Powered by Deep Web Technologies
Note: This page contains sample records for the topic "integrated demonstration bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

FOA for the Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC  

Office of Energy Efficiency and Renewable Energy (EERE)

FOA for the Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC.

2

FOA for the Demonstration of an Integrated Biorefinery System...  

Office of Environmental Management (EM)

Abengoa Bioenergy Biomass of Kansas, LLC FOA for the Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC FOA for the Demonstration of an...

3

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #24, July-September 2009  

SciTech Connect (OSTI)

July to September, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Schell, D.

2009-10-01T23:59:59.000Z

4

Bioenergy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioenergy Bioenergy Bioenergy Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Babetta Marrone Biofuels Program Manager Email Rebecca McDonald Bioscience Communications Email Srinivas Iyer Bioscience Group Leader Email Richard Sayre Senior Scientist Email "Research into alternative forms of energy, of which biofuels is a key component, is one of the major national security imperatives of this century. Energy security is vital to our future national security and the efficient functioning of our market economy." -LANL Director Charles McMillan Los Alamos developing next-generation of biofuels from renewable resources Read caption + Los Alamos scientists used genetic engineering to develop magnetic algae,

5

Sustainable development of bioenergy sector: an integrated methodological framework  

Science Journals Connector (OSTI)

Climate change and sustainable development are interrelated issues, which are of vital importance to government policy and corporate decision makers. The sustainability evaluation of a biomass-based technology with consideration of stakeholder interests can provide a foundation for implementing energy and environmental policies. This study aims to develop an integrated and structured methodological framework for analysing biofuel systems in pursuit of sustainable large scale production. The integrated assessment framework can assist to formulate integrative and transparent policies for sustainable biomass certification. The proposed framework uses first the analytic hierarchy process (AHP) to aid in extracting knowledge and judgments from stakeholders. AHP determines the critical criteria and indicators representing conflicting stakeholders' interests which can be incorporated in creating a dynamic system model for landscape-scale bioenergy modelling and assessment. An integrated AHP and system dynamics approach is currently being applied to assess the sustainable development of forest bioenergy sector in Maine, USA.

Anthony Halog

2011-01-01T23:59:59.000Z

6

Bioenergy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioenergy Bioenergy Los Alamos developing next-generation of biofuels from renewable resources Read caption + Los Alamos scientists used genetic engineering to develop magnetic algae, thus making it much easier to harvest for biofuel production. Harvesting algae accounts for approximately 15-20 percent of the total cost of biofuel production-magnetic algae can reduce such costs by more than 90%. Overview of Research and Highlights The next-generation of biofuels are being developed at Los Alamos. Made from renewable resources, biofuels could yield reduced carbon dioxide emissions. Los Alamos scientists are * working to bring cellulosic ethanol (made from the inedible parts of plants, instead of corn) and algae-based fuels to the marketplace in ways that make them economically competitive with fossil fuels and prevent a strain on valuable food

7

Hawaii Bioenergy Master Plan Bioenergy Technology  

E-Print Network [OSTI]

-commercial bioenergy demonstration projects. 6. Hawaii should establish a bioenergy/biofuel development fund to support should be allocated to support training manpower in the field of bioenergy/biofuel technology. Table E.1Hawaii Bioenergy Master Plan Bioenergy Technology University of Hawaii at Manoa Samir Khanal

8

Integrated Photo-Bioelectrochemical System for Contaminants Removal and Bioenergy Production  

Science Journals Connector (OSTI)

Integrated Photo-Bioelectrochemical System for Contaminants Removal and Bioenergy Production ... This system achieves the simultaneous removal from a synthetic solution of organics (in the MFC) and nutrients (in the algal bioreactor), and the production of bioenergy in electricity and algal biomass through bioelectrochemical and microbiological processes. ...

Li Xiao; Erica B. Young; John A. Berges; Zhen He

2012-09-21T23:59:59.000Z

9

EMBRAPAs Food-Feed-Bioenergy Production Systems  

Science Journals Connector (OSTI)

Embrapas concept of integrated and decentralized food-feed- bioenergy production on a farm is presented. The ... for demonstration purposes are briefly described. The bioenergy component in these systems is base...

Levon Yeganiantz; Adhemar Brandini

1986-01-01T23:59:59.000Z

10

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #26, January - March 2010  

SciTech Connect (OSTI)

January-March, 2010 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: understanding and improving sugar measurements in biomass hydrolysates; expansion of the NREL/DOE Biochemical Pilot Plant.

Schell, D.

2010-04-01T23:59:59.000Z

11

Integrating place-specific livelihood and equity outcomes into global assessments of bioenergy deployment  

Science Journals Connector (OSTI)

Integrated assessment models suggest that the large-scale deployment of bioenergy could contribute to ambitious climate change mitigation efforts. However, such a shift would intensify the global competition for land, with possible consequences for 1.5 billion smallholder livelihoods that these models do not consider. Maintaining and enhancing robust livelihoods upon bioenergy deployment is an equally important sustainability goal that warrants greater attention. The social implications of biofuel production are complex, varied and place-specific, difficult to model, operationalize and quantify. However, a rapidly developing body of social science literature is advancing the understanding of these interactions. In this letter we link human geography research on the interaction between biofuel crops and livelihoods in developing countries to integrated assessments on biofuels. We review case-study research focused on first-generation biofuel crops to demonstrate that food, income, land and other assets such as health are key livelihood dimensions that can be impacted by such crops and we highlight how place-specific and global dynamics influence both aggregate and distributional outcomes across these livelihood dimensions. We argue that place-specific production models and land tenure regimes mediate livelihood outcomes, which are also in turn affected by global and regional markets and their resulting equilibrium dynamics. The place-specific perspective suggests that distributional consequences are a crucial complement to aggregate outcomes; this has not been given enough weight in comprehensive assessments to date. By narrowing the gap between place-specific case studies and global models, our discussion offers a route towards integrating livelihood and equity considerations into scenarios of future bioenergy deployment, thus contributing to a key challenge in sustainability sciences.

Felix Creutzig; Esteve Corbera; Simon Bolwig; Carol Hunsberger

2013-01-01T23:59:59.000Z

12

Buried waste integrated demonstration technology integration process  

SciTech Connect (OSTI)

A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE`s Office of Technology Development (OTD).

Ferguson, J.S.; Ferguson, J.E.

1992-04-01T23:59:59.000Z

13

Buried waste integrated demonstration technology integration process  

SciTech Connect (OSTI)

A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD).

Ferguson, J.S.; Ferguson, J.E.

1992-04-01T23:59:59.000Z

14

Demonstration of integrated optimization software  

SciTech Connect (OSTI)

NeuCO has designed and demonstrated the integration of five system control modules using its proprietary ProcessLink{reg_sign} technology of neural networks, advanced algorithms and fuzzy logic to maximize performance of coal-fired plants. The separate modules control cyclone combustion, sootblowing, SCR operations, performance and equipment maintenance. ProcessLink{reg_sign} provides overall plant-level integration of controls responsive to plant operator and corporate criteria. Benefits of an integrated approach include NOx reduction improvement in heat rate, availability, efficiency and reliability; extension of SCR catalyst life; and reduced consumption of ammonia. All translate into cost savings. As plant complexity increases through retrofit, repowering or other plant modifications, this integrated process optimization approach will be an important tool for plant operators. 1 fig., 1 photo.

NONE

2008-01-01T23:59:59.000Z

15

Integrated Photo-Bioelectrochemical System for Contaminants Removal and Bioenergy Production  

E-Print Network [OSTI]

a long history, especially in removing nutrients, and provides additional services by usingIntegrated Photo-Bioelectrochemical System for Contaminants Removal and Bioenergy Production Li. This system achieves the simultaneous removal from a synthetic solution of organics (in the MFC) and nutrients

Berges, John A.

16

National Bioenergy Center, Biochemical Platform Integration Project: Quarterly Update, Summer 2011 (Newsletter)  

SciTech Connect (OSTI)

Summer 2011 issue of the National Bioenergy Center Biochemical Platform Integration Project quarterly update. Issue topics: evaluating new analytical techniques for measuring soluble sugars in the liquid portion of biomass hydrolysates, and measurement of the fraction of insoluble solids in biomass slurries.

Not Available

2011-09-01T23:59:59.000Z

17

Systems Integration Research, Development, and Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

activities are focused on these key research, development, and demonstration areas: Distribution Grid Integration Transmission Grid Integration Solar Resource Assessment...

18

Buried Waste Integrated Demonstration Plan  

SciTech Connect (OSTI)

This document presents the plan of activities for the Buried Waste Integrated Demonstration (BWID) program which supports the environmental restoration (ER) objectives of the Department of Energy (DOE) Complex. Discussed in this plan are the objectives, organization, roles and responsibilities, and the process for implementing and managing BWID. BWID is hosted at the Idaho National Engineering Laboratory (INEL), but involves participants from throughout the DOE Complex, private industry, universities, and the international community. These participants will support, demonstrate, and evaluate a suite of advanced technologies representing a comprehensive remediation system for the effective and efficient remediation of buried waste. The processes for identifying technological needs, screening candidate technologies for applicability and maturity, selecting appropriate technologies for demonstration, field demonstrating, evaluation of results and transferring technologies to environmental restoration programs are also presented. This document further describes the elements of project planning and control that apply to BWID. It addresses the management processes, operating procedures, programmatic and technical objectives, and schedules. Key functions in support of each demonstration such as regulatory coordination, safety analyses, risk evaluations, facility requirements, and data management are presented.

Kostelnik, K.M.

1991-12-01T23:59:59.000Z

19

Demonstrating and Deploying Integrated Retrofit Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Demonstrating and Deploying Integrated Retrofit Technologies and Solutions - 2014 BTO Peer Review Demonstrating and Deploying Integrated Retrofit Technologies and Solutions - 2014...

20

Bioenergy KDF  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Navigation Navigation Home Sign-In Contact Us Register Search this site: Search Connect: Bioenergy Library Map Tools & Apps Overview The Bioenergy KDF supports the development of a sustainable bioenergy industry by providing access to a variety of data sets, publications, and collaboration and mapping tools that support bioenergy research, analysis, and decision making. In the KDF, users can search for information, contribute data, and use the tools and map interface to synthesize, analyze, and visualize information in a spatially integrated manner. Read more and watch a short walkthrough video lease note: The KDF works best in the Google Chrome or Mozilla Firefox browsers. What Would You Like to Do? CONTRIBUTE DATA Fill out the contribute form to add data sets and other types of

Note: This page contains sample records for the topic "integrated demonstration bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Developing a Portfolio of Sustainable Bioenergy Feedstock Production Systems for the US Midwest: A Research and Demonstration Project  

E-Print Network [OSTI]

Developing a Portfolio of Sustainable Bioenergy Feedstock Production Systems for the US Midwest a growing portion of our bioenergy feedstocks. While such second generation feedstocks show numerous agroecosystems. A portfolio approach is needed. Potential systems to be included in the bioenergy feedstock

Debinski, Diane M.

22

Bioenergy Technologies FY14 Budget At-a-Glance  

Broader source: Energy.gov (indexed) [DOE]

BIOENERGY TECHNOLOGIES AT-A-GLANCE Bioenergy Technologies supports targeted research, development, demonstration, and deployment (RDD&D) activities to progress sustainable, nationwide production of advanced biofuels that will displace a share of petroleum-derived fuels, mitigate climate change, create American jobs, and increase U.S. energy security. What We Do Bioenergy Technologies employs an integrated, cross- cutting RDD&D strategy to develop commercially viable biomass utilization technologies. The office makes strategic investments in the following areas:  Feedstock Infrastructure advances a sustainable, secure, reliable, and affordable biomass feedstock supply for the U.S. bioenergy industry.  Conversion R&D identifies and develops viable

23

Ghana?s bioenergy policy: Is 20% biofuel integration achievable by 2030?  

Science Journals Connector (OSTI)

Abstract In dealing with the climate change externality of the fossil-fuel dominated transport sector, bio-fuels are widely seen as a solution. Through its Bioenergy Policy, Ghana seeks to improve oil supply security, save foreign exchange, create jobs and reduce emissions from the transport sector by integrating 20% biofuels into the transport fuel mix by 2030. This paper systematically analyses the transport fuel demand in Ghana to determine the biofuel supply target in 2020 and 2030 and evaluates the resource input requirements for integration of biofuels into the transport fuel mix. It provides a detailed picture of bio-fuel prospects in Ghana in the 2030 horizon. The research concludes that though significant yield improvement is required to meet the target, the target is achievable.

Insah Iddrisu; Subhes C. Bhattacharyya

2015-01-01T23:59:59.000Z

24

Integrated test schedule for buried waste integrated demonstration  

SciTech Connect (OSTI)

The Integrated Test Schedule incorporates the various schedules the Buried Waste Integrated Demonstration (BWID) supports into one document. This document contains the Federal Facilities Agreement and Consent Order schedules for the Idaho National Engineering Laboratory, Hanford Reservation, Oak Ridge Reservation, and Fernald Environmental Materials Center. Included in the Integrated Test Schedule is the Buried Waste Integrated Demonstration ``windows of opportunity`` schedule. The ``windows of opportunity`` schedule shows periods of time in which Buried Waste Integrated Demonstration Program-sponsored technology demonstrations could support key decisions in the Federal Facilities Agreement and Consent Order. Schedules for the Buried Waste Integrated Demonstration-sponsored technology task plans are categorized by technology area and divided by current fiscal year and out-year. Total estimated costs for Buried Waste Integrated Demonstration-sponsored Technology Task Plans for FY-92 through FY-97 are $74.756M.

Brown, J.T.; McDonald, J.K.

1992-05-01T23:59:59.000Z

25

Integrated test schedule for buried waste integrated demonstration  

SciTech Connect (OSTI)

The Integrated Test Schedule incorporates the various schedules the Buried Waste Integrated Demonstration (BWID) supports into one document. This document contains the Federal Facilities Agreement and Consent Order schedules for the Idaho National Engineering Laboratory, Hanford Reservation, Oak Ridge Reservation, and Fernald Environmental Materials Center. Included in the Integrated Test Schedule is the Buried Waste Integrated Demonstration windows of opportunity'' schedule. The windows of opportunity'' schedule shows periods of time in which Buried Waste Integrated Demonstration Program-sponsored technology demonstrations could support key decisions in the Federal Facilities Agreement and Consent Order. Schedules for the Buried Waste Integrated Demonstration-sponsored technology task plans are categorized by technology area and divided by current fiscal year and out-year. Total estimated costs for Buried Waste Integrated Demonstration-sponsored Technology Task Plans for FY-92 through FY-97 are $74.756M.

Brown, J.T.; McDonald, J.K.

1992-05-01T23:59:59.000Z

26

Bioenergy and Bioproducts BIOENERGY PROGRAM  

E-Print Network [OSTI]

Bioenergy and Bioproducts BIOENERGY PROGRAM Texas AgriLife Research, a part of the Texas A&M University System, is a national leader in bioenergy and bioproducts research, development

27

Integrated powerhead demonstration full flow cycle development  

Science Journals Connector (OSTI)

The Integrated Powerhead Demonstration (IPD) is a 1 112 000 N (250 000? lb f ) thrust (at sea level) LOX/LH2 demonstration of a full flow cycle in an integrated system configuration. Aerojet and Rocketdyne are on contract to the Air Force Research Laboratory to design develop and deliver the required components and to provide test support to accomplish the demonstration. Rocketdyne is on contract to provide a fuel and oxygen turbopump a gas-gas injector and system engineering and integration. Aerojet is on contract to provide a fuel and oxygen preburner a main combustion chamber and a nozzle. The IPD components are being designed with Military Spaceplane (MSP) performance and operability requirements in mind. These requirements include: lifetime ?200 missions mean time between overhauls ?100 cycles and a capability to throttle from 20% to 100% of full power. These requirements bring new challenges both in designing and testing the components. This paper will provide some insight into these issues. Lessons learned from operating and supporting the space shuttle main engine (SSME) have been reviewed and incorporated where applicable. The IPD program will demonstrate phase I goals of the Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program while demonstrating key propulsion technologies that will be available for MSP concepts. The demonstration will take place on Test Stand 2A at the Air Force Research Laboratory at Edwards AFB. The component tests will begin in 1999 and the integrated system tests will be completed in 2002.

J. Mathew Jones; James T. Nichols; William F. Sack; William D. Boyce; William A. Hayes

1998-01-01T23:59:59.000Z

28

Biomass IBR Fact Sheet: Abengoa Bioenergy | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sheet: Abengoa Bioenergy Integrated Biorefinery for Conversion of Biomass to Ethanol, Power, and Heat ibrcommercialabengoa.pdf More Documents & Publications Abengoa Bioenergy...

29

Buried Waste Integrated Demonstration Plan. Revision 1  

SciTech Connect (OSTI)

This document presents the plan of activities for the Buried Waste Integrated Demonstration (BWID) program which supports the environmental restoration (ER) objectives of the Department of Energy (DOE) Complex. Discussed in this plan are the objectives, organization, roles and responsibilities, and the process for implementing and managing BWID. BWID is hosted at the Idaho National Engineering Laboratory (INEL), but involves participants from throughout the DOE Complex, private industry, universities, and the international community. These participants will support, demonstrate, and evaluate a suite of advanced technologies representing a comprehensive remediation system for the effective and efficient remediation of buried waste. The processes for identifying technological needs, screening candidate technologies for applicability and maturity, selecting appropriate technologies for demonstration, field demonstrating, evaluation of results and transferring technologies to environmental restoration programs are also presented. This document further describes the elements of project planning and control that apply to BWID. It addresses the management processes, operating procedures, programmatic and technical objectives, and schedules. Key functions in support of each demonstration such as regulatory coordination, safety analyses, risk evaluations, facility requirements, and data management are presented.

Kostelnik, K.M.

1991-12-01T23:59:59.000Z

30

FOA for the Demonstration of an Integrated Biorefinery System...  

Broader source: Energy.gov (indexed) [DOE]

& Publications FOA for the Demonstration of an Integrated Biorefinery System: POET Project Liberty, LLC FOA for the Demonstration of an Integrated Biorefinery System: Blue...

31

FOA for the Demonstration of an Integrated Biorefinery System...  

Broader source: Energy.gov (indexed) [DOE]

POET Project Liberty, LLC FOA for the Demonstration of an Integrated Biorefinery System: POET Project Liberty, LLC FOA for the Demonstration of an Integrated Biorefinery System:...

32

FOA for the Demonstration of an Integrated Biorefinery System...  

Broader source: Energy.gov (indexed) [DOE]

Blue Fire Ethanol, Inc. FOA for the Demonstration of an Integrated Biorefinery System: Blue Fire Ethanol, Inc. FOA for the Demonstration of an Integrated Biorefinery System: Blue...

33

Implementation of the buried waste integrated demonstration  

SciTech Connect (OSTI)

The Department of Energy (DOE), Office of Technology Development (OTD) has initiated the Buried Waste Integrated Demonstration (BWID) to resolve technological deficiencies associated with the remediation of radioactive and hazardous buried waste. The BWID mission is to identify, demonstrate, and transfer innovative technologies for the remediation of DOE buried waste. To accomplish the mission, BWID is using a systems approach which supports the development of a suite of advanced and innovative technologies for the effective and efficient remediation of buried waste. This systems approach includes technologies for theentire remediation cycle. Specifically, BWID sponsors technology development in the following technology categories: site and waste characterization, retrieval, preprocessing, ex situ treatment, packaging, transportation, storage, disposal, and post-disposal monitoring.

Kostelnik, K.M.; Merrill, S.K.

1992-09-01T23:59:59.000Z

34

Implementation of the buried waste integrated demonstration  

SciTech Connect (OSTI)

The Department of Energy (DOE), Office of Technology Development (OTD) has initiated the Buried Waste Integrated Demonstration (BWID) to resolve technological deficiencies associated with the remediation of radioactive and hazardous buried waste. The BWID mission is to identify, demonstrate, and transfer innovative technologies for the remediation of DOE buried waste. To accomplish the mission, BWID is using a systems approach which supports the development of a suite of advanced and innovative technologies for the effective and efficient remediation of buried waste. This systems approach includes technologies for theentire remediation cycle. Specifically, BWID sponsors technology development in the following technology categories: site and waste characterization, retrieval, preprocessing, ex situ treatment, packaging, transportation, storage, disposal, and post-disposal monitoring.

Kostelnik, K.M.; Merrill, S.K.

1992-01-01T23:59:59.000Z

35

Bioenergy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Blog Blog Bioenergy Blog RSS December 16, 2013 The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference The Energy Department is working to cut the cost of biofuel production by supporting advanced development and demonstration facilities throughout the country that enable researchers to fully examine their efforts on a large scale without having to maintain an expensive pilot plant. November 6, 2013 National Renewable Energy Laboratory researcher Lee Elliott collects samples of algae at a creek in Golden, Colorado. | Photo by Dennis Schroeder, National Renewable Energy Laboratory

36

Integrated, Automated Distributed Generation Technologies Demonstration  

SciTech Connect (OSTI)

The purpose of the NETL Project was to develop a diverse combination of distributed renewable generation technologies and controls and demonstrate how the renewable generation could help manage substation peak demand at the ATK Promontory plant site. The Promontory plant site is located in the northwestern Utah desert approximately 25 miles west of Brigham City, Utah. The plant encompasses 20,000 acres and has over 500 buildings. The ATK Promontory plant primarily manufactures solid propellant rocket motors for both commercial and government launch systems. The original project objectives focused on distributed generation; a 100 kW (kilowatt) wind turbine, a 100 kW new technology waste heat generation unit, a 500 kW energy storage system, and an intelligent system-wide automation system to monitor and control the renewable energy devices then release the stored energy during the peak demand time. The original goal was to reduce peak demand from the electrical utility company, Rocky Mountain Power (RMP), by 3.4%. For a period of time we also sought to integrate our energy storage requirements with a flywheel storage system (500 kW) proposed for the Promontory/RMP Substation. Ultimately the flywheel storage system could not meet our project timetable, so the storage requirement was switched to a battery storage system (300 kW.) A secondary objective was to design/install a bi-directional customer/utility gateway application for real-time visibility and communications between RMP, and ATK. This objective was not achieved because of technical issues with RMP, ATK Information Technology Departments stringent requirements based on being a rocket motor manufacturing facility, and budget constraints. Of the original objectives, the following were achieved: Installation of a 100 kW wind turbine. Installation of a 300 kW battery storage system. Integrated control system installed to offset electrical demand by releasing stored energy from renewable sources during peak hours of the day. Control system also monitors the wind turbine and battery storage system health, power output, and issues critical alarms. Of the original objectives, the following were not achieved: 100 kW new technology waste heat generation unit. Bi-directional customer/utility gateway for real time visibility and communications between RMP and ATK. 3.4% reduction in peak demand. 1.7% reduction in peak demand was realized instead.

Jensen, Kevin

2014-09-30T23:59:59.000Z

37

Bioenergy Blog  

Broader source: Energy.gov (indexed) [DOE]

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference http://energy.gov/eere/articles/lab-your-gas-tank-4-bioenergy-testing-facilities-are-making-difference bioenergy-testing-facilities-are-making-difference" class="title-link">From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference

38

Bioenergy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transportation » Bioenergy Transportation » Bioenergy Bioenergy EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Image of a passenger airplane flying, with blue sky above and clouds below. The U.S. Department of Energy (DOE) funds research, development, and demonstration to help develop sustainable and cost-competitive biofuels, bioproducts, and biopower. For biofuels, DOE has lowered the cost of non-food-based ethanol by more than $6 per gallon since 2001, and it is now

39

Integrated gasification fuel cell (IGFC) demonstration test  

SciTech Connect (OSTI)

As concern about the environment generates interest in ultra-clean energy plants, fuel cell power plants can respond to the challenge. Fuel cells convert hydrocarbon fuels to electricity at efficiencies exceeding conventional heat engine technologies while generating extremely low emissions. Emissions of SOx and NOx are expected to be well below current and anticipated future standards. Nitrogen oxides, a product of combustion, will be extremely low in this power plant because power is produced electrochemically rather than by combustion. Due to its higher efficiencies, a fuel cell power plant also produces less carbon dioxide. Fuel cells in combination with coal gasification, are an efficient and environmentally acceptable means to utilize the abundant coal reserves both in the US and around the world. To demonstrate this technology, FuelCell Energy, Inc. (FCE), is planning to build and test a 2-MW Fuel Cell Power Plant for operation on coal derived gas. This power plant is based on Direct Fuel Cell (DFC{trademark}) technology and will be part of a Clean Coal V IGCC project supported by the US DOE. A British Gas Lurgi (BGL) slagging fixed-bed gasification system with cold gas clean up is planned as part of a 400 MW IGCC power plant to provide a fuel gas slip stream to the fuel cell. The IGFC power plant will be built by Kentucky Pioneer Energy, A subsidiary of Global Energy, in Clark County, KY. This demonstration will result in the world's largest fuel cell power plant operating on coal derived gas. The objective of this test is to demonstrate fuel cell operation on coal derived gas at a commercial scale and to verify the efficiency and environmental benefits.

Steinfeld, G.; Ghezel-Ayagh, H.; Sanderson, R.; Abens, S.

2000-07-01T23:59:59.000Z

40

NETL: CCPI - Demonstration of Integrated Optimization Software at the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demonstration of Integrated Optimization Software at the Baldwin Energy Complex - Project Brief [PDF-458KB] Demonstration of Integrated Optimization Software at the Baldwin Energy Complex - Project Brief [PDF-458KB] NeuCo, Inc., Baldwin, Illinois PROJECT FACT SHEET Demonstration of Integrated Optimization Software at the Baldwin Energy Complex [PDF-649KB] (Jan 2009) PROGRAM PUBLICATIONS Final Report Demonstration of Integrated Optimization Software at the Baldwin Energy Complex: Final Technical Report [PDF-12.8MB] (Sept 2008) CCPI Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Topical Report #27 Clean Coal Power Initiative Round 1 Demonstration Projects [PDF-5.84MB] (June 2012) Demonstration of Integrated Optimization Software at the Baldwin Energy Complex: A DOE Assessment [PDF-500KB] (Sept 2008) Power Plant Optimization Demonstration Projects, Topical Report #25 [PDF-1.6MB] (Jan 2008)

Note: This page contains sample records for the topic "integrated demonstration bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #17, October-December 2007  

SciTech Connect (OSTI)

October to December, 2007 edition of the newsletter of the Biochemical Platform Process Integration project.

Schell, D.

2008-01-01T23:59:59.000Z

42

Economic assessment of regional bioenergy systems in Australia: a flow analysis application  

Science Journals Connector (OSTI)

This paper describes a modelling tool that integrates Material Flow Analysis, energy production and Greenhouse Gas (GHG) emissions accounting for biomass flows at a regional scale. This tool allows comprehensive analysis of alternative systems for management of biomass waste and bioenergy production in regional areas. Different possible options for processing a range of biomass waste streams can be evaluated against multiple criteria including various environmental impacts and cost-effectiveness. The objective is to support the design of integrated biomass waste and bioenergy systems that maximise synergies and optimise tradeoffs between bioenergy production, GHG emissions, recycling of valuable soil nutrients and control of harmful contaminants. This analytical tool is applied to a major agricultural region in Australia, the Murrumbidgee Irrigation Area. A scenario demonstrates how the construction of different types of bioenergy plant can offer valuable benefits with regard to renewable energy production, GHG emission reductions, increasing phosphorus cycling back to soils and reduced cadmium contamination.

Napat Jakrawatana; Stephen Moore; Iain MacGill

2009-01-01T23:59:59.000Z

43

Agricultural Chemistry and Bioenergy  

Science Journals Connector (OSTI)

Agricultural Chemistry and Bioenergy ... Renewed interest in converting biomass to biofuels such as ethanol, other forms of bioenergy, and bioenergy byproducts or coproducts of commercial value opens opportunities for chemists, including agricultural chemists and related disciplines. ...

William J. Orts; Kevin M. Holtman; James N. Seiber

2008-05-13T23:59:59.000Z

44

Sorghum Program BIOENERGY PROGRAM  

E-Print Network [OSTI]

Sorghum Program BIOENERGY PROGRAM Sorghums are important nongrain lignocellulosic feedstocks Biomass Switch Grass Forage Sorghum Bioenergy Sorghum Biomass per acre per year that can be converted (DT

45

BioEnergy Blog  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

bioenergy985271 BioEnergy Blog en Energy Department Helping Lower Biofuel Costs for the Nation http:energy.goveerearticlesenergy-department-helping-lower-biofuel-costs-nation...

46

Bioenergy for Sustainable Development  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sustainable Bioenergy High-Impact Opportunity Sustainable Energy For All BIOENERGY FOR SUSTAINABLE DEVELOPMENT Overview * Energy poverty is widespread and prevents economic...

47

Buried Waste Integrated Demonstration commercialization actions plans. Volume 1  

SciTech Connect (OSTI)

The Buried Waste Integrated Demonstration (BWID) is sponsored by US Department of Energy (DOE) Office of Technology Development. BWID supports the development and demonstration of a suite of technologies that when integrated with commercially available baseline technologies form a comprehensive system for the effective and efficient remediation of buried waste throughout the DOE complex. BWID evaluates, validates, and demonstrates technologies and transfers this information throughout DOE and private industry to support DOE. remediation planning and implementation activities. This report documents commercialization action plans for five technologies with near-term commercialization/ implementation potential as well as provides a status of commercial and academic partners for each technology.

Kaupanger, R.M. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Glore, D. [Advanced Sciences, Inc. (United States)

1994-04-01T23:59:59.000Z

48

Demonstration of Integrated Optimization Software at the Baldwin Energy Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clean Coal Power Clean Coal Power Initiative (CCPI) contacts Brad tomer Director Office of Major Demonstrations National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4692 brad.tomer@netl.doe.gov George Pukanic Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6085 george.pukanic@netl.doe.gov PaRtIcIPant NeuCo, Inc., Boston, MA aDDItIonaL tEaM MEMBERs Dynegy Midwest Generation (host) Demonstration of integrateD optimization software at the BalDwin energy Complex Project Description NeuCo, Inc., of Boston, Massachusetts, has designed and demonstrated new integrated on-line optimization systems at Dynegy Midwest Generation's Baldwin Energy

49

Demonstration and Deployment Strategy Workshop | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Demonstration and Deployment Strategy Workshop Demonstration and Deployment Strategy Workshop The Bioenergy Technologies Office's (BETO's) Demonstration and Deployment Strategy...

50

Bioscience: Bioenergy, Biosecurity, and Health  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioscience: Bioenergy, Biosecurity, and Health science-innovationassetsimagesicon-science.jpg Bioscience: Bioenergy, Biosecurity, and Health Los Alamos scientists are...

51

NREL: Biomass Research - National Bioenergy Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Bioenergy Center National Bioenergy Center The National Bioenergy Center (NBC) was established in October 2000 to support the science and technology goals of the U.S. Department of Energy (DOE) Bioenergy Technologies Office. Headquartered at NREL, this virtual center unifies DOE's efforts to advance technology for producing renewable transportation fuels from biomass. A primary goal is to demonstrate the production of cost-competitive cellulosic ethanol by 2012. Collaborating with industrial, academic, and other governmental research, development, and commercialization efforts is central to achieving this goal. Mission The National Bioenergy Center's mission is to foster capability to catalyze the replacement of petroleum with transportation fuels from biomass by delivering innovative, cost-effective biofuels solutions.

52

Integrated solar upper stage (ISUS) space demonstration design  

Science Journals Connector (OSTI)

High temperature solar thermal propulsion/power systems will enable the placement of higher power satellite systems launched from smaller less expensive launch vehicles. The on-going Integrated Solar Upper Stage (ISUS) Program sponsored by Phillips Laboratory is one such solar thermal system. A system test of an engine ground test configuration of ISUS is planned for Spring 1997. The next step in the development of the ISUS system will be a flight demonstration mission. This paper details the conceptual designs for two potential ISUS space demonstration configurations. These designs were developed with a design-to-cost philosophy for a LEO (low Earth orbit) to GEO (geosynchronous equatorial orbit) and LEO to HEEO (highly elliptical Earth orbit) flight demonstration missions. Design considerations included packaging within the selected launch vehicle fairings (Pegasus XL and SSLV Taurus) system performance propellant selection ( H 2 CH 4 or NH 3 ) and 100150 watts of power production using thermionic diodes.

Patrick Frye

1997-01-01T23:59:59.000Z

53

Bioenergy for Sustainable Development | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bioenergy for Sustainable Development Bioenergy for Sustainable Development Deployment Markets Keynote Bioenergy for Sustainable Development Gerard Ostheimer, Global Lead,...

54

National Bioenergy Day 2014  

Broader source: Energy.gov [DOE]

Bioenergy, the use of agricultural waste and forestry byproducts to generate heat and energy, will be celebrated during the second annual National Bioenergy Day on October 22, 2014. This is an...

55

Characteristics of the volatile organic compounds -- Arid Integrated Demonstration Site  

SciTech Connect (OSTI)

The Volatile Organic Compounds -- Arid Integrated Demonstration Program (VOC-Arid ID) is targeted at demonstration and testing of technologies for the evaluation and cleanup of volatile organic compounds and associated contaminants at arid DOE sites. The initial demonstration site is an area of carbon tetrachloride (CCl{sub 4}) contamination located near the center of the Hanford Site. The movement of CCl{sub 4} and other volatile organic contaminants in the subsurface is very complex. The problem at the Hanford Site is further complicated by the concurrent discharge of other waste constituents including acids, lard oil, organic phosphates, and transuranic radionuclides. In addition, the subsurface environment is very complex, with large spatial variabilities in hydraulic properties. A thorough understanding of the problem is essential to the selection of appropriate containment, retrieval, and/or in situ remedial technologies. The effectiveness of remedial technologies depends on knowing where the contaminants are, how they are held up in a given physical and chemical subsurface environment; and knowing the physical, chemical, and microbiological changes that are induced by the various remedial technologies.

Last, G.V.; Lenhard, R.J.; Bjornstad, B.N.; Evans, J.C.; Roberson, K.R.; Spane, F.A.; Amonette, J.E.; Rockhold, M.L.

1991-10-01T23:59:59.000Z

56

Pyrolysis Research: Bioenergy Testing and Analysis Laboratory BIOENERGY PROGRAM  

E-Print Network [OSTI]

Pyrolysis Research: Bioenergy Testing and Analysis Laboratory BIOENERGY PROGRAM Pyrolysis research is conducted at Texas A&M University at the Bioenergy Testing and Analysis Laboratory. Our researchers create

57

Strategic sourcing in the UK bioenergy industry  

Science Journals Connector (OSTI)

Successful supply chain management requires the management of a complex, multi-stakeholder, multi-criteria system. Stakeholder inclusion in the supply chain design and decision making processes is an area of growing interest for companies looking to design sustainable supply chains or produce sustainable products. This paper demonstrates the use of the integrated quality function deployment and analytic hierarchy process (QFDAHP) method for the inclusion of a wide group of stakeholder requirements into the supplier selection process. The method provides a weighted ranked list of evaluating criteria which can be used to assess potential suppliers in the UK renewable bioenergy industry. The bioenergy industry is suitable as there are many stakeholders placing various requirements upon potential biomass suppliers. The paper uses a mixture of literature review and semi-structured industry interviews to answer three research questions: which stakeholder groups are important when selecting biomass suppliers for the UK? What requirements are made by these stakeholders on the supply of biomass fuels and feedstocks? Which evaluating criteria are most important?

James A. Scott; William Ho; Prasanta K. Dey

2013-01-01T23:59:59.000Z

58

Bioenergy: America's Energy Future  

ScienceCinema (OSTI)

Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

2014-08-12T23:59:59.000Z

59

Bioenergy: America's Energy Future  

SciTech Connect (OSTI)

Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

2014-07-31T23:59:59.000Z

60

Bioenergy Success Stories  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

61 Bioenergy Success Stories en Departments of Energy, Navy, and Agriculture Invest 210 million in Three Commercial Biorefineries to Produce Drop-in Biofuel for the Military...

