Presentation)
Milligan, M.; Kirby, B.
2011-04-01
This presentation provides an overview of common elements, differences, integration costs, and errors in integration analysis.
Dynamical synapses causing self-organized criticality in neural networks
Loss, Daniel
LETTERS Dynamical synapses causing self-organized criticality in neural networks A. LEVINA1,2,3 , J more realistic) dynamical synapses14 in a spiking neural network, the neuronal avalanches turn from dynamics is robust to parameter changes. Consider a network of N integrate-and-fire neurons. Each neuron
Generation of Femtosecond Electron Pulses
Jinamoon, V.; Kusoljariyakul, K.; Rimjaem, S.; Saisut, J.; Thongbai, C.; Vilaithong, T.; Rhodes, M.W.; Wichaisirimongkol, P.; Chumphongphan, S.; Wiedemann, H.; /SLAC, SSRL
2005-05-09
At the Fast Neutron Research Facility (FNRF), Chiang Mai University (Thailand), the SURIYA project has been established aiming to produce femtosecond electron pulses utilizing a combination of an S-band thermionic rf gun and a magnetic bunch compressor ({alpha}-magnet). A specially designed rf-gun has been constructed to obtain optimum beam characteristics for the best bunch compression. Simulation results show that bunch lengths as short as about 50 fs rms can be expected at the experimental station. The electron bunch lengths will be determined using autocorrelation of coherent transition radiation (TR) through a Michelson interferometer. The paper discusses beam dynamics studies, design, fabrication and cold tests of the rf-gun as well as presents the project current status and forth-coming experiments.
Iyengar, Srinivasan S.
electronic structure calculations (at the level of density functional theory, Hartree-Fock, post- Hartree approach to treat the simultaneous dynamics of electrons and nuclei. The method is based on a synergy-H-Cl]- and [CH3-H-Cl]- along with simultaneous dynamical treatment of the electrons and classical nuclei, through
Brenner, Donald W.
binding electronic structure calculations, pertur- bation models, and quantum-classical Hamiltonians [6 depends on the degree of approximation used in solving the electronic structure problem, which can add-scale molecular dynamics (MD) simulation is not to model electron dynamics, but rather to numerically solve
Iyengar, Srinivasan S.
Dynamics and Electronic Structure David Hocker, Xiaohu Li, and Srinivasan S. Iyengar* Department) approximates the electronic structure alongside the nuclei to simulate molecular dynamics. When AIMD techniques in electronic structure calculation. The approach is quantum-classical40,57-63 and involves the synergy between
Electron Cloud Effects in Accelerators
Furman, M.A.
2012-11-30
Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].
Torque for electron spin induced by electron permanent electric dipole moment
Senami, Masato E-mail: akitomo@scl.kyoto-u.ac.jp; Fukuda, Masahiro E-mail: akitomo@scl.kyoto-u.ac.jp; Ogiso, Yoji E-mail: akitomo@scl.kyoto-u.ac.jp; Tachibana, Akitomo E-mail: akitomo@scl.kyoto-u.ac.jp
2014-10-06
The spin torque of the electron is studied in relation to the electric dipole moment (EDM) of the electron. The spin dynamics is known to be given by the spin torque and the zeta force in quantum field theory. The effect of the EDM on the torque of the spin brings a new term in the equation of motion of the spin. We study this effect for a solution of the Dirac equation with electromagnetic field.
Efficient Nanoporous Silicon Membranes for Integrated Microfluidic Separation and Sensing Systems
Ileri, N; L?tant, S E; Britten, J; Nguyen, H; Larson, C; Zaidi, S; Palazoglu, A; Faller, R; Tringe, J W; Stroeve, P
2009-04-06
Nanoporous devices constitute emerging platforms for selective molecule separation and sensing, with great potential for high throughput and economy in manufacturing and operation. Acting as mass transfer diodes similar to a solid-state device based on electron conduction, conical pores are shown to have superior performance characteristics compared to traditional cylindrical pores. Such phenomena, however, remain to be exploited for molecular separation. Here we present performance results from silicon membranes created by a new synthesis technique based on interferometric lithography. This method creates millimeter sized planar arrays of uniformly tapered nanopores in silicon with pore diameter 100 nm or smaller, ideally-suited for integration into a multi-scale microfluidic processing system. Molecular transport properties of these devices are compared against state-of-the-art polycarbonate track etched (PCTE) membranes. Mass transfer rates of up to fifteen-fold greater than commercial sieve technology are obtained. Complementary results from molecular dynamics simulations on molecular transport are reported.
A Corpuscular Picture of Electrons in Chemical Bond
Ando, Koji
2015-01-01
We introduce a theory of chemical bond with a corpuscular picture of electrons. It employs a minimal set of localized electron wave packets with 'floating and breathing' degrees of freedom and the spin-coupling of non-orthogonal valence-bond theory. It accurately describes chemical bonds in ground and excited states of spin singlet and triplet, in a distinct manner from conventional theories, indicating potential for establishing a dynamical theory of electrons in chemical bonds.
Kervalishvili, N A
2015-01-01
The results of experimental investigations of electron ejection from gas-discharge nonneutral electron plasma at the formation and radial oscillations of vortex structure have been presented. The electrons are injected from the vortex structure and the adjacent region of electron sheath in the form of pulses the duration and periodicity of which are determined by the processes of evolution and dynamics of this structure. The possible mechanisms of pulse ejection of electrons are considered. The influence of electron ejection on other processes in discharge electron sheath is analyzed.
WORLDLY | IntegRateD | peRsOnaLIzeD MBa Message from the Director 4
Shoubridge, Eric
WORLDLY | IntegRateD | peRsOnaLIzeD MBa beyond business as usual #12;Contents WoRLDLY Message from: An International & Dynamic City 16 InteGRAteD What is Integrated Management? 18 Our Unique Integrated Approach Program 29 PeRsonALIzeD Message from Career Services 30 Employment Statistics 32 Our Mentoring Program 33
INTEGRATING PHOTOVOLTAIC SYSTEMS
Delaware, University of
INTEGRATING PHOTOVOLTAIC SYSTEMS INTO PUBLIC SECTOR PERFORMANCE CONTRACTS IN DELAWARE FINAL for Energy and Environmental Policy University of Delaware February 2006 #12;INTEGRATING PHOTOVOLTAIC..................................................................................................... 1 1.2 Photovoltaics in Performance Contracts: An Overview
Research Misconduct (Research Integrity
Wapstra, Erik
Research Misconduct (Research Integrity Coordinator report) Glossary ADR Associate Dean Research ANDS Australian National Data Sharing ITS Information Technology Services NeCTAR National eResearch Collaboration Tools and Resources RSDI Research Storage Data Infrastructure input Research Integrity Advisors
Integrating Security Solutions to Support nanoCMOS Electronics Research
Sinnott, R.O.
Sinnott,R.O. Asenov,A. Bayliss,C. Davenhall,C. Doherty,T. Harbulot,B. Jones,M. Martin,D. Millar,C. Roy,G. Roy,S. Stewart,G. Watt,J. IEEE International Symposium on Parallel and Distributed Processing Systems with Applications, Sydney Australia, December 2008.
Power Electronic Thermal System Performance and Integration | Department of
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1,anEnergyDepartment ofPotentialEnergy
Power Electronic Thermal System Performance and Integration | Department of
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1,anEnergyDepartment ofPotentialEnergyEnergy 09
Transmission Commercial Project Integration
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Market Generator Interconnection Reform Implementation Network Integration Transmission Service (NT Service) Network Open Season (NOS) PTSA Reform North American Energy...
Integrated injection-locked semiconductor diode laser
Hadley, G. Ronald (Albuquerque, NM); Hohimer, John P. (Albuquerque, NM); Owyoung, Adelbert (Albuquerque, NM)
1991-01-01
A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet.