Note: This page contains sample records for the topic "integrated demonstration bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Bioenergy Impact on Wisconsin's Workforce  

Broader source: Energy.gov [DOE]

Troy Runge, Wisconsin Bioenergy Initiative, presents on bioenergy's impact on Wisconsin's workforce development for the Biomass/Clean Cities States webinar.

62

Bioenergy Research | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioenergy SHARE Bioenergy: Feedstocks to Biopower Oak Ridge National Laboratory brings together teams from across laboratory disciplines and the country to research feedstocks,...

63

Montana Integrated Carbon to Liquids (ICTL) Demonstration Program  

SciTech Connect (OSTI)

Integrated carbon?to?liquids technology (ICTL) incorporates three basic processes for the conversion of a wide range of feedstocks to distillate liquid fuels: (1) Direct Microcatalytic Coal Liquefaction (MCL) is coupled with biomass liquefaction via (2) Catalytic Hydrodeoxygenation and Isomerization (CHI) of fatty acid methyl esters (FAME) or trigylceride fatty acids (TGFA) to produce liquid fuels, with process derived (3) CO{sub 2} Capture and Utilization (CCU) via algae production and use in BioFertilizer for added terrestrial sequestration of CO{sub 2}, or as a feedstock for MCL and/or CHI. This novel approach enables synthetic fuels production while simultaneously meeting EISA 2007 Section 526 targets, minimizing land use and water consumption, and providing cost competitive fuels at current day petroleum prices. ICTL was demonstrated with Montana Crow sub?bituminous coal in MCL pilot scale operations at the Energy and Environmental Research Center at the University of North Dakota (EERC), with related pilot scale CHI studies conducted at the University of Pittsburgh Applied Research Center (PARC). Coal?Biomass to Liquid (CBTL) Fuel samples were evaluated at the US Air Force Research Labs (AFRL) in Dayton and greenhouse tests of algae based BioFertilizer conducted at Montana State University (MSU). Econometric modeling studies were also conducted on the use of algae based BioFertilizer in a wheat?camelina crop rotation cycle. We find that the combined operation is not only able to help boost crop yields, but also to provide added crop yields and associated profits from TGFA (from crop production) for use an ICTL plant feedstock. This program demonstrated the overall viability of ICTL in pilot scale operations. Related work on the Life Cycle Assessment (LCA) of a Montana project indicated that CCU could be employed very effectively to reduce the overall carbon footprint of the MCL/CHI process. Plans are currently being made to conduct larger?scale process demonstration studies of the CHI process in combination with CCU to generate synthetic jet and diesel fuels from algae and algae fertilized crops. Site assessment and project prefeasibility studies are planned with a major EPC firm to determine the overall viability of ICTL technology commercialization with Crow coal resources in south central Montana.

Fiato, Rocco; Sharma, Ramesh; Allen, Mark; Peyton, Brent; Macur, Richard; Cameron, Jemima

2013-09-30T23:59:59.000Z

64

Demonstration and Deployment Successes: Sapphire Integrated Algal Biorefinery  

Broader source: Energy.gov [DOE]

Demonstration and Deployment Successes Jaime Moreno, Vice President of Projects, Sapphire Energy, Inc.

65

Underground Storage Tank Integrated Demonstration (UST-ID). Technology summary  

SciTech Connect (OSTI)

The DOE complex currently has 332 underground storage tanks (USTs) that have been used to process and store radioactive and chemical mixed waste generated from weapon materials production. Very little of the over 100 million gallons of high-level and low-level radioactive liquid waste has been treated and disposed of in final form. Two waste storage tank design types are prevalent across the DOE complex: single-shell wall and double-shell wall designs. They are made of stainless steel, concrete, and concrete with carbon steel liners, and their capacities vary from 5000 gallons (19 m{sup 3}) to 10{sup 6} gallons (3785 m{sup 3}). The tanks have an overburden layer of soil ranging from a few feet to tens of feet. Responding to the need for remediation of tank waste, driven by Federal Facility Compliance Agreements (FFCAs) at all participating sites, the Underground Storage Tank Integrated Demonstration (UST-ID) Program was created by the US DOE Office of Technology Development in February 1991. Its mission is to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat to concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to the public and the regulators. The UST-ID has focused on five DOE locations: the Hanford Site, which is the host site, in Richland, Washington; the Fernald Site in Fernald, Ohio; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site in Savannah River, South Carolina.

Not Available

1994-02-01T23:59:59.000Z

66

BETO Announces Request for Information on Landscape Design for Sustainable Bioenergy Systems  

Broader source: Energy.gov [DOE]

The U.S. Department of Energys (DOEs) Bioenergy Technologies Office (BETO) invites public comment on its request for information (RFI) regarding landscape design for sustainable bioenergy systems. The purpose of this RFI is to solicit feedback from bioenergy stakeholders on landscape design approaches that integrate cellulosic bioenergy feedstock production into existing agricultural and forestry systems while maintaining or enhancing environmental and socio-economic sustainability.

67

Environmental and Economic Trade-Offs in a Watershed When Using Corn Stover for Bioenergy  

Science Journals Connector (OSTI)

Environmental and Economic Trade-Offs in a Watershed When Using Corn Stover for Bioenergy ... Taken together, these are the principal reasons corn stover has been looked upon favorably in the policy dialogue relative to dedicated bioenergy crops. ... Research that considers greenhouse gases, water quality, and farm-gate economics of cellulosic bioenergy crops together in a single integrated analysis is needed given societal concerns about the overall impact of using agricultural land to grow bioenergy crops. ...

Benjamin M. Gramig; Carson J. Reeling; Raj Cibin; Indrajeet Chaubey

2013-01-22T23:59:59.000Z

68

Integration of Management Measures for Bioenergy Production from Spatial and Temporal Perspectives in a Forest Regionthe Case of Finland  

Science Journals Connector (OSTI)

The utilization and management of forest resources in the short term are dependent on the available resources in a region, which may not have been managed for bioenergy production. In the long term, the...

Antti Kilpelinen; Mitch Baker

2013-01-01T23:59:59.000Z

69

Achieving negative emissions with BECCS (bioenergy with carbon capture and storage) in the power sector: New insights from the TIAM-FR (TIMES Integrated Assessment Model France) model  

Science Journals Connector (OSTI)

Abstract It seems increasingly likely that atmospheric greenhouse gas concentration will overshoot the recommended 450ppm CO2 equivalent target. Therefore, it may become necessary to use BECCS (bioenergy with carbon capture and storage) technologiesto remove CO2 from the atmosphere. This technique is gaining increasing attention as it offers the dual benefit of providing low-carbon energy products and leading to negative CO2 emissions. This study evaluates the possible deployment of BECCS in the power sector using the bottom-up multiregional optimization model TIAM-FR (TIMES Integrated Assessment Model France). Under two climate scenarios, a regional analysis is conducted to discuss where the technology will be developed. The impact of the unavailability of this technology on the structure of the electricity mix and the cost of the energy system completes the analysis. In line with literature, the results suggest that BECCS technology offers an environmentally and economically viable option to achieve stringent targets. The regional analysis shows that industrialized countries will develop CCS (carbon capture and storage) mainly on biomass power plants while CCS on fossil fuel power plants will be widely deployed in China. With a specific constraint on CCS diffusion, the share of renewables and nuclear energy becomes significant to meet the climate targets.

Sandrine Selosse; Olivia Ricci

2014-01-01T23:59:59.000Z

70

Context Mediation Demonstration of Counter-Terrorism Intelligence Integration  

E-Print Network [OSTI]

In this report, we demonstrate the applicability and value of the context mediation approach in facilitating the effective and correct use of counter-terrorism intelligence information coming from diverse heterogeneous sources.

Madnick, Stuart E.

2005-05-27T23:59:59.000Z

71

Gasification Research BIOENERGY PROGRAM  

E-Print Network [OSTI]

Gasification Research BIOENERGY PROGRAM Description Researchers inthe@tamu.edu Skid-mounted gasifier: 1.8 tons-per-day pilot unit Gasification of cotton gin trash The new Texas A

72

Bioenergy | Open Energy Information  

Open Energy Info (EERE)

Bioenergy: Energy produced from organic materials from plants or animals. Other definitions:Wikipedia Reegle 1 This article is a stub. You can help OpenEI by expanding it....

73

The integrated compound parabolic concentrator: From development to demonstration  

SciTech Connect (OSTI)

The authors describe the fabrication, testing and application of the Integrated Compound Parabolic Concentrator (ICPC) to solar cooling. The cooling technology is a double effect absorption cycle chiller operating at 165 C. The design parameters are optimized for this temperature range. The optical and mechanical design of the solar collector is chosen for compatibility with mass production. A project to employ approximately 350 of these collector tubes to drive a 20 ton commercial double effect chiller on an office building in Sacramento, CA has started. The authors expect the system to be operational this year.

Winston, R.; O`Gallagher, J.J. [Univ. of Chicago, IL (United States); Duff, W.S. [Colorado State Univ., Fort Collins, CO (United States); Cavallaro, A. [Solar Enterprises International, Chicago, IL (United States)

1997-12-31T23:59:59.000Z

74

Research, Development, Demonstration, and Deployment  

Broader source: Energy.gov [DOE]

The Bioenergy Technologies Office's research, development, demonstration, and deployment (RDD&D) efforts are organized around five key technical and three cross-cutting elements. The first two...

75

DOE Perspectives on Sustainable Bioenergy Landscapes  

Broader source: Energy.gov [DOE]

DOE Perspectives on Sustainable Bioenergy Landscapes; Kristen Johnson, Sustainability Program Technology Manager, Bioenergy Technologies Office; November 19, 2014

76

Northeast Kansas Bioenergy LLC | Open Energy Information  

Open Energy Info (EERE)

Kansas Bioenergy LLC Kansas Bioenergy LLC Jump to: navigation, search Name Northeast Kansas Bioenergy LLC Place Hiawatha, Kansas Zip 66434 Product Developing and integrated Bioethanol / Biodiesel refinery near Hiawatha, Kansas Coordinates 39.853465°, -95.527144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.853465,"lon":-95.527144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

77

Pacific Rim Summit on Industrial Biotechnology & Bioenergy  

Broader source: Energy.gov [DOE]

The ninth annual Pacific Rim Summit on Industrial Biotechnology and Bioenergy will be held from December 79, 2014, in San Diego, California, at the Westin Gaslamp Quarter. Bringing together representatives from various countries all around the Pacific Rim, this event will focus on the growth of the industrial biotechnology and bioenergy sectors in North America and the Asia-Pacific region. Glenn Doyle, BETO's Deployment & Demonstration Technology Manager, will be moderating and speaking at a session on entitled "Utilizing Strategic Partnerships to Grow Your Business" on December 9.

78

Our Partners : BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bringing the best and the brightest together. Bringing the best and the brightest together. The mission of the Department of Energy BioEnergy Science Center is to revolutionize how Bioenergy is processed within five years. To reach this goal, we have assembled a world-class team of some of the world's leading experts and facilities. We are working together to develop alternative fuel solutions that are a viable and affordable option to petroleum-based fuels. To accomplish this mission, The BioEnergy Science Center is backed by more than $80 million in investments from state and private-sector sources. This includes $30 million toward research and equipment and a $40 million, 250,000 gallons-a-year switchgrass-to-ethanol demonstration facility. View the INTERACTIVE MAP to learn more about the specific contributions we

79

Our Commitment to Bioenergy Sustainability  

Broader source: Energy.gov [DOE]

To enhance the benefits of bioenergy while mitigating concerns, the Biomass Program combines advanced analysis with applied research to understand and address the potential environmental impacts of bioenergy production.

80

Biofuel and Bioenergy implementation scenarios  

E-Print Network [OSTI]

and bioenergy markets are modelled with the aim to conduct quantitative analyses on the production and costsBiofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies #12;Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies By André

Note: This page contains sample records for the topic "integrated demonstration bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Energy Department Announces $7 Million to Develop Advanced Logistics for Bioenergy Feedstocks  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department announced today up to $7 million for two projects aimed at developing and demonstrating ways to reduce the cost of delivering bioenergy feedstocks to biorefineries.

82

Bioenergy Assessment Toolkit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioenergy Assessment Toolkit Bioenergy Assessment Toolkit Anelia Milbrandt and Caroline Uriarte Produced under direction of the United States Agency for International Development by the National Renewable Energy Laboratory (NREL) under Interagency Agreement AEG-P-00-00003-00; Work for Others Agreement number 3010543; Task Numbers WFE2.1012, WFE2.1013, and WFE2.1014. Technical Report NREL/TP-6A20-56456 October 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov Bioenergy Assessment Toolkit Anelia Milbrandt and Caroline Uriarte

83

EA-1888: Old Town Fuel and Fiber Proposed Demonstration-Scale Integrated  

Broader source: Energy.gov (indexed) [DOE]

88: Old Town Fuel and Fiber Proposed Demonstration-Scale 88: Old Town Fuel and Fiber Proposed Demonstration-Scale Integrated Biorefinery in Old Town, Maine EA-1888: Old Town Fuel and Fiber Proposed Demonstration-Scale Integrated Biorefinery in Old Town, Maine Summary This EA evaluates the environmental impacts of a proposal by Old Town Fuel and Fiber to install and operate a demonstration-scale integrated biorefinery at their existing pulp mill in Old Town, Maine, demonstrating the production of n-butanol from lignocellulosic(wood) extract. Public Comment Opportunities None available at this time. Documents Available for Download September 25, 2012 EA-1888: Finding of No Significant Impact Old Town Fuel and Fiber Proposed Demonstration-Scale Integrated Biorefinery in Old Town, MN September 25, 2012 EA-1888: Final Environmental Assessment

84

EA-1888: Old Town Fuel and Fiber Proposed Demonstration-Scale Integrated  

Broader source: Energy.gov (indexed) [DOE]

8: Old Town Fuel and Fiber Proposed Demonstration-Scale 8: Old Town Fuel and Fiber Proposed Demonstration-Scale Integrated Biorefinery in Old Town, Maine EA-1888: Old Town Fuel and Fiber Proposed Demonstration-Scale Integrated Biorefinery in Old Town, Maine Summary This EA evaluates the environmental impacts of a proposal by Old Town Fuel and Fiber to install and operate a demonstration-scale integrated biorefinery at their existing pulp mill in Old Town, Maine, demonstrating the production of n-butanol from lignocellulosic(wood) extract. Public Comment Opportunities None available at this time. Documents Available for Download September 25, 2012 EA-1888: Finding of No Significant Impact Old Town Fuel and Fiber Proposed Demonstration-Scale Integrated Biorefinery in Old Town, MN September 25, 2012 EA-1888: Final Environmental Assessment

85

FACT SHEET: BIOENERGY WORKING GROUP  

Broader source: Energy.gov (indexed) [DOE]

, 2010 , 2010 1 FACT SHEET: BIOENERGY WORKING GROUP At the Clean Energy Ministerial in Washington, D.C. on July 19 th and 20 th , ministers launched a Bioenergy Working Group, which will advance the deployment of bioenergy technologies by implementing recommendations of the Technology Action Plan on Bioenergy Technologies that was released by the Major Economies Forum Global Partnership in December 2009. The Working Group will work in close cooperation with the Global Bioenergy Partnership (GBEP), which is co-chaired by Brazil and Italy. Initial key activities of the Working Group include: 1. Global Bioenergy Atlas: The Working Group will combine and build upon existing databases of sustainably-developed bioenergy potential around the globe and make it available in an open web-

86

Bioenergy: how much can we expect for 2050?  

Science Journals Connector (OSTI)

Estimates of global primary bioenergy potentials in the literature span almost three orders of magnitude. We narrow that range by discussing biophysical constraints on bioenergy potentials resulting from plant growth (NPP) and its current human use. In the last 30years, terrestrial NPP was almost constant near 54PgCyr?1, despite massive efforts to increase yields in agriculture and forestry. The global human appropriation of terrestrial plant production has doubled in the last century. We estimate the maximum physical potential of the world's total land area outside croplands, infrastructure, wilderness and denser forests to deliver bioenergy at approximately 190EJyr?1. These pasture lands, sparser woodlands, savannas and tundras are already used heavily for grazing and store abundant carbon; they would have to be entirely converted to bioenergy and intensive forage production to provide that amount of energy. Such a high level of bioenergy supply would roughly double the global human biomass harvest, with far-reaching effects on biodiversity, ecosystems and food supply. Identifying sustainable levels of bioenergy and finding ways to integrate bioenergy with food supply and ecological conservation goals remains a huge and pressing scientific challenge.

Helmut Haberl; Karl-Heinz Erb; Fridolin Krausmann; Steve Running; Timothy D Searchinger; W Kolby Smith

2013-01-01T23:59:59.000Z

87

Bioenergy Science Center KnowledgeBase  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The challenge of converting cellulosic biomass to sugars is the dominant obstacle to cost effective production of biofuels in s capable of significant enough quantities to displace U. S. consumption of fossil transportation fuels. The BioEnergy Science Center (BESC) tackles this challenge of biomass recalcitrance by closely linking (1) plant research to make cell walls easier to deconstruct, and (2) microbial research to develop multi-talented biocatalysts tailor-made to produce biofuels in a single step. [from the 2011 BESC factsheet] The BioEnergy Science Center (BESC) is a multi-institutional, multidisciplinary research (biological, chemical, physical and computational sciences, mathematics and engineering) organization focused on the fundamental understanding and elimination of biomass recalcitrance. The BESC Knowledgebase and its associated tools is a discovery platform for bioenergy research. It consists of a collection of metadata, data, and computational tools for data analysis, integration, comparison and visualization for plants and microbes in the center.The BESC Knowledgebase (KB) and BESC Laboratory Information Management System (LIMS) enable bioenergy researchers to perform systemic research. [http://bobcat.ornl.gov/besc/index.jsp

Syed, M.H.; Karpinets, T.V.; Parang, M.; Leuze, M.R.; Park, B.H.; Hyatt, D.; Brown, S.D.; Moulton, S. Galloway, M.D.; Uberbacher E.C.

88

Bioenergy Development in Thailand: Challenges and Strategies  

Science Journals Connector (OSTI)

Abstract In recognition of concerns about the security of energy supply and climate change, the Thai government has developed Alternative Energy Development Plan for the period 20122021. Under this plan, the production of bio- ethanol and biodiesel in 2021 is expected to grow significantly. This growth will add more pressures on water and land requirements for growing energy crops. This is likely to contribute to worsening the security of water and food supply. This paper, therefore, provides an overview of the bioenergy development and current policies in Thailand with a view to identify the challenges faced by the development of bioenergy. A review of the bioenergy policies reveals that the existing policies have been exclusively focus on energy perspective and largely ignore the significance of the implications arising from the interdependencies between energy, water and food. There is a lack of understanding of the interrelationships between bioenergy, water and food policy interactions. The lack of such understanding is likely to pose several challenges including food or fuel dilemma, security of water supply and issues surrounding land use for biofuel production. This paper further emphasizes the need to develop an integrated framework for developing an understanding of the relationships between energy, water and land.

Supannika Wattana

2014-01-01T23:59:59.000Z

89

DOE Bioenergy Center Special Issue. The Bioenergy Sciences Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioenergy Bioenergy Center Special Issue. The Bioenergy Sciences Center (BESC) Richard A. Dixon Published online: 22 October 2009 # Springer Science + Business Media, LLC. 2009 Keywords Bioenergy centers . United States Department of Energy . Biomass recalcitrance . High-throughput screening . Plant transformation This issue of BioEnergy Research is the first of three special issues to feature work from the US Department of Energy (DOE) Bioenergy Centers. In June 2006, the DOE's Genomes to Life Program published a report, entitled "Breaking the biological barriers to cellulosic ethanol: a joint research agenda," that outlined research areas requir- ing significant investment in order to meet the target of making cellulosic ethanol cost-competitive by 2012. Words were converted to action in June 2007 when Energy Secretary Samuel W. Bodman announced the establishment of

90

Agave Transcriptomes and microbiomes for bioenergy research  

E-Print Network [OSTI]

as a biofuel feedstock. GCB Bioenergy 3, 6878, (2011). [2]in Agave tequilana. GCB Bioenergy 3, 2536, (2011). [4]and microbiomes for bioenergy research Stephen Gross 1,2 ,

Gross, Stephen

2013-01-01T23:59:59.000Z

91

BRAZILIAN'S BIOENERGY SUCCESS POWERED BY THE SUN  

E-Print Network [OSTI]

BRAZILIAN'S BIOENERGY SUCCESS POWERED BY THE SUN Caroline Rayol Resources and Bioenergy Project : Market opening 2003 : Flex-fuel car 2004 : Biodiesel Production and Use National Program 2006

Canet, Léonie

92

Bioenergy Geradora de Energia | Open Energy Information  

Open Energy Info (EERE)

Bioenergy Geradora de Energia Jump to: navigation, search Name: Bioenergy - Geradora de Energia Place: Sao Paulo, Sao Paulo, Brazil Zip: 1456010 Sector: Wind energy Product: Brazil...

93

Bioenergy Knowledge Discovery Framework Recognized at National...  

Energy Savers [EERE]

Knowledge Discovery Framework (KDF) is bringing together the bioenergy community through Web-based tools, and was presented by Bioenergy KDF team members from Oak Ridge National...

94

Webinar: Landscape Design for Sustainable Bioenergy Systems  

Broader source: Energy.gov [DOE]

The Energy Departments Bioenergy Technologies Office will present a live informational webcast on the Landscape Design for Sustainable Bioenergy Systems Funding Opportunity (DE-FOA-0001179) on November 3, 2014, 1:30 p.m.3:00 p.m. Eastern Standard Time. This FOA seeks interdisciplinary projects that apply landscape design approaches to integrate cellulosic feedstock production into existing agricultural and forestry systems while maintaining or enhancing environmental and socio-economic sustainability including ecosystem services and food, feed, and fiber production. For the purposes of this FOA, cellulosic feedstock production refers to dedicated annual and perennial energy crops, use of agricultural and forestry residues, or a combination of these options.

95

EERE: Bioenergy Technologies Office Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioenergy Technologies Office Search Bioenergy Technologies Office Search Search Help Bioenergy Technologies Office HOME ABOUT THE PROGRAM RESEARCH & DEVELOPMENT FINANCIAL OPPORTUNITIES INFORMATION RESOURCES NEWS EVENTS EERE » Bioenergy Technologies Office Site Map Printable Version Share this resource Send a link to EERE: Bioenergy Technologies Office Home Page to someone by E-mail Share EERE: Bioenergy Technologies Office Home Page on Facebook Tweet about EERE: Bioenergy Technologies Office Home Page on Twitter Bookmark EERE: Bioenergy Technologies Office Home Page on Google Bookmark EERE: Bioenergy Technologies Office Home Page on Delicious Rank EERE: Bioenergy Technologies Office Home Page on Digg Find More places to share EERE: Bioenergy Technologies Office Home Page on AddThis.com... Biomass is a clean, renewable energy source that can help to significantly

96

The water footprint of bioenergy  

Science Journals Connector (OSTI)

...hunger threshold. Households may make decisions...replacement of fossil energy with bioenergy generates...biofuels. Bioenergy. Energy derived from biomass...and industrial and household organic waste...beet Morocco 56 Japan 0 Russia 455 Russia...of 9 Table S3. Energy provided by ethanol...

Winnie Gerbens-Leenes; Arjen Y. Hoekstra; Theo H. van der Meer

2009-01-01T23:59:59.000Z

97

Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project, Final Environmental Impact Statement  

Broader source: Energy.gov (indexed) [DOE]

8 8 U.S. Department of Energy Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project Final Environmental Impact Statement November 2002 U.S. Department of Energy National Energy Technology Laboratory COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: Kentucky Pioneer Integrated Gasification Combined Cycle (IGCC) Demonstration Project Final Environmental Impact Statement (EIS) (DOE/EIS-0318) Location: Clark County, Kentucky Contacts: For further information on this environmental For further information on the DOE National impact statement (EIS), call: Environmental Policy Act (NEPA) process, call: 1-800-432-8330 ext. 5460 1-800-472-2756 or contact: or contact: Mr. Roy Spears Ms. Carol Borgstrom

98

Buried waste integrated demonstration fiscal year 1992 close-out report  

SciTech Connect (OSTI)

The mission of the Buried Waste Integrated Demonstration Program (BWID) is to support the development and demonstration of a suite of technologies that when integrated with commercially-available baseline technologies form a comprehensive remediation system for the effective and efficient remediation of buried waste disposed of throughout the US Department of Energy complex. To accomplish this mission of identifying technological solutions for remediation deficiencies, the Office of Technology Development initiated the BWID at the Idaho National Engineering Laboratory in fiscal year (FY)-91. This report summarizes the activities of the BWID Program during FY-92.

Cannon, P.G.; Kostelnik, K.M.; Owens, K.J.

1993-02-01T23:59:59.000Z

99

Bioenergy News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy News Bioenergy News Bioenergy News RSS August 30, 2011 USDA, Departments of Energy and Navy Seek Input from Industry to Advance Biofuels for Military and Commercial Transportation WASHINGTON, Aug. August 10, 2011 Department of Energy Releases New 'Billion-Ton' Study Highlighting Opportunities for Growth in Bioenergy Resources Washington, D.C. - The U.S. Department of Energy today released a report - 2011 U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry - detailing U.S. biomass feedstock potential nationwide. The report examines the nation's capacity to produce a billion dry tons of biomass resources annually for energy uses without impacting other vital U.S. June 10, 2011 Department of Energy Announces up to $36 Million to Support the Development

100

2012 Bioenergy Action Plan Prepared by the Bioenergy Interagency Working Group  

E-Print Network [OSTI]

2012 Bioenergy Action Plan Prepared by the Bioenergy Interagency Working Group AUGUST 2012 Edmund G. Brown Jr., Governor #12;Bioenergy Interagency Working Group Julia Levin, Chair, Bioenergy Interagency and the California Energy Commission with input from the Bioenergy Interagency Working Group. This report

Note: This page contains sample records for the topic "integrated demonstration bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Bioenergy: how much?  

Science Journals Connector (OSTI)

The perspective by Haberl etal (2013 Environ. Res. Lett. 8 031004) entitled 'Bioenergy: how much can we expect for 2050?' is timely and valuable. It deals with an important subject since contrasting views on the subject make it very difficult for policy makers to adopt policies that would allow 'production and consumption of energy at sustainable levels', in the words of the authors. It is therefore very important to sort out from the abundant literature on the issue which are the facts and which are the biases and preferences.

Jos Goldemberg; Suani Teixeira Coelho

2013-01-01T23:59:59.000Z

102

NETWORK OF EXCELLENCE The CAP & Bioenergy  

E-Print Network [OSTI]

a campaign to inform farmers about markets for energy crops. #12;BIOENERGY NETWORK OF EXCELLENCE BAPBIOENERGY NETWORK OF EXCELLENCE The CAP & Bioenergy Driver or Barrier? IEA Bioenergy ExCo58://www.ieabioenergy.com/DocSet.aspx?id=5331 #12;BIOENERGY NETWORK OF EXCELLENCE IIIEE ? · A (relatively) small institute in a large University

103

Bioenergy technology balancing energy output with environmental  

E-Print Network [OSTI]

E2.3 Bioenergy technology ­ balancing energy output with environmental benefitsbenefits John standards #12;Is it right to grow bioenergy? Or How much bioenergy production is right? #12;Historical bioenergy Farmers historically used 25% land for horse feed #12;Energy crops are `solar panels' Solar energy

Levi, Ran

104

An overview of the biomass resource potential of Norway for bioenergy use  

Science Journals Connector (OSTI)

This paper provides an overview of the Norwegian biomass resources for bioenergy use, bioenergy market and frame conditions through a comparison with Denmark, Finland and Sweden, which have a leading role in bioenergy production in the European Union. Although the contribution of renewable energy in Norway is among the highest in Europe (58%), mainly due to hydroelectricity, bioenergy has a low contribution to Norwegian energy supply (6%). As the experience from the other EU Member States showed, long-term, stable policies and relatively strong incentives are needed to initiate and build up a bioenergy market. In Norway, there is still a significant available potential for increasing the bioenergy contribution to the energy supply. The abundance and relatively low prices of energy (i.e. fossil fuels and electricity), in connection with the need of high investment costs, did not favour so far bioenergy production. Additional forest biomass may be mobilized in Norway by more intensive management of currently exploited forests. However, there are several limitations related to topography, accessibility and economics. The biomass resources and the full range of technologies available for heat or electricity generation both at small and large scale that can provide good opportunities for increased bioenergy production. The experience gained in Denmark, Finland and Sweden may be relevant for Norway, as well as for other EU Member States, where there is a deficit of mobilization of biomass resources and insufficient industrial integration of bioenergy with other forest-based sectors.

Nicolae Scarlat; Jean-Francois Dallemand; Odd Jarle Skjelhaugen; Dan Asplund; Lars Nesheim

2011-01-01T23:59:59.000Z

105

A holistic sustainability assessment tool for bioenergy using the Global Bioenergy Partnership (GBEP) sustainability indicators  

Science Journals Connector (OSTI)

Abstract In 2011 the Global Bioenergy Partnership (GBEP) released a set of indicators for sustainable bioenergy. However, two important issues still remain unresolved. One of them is the definition of sustainability, and the other is the lack of a holistic assessment tool for drawing conclusions from the indicators. The aim of this paper is to provide clarification on the concept of sustainability in the context of the GBEP indicators, and to develop a holistic assessment tool for assessing the sustainability of bioenergy programmes. The GBEP indicators are diverse in terms of what to measure, and some of them are not sufficiently directly related to the concept of sustainability. This makes the indicators ambiguous regarding to sustainability assessment. This study identifies whether the GBEP indicators are concerned with strong or weak sustainability, and develops a tool based on Multi Criteria Analysis (MCA) which can be used for assessing sustainability of bioenergy programmes using the GBEP indicators. The tool is demonstrated in an example for assessing the sustainability of biofuel production in a case study of Kyoto. We found that the biodiesel production in Kyoto performs well on the environmental pillar, but badly on the economic pillar, and based on the weights applied in this study the overall sustainability is better than diesel fuel. The holistic assessment tool provides practical information to policymakers on both ex-ante and ex-post policy evaluations.

Takashi Hayashi; Ekko C. van Ierland; Xueqin Zhu

2014-01-01T23:59:59.000Z

106

BETO Announces Launch of the Bioenergy KDF Legislative Library  

Broader source: Energy.gov [DOE]

The Bioenergy Technologies Office is pleased to announce the release of a new Bioenergy Knowledge Discovery Framework (Bioenergy KDF) resource: the Legislative Library.

107

Abengoa Bioenergy Biomass of Kansas LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Location: Hugoton, KS Eligibility: 1705 Snapshot In September 2011,...

108

Biomass Basics: The Facts About Bioenergy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Basics: The Facts About Bioenergy Biomass Basics: The Facts About Bioenergy This document provides general information about bioenergy and its creation and potential uses....

109

Buried waste integrated demonstration Fiscal Year 1993 close-out report  

SciTech Connect (OSTI)

The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a multitude of advanced technologies. These technologies are being integrated to form a comprehensive remediation system for the effective and efficient remediation of buried waste. These efforts are identified and coordinated in support of the U.S. Department of Energy Environmental Restoration and Waste Management needs and objectives. BWID works with universities and private industry to develop these technologies, which are being transferred to the private sector for use nationally and internationally. A public participation policy has been established to provide stakeholders with timely and accurate information and meaningful opportunities for involvement in the technology development and demonstration process. To accomplish this mission of identifying technological solutions for remediation deficiencies, the Office of Technology Development initiated BWID at the Idaho National Engineering Laboratory. This report summarizes the activities of the BWID program during FY-93.

Owens, K.J.; Hyde, R.A.

1994-04-01T23:59:59.000Z

110

Bioscience: Bioenergy, Biosecurity, and Health  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioscience: Bioenergy, Biosecurity, and Health Bioscience: Bioenergy, Biosecurity, and Health /science-innovation/_assets/images/icon-science.jpg Bioscience: Bioenergy, Biosecurity, and Health Los Alamos scientists are developing science and technology to improve pathogen detection, create better therapeutics, and anticipate-even prevent-epidemics and pandemics. Bioenergy» Environmental Microbiology» Proteins» Biosecurity and Health» Genomics and Systems Biology» Algal vats Read caption + Los Alamos scientists used genetic engineering to develop magnetic algae, thus making it much easier to harvest for biofuel production. Harvesting algae accounts for approximately 15-20 percent of the total cost of biofuel production-magnetic algae can reduce such costs by more than 90%. Overview Charlie McMillan, Director of Los Alamos National Laboratory

111

Definition: Bioenergy | Open Energy Information  

Open Energy Info (EERE)

Bioenergy Bioenergy Energy produced from organic materials from plants or animals.[1][2] View on Wikipedia Wikipedia Definition Bioenergy is renewable energy made available from materials derived from biological sources. Biomass is any organic material which has stored sunlight in the form of chemical energy. As a fuel it may include wood, wood waste, straw, manure, sugarcane, and many other byproducts from a variety of agricultural processes. By 2010, there was 35GW of globally installed bioenergy capacity for electricity generation, of which 7GW was in the United States. In its most narrow sense it is a synonym to biofuel, which is fuel derived from biological sources. In its broader sense it includes biomass, the biological material used as a biofuel, as well as the

112

JGI - DOE Bioenergy Research Centers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Bioenergy Research Centers DOE Bioenergy Research Centers DOE JGI performs sequencing on behalf of the U.S. Department of Energy Bioenergy Research Centers. The Centers are intended to accelerate basic research in the development of cellulosic ethanol and other biofuels, advancing the federal initiative that seeks to reduce U.S. gasoline consumption by 20% within 10 years through increased efficiency and diversification of clean energy sources. The three Centers are located in geographically distinct areas and use different plants both for laboratory research and for improving feedstock crops. DOE BioEnergy Science Center led by DOE's Oak Ridge National Laboratory in Oak Ridge, Tennessee. This center will focus on the resistance of plant fiber to breakdown into sugars and is studying the potential energy crops

113

Assessment of global bioenergy potentials  

Science Journals Connector (OSTI)

A recently published literature review (Berndes et al. 2003) analysed 17 studies that reported bioenergy potentials, all published in the 1990s except...2001...) which became available in 2001. The analysed studi...

Ruth Offermann; Thilo Seidenberger

2011-01-01T23:59:59.000Z

114

New and emerging bioenergy technologies  

E-Print Network [OSTI]

Rohstoffe e.V. Germany Consultant Charles Butcher Science Journalist Risø Energy Report 2 #12;1. Preface 3 2 or fisheries. Examples of bioenergy resources are fuel wood, bagasse, organic waste, biogas and bioethanol

115

HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Bioenergy Research  

E-Print Network [OSTI]

HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Bioenergy Research Hawaii Natural Energy Development Pathways for Bioenergy Systems Crops Intermediate Products Conversion Technologies Bioenergy.hnei.hawaii.edu Research and the Bioenergy Industry Value Chain Feedstock Production Feedstock Logistics Conversion

116

ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a Densified Large Square Bale Format  

Broader source: Energy.gov [DOE]

This abstract from AGCO presents the project objectives for the integration of advanced logistical systems and focused bioenergy harvesting technologies that supply crop residues and energy crops in a large bale format.

117

Waste component recycle, treatment, and disposal integrated demonstration (WeDID) nuclear weapon dismantlement activities  

SciTech Connect (OSTI)

One of the drivers in the dismantlement and disposal of nuclear weapon components is Envirorunental Protection Agency (EPA) guidelines. The primary regulatory driver for these components is the Resource Conservation Recovery Act (RCRA). Nuclear weapon components are heterogeneous and contain a number of hazardous materials including heavy metals, PCB`S, selfcontained explosives, radioactive materials, gas-filled tubes, etc. The Waste Component Recycle, Treatment, Disposal and Integrated Demonstration (WeDID) is a Department of Energy (DOE) Environmental Restoration and Waste Management (ERWM) sponsored program. It also supports DOE Defense Program (DP) dismantlement activities. The goal of WeDID is to demonstrate the end-to-end disposal process for Sandia National Laboratories designed nuclear weapon components. One of the primary objectives of WeDID is to develop and demonstrate advanced system treatment technologies that will allow DOE to continue dismantlement and disposal unhindered even as environmental regulations become more stringent. WeDID is also demonstrating waste minimization techniques by recycling a significant weight percentage of the bulk/precious metals found in weapon components and by destroying the organic materials typically found in these components. WeDID is concentrating on demonstrating technologies that are regulatory compliant, are cost effective, technologically robust, and are near-term to ensure the support of DOE dismantlement time lines. The waste minimization technologies being demonstrated by WeDID are cross cutting and should be able to support a number of ERWM programs.