Heterogeneously integrated microsystem-on-a-chip
Chanchani, Rajen (Albuquerque, NM)
2008-02-26
A microsystem-on-a-chip comprises a bottom wafer of normal thickness and a series of thinned wafers can be stacked on the bottom wafer, glued and electrically interconnected. The interconnection layer comprises a compliant dielectric material, an interconnect structure, and can include embedded passives. The stacked wafer technology provides a heterogeneously integrated, ultra-miniaturized, higher performing, robust and cost-effective microsystem package. The highly integrated microsystem package, comprising electronics, sensors, optics, and MEMS, can be miniaturized both in volume and footprint to the size of a bottle-cap or less.
Integrated injection-locked semiconductor diode laser
Hadley, G.R.; Hohimer, J.P.; Owyoung, A.
1991-02-19
A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet. 18 figures.
Environmentally conscious manufacturing integrated demonstration. Final report
Gentry, D.E.
1993-07-01
The objective of the Environmentally Conscious Manufacturing Integrated Demonstration was to show that several of the individually developed materials and processes to reduce hazardous materials and waste could be successfully used on a single assembly. A methodology was developed that could be used on any product to plan the approach to eliminating hazardous materials. Sample units of an existing design electronic unit were fabricated applying this methodology and substituting nonhazardous materials and processes. The results of this project show that total waste can be drastically reduced by at least an order of magnitude and hazardous material and waste can be essentially eliminated in the manufacture of this type of electronic devices.
Yamazaki, M.; Kasai, Y.; Oishi, K.; Nakazawa, H.; Takahashi, M.
2013-06-15
An (e,2e) apparatus for electron momentum spectroscopy (EMS) has been developed, which employs an ultrashort-pulsed incident electron beam with a repetition rate of 5 kHz and a pulse duration in the order of a picosecond. Its instrumental design and technical details are reported, involving demonstration of a new method for finding time-zero. Furthermore, EMS data for the neutral Ne atom in the ground state measured by using the pulsed electron beam are presented to illustrate the potential abilities of the apparatus for ultrafast molecular dynamics, such as by combining EMS with the pump-and-probe technique.
Chiral specific electron vortex beam spectroscopy
J. Yuan; S. M. Lloyd; M. Babiker
2013-07-29
Electron vortex beams carry well-defined orbital angular momentum (OAM) about the propagation axis. Such beams are thus characterised by chirality features which make them potentially useful as probes of magnetic and other chiral materials. An analysis of the inelastic processes in which electron vortex beams interact with atoms and which involve OAM exchange is outlined, leading to the multipolar selection rules governing this chiral specific electron vortex beam spectroscopy. Our results show clearly that the selection rules are dependent on the dynamical state and location of the atoms involved. In the most favorable scenario, this form of electron spectroscopy can induce magnetic sublevel transitions which are commonly probed using circularly polarized photon beams.
ASYMMETRIC ELECTRON DISTRIBUTIONS IN THE SOLAR WIND
Rha, Kicheol; Ryu, Chang-Mo [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)] [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Yoon, Peter H. [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States)] [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States)
2013-09-20
A plausible mechanism responsible for producing asymmetric electron velocity distribution functions in the solar wind is investigated by means of one-dimensional electrostatic particle-in-cell (PIC) simulation. A recent paper suggests that the variation in the ion-to-electron temperature ratio influences the nonlinear wave-particle dynamics such that it results in the formation of asymmetric distributions. The present PIC code simulation largely confirms this finding, but quantitative differences between the weak turbulence formalism and the present PIC simulation are also found, suggesting the limitation of the analytical method. The inter-relationship between the asymmetric electron distribution and the ion-to-electron temperature ratio may be a new useful concept for the observation.
Generation of Femtosecond Electron And Photon Pulses
Thongbai, C.; Jinamoon, V.; Kangrang, M.; Kusoljariyakul, K.; Rimjaem, S.; Saisut, J.; Vilaithong, T.; Rhodes, M.W.; Wichaisirimongkol, P.; Wiedemann, H.; /SLAC
2006-03-17
Femtosecond (fs) electron and photon pulses become a tool of increasing importance to study dynamics in ultrafast processes. Such short electron pulses can be generated from a system consisting of a thermionic-cathode RF-gun and a magnetic bunch compressor. The fs electron pulses can be used directly or used as a source to produce equally short electromagnetic radiation pulses via certain kind of radiation production processes. At the Fast Neutron Research Facility (FNRF), Thailand, we are especially interested in production of radiation in Farinfrared and X-ray regime. In the far-infrared wavelengths, the radiation emitted from fs electron pulses is emitted coherently resulting high intensity radiation. In the X-ray regime, development of fs X-ray sources is crucial for application in ultrafast sciene.
Exciton coherence lifetimes from electronic structure
Parkhill, John; Aspuru-Guzik, Alan
2011-01-01
We model the coherent energy transfer of an electronic excitation within covalently linked aromatic homodimers from first-principles, to answer whether the usual models of the bath calculated via detailed electronic structure calculations can reproduce the key dynamics. For these systems the timescales of coherent transport are experimentally known from time-dependent polarization anisotropy measurements, and so we can directly assess the whether current techniques might be predictive for this phenomenon. Two choices of electronic basis states are investigated, and their relative merits discussed regarding the predictions of the perturbative model. The coupling of the electronic degrees of freedom to the nuclear degrees of freedom is calculated rather than assumed, and the fluorescence anisotropy decay is directly reproduced. Surprisingly we find that although TDDFT absolute energies are routinely in error by orders of magnitude more than the coupling energy, the coherent transport properties of these dimers ...
Javey, Ali
-films of semiconduct- ing carbon nanotubes as the channel material for flexible electronics simultaneously offers high that our platform can serve as a foundation for scalable, low-cost, high-performance flexible electronics. KEYWORDS: Flexible electronics, thin-film transistors, semiconducting nanotube networks, integrated
Quasi-linear analysis of the extraordinary electron wave destabilized by runaway electrons
Pokol, G. I.; Kómár, A.; Budai, A.; Stahl, A.; Fülöp, T.
2014-10-15
Runaway electrons with strongly anisotropic distributions present in post-disruption tokamak plasmas can destabilize the extraordinary electron (EXEL) wave. The present work investigates the dynamics of the quasi-linear evolution of the EXEL instability for a range of different plasma parameters using a model runaway distribution function valid for highly relativistic runaway electron beams produced primarily by the avalanche process. Simulations show a rapid pitch-angle scattering of the runaway electrons in the high energy tail on the 100–1000??s time scale. Due to the wave-particle interaction, a modification to the synchrotron radiation spectrum emitted by the runaway electron population is foreseen, exposing a possible experimental detection method for such an interaction.
Quasi-linear analysis of the extraordinary electron wave destabilized by runaway electrons
Pokol, G I; Budai, A; Stahl, A; Fülöp, T
2014-01-01
Runaway electrons with strongly anisotropic distributions present in post-disruption tokamak plasmas can destabilize the extraordinary electron (EXEL) wave. The present work investigates the dynamics of the quasi-linear evolution of the EXEL instability for a range of different plasma parameters using a model runaway distribution function valid for highly relativistic runaway electron beams produced primarily by the avalanche process. Simulations show a rapid pitch-angle scattering of the runaway electrons in the high energy tail on the $100-1000\\;\\rm \\mu s$ time scale. Due to the wave-particle interaction, a modification to the synchrotron radiation spectrum emitted by the runaway electron population is foreseen, exposing a possible experimental detection method for such an interaction.
Horn, Berthold Klaus Paul
Dynamic reconstruction is a method for generating images or image sequences from data obtained using moving radiation detection systems. While coded apertures are used as examples of the underlying information collection ...
Integrated rural energy planning
El Mahgary, Y.; Biswas, A.K.