Wheelis, W.T.

1993-04-12T23:59:59.000Z

118

Waste component recycle, treatment, and disposal integrated demonstration (WeDID) nuclear weapon dismantlement activities  

SciTech Connect (OSTI)

One of the drivers in the dismantlement and disposal of nuclear weapon components is Envirorunental Protection Agency (EPA) guidelines. The primary regulatory driver for these components is the Resource Conservation Recovery Act (RCRA). Nuclear weapon components are heterogeneous and contain a number of hazardous materials including heavy metals, PCB'S, selfcontained explosives, radioactive materials, gas-filled tubes, etc. The Waste Component Recycle, Treatment, Disposal and Integrated Demonstration (WeDID) is a Department of Energy (DOE) Environmental Restoration and Waste Management (ERWM) sponsored program. It also supports DOE Defense Program (DP) dismantlement activities. The goal of WeDID is to demonstrate the end-to-end disposal process for Sandia National Laboratories designed nuclear weapon components. One of the primary objectives of WeDID is to develop and demonstrate advanced system treatment technologies that will allow DOE to continue dismantlement and disposal unhindered even as environmental regulations become more stringent. WeDID is also demonstrating waste minimization techniques by recycling a significant weight percentage of the bulk/precious metals found in weapon components and by destroying the organic materials typically found in these components. WeDID is concentrating on demonstrating technologies that are regulatory compliant, are cost effective, technologically robust, and are near-term to ensure the support of DOE dismantlement time lines. The waste minimization technologies being demonstrated by WeDID are cross cutting and should be able to support a number of ERWM programs.

Wheelis, W.T.

1993-04-12T23:59:59.000Z

119

Stakeholder Database from the Center for Bioenergy Sustainability (Learn who the experts are)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Center for BioEnergy Sustainability (CBES) is a leading resource for dealing with the environmental impacts and the ultimate sustainability of biomass production for conversion to biofuels and bio-based products. Its purpose is to use science and analysis to understand the sustainability (environmental, economic, and social) of current and potential future bioenergy production and distribution; to identify approaches to enhance bioenergy sustainability; and to serve as an independent source of the highest quality data and analysis for bioenergy stakeholders and decision makers. ... On the operational level, CBES is a focal point and business-development vehicle for ORNLs capabilities related to bioenergy sustainability and socioeconomic analyses. As such, it complements the BioEnergy Science Center (BESC), also located at ORNL, which focuses on the problem of converting lignocellulosic biomass into reactive intermediaries necessary for the cellulosic biofuel industry. Together, these centers provide a strong integrating mechanism and business-development tool for ORNL's science and technology portfolio in bioenergy [taken and edited from http://web.ornl.gov/sci/ees/cbes/. The Stakeholder Database allows you to find experts in bioenergy by their particular type of expertise, their affiliations or locations, their specific research areas or research approaches, etc.

120

Integrated demonstration of molten salt oxidation with salt recycle for mixed waste treatment  

SciTech Connect (OSTI)

Molten Salt Oxidation (MSO) is a thermal, nonflame process that has the inherent capability of completely destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility and constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are performed under carefully controlled (experimental) conditions. The system consists of a MSO processor with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. This integrated system was designed and engineered based on laboratory experience with a smaller engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. In this paper we present design and engineering details of the system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is identification of the most suitable waste streams and waste types for MSO treatment.

Hsu, P.C.

1997-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated demonstration bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Bioenergy Technologies Office FY 2015 Budget At-A-Glance  

Broader source: Energy.gov [DOE]

The Bioenergy Technologies Office supports targeted research, development, demonstration, and deployment (RDD&D) activities to advance the sustainable, nationwide production of advanced biofuels that will displace a share of petroleum?derived fuels, mitigate climate change, create jobs, and increase United States energy security.

122

Perennial Grass Breeding Program BIOENERGY PROGRAM  

E-Print Network [OSTI]

Perennial Grass Breeding Program BIOENERGY PROGRAM One Texas AgriLife Research initiative for bioenergy is the perennial grass breeding program. Results are outlined here. Pearl Millet-Napiergrass P

123

DOE Perspectives on Sustainable Bioenergy Landscapes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Bioenergy Technologies Office biomass.energy.gov Kristen Johnson Sustainability T echnology M anager Bioenergy Technologies Office U.S. D epartment o f E nergy ( DOE) Green L...

124

Technology needs for remediation: Hanford and other DOE sites. Buried Waste Integrated Demonstration Program  

SciTech Connect (OSTI)

Technologies are being developed under the Buried Waste Integrated Demonstration (BWID) program to facilitate remediation of the US Department of Energy`s (DOE) buried and stored low-level radioactive, transuranic (TRU), and mixed radioactive and hazardous buried wastes. The BWID program is being coordinated by the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, a DOE site that has large volumes of buried radioactive wastes. The program is currently focusing its efforts on the problems at INEL`s Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC). As specific technologies are successfully demonstrated, they will be available for transfer to applications at other DOE buried waste sites. The purpose of this study is to present buried waste technology needs that have been identified for DOE sites other than INEL.

Stapp, D.C.

1993-01-01T23:59:59.000Z

125

About the Bioenergy Technologies Office: Growing America's Energy Future by Replacing the Whole Barrel of Oil  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy's Bioenergy Technologies Office is focused on forming cost-share partnerships with key stakeholders to develop, demonstrate, and deploy technologies for advanced...

126

Arid sites stakeholder participation in evaluating innovative technologies: VOC-Arid Site Integrated Demonstration  

SciTech Connect (OSTI)

Developing and deploying innovative environmental cleanup technologies is an important goal for the U.S. Department of Energy (DOE), which faces challenging remediation problems at contaminated sites throughout the United States. Achieving meaningful, constructive stakeholder involvement in cleanup programs, with the aim of ultimate acceptance of remediation decisions, is critical to meeting those challenges. DOE`s Office of Technology Development sponsors research and demonstration of new technologies, including, in the past, the Volatile Organic Compounds Arid Site Integrated Demonstration (VOC-Arid ID), hosted at the Hanford Site in Washington State. The purpose of the VOC-Arid ID has been to develop and demonstrate new technologies for remediating carbon tetrachloride and other VOC contamination in soils and ground water. In October 1994 the VOC-Arid ID became a part of the Contaminant Plume Containment and Remediation Focus Area (Plume Focus Area). The VOC Arid ID`s purpose of involving stakeholders in evaluating innovative technologies will now be carried on in the Plume Focus Area in cooperation with Site Technology Coordination Groups and Site Specific Advisory Boards. DOE`s goal is to demonstrate promising technologies once and deploy those that are successful across the DOE complex. Achieving that goal requires that the technologies be acceptable to the groups and individuals with a stake in DOE facility cleanup. Such stakeholders include groups and individuals with an interest in cleanup, including regulatory agencies, Native American tribes, environmental and civic interest groups, public officials, environmental technology users, and private citizens. This report documents the results of the stakeholder involvement program, which is an integral part of the VOC-Arid ID.

Peterson, T.S.; McCabe, G.H.; Brockbank, B.R. [and others

1995-05-01T23:59:59.000Z

127

Hawaii Bioenergy Master Plan Economic Impacts  

E-Print Network [OSTI]

Hawaii Bioenergy Master Plan Economic Impacts Prepared for The Hawaii Natural Energy Institute: averaging $49/barrel. Although there are several avenues by which a local bioenergy industry could develop mandate implementation, amongst other federal and state-level incentives, was to prompt a local bioenergy

128

Moderne bioenergi -et nyt dansk vkstomrde?  

E-Print Network [OSTI]

Moderne bioenergi - et nyt dansk vækstområde? 11. december 2003 Marriott Hotel, København #12;Moderne bioenergi - et nyt dansk vækstområde? Velkomst og introduktion Jørgen Kjems, administrerende direktør, Risø #12;Program 13.40-14.00 Perspektiver for moderne bioenergi Hans Larsen, Risø 14

129

Bioenergy Business Partner Information Gathering Form  

E-Print Network [OSTI]

Bioenergy Business Partner Information Gathering Form Fax completed form to the Agribusiness.hnei.hawaii.edu/bmpp/stakeholders.asp Partners are organizations that perform, intend to perform, or should perform bioenergy processes and/or requirements. Please tell us about your organization and the role it plays in bioenergy production in Hawaii

130

Hawaii Bioenergy Master Plan Stakeholder Comment  

E-Print Network [OSTI]

Hawaii Bioenergy Master Plan Volume III Stakeholder Comment Prepared for State of Hawaii Department of Ocean Earth Sciences and Technology December 2009 #12;i Hawaii Bioenergy Master Plan Volume III Stakeholder Comment Comments on the Draft Hawaii Bioenergy Master Plan were solicited by posting the document

131

"Bioenergy Research within SLU" Symposium Program  

E-Print Network [OSTI]

1 "Bioenergy Research within SLU" Symposium Program Tuesday, 25 September 2012 09:00 - 09 School Bioenergy Martin Weih Department of Crop Production Ecology, SLU Uppsala 09:45 ­ 10:00 Swedish funding for bioenergy research 2007-2010 Pär Aronsson Research Officer, Faculty of Natural Resources

132

Abellon Bioenergy | Open Energy Information  

Open Energy Info (EERE)

Abellon Bioenergy Abellon Bioenergy Jump to: navigation, search Name Abellon Bioenergy Place Ahmedabad, Gujarat, India Zip 380054 Sector Renewable Energy Product Ahmedabad-based start-up project developer having interest in renewable energy. Coordinates 26.93077°, 80.66416° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.93077,"lon":80.66416,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

133

Bioenergy News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy News Bioenergy News Bioenergy News RSS August 1, 2013 Secretary Moniz Announces New Biofuels Projects to Drive Cost Reductions, Technological Breakthroughs During remarks at the Energy Department's Biomass 2013 annual conference, Secretary Moniz highlighted the important role biofuels play in the Administration's Climate Action Plan. July 31, 2013 Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale Groundbreaking Project Deploys Technology Developed Through Early Energy Department R&D Investments July 1, 2013 Energy Department Announces Investment to Accelerate Next Generation Biofuels Following last week's rollout of President Obama's plan to cut carbon pollution, the Energy Department today announced four research and development projects to bring next generation biofuels on line faster and

134

Technology summary of the in situ bioremediation demonstration (methane biostimulation) via horizontal wells at the Savannah River Site Integrated Demonstration Project  

SciTech Connect (OSTI)

The US Department of Energy, Office of Technology Development, has been sponsoring full-scale environmental restoration technology demonstrations for the past 4 years. The Savannah River Site Integrated Demonstration focuses on ``Clean-up of Soils ad Groundwater Contaminated with Chlorinated VOCs.`` Several laboratories including our own had demonstrated the ability of methanotrophic bacteria to completely degrade or mineralize chlorinated solvents, and these bacteria were naturally found in soil and aquifer material. Thus the test consisted of injection of methane mixed with air into the contaminated aquifer via a horizontal well and extraction from the vadose zone via a parallel horizontal well.

Hazen, T.C.; Looney, B.B.; Fliermans, C.B.; Eddy-Dilek, C.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Lombard, K.H. [Bechtel Savannah River, Inc., Aiken, SC (United States); Enzien, M.V. [Argonne National Lab., IL (United States); Dougherty, J.M. [US Environmental Protection Agency, Irving, TX (United States); Wear, J. [Catawba State Coll., Salisbury, NC (United States)

1994-06-01T23:59:59.000Z

135

Fundamental & Applied Bioenergy | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioenergy Bioenergy SHARE Fundamental and Applied Bioenergy Steven Brown (left) and Shihui Yang have developed a microbial strain with an improved ability to convert wood products to biofuel as part of research within the DOE BioEnergy Science Center.Source: ORNL News article ORNL researchers are investigating the biological mechanisms underlying production of biofuels so that those mechanisms can be improved and used to develop a new generation of efficient bioenergy strategies that will reduce U.S. dependence on foreign oil and help curb carbon emissions. Fundamental and applied bioenergy research at ORNL includes studies conducted within the BioEnergy Science Center and the following research areas: Bioconversion Science and Technology Plant-Microbe Interfaces

136

Alterra Bioenergy LLC | Open Energy Information  

Open Energy Info (EERE)

Alterra Bioenergy LLC Alterra Bioenergy LLC Jump to: navigation, search Name Alterra Bioenergy LLC Place Macon, Georgia Sector Biofuels Product Manufacturer and distributor of biofuels. References Alterra Bioenergy LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Alterra Bioenergy LLC is a company located in Macon, Georgia . References ↑ "Alterra Bioenergy LLC" Retrieved from "http://en.openei.org/w/index.php?title=Alterra_Bioenergy_LLC&oldid=342070" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

137

Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project, Final Environmental Impact Statement  

Broader source: Energy.gov (indexed) [DOE]

S-1 S-1 SUMMARY The U.S. Department of Energy (DOE) prepared this environmental impact statement (EIS) on the proposed Kentucky Pioneer Integrated Gasification Combined Cycle (IGCC) Demonstration Project in compliance with the National Environmental Policy Act (NEPA). The National Environmental Policy Act Process NEPA is a federal law that serves as the basic national charter for protection of the environment. For major federal actions that may significantly affect the quality of the environment, NEPA requires federal agencies to prepare a detailed statement that includes the potential environmental impacts of the Proposed Action and reasonable alternatives. A fundamental objective of NEPA is to foster better decisionmaking by ensuring that high quality environmental information is available to public officials and members of the

138

2012 SG Peer Review - Demonstration of a Coordinated and Integrated System - Bill Becker, Spirae  

Broader source: Energy.gov (indexed) [DOE]

Fort Collins RDSI Project Fort Collins RDSI Project Bill Becker, Oliver Pacific Spirae Inc. June 8, 2012 December 2008 Fort Collins RDSI Objective Life-cycle Funding FY09 - FY12 DOE: $6,323,380 Community: $4,729,569 Total: $11,052,949 Technical Scope I. Demonstrate the ability to reduce electric system distribution feeder peak load by 20% or more through the coordinated use of Distributed Energy Resources (DER). II. Advance the expertise, technologies and infrastructure necessary to achieve the vision of the Fort Collins Zero Energy District (FortZED) Integrate multiple and varied distributed energy resources (DER) from five partner sites with an active management platform that could coordinate the participation of these assets to achieve both project and community goals. 2 December 2008 Needs and Project Targets

139

Arid site characterization and technology assessment: Volatile Organic Compounds-Arid Integrated Demonstration  

SciTech Connect (OSTI)

The US Department of Energy`s (DOE`s) Volatile Organic Compounds-Arid Integrated Demonstration (VOC-Arid ID) program was initiated in March 1991 to evaluate technologies for all phases of remediation of VOCs in soils and groundwater at DOE arid/semiarid sites. The primary site for field demonstrations under the VOC-Arid ID program is the Hanford Site. The purpose of this report is to describe (1) the bases for technologies currently under evaluation in the VOC-Arid ID program; (2) the types of subsurface contamination at DOE arid/semiarid sites; and (3) the areas of potential common technology interests based on perceived technology needs at other DOE sites. This report was compiled by Pacific Northwest Laboratory in response to DOE`s Office of Technology Development`s mission to carry out an aggressive program to accelerate the development and implementation of new and existing technologies to meet a 30-year goal set by DOE in June 1989 to clean up all of its sites and to bring all sites into compliance with current and future environmental regulations. A key component of this program is the development of technologies that are better, faster, safer, and cheaper than those technologies currently available. Included in this report are an evaluation of technologies currently (fiscal year 1993) being pursued at the Hanford Site under the auspices of the VOC-Arid ID program, an assessment of subsurface contaminants at arid/semiarid sites, a summarization of technologies under consideration at other DOE sites, a discussion of areas of potential common technology interests, and the conclusions. Also included are a summary of the extent of contamination at the DOE arid/semiarid sites under consideration and a bibliography of source documents from which this report was prepared.

Riley, R.G.

1993-06-01T23:59:59.000Z

140

Integrated flue gas treatment for simulataneous emission control and heat rate improvement - demonstration project at Ravenswood  

SciTech Connect (OSTI)

Results are presented for electric-utility, residual-oil fired, field demonstration testing of advanced-design, heat-recovery type, flue gas sub-coolers that incorporate sulfite-alkali-based wet scrubbing for efficient removal of volatile and semi-volatile trace elements, sub-micron solid particulate matter, SO{sub 2} and SO{sub 3}. By innovative adaptation of wet collector system operation with methanol injection into the rear boiler cavity to convert flue-gas NO to No{sub 2}, simultaneous removal of NO{sub x} is also achieved. The focus of this integrated flue gas treatment (IFGT) technology development and demonstration-scale, continuous performance testing is an upward-gas-flow, indirectly water-cooled, condensing heat exchanger fitted with acid-proof, teflon-covered tubes and tubesheets and that provides a unique condensing (non-evaporative) wet-scrubbing mode to address air toxics control objectives of new Clean Air Act, Title III. Advantageous trace-metal condensation/nucleation/agglomeration along with substantially enhanced boiler efficiency is accomplished in the IFGT system by use of boiler makeup water as a heat sink in indirectly cooling boiler flue gas to a near-ambient-temperature, low-absolute-humidity, water-saturated state. Moreover, unique, innocuous, stack systems design encountered with conventional high-humidity, wet-scrubber operations. The mechanical design of this advanced flue-gas cooling/scrubbing equipment is based on more than ten years of commercial application of such units is downward-gas-flow design/operation for energy recovery, e.g. in preheating of makeup water, in residual-oil and natural-gas fired boiler operations.

Heaphy, J.; Carbonara, J.; Cressner, A. [Consolidated Edison Company, New York, NY (United States)] [and others

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated demonstration bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 5.0 Systems Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Page 3.8 Page 3.8 2012 Systems Integration Multi-Year Research, Development and Demonstration Plan Page 5 - 1 5.0 Systems Integration The Systems Integration function of the DOE Hydrogen and Fuel Cells Program (the Program) provides independent, strategic, systems-level expertise and processes to enable system-level planning, data-driven decision-making, effective portfolio management, and program integration. System Integration ensures that system-level targets are developed, verified, and met and that the sub- programs are well-coordinated. Systems Integration provides tailored technical and programmatic support to ensure a disciplined approach to the research, design, development, and validation of complex systems. Systems Integration provides

142

Bird communities in future bioenergy landscapes of the Upper Midwest  

Science Journals Connector (OSTI)

...The effects of bioenergy crop management...that extensive literature reviews have concluded...understanding how different bioenergy crops, and the...Fargione JE ( 2009 ) Bioenergy and wildlife: Threats and...Camp M ( 1995 ) A review and synthesis of habitat...

Timothy D. Meehan; Allen H. Hurlbert; Claudio Gratton

2010-01-01T23:59:59.000Z

143

Nutrient use efficiency in bioenergy cropping systems: Critical research questions  

E-Print Network [OSTI]

x giganteus. Biomass Bioenergy 12:21-24. Christian, D.G. ,for-biofuels systems. Biomass Bioenergy Gentry, L.E. , F.E.cynosuroides. Biomass Bioenergy 12:419-428. Brejda, J.J.

Brouder, Sylvie; Volenec, Jeffrey J; Turco, Ronald; Smith, Douglas R; Ejeta, Gebisa

2009-01-01T23:59:59.000Z

144

Production of bioenergy and biochemicals from industrial and  

E-Print Network [OSTI]

Production of bioenergy and biochemicals from industrial and agricultural wastewater Largus T biological processing strat- egies that produce bioenergy or biochemicals while treating industrial on wastewater treatment from pollution control to resource exploitation. Many bioprocesses can provide bioenergy

Angenent, Lars T.

145

STAFFREPORT Prepared for the Bioenergy Interagency Working Group  

E-Print Network [OSTI]

STAFFREPORT Prepared for the Bioenergy Interagency Working Group: Air Resources Board 2010 2009 PROGRESS TO PLAN BIOENERGY ACTION PLAN FOR CALIFORNIA CALIFORNIA ENERGY COMMISSION #12, and et. al. 2010. 2009 Progress to Plan Bioenergy Action Plan for California. California Energy

146

Track Bioenergy Legislation with New Web Tool | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Track Bioenergy Legislation with New Web Tool Track Bioenergy Legislation with New Web Tool February 27, 2014 - 5:59pm Addthis The Bioenergy KDF Legislative Library aims to help...

147

Biomass and Bioenergy 31 (2007) 638645 Forest bioenergy system to reduce the hazard of wildfires  

E-Print Network [OSTI]

Biomass and Bioenergy 31 (2007) 638­645 Forest bioenergy system to reduce the hazard of wildfires for bioenergy. The start-up project is in the Nutrioso area of the Alpine Ranger District, Apache. The outlet for the wood fuel pellets is the growing market for house and business heating, and co

148

Bioenergy Toolkit | Open Energy Information  

Open Energy Info (EERE)

Bioenergy Toolkit Bioenergy Toolkit Jump to: navigation, search Stage 3 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country 2.3. Assess public and private sector capacity to support initiatives 2.4. Assess and improve the national GHG inventory and other economic and resource data as needed for LEDS development

149

NREL/SCE High-Penetration PV Integration Project: Report on Field Demonstration of Advanced Inverter Functionality in Fontana, CA  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory/Southern California Edison High-Penetration PV Integration Project is (1) researching the distribution system level impacts of high-penetration photovoltaic (PV) integration, (2) determining mitigation methods to reduce or eliminate those impacts, and (3) seeking to demonstrate these mitigation methods on actual high-penetration PV distribution circuits. This report describes a field demonstration completed during the fall of 2013 on the Fontana, California, study circuit, which includes a total of 4.5 MW of interconnected utility-scale rooftop PV systems. The demonstration included operating a 2-MW PV system at an off-unity power factor that had been determined during previously completed distribution system modeling and PV impact assessment analyses. Data on the distribution circuit and PV system operations were collected during the 2-week demonstration period. This demonstration reinforces the findings of previous laboratory testing that showed that utility-scale PV inverters are capable of operating at off-unity power factor to mitigate PV impacts; however, because of difficulties setting and retaining PV inverter power factor set points during the field demonstration, it was not possible to demonstrate the effectiveness of off-unity power factor operation to mitigate the voltage impacts of high-penetration PV integration. Lessons learned from this field demonstration are presented to inform future field demonstration efforts.

Mather, B.

2014-08-01T23:59:59.000Z

150

Demonstration and Deployment Strategy Workshop: Summary  

Broader source: Energy.gov [DOE]

This report is based on the proceedings of the U.S. DOEs Bioenergy Technologies Office Demonstration and Deployment Strategy Workshop, held on March 1213, 2014, at Argonne National Laboratory.

151

Explore Bioenergy Technology Careers | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy Technology Careers Bioenergy Technology Careers Explore Bioenergy Technology Careers About Bioenergy Technologies Office Energy from abundant, renewable, domestic biomass can reduce U.S. dependence on oil, lower impacts on climate, and stimulate jobs and economic growth. Photo of a woman tending to plants in a lab. What jobs are available? Feedstocks Farmers Seasonal workers Tree farm workers Mechanical engineers Harvesting equipment mechanics Equipment production workers Chemical engineers Chemical application specialists Chemical production workers Biochemists Aquaculture technicians Agricultural engineers Genetic engineers and scientists Storage facility operators Conversion Microbiologists Clean room technicians Industrial engineers Chemical & mechanical engineers Plant operators

152

Bioenergy Documentary | OpenEI Community  

Open Energy Info (EERE)

and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated. --- Subscribe to...

153

Bioenergy: Americas Energy Future  

Office of Energy Efficiency and Renewable Energy (EERE)

Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the publics understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

154

Bioenergy Technologies Office Overview | Department of Energy  

Office of Environmental Management (EM)

More Documents & Publications Bioenergy Technologies Office Overview August 2014 Monthly News Blast Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research...

155

Abengoa Bioenergy Biomass of Kansas, LLC  

Broader source: Energy.gov (indexed) [DOE]

Abengoa Bioenergy Biomass of Kansas, LLC Corporate HQ: Chesterfield, Missouri Proposed Facility Location: Hugoton, Stevens County, Kansas Description: This project from a committed...

156

The Bioenergy Knowledge Discovery Framework (KDF) | Department...  

Energy Savers [EERE]

and investors to explore and engage the latest bioenergy research. The KDF harnesses Web 2.0 and social networking technologies to build a collective knowledge system that...

157

Bioenergy & Clean Cities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy Technologies Office and the Clean Cities program regularly conduct a joint Web conference for state energy office representatives and Clean Cities coordinators. The...

158

EIS-0407: Abengoa Biomass Bioenergy Project near Hugoton, Stevens...  

Broader source: Energy.gov (indexed) [DOE]

07: Abengoa Biomass Bioenergy Project near Hugoton, Stevens County, KS EIS-0407: Abengoa Biomass Bioenergy Project near Hugoton, Stevens County, KS August 20, 2010 EIS-0407: Final...

159

ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues...  

Broader source: Energy.gov (indexed) [DOE]

ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a Densified Large Square Bale Format ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a...

160

Carbon Offsets for Forestry and Bioenergy: Researching Opportunities...  

Open Energy Info (EERE)

Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural Communities Jump to: navigation, search Name Carbon Offsets for Forestry and Bioenergy: Researching...

Note: This page contains sample records for the topic "integrated demonstration bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Guofu Bioenergy Science Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Guofu Bioenergy Science Technology Co Ltd Jump to: navigation, search Name: Guofu Bioenergy Science & Technology Co Ltd Place: Beijing Municipality, China Zip: 100101 Sector:...

162

EIS-0318: Kentucky Pioneer Integrated Gasification Combined Cycle (IGCC) Demonstration Project, Trapp, Kentucky (Clark County)  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's decision to provide cost-shared financial support for The Kentucky Pioneer IGCC Demonstration Project, an electrical power station demonstrating use of a Clean Coal Technology in Clark County, Kentucky.

163

BETO Announces Bioenergy Technologies Incubator FOA  

Broader source: Energy.gov [DOE]

The Office of Energy Efficiency and Renewable Energy (EERE) has released a new $10 million funding opportunity announcement (FOA) to support innovative technologies and solutions that could help achieve bioenergy development goals, but are not significantly represented in the Bioenergy Technology Office's (BETO's) existing multi-year program plans or current research and development portfolio.

164

Future perspectives of international bioenergy trade  

Science Journals Connector (OSTI)

Abstract According to the IEA World Energy Outlook 2012, primary demand for bioenergy will strongly increase up to the year 2035: the demand for biofuels and biomass for electricity is expected to triple. These changes will have an impact on the regional balance of demand and supply of bioenergy leading to both increasing trade flows and changes in trade patterns. The GFPM, TIMER and POLES models have been selected for a detailed comparison of scenarios and their impact on global bioenergy trade: In ambitious scenarios, 1426% of global bioenergy demand is traded between regions in 2030. The model scenarios show a huge range of potential bioenergy trade: for solid biomass, in ambitious scenarios bioenergy trade ranges from 700Mt to more than 2,500Mt in 2030. For liquid biomass, the ambitious scenarios show a bioenergy trade in the range of 65 - >360Mt in 2030. Considering the currently very small share of internationally traded bioenergy, this would result in huge challenges and require tremendous changes in terms of production, pretreatment of biomass and development of logistic chains.

Julian Matzenberger; Lukas Kranzl; Eric Tromborg; Martin Junginger; Vassilis Daioglou; Chun Sheng Goh; Kimon Keramidas

2015-01-01T23:59:59.000Z

165

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 5.0 Systems Integration  

Broader source: Energy.gov [DOE]

Systems Integration section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated July 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

166

Hawaii Bioenergy Master Plan Potential Environmental Impacts of  

E-Print Network [OSTI]

Hawaii Bioenergy Master Plan Potential Environmental Impacts of Bioenergy Development in Hawaii of the potential environmental impacts associated with bioenergy development in Hawaii was conducted as part of the Hawaii Bioenergy Master Plan mandated by Act 253 of the Hawaii State Legislature in 2007. This effort

167

Sustainable Bioenergy Production: An Integrated Perspective  

Science Journals Connector (OSTI)

In addition, this chapter discusses the application of Germanys Renewable Energy Source Act and the resulting National Biomass Action Plan. Moreover, it highlights the quota system and feed-in tariffs as promote...

Hans Ruppert; Martin Kappas; Jens Ibendorf

2013-01-01T23:59:59.000Z

168

From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are  

Broader source: Energy.gov (indexed) [DOE]

From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference December 16, 2013 - 2:46pm Addthis The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory Leslie Pezzullo

169

From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are  

Broader source: Energy.gov (indexed) [DOE]

From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference December 16, 2013 - 2:46pm Addthis The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory Leslie Pezzullo

170

NREL: News - NREL Names New Executives to Lead Bioenergy, Bioscience and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

113 113 NREL Names New Executives to Lead Bioenergy, Bioscience and Energy Systems Integration Facility April 12, 2013 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) recently made three key hires to lead research centers. NREL has named Tom Foust, a nine-year NREL veteran, as its National Bioenergy Center Director; David Post as the Center Director for the Energy Systems Integration Facility (ESIF); and Rich Greene as Biosciences Center Director. Tom Foust to Head National Bioenergy Center For the past three years, Foust has been Executive Director of the National Advanced Biofuels Consortium (NABC), responsible for leading 18 biofuels organizations in a $50-million-dollar project to develop advanced "drop-in" replacement biofuels. He replaces Mike Cleary who retired in

171

Process Integration and Carbon Efficiency Workshop Agenda  

Broader source: Energy.gov [DOE]

Process Integration and Carbon Efficiency Workshop Agenda, June 11-12, 2014, Lakewood, Colorado, from the U.S. Department of Energy's Bioenergy Technologies Office.

172

Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute  

E-Print Network [OSTI]

Fuels: The Joint BioEnergy Institute Harvey W. Blanch ,,,, * Joint BioEnergy Institute, Department of Chemicalbiomass monomers. The Joint BioEnergy Institute (JBEI) is a

Blanch, Harvey

2010-01-01T23:59:59.000Z

173

Switchgrass for Forage and Bioenergy: II. Effects of P and K fertilization  

E-Print Network [OSTI]

systems. Biomass and Bioenergy 30:198-206. Fixen, PE. 2007.and persistence under bioenergy harvest systems in thebiomass yields for bioenergy purposes have typically been

Guretzky, John A; Kering, Maru K; Biermacher, Jon T; Cook, Billy J

2009-01-01T23:59:59.000Z

174

Chapter 6 - Databases for Bioenergy-Related Enzymes  

Science Journals Connector (OSTI)

Abstract As one of the many clean and renewable energy forms, bioenergy, especially the liquid biofuels, has received great attention in the past 5 years, as biofuels have a great potential to be used for replacing the fossil-based gasoline as transportation fuels. However, the lignocellulosic biofuels are currently too expensive because plant cell walls, the major component of plant biomass, are recalcitrant to microbial/enzymatic deconstruction. In order to achieve the practical goals, reduce plant cell wall recalcitrance to enzymatic degradation and develop low-cost microbial or engineering approaches to releasing sugars, plant and microbial biologists as well as engineers have been working together to study the molecular mechanisms underlying plant biomass formation and microbial degradation. The past decades have seen a lot of genes experimentally characterized to be involved in plant cell wall synthesis or deconstruction. As a result, many bioenergy-related databases have been developed to collect and classify these genes, which are further used for annotating newly sequenced genomes. Here we summarize these bioenergy-related databases, with a special focus on plant resources. We also discuss the limitation of existing resources and suggest that there is still a strong need for new databases. The newly developed database should include not only enzymes, but also other important genes such as transcription factors, micro ribonucleic acid and transporters by extensive literature curation. The integration of various high-throughput omics data, e.g. comparative genomics data and precomputed bioinformatics data, is also highly recommended for developing new bioenergy-related databases.

Yanbin Yin

2014-01-01T23:59:59.000Z

175

Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project, Final Environmental Impact Statement  

Broader source: Energy.gov (indexed) [DOE]

A-1 A-1 APPENDIX A CONSULTATION LETTERS This appendix includes consultation/approval letters between the U.S. Department of Energy and the U.S. Fish and Wildlife Service regarding threatened and endangered species, and between other state and Federal agencies as needed. Consultation Letters A-2 Kentucky Pioneer IGCC Demonstration Project Final Environmental Impact Statement A-3 Consultation Letters A-4 Kentucky Pioneer IGCC Demonstration Project Final Environmental Impact Statement A-5 Consultation Letters A-6 Kentucky Pioneer IGCC Demonstration Project Final Environmental Impact Statement A-7 Consultation Letters A-8 Kentucky Pioneer IGCC Demonstration Project Final Environmental Impact Statement B-1 APPENDIX B NOTICE OF INTENT TO PREPARE AN ENVIRONMENTAL IMPACT STATEMENT FOR THE

176

Bioenergy KDF | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Bioenergy KDF Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Bioenergy KDF Agency/Company /Organization: US Department of Energy Office of Biomass Program Partner: Oak Ridge National Laboratory Sector: Energy Focus Area: Renewable Energy, Biomass Phase: Bring the Right People Together Topics: Background analysis, Resource assessment Resource Type: Maps, Presentation, Publications, Technical report, Software/modeling tools User Interface: Website Website: bioenergykdf.net Web Application Link: bioenergykdf.net Cost: Free OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Coordinates: 36.00941332491°, -84.270080532879° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.00941332491,"lon":-84.270080532879,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

177

State Bioenergy Primer: Information and Resources for States on Issues, Opportunities, and Options for Advancing Bioenergy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

State State Bioenergy Primer information and resources for States on issues, opportunities, and options for Advancing Bioenergy U.S. EnvironmEntal ProtEction agEncy and national rEnEwablE EnErgy laboratory SEPtEmbEr 15, 2009 TABle of ConTenTS Acknowledgements ________________________________________________________________ iv Key Acronyms and Abbreviations ______________________________________________________ v executive Summary ___________________________________________________ 1 introduction _________________________________________________________ 3 1.1 How the Primer Is Organized ____________________________________________________ 5 1.2 References ____________________________________________________________________ 5 What is Bioenergy? ____________________________________________________

178

Demonstrating and Deploying Integrated Retrofit Technologies and Solutions- 2014 BTO Peer Review  

Broader source: Energy.gov [DOE]

Presenter: Mark Stutman, Consortium for Building Energy Innovation The Penn State Consortium for Building Energy Innovation focuses on the development, demonstration, and deployment of energy-saving technologies and solutions that can achieve 50% energy reduction in small- and medium-sized commercial buildings (SMSCBs).

179

Advancing Bioenergy in Europe: Exploring bioenergy systems and socio-political issues.  

E-Print Network [OSTI]

??This thesis concentrates on bioenergy (or biomass utilised for heat, electricity and fuels for transport) as a renewable energy with significant potentials and options. Biomass (more)

McCormick, Kes

2007-01-01T23:59:59.000Z

180

Bioenergy  

Broader source: Energy.gov [DOE]

Learn how the Energy Department is working to sustainably transform the nation's abundant renewable resources into biomass energy.

Note: This page contains sample records for the topic "integrated demonstration bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

BIOENERGI ER BLEVET MODERNE 4DECEMBER 2003  

E-Print Network [OSTI]

at bruge biomasse til energi. Opfyring med brænde og opvarmning med halmfyr eller biogas er kendte, biogas og bioethanol. Bioenergi er den eneste vedvarende energikilde, der findes i fast, flydende og

182

Biomass Basics: The Facts About Bioenergy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Basics: The Facts About Bioenergy We Rely on Energy Every Day Energy is essential in our daily lives. We use it to fuel our cars, grow our food, heat our homes, and run our...