1985-01-01
This book presents papers on integrated community energy systems in developing countries. Topics considered include an integrated rural energy system in Sri Lanka, rural energy systems in Indonesia, integrated rural food-energy systems and technology diffusion in India, bringing energy to the rural sector in the Philippines, the development of a new energy village in China, the Niaga Wolof experimental rural energy center, designing a model rural energy system for Nigeria, the Basaisa village integrated field project, a rural energy project in Tanzania, rural energy development in Columbia, and guidelines for the planning, development and operation of integrated rural energy projects.
Liu, D. M., E-mail: dmliu@live.cn; Zhao, W. Z.; He, Y. G.; Chen, B. [School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009 (China); Wan, B. N.; Shen, B.; Huang, J.; Liu, H. Q. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)
2014-11-15
A high-performance integrator is one of the key electronic devices for reliably controlling plasma in the experimental advanced superconducting tokamak for long pulse operation. We once designed an integrator system of real-time drift compensation, which has a low integration drift. However, it is not feasible for really continuous operations due to capacitive leakage error and nonlinearity error. To solve the above-mentioned problems, this paper presents a new alternating integrator. In the new integrator, the integrator system of real-time drift compensation is adopted as one integral cell while two such integral cells work alternately. To achieve the alternate function, a Field Programmable Gate Array built in the digitizer is utilized. The performance test shows that the developed integrator with the integration time constant of 20 ms has a low integration drift (<15 mV) for 1000?s.
Wolcott, J; Bellantoni, L; Bercellie, A; Betancourt, M; Bodek, A; Bravar, A; Budd, H; Carneiro, M F; Chvojka, J; da Motta, H; Devan, J; Dytman, S A; Diaz, G A; Eberly, B; Felix, J; Fields, L; Fine, R; Galindo, R; Gallagher, H; Ghosh, A; Golan, T; Gran, R; Harris, D A; Higuera, A; Kiveni, M; Kleykamp, J; Kordosky, M; Le, T; Maher, E; Manly, S; Mann, W A; Marshall, C M; Caicedo, D A Martinez; McFarland, K S; McGivern, C L; McGowan, A M; Messerly, B; Miller, J; Mislivec, A; Morfin, J G; Mousseau, J; Muhlbeier, T; Naples, D; Nelson, J K; Norrick, A; Osta, J; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Rakotondravohitra, L; Ransome, R D; Ray, H; Ren, L; Rimal, D; Rodrigues, P A; Ruterbories, D; Schellman, H; Schmitz, D W; Salinas, C J Solano; Tagg, N; Tice, B G; Valencia, E; Walton, T; Wospakrik, M; Zavala, G; Zhang, D; Ziemer, B P
2015-01-01
The first direct measurement of electron-neutrino quasielastic and quasielastic-like scattering on hydrocarbon in the few-GeV region of incident neutrino energy has been carried out using the MINERvA detector in the NuMI beam at Fermilab. The flux-integrated differential cross sections in electron production angle, electron energy and $Q^{2}$ are presented. The ratio of the quasielastic, flux-integrated differential cross section in $Q^{2}$ for $\
NUMERICAL SIMULATION OF ELECTROMECHANICAL DYNAMICS IN PACED CARDIAC TISSUE Xiaopeng Zhao
Zhao, Xiaopeng
NUMERICAL SIMULATION OF ELECTROMECHANICAL DYNAMICS IN PACED CARDIAC TISSUE Henian Xia Xiaopeng Zhao of Tennessee Knoxville, TN 37996 kwong@utk.edu ABSTRACT We study electromechanical dynamics in paced cardiac physics fields are integrated, including electrophysiology, electromechanics, and mechanoelectrical
Accelerated molecular dynamics methods: introduction and recent developments
Uberuaga, Blas Pedro [Los Alamos National Laboratory; Voter, Arthur F [Los Alamos National Laboratory; Perez, Danny [Los Alamos National Laboratory; Shim, Y [UNIV OF TOLEDO; Amar, J G [UNIV OF TOLEDO
2009-01-01
A long-standing limitation in the use of molecular dynamics (MD) simulation is that it can only be applied directly to processes that take place on very short timescales: nanoseconds if empirical potentials are employed, or picoseconds if we rely on electronic structure methods. Many processes of interest in chemistry, biochemistry, and materials science require study over microseconds and beyond, due either to the natural timescale for the evolution or to the duration of the experiment of interest. Ignoring the case of liquids xxx, the dynamics on these time scales is typically characterized by infrequent-event transitions, from state to state, usually involving an energy barrier. There is a long and venerable tradition in chemistry of using transition state theory (TST) [10, 19, 23] to directly compute rate constants for these kinds of activated processes. If needed dynamical corrections to the TST rate, and even quantum corrections, can be computed to achieve an accuracy suitable for the problem at hand. These rate constants then allow them to understand the system behavior on longer time scales than we can directly reach with MD. For complex systems with many reaction paths, the TST rates can be fed into a stochastic simulation procedure such as kinetic Monte Carlo xxx, and a direct simulation of the advance of the system through its possible states can be obtained in a probabilistically exact way. A problem that has become more evident in recent years, however, is that for many systems of interest there is a complexity that makes it difficult, if not impossible, to determine all the relevant reaction paths to which TST should be applied. This is a serious issue, as omitted transition pathways can have uncontrollable consequences on the simulated long-time kinetics. Over the last decade or so, we have been developing a new class of methods for treating the long-time dynamics in these complex, infrequent-event systems. Rather than trying to guess in advance what reaction pathways may be important, we return instead to a molecular dynamics treatment, in which the trajectory itself finds an appropriate way to escape from each state of the system. Since a direct integration of the trajectory would be limited to nanoseconds, while we are seeking to follow the system for much longer times, we modify the dynamics in some way to cause the first escape to happen much more quickly, thereby accelerating the dynamics. The key is to design the modified dynamics in a way that does as little damage as possible to the probability for escaping along a given pathway - i.e., we try to preserve the relative rate constants for the different possible escape paths out of the state. We can then use this modified dynamics to follow the system from state to state, reaching much longer times than we could reach with direct MD. The dynamics within any one state may no longer be meaningful, but the state-to-state dynamics, in the best case, as we discuss in the paper, can be exact. We have developed three methods in this accelerated molecular dynamics (AMD) class, in each case appealing to TST, either implicitly or explicitly, to design the modified dynamics. Each of these methods has its own advantages, and we and others have applied these methods to a wide range of problems. The purpose of this article is to give the reader a brief introduction to how these methods work, and discuss some of the recent developments that have been made to improve their power and applicability. Note that this brief review does not claim to be exhaustive: various other methods aiming at similar goals have been proposed in the literature. For the sake of brevity, our focus will exclusively be on the methods developed by the group.
Adding an energy-like conservation law to the leapfrog integrator
A. C. Maggs
2013-01-09
The leapfrog integrator is widely used because of its excellent stability in molecular dynamics simulation. This is recognized as being due to the existence of a discrete variational structure of the equations. We introduce a modified leapfrog method which includes an additional energy-like conservation law by embedding a molecular dynamics simulation within a larger dynamical system.
Gu, X.; Altinbas, Z.; Bruno, D.; Binello, S.; Costanzo, M.; Drees, A.; Fischer, W.; Gassner, D. M.; Hock, J.; Hock, K.; Harvey, M.; Luo, Y.; Marusic, A.; Mi, C.; Mernick, K.; Minty, M.; Michnoff, R.; Miller, T. A.; Pikin, A. I.; Robert-Demolaize, G.; Samms, T.; Shrey, T. C.; Schoefer, V.; Tan, Y.; Than, R.; Thieberger, P.; White, S. M.
2015-05-03
In the Relativistic Heavy Ion Collider (RHIC) 100 GeV polarized proton run in 2015, two electron lenses were used to partially compensate for the head-on beam-beam effect for the first time. Here, we describe the design of the current electron lens, detailing the hardware modifications made after the 2014 commissioning run with heavy ions. A new electron gun with 15-mm diameter cathode is characterized. The electron beam transverse profile was measured using a YAG screen and fitted with a Gaussian distribution. During operation, the overlap of the electron and proton beams was achieved using the electron backscattering detector in conjunction with an automated orbit control program.