183

Sorghum bioenergy genotypes, genes and pathways  

E-Print Network [OSTI]

and this plant is a potentially important bioenergy crop for Texas. The diversity of the twelve high biomass sorghum genotypes was analyzed using 50 simple sequence repeats (SSR) markers with genome coverage. The accumulation of biomass during sorghum development...

Plews, Ian Kenneth

2009-05-15T23:59:59.000Z

184

Ris Energy Report 2 Bioenergy conversion  

E-Print Network [OSTI]

6.3 Risø Energy Report 2 Bioenergy conversion There is a wide range of technologies to derive operate automatically and are in many regions an economic alternative, e.g. Austria and Finland

185

Bioenergy farming using woody crops. A review  

Science Journals Connector (OSTI)

Bioenergy plantations will predictably become the primary source of biomass for energy purposes on a global scale. More specifically, the use of forest wood has been identified as a potential source of biomass fo...

Carmen Roco Rodrguez Pleguezuelo

2014-10-01T23:59:59.000Z

186

Bioenergy in Energy Transformation and Climate Management  

SciTech Connect (OSTI)

Unlike fossil fuels, biomass is a renewable resource that can sequester carbon during growth, be converted to energy, and then re-grown. Biomass is also a flexible fuel that can service many end-uses. This paper explores the importance of bioenergy to potential future energy transformation and climate change management. Using a model comparison of fifteen models, we characterize and analyze future dependence on, and the value of, bioenergy in achieving potential long-run climate objectivesreducing radiative forcing to 3.7 and 2.8 W/m2 in 2100 (approximately 550 and 450 ppm carbon dioxide equivalent atmospheric concentrations). Model scenarios project, by 2050, bioenergy growth of 2 to 10% per annum reaching 5 to 35 percent of global primary energy, and by 2100, bioenergy becoming 15 to 50 percent of global primary energy. Non-OECD regions are projected to be the dominant suppliers of biomass, as well as consumers, with up to 35 percent of regional electricity from biopower by 2050, and up to 70 percent of regional liquid fuels from biofuels by 2050. Bioenergy is found to be valuable to many models with significant implications for mitigation costs and world consumption. The availability of bioenergy, in particular biomass with carbon dioxide capture and storage (BECCS), notably affects the cost-effective global emissions trajectory for climate management by accommodating prolonged near-term use of fossil fuels. We also find that models cost-effectively trade-off land carbon and nitrous oxide emissions for the long-run climate change management benefits of bioenergy. Overall, further evaluation of the viability of global large-scale bioenergy is merited.

Rose, Steven K.; Kriegler, Elmar; Bibas, Ruben; Calvin, Katherine V.; Popp, Alexander; van Vuuren, Detlef; Weyant, John

2014-04-01T23:59:59.000Z

187

Disposal demonstration of a high integrity container (HIC) containing an EPICOR-II prefilter from Three Mile Island  

SciTech Connect (OSTI)

A high integrity container (HIC) was developed, tested, and certified for use in disposing of unusual low-level radioactive waste from Three Mile Island Unit 2 (TMI-2). The work was coordinated by EG and G Idaho, Inc. and funded by the US Department of Energy. A disposal demonstration using an HIC containing an EPICOR-II prefilter from TMI-2 was completed at the commercial disposal facility in the State of Washington. A Certification of Compliance was issued by the Department of Social and Health Services of the State of Washington to use the HIC in disposing of up to 50 EPICOR-II prefilters. That Certification of Compliance was issued after rigorous review of the HIC design and test program by the State and by the US Nuclear Regulatory Commission. This report describes the processes of loading, transporting, and disposing of the demonstration HIC and briefly describes the design, testing, and approval effort leading up to the demonstration.

McConnell, J.W. Jr.; Tyacke, M.J.; Schmitt, R.C.; Reno, H.W.

1985-02-01T23:59:59.000Z

188

Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project, Final Environmental Impact Statement  

Broader source: Energy.gov (indexed) [DOE]

Comments Comments Kentucky Pioneer IGCC Demonstration Project Final Environmental Impact Statement Clark County Public Library Winchester, KY Page 1 of 5 D-1 Comment No. 1 Issue Code: 11 Gasification is different from incineration. It is a better, more environmentally responsible approach to generating energy from the use of fossil fuels and refuse derived fuel (RDF). Incineration produces criteria pollutants, semi-volatile and volatile organic compounds and dioxin/furan compounds. Ash from hazardous waste incinerators is considered a hazardous waste under the Resource Conservation and Recovery Act (RCRA). In contrast, gasification, which occurs at high temperatures and pressures, produces no air emissions, only small amounts of wastewater containing salts. Synthesis gas (syngas)

189

State-of-the-art of fast pyrolysis in IEA bioenergy member countries  

Science Journals Connector (OSTI)

Fast pyrolysis of biomass is becoming increasingly important in some member countries of the International Energy Agency (IEA). Six countries have joined the IEA Task 34 of the Bioenergy Activity: Canada, Finland, Germany, Netherlands, UK, and USA. The National Task Leaders give an overview of the current activities in their countries both on research, pilot and demonstration level.

Dietrich Meier; Bert van de Beld; Anthony V. Bridgwater; Douglas C. Elliott; Anja Oasmaa; Fernando Preto

2013-01-01T23:59:59.000Z

190

Crop Residue Considerations for Sustainable Bioenergy Feedstock Supplies  

Science Journals Connector (OSTI)

The anticipated 2014 launch of three full-scale corn stover bioenergy conversion facilities is a strong US market ... , and several other factors affecting the fledgling bioenergy industry are addressed in this s...

Douglas L. Karlen; Jane M. F. Johnson

2014-06-01T23:59:59.000Z

191

Bird communities in future bioenergy landscapes of the Upper Midwest  

Science Journals Connector (OSTI)

...The effects of bioenergy crop management...that extensive literature reviews have concluded...understanding how different bioenergy crops, and the...conservation: A review of food resource provision...energy, and environment trilemma . Science 325...

Timothy D. Meehan; Allen H. Hurlbert; Claudio Gratton

2010-01-01T23:59:59.000Z

192

Facility will focus on bioenergy, global food security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility will focus on bioenergy, global food security Facility will focus on bioenergy, global food security The New Mexico Consortium expects to complete the 27,000 square foot...

193

REPORT from 1st Annual World Congress of BIOENERGY ,  

E-Print Network [OSTI]

REPORT from 1st Annual World Congress of BIOENERGY , DALIAN, CHINA Dr. Efstratios Kalogirou Earth of SYNERGIA (WTERT Greece) participated in the successful 1st Annual World Congress of BIOENERGY, held between

194

Draft Bioenergy Master Plan for the State of Hawaii  

E-Print Network [OSTI]

Draft Bioenergy Master Plan for the State of Hawaii Prepared for the U.S. Department of Energy DRAFT Hawaii Bioenergy Master Plan Volume I Prepared for State of Hawaii Department of Business

195

Energy Department Announces $10 Million to Develop Innovative Bioenergy Technologies  

Broader source: Energy.gov [DOE]

The Energy Departments Bioenergy Technologies Office (BETO) announces the selection of seven projects across the country to receive up to $10 million to support innovative technologies and solutions to help advance bioenergy development.

196

Neutron Technologies for Bioenergy Research  

SciTech Connect (OSTI)

Neutron scattering is a powerful technique that can be used to probe the structures and dynamics of complex systems. It can provide a fundamental understanding of the processes involved in the production of biofuels from lignocellulosic biomass. A variety of neutron scattering technologies are available to elucidate both the organization and deconstruction of this complex composite material and the associations and morphology of the component polymers and the enzymes acting on them, across multiple length scales ranging from Angstroms to micrometers and time scales from microseconds to picoseconds. Unlike most other experimental techniques, neutron scattering is uniquely sensitive to hydrogen (and its isotope deuterium), an atom abundantly present throughout biomass and a key effector in many biological, chemical, and industrial processes for producing biofuels. Sensitivity to hydrogen, the ability to replace hydrogen with deuterium to alter scattering levels, the fact that neutrons cause little or no direct radiation damage, and the ability of neutrons to exchange thermal energies with materials, provide neutron scattering technologies with unique capabilities for bioenergy research. Further, neutrons are highly penetrating, making it possible to employ sample environments that are not suitable for other techniques. The true power of neutron scattering is realized when it is combined with computer simulation and modeling and contrast variation techniques enabled through selective deuterium labeling.

Langan, Paul [ORNL

2012-01-01T23:59:59.000Z

197

The Global Potential of Bioenergy on Abandoned Agriculture Lands  

Science Journals Connector (OSTI)

The Global Potential of Bioenergy on Abandoned Agriculture Lands ... The global potential for bioenergy from abandoned agriculture lands is determined to be less than 8% of current primary energy demand based on land use data and ecosystem modeling. ... Converting forest lands into bioenergy agriculture could accelerate climate change by emitting carbon stored in forests, while converting food agriculture lands into bioenergy agriculture could threaten food security. ...

J. Elliott Campbell; David B. Lobell; Robert C. Genova; Christopher B. Field

2008-06-25T23:59:59.000Z

198

Biomass as Feedstock for a Bioenergy and Bioproducts Industry...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Industry Biomass Program Peer Review Sustainability Platform Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting...

199

Threshold Dynamics in Soil Carbon Storage for Bioenergy Crops  

Science Journals Connector (OSTI)

Threshold Dynamics in Soil Carbon Storage for Bioenergy Crops ... Because of increasing demands for bioenergy, a considerable amount of land in the midwestern United States could be devoted to the cultivation of second-generation bioenergy crops, such as switchgrass and miscanthus. ... The foliar carbon/nitrogen ratio (C/N) in these bioenergy crops at harvest is significantly higher than the ratios in replaced crops, such as corn or soybean. ...

Dong K. Woo; Juan C. Quijano; Praveen Kumar; Sayo Chaoka; Carl J. Bernacchi

2014-09-10T23:59:59.000Z

200

Fulcrum Bioenergy Inc | Open Energy Information  

Open Energy Info (EERE)

Fulcrum Bioenergy Inc Fulcrum Bioenergy Inc Jump to: navigation, search Name Fulcrum Bioenergy, Inc. Place Pleasanton, California Zip 94588 Sector Bioenergy, Renewable Energy Product Fulcrum BioEnergy is a waste-to-fuels company that focuses on the development of clean, environmentally responsible facilities for the conversion of municipal solid waste and other waste products to ethanol and other renewable transportation fuels. Coordinates 28.967394°, -98.478862° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.967394,"lon":-98.478862,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "integrated demonstration bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Tersus BioEnergy | Open Energy Information  

Open Energy Info (EERE)

Tersus BioEnergy Tersus BioEnergy Jump to: navigation, search Name Tersus BioEnergy Place London, Greater London, United Kingdom Zip W1J 5PT Sector Bioenergy, Biomass Product Subsidiary of Tersus Energy. Tersus BioEnergy invests in companies developing biofuel and biomass and waste technologies. Typical investment size USD 500,000-USD 5m Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

202

Nishant Bioenergy P Ltd | Open Energy Information  

Open Energy Info (EERE)

Nishant Bioenergy P Ltd Nishant Bioenergy P Ltd Jump to: navigation, search Logo: Nishant Bioenergy P Ltd Name Nishant Bioenergy P Ltd Address Sector 18-D, Chandigarh Place Chandigarh Zip 160018 Sector Bioenergy Product Biomass Fuel Pellet and Biomass Pellet Fired Cook Stove for institutional use Stock Symbol Stove Earth Stove Year founded 1999 Number of employees 1-10 Company Type For Profit Phone number 09815609301 Website http://www.nishantbioenergy.co Coordinates 30.7347851°, 76.7884713° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.7347851,"lon":76.7884713,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

203

Hawaii Bioenergy Master Plan Financial Incentives And Barriers; And  

E-Print Network [OSTI]

Hawaii Bioenergy Master Plan Financial Incentives And Barriers; And Other Funding Sources Prepared Summary The goal of this section of the Hawaii Bioenergy Master Plan is to identify and evaluate financial incentives and barriers at points along the bioenergy industry value chain (feedstock production, feedstock

204

Bioenergy Review Mapping Work Resource efficiency science programme  

E-Print Network [OSTI]

Bioenergy Review ­ Mapping Work Resource efficiency science programme Science report: SC070001/SR2 #12;ii Science Report ­ Bioenergy Review ­ Mapping Work The Environment Agency is the leading public, biomass, bioenergy, waste, wood-fuel, land, land-take, mapping, 2010, GIS Research Contractor: Forest

205

Special issue: bioenergy Don-Hee Park Sang Yup Lee  

E-Print Network [OSTI]

EDITORIAL Special issue: bioenergy Don-Hee Park · Sang Yup Lee Published online: 11 December 2011 ? of the world. The 2011 international symposium on bioenergy Korea was held on 17­18 March 2011. This special, but not limited to, bio- mass cultivation, biomass pretreatment, and biomass conversion in the field of bioenergy

206

Bioenergy Production Pathways and Value-Chain Components  

E-Print Network [OSTI]

Bioenergy Production Pathways and Value-Chain Components Prepared for the U.S. Department of Energy on Life Cycle Analyses of Bioenergy Systems Prepared by Hawai`i Natural Energy Institute School of Ocean or reflect those of the United States Government or any agency thereof. #12;Bioenergy Production Pathways

207

Hawaii Bioenergy Master Plan State, County, and Federal  

E-Print Network [OSTI]

Hawaii Bioenergy Master Plan State, County, and Federal Plans, Policies, Statutes, and Regulations, Policies, Statutes, and Regulations was prepared as part of the Hawaii Bioenergy Master Plan project based on information available as of April 28, 2009. #12;ii Hawaii Bioenergy Master Plan State, County and Federal

208

Renewable Technologies and Environmental Injustice: Subsidizing Bioenergy, Promoting Inequity  

E-Print Network [OSTI]

Renewable Technologies and Environmental Injustice: Subsidizing Bioenergy, Promoting Inequity-giganteus biomass, this article shows that bioenergy projects are (1) not clean, given overwhelming particulate biomass in- cineration? No. Despite bioenergy threats to climate change,3,4 and despite the World Bank

Shrader-Frechette, Kristin

209

Bioenergy and land-use competition in Northeast Brazil  

E-Print Network [OSTI]

Bioenergy and land-use competition in Northeast Brazil Christian Azar Department of Physical policies are warranted if use of degraded lands for bioenergy plantations is desired. 1. Introduction There are two main categories of bioenergy: residues and dedicated plantations. In this paper, we exclusively

210

Nitrogen use in switchgrass grown for bioenergy across the USA  

E-Print Network [OSTI]

Nitrogen use in switchgrass grown for bioenergy across the USA V.N. Owens a , D.R. Viands b , H Available online 17 August 2013 Keywords: Nitrogen removal Switchgrass Bioenergy Nitrogen use efficiency as a forage, conservation, and bioenergy crop [1e5]. It offers a number of distinct benefits including broad

Pawlowski, Wojtek

211

Hawaii Bioenergy Master Plan Marc. M. Siah & Associates, Inc.  

E-Print Network [OSTI]

Hawaii Bioenergy Master Plan Permitting Marc. M. Siah & Associates, Inc. Manfred J. Zapka, Ph.D., P including biofuels. Stakeholders in Hawaii's bioenergy industry, however, have identified Hawaii of promising bioenergy projects in the state. To meet its clean energy goals, Hawaii cannot afford

212

Evaluating ecosystem processes in willow short rotation coppice bioenergy plantations  

E-Print Network [OSTI]

Evaluating ecosystem processes in willow short rotation coppice bioenergy plantations R E B E C C body of research linking bioenergy cultivation to changing patterns of biodiversity, there has been remarkably little interest in how bioenergy plantations affect key ecosystem processes underpinning impor

213

Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks  

Science Journals Connector (OSTI)

Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks ... The environmental burdens of cultivating algae for bioenergy have been quantified and compared to several terrestrial crops using a stochastic life cycle model. ... Algae are an appealing source for bioenergy due to their high yields relative to terrestrial energy crops. ...

Andres F. Clarens; Eleazer P. Resurreccion; Mark A. White; Lisa M. Colosi

2010-01-19T23:59:59.000Z

214

20 PLANET EARTH Autumn 2014 Bioenergy the name alone  

E-Print Network [OSTI]

20 PLANET EARTH Autumn 2014 Bioenergy � the name alone implies it's a good thing, environmentally's Den-style experts. Our aim was to work out how using more land to grow bioenergy crops would affect- BioCrop consortium was born. The UK needs bioenergy to meet its greenhouse gas emissions reduction

Brierley, Andrew

215

Global bioenergy potential from high-lignin agricultural residue  

Science Journals Connector (OSTI)

...production systems has a global bioenergy production potential of 4.1...efficiency (1540%) of the bioenergy into actual electricity...Costa Rica, Chile, and Argentina (coconut, olive, mango...2000 (17, 18). Modeling Bioenergy Based on Geospatial Data Shows...

Venugopal Mendu; Tom Shearin; J. Elliott Campbell; Jr; Jozsef Stork; Jungho Jae; Mark Crocker; George Huber; Seth DeBolt

2012-01-01T23:59:59.000Z

216

Full scale field test of the in situ air stripping process at the Savannah River integrated demonstration test site  

SciTech Connect (OSTI)

Under sponsorship from the US Department of Energy, technical personnel from the Savannah River Laboratory (SRL) and other DOE laboratories, universities and private industry have completed a full scale demonstration of environmental remediation using horizontal wells. This demonstration was performed as Phase I of an Integrated Demonstration Project designed to evaluate innovative remediation technologies for environmental restoration of sites contaminated with organic contaminants. The demonstration utilized two directionally drilled horizontal wells to deliver gases and extract contaminants from the subsurface. The resulting in situ air stripping process was designed to remediate soils and sediments above and below the water table as well as groundwater contaminated with volatile organic contaminants. The 139 day long test successfully removed volatile chlorinated solvents from the subsurface using the two horizontal wells. One well, approximately 300 ft (90m) long and 165 ft (50m) deep drilled below a contaminant plume in the groundwater, was used to inject air and strip the contaminants from the groundwater. A second horizontal well, approximately 175 ft (53m) long and 75 ft (23m) deep in the vadose zone, was used to extract residual contamination in the vadose zone along with the material purged from the groundwater. Pretest and posttest characterization data and monitoring data during the demonstration were collected to aid in interpretation of the test and to provide the information needed for future environmental restoration that employ directionally drilled wells as extraction or delivery systems. Contaminant concentration data and microbiological monitoring data are summarized in this report; the characterization data and geophysical monitoring data are documented in a series of related project reports.

Looney, B.B.; Hazen, T.C.; Kaback, D.S.; Eddy, C.A.

1991-06-29T23:59:59.000Z

217

Kent BioEnergy | Open Energy Information  

Open Energy Info (EERE)

Kent BioEnergy Kent BioEnergy Jump to: navigation, search Name Kent BioEnergy Address 11125 Flintkote Avenue Place San Diego, California Zip 92121 Sector Biofuels Product Technologies that use algae in biofuel production, water pollution remediation, CO2 absorption, etc Website http://www.kentbioenergy.com/ Coordinates 32.904312°, -117.231255° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.904312,"lon":-117.231255,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

218

Argonne National Laboratory Launches Bioenergy Assessment Tools |  

Broader source: Energy.gov (indexed) [DOE]

Argonne National Laboratory Launches Bioenergy Assessment Tools Argonne National Laboratory Launches Bioenergy Assessment Tools Argonne National Laboratory Launches Bioenergy Assessment Tools September 30, 2013 - 4:00pm Addthis A researcher loads a biomass sample into spinning ring cup. Argonne National Laboratory has launched two online tools that assess the resource consumption and greenhouse gas emissions associated with biofuel production. | Photo courtesy of National Renewable Energy Laboratory A researcher loads a biomass sample into spinning ring cup. Argonne National Laboratory has launched two online tools that assess the resource consumption and greenhouse gas emissions associated with biofuel production. | Photo courtesy of National Renewable Energy Laboratory Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable

219

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

SciTech Connect (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

Kathryn Baskin

2005-04-30T23:59:59.000Z

220

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

SciTech Connect (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

Kathryn Baskin

2005-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "integrated demonstration bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

SciTech Connect (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

Kathryn Baskin

2004-04-30T23:59:59.000Z

222

Integrated Gasification Combined Cycle (IGCC) demonstration project, Polk Power Station -- Unit No. 1. Annual report, October 1993--September 1994  

SciTech Connect (OSTI)

This describes the Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project which will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,300 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 Btu/scf (LHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product.

NONE

1995-05-01T23:59:59.000Z

223

An Underground Storage Tank Integrated Demonstration report. Volume 1, Waste Characterization Data and Technology Development Needs Assessment  

SciTech Connect (OSTI)

The Waste Characterization Data and Technology Development Needs Assessment provides direct support to the Underground Storage Tank Integrated Demonstration (UST-ID). Key users of the study`s products may also include individuals and programs within the US Department of Energy (DOE) Office of Technology Development (EM-50), the Office of Waste Operations (EM-30), and the Office of Environmental Restoration (EM-40). The goal of this work is to provide the UST-ID with a procedure for allocating funds across competing characterization technologies in a timely and defensible manner. It resulted in three primary products: 1. It organizes and summarizes information on underground storage tank characterization data needs. 2. It describes current technology development activity related to each need and flags areas where technology development may be beneficial. 3. It presents a decision process, with supporting software, for evaluating, prioritizing, and integrating possible technology development funding packages. The data presented in this document can be readily updated as the needs of the Waste Operations and Environmental Restoration programs mature and as new and promising technology development options emerge.

Quadrel, M.J.; Hunter, V.L.; Young, J.K. [Pacific Northwest Lab., Richland, WA (United States); Lini, D.C.; Goldberg, C. [Westinghouse Hanford Co., Richland, WA (United States)

1993-04-01T23:59:59.000Z

224

Annual measured performance of building-integrated solar energy systems in demonstration low-energy solar house  

Science Journals Connector (OSTI)

This paper presents the details of the output and efficiency of the annual performance of building-integrated solar energy systems for a solar water heating system and solar photovoltaic (PV) modules of a demonstration near-zero-energy solar house that was constructed on the campus of the Korea Institute of Energy Research. The thermal systems installed in the house were a solar water heating system with building-integrated solar collectors for water heating and for part of the space heating and a ground-coupled heat pump for space cooling and part of the space heating. Solar PV modules were installed on the roof of the house. The performance of these systems was monitored for more than 1 yr. The annual efficiencies of the building's integrated solar collectors and solar PV were 22.8% and 10.9% respectively. The total annual solar fraction of the solar heating system was 69.7% with an annual solar heat production of 248?kW h/m2. This paper also focuses on the efficiency of the house's solar storage based upon intentionally varied drainage of hot water from the storage tank. It was found that the thermal loss from the solar storage tank has a strong functional relationship with the thermal demand of the solar storage tank per unit volume. For example when the hot water consumption was reduced by half during September the thermal loss increased to more than 70% which would otherwise have been around 30%.

2014-01-01T23:59:59.000Z

225

Bioenergy and Food Security Criteria and Indicators (BEFSCI) Website | Open  

Open Energy Info (EERE)

Bioenergy and Food Security Criteria and Indicators (BEFSCI) Website Bioenergy and Food Security Criteria and Indicators (BEFSCI) Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Bioenergy and Food Security Criteria and Indicators (BEFSCI) Website Focus Area: Other Biofuels Topics: Training Material Website: www.fao.org/bioenergy/foodsecurity/befsci/en/ Equivalent URI: cleanenergysolutions.org/content/bioenergy-and-food-security-criteria- Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This website-created by the Bioenergy and food Security project of the Food and Agriculture Organization of the United Nations (FAO)-provides policymakers and practitioners a set of criteria, indicators, good practices, and policy options for sustainable bioenergy production to

226

Bioenergy Research Centers U.S. Department of Energy Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioenergy Research Centers Bioenergy Research Centers U.S. Department of Energy Office of Science U.S. Department of Energy Office of Science Suggested citation: U.S. DOE. 2010. U.S. Department of Energy's Bioen- ergy Research Centers: An Overview of the Science, DOE/SC-0127. Office of Biological and Environmental Research within the DOE Office of Science (genomicscience.energy.gov/centers/brcbrochure.pdf). Sources for cover images: Joint BioEnergy Institute photo by Jona- than Remis, Lawrence Berkeley National Laboratory. BioEnergy Sci- ence Center photo by Seokwon Jung and Arthur Ragauskas, Georgia Institute of Technology. Great Lakes Bioenergy Research Center photo by Kurt Stepnitz, Michigan State University. Websites for DOE Bioenergy Research Centers DOE Joint BioEnergy Institute

227

DOE Provides $30 Million to Jump Start Bioenergy Research Centers |  

Broader source: Energy.gov (indexed) [DOE]

30 Million to Jump Start Bioenergy Research Centers 30 Million to Jump Start Bioenergy Research Centers DOE Provides $30 Million to Jump Start Bioenergy Research Centers October 1, 2007 - 2:49pm Addthis DOE Bioenergy Research Center Investment Tops $400 Million WASHINGTON, DC-The U.S. Department of Energy (DOE) today announced it has invested nearly $30 million in end-of-fiscal-year (2007) funds to accelerate the start-up of its three new Bioenergy Research Centers, bringing total DOE Bioenergy Research Center investment to over $400 million. The three DOE Bioenergy Research Centers-located in Oak Ridge, Tennessee; Madison, Wisconsin; and near Berkeley, California-selected by DOE this June, bring together multidisciplinary teams of leading scientists to advance research needed to make cellulosic ethanol and other biofuels

228

Removal of uranium from uranium-contaminated soils -- Phase 1: Bench-scale testing. Uranium in Soils Integrated Demonstration  

SciTech Connect (OSTI)

To address the management of uranium-contaminated soils at Fernald and other DOE sites, the DOE Office of Technology Development formed the Uranium in Soils Integrated Demonstration (USID) program. The USID has five major tasks. These include the development and demonstration of technologies that are able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from the soil, (3) treat the soil and dispose of any waste, (4) establish performance assessments, and (5) meet necessary state and federal regulations. This report deals with soil decontamination or removal of uranium from contaminated soils. The report was compiled by the USID task group that addresses soil decontamination; includes data from projects under the management of four DOE facilities [Argonne National Laboratory (ANL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), and the Savannah River Plant (SRP)]; and consists of four separate reports written by staff at these facilities. The fundamental goal of the soil decontamination task group has been the selective extraction/leaching or removal of uranium from soil faster, cheaper, and safer than current conventional technologies. The objective is to selectively remove uranium from soil without seriously degrading the soil`s physicochemical characteristics or generating waste forms that are difficult to manage and/or dispose of. Emphasis in research was placed more strongly on chemical extraction techniques than physical extraction techniques.

Francis, C. W.

1993-09-01T23:59:59.000Z

229

Bioenergy Upcoming Events | Department of Energy  

Energy Savers [EERE]

Fri Sat 26 27 28 29 30 31 1 2 3 4 5 6 7 8 F.O. Licht's 17th Annual World Ethanol & Biofuels Conference 8:30AM to 1:20PM CET Webinar: Landscape Design for Sustainable Bioenergy...

230

Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison  

SciTech Connect (OSTI)

Integrated Assessment studies have shown that meeting ambitious greenhouse gas mitigation targets will require substantial amounts of bioenergy as part of the future energy mix. In the course of the Agricultural Model Comparison and Improvement Project (AgMIP), five global agro-economic models were used to analyze a future scenario with global demand for ligno-cellulosic bioenergy rising to about 100 ExaJoule in 2050. From this exercise a tentative conclusion can be drawn that ambitious climate change mitigation need not drive up global food prices much, if the extra land required for bioenergy production is accessible or if the feedstock, e.g. from forests, does not directly compete for agricultural land. Agricultural price effects across models by the year 2050 from high bioenergy demand in an RCP2.6-type scenario appear to be much smaller (+5% average across models) than from direct climate impacts on crop yields in an RCP8.5-type scenario (+25% average across models). However, potential future scarcities of water and nutrients, policy-induced restrictions on agricultural land expansion, as well as potential welfare losses have not been specifically looked at in this exercise.

Lotze-Campen, Hermann; von Lampe, Martin; Kyle, G. Page; Fujimori, Shinichiro; Havlik, Petr; van Meijl, Hans; Hasegawa, Tomoko; Popp, Alexander; Schmitz, Christoph; Tabeau, Andrzej; Valin, Hugo; Willenbockel, Dirk; Wise, Marshall A.

2014-01-01T23:59:59.000Z

231

Reporting on marginal lands for bioenergy feedstock production -a modest proposal Brian K. Richards1  

E-Print Network [OSTI]

1 Reporting on marginal lands for bioenergy feedstock production - a modest proposal Brian K.edu ---PREPRINT In press 2014, BioEnergy Research --- Abstract Growing bioenergy feedstocks can provide a long research. Using marginal lands for bioenergy feedstock production Discussions of renewable bioenergy

Walter, M.Todd

232

Integrated Biorefinery Lessons Learned and Best Practices  

Broader source: Energy.gov [DOE]

Breakout Session 1DBuilding Market Confidence and Understanding I: Integrated Biorefinery (Lessons Learned and Best Practices) Integrated Biorefinery Lessons Learned and Best Practices Glenn Doyle, Technology Manager, Bioenergy Technologies Office, U.S. Department of Energy

233

Role of community acceptance in sustainable bioenergy projects in India  

Science Journals Connector (OSTI)

Abstract Community acceptance has been identified as one of the key requirements for a sustainable bioenergy project. However less attention has been paid to this aspect from developing nations and small projects perspective. Therefore this research examines the role of community acceptance for sustainable small scale bioenergy projects in India. While addressing the aim, this work identifies influence of community over bioenergy projects, major concerns of communities regarding bioenergy projects and factors influencing perceptions of communities about bioenergy projects. The empirical research was carried out on four bioenergy companies in India as case studies. It has been identified that communities have significant influence over bioenergy projects in India. Local air pollution, inappropriate storage of by-products and credibility of developer are identified as some of the important concerns. Local energy needs, benefits to community from bioenergy companies, level of trust on company and relationship between company and the community are some of the prime factors which influence community?s perception on bioenergy projects. This research sheds light on important aspects related to community acceptance of bioenergy projects, and this information would help practitioners in understanding the community perceptions and take appropriate actions to satisfy them.

Vimal Kumar Eswarlal; Geoffrey Vasudevan; Prasanta Kumar Dey; Padma Vasudevan

2014-01-01T23:59:59.000Z

234

Non-technical success factors for bioenergy projectsLearning from a multiple case study in Japan  

Science Journals Connector (OSTI)

Abstract There is wide agreement in the literature that non-technical factors play a decisive role in the successful implementation of bioenergy projects. One underlying reason is that such projects require the involvement of many stakeholders, such as feedstock producers, engineers, authorities and the concerned public. We analyze the role of bioenergy-specific non-technical factors for the success of bioenergy projects. In a broad literature review we first identify potential success factors belonging to the five dimensions project characteristics, policy framework, regional integration, public perception and stakeholders. Using these factors as conceptual framework, we next analyze six Japanese pilot projects for bioenergy utilization supported by Japans Agriculture, Forestry and Fisheries Research Council. We apply Rough Set Analysis, a data mining method that can be used for small sample sizes to identify patterns in a dataset. We find that, by and large, non-technical factors from all five dimensions such as the stability of the local policy framework co-occur with project success. Furthermore, we show that there are diverging interpretations as to what success in a bioenergy project means. This requires tradeoffs between various goals, which should be identified and addressed explicitly at early stages of such a project.

Yann B. Blumer; Michael Stauffacher; Daniel J. Lang; Kiyotada Hayashi; Susumu Uchida

2013-01-01T23:59:59.000Z

235

Setting the rules of the game: ethical and legal issues raised by bioenergy governance methods  

Science Journals Connector (OSTI)

Bioenergy is increasingly promoted as an energy carrier ... as motivating factors for a shift towards more bioenergy use. The supply and demand of bioenergy is to a high degree steered by ... this regulation is a...

C. Gamborg; P. Sande; H. T. Anker

2012-01-01T23:59:59.000Z

236

Bioenergy crop productivity and potential climate change mitigation from marginal lands in the United States: An  

E-Print Network [OSTI]

Bioenergy crop productivity and potential climate change mitigation from marginal lands bioenergy crops grown on marginal lands in the United States. Two broadly tested cellulosic crops June 2014 Introduction Bioenergy, an important renewable energy produced from biological materials

Zhuang, Qianlai

237

High-solids enrichment of thermophilic microbial communities and their enzymes on bioenergy feedstocks  

E-Print Network [OSTI]

and their enzymes on bioenergy feedstocks Amitha P. ReddyVanderGheynst 1,2* Joint BioEnergy Institute, Emeryville, CA2009. The water footprint of bioenergy. Proceedings of the

Reddy, A. P.

2012-01-01T23:59:59.000Z

238

Sustainable use of California biomass resources can help meet state and national bioenergy targets  

E-Print Network [OSTI]

fuel resources. Bio- mass Bioenergy 27:613 20. Parker N,Strategic assessment of bioenergy development in the west:as Feedstock for a Bioenergy and Bioprod- ucts Industry: The

Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

2009-01-01T23:59:59.000Z

239

Switchgrass for Forage and Bioenergy: I. Effects of Nitrogen Rate and Harvest System  

E-Print Network [OSTI]

biofuel systems. Biomass and Bioenergy 30:198-206. Muir JP,systems. Biomass and Bioenergy 19: 281-286. Sanderson MA,whether for forage or bioenergy) is defining how crop

Kering, Maru K; Biermacher, Jon T; Cook, Billy J; Guretzky, John A

2009-01-01T23:59:59.000Z

240

Dear Participant, Welcome to the symposium `Bioenergy Research within SLU' on Tuesday, September 25, at  

E-Print Network [OSTI]

Dear Participant, Welcome to the symposium `Bioenergy Research within SLU' on Tuesday, September 25 on the web page of the Research school Bioenergy (http://www.slu.se/sv/forskarskolor/bioenergy/) on Monday

Note: This page contains sample records for the topic "integrated demonstration bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The US Department of Energy Great Lakes Bioenergy Research Center: Midwestern Biomass as a Resource for Renewable Fuels  

Science Journals Connector (OSTI)

The Great Lakes Bioenergy Research Center is one of three Bioenergy Research Centers establish by the US Department...

Steven Slater; Kenneth Keegstra; Timothy J. Donohue

2010-03-01T23:59:59.000Z

242

Joining : BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inventions Inventions The effective translation of BESC research results into applications testing and potential deployment is an implicit part of reaching DOE's bioenergy goals. The BESC member institutions recognize that a common strategy is important to the success of BESC. To promote the commercialization of new technologies, our plan is to: Maintain a single portal for information about available technologies. This web site features inventions and commercial opportunities in addition to the information content related to the research program Provide a single point of contact for the licensing of new BESC inventions on behalf of our team (contact speckrr@ornl.gov) Periodically Host a "BioEnergy Nexus" venture forum Provide opportunity for research institutions and private companies

243

Advanced Bioenergy LLC | Open Energy Information  

Open Energy Info (EERE)

Bioenergy LLC Bioenergy LLC Place Minneapolis, Minnesota Zip 55305 Product Developer of the 378.5m litre pa bioethanol plant in Fairmount. Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

244

Networks within networks - interaction in bioenergy business  

Science Journals Connector (OSTI)

Collaboration is seen as one of the most important means for small and medium-sized enterprises (SMEs) to compete and innovate in dynamic business environments. This paper approaches this phenomenon by studying a group of Finnish biomass heating firms and their interaction in the bioenergy business. In this paper, two frameworks are combined into a practical two-level tool for relationship and network analysis. This paper offers detailed information on the formation of partnerships and networks around the bioenergy business. Moreover, it speculates about the motives and mechanisms behind an actor's business relations. This study confirms that it is often profitable for SMEs to act simultaneously in different types of networks. In these networks, the firms form relationships that are different in breadth and depth.

Kirsi Kokkonen; Tuomo Kässi; Ville Ojanen

2014-01-01T23:59:59.000Z

245

Bioenergy Assessment Toolkit | Open Energy Information  

Open Energy Info (EERE)

Bioenergy Assessment Toolkit Bioenergy Assessment Toolkit Jump to: navigation, search Stage 3 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country 2.3. Assess public and private sector capacity to support initiatives 2.4. Assess and improve the national GHG inventory and other economic and resource data as needed for LEDS development

246

GIS and Location Theory Based Bioenergy Systems Planning.  

E-Print Network [OSTI]

??This research is concerned with bioenergy systems planning and optimization modelling in the context of locating biomass power plants and allocating available biomass feedstock to (more)

Dong, Jingyuan

2008-01-01T23:59:59.000Z

247

Bioenergy Technologies Office: Association of Fish and Wildlife...  

Broader source: Energy.gov (indexed) [DOE]

Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural...

248

BioEnergy Solutions BES | Open Energy Information  

Open Energy Info (EERE)

California Zip: 93309 Product: Bakersfield-based firm installing and operating biogas plants for farmers and food producers. References: BioEnergy Solutions (BES)1 This...

249

Bioenergy Technologies FY14 Budget At-a-Glance  

Office of Energy Efficiency and Renewable Energy (EERE)

Bioenergy Technologies FY14 Budget At-a-Glance, a publication of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy.

250

About the Bioenergy Technologies Office: Growing America's Energy...  

Energy Savers [EERE]

making affordable, abundant, and high-quality biomass materials accessible for use as bioenergy feedstocks. Feedstock logistics R&D is focused on reducing costs and improving...

251

INEOS-New Planet: Indian River Bioenergy Center | Department...  

Energy Savers [EERE]

source of value for the community." Dr. Peter Williams, Chairman, INEOS New Planet BioEnergy By diverting vegetative waste from the local landfill and minimizing waste...

252

Thailand-Key Results and Policy Recommendations for Future Bioenergy...  

Open Energy Info (EERE)

biofuel feedstock crops. How the Thai Government manages the potential pressures that the bioenergy sector will exert on its natural resources and agricultural markets and the...

253

Assessing Bioenergy Sustainability: Application of a Suite of...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Success Stories Contact Us Index Home | ORNL | Events and Conferences Assessing Bioenergy Sustainability: Application of a Suite of Environmental and Socioeconomic Indicators...

254

Adoption of bioenergy technologies for a sustainable energy system.  

E-Print Network [OSTI]

??A future sustainable energy system must achieve great improvements in energy efficiency and the energy supply must be based on renewable energy sources. Bioenergy will (more)

Bjrnstad, Even

2011-01-01T23:59:59.000Z

255

CHP and Bioenergy Systems for Landfills and Wastewater Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants There are important issues to consider when selecting...

256

CHP and Bioenergy for Landfills and Wastewater Treatment Plants...  

Broader source: Energy.gov (indexed) [DOE]

for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores...

257

Shades of green : spatial and temporal variability of potentials, costs and environmental impacts of bioenergy production.  

E-Print Network [OSTI]

??Bioenergy is expected to play an important role in future energy supply. However, increased implementation of large scale bioenergy production could have significant adverse effects. (more)

Hilst, F. van der

2012-01-01T23:59:59.000Z

258

E-Print Network 3.0 - analysing bioenergy demand Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

normally derived... of bioenergy resources are fuel wood, bagasse, organic waste, biogas and bioethanol. Bioenergy is the only... action on climate change have all served to...

259

E-Print Network 3.0 - assessing bioenergy options Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

origin, normally derived... of bioenergy resources are fuel wood, bagasse, organic waste, biogas and bioethanol. Bioenergy is the only... action on climate change have all served...

260

Sustainable Food & Bioenergy Systems Program-Sustainable Crop Production Option 2014-2015 Catalog  

E-Print Network [OSTI]

Sustainable Food & Bioenergy Systems Program- Sustainable Crop Production Option 2014-2015 Catalog SFBS 146 Intro to Sustainable Food & Bioenergy Systems ................................ S

Dyer, Bill

Note: This page contains sample records for the topic "integrated demonstration bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

BIOENERGY AND BIOFUELS Performance of a pilot-scale continuous flow microbial  

E-Print Network [OSTI]

BIOENERGY AND BIOFUELS Performance of a pilot-scale continuous flow microbial electrolysis cell fed performance. Keywords Biohydrogen . Biomethane . Bioelectricity. Microbial electrolysis cell . Bioenergy

262

> ExplorACES projects attract potential students > Bioenergy grant fuels excitement  

E-Print Network [OSTI]

Inside: > ExplorACES projects attract potential students > Bioenergy grant fuels excitement. Our current technical emphases are in the areas of agricultural automation, bio-energy and bio

Gilbert, Matthew

263

The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance  

E-Print Network [OSTI]

Bioenerg. Res. (010-9086-2 The Joint BioEnergy Institute (JBEI): DevelopingThe mission of the Joint BioEnergy Institute is to advance

Scheller, Henrik Vibe; Singh, Seema; Blanch, Harvey; Keasling, Jay D.

2010-01-01T23:59:59.000Z

264

Washington, D.C. and Tennessee: Bioenergy Technologies Office Announces Launch of New and Improved KDF  

Broader source: Energy.gov [DOE]

The relaunched Bioenergy KDF supports the development of a sustainable bioenergy industry by providing unique value for researchers, private industry, policymakers, and the public.

265

Development and Demonstration of Waste Heat Integration with Solvent Process for More Efficient CO2 Removal from Coal-Fired Flue Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Demonstration of and Demonstration of Waste Heat Integration with Solvent Process for More Efficient CO 2 Removal from Coal-Fired Flue Gas Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions, & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-

266

The Climate Impacts of Bioenergy Systems Depend on Market and  

E-Print Network [OSTI]

The Climate Impacts of Bioenergy Systems Depend on Market and Regulatory Policy Contexts D E R E K, and by sequestering atmospheric carbon. Which use mitigates the most emissions depends on market and regulatory the vehicle fleet and bioenergy use are fixed or free parameters constrain the policy questions an analysis

Kammen, Daniel M.

267

Canada Biomass-Bioenergy Report May 31, 2006  

E-Print Network [OSTI]

Canada Biomass-Bioenergy Report May 31, 2006 Doug Bradley President Climate Change Solutions National Team Leader- IEA Bioenergy Task 40- Biotrade 402 Third Avenue ·Ottawa, Ontario ·Canada K1S 2K7 of the ten provinces. Canada resembles the US in its market-oriented economic system, pattern of production

268

Frontline BioEnergy LLC | Open Energy Information  

Open Energy Info (EERE)

Frontline BioEnergy LLC Frontline BioEnergy LLC Jump to: navigation, search Name Frontline BioEnergy LLC Place Ames, Iowa Zip 50010 Sector Bioenergy, Biomass Product Frontline BioEnergy Inc develops and installs gasification systems and individual equipment to convert biomass into valuable products. Coordinates 30.053389°, -94.742269° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.053389,"lon":-94.742269,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

269

Sustainable Bioenergy: A Framework for Decision Makers | Open Energy  

Open Energy Info (EERE)

Sustainable Bioenergy: A Framework for Decision Makers Sustainable Bioenergy: A Framework for Decision Makers Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Sustainable Bioenergy: A Framework for Decision Makers Agency/Company /Organization: Food and Agriculture Organization of the United Nations Sector: Energy, Land Focus Area: Renewable Energy, Biomass Topics: Implementation, Policies/deployment programs Resource Type: Guide/manual, Lessons learned/best practices Website: esa.un.org/un-energy/pdf/susdev.Biofuels.FAO.pdf References: Sustainable Bioenergy: A Framework for Decision Makers[1] "In this publication, UN-Energy seeks to structure an approach to the current discussion on bioenergy, it is the contribution of the UN system to the issues that need further attention, analysis and valuation, so that

270

Center for BioEnergy Sustainability | Open Energy Information  

Open Energy Info (EERE)

Sustainability Sustainability Jump to: navigation, search Logo: Center for BioEnergy Sustainability Name Center for BioEnergy Sustainability Agency/Company /Organization Oak Ridge National Laboratory Sector Energy Focus Area Biomass Topics Resource assessment Resource Type Dataset, Maps Website http://www.ornl.gov/sci/besd/c References Center for BioEnergy Sustainability[1] Abstract The Center for BioEnergy Sustainability, or CBES, is a Center at Oak Ridge National Laboratory with a focus on dealing with the environmental impacts and the ultimate sustainability of biomass production for conversion to biofuels and bio-based products. The Center for BioEnergy Sustainability, or CBES, is a Center at Oak Ridge National Laboratory with a focus on "dealing with the environmental impacts

271

A Virtual Visit to Bioenergy Research at the National Laboratories  

Office of Energy Efficiency and Renewable Energy (EERE)

For National Bioenergy Day on October 22, bioenergy facilities across the country are holding open houses to increase public awareness of bioenergy and its role in the clean energy landscape. By the same token, the Bioenergy Technologies Office (BETO) is offering this virtual open house of its national laboratoriesthe facilities at the core of BETOs research and development. If you want to know how Energy Department bioenergy funding is making an impact, be sure to take a look at our national labs47% of BETO funding this past year went to the national laboratories. Of that funding, about half went to the National Renewable Energy Laboratory. Pacific Northwest National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory also received a large share.

272

Online Toolkit Fosters Bioenergy Innovation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Toolkit Fosters Bioenergy Innovation Toolkit Fosters Bioenergy Innovation Online Toolkit Fosters Bioenergy Innovation January 21, 2011 - 2:27pm Addthis Learn more about the Bioenergy Knowledge Discovery Framework, an online data sharing and mapping toolkit. Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy What will the project do? The $241 million loan guarantee for Diamond Green Diesel, funding which will support the construction of a facility that will nearly triple the amount of renewable diesel produced domestically. The online data sharing and mapping toolkit provides the extensive data, analysis, and visualization tools to monitor the bioenergy industry. Yesterday, Secretary Chu announced a $241 million loan guarantee for Diamond Green Diesel, funding which will support the construction of a

273

Department of Energy Offers Abengoa Bioenergy a Conditional Commitment for  

Broader source: Energy.gov (indexed) [DOE]

Abengoa Bioenergy a Conditional Abengoa Bioenergy a Conditional Commitment for a $133.9 Million Loan Guarantee Department of Energy Offers Abengoa Bioenergy a Conditional Commitment for a $133.9 Million Loan Guarantee August 19, 2011 - 11:15am Addthis Groundbreaking Cellulosic Ethanol Project Expected to Create Over 300 Jobs and Build Nation's Capacity for Cellulosic Ethanol Production Washington D.C. - U.S. Energy Secretary Steven Chu today announced the offer of a conditional commitment for a $133.9 million loan guarantee to Abengoa Bioenergy Biomass of Kansas LLC (ABBK) to support the development of a commercial-scale cellulosic ethanol plant. ABBK's parent company and project sponsor, Abengoa Bioenergy US Holding, Inc., estimates the project will create approximately 300 construction jobs and 65 permanent

274

Industrial Relations : BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview Overview The effective translation of BESC research results into applications testing and potential deployment is an implicit part of reaching DOE's bioenergy goals. The BESC member institutions recognize that a common strategy is important to the success of BESC. To promote the commercialization of new technologies, our plan is to: Maintain a single portal for information about available technologies. This web site will feature inventions and commercial opportunities in additoin to the information content related to the research program Provide a single point of contact for the licensing of new BESC inventions on behalf of our team (contact: Renae Speck) Provide opportunity for research institutions and private companies to become "BESC Affiliates"

275

Bioenergy Deployment Consortium (BDC) 2014 Fall Symposium  

Broader source: Energy.gov [DOE]

The 2014 BDC Fall Symposium will be held on October 2122, 2014 in Fort Myers, Florida. The event will include a tour of the Algenol facility on Wednesday morning. The symposium will have panels for progress reports from current cellulosic bio-product companies, updates on government policy from several agencies, scale-up strategies,and lessons learned. POET-DSM will provide the after dinner success story. Neil Rossmeissl, Program Manager, Algal Program, Bioenergy Technologies Office, will be delivering the keynote address on expanding the bioeconomy.

276

Enhanced Charge Transport in Enzyme-Wired Organometallic Block Copolymers for Bioenergy and Biosensors  

Science Journals Connector (OSTI)

Enhanced Charge Transport in Enzyme-Wired Organometallic Block Copolymers for Bioenergy and Biosensors ...

Joungphil Lee; Hyungmin Ahn; Ilyoung Choi; Markus Boese; Moon Jeong Park

2012-03-21T23:59:59.000Z

277

Importance of bioenergy markets for the development of the global energy system  

E-Print Network [OSTI]

Importance of bioenergy markets for the development of the global energy system Nicklas Forsell, Bioenergy, TIAM-FR model, bioenergy markets, climate policies Overview Fossil fuels such as oil, coal international bioenergy markets are still in their infancy, international trade of biofuels, wood pellets

Paris-Sud XI, Université de

278

CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities  

Broader source: Energy.gov [DOE]

Overview of market opportunities for CHP and bioenergy for landfills and wastewater treatment plants

279

Is bioenergy trade good for the environment? Jean-Marc Bourgeona  

E-Print Network [OSTI]

Is bioenergy trade good for the environment? Jean-Marc Bourgeona , Hélène Ollivierb a of bioenergy trade on greenhouse gas emissions using a two-good, three-factor model. Bioenergy emissions depending on regional comparative advantages. Keywords: bioenergy, intermediate product, North

Paris-Sud XI, Université de

280

Syllabus -Plants for Bioenergy Fall 2011 Instructors: Stacy Bonos and Zane R. Helsel  

E-Print Network [OSTI]

Syllabus - Plants for Bioenergy ­ Fall 2011 11:776:410 Instructors: Stacy Bonos and Zane R. Helsel Breeding) Bonos #12;Course Title: Plants for Bioenergy Instructors: Drs. Stacy Bonos and Zane R. Helsel of bioenergy and discuss various renewable energy sources from biomass. Agronomic and bioenergy traits

Chen, Kuang-Yu

Note: This page contains sample records for the topic "integrated demonstration bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

2011 Bioenergy Action Plan Prepared by the California Energy Commission for the  

E-Print Network [OSTI]

2011 Bioenergy Action Plan Prepared by the California Energy Commission for the Bioenergy Commission Renewables Committee as part of the Preparation of the 2011 Bioenergy Action Plan ­ docket # 10 policy of the Energy Commission until the report is adopted. #12;i ACKNOWLEDGEMENTS The 2011 Bioenergy

282

Introduction The bioenergy industry is pursuing low-input crops to be  

E-Print Network [OSTI]

1 Introduction The bioenergy industry is pursuing low-input crops to be grown on marginal lands the unintentional introduction and spread of potentially invasive species. Background Information The bioenergy- generation bioenergy crops are grown specifically for biomass pro- duction. Therefore, bioenergy crops

Liskiewicz, Maciej

283

Ris Energy Report 2 Bioenergy is energy of biological and renewable origin,  

E-Print Network [OSTI]

2 Risø Energy Report 2 Bioenergy is energy of biological and renewable origin, normally derived of bioenergy resources are fuel wood, bagasse, organic waste, biogas and bioethanol. Bioenergy is the only action on climate change have all served to increase interest in bioenergy. Technological advances

284

Net carbon fluxes at stand and landscape scales from wood bioenergy harvests in the US Northeast  

E-Print Network [OSTI]

Net carbon fluxes at stand and landscape scales from wood bioenergy harvests in the US Northeast gas emissions implications of wood biomass (`bioenergy') harvests are highly uncer- tain yet of great bioenergy is only one of many products. We used field data to formulate bioenergy harvest scenarios, applied

Vermont, University of

285

Global Simulation of Bioenergy Crop Productivity: Analytical Framework and Case Study for Switchgrass  

SciTech Connect (OSTI)

A global energy crop productivity model that provides geospatially explicit quantitative details on biomass potential and factors affecting sustainability would be useful, but does not exist now. This study describes a modeling platform capable of meeting many challenges associated with global-scale agro-ecosystem modeling. We designed an analytical framework for bioenergy crops consisting of six major components: (i) standardized natural resources datasets, (ii) global field-trial data and crop management practices, (iii) simulation units and management scenarios, (iv) model calibration and validation, (v) high-performance computing (HPC) simulation, and (vi) simulation output processing and analysis. The HPC-Environmental Policy Integrated Climate (HPC-EPIC) model simulated a perennial bioenergy crop, switchgrass (Panicum virgatum L.), estimating feedstock production potentials and effects across the globe. This modeling platform can assess soil C sequestration, net greenhouse gas (GHG) emissions, nonpoint source pollution (e.g., nutrient and pesticide loss), and energy exchange with the atmosphere. It can be expanded to include additional bioenergy crops (e.g., miscanthus, energy cane, and agave) and food crops under different management scenarios. The platform and switchgrass field-trial dataset are available to support global analysis of biomass feedstock production potential and corresponding metrics of sustainability.

Kang, Shujiang [ORNL; Kline, Keith L [ORNL; Nair, S. Surendran [University of Tennessee, Knoxville (UTK); Nichols, Dr Jeff A [ORNL; Post, Wilfred M [ORNL; Brandt, Craig C [ORNL; Wullschleger, Stan D [ORNL; Wei, Yaxing [ORNL; Singh, Nagendra [ORNL

2013-01-01T23:59:59.000Z

286

Bioenergy Sustainability at the Regional Scale  

SciTech Connect (OSTI)

To meet national goals for biofuels production, there are going to be large increases in acreage planted to dedicated biofuels crops. These acreages may be in perennial grasses, annual crops, short rotation woody crops, or other types of vegetation and may involve use of existing cropland, marginal lands, abandoned lands or conversion of forest land. The establishment of bioenergy crops will affect ecological processes and their interactions and thus have an influence on ecosystem services provided by the lands on which these crops are grown. The regional-scale effects of bioenergy choices on ecosystem services need special attention because they often have been neglected yet can affect the ecological, social and economic aspects of sustainability. A regional-scale perspective provides the opportunity to make more informed choices about crop selection and management, particularly with regard to water quality and quantity issues, and also about other aspects of ecological, social, and economic sustainability. We give special attention to cellulosic feedstocks because of the opportunities they provide. Adopting an adaptive management approach for biofuels feedstock production planning will be possible to a certain extent if there is adequate monitoring data on the effects of changes in land use. Effects on water resources are used as an example and existing understanding of water resource effects are analyzed in detail. Current results indicate that there may be water quality improvements coupled with some decreases in available water for downstream uses.

Kline, Keith L [ORNL; Dale, Virginia H [ORNL; Mulholland, Patrick J [ORNL; Lowrance, Richard [USDA-ARS Southeast Watershed Research Laboratory, Tifton, Georgia; Robertson, G. Phillip [W.K. Kellogg Biological Station and Great Lakes Bioenergy Research

2010-11-01T23:59:59.000Z

287

Quantum Well Intermixing for Monolithic Integration: A Demonstration of Novel Widely-Tunable 10Gb/s  

E-Print Network [OSTI]

.893.8465, Fax: 805.893.4500, Email: jraring@engineering.ucsb.edu Abstract: Wavelength-agile InGaAsP/InP photonic@engineering.ucsb.edu Abstract: Wavelength-agile InGaAsP/InP photonic integrated circuits were fabricated using a quantum well) distributed Bragg reflector (DBR) laser followed by an electro-absorption (c) (d) FIGURE 1. (a) Top view

Coldren, Larry A.

288

Development of bioenergy technologies in Uganda: A review of progress  

Science Journals Connector (OSTI)

Biomass is a renewable energy resource; however, its exploitation raises concerns about its ability to sustain the growing demand and its negative impacts on the environment, particularly in developing countries. These concerns are more prominent on the African continent where high population growth rates is leading to high rates of deforestation due to expansion of agricultural land and increased demand for bioenergy. Use of traditional and inefficient bioenergy technologies and appliances also exacerbate the problem. This paper presents a review of the efforts and progress made by different organisations in promoting improved bioenergy technologies in Uganda. The study was based on an extensive review of available literature on improved bioenergy technologies introduced in the country. It was found that there is high level of wastage of biomass resources since an estimated 72.7% of the population use traditional cooking stoves with efficiency estimated to be less than 10%. Inefficient cooking stoves are also blamed for indoor air pollution and respiratory illness reported amongst its users. Modern bioenergy technologies such as biomass gasification, cogeneration, biogas generation, biomass densification, and energy-efficient cooking stoves have been introduced in the country but have certainly not been widely disseminated. The country should pursue policies that will accelerate proliferation of more efficient bioenergy technologies in order to reduce the negative environmental impacts of bioenergy utilisation and to ensure sustainability of biomass supplies.

Collins Okello; Stefania Pindozzi; Salvatore Faugno; Lorenzo Boccia

2013-01-01T23:59:59.000Z

289

Abstract--A monolithic integrated chip-scale surface plasmon resonance (SPR) sensor is demonstrated. The device consists of a  

E-Print Network [OSTI]

is demonstrated. The device consists of a pn photodiode covered with a periodic modified thin metal film whose lattice constant is on the order of the wavelength of light. The device performs real-time measurement are influenced by the presence of chemical or biological materials at the device's surface. Index Terms

Baker, R. Jacob

290

Bioenergy Production from Perennial Energy Crops: A Consequential LCA of 12 Bioenergy Scenarios including Land Use Changes  

Science Journals Connector (OSTI)

Bioenergy Production from Perennial Energy Crops: A Consequential LCA of 12 Bioenergy Scenarios including Land Use Changes ... In the endeavor of optimizing the sustainability of bioenergy production in Denmark, this consequential life cycle assessment (LCA) evaluated the environmental impacts associated with the production of heat and electricity from one hectare of Danish arable land cultivated with three perennial crops: ryegrass (Lolium perenne), willow (Salix viminalis) and Miscanthus giganteus. ... Soil carbon changes, direct and indirect land use changes as well as uncertainty analysis (sensitivity, MonteCarlo) were included in the LCA. ...

Davide Tonini; Lorie Hamelin; Henrik Wenzel; Thomas Astrup

2012-11-05T23:59:59.000Z

291

Press Releases: BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Press Releases Press Releases Chu presents energy research, development vision to senators U.S. Energy Secretary Steven Chu testified at a U.S. Senate Energy and Natural Resources Committee hearing March 5. During his testimony, Chu presented his vision for energy research and development at the... Source: Checkbiotech (Trade), March 11, 2009 Keywords Matched: Oak Ridge National Country: Switzerland Region: SourceType: News Laboratory: ORNL Feed Source: Meltwater Chu presents energy research, development vision to senators: An example, Chu said, is the current biofuels research underway at the three BioEnergy Research Centers located at the Oak Ridge National Laboratory in Oak Ridge, Tenn.; the University of Wisconsin in Madison; and Lawrence Berkeley National Laboratory. March 10, 2009

292

Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for  

Open Energy Info (EERE)

Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural Communities Jump to: navigation, search Name Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural Communities Agency/Company /Organization Overseas Development Institute Sector Energy, Land Focus Area Renewable Energy, Biomass, Forestry Topics Policies/deployment programs, Background analysis Resource Type Publications Website http://www.odi.org.uk/resource Country Uganda, India Eastern Africa, Southern Asia References Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural Communities[1] Summary "This report presents findings from a research study in Uganda and India looking at the opportunities that carbon offset projects offer for poor

293

U.S. Bioenergy Statistics | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. Bioenergy Statistics U.S. Bioenergy Statistics Agriculture Community Menu DATA APPS EVENTS DEVELOPER STATISTICS COLLABORATE ABOUT Agriculture You are here Data.gov » Communities » Agriculture » Data U.S. Bioenergy Statistics Dataset Summary Description The U.S. Bioenergy Statistics are a source of information on biofuels intended to present a picture of the renewable energy industry and its relationship to agriculture. Where appropriate, data are presented in both a calendar year and the relevant marketing year timeframe to increase utility to feedstock-oriented users. The statistics highlight the factors that influence the demand for agricultural feedstocks for biofuels production; for instance, numerous tables emphasize the relationship between energy and commodity markets.

294

Energy Department Selects Three Bioenergy Research Centers for $375 Million  

Broader source: Energy.gov (indexed) [DOE]

Three Bioenergy Research Centers for $375 Three Bioenergy Research Centers for $375 Million in Federal Funding Energy Department Selects Three Bioenergy Research Centers for $375 Million in Federal Funding June 26, 2007 - 2:08pm Addthis Basic Genomics Research Furthers President Bush's Plan to Reduce Gasoline Usage 20 Percent in Ten Year WASHINGTON, DC - U. S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced that DOE will invest up to $375 million in three new Bioenergy Research Centers that will be located in Oak Ridge, Tennessee; Madison, Wisconsin; and near Berkeley, California. The Centers are intended to accelerate basic research in the development of cellulosic ethanol and other biofuels, advancing President Bush's Twenty in Ten Initiative, which seeks to reduce U.S. gasoline consumption by 20 percent

295

Thailand-Key Results and Policy Recommendations for Future Bioenergy  

Open Energy Info (EERE)

and Policy Recommendations for Future Bioenergy and Policy Recommendations for Future Bioenergy Development Jump to: navigation, search Name Thailand-Key Results and Policy Recommendations for Future Bioenergy Development Agency/Company /Organization Food and Agriculture Organization of the United Nations Sector Land Focus Area Biomass, Agriculture Topics Co-benefits assessment, Policies/deployment programs, Background analysis Resource Type Lessons learned/best practices Website http://www.fao.org/docrep/013/ Country Thailand UN Region South-Eastern Asia References Thailand-Key Results and Policy Recommendations for Future Bioenergy Development[1] Abstract "The Government of Thailand, through its Alternative Energy Development Plan, has set a target to increase biofuel production to five billion

296

10 Questions for a Bioenergy Expert: Melinda Hamilton | Department of  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy Expert: Melinda Hamilton Bioenergy Expert: Melinda Hamilton 10 Questions for a Bioenergy Expert: Melinda Hamilton February 15, 2011 - 4:43pm Addthis Melinda Hamilton | Photo courtesy of the Idaho National Laboratory Melinda Hamilton | Photo courtesy of the Idaho National Laboratory Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Meet Melinda Hamilton - she's a bioenergy expert and the Director of Education Programs at Idaho National Laboratory. She recently took some time to share what she's doing to help ramp-up U.S. competitiveness in science and technology, why Jane Goodall led her to a career in science and what can happen in a lab if you don't start with a good plan. Q: What sparked your interest to pursue a career in science? Melinda Hamilton: The answer is kind of corny, but the truth is when I was

297

Erratum to: Crop Residue Considerations for Sustainable Bioenergy Feedstock Supplies  

Science Journals Connector (OSTI)

Two regrettable errors occurred in citing a critical funding source for the multi-location research summarized in the 2014 article entitled Crop Residue Considerations for Sustainable Bioenergy Feedstock Supplie...

Douglas L. Karlen; Jane M. F. Johnson

2014-09-01T23:59:59.000Z

298

Bioenergy Technologies Office R&D Pathways: Algal Lipid Upgrading  

Broader source: Energy.gov [DOE]

Algal lipid upgrading is one of eight priority pathways chosen to convert biomass into hydrocarbon fuels by the Bioenergy Technologies Office. These pathways were down-selected from an initial list of 18.

299

Bioprocessing of Microalgae for Bioenergy and Recombinant Protein Production  

E-Print Network [OSTI]

This dissertation investigates harvesting of marine microalgae for bioenergy and production of two recombinant proteins for therapeutic applications in Chlamydomonas reinhardtii. The first study describes harvesting of marine microalgae...

Garzon Sanabria, Andrea J

2013-07-31T23:59:59.000Z

300

DOE's Bioenergy Technologies Office Supports Military-Grade Biofuels  

Broader source: Energy.gov [DOE]

Our Bioenergy Technologies Office (BETO) is helping the U.S. military increase the nations #energy security, reduce greenhouse gas emissions, and create jobs in #America by advancing renewable biofuels.

Note: This page contains sample records for the topic "integrated demonstration bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Three Essays on Bioenergy Production in the United States  

E-Print Network [OSTI]

This dissertation examines future prospects of bioenergy production in the United States. The analysis examines three issues on liquid fuel and cellulosic ethanol. First, the amount that costs need to decrease in order to make cellulosic ethanol...

Wlodarz, Marta

2013-12-02T23:59:59.000Z

302

Bioenergy Technologies Office Multi-Year Program Plan: July 2014...  

Broader source: Energy.gov (indexed) [DOE]

and can displace a share of petroleum-derived fuels to reduce U.S. dependence on foreign oil Encourage the creation of a new domestic bioenergy and bioproduct industry....

303

Department of Energy Offers Abengoa Bioenergy a Conditional Commitment...  

Office of Environmental Management (EM)

of a conditional commitment for a 133.9 million loan guarantee to Abengoa Bioenergy Biomass of Kansas LLC (ABBK) to support the development of a commercial-scale cellulosic...

304

Global bioenergy potential from high-lignin agricultural residue  

Science Journals Connector (OSTI)

...net greenhouse-gas flux for bioenergy...cycle (IBGCC) power generation concept: The...Mill Wastes-Fired Power Generation Systems and...Waste IX (Inst Gas Technol, Chicago...cycle (IBGCC) power generation concept: The...

Venugopal Mendu; Tom Shearin; J. Elliott Campbell; Jr; Jozsef Stork; Jungho Jae; Mark Crocker; George Huber; Seth DeBolt

2012-01-01T23:59:59.000Z

305

Biofuel Distribution Datasets from the Bioenergy Knowledge Discovery Framework  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about] Holdings include datasets, models, and maps and the collections are growing due to both DOE contributions and individuals' data uploads.

306

Biofuel Production Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

Holdings include datasets, models, and maps and the collections arel growing due to both DOE contributions and data uploads from individuals.

307

Feedstock Production Datasets from the Bioenergy Knowledge Discovery Framework  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about] Holdings include datasets, models, and maps and the collections are growing due to both DOE contributions and data uploads from individuals.

308

Feedstock Logistics Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. Holdings include datasets, models, and maps. [from https://www.bioenergykdf.net/content/about

309

Microarray Transcriptomics Data from the BioEnergy Science Center (BESC)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The BioEnergy Science Center (BESC) is a multi-institutional (18 partner), multidisciplinary research (biological, chemical, physical and computational sciences, mathematics and engineering) organization focused on the fundamental understanding and elimination of biomass recalcitrance. BESC's approach to improve accessibility to the sugars within biomass involves 1) designing plant cell walls for rapid deconstruction and 2) developing multitalented microbes for converting plant biomass into biofuels in a single step (consolidated bioprocessing). Addressing the roadblock of biomass recalcitrance will require a multiscale understanding of plant cell walls from biosynthesis to deconstruction pathways. This integrated understanding would generate models, theories and finally processes that will be used to understand and overcome biomass recalcitrance.

310

Seasonal energy storage using bioenergy production from abandoned croplands  

Science Journals Connector (OSTI)

Bioenergy has the unique potential to provide a dispatchable and carbon-negative component to renewable energy portfolios. However, the sustainability, spatial distribution, and capacity for bioenergy are critically dependent on highly uncertain land-use impacts of biomass agriculture. Biomass cultivation on abandoned agriculture lands is thought to reduce land-use impacts relative to biomass production on currently used croplands. While coarse global estimates of abandoned agriculture lands have been used for large-scale bioenergy assessments, more practical technological and policy applications will require regional, high-resolution information on land availability. Here, we present US county-level estimates of the magnitude and distribution of abandoned cropland and potential bioenergy production on this land using remote sensing data, agriculture inventories, and land-use modeling. These abandoned land estimates are 61% larger than previous estimates for the US, mainly due to the coarse resolution of data applied in previous studies. We apply the land availability results to consider the capacity of biomass electricity to meet the seasonal energy storage requirement in a national energy system that is dominated by wind and solar electricity production. Bioenergy from abandoned croplands can supply most of the seasonal storage needs for a range of energy production scenarios, regions, and biomass yield estimates. These data provide the basis for further down-scaling using models of spatially gridded land-use areas as well as a range of applications for the exploration of bioenergy sustainability.

J Elliott Campbell; David B Lobell; Robert C Genova; Andrew Zumkehr; Christopher B Field

2013-01-01T23:59:59.000Z

311

Local and remote climate impacts from expansion of woody biomass for bioenergy feedstock in the Southeastern US  

E-Print Network [OSTI]

as a feedstock for a bioenergy and bioproducts industry: TheCooling the greenhouse with bioenergy. Nature, 353, 1112.F. , and C. Azar, 2009: Bioenergy plantations or long- term

Murphy, L.N.

2014-01-01T23:59:59.000Z

312

Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options  

SciTech Connect (OSTI)

This study is a model comparison assessing the drivers and impacts of bioenergy production on the global land system and the interaction with other land use based mitigation options in the context of the EMF 27 project. We compare and evaluate results from three integrated assessment models (GCAM, IMAGE, and ReMIND/MAgPIE). All three models project that dedicated bioenergy crops and biomass residues are a potentially important and cost-effective component of the energy system. But bioenergy deployment levels and feedstock composition vary notably across models as do the implications for land-use and greenhouse gas emissions and the interaction with other land use based mitigation measures. Despite numerous model differences, we identify a few that are likely contributing to differences in land-use and emissions attributable to energy crop deployment.

Popp, Alexander; Rose, Steven K.; Calvin, Katherine V.; Van Vuuren, Detlef; Dietrich, Jan P.; Wise, Marshall A.; Stehfest, Eike; Humpenoder, Florian; Kyle, G. Page; Van Vliet, Jasper; Bauer, Nico; Lotze-Campen, Hermann; Klein, David; Kriegler, Elmar

2014-04-01T23:59:59.000Z

313

Summary report of the drilling technologies tested at the Integrated Demonstration Project for cleanup of organic contaminants in soils and groundwater at non-arid sites  

SciTech Connect (OSTI)

The Department of Energy`s Office of Technology Development initiated an integrated demonstration of innovative technologies and systems for cleanup of volatile organic compounds in soil and groundwater at SRS. The overall goal of the program is the demonstration of multiple technologies and systems in the fields of drilling, characterization, monitoring, and remediation at a single test bed. Horizontal environmental well installation technology was one of the remediation technologies that was demonstrated at SRS. Four distinctly different systems of directional drilling and horizontal well installations were successfully demonstrated and evaluated. The four systems were developed in the petroleum industry, the river crossing industry, and the utility industry. The transfer of information concerning the horizontal environmental well installations has been facilitated by publishing a series of reports describing each individual demonstration. This is the final report in the series and provides a comprehensive evaluation of all four systems. The objectives of this report are to summarize the strengths and weaknesses of each drilling technology, describe and compare the problems encountered by each drilling technology, compare the compatibility of each technology with varying logistical and geological conditions, and discuss the expense of using each technology. This report is designed to be a horizontal environmental well reference document for the environmental remediation industry. An environmental problem holder may use this report to evaluate a directional drilling technology for use at his/her site.

Not Available

1993-11-01T23:59:59.000Z

314

Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update  

Broader source: Energy.gov [DOE]

This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation. This MYPP is intended for use as an operational guide to help the Office manage and coordinate its activities, as well as a resource to help communicate its mission and goals to stakeholders and the public.

315

Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update-- Sections  

Broader source: Energy.gov [DOE]

This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation. This MYPP is intended for use as an operational guide to help the Office manage and coordinate its activities, as well as a resource to help communicate its mission and goals to stakeholders and the public.

316

Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update  

Broader source: Energy.gov [DOE]

This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation. This MYPP is intended for use as an operational guide to help the Office manage and coordinate its activities, as well as a resource to help communicate its mission and goals to stakeholders and the public.

317

Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update-- Sections  

Broader source: Energy.gov [DOE]

This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation. This MYPP is intended for use as an operational guide to help the Office manage and coordinate its activities, as well as a resource to help communicate its mission and goals to stakeholders and the public.