Seth Lloyd; Olaf Dreyer
2013-02-12
Path integrals represent a powerful route to quantization: they calculate probabilities by summing over classical configurations of variables such as fields, assigning each configuration a phase equal to the action of that configuration. This paper defines a universal path integral, which sums over all computable structures. This path integral contains as sub-integrals all possible computable path integrals, including those of field theory, the standard model of elementary particles, discrete models of quantum gravity, string theory, etc. The universal path integral possesses a well-defined measure that guarantees its finiteness, together with a method for extracting probabilities for observable quantities. The universal path integral supports a quantum theory of the universe in which the world that we see around us arises out of the interference between all computable structures.
Integrated geologic/engineering study of the Kurten Field waterflood
Gay, A.L. )
1990-05-01
An integrated interpretation of petrographic, geochemical, engineering, and electric-log data was used to evaluate a current waterflood project in Kurten field, Brazos County, Texas. Petrographic studies reveal three sand facies deposited in a dynamic sand ridge environment. Although electric-log porosity is relatively constant throughout the sand body, scanning electron microscope thin section and engineering profile studies reveal the clean well-sorted sand facies to be impermeable due to quartz overgrowths. A quartz-rich bioturbated sand is identified as the reservoir facies, having fewer quartz overgrowths and more authigenic clays. The third sand facies, a clay-rich bioturbated sand, is impermeable due to an overabundance of authigenic and detrital clays. Engineering and production data support this interpretation. A comparison of hydrocarbon composition of the oils, using capillary gas chromatography, supports the conclusion that the well-sorted clean sand contains many permeability barriers and is not a continuous reservoir conducive to waterflooding. Interactive computer interpretation of electric logs, using a combination of sonic and density porosities, deep resistivity, and spontaneous potential, allows the mapping of the sand facies. Water saturations and net oil in place maps reveal the best parts of the field on which to focus the revised waterflood project. This revision should concentrate on the quartz-rich bioturbated sand in the central part of the original unit to result in a more efficient economical secondary recovery program.
TheRate: Program for Ab Initio Direct Dynamics Calculations of Thermal and
Truong, Thanh N.
, and the convergence of the rate constants with respect to the number of electronic structure calculations. 1998 John is that such limited potential energy information may be obtained from accurate electronic structure calculations-- --Dynamics Calculations of Thermal and Vibrational
Photoionization dynamics and angular squeezing phenomenon in intense long-wavelength laser fields
Chu, Shih-I; Zhou, Zhongyuan
2011-03-11
We develop a coherent-state Ehrenfest trajectory (CSET) approach for the nonperturbative study of full electronic and nuclear dynamics of molecules interacting with intense laser fields. In this approach, electrons and ...
Zharkova, Valentina V.
THE EFFECT OF A SELF-INDUCED ELECTRIC FIELD ON ELECTRON BEAM DIFFERENTIAL SPECTRA IN FLARING field decrease with depth reduces the electron decelera- tion that allows beam electrons to precipitate. INTRODUCTION The effect of the induced electric field on the dynam- ics of non-thermal electron beams
OPERATIONS ELECTRONIC LOGBOOK EXPERIENCE AT BNL.
SATOGATA,T.; CAMPBELL,I.; MARR,G.; SAMPSON,P.
2002-06-02
A web-based system for electronic logbooks, ''elog'', developed at Fermilab (FNAL), has been adopted for use by AGS and RHIC operations and physicists at BNL for the 2001-2 fixed target and collider runs. This paper describes the main functional and technical issues encountered in the first year of electronic logbook use, including security, search and indexing, sequencer integration, archival, and graphics management. We also comment on organizational experience and planned changes for the next facility run starting in September 2002.
A high dynamic range data acquisition system for a solid-state...
Office of Scientific and Technical Information (OSTI)
A high dynamic range data acquisition system for a solid-state electron electric dipole moment experiment Citation Details In-Document Search Title: A high dynamic range data...