318

Agronomic Suitability of Bioenergy Crops in Mississippi  

SciTech Connect (OSTI)

In Mississippi, some questions need to be answered about bioenergy crops: how much suitable land is available? How much material can that land produce? Which production systems work best in which scenarios? What levels of inputs will be required for productivity and longterm sustainability? How will the crops reach the market? What kinds of infrastructure will be necessary to make that happen? This publication helps answer these questions: ???????????????????????????????¢???????????????????????????????????????????????????????????????¢ Which areas in the state are best for bioenergy crop production? ???????????????????????????????¢???????????????????????????????????????????????????????????????¢ How much could these areas produce sustainably? ???????????????????????????????¢???????????????????????????????????????????????????????????????¢ How can bioenergy crops impact carbon sequestration and carbon credits? ???????????????????????????????¢???????????????????????????????????????????????????????????????¢ How will these crops affect fertilizer use and water quality? ???????????????????????????????¢?????????????

Lemus, Rocky; Baldwin, Brian; Lang, David

2011-10-01T23:59:59.000Z

319

U.S. Department of Energy's Bioenergy Research Centers An Overview of the Science  

SciTech Connect (OSTI)

Alternative fuels from renewable cellulosic biomass - plant stalks, trunks, stems, and leaves - are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced.' Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain - the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 30 years. The DOE Genomic Science program is advancing a new generation of research focused on achieving whole-systems understanding of biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. For more information on the Genomic Science program, see p. 26. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs are providing the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use (see sidebar, Bridging the Gap from Fundamental Biology to Industrial Innovation for Bioenergy, p. 6). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations - the Southeast, the Midwest, and the West Coast - with partners across the nation (see U.S. map, DOE Bioenergy Research Centers and Partners, on back cover). DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California; DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; and the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC). Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies, and nonprofit organizations.

None

2010-07-01T23:59:59.000Z

320

Operational Demonstration Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Operational Demonstration Program Operational Demonstration Program Operational Demonstration Program < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Buying & Making Electricity Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Energy Sources Solar Water Heating Wind Maximum Rebate $500,000 Program Info Funding Source CEFIA Start Date 2005 State Connecticut Program Type Industry Recruitment/Support Rebate Amount $150,000 - $500,000 Provider Clean Energy Finance and Investment Authority This program is currently closed. Applications were due in February 2012.

Note: This page contains sample records for the topic "integrated demonstration bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Trade-offs of different land and bioenergy policies on the path to achieving climate targets  

Science Journals Connector (OSTI)

Many papers have shown that bioenergy and land-use are potentially important elements ... anthropogenic climate change. But, significant expansion of bioenergy production can have a large terrestrial footprint. ....

Katherine Calvin; Marshall Wise; Page Kyle; Pralit Patel; Leon Clarke

2014-04-01T23:59:59.000Z

322

Student Job (2 positions at Great Lakes Bioenergy Research Center (GLBRC))  

E-Print Network [OSTI]

Student Job (2 positions at Great Lakes Bioenergy Research Center (GLBRC)) Full-time summer job upon experience and qualifications. The Great Lakes Bioenergy Research Center (GLBRC) has openings

Liblit, Ben

323

Texas AgriLife Research with General Atomics Pilots Microalgae Ponds in Pecos BIOENERGY PROGRAM  

E-Print Network [OSTI]

Texas AgriLife Research with General Atomics Pilots Microalgae Ponds in Pecos BIOENERGY PROGRAM on the tank bottom will be opened. The Continued on back #12;http://AgBioenergy.tamu.edu concentrated algae

324

32 Robust og bredygtig bioenergi september 2012 Af Brian Vad Mathiesen, David  

E-Print Network [OSTI]

32 Robust og bæredygtig bioenergi · september 2012 Af Brian Vad Mathiesen, David Connolly, Henrik me- get el ind i transportsektoren som muligt. #12;Robust og bæredygtig bioenergi · september 2012 33

Schaltz, Erik

325

Bioenergy Production via Microbial Conversion of Residual Oil to Natural Gas  

Science Journals Connector (OSTI)

...Microbiology May 15, 2008 ARTICLE PHYSIOLOGY AND BIOTECHNOLOGY Bioenergy Production via Microbial Conversion of Residual Oil to Natural...alkanes by anaerobic microorganisms. Nature 401: 266-269. Bioenergy production via microbial conversion of residual oil to natural...

Lisa M. Gieg; Kathleen E. Duncan; Joseph M. Suflita

2008-03-31T23:59:59.000Z

326

BIOENERGY/BIOFUELS/BIOCHEMICALS Chromatographic determination of 1, 4-b-xylooligosaccharides  

E-Print Network [OSTI]

BIOENERGY/BIOFUELS/BIOCHEMICALS Chromatographic determination of 1, 4-b. Li � R. Kumar � C. E. Wyman BioEnergy Science Center, Oak Ridge, TN 37831, USA 123 J Ind Microbiol

California at Riverside, University of

327

Bioenergy and rural development: The role of agroforestry in a Tanzanian village economy  

Science Journals Connector (OSTI)

Abstract Recent papers indicate that decentralized bioenergy crop production offers increased market access and income diversification strategies for the rural population. The analyses concentrate on the potential effects of newly discussed crops such as Jatropha curcas, cassava, and sugarcane on macro level. Thereby two aspects are neglected, the income effects on micro level, and the integration of traditional firewood production systems for comparison. To fill this gap, an Environmentally Extended Social Accounting Matrix (ESAM) at the village level is developed and applied to a rural village in Tanzania. The objective is first to explore the integration of agroforestry systems in rural smallholder systems and second to analyze income effects of agricultural biomass production for bioenergy purposes in comparison to firewood production. In order to distinguish the use of firewood from public and private tree resources, environmental accounts for changes in tree stocks (public and private) are included. Findings indicate the importance of including common firewood production as a reference point. The highest income effect for the poorest households derives from agroforestry, which households use as a source of firewood and fruits for sale or home consumption, followed by J. curcas, sugarcane and finally cassava. Agroforestry in general has been also found to substantially release the pressure on public forest reserves.

Anja Fae; Etti Winter; Ulrike Grote

2014-01-01T23:59:59.000Z

328

U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproduct...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

WORKSHOP Biomass Program Peer Review Sustainability Platform Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting...

329

Process Integration and Carbon Efficiency Workshop Summary Report  

Broader source: Energy.gov [DOE]

This report is based on the proceedings of the U.S. Department of Energys Bioenergy Technologies Offices Process Integration and Carbon Efficiency Workshop, held June 1112, 2014, in Lakewood, Colorado.

330

The Center for BioEnergy Sustainability (CBES) At Oak Ridge National Laboratory (ORNL)  

E-Print Network [OSTI]

­ ORNL Bioenergy Resource & Engineering Systems Matt has expertise in accounting for non-market amenitiesThe Center for BioEnergy Sustainability (CBES) At Oak Ridge National Laboratory (ORNL) is pleased of Short-rotation Pine for Bioenergy on Water Quality and Quantity Using a Watershed-scale Experiment

331

Available online at www.sciencedirect.com Biomass and Bioenergy 24 (2003) 269276  

E-Print Network [OSTI]

commercial markets are poor, there has been a great deal of success in utilizing bioenergy by designatingAvailable online at www.sciencedirect.com Biomass and Bioenergy 24 (2003) 269­276 Flagsta 's wildÿre fuels treatments: prescriptions for community involvement and a source of bioenergy Allen

332

The Center for BioEnergy Sustainability (CBES) At Oak Ridge National Laboratory (ORNL)  

E-Print Network [OSTI]

The Center for BioEnergy Sustainability (CBES) At Oak Ridge National Laboratory (ORNL) is pleased of bioenergy crops as well as the impacts that the expansion of these crops over large areas may have on climate, water, nutrient, and biodiversity. The DOE Great Lakes Bioenergy Research Center (GLBRC) has been

333

Special issue: current status of bioenergy research Don-Hee Park Sang Yup Lee  

E-Print Network [OSTI]

EDITORIAL Special issue: current status of bioenergy research Don-Hee Park · Sang Yup Lee Published the world. The Bioenergy Korea Conference 2012 International Symposium was held on 24­25 April 2012 conversion in the field of bioenergy. Also, several papers on general enzyme technology and bioconversion

334

WHY STUDY FOREST OPERATIONS, BIOPRODUCTS AND BIOENERGY AT THE UNIVERSITY OF MAINE?  

E-Print Network [OSTI]

WHY STUDY FOREST OPERATIONS, BIOPRODUCTS AND BIOENERGY AT THE UNIVERSITY OF MAINE? e efficient-developed cluster of industrial forests and processing facilities for the production of bioproducts and bioenergy for research and field experience. UMaine's Forest Operations, Bioproducts and Bioenergy Program has been

Thomas, Andrew

335

Ris har udgivet en rapport om moderne bioenergi. Den slr fast, at  

E-Print Network [OSTI]

Risø har udgivet en rapport om moderne bioenergi. Den slår fast, at biomasse er en ligeså værdifuld teknologi, der skal til for at udnytte hele dens potentiale. RIS?NYT N O 42003 MODERNE BIOENERGI HAR STORE MULIGHEDER Moderne bioenergi har store muligheder Af Hans Larsen, Jens Kossmann og Leif Sønderberg Petersen

336

Bioenergy crop greenhouse gas mitigation potential under a range of management practices  

E-Print Network [OSTI]

Bioenergy crop greenhouse gas mitigation potential under a range of management practices T A R A W been proposed as viable bioenergy crops because of their potential to yield harvest- able biomass-senescence harvests are a more effective means than maximizing yield potential. Keywords: bioenergy, feedstocks, GHG

DeLucia, Evan H.

337

SLU, Spring 2012 Bioenergy and social sciences: economics and sociology, 5hp  

E-Print Network [OSTI]

SLU, Spring 2012 1/6 Bioenergy and social sciences: economics and sociology, 5hp PNS0083 Bioenergy and social sciences: economics and sociology, 5hp The course is given as part of the postgraduate research school "Bioenergy". The overall objective of the course is: 1. to enable the students

338

Concorso Tesi di Laurea e Concorso Tesi di Dottorato di Ricerca BioEnergy Italy 2014  

E-Print Network [OSTI]

Concorso Tesi di Laurea e Concorso Tesi di Dottorato di Ricerca BioEnergy Italy 2014 Bioenergie, Chimica Verde e Agricoltura Destinato ai laureati di qualsiasi Facoltà che hanno dell'uso delle bioenergie o della chimica verde in agricoltura I Concorsi - promossi da Cremona

Segatti, Antonio

339

IMproved Assessment of the Greenhouse gas balance of bioeNErgy pathways (IMAGINE)  

E-Print Network [OSTI]

IMproved Assessment of the Greenhouse gas balance of bioeNErgy pathways (IMAGINE) Evaluation - ENERBIO Livrable D4.1 : GHG balances of bioenergy pathways Mars 2012 Nathalie GAGNAIRE, Benoît GABRIELLE sources by bioenergy mostly hinges on the uncertainty on the magnitude of nitrous oxide (N2O) emissions

Paris-Sud XI, Université de

340

Bacterial community structures are unique and resilient in full-scale bioenergy systems  

E-Print Network [OSTI]

Bacterial community structures are unique and resilient in full-scale bioenergy systems Jeffrey J digestion is the most successful bioenergy technology worldwide with, at its core, undefined microbialFrac | community function | digester | sludge The production of bioenergy from wastes is an essential com- ponent

Hammerton, James

Note: This page contains sample records for the topic "integrated demonstration bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Switchgrass for Bioenergy held at the University of NebraskaLincoln  

E-Print Network [OSTI]

Switchgrass for Bioenergy held at the University of Nebraska­Lincoln Agricultural Research. Cenusa bioenergy, a USDA-funded research initiative, is investigating the creation of a sustainable Diagnostic Clinics Switchgrass for Bioenergy training session was conducted during the UNL Extension Late

Farritor, Shane

342

Multi Criteria Analysis for bioenergy systems assessments Thomas Buchholz a,, Ewald Rametsteiner b  

E-Print Network [OSTI]

Multi Criteria Analysis for bioenergy systems assessments Thomas Buchholz a,?, Ewald Rametsteiner b Available online 11 November 2008 Keywords: Multi Criteria Analysis Bioenergy Sustainability a b s t r a c t Sustainable bioenergy systems are, by definition, embedded in social, economic, and environmental contexts

Vermont, University of

343

The Center for BioEnergy Sustainability (CBES) at Oak Ridge National Laboratory (ORNL)  

E-Print Network [OSTI]

The Center for BioEnergy Sustainability (CBES) at Oak Ridge National Laboratory (ORNL) is pleased Studies Great Lakes Bioenergy Research Center University of Wisconsin-Madison. Co-Leader in Creating Sustainable Bioenergy Practices Jackson's program focuses on structure and function of managed, semi

344

The Pennsylvania State University www.BioEnergyBridge.psu.edu 1 BioEnergy Bridge  

E-Print Network [OSTI]

© The Pennsylvania State University www.BioEnergyBridge.psu.edu 1 Penn State BioEnergy# trichard@psu.edu rtw103@psu.edu www.bioenergy.psu.edu Biomass Energy Center #12;© The Pennsylvania State · The BioEnergy BridgeTM will address the full spectrum of challenges to our national priority of reducing

Lee, Dongwon

345

*** Draft: do not cite or distribute -COP7 Bioenergy Document: October 18, 2001 *** Address Correspondence to  

E-Print Network [OSTI]

*** Draft: do not cite or distribute - COP7 Bioenergy Document: October 18, 2001 *** Address;*** Draft: do not cite or distribute - COP7 Bioenergy Document: October 18, 2001 *** 10/23/01 Page 2 of 111 omasera@ate.oikos.unam.mx #12;*** Draft: do not cite or distribute - COP7 Bioenergy Document: October 18

Kammen, Daniel M.

346

Bioenergy Feedstock Potential from Short-Rotation Woody Crops in a Dryland Environment  

Science Journals Connector (OSTI)

Bioenergy Feedstock Potential from Short-Rotation Woody Crops in a Dryland Environment ... Bioslurry as a Fuel. 1. Viability of a Bioslurry-Based Bioenergy Supply Chain for Mallee Biomass in Western Australia ... Bioslurry as a Fuel. 1. Viability of a Bioslurry-Based Bioenergy Supply Chain for Mallee Biomass in Western Australia ...

R. J. Harper; S. J. Sochacki; K. R. J. Smettem; N. Robinson

2009-08-28T23:59:59.000Z

347

2014 Bioenergy Summer Bridge Fellowship Applica;on Please type or print all informa0on  

E-Print Network [OSTI]

2014 Bioenergy Summer Bridge Fellowship Applica;on Please type or print all want to be a Bioenergy Summer Bridge student and what you hope to contribute for future Bioenergy Summer Bridge students. Le=er B: Write and in-depth le

Tullos, Desiree

348

Kai BioEnergy Corporation | Open Energy Information  

Open Energy Info (EERE)

Kai BioEnergy Corporation Kai BioEnergy Corporation Jump to: navigation, search Name Kai BioEnergy Corporation Place Del Mar, California Zip 92014 Sector Biofuels Product Developing technologies to produce biodiesel from algae Website http://www.kaibioenergy.com/ Coordinates 32.964294°, -117.265191° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.964294,"lon":-117.265191,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

349

Anhui Yineng Bioenergy Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Yineng Bioenergy Co Ltd Yineng Bioenergy Co Ltd Jump to: navigation, search Name Anhui Yineng Bioenergy Co Ltd Place Hefei, Anhui Province, China Product A Chinese bio-oil equipment manufacturer Coordinates 31.86141°, 117.27562° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.86141,"lon":117.27562,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

350

Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic  

Open Energy Info (EERE)

Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Sources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Sources Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Climate Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, - Landfill Gas, - Waste to Energy, Greenhouse Gas Phase: Evaluate Options Resource Type: Publications, Guide/manual User Interface: Website Website: www.epa.gov/climatechange/emissions/biogenic_emissions.html Cost: Free References: EPA, 40 CFR Part 60[1] Tailoring Rule[2] Biogenic Emissions[3] The 'EPA Climate Change - Green House Gas Emissions - Carbon Dioxide

351

BESC Affiliate Program : BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Affiliate Program Affiliate Program The BioEnergy Science Center has among its goals the effective, coordinated commercialization of appropriate technologies through formation of start-up ventures as well as licensing to corporate entities pursuing biofuels development. The effective translation of BESC research results into applications testing and potential deployment is an implicit part of reaching DOE's bioenergy goals. Toward this end, we are offering companies and universities the opportunity to become BESC Affiliates and receive the following benefits: An invitation to participate in all bio-energy related training, summer courses, symposia, and seminars hosted by or connected with BESC Notification of all publications resulting from BESC sponsored research, as well as timely information about BESC news

352

A Bioenergy Ecosystem - ORNL Review Vol. 44, No. 3, 2011  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Magazine Search Magazine Go Features Next Article Previous Article Comments Home Clyde Thurman A Bioenergy Ecosystem BESC partnerships translate R&D into biofuels Paul Gilna, director of the BioEnergy Science Center at ORNL, is a man on a mission. In fact his entire organization is working under a Department of Energy mandate to focus the world's leading scientific minds and resources on revolutionizing bioenergy production. When the center was created in 2007, this innovative partnership of national laboratories, a private research foundation, universities and industries set out to break down the barriers to developing viable and affordable biofuel alternatives to petroleum-based fuels from plants that do not compete with food crops, such as switchgrass or poplar trees. Four years into a five-year mission, they

353

Borgford BioEnergy LLC | Open Energy Information  

Open Energy Info (EERE)

Borgford BioEnergy LLC Borgford BioEnergy LLC Jump to: navigation, search Name Borgford BioEnergy LLC Place Colville, Washington State Zip 99114 Sector Biomass Product Washington-based developer of biomass-to-energy projects. Coordinates 48.54657°, -117.904754° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.54657,"lon":-117.904754,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

354

USDA and DOE Fund Genomics Projects For Bioenergy Fuels Research |  

Broader source: Energy.gov (indexed) [DOE]

Fund Genomics Projects For Bioenergy Fuels Research Fund Genomics Projects For Bioenergy Fuels Research USDA and DOE Fund Genomics Projects For Bioenergy Fuels Research August 9, 2006 - 8:43am Addthis WASHINGTON, DC - Aug. 9, 2006 - Energy Secretary Samuel Bodman and Agriculture Secretary Mike Johanns today announced that the Department of Agriculture and the Department of Energy (DOE) have jointly awarded nine grants totaling $5.7 million for biobased fuels research that will accelerate the development of alternative fuel resources. Bodman commented, "These research projects build upon DOE's strategic investments in genomics, to accelerate scientific discovery and promote the development of alternative energy sources vital to America's energy and economic security." "To be a reliable renewable energy source, farmers and ranchers will need

355

UNEP-Bioenergy Decision Support Tool | Open Energy Information  

Open Energy Info (EERE)

UNEP-Bioenergy Decision Support Tool UNEP-Bioenergy Decision Support Tool Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: UNEP-Bioenergy Decision Support Tool Agency/Company /Organization: United Nations Environment Programme (UNEP) Partner: Food and Agriculture Organization of the United Nations Sector: Land Focus Area: Renewable Energy, Biomass, - Biofuels, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Landfill Gas, People and Policy Topics: Co-benefits assessment, - Energy Access, - Energy Security, - Environmental and Biodiversity, - Health, Implementation, Market analysis, Policies/deployment programs Resource Type: Guide/manual, Publications

356

Facility will focus on bioenergy, global food security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility will focus on bioenergy, global food security Facility will focus on bioenergy, global food security Facility will focus on bioenergy, global food security The New Mexico Consortium expects to complete the 27,000 square foot laboratory and office facility next spring. May 22, 2012 Aerial view of Los Alamos National Laboratory Aerial view of Los Alamos National Laboratory. Contact Kevin Roark Communications Office (505) 665-9202 Email Los Alamos, N.M., May 22, 2012 - U.S. Senator Tom Udall (D-NM) spoke at the groundbreaking ceremony marking the start of construction on the New Mexico Consortium's (NMC) biological research facility last Friday afternoon. Senator Udall noted New Mexico's novel and extensive contributions to our nation's renewable energy efforts and congratulated LANL, the NMC, and Richard Sayre on their commitment to advancing the nations goals for energy

357

Carbon Green BioEnergy LLC | Open Energy Information  

Open Energy Info (EERE)

BioEnergy LLC BioEnergy LLC Jump to: navigation, search Name Carbon Green BioEnergy LLC Place Chicago, Illinois Zip 60603 Sector Efficiency Product Chicago-based company dedicated to optimising biofuel production through management, energy efficiency, and operational improvements. Coordinates 41.88415°, -87.632409° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.88415,"lon":-87.632409,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

358

The BioEnergy Science Center (BESC) is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science Pseudo-lignin Chemistry and Its Impact  

E-Print Network [OSTI]

The BioEnergy Science Center (BESC) is a U.S. Department of Energy Bioenergy Research Center and Biochemistry, BioEnergy Science Center Georgia Institute of Technology, Atlanta, GA *Presenter: arthur by the DOE office of Biological and Environmental Research through the BioEnergy Science Center (BESC). 10 µm

Das, Suman

359

Los Alamos National Laboratory: Bioscience Division: Bioenergy &  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cliff Unkefer Cliff Unkefer Deputy Group Leader Kathy Elsberry Group Office Administrator Janet Friedman Group Office 505 667 0075 B Div People Scientists in B-8 Develop Strategies for Bioenergy, Bioremediation and Climate Change Research As part of the Bioscience mission to address issues in environmental stewardship, this group focuses on discovering the molecular principles that underpin biological diversity, specificity, response and function. This is achieved through research in environmental microbiology, microbial genomics, metabolomics, systematics and phylogeny and can be applied to the advancement of bioenergy technologies and bioremediation as well as to our understanding of carbon cycling. B-8 Teams Chemical Conversion Metabolomics Environmental Microbiology

360

Sustainable Management of Carbon, Nutrients, and Agrichemicals through Cycling of Bioresources fom Bioenergy and Livestock Production and Municipalities  

E-Print Network [OSTI]

Bioenergy and Livestock Production and Municipalities Bioenergy and livestock industries and municipalities offer bioresources for sustained crop productivity and environmental quality. In the emerging bioenergy and a potential source of carbon· credits for bioenergy systems. Incorporation of the char by-product in soil can

Note: This page contains sample records for the topic "integrated demonstration bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Integration of Pipeline Operations Sourced with CO2 Captured at a Coal-fired Power Plant and Injected for Geologic Storage: SECARB Phase III CCS Demonstration  

Science Journals Connector (OSTI)

Abstract This paper presents a case study of the design and operation of a fit-for-purpose pipeline sourced with anthropogenic carbon dioxide (CO2) associated with a large-scale carbon capture and storage (CCS) Research & Demonstration Program located in Alabama, USA. A 10.2 centimeter diameter pipeline stretches approximately 19 kilometers from the outlet of the CO2 capture facility, located at Alabama Power Company's James M. Barry 2,657 - megawatt coal-fired electric generating plant, to the point of injection into a saline reservoir within Citronelle Dome. The CO2 pipeline has a 6.5 meter wide easement that primarily parallels an existing high-voltage electric transmission line in undulating terrain with upland timber, stream crossings, and approximately 61,000 square meters of various wetland types. In addition to wetlands, the route transects protected habitat of the Gopher Tortoise. Construction methods included horizontal drilling under utilities, wetlands, and tortoise habitat and open cutting trenching where vegetation is removed and silt/storm-water management structures are employed to limit impacts to water quality and ecosystems. A total of 18 horizontal directional borings, approximately 8 kilometers, were used to avoid sensitive ecosystems, roads, and utilities. The project represents one of the first and the largest fully-integrated pulverized coal-fired CCS demonstration projects in the USA and provides a test bed of the operational reliability and risk management for future pipelines sourced with utility CO2 capture and compression operations sole-sourced to injection operations. An update on status of the project is presented, covering the permitting of the pipeline, risk analysis, design, construction, commissioning, and integration with compression at the capture plant and underground injection at the storage site.

R. Esposito; C. Harvick; R. Shaw; D. Mooneyhan; R. Trautz; G. Hill

2013-01-01T23:59:59.000Z

362

Demonstration and Results of Grid Integrated Technologies at the Demand to Grid Laboratory (D2G Lab): Phase I Operations Report  

E-Print Network [OSTI]

of Grid Integrated Technologies at the Demand to Gridof Grid Integrated Technologies at the Demand to GridCommercial Adoption of DR Technologies Related Activities

Ghatikar, Girish

2014-01-01T23:59:59.000Z

363

Bioenergy in India: Barriers and Policy Options | Open Energy Information  

Open Energy Info (EERE)

Bioenergy in India: Barriers and Policy Options Bioenergy in India: Barriers and Policy Options Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Bioenergy in India: Barriers and Policy Options Agency/Company /Organization: UNEP-Risoe Centre Sector: Energy Focus Area: Renewable Energy, Biomass, - Biofuels Topics: Implementation, Market analysis, Pathways analysis, Background analysis Resource Type: Publications, Lessons learned/best practices, Case studies/examples Website: tech-action.org/Perspectives/BioenergyIndia.pdf Country: India Cost: Free UN Region: Southern Asia Coordinates: 20.593684°, 78.96288° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":20.593684,"lon":78.96288,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

364

Oilseeds for Biofuels and Biochemicals in Texas BIOENERGY PROGRAM  

E-Print Network [OSTI]

Oilseeds for Biofuels and Biochemicals in Texas BIOENERGY PROGRAM Description feedstocks (primarily soybean) with food and feed markets. The price of October 2009 Chicago soybean oil to be competitive in the domestic market. U.S. biodiesel manfacturers are closing, consolidating, or suspending

365

Bioenergy Knowledge Discovery Framework Recognized at National Conference  

Broader source: Energy.gov [DOE]

The paper and poster presentation "Bioenergy KDF: Enabling Spatiotemporal Data Synthesis and Research Collaboration" was awarded second place for best paper at the ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, held November 47 in Dallas, Texas.

366

Generating Bioenergy Solutions for the Clean Energy Economy of Tomorrow  

Broader source: Energy.gov [DOE]

Bioenergy Technologies Office selects student team from Redmond, Washington, to present at the Biomass 2014 conference, which is taking place July 29 to July 30 in Washington, D.C. The team was chosen for their idea on how to help the nation transition to renewable forms of energy using cellulosic ethanol.

367

Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM  

E-Print Network [OSTI]

Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM The Texas AgriLife Research Center for the biofuels industry. This program recognizes that the ideal combination of traits required for an economically and energetically sustainable biofuels industry does not yet exist in a single plant spe- cies

368

Biofuel Enduse Datasets from the Bioenergy Knowledge Discovery Framework (KDF)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

Holdings include datasets, models, and maps. This is a very new resource, but the collections will grow due to both DOE contributions and individuals data uploads. Currently the Biofuel Enduse collection includes 133 items. Most of these are categorized as literature, but 36 are listed as datasets and ten as models.

369

How can land-use modelling tools inform bioenergy policies?  

Science Journals Connector (OSTI)

...information and processes to assess the consequences...fuels (e.g. biodiesel, bioethanol...a comprehensive evaluation of these different...occur. Realistic evaluations of bioenergy scenarios...tequila-making process can be used as...palm or soya bean biodiesel [10]. While...

2011-01-01T23:59:59.000Z

370

Abengoa Bioenergy Biomass of Kansas, LLC  

Broader source: Energy.gov [DOE]

This project from a committed long-term player has the potential to demonstrate dual biochemical and thermochemical capabilities to convert lignocellulosic feedstocks to biofuels.

371

Energy Department Announces Five-Year Renewal of Funding for Bioenergy  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Announces Five-Year Renewal of Funding for Energy Department Announces Five-Year Renewal of Funding for Bioenergy Research Centers Energy Department Announces Five-Year Renewal of Funding for Bioenergy Research Centers April 4, 2013 - 1:48pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - The U.S. Department of Energy today announced it would fund its three Bioenergy Research Centers for an additional five-year period, subject to continued congressional appropriations. The three Centers -including the BioEnergy Research Center (BESC) led by Oak Ridge National Laboratory, the Great Lakes Bioenergy Research Center (GLBRC) led by the University of Wisconsin-Madison in partnership with Michigan State University, and the Joint BioEnergy Institute (JBEI) led by Lawrence Berkeley National Laboratory-were established by the Department's

372

Energy Department Announces Five-Year Renewal of Funding for Bioenergy  

Broader source: Energy.gov (indexed) [DOE]

Five-Year Renewal of Funding for Five-Year Renewal of Funding for Bioenergy Research Centers Energy Department Announces Five-Year Renewal of Funding for Bioenergy Research Centers April 4, 2013 - 1:48pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - The U.S. Department of Energy today announced it would fund its three Bioenergy Research Centers for an additional five-year period, subject to continued congressional appropriations. The three Centers -including the BioEnergy Research Center (BESC) led by Oak Ridge National Laboratory, the Great Lakes Bioenergy Research Center (GLBRC) led by the University of Wisconsin-Madison in partnership with Michigan State University, and the Joint BioEnergy Institute (JBEI) led by Lawrence Berkeley National Laboratory-were established by the Department's

373

GATEWAY Demonstrations  

Broader source: Energy.gov [DOE]

DOE GATEWAY demonstrations showcase high-performance LED products for general illumination in a variety of commercial and residential applications. Demonstration results provide real-world experience and data on state-of-the-art solid-state lighting (SSL) product performance and cost effectiveness. These results connect DOE technology procurement efforts with large-volume purchasers and provide buyers with reliable data on product performance.

374

Abstract: Design and Demonstration of an Advanced Agricultural Feedstock Supply System for Lignocellulosic Bioenergy Production  

Broader source: Energy.gov [DOE]

This abstract from FDC Enterprises discusses the impact and objectives for project that designs equipment improvements to streamline the harvest, staging, and hauling costs associated with supplying materials to biorefineries.

375

BioEnergy International LLC | Open Energy Information  

Open Energy Info (EERE)

BioEnergy International LLC BioEnergy International LLC Address 1 Pinehill Drive Place Quincy, Massachusetts Zip 02169 Sector Biofuels Product Development and commercialization of next generation biorefineries Website http://www.bioenergyllc.com/ Coordinates 42.228468°, -71.027593° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.228468,"lon":-71.027593,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

376

Bioenergy plants in the United States and China  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

181 (2011) 621- 622 Contents lists available at SciVerse ScienceDirect Plant Science j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / p l a n t s c i Editorial Bioenergy plants in the United States and China The emerging bio-economies of the US and China hinge on the development of dedicated bioenergy feedstocks that will increase the production of next-generation biofuels and bioproducts. While biofuels might have less eventual importance than bioproducts, transportation needs for both countries require increasingly more biofuels to be produced in the coming decades. The US Renewable Fuels Standard mandate 136 billion litres of biofuels by 2022. Nearly 80 billion litres are required to be "advanced biofuels," generally regarded as fuels from non-corn and soybean feedstocks. Because

377

Contact Information - Industrial : BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BESC Industry Contact Information BESC Industry Contact Information To learn more about BESC's industry program please contact Renae Speck, Director of Technology Transfer and Partnerships for BESC, (865-576-4680), Renae Speck). Renae Speck Renae Speck, PhD spends fifty percent of her time as a Senior Commercialization Manager in the Office of Technology Transfer in the Partnership Directorate and fifty percent of her time as the Manager of Technology Transfer and Partnerships for the BioEnergy Science Center. As a Senior Commercialization Manager, Renae is responsible for portfolio management and commercialization of intellectual property created by researchers and staff in the Biological and Environmental Sciences Divisions as well as any intellectual property created by Oak Ridge National Laboratory staff that is funded by the BioEnergy Science Center

378

Comparison of Arabinoxylan Structure in Bioenergy and Model Grasses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Arabinoxylan Arabinoxylan Structure in Bioenergy and Model Grasses Ameya R. Kulkarni, 1 Sivakumar Pattathil, 1 Michael G. Hahn, 1,2 William S. York, 1,3 and Malcolm A. O'Neill 1 1 Complex Carbohydrate Research Center and US Department of Energy BioEnergy Science Center, 2 Department of Plant Biology, and 3 Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA Abstract Heteroxylans were solubilized from the alcohol-insoluble residue of switchgrass, rice, Brachypodium, Miscanthus, foxtail millet, and poplar with 1 M KOH. A combination of enzymatic, chemical, nu- clear magnetic resonance (NMR), mass spectroscopic, and immu- nological techniques indicated that grass arabinoxylans have comparable structures and contain no discernible amount of the reducing end sequence present in dicot glucuronoxylan. Our data suggest that rice, Brachypodium, and foxtail

379

CARBON LIFE-CYCLE AND ECONOMIC ANALYSIS OF FOREST CARBON SEQUESTRATION AND WOODY BIOENERGY PRODUCTION.  

E-Print Network [OSTI]

??Sequestering carbon in standing biomass, using woody bioenergy, and using woody products are the three potential ways to utilize forests in reducing greenhouse gases (GHGs) (more)

Shrestha, Prativa

2013-01-01T23:59:59.000Z

380

Analyses of bioenergy systems: detecting hard-coding errors in spreadsheets, and comparing biofuel cropping systems.  

E-Print Network [OSTI]

??Like any other technology, bioenergy has a spectrum of advantages and disadvantages associated with it. Biofuels, for instance, are expected to reduce the dependence on (more)

Rawat, Vertika

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated demonstration bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

High-solids enrichment of thermophilic microbial communities and their enzymes on bioenergy feedstocks  

E-Print Network [OSTI]

Progress and Challenges in Enzyme Development for Biomasscommunities and their enzymes on bioenergy feedstocks AmithaStrain selection, enzyme extraction optimization, and

Reddy, A. P.

2012-01-01T23:59:59.000Z

382

U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry  

Broader source: Energy.gov [DOE]

An update to the 2005 report, "Biomass as a Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply"

383

Farming For Fuel Lesson Plan Intro : BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lesson Plan: Farming for Fuel Lesson Plan: Farming for Fuel The lesson plan was developed as a collaboration between the Outreach and Education staff at the Creative Discovery Museum, (a children's science museum) in Chattanooga, TN, and BESC (BioEnergy Science Center) scientists and educators. Lesson plans, focused at the 5th grade level, are posted along with the materials used in the demonstrations of the lessons as well as where they may be purchased. We encourage anyone interested in promoting education in elementary and middle schools about biofuels and specifically biofuels developed from cellulosic material such as switch grass and populus to investigate them. We would be happy to provide any help in the use of these plans for education. The lessons have been taught in schools throughout

384

Socio-economic drivers in implementing bioenergy projects  

Science Journals Connector (OSTI)

Within the international community there is considerable interest in the socio-economic implications of moving society towards the more widespread use of renewable energy resources. Such change is seen to be very necessary but is often poorly communicated to people and communities who need to accept such changes. There are pockets of activity across the world looking at various approaches to understand this fundamental matter. Typically, socio-economic implications are measured in terms of economic indices, such as employment and monetary gains, but in effect the analysis relates to a number of aspects which include social, cultural, institutional, and environmental issues. The extremely complex nature of bioenergy, many different technologies involved and a number of different, associated aspects (socio-economics, greenhouse gas mitigation potential, environment, ) make this whole topic a complex subject. This paper is primarily a descriptive research and review of literature on employment and other socio-economic aspects of bioenergy systems as drivers for implementing bioenergy projects. Due to the limited information, this paper does not provide absolute quantification on the multiplier effects of local and or national incomes of any particular country or region. The paper intends to trigger a more in-depth discussion of data gaps, potentials, opportunities and challenges. An encouraging trend is that in many countries policy makers are beginning to perceive the potential economic benefits of commercial biomass e.g. employment/earnings, regional economic gain, contribution to security of energy supply and all others.

J. Domac; K. Richards; S. Risovic

2005-01-01T23:59:59.000Z

385

Demonstration and Results of Grid Integrated Technologies at the Demand to Grid Laboratory (D2G Lab): Phase I Operations Report  

E-Print Network [OSTI]

energy systems, markets, and behavior; education and training Electric vehicle-to-grid capability demonstration with 30 EV cars

Ghatikar, Girish

2014-01-01T23:59:59.000Z

386

Determining the most sustainable lignocellulosic bioenergy system following a case study approach  

Science Journals Connector (OSTI)

Abstract The paradigm shift from fossil to renewable energy sources is driven, largely, by a growing sustainability awareness, necessitating more sophisticated measurements in terms of a wider range of criteria. Technical efficiency, financial profitability, environmental friendliness and social acceptance are some of the aspects determining the sustainability of renewable energy systems. The resulting complexity and sometimes conflicting nature of these criteria constitute major barriers to the implementation of renewable energy projects. The Worcester biomass procurement area in the Western Cape Province, South Africa, is used as a case study. It provides a blueprint for measuring the impacts of lignocellulosic bioelectricity systems using life-cycle assessment (LCA), multi-period budgeting (MPB), geographic information systems (GIS) and multi-criteria decision-making analysis (MCDA), among others and for prioritising the relevant criteria to determine the most sustainable technological option. Following the LCA approach, 37 plausible lignocellulosic bioenergy systems were assessed against five financial-economic, three socio-economic and five environmental criteria. On translating the quantitative performance data into a standardised common language of relative performance, an expert group attached weights to the considered criteria, using the analytical hierarchy process (AHP). Assuming the prerequisite of financial-economic viability, the preferred option comprises a feller-buncher for harvesting, a forwarder for biomass extraction, mobile comminution at the roadside, secondary transport in truck-container-trailer combinations and an integrated gasification system for the conversion into electricity. This approach illustrates how to internalise externalities as typical market failures, aiding decision makers to choose the most sustainable bioenergy system.

C.C.C. von Doderer; T.E. Kleynhans

2014-01-01T23:59:59.000Z

387

Sustainability criteria for bioenergy systems: results from an expert survey Thomas Buchholz*, Valerie A. Luzadis, Timothy A. Volk  

E-Print Network [OSTI]

Sustainability criteria for bioenergy systems: results from an expert survey Thomas Buchholz in revised form 10 April 2009 Accepted 24 April 2009 Available online 9 May 2009 Keywords: Bioenergy and concerns about regional and national security are driving the development and use of biomass for bioenergy

Vermont, University of

388

CO2 fluxes of transitional bioenergy crops: effect of land conversion during the first year of cultivation  

E-Print Network [OSTI]

CO2 fluxes of transitional bioenergy crops: effect of land conversion during the first year of Environmental Sciences, University of Toledo, Toledo, OH 43606, USA, wGreat Lakes Bioenergy Research Center be invoked in the first year by conversion of grasslands to biofuel crops. Keywords: bioenergy crops, carbon

Chen, Jiquan

389

Forest Bioenergy or Forest Carbon? Assessing Trade-Offs in Greenhouse Gas Mitigation with Wood-Based Fuels  

Science Journals Connector (OSTI)

Forest Bioenergy or Forest Carbon? ... Forest carbon consequences of biomass harvest for bioenergy production can significantly delay and reduce GHG mitigation and should be included in life cycle studies. ... The potential of forest-based bioenergy to reduce greenhouse gas (GHG) emissions when displacing fossil-based energy must be balanced with forest carbon implications related to biomass harvest. ...

Jon McKechnie; Steve Colombo; Jiaxin Chen; Warren Mabee; Heather L. MacLean

2010-12-10T23:59:59.000Z

390

Modeling Miscanthus in the Soil and Water Assessment Tool (SWAT) to Simulate Its Water Quality Effects As a Bioenergy Crop  

Science Journals Connector (OSTI)

Modeling Miscanthus in the Soil and Water Assessment Tool (SWAT) to Simulate Its Water Quality Effects As a Bioenergy Crop ... There is increasing interest in perennial grasses as a renewable source of bioenergy and feedstock for second-generation cellulosic biofuels. ... Due to global warming and energy independence concerns, there is increasing interest in perennial grasses as a renewable source of bioenergy. ...

Tze Ling Ng; J. Wayland Eheart; Ximing Cai; Fernando Miguez

2010-08-03T23:59:59.000Z

391

Protective role of bioenergy of specific soil (Si02) of Madina Munawrrah in the field of oncology.  

Science Journals Connector (OSTI)

...Nov 12-15, 2006 Protective role of bioenergy of specific soil (Si02) of Madina Munawrrah...the preventive and therapeutic role of Bioenergy of specific Soil (Si02) of Madina Munawrrah...Group A was negative control group). Bioenergy of specific SiO2 (taken from the earth...

Mulazim H. Bukhari; Abbas Iqbal; Yasmin Abbas; Eyad Hasan A. Kamel

2006-12-01T23:59:59.000Z

392

IEA-Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas and Landfill Gas  

E-Print Network [OSTI]

EFP-06 IEA- Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas-Bioenergy, Task 37- Energy from Biogas and Landfill Gas", via samarbejde, informationsudveksling, fælles analyser. biogas fra anaerob udrådning (AD) som en integreret gylle og affalds behandlings teknologi. Arbejdet

393

International Conference on Wood-based Bioenergy LIGNA+Hannover, Germany, 17-18 May 2007  

E-Print Network [OSTI]

International Conference on Wood-based Bioenergy LIGNA+Hannover, Germany, 17-18 May 2007 Photo: NTC Marketing Specialist and Sebastian Hetsch, Consultant Food and Agricultural Organization & UN Economic Commission for Europe Geneva, Switzerland #12;International Conference on Wood-based Bioenergy LIGNA

394

International Market Opportunities in Bioenergy: Leveraging U.S. Government Resources  

Broader source: Energy.gov [DOE]

Breakout Session 3CFostering Technology Adoption III: International Market Opportunities in Bioenergy International Market Opportunities in Bioenergy: Leveraging U.S. Government Resources Cora Dickson, Senior International Trade Specialist, Office of Energy and Environmental Industries, International Trade Administration, U.S. Department of Commerce

395

USDA Projections of Bioenergy-Related Corn and Soyoil Use for 2010-2019  

E-Print Network [OSTI]

USDA Projections of Bioenergy-Related Corn and Soyoil Use for 2010-2019 Daniel M. O released long term projections for grain and energy markets at its 2010 Agricultural Outlook Forum, and the quantity of U.S. feedgrains and oilseeds to be used in bioenergy production processes, The USDA's long term

396

30 Robust og bredygtig bioenergi september 2012 Af Brian Vad Mathiesen, Henrik Lund,  

E-Print Network [OSTI]

30 Robust og bæredygtig bioenergi · september 2012 Af Brian Vad Mathiesen, Henrik Lund, Frede K erstatte de fossile brændsler med biobrændsler og bioenergi, og/eller i hvor høj grad vi skal satse på

Pillai, Jayakrishnan Radhakrishna

397

Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar  

E-Print Network [OSTI]

Biomass and Bioenergy 31 (2007) 646­655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

398

RESEARCH Open Access Short and long-term carbon balance of bioenergy  

E-Print Network [OSTI]

, and the occurrence and intensity of a future wildfire in this stand. In this study we investigate the carbon balance is a carbon intensive energy source; in our study we find that carbon emissions from bioenergy electricityRESEARCH Open Access Short and long-term carbon balance of bioenergy electricity production fueled

399

Age-Dependent Demographic Rates of the Bioenergy Crop Miscanthus 3 giganteus  

E-Print Network [OSTI]

grass Miscanthus 3 giganteus is currently being planted as a bioenergy crop in the north central region renewable energy production (Genovesi 2011; Raghu et al. 2006). Biofuels, produced from crops, are a sourceAge-Dependent Demographic Rates of the Bioenergy Crop Miscanthus 3 giganteus in Illinois David P

Sims, Gerald K.

400

Demonstration of a new ICPC design with a double-effect absorption chiller in an office building in Sacramento, California[Integrated Compound Parabolic Concentrator  

SciTech Connect (OSTI)

In 1998 two new technologies, a new ICPC solar collector and the solar operation of a double effect chiller, have been demonstrated for the first in an office building in Sacramento, California. This paper describes the demonstration project and reports on component and system performance.

Duff, W.S.; Winston, R.; O'Gallagher, J.J.; Henkel, T.; Muschaweck, J.; Christiansen, R.; Bergquam, J.

1999-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated demonstration bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

To advance and share knowledge, discover solutions and promote opportunities in food and agriculture, bioenergy, health, the environment and human well-  

E-Print Network [OSTI]

and agriculture, bioenergy, health, the environment and human well- being. Vision: To lead in science, innovation

Sheridan, Jennifer

402

Research Note The removal of tree stumps and coarse roots from felling sites as a source of woody biomass for bioenergy generation  

E-Print Network [OSTI]

biomass for bioenergy generation is well established in parts of Europe, and interest has been expressed

403

Process Integration and Carbon Efficiency Workshop  

Broader source: Energy.gov [DOE]

The Department of Energys Bioenergy Technologies Office (BETO) is hosting the Process Integration and Carbon Efficiency Workshop on June 1112, 2014 in Lakewood, Colorado. This workshop will explore advances in biological and chemical conversion of lignocellulosic feedstocks to biofuels and bioproducts.

404

Operations Support of Phase 2 Integrated Demonstration In Situ Bioremediation. Volume 1, Final report: Final report text data in tabular form, Disk 1  

SciTech Connect (OSTI)

This project was designed to demonstrate in situ bioremediation of ground water and sediment contaminated with chlorinated solvents. Indigenous microorganisms were stimulated to degrade trichlorethylene (TCE), tetrachloroethylene (PCE) and their daughter products in situ by addition of nutrients to the contaminated aquifer and adjacent vadose zone. The principle carbon/energy source nutrient used in this demonstration was methane (natural gas). In situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency, safety, and public and regulatory acceptability. This report describes the preliminary results of the demonstration and provides conclusions only for those measures that the Bioremediation Technical Support Group felt were so overwhelmingly convincing that they do not require further analyses. Though this report is necessarily superficial it does intend to provide a basis for further evaluating the technology and for practitioners to immediately apply some parts of the technology.

Hazen, T.C. [Westinghouse Savannah River Co., Aiken, SC (United States)

1993-09-01T23:59:59.000Z

405

Pacific Northwest and Alaska Regional Bioenergy Program : Five Year Report, 1985-1990.  

SciTech Connect (OSTI)

This five-year report describes activities of the Pacific Northwest and Alaska Regional Bioenergy Program between 1985 and 1990. Begun in 1979, this Regional Bioenergy Program became the model for the nation's four other regional bioenergy programs in 1983. Within the time span of this report, the Pacific Northwest and Alaska Regional Bioenergy Program has undertaken a number of applied research and technology projects, and supported and guided the work of its five participating state energy programs. During this period, the Regional Bioenergy Program has brought together public- and private-sector organizations to promote the use of local biomass and municipal-waste energy resources and technologies. This report claims information on the mission, goals and accomplishments of the Regional Bioenergy Program. It describes the biomass projects conducted by the individual states of the region, and summarizes the results of the programs technical studies. Publications from both the state and regional projects are listed. The report goes on to consider future efforts of the Regional Bioenergy Program under its challenging assignment. Research activities include: forest residue estimates; Landsat biomass mapping; woody biomass plantations; industrial wood-fuel market; residential space heating with wood; materials recovery of residues; co-firing wood chips with coal; biomass fuel characterization; wood-boosted geothermal power plants; wood gasification; municipal solid wastes to energy; woodstove study; slash burning; forest depletion; and technology transfer. 9 figs., 6 tabs.

Pacific Northwest and Alaska Bioenergy Program (U.S.)

1991-02-01T23:59:59.000Z

406

Special Section for the 4th International Conference on BiorefineryToward Bioenergy  

Science Journals Connector (OSTI)

Special Section for the 4th International Conference on BiorefineryToward Bioenergy ... The 4th International Conference on BiorefineryToward Bioenergy, held between Dec 3 and 5, 2013, in Xiamen, China, aimed to provide a forum and bring scientists, engineers, and technologists together for an in-depth discussion on biorefinery technologies. ... We hope that this special section will be helpful to the reader and that it might enhance academic exchanges between scholars and industries in the bioenergy field all over the world. ...

Lu Lin; Shijie Liu

2014-06-19T23:59:59.000Z

407

Accounting for Carbon Dioxide Emissions from Bioenergy Systems  

SciTech Connect (OSTI)

Researchers have recently argued that there is a 'critical climate accounting error' and that we should say 'goodbye to carbon neutral' for bioenergy. Many other analysts have published opionions on the same topic, and the US Environmental Protection Agency posted a specific call for information. The currently burning questions for carbon accounting is how to deal with bioenergy. The questions arises because, unlike for fossil fuels, burning of biomass fuels represents part of a cycle in which combustion releases back to the atmosphere carbon that was earlier removed from the atmosphere by growing plants. In a sustainable system, plants will again remove the carbon dioxide (CO{sub 2}) from the atmosphere. Conceptually, it is clear that there are no net emissions of the greenhouse gas CO{sub 2} if biomass is harvested and combusted at the same rate that biomass grows and removes CO{sub 2} from the atmosphere. The problem lies in the fact that growth and combustion do not occur at the same time or in the same place, and our accounting system boundaries - spatial and temporal - frequently do not provide full and balanced accounting. When the first comprehensive guidelines for estimating national greenhouse gas emissions and sinks were put together by the Organization for Economic Cooperation and Development, they noted that it has been argued that CO{sub 2} emissions resulting from bioenergy consumption should not be included in a country's official emission inventory because there are no net emissions if the biomass is produced sustainably, and if the biomass is not produced sustainably, the loss of carbon will be captured as part of the accounting for emissions from land-use change. In the same philosophical vein, the Kyoto Protocol provides that emissions or sinks of CO{sub 2} from land-use change and forestry activities be measured as the 'verifiable changes in carbon stocks'. From these has grown the convention that emissions from biomass fuels are generally not counted as part of emissions inventories, and biomass energy is sometimes referred to as being 'carbon neutral.' But what happens when a forest is harvested for fuel but takes 60 years to regrow or when biomass is harvested in a country that is not party to an international accord but is burned in a country that is party to an international accord? Biomass energy is only truly 'carbon neutral' if we get the system boundaries right. They need to make sure that the accounting methodology is compatible with our needs and realities in management and policy.

Marland, Gregg [ORNL

2010-12-01T23:59:59.000Z

408

Creative Discovery Museum : BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Creative Discovery Museum The Creative Discovery Museum BESC reaches thousands of students with 'Farming for Fuels' lessons The DOE BioEnergy Science Center and the Creative Discovery Museum in Chattanooga, TN, have developed a set of hands-on lesson plans on BioFuels aimed at students in fourth, fifth and sixth grades. These "Farming for Fuels" lessons educate students about the carbon cycle, the use of lignocellulosic biomass as a substrate for the production of biofuels and the technical and economic obstacles to a bio-based fuel economy. The nationally expanded outreach program has now reached more than 60,000 students, teachers and parents by partnering with museums and centers in Tennessee, Georgia, Texas, Michigan, Illinois, Florida, New York and Arizona. To extend use of the lessons to the general public we have assembled

409

BioEnergy of America Inc | Open Energy Information  

Open Energy Info (EERE)

America Inc America Inc Jump to: navigation, search Name BioEnergy of America Inc Address 30 Executive Avenue Place Edison, New Jersey Zip 08817 Sector Biofuels Product Biofuels producer Website http://www.bioenergyofamerica. Coordinates 40.497076°, -74.375894° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.497076,"lon":-74.375894,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

DOE to Invest $250 Million in New Bioenergy Centers | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

$250 Million in New Bioenergy Centers $250 Million in New Bioenergy Centers DOE to Invest $250 Million in New Bioenergy Centers August 2, 2006 - 4:48pm Addthis Basic Genomics Research on the Development of Biofuels to be Accelerated JOLIET, IL - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman announced today that DOE will spend $250 million to establish and operate two new Bioenergy Research Centers to accelerate basic research on the development of cellulosic ethanol and other biofuels. The Secretary made the announcement with Congressman Jerry Weller (IL-11th), local officials and biofuels stakeholders during a visit to Channahon, IL. "This is an important step toward our goal of replacing 30 percent of transportation fuels with biofuels by 2030," Secretary Bodman said. "The

411

USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop  

Broader source: Energy.gov (indexed) [DOE]

USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop Production and Spur Economic Impact USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop Production and Spur Economic Impact August 11, 2011 - 3:55pm Addthis WASHINGTON, DC -- The U.S. Departments of Energy and Agriculture have awarded 10 grants totaling $12.2 million to spur research into improving the efficiency and cost-effectiveness of growing biofuel and bioenergy crops. The investments are part of a broader effort by the Obama administration to develop domestic renewable energy and advanced biofuels, providing a more secure future for America's energy needs and creating new opportunities for the American farming industry. "Biofuels, along with other advanced vehicle technologies, hold the

412

Geek-Up[10.01.10] -- Mapping Bioenergy and Magnetic Vector Potential, New  

Broader source: Energy.gov (indexed) [DOE]

0.01.10] -- Mapping Bioenergy and Magnetic Vector 0.01.10] -- Mapping Bioenergy and Magnetic Vector Potential, New Atmosphere-Monitoring Tools and "Sour" Gas Streams Geek-Up[10.01.10] -- Mapping Bioenergy and Magnetic Vector Potential, New Atmosphere-Monitoring Tools and "Sour" Gas Streams October 1, 2010 - 3:33pm Addthis Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs This week, the National Renewable Energy Laboratory (NREL) announced the launch of an online portal for energy geeks and "cartophiles" alike. NREL's BioEnergy Atlas encompasses two analysis and mapping tools - BioPower and BioFuels. These tools can summarize state-by-state energy use and infrastructure for traditional and bioenery power, fuels and resources

413

Crop Residue Removal for Bioenergy Reduces Soil Carbon Pools: How Can We Offset Carbon Losses?  

Science Journals Connector (OSTI)

Crop residue removal for bioenergy can deplete soil organic carbon (SOC) ... been, however, widely discussed. This paper reviews potential practices that can be used to offset the SOC lost with residue removal. Literature

Humberto Blanco-Canqui

2013-03-01T23:59:59.000Z

414

A scenario based analysis of land competition between food and bioenergy production in the US  

Science Journals Connector (OSTI)

Greenhouse gas abatement policies will increase the demand for renewable sources of energy, including bioenergy. In combination with a global growing demand ... competition for bio-productive land. Proponents of

Daniel J. A. Johansson; Christian Azar

2007-06-01T23:59:59.000Z

415

GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks  

Broader source: Energy.gov [DOE]

Breakout Session 2DBuilding Market Confidence and Understanding II: Carbon Accounting and Woody Biofuels GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks Michael Wang, Senior Scientist, Energy Systems, Argonne National Laboratory

416

Energy Department Announces Up to $14 Million for Applying Landscape Design to Cellulosic Bioenergy  

Broader source: Energy.gov [DOE]

The Energy Department today announced up to $14 million to support landscape design approaches that maintain or enhance the environmental and socio-economic sustainability of cellulosic bioenergy through the improvement of feedstock production, logistics systems, and technology development.

417

Reproduced with pennission from Nature COMMENTARY Cooling the greenhouse with bioenergy  

E-Print Network [OSTI]

Reproduced with pennission from Nature COMMENTARY Cooling the greenhouse with bioenergy D. o. Hall combustionwould be once more. The technology for making markets, it is well-suited for energy ap- compensatedfor

418

Economic Impacts of Expanded Woody Biomass Utilization on the Bioenergy and Forest Products Industries in Florida  

E-Print Network [OSTI]

1 Economic Impacts of Expanded Woody Biomass Utilization on the Bioenergy and Forest Products as the starting point for implementation of the CGE model, which finds a solution where all markets

Florida, University of

419

Bioenergy Technologies Office Conversion R&D Pathway: Syngas Upgrading to Hydrocarbon Fuels  

Broader source: Energy.gov [DOE]

Syngas upgrading to hydrocarbon fuels is one of eight priority pathways chosen to convert biomass into hydrocarbon fuels by the Bioenergy Technologies Office. These pathways were down-selected from an initial list of 18.

420

Effects of Biochar Recycling on Switchgrass Growth and Soil and Water Quality in Bioenergy Production Systems  

E-Print Network [OSTI]

Intensive biomass production in emerging bioenergy systems could increase nonpoint-source sediment and nutrient losses and impair surface and groundwater quality. Recycling biochar, a charcoal byproduct from pyrolysis of biomass, provides potential...

Husmoen, Derek Howard

2012-07-16T23:59:59.000Z

Note: This page contains sample records for the topic "integrated demonstration bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Essays on Economic and Environmental Analysis of Taiwanese Bioenergy Production on Set-Aside Land  

E-Print Network [OSTI]

Domestic production of bioenergy by utilizing set-aside land in Taiwan can reduce Taiwans reliance on expensive and politically insecure foreign fossil fuels while also reducing the combustion of fossil fuels, which emit substantial amounts...

Kung, Chih-Chun

2012-02-14T23:59:59.000Z

422

Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction  

Broader source: Energy.gov [DOE]

Whole algae hydrothermal liquefaction is one of eight priority pathways chosen to convert biomass into hydrocarbon fuels by the Bioenergy Technologies Office. These pathways were down-selected from an initial list of 18.

423

Effect of Harvest Dates on Biomass Accumulation and Composition in Bioenergy Sorghum  

E-Print Network [OSTI]

for use as a feedstock for ethanol production. Other factors such as water use efficiency, drought tolerance, yield potential, composition, and established production systems also make sorghum a logical choice as a feedstock for bioenergy production...

Borden, Dustin Ross

2012-02-14T23:59:59.000Z

424

The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance  

Science Journals Connector (OSTI)

The mission of the Joint BioEnergy Institute is to advance the development of the next-generation of biofuelsliquid fuels derived from the solar energy...

Henrik Vibe Scheller; Seema Singh; Harvey Blanch; Jay D. Keasling

2010-06-01T23:59:59.000Z

425

Impacts of herbaceous bioenergy crops on atmospheric volatile organic composition and potential consequences  

E-Print Network [OSTI]

mandate, and bioenergy is at the center of attention as a viable alternative for fossil fuels. However of atmospheric particulates, and interactions between plants and arthropods. Our data and projections indicate

DeLucia, Evan H.

426

A global conversation about energy from biomass: the continental conventions of the global sustainable bioenergy project  

Science Journals Connector (OSTI)

...climate, geography, biological resources, cultural traditions and politico-economic situations. A range of biomass feedstocks are employed for bioenergy production in the Asia-Oceania countries, such as oil palm (Malaysia and Indonesia...

2011-01-01T23:59:59.000Z

427

Advancing Sustainable Bioenergy: Evolving Stakeholder Interests and the Relevance of Research  

Science Journals Connector (OSTI)

The sustainability of future bioenergy production rests on more than continual improvements in its environmental, economic, and social impacts. The emergence of new biomass feedstocks, an expanding array of conve...

Timothy Lawrence Johnson; Jeffrey M. Bielicki

2013-02-01T23:59:59.000Z

428

The Center for BioEnergy Sustainability (CBES) at Oak Ridge National Laboratory (ORNL)  

E-Print Network [OSTI]

The Center for BioEnergy Sustainability (CBES) at Oak Ridge National Laboratory (ORNL) is pleased to announce that we are holding our next Forum on October 20th, 2011 in the Ocoee Room (room 189) in Building

429

The Center for BioEnergy Sustainability (CBES) At Oak Ridge National Laboratory (ORNL)  

E-Print Network [OSTI]

The Center for BioEnergy Sustainability (CBES) At Oak Ridge National Laboratory (ORNL) is pleased to announce that we are holding our next Forum on March 15th, 2012 in the Ocoee Room (Room 189) in Building

430

USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop  

Broader source: Energy.gov (indexed) [DOE]

USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop Production and Spur Economic Impact USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop Production and Spur Economic Impact August 11, 2011 - 3:55pm Addthis WASHINGTON, DC -- The U.S. Departments of Energy and Agriculture have awarded 10 grants totaling $12.2 million to spur research into improving the efficiency and cost-effectiveness of growing biofuel and bioenergy crops. The investments are part of a broader effort by the Obama administration to develop domestic renewable energy and advanced biofuels, providing a more secure future for America's energy needs and creating new opportunities for the American farming industry. "Biofuels, along with other advanced vehicle technologies, hold the

431

Ris har udgivet en rapport om moderne bioenergi. Den slr fast, at biomasse er en  

E-Print Network [OSTI]

Risø har udgivet en rapport om moderne bioenergi. Den slår fast, at biomasse er en ligeså værdifuld eventyret med moderne bioenergi i hovedrollen. På Risø skubber vi eventyret i gang ved at udvikle nye større skala, end man troede det muligt for bare få år siden. Andre perspektiver for bioenergien er

432

Demonstration of a Novel, Integrated, Multi-Scale Procedure for High-Resolution 3D Reservoir Characterization and Improved CO2-EOR/Sequestration Management, SACROC Unit  

SciTech Connect (OSTI)

The primary goal of this project was to demonstrate a new and novel approach for high resolution, 3D reservoir characterization that can enable better management of CO{sub 2} enhanced oil recovery (EOR) projects and, looking to the future, carbon sequestration projects. The approach adopted has been the subject of previous research by the DOE and others, and relies primarily upon data-mining and advanced pattern recognition approaches. This approach honors all reservoir characterization data collected, but accepts that our understanding of how these measurements relate to the information of most interest, such as how porosity and permeability vary over a reservoir volume, is imperfect. Ideally the data needed for such an approach includes surface seismic to provide the greatest amount of data over the entire reservoir volume of interest, crosswell seismic to fill the resolution gap between surface seismic and wellbore-scale measurements, geophysical well logs to provide the vertical resolution sought, and core data to provide the tie to the information of most interest. These data are combined via a series of one or more relational models to enable, in its most successful application, the prediction of porosity and permeability on a vertical resolution similar to logs at each surface seismic trace location. In this project, the procedure was applied to the giant (and highly complex) SACROC unit of the Permian basin in West Texas, one of the world's largest CO{sub 2}-EOR projects and a potentially world-class geologic sequestration site. Due to operational scheduling considerations on the part of the operator of the field, the crosswell data was not obtained during the period of project performance (it is currently being collected however as part of another DOE project). This compromised the utility of the surface seismic data for the project due to the resolution gap between it and the geophysical well logs. An alternative approach was adopted that utilized a relational model to predict porosity and permeability profiles from well logs at each well location, and a 3D geostatistical variogram to generate the reservoir characterization over the reservoir volume of interest. A reservoir simulation model was built based upon this characterization and history-matched without making significant changes to it, thus validating the procedure. While not the same procedure as originally planned, the procedure ultimately employed proved successful and demonstrated that the general concepts proposed (i.e., data mining and advanced pattern recognition methods) have the flexibility to achieve the reservoir characterization objectives sought even with imperfect or incomplete data.

Scott R. Reeves

2007-09-30T23:59:59.000Z

433

Sustainability trade-offs in bioenergy development in the Philippines: An application of conjoint analysis  

Science Journals Connector (OSTI)

Abstract Sustainability assessments of bioenergy production are essential because it can have both positive and negative impacts on society. Human preferences that influence trade-off decisions on the relevant determinants and indicators of sustainability should be taken into account in these assessments. In this paper, we conducted a survey with five groups of respondents including government officials and employees, academic and research professionals, private company managers and workers, farm owners and workers, and others (e.g. students, residents, etc.) to assess their trade-off decisions on bioenergy development in the Philippines. The analyses of the survey results reveal that sustainability of bioenergy production will depend on the choice of biomass feedstock and these choices depend on people's perceptions. Heterogeneous perceptions among the different groups of respondents on the appropriate bioenergy feedstock to achieve economic, social and ecological sustainability suggest that sustainability of bioenergy is not a generic concept. The use of aggregate indices for sustainability assessments that ignore these perceptions on bioenergy production can thus be very misleading. The preference weights from conjoint analysis, which measure human preferences on different determinants and indicators of economic, social and ecological sustainability, can help improve sustainability assessments.

Lilibeth A. Acosta; Elena A. Eugenio; Nelson H. Enano Jr.; Damasa B. Magcale-Macandog; Belita A. Vega; Paula Beatrice M. Macandog; Jemimah Mae A. Eugenio; Marilou A. Lopez; Arnold R. Salvacion; Wolfgang Lucht

2014-01-01T23:59:59.000Z

434

d. 11. dec. 2003 Moderne bioenergi -et nyt dansk vkstomrde 1 Har forbrnding og forgasning af biomasse en  

E-Print Network [OSTI]

d. 11. dec. 2003 Moderne bioenergi - et nyt dansk vækstområde 1 Har forbrænding og forgasning af biomasse en fremtid ? Charles Nielsen Elsam A/S #12;d. 11. dec. 2003 Moderne bioenergi - et nyt dansk vækstområde 2 JaJa #12;d. 11. dec. 2003 Moderne bioenergi - et nyt dansk vækstområde 3 Disposition

435

Availability and cost of agricultural residues for bioenergy generation; International literature review and a case study for South Africa.  

E-Print Network [OSTI]

??Background The sustainability of first generation bioenergy has been researched intensively due to problems resulting from land use change. There is a growing interest to (more)

Valk, M.

2014-01-01T23:59:59.000Z

436

Field evaluation of the availability for corn and soybean of phosphorus recovered as struvite from corn fiber processing for bioenergy.  

E-Print Network [OSTI]

??FIELD EVALUATION OF THE AVAILABILITY FOR CORN AND SOYBEAN OF PHOSPHORUS RECOVERED AS STRUVITE FROM CORN FIBER PROCESSING FOR BIOENERGY A paper to be submitted (more)

Thompson, Louis Bernard

2013-01-01T23:59:59.000Z

437

ASSESSMENT OF NON-INDUSTRIAL PRIVATE FOREST LANDOWNER WILLINGNESS TO HARVEST WOODY BIOMASS IN SUPPORT OF BIOENERGY PRODUCTION IN MISSISSIPPI.  

E-Print Network [OSTI]

?? Harvesting woody biomass for biofuel has become an important research topic. In Mississippi, feasibility of utilizing woody biomass for bioenergy lies in the willingness (more)

Gruchy, Steven Ray

2011-01-01T23:59:59.000Z

438

Sweet dreams (are made of cellulose): Sociotechnical imaginaries of second-generation bioenergy in the global debate  

Science Journals Connector (OSTI)

Abstract This paper critically examines the sociotechnical imaginaries of second-generation bioenergy technology in the global debate, exemplified by the deliberations of international organizations specializing in food and agriculture, energy security, and climate change. The analysis is guided by two objectives: first, to identify and illuminate visions of future advanced biofuels by implementing the concept of sociotechnical imaginaries; second, to scrutinize these imaginaries using a critical and diagnostic utopian method to determine whether the projected visions entail the promise of radical change and hope for socioeconomic transition to a green future, or instead manifest an ideological stranglehold striving to perpetuate the status quo. The article demonstrates that sociotechnical imaginaries of advanced biofuel technology superficially project the illusion of utopian potential. On closer examination, however, visions of future second-generation biofuels are limited by the necessity of cost-effectiveness that underpins market competitiveness. They manifest utopian impotence to imagine the future beyond the ideological closure of the currently dominant socioeconomic system.

Magdalena Kuchler

2014-01-01T23:59:59.000Z

439

Opportunities and barriers for sustainable international bioenergy trade and strategies to overcome them -A report prepared by IEA Bioenergy Task 40  

E-Print Network [OSTI]

sustainable energy production. Stimulated by the renewable energy policies in several countries, rising oil-side, · On the longer-term, market support policies in the various countries, etc. should be designed to promote them - A report prepared by IEA Bioenergy Task 40 1 Opportunities and barriers for sustainable

440

Utilizing Bioenergy By-products in Beef Production Systems The newly expanded renewable fuels standard requires 36 billion gallons of renewable  

E-Print Network [OSTI]

Utilizing Bioenergy By-products in Beef Production Systems The newly expanded renewable fuels studies. Current research focuses on impacts of feeding by-prod- ucts of the bioenergy industry on Animal

Note: This page contains sample records for the topic "integrated demonstration bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Sustainable Energy Research Team publications Whittaker, C., Adams, P., McManus, M.C Securing a Bioenergy Supply: UK and US in  

E-Print Network [OSTI]

.C Securing a Bioenergy Supply: UK and US in Perspectives on Biofuels: Potential Benefits and Possible, G.P. McManus, M.C. and Mezzullo, W. G, 2011. Barriers to and drivers for UK bioenergy development

Martin, Ralph R.

442

Major Demonstrations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Major Demonstrations Major Demonstrations Major Demonstrations A state-of-the-art integrated coal gasification combined-cycle (IGCC) power plant, Tampa Electric's Polk Power Station produces enough electricity to serve 75,000 homes. A state-of-the-art integrated coal gasification combined-cycle (IGCC) power plant, Tampa Electric's Polk Power Station produces enough electricity to serve 75,000 homes. The Office of Fossil Energy is co-funding large-scale demonstrations of clean coal technologies to hasten their adoption into the commercial marketplace. Through the year 2030, electricity consumption in the United States is expected to grow by about 1 percent per year. The ability of coal-fired generation to help meet this demand could be limited by concerns over greenhouse gas emissions. While the Major Demonstrations performed to date

443

Renewable Hydrogen: Integration, Validation, and Demonstration  

SciTech Connect (OSTI)

This paper is about producing hydrogen through the electrolysis of water and using the hydrogen in a fuel cell or internal combustion engine generator to produce electricity during times of peak demand, or as a transportation fuel.

Harrison, K. W.; Martin, G. D.

2008-07-01T23:59:59.000Z

444

Demonstration and Deployment Successes: Sapphire Integrated Algal...  

Office of Environmental Management (EM)

Project The Promise and Challenge of Algae as Renewable Sources of Biofuels National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) Final Report...

445

Chapter 4 - Production Technology for Bioenergy Crops and Trees  

Science Journals Connector (OSTI)

Abstract New technologies for producing energy crops and trees based on fundamental studies have been developed to improve self-sufficiency in food and feed supplies in addition to achieving sustainable natural resources. Energy crops and trees with improved leaf growth, light interception of crop canopy, photosynthetic rate, lodging resistance, and saccharification efficiency of lignocellulose, among many other traits, need to be explored. DNA marker-assisted selection using genome information has been developed as a powerful tool for breeding new bioenergy crops and trees. In this chapter, the concept and basic technologies for producing biomass from herbaceous energy crops and trees, ecophysiological characteristics for high yield and biomass production, genetic analyses of the traits responsible for biomass production, and molecular breeding for improving these traits are discussed. The definitions of herbaceous energy crops for the first and second generations, agronomy and breeding technology for these crops are explained. Recent studies on woody cell wall formation and genetic improvements associated with biomass saccharification in energy crops and woods are introduced.

Tadashi Hirasawa; Taiichiro Ookawa; Shinya Kawai; Ryo Funada; Shinya Kajita

2014-01-01T23:59:59.000Z

446

Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute  

SciTech Connect (OSTI)

Today, carbon-rich fossil fuels, primarily oil, coal, and natural gas, provide 85% of the energy consumed in the U.S. As world demand increases, oil reserves may become rapidly depleted. Fossil fuel use increases CO{sub 2} emissions and raises the risk of global warming. The high energy content of liquid hydrocarbon fuels makes them the preferred energy source for all modes of transportation. In the U.S. alone, transportation consumes >13.8 million barrels of oil per day and generates 0.5 gigatons of carbon per year. This release of greenhouse gases has spurred research into alternative, nonfossil energy sources. Among the options (nuclear, concentrated solar thermal, geothermal, hydroelectric, wind, solar, and biomass), only biomass has the potential to provide a high-energy-content transportation fuel. Biomass is a renewable resource that can be converted into carbon-neutral transporation fuels. Currently, biofuels such as ethanol are produced largely from grains, but there is a large, untapped resource (estimated at more than a billion tons per year) of plant biomass that could be utilized as a renewable, domestic source of liquid fuels. Well-established processes convert the starch content of the grain into sugars that can be fermented to ethanol. The energy efficiency of starch-based biofuels is however not optimal, while plant cell walls (lignocellulose) represent a huge untapped source of energy. Plant-derived biomass contains cellulose, which is more difficult to convert to sugars; hemicellulose, which contains a diversity of carbohydrates that have to be efficiently degraded by microorganisms to fuels; and lignin, which is recalcitrant to degradation and prevents cost-effective fermentation. The development of cost-effective and energy-efficient processes to transform lignocellulosic biomass into fuels is hampered by significant roadblocks, including the lack of specifically developed energy crops, the difficulty in separating biomass components, low activity of enzymes used to deconstruct biomass, and the inhibitory effect of fuels and processing byproducts on organisms responsible for producing fuels from biomass monomers. The Joint BioEnergy Institute (JBEI) is a U.S. Department of Energy (DOE) Bioenergy Research Center that will address these roadblocks in biofuels production. JBEI draws on the expertise and capabilities of three national laboratories (Lawrence Berkeley National Laboratory (LBNL), Sandia National Laboratories (SNL), and Lawrence Livermore National Laboratory (LLNL)), two leading U.S. universities (University of California campuses at Berkeley (UCB) and Davis (UCD)), and a foundation (Carnegie Institute for Science, Stanford) to develop the scientific and technological base needed to convert the energy stored in lignocellulose into transportation fuels and commodity chemicals. Established scientists from the participating organizations are leading teams of researchers to solve the key scientific problems and develop the tools and infrastructure that will enable other researchers and companies to rapidly develop new biofuels and scale production to meet U.S. transportation needs and to develop and rapidly transition new technologies to the commercial sector. JBEI's biomass-to-biofuels research approach is based in three interrelated scientific divisions and a technologies division. The Feedstocks Division will develop improved plant energy crops to serve as the raw materials for biofuels. The Deconstruction Division will investigate the conversion of this lignocellulosic plant material to sugar and aromatics. The Fuels Synthesis Division will create microbes that can efficiently convert sugar and aromatics into ethanol and other biofuels. JBEI's cross-cutting Technologies Division will develop and optimize a set of enabling technologies including high-throughput, chipbased, and omics platforms; tools for synthetic biology; multi-scale imaging facilities; and integrated data analysis to support and integrate JBEI's scientific program.

Blanch, Harvey; Adams, Paul; Andrews-Cramer, Katherine; Frommer, Wolf; Simmons, Blake; Keasling, Jay

2008-01-18T23:59:59.000Z

447

Bioenergy and emerging biomass conversion technologies Hanne stergrd, Ris National Laboratory, Technical University of Denmark DTU, Denmark  

E-Print Network [OSTI]

Bioenergy and emerging biomass conversion technologies Hanne ?stergård, Risø National Laboratory in Denmark 8th May 2007 Background Bioenergy is an important topic to include in a foresight analysis of the world agricultural markets and Europe. In the recent Agricultural Outlook report from OECD-FAO1

448

Pacific Northwest Smart Grid Demonstration Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 megawatt lithium-ion battery * Intelligent distribution management * Commercial demand response * Demonstrates renewable integration For More inForMation: Kevin Whitener...

449

STATEMENT OF CONSIDERATIONS REQUEST BY ABENGOA BIOENERGY CORPORATION FOR AN ADVANCE WAIVER  

Broader source: Energy.gov (indexed) [DOE]

ABENGOA BIOENERGY CORPORATION FOR AN ADVANCE WAIVER ABENGOA BIOENERGY CORPORATION FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER A DOE COOPERATIVE AGREEMENT INITIALLY IDENTIFIED AS GOV WORKS NO. 04-03- CA-79759 AND NOW INCORPORATED BY REFERENCE AND CONTINUED AS DOE COOPERATIVE AGREEMENT NO. DE-FC36-03GO13142; W(A)-05-006; CH-1267 The Petitioner, Abengoa Bioenergy Corporation (Abengoa), has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above- identified cooperative agreement by its employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible to retair title to inventions pursuant to P.L 96-517, as amended, and National Laboratories. This agreement is a continuation of work begun under Gov Works Cooperative Agreement No. 04-03-CA-79759.

450

USDA and DOE Partnership Seeks to Develop Better Plants for Bioenergy |  

Broader source: Energy.gov (indexed) [DOE]

Partnership Seeks to Develop Better Plants for Partnership Seeks to Develop Better Plants for Bioenergy USDA and DOE Partnership Seeks to Develop Better Plants for Bioenergy September 2, 2010 - 12:00am Addthis WASHINGTON, Sept. 2, 2010 -- Energy Secretary Steven Chu and Agriculture Secretary Tom Vilsack today announced research awards under a joint DOE-USDA program aimed at improving and accelerating genetic breeding programs to create plants better suited for bioenergy production. The $8.9 million investment is part of the Obama Administration's broader effort to diversify the nation's energy portfolio and to accelerate the development of new energy technologies designed to decrease the nation's dependence on foreign oil. "Cost-effective, sustainable biofuels are crucial to building a clean energy economy," said Secretary Chu. "By harnessing the power of science

451

Bioenergy Pumps New Life into Pulp and Paper Mills | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy Pumps New Life into Pulp and Paper Mills Bioenergy Pumps New Life into Pulp and Paper Mills Bioenergy Pumps New Life into Pulp and Paper Mills December 13, 2011 - 4:12pm Addthis Old Town Fuel and Fiber, a former pulp mill, converts a portion of the wood chips used to make pulp to biofuels. | Energy Department photo. Old Town Fuel and Fiber, a former pulp mill, converts a portion of the wood chips used to make pulp to biofuels. | Energy Department photo. Neil Rossmeissl General Engineer What does this project do? Breathes new life into shuttered factories and mills. Saves and creates jobs. Despite Americans' voracious appetite for paper products -- a staggering 700 pounds per person annually -- America's pulp and paper industry has been struggling as of late due to competition from countries where

452

Move Over Flash Pyrolysis, There's a New Bioenergy Sheriff in Town |  

Broader source: Energy.gov (indexed) [DOE]

Move Over Flash Pyrolysis, There's a New Bioenergy Sheriff in Town Move Over Flash Pyrolysis, There's a New Bioenergy Sheriff in Town Move Over Flash Pyrolysis, There's a New Bioenergy Sheriff in Town December 16, 2011 - 12:10pm Addthis Jonathan Peters, a researcher at RTI International (an ARPA-E awardee), characterizes the water content of a bio-oil sample. | Courtesy of RTI International. Jonathan Peters, a researcher at RTI International (an ARPA-E awardee), characterizes the water content of a bio-oil sample. | Courtesy of RTI International. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs How does it work? This ARPA-E awardee removes the oxygen and other contaminants in the biomass to be turned into fuel with a novel "catalytic biomass pyrolysis" approach. This substance is more carbon efficient, requires less hydrogen to

453

Life cycle assessment of bioenergy systems: State of the art and future challenges  

Science Journals Connector (OSTI)

The use of different input data, functional units, allocation methods, reference systems and other assumptions complicates comparisons of LCA bioenergy studies. In addition, uncertainties and use of specific local factors for indirect effects (like land-use change and N-based soil emissions) may give rise to wide ranges of final results. In order to investigate how these key issues have been addressed so far, this work performs a review of the recent bioenergy LCA literature. The abundance of studies dealing with the different biomass resources, conversion technologies, products and environmental impact categories is summarized and discussed. Afterwards, a qualitative interpretation of the LCA results is depicted, focusing on energy balance, GHG balance and other impact categories. With the exception of a few studies, most \\{LCAs\\} found a significant net reduction in GHG emissions and fossil energy consumption when bioenergy replaces fossil energy.

Francesco Cherubini; Anders Hammer Strmman

2011-01-01T23:59:59.000Z

454

Move Over Flash Pyrolysis, There's a New Bioenergy Sheriff in Town |  

Broader source: Energy.gov (indexed) [DOE]

Move Over Flash Pyrolysis, There's a New Bioenergy Sheriff in Town Move Over Flash Pyrolysis, There's a New Bioenergy Sheriff in Town Move Over Flash Pyrolysis, There's a New Bioenergy Sheriff in Town December 16, 2011 - 12:10pm Addthis Jonathan Peters, a researcher at RTI International (an ARPA-E awardee), characterizes the water content of a bio-oil sample. | Courtesy of RTI International. Jonathan Peters, a researcher at RTI International (an ARPA-E awardee), characterizes the water content of a bio-oil sample. | Courtesy of RTI International. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs How does it work? This ARPA-E awardee removes the oxygen and other contaminants in the biomass to be turned into fuel with a novel "catalytic biomass pyrolysis" approach. This substance is more carbon efficient, requires less hydrogen to

455

Bioenergy Pumps New Life into Pulp and Paper Mills | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy Pumps New Life into Pulp and Paper Mills Bioenergy Pumps New Life into Pulp and Paper Mills Bioenergy Pumps New Life into Pulp and Paper Mills December 13, 2011 - 4:12pm Addthis Old Town Fuel and Fiber, a former pulp mill, converts a portion of the wood chips used to make pulp to biofuels. | Energy Department photo. Old Town Fuel and Fiber, a former pulp mill, converts a portion of the wood chips used to make pulp to biofuels. | Energy Department photo. Neil Rossmeissl General Engineer What does this project do? Breathes new life into shuttered factories and mills. Saves and creates jobs. Despite Americans' voracious appetite for paper products -- a staggering 700 pounds per person annually -- America's pulp and paper industry has been struggling as of late due to competition from countries where

456

DOE/EA-1472: Finding of No Significant Impact for the Commercial Demonstration of the Low NOx Burner/Separated Over-Fire Air Integration System Emission Reduction Technology (03/11/03)  

Broader source: Energy.gov (indexed) [DOE]

IMPACT IMPACT COMMERCIAL DEMONSRATION OF THE LOW NOx BURNER/SEPARATED OVER- FIRE AIR (LNB/SOFA) INTEGRATON SYSTEM EMISSION REDUCTION TECHNOLOGY HOLCOMB STATION SUNFLOWER ELECTRIC POWER CORPORATION FINNEY COUNTY, KANSAS AGENCY: U.S. Department of Energy (DOE) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: The DOE has prepared an Environmental Assessment (EA), to analyze the potential impacts of the commercial application of the Low-NOx Burner/Separated Over-Fire Air (LNB/SOFA) integration system to achieve nitrogen oxide (NOx) emissions reduction at Sunflower's Holcomb Unit No. 1 (Holcomb Station), located near Garden City, in Finney County, Kansas. The Holcomb Station would be modified in three distinct phases to demonstrate the synergistic effect of layering NO,

457

The biophysical link between climate, water, and vegetation in bioenergy agro-ecosystems  

Science Journals Connector (OSTI)

Abstract Land use change for bioenergy feedstocks is likely to intensify as energy demand rises simultaneously with increased pressure to minimize greenhouse gas emissions. Initial assessments of the impact of adopting bioenergy crops as a significant energy source have largely focused on the potential for bioenergy agroecosystems to provide global-scale climate regulating ecosystem services via biogeochemical processes. Such as those processes associated with carbon uptake, conversion, and storage that have the potential to reduce global greenhouse gas emissions (GHG). However, the expansion of bioenergy crops can also lead to direct biophysical impacts on climate through water regulating services. Perturbations of processes influencing terrestrial energy fluxes can result in impacts on climate and water across a spectrum of spatial and temporal scales. Here, we review the current state of knowledge about biophysical feedbacks between vegetation, water, and climate that would be affected by bioenergy-related land use change. The physical mechanisms involved in biophysical feedbacks are detailed, and interactions at leaf, field, regional, and global spatial scales are described. Locally, impacts on climate of biophysical changes associated with land use change for bioenergy crops can meet or exceed the biogeochemical changes in climate associated with rising GHG's, but these impacts have received far less attention. Realization of the importance of ecosystems in providing services that extend beyond biogeochemical GHG regulation and harvestable yields has led to significant debate regarding the viability of various feedstocks in many locations. The lack of data, and in some cases gaps in knowledge associated with biophysical and biochemical influences on landatmosphere interactions, can lead to premature policy decisions.

Justin E. Bagley; Sarah C. Davis; Matei Georgescu; Mir Zaman Hussain; Jesse Miller; Stephen W. Nesbitt; Andy VanLoocke; Carl J. Bernacchi

2014-01-01T23:59:59.000Z

458

Bioenergy Plants in Indonesia: Sorghum for Producing Bioethanol as an Alternative Energy Substitute of Fossil Fuels  

Science Journals Connector (OSTI)

Abstract Indonesia's energy demand is increasing every year. Bioenergy plants are expected to be one of the solutions to fill energy demand in Indonesia. Sorghum is a bioenergy plant that can be used in Indonesia for producing bioethanol. Sorghum bioethanol is produced from sorghum biomass waste processing results with fermentation process. Ethanol is derived from fermented sorghum which is about 40-55%. Sorghum bioethanol can be used as an alternative fuel that is renewable and can be used as a substitute for fossil fuels.

Rahayu Suryaningsih; Irhas

2014-01-01T23:59:59.000Z

459

Climate implications of algae-based bioenergy systems Andres Clarens, PhD  

E-Print Network [OSTI]

. These results differ in important ways from published work describing algae to biodiesel and could be the mostClimate implications of algae-based bioenergy systems Andres Clarens, PhD Assistant Professor Civil of algae and other nonconventional feedstocks, are being developed. This talk will explore several systems

Walter, M.Todd

460

Educated and Equipped: Jump-Start Your Career in the Bioenergy Industry  

Office of Energy Efficiency and Renewable Energy (EERE)

Are you a recent college graduate looking to jump-start your career? Whether you majored in engineering or English, science or political science, business or biology, there are numerous opportunities to use your skills and education in the emerging bioenergy industry.

Note: This page contains sample records for the topic "integrated demonstration bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

American Recovery and Reinvestment Act of 2009: Bioenergy Technologies Office Investments  

Broader source: Energy.gov [DOE]

The Bioenergy Technologies Office rewarded about $178 million in American Recovery and Reinvestment Act of 2009 funds; the projects accelerate advanced biofuels RD&D, speed the deployment of commercialization of biofuels, and further the U.S. bioindustry through market transformation.

462

Bioenergy Technologies Office Multi-Year Program Plan: May 2013 Update  

Broader source: Energy.gov [DOE]

This is the May 2013 Update to the Multi-Year Program Plan, which sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the RDD&D activities the Office will focus on over the next four years.

463

Hawai'i Bioenergy Master Plan Green Jobs, Biofuels Development, and  

E-Print Network [OSTI]

Hawai'i Bioenergy Master Plan Green Jobs, Biofuels Development, and Hawaii's Labor Market affect the labor market, as well as possible requirements for the industry. While the labor market policy makers and leaders consider how best to support biofuels. One major labor market question

464

Biomass and Bioenergy 30 (2006) 316320 How to recover more value from small pine trees  

E-Print Network [OSTI]

Biomass and Bioenergy 30 (2006) 316­320 How to recover more value from small pine trees: Essential of residual biomass. To offset the cost of handling this low-value timber, additional marketing options States market for such products. However, less is known of the capability of essential oils extracted

465

Optimizing Feedstock Logistics and Assessment of Hydrologic Impacts for Sustainable Bio-Energy Production  

E-Print Network [OSTI]

builder was used to automate the GIS analysis. Network analysis was used to find the best route to move the mobile pyrolysis units to new locations and to identify the closest refinery to transport the bio-crude oil. To produce bioenergy from feedstocks...

Ha, Mi-Ae 1979-

2012-12-11T23:59:59.000Z

466

Reducing effluent discharge and recovering bioenergy in an osmotic microbial fuel cell treating domestic wastewater  

E-Print Network [OSTI]

domestic wastewater Zheng Ge, Qingyun Ping, Li Xiao, Zhen He Department of Civil Engineering and Mechanics cell is developed to treat domestic wastewater. Wastewater effluent can be greatly reduced due to osmotic water extraction. Bioenergy recovered from wastewater can potentially support pumping system

467

BIOENERGY AND BIOFUELS Domestic wastewater treatment using multi-electrode continuous  

E-Print Network [OSTI]

BIOENERGY AND BIOFUELS Domestic wastewater treatment using multi-electrode continuous flow MFCs Heidelberg 2012 Abstract Treatment of domestic wastewater using microbial fuel cells (MFCs) will require to large changes in the chemical oxygen demand (COD) concentration within the reactor. Domestic wastewater

468

Feedstock Logistics of a Mobile Pyrolysis System and Assessment of Soil Loss Due to Biomass Removal for Bioenergy Production  

E-Print Network [OSTI]

The purpose of this study was to assess feedstock logistics for a mobile pyrolysis system and to quantify the amount of soil loss caused by harvesting agricultural feedstocks for bioenergy production. The analysis of feedstock logistics...

Bumguardner, Marisa

2012-10-19T23:59:59.000Z

469

How can accelerated development of bioenergy contribute to the future UK energy mix? Insights from a MARKAL modelling exercise  

Science Journals Connector (OSTI)

This work explores the potential contribution of bioenergy technologies to 60% and 80% carbon reductions in the UK energy system by 2050, by outlining the potential for accelerated technological development of...

Donna Clarke; Sophie Jablonski; Brighid Moran

2009-07-01T23:59:59.000Z

470

Shrew response to variable woody debris retention: Implications for sustainable forest bioenergy  

Science Journals Connector (OSTI)

Abstract Shrews are integral components of forest food webs and may rely on downed woody debris to provide microhabitats that satisfy high moisture and metabolic requirements. However, woody biomass harvests glean downed woody debris to use as a bioenergy feedstock. Biomass Harvesting Guidelines (BHGs) provide guidance on the amount and distribution of downed woody debris retained after harvest to ensure ecological sustainability of woody biomass harvesting and limit detrimental effects on wildlife. However, the success of Biomass Harvesting Guidelines at reaching sustainability goals, including conservation of wildlife habitat, has not been tested in an operational setting. Thus, we compared shrew captures among six woody biomass harvesting treatments in pine plantations in North Carolina, USA from April to August 20112014 (n=4) and Georgia, USA from April to August 20112013 (n=4). Treatments included: (1) woody biomass harvest with no BHGs; (2) 15% retention with woody biomass dispersed; (3) 15% retention with woody biomass clustered; (4) 30% retention with woody biomass dispersed; (5) 30% retention with woody biomass clustered; and (6) no woody biomass harvested. We sampled shrews with drift fence arrays and compared relative abundance of shrews among treatments using analysis of variance. Additionally, we used general linear regression models to evaluate the influence of downed woody debris volume and vegetation structure on shrew capture success at each drift fence for species with >100 captures/state/year. In 53,690 trap nights, we had 1,712 shrew captures representing three species, Cryptotis parva, Blarina carolinensis, and Sorex longirostris. We did not detect consistent differences in shrew relative abundance among woody biomass harvest treatments, but relative abundance of all species increased over time as vegetation became established. In North Carolina, total shrew capture success was negatively related to volume of downed woody debris within 50m of the drift fence array (P=0.05) in 2013 and positively related to bare groundcover in 2013 (P=0.02) and 2014 (P<0.01). In Georgia, total shrew capture success was negatively related to herbaceous groundcover (P<0.01) and leaf litter groundcover (P=0.02) and positively related to woody vegetation groundcover (P<0.01) and vertical vegetation structure (P=0.03) in 2013. Our results suggest that shrews in our study area were associated more with vegetation characteristics than downed woody debris and that woody biomass harvests may have little influence on shrew abundances in the southeastern United States Coastal Plain.

S.R. Fritts; C.E. Moorman; S.M. Grodsky; D.W. Hazel; J.A. Homyack; C.B. Farrell; S.B. Castleberry

2015-01-01T23:59:59.000Z

471

Effect of crop residue harvest on long-term crop yield, soil erosion, and carbon balance: tradeoffs for a sustainable bioenergy feedstock  

SciTech Connect (OSTI)

Agricultural residues are a potential feedstock for bioenergy production, if residue harvest can be done sustainably. The relationship between crop residue harvest, soil erosion, crop yield and carbon balance was modeled with the Erosion Productivity Impact Calculator/ Environment Policy Integrated Climate (EPIC) using a factorial design. Four crop rotations (winter wheat [Triticum aestivum (L.)] sunflower [Helianthus annuus]; spring wheat [Triticum aestivum (L.)] canola [Brassica napus]; corn [Zea mays L.] soybean [Glycine max (L.) Merr.]; and cotton [Gossypium hirsutum] peanut [Arachis hypogaea]) were simulated at four US locations each, under different topographies (0-10% slope), and management practices [crop residue removal rates (0-75%), conservation practices (no till, contour cropping, strip cropping, terracing)].

Gregg, Jay S.; Izaurralde, Roberto C.

2010-08-26T23:59:59.000Z

472

American Recovery and Reinvestment Act of 2009: Bioenergy Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

funds. 1 The projects the Office is supporting are intended to * Accelerate advanced biofuels research, development, and demonstration * Speed the deployment and commercialization...

473

Sustainable Management of Biogeochemical Cycles in Soils Amended with Bio-Resources from Livestock, Bioenergy, and Urban Systems  

E-Print Network [OSTI]

iii SUSTAINABLE MANAGEMENT OF BIOGEOCHEMICAL CYCLES IN SOILS AMENDED WITH BIO-RESOURCES FROM LIVESTOCK, BIOENERGY, AND URBAN SYSTEMS A Dissertation by RONNIE WAYNE SCHNELL Submitted to the Office of Graduate Studies of Texas A...-RESOURCES FROM LIVESTOCK, BIOENERGY, AND URBAN SYSTEMS A Dissertation by RONNIE WAYNE SCHNELL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY...

Schnell, Ronnie Wayne

2011-10-21T23:59:59.000Z

474

West Valley Demonstration Project  

Broader source: Energy.gov [DOE]

West Valley Demonstration Project compliance agreements, along with summaries of the agreements, can be viewed here.

475

Offsite demonstrations for MWLID technologies  

SciTech Connect (OSTI)

The goal of the Offsite Demonstration Project for Mixed Waste Landfill Integrated Demonstration (MWLID)-developed environmental site characterization and remediation technologies is to facilitate the transfer, use, and commercialization of these technologies to the public and private sector. The meet this goal, the project identified environmental restoration needs of mixed waste and/or hazardous waste landfill owners (Native American, municipal, DOE, and DoD); documenting potential demonstration sites and the contaminants present at each site; assessing the environmental regulations that would effect demonstration activities; and evaluating site suitability for demonstrating MWLID technologies at the tribal and municipal sites identified. Eighteen landfill sites within a 40.2-km radius of Sandia National Laboratories are listed on the CERCLIS Site/Event Listing for the state of New Mexico. Seventeen are not located within DOE or DoD facilities and are potential offsite MWLID technology demonstration sites. Two of the seventeen CERCLIS sites, one on Native American land and one on municipal land, were evaluated and identified as potential candidates for off-site demonstrations of MWLID-developed technologies. Contaminants potentially present on site include chromium waste, household/commercial hazardous waste, volatile organic compounds, and petroleum products. MWLID characterization technologies applicable to these sites include Magnetometer Towed Array, Cross-borehole Electromagnetic Imaging, SitePlanner {trademark}/PLUME, Hybrid Directional Drilling, Seamist{trademark}/Vadose Zone Monitoring, Stripping Analyses, and x-ray Fluorescence Spectroscopy for Heavy Metals.

Williams, C. [Sandia National Labs., Albuquerque, NM (United States); Gruebel, R. [Tech. Reps., Inc., Albuquerque, NM (United States)

1995-04-01T23:59:59.000Z

476

Cost-effective policy instruments for greenhouse gas emission reduction and fossil fuel substitution through bioenergy production in Austria  

Science Journals Connector (OSTI)

Climate change mitigation and security of energy supply are important targets of Austrian energy policy. Bioenergy production based on resources from agriculture and forestry is an important option for attaining these targets. To increase the share of bioenergy in the energy supply, supporting policy instruments are necessary. The cost-effectiveness of these instruments in attaining policy targets depends on the availability of bioenergy technologies. Advanced technologies such as second-generation biofuels, biomass gasification for power production, and bioenergy with carbon capture and storage (BECCS) will likely change the performance of policy instruments. This article assesses the cost-effectiveness of energy policy instruments, considering new bioenergy technologies for the year 2030, with respect to greenhouse gas emission (GHG) reduction and fossil fuel substitution. Instruments that directly subsidize bioenergy are compared with instruments that aim at reducing GHG emissions. A spatially explicit modeling approach is used to account for biomass supply and energy distribution costs in Austria. Results indicate that a carbon tax performs cost-effectively with respect to both policy targets if BECCS is not available. However, the availability of BECCS creates a trade-off between GHG emission reduction and fossil fuel substitution. Biofuel blending obligations are costly in terms of attaining the policy targets.

Johannes Schmidt; Sylvain Leduc; Erik Dotzauer; Erwin Schmid

2011-01-01T23:59:59.000Z

477

Integrated Process Configuration for High-Temperature Sulfur Mitigation during Biomass Conversion via Indirect Gasification  

Science Journals Connector (OSTI)

Integrated Process Configuration for High-Temperature Sulfur Mitigation during Biomass Conversion via Indirect Gasification ... National Bioenergy Center, National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, Colorado 80401, United States ... Similar activation energies (9-10 kcal/mol) were measured for ZnO and Zn-Ti-O sulfidation. ...

Abhijit Dutta; Singfoong Cheah; Richard Bain; Calvin Feik; Kim Magrini-Bair; Steven Phillips

2012-05-23T23:59:59.000Z

478

Biomass & Bioenergy, 2010, 34(7), 923-930, doi:10.1016/j.biombioe.2010.01.039. EEEnnneeerrrgggyyy rrreeeqqquuuiiirrreeemmmeeennnttt fffooorrr fffiiinnneee gggrrriiinnndddiiinnnggg ooofff tttooorrrrrreeefffiiieeeddd wwwooooooddd  

E-Print Network [OSTI]

Biomass & Bioenergy, 2010, 34(7), 923-930, doi:10.1016/j.biombioe.2010.01.039. 1 EEEnnneeerrrgggyyy,version1-3Aug2010 Author manuscript, published in "Biomass and Bioenergy 34, 7 (2010) 923-930" DOI : 10.1016/j.biombioe.2010.01.039 #12;Biomass & Bioenergy, 2010, 34(7), 923-930, doi:10.1016/j.biombioe.2010

Paris-Sud XI, Université de

479

Environmental assessment of the atlas bio-energy waste wood fluidized bed gasification power plant. Final report  

SciTech Connect (OSTI)

The Atlas Bio-Energy Corporation is proposing to develop and operate a 3 MW power plant in Brooklyn, New York that will produce electricity by gasification of waste wood and combustion of the produced low-Btu gas in a conventional package steam boiler coupled to a steam-electric generator. The objectives of this project were to assist Atlas in addressing the environmental permit requirements for the proposed power plant and to evaluate the environmental and economic impacts of the project compared to more conventional small power plants. The project`s goal was to help promote the commercialization of biomass gasification as an environmentally acceptable and economically attractive alternative to conventional wood combustion. The specific components of this research included: (1) Development of a permitting strategy plan; (2) Characterization of New York City waste wood; (3) Characterization of fluidized bed gasifier/boiler emissions; (4) Performance of an environmental impact analysis; (5) Preparation of an economic evaluation; and (6) Discussion of operational and maintenance concerns. The project is being performed in two phases. Phase I, which is the subject of this report, involves the environmental permitting and environmental/economic assessment of the project. Pending NYSERDA participation, Phase II will include development and implementation of a demonstration program to evaluate the environmental and economic impacts of the full-scale gasification project.

Holzman, M.I.

1995-08-01T23:59:59.000Z

480

DOE Joint Genome Institute: Mite-y Genomic Resources For Bioenergy Crop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

23, 2011 23, 2011 Mite-y Genomic Resources For Bioenergy Crop Protection WALNUT CREEK/BERKELEY, Calif.-For a pest that isn't quite the size of a comma on a keyboard, the two-spotted spider mite can do a disproportionate amount of damage. These web-spinners extract the nutrients they need from leaves of more than a thousand different plant species, including bioenergy feedstocks and food staples. The cost of chemically controlling spider mites to counteract reduced harvest yields hovers around $1 billion annually, reflecting their significant economic impact. spider mite Photo: The web-spinning two-spotted spider mite was sequenced at the DOE JGI. (M. Grbic) With a 90-million nucleotide genome, the smallest of those that belong to the group of animals with external skeletons or arthropods, the two-spotted

Note: This page contains sample records for the topic "integrated demonstration bioenergy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

BioEnergie Park Soesetal GmbH | Open Energy Information  

Open Energy Info (EERE)

BioEnergie Park Soesetal GmbH BioEnergie Park Soesetal GmbH Jump to: navigation, search Name BioEnergie-Park Soesetal GmbH Place Osterode, Lower Saxony, Germany Zip 37520 Sector Biomass Product Lower Saxony-based biomass project developer. Coordinates 53.695599°, 19.973301° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.695599,"lon":19.973301,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

482

Ethanol or Bioelectricity? Life Cycle Assessment of Lignocellulosic Bioenergy Use in Light-Duty Vehicles  

Science Journals Connector (OSTI)

The remaining unfermented material, which includes lignin, is combusted to generate process heat and electricity. ... Delivered feedstock is combusted within a biomass boiler, generating steam to drive a steam turbine electrical generator, and flue gas to dry delivered feedstock. ... Fossil energy use in the bioenergy pathways is associated primarily with three aspects of the life cycle: (i) in the vehicle cycle (production/disposal) stage, coal and natural gas are used extensively. ...

Jason M. Luk; Mohammad Pourbafrani; Bradley A. Saville; Heather L. MacLean

2013-09-09T23:59:59.000Z

483

Global bioenergy potential from high-lignin agricultural residue  

Science Journals Connector (OSTI)

...A proper treatment of the wastewater...gasification system has been...processing plants or urban...Either the waste stream from...pruning, weed control, pesticide...1999 ) Integrated biomass...Gasification systems . Energy Convers...Physico-chemical treatment of tar-containing...gasification plants . World Acad...farming systems and socio-economic...service by waste collection . Municipal...

Venugopal Mendu; Tom Shearin; J. Elliott Campbell; Jr; Jozsef Stork; Jungho Jae; Mark Crocker; George Huber; Seth DeBolt

2012-01-01T23:59:59.000Z

484

Bioenergy Chances and Limits German National Academy of Sciences Leopoldina  

E-Print Network [OSTI]

clean renewable energy carrier; its oxidation for production of heat or electricity yields water (H2 O carriers such as electricity, biomass or energy-rich metabolites. Since these process- es integrate fewer's population in a whole year (500 x 1018 J in 2010).3 Biological conversion of solar energy to H2 requireseffi

Roegner, Matthias

485

Global bioenergy potential from high-lignin agricultural residue  

Science Journals Connector (OSTI)

...black walnut nut industry, nut markets...by means of gasification process of...Agriculturaland wood waste potentials...Pilot-Plant gasification of olive stone...Bbiomass and Waste IX (Inst Gas...Integrated biomass gasification combined cycle...energy.gov/industry/distributedenergy...

Venugopal Mendu; Tom Shearin; J. Elliott Campbell; Jr; Jozsef Stork; Jungho Jae; Mark Crocker; George Huber; Seth DeBolt

2012-01-01T23:59:59.000Z

486

Genetic Mapping of Quantitative Trait Loci Associated with Bioenergy Traits, and The Assessment of Genetic Variability in Sweet Sorghum (Sorghum bicolor (L.). Moench).  

E-Print Network [OSTI]

??Sweet sorghum, a botanical variety of sorghum is a potential source of bioenergy because high sugar levels accumulate in its stalks. The objectives of this (more)

Lekgari, Aatshwaelwe Lekgari

2010-01-01T23:59:59.000Z

487

Investigation of management strategies for the production of sweet sorghum as a bioenergy crop and preservation of crop residue by the ensiling process.  

E-Print Network [OSTI]

??The objective of this project was to investigate management practices for sweet sorghum as a bioenergy crop in Iowa and its storability as an ensiled (more)

Cogdill, Todd Joseph

2008-01-01T23:59:59.000Z

488

Bioenergy production on degraded and marginal land : assessing its potentials, economic performance, and environmental impacts for different settings and geographical scales.  

E-Print Network [OSTI]

??Current global energy supply is primarily based on fossil fuels and is widely considered to be unsustainable. Bioenergy is considered an important option in making (more)

Wicke, B.

2011-01-01T23:59:59.000Z

489

LIMB Demonstration Project Extension and Coolside Demonstration  

SciTech Connect (OSTI)

This report presents results from the limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. LIMB is a furnace sorbent injection technology designed for the reduction of sulfur dioxide (SO[sub 2]) and nitrogen oxides (NO[sub x]) emissions from coal-fired utility boilers. The testing was conducted on the 105 Mwe, coal-fired, Unit 4 boiler at Ohio Edison's Edgewater Station in Lorain, Ohio. In addition to the LIMB Extension activities, the overall project included demonstration of the Coolside process for S0[sub 2] removal for which a separate report has been issued. The primary purpose of the DOE LIMB Extension testing, was to demonstrate the generic applicability of LIMB technology. The program sought to characterize the S0[sub 2] emissions that result when various calcium-based sorbents are injected into the furnace, while burning coals having sulfur content ranging from 1.6 to 3.8 weight percent. The four sorbents used included calcitic limestone, dolomitic hydrated lime, calcitic hydrated lime, and calcitic hydrated lime with a small amount of added calcium lignosulfonate. The results include those obtained for the various coal/sorbent combinations and the effects of the LIMB process on boiler and plant operations.

Goots, T.R.; DePero, M.J.; Nolan, P.S.

1992-11-10T23:59:59.000Z

490

SunShot Initiative: Research, Development, and Demonstration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research, Development, and Research, Development, and Demonstration to someone by E-mail Share SunShot Initiative: Research, Development, and Demonstration on Facebook Tweet about SunShot Initiative: Research, Development, and Demonstration on Twitter Bookmark SunShot Initiative: Research, Development, and Demonstration on Google Bookmark SunShot Initiative: Research, Development, and Demonstration on Delicious Rank SunShot Initiative: Research, Development, and Demonstration on Digg Find More places to share SunShot Initiative: Research, Development, and Demonstration on AddThis.com... Concentrating Solar Power Photovoltaics Systems Integration Research, Development, & Demonstration Distribution Grid Integration Transmission Grid Integration Solar Resource Assessment Technology Validation

491

NREL-United States/Brazil Bioenergy Technical Workshop | Open Energy  

Open Energy Info (EERE)

NREL-United States/Brazil Bioenergy Technical Workshop NREL-United States/Brazil Bioenergy Technical Workshop Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NREL-United States/Brazil Bioenergy Technical Workshop Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Renewable Energy, Biomass, - Biofuels Resource Type: Workshop, Training materials User Interface: Website Website: www.nrel.gov/international/ Country: Brazil South America Coordinates: -14.235004°, -51.92528° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-14.235004,"lon":-51.92528,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

492

The scientometric evaluation of the research on the production of bioenergy from biomass  

Science Journals Connector (OSTI)

The present study explores the characteristics of the literature on the production of bioenergy from biomass published during the last three decades, based on the databases of Science Citation Index-Expanded (SCIE) and Social Sciences Citation Index (SSCI) and its implications using the scientometric techniques. The results of this study reveal that the research output in this field has grown exponentially during this period reaching to 5892 papers in total with paralleling enormous changes in the research landscape. Papers are mostly journal articles, reviews, and proceedings, being predominantly in English. The US is the most publishing single country producing 27% of the output, but lagging significantly behind the Europe as a whole (near 50%). The Chinese Academy of Sciences is the most contributing institution where the most publishing author is A Demirbas. Biomass & Bioenergy is the most publishing journal whilst, Energy & Fuels is the most published subject area. The total number of citations is 82,732, giving a ratio for the Average Citations per Item as 13.83 and H-index as 102. The results of this first-ever such study of its kind show that the scientometric analysis has a great potential to gain valuable insights into the evolution of the research on the production of bioenergy from biomass