Imaging Electrons in Few-Electron Quantum Dots
Imaging Electrons in Few-Electron Quantum Dots A thesis presented by Parisa Fallahi to The Division Electrons in Few-Electron Quantum Dots Abstract Electrons in a one-electron quantum dot were imaged the tip-induced shift of the electron energy state in the dot. A technique for extracting the amplitude
Bump formation in the runaway electron tail
Decker, J; Fülöp, T
2015-01-01
Runaway electrons are generated in a magnetized plasma when the parallel electric field exceeds a critical value. For such electrons with energies typically reaching tens of MeV, the Abraham-Lorentz-Dirac (ALD) radiation force, in reaction to the synchrotron emission, is significant and can be the dominant process limiting the electron acceleration. The effect of the ALD-force on runaway electron dynamics in a homogeneous plasma is investigated using the relativistic finite-difference Fokker-Planck codes LUKE [Decker & Peysson, Report EUR-CEA-FC-1736, Euratom-CEA, (2004)] and CODE [Landreman et al, Comp. Phys. Comm. 185, 847 (2014)]. Under the action of the ALD force, we find that a bump is formed in the tail of the electron distribution function if the electric field is sufficiently large. We also observe that the energy of runaway electrons in the bump increases with the electric field amplitude, while the population increases with the bulk electron temperature. The presence of the bump divides the elec...
Large-Scale First-Principles Molecular Dynamics simulations on the BlueGene/L Platform
Franchetti, Franz
. Keywords Electronic structure. Molecular Dynamics. Ab initio simulations. First-principles simulations of the electronic properties of the system. The electronic structure calculation is the most time-consuming part the past three decades to the development of efficient implementations of the electronic structure
Free electron laser with bunched relativistic electron beam and electrostatic longitudinal wiggler
Sepehri Javan, Nasser [Department of Physics, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil (Iran, Islamic Republic of)
2010-06-15
The system of the nonlinear nonstationary equations describing spatial-temporal dynamics of the amplitudes of an undulator radiation and a space charge wave of a relativistic electron beam in the resonator is obtained. The electrostatic longitudinal wiggler is considered. A bunch of the electron beam injects to the resonator, at the ends of which two mirrors are placed. After the interaction of electrons of bunch with radiation in the presence of wiggler and after amplifying electromagnetic pulse, a part of radiation is reflected back by semitransparent mirror. Then, it reaches to the initial of the system where the other mirror is placed. Synchronously, when the pulse is reflecting, the other electron bunch enters to the resonator and interacts with the pulse. This operation has simulated until saturation of growth of the electromagnetic pulse. The dynamics of the problem is simulated by the method of macro particles. The dynamics of pulse amplification, motion of the electrons, and spectra of output radiation in each stage are simulated.
Integrable Supersymmetric Fluid Mechanics from Superstrings
Y. Bergner; R. Jackiw
2001-05-03
Following the construction of a model for the planar supersymmetric Chaplygin gas, supersymmetric fluid mechanics in (1+1)-dimensions is obtained from the light-cone parametrized Nambu-Goto superstring in (2+1)-dimensions. The lineal model is completely integrable and can be formulated neatly using Riemann coordinates. Infinite towers of conserved charges and supercharges are exhibited. They form irreducible representations of a dynamical (hidden) SO(2,1) symmetry group.
Saving the Coherent State Path Integral
Yariv Yanay; Erich J. Mueller
2013-03-19
By returning to the underlying discrete time formalism, we relate spurious results in coherent state path integral calculations to the high frequency structure of their propagators. We show how to modify the standard expressions for thermodynamic quantities to yield correct results. These expressions are relevant to a broad range of physical problems, from the thermodynamics of Bose lattice gases to the dynamics of spin systems.
Energy transfer dynamics in trimers and aggregates of light-harvesting...
Office of Scientific and Technical Information (OSTI)
Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy Citation Details In-Document Search Title: Energy transfer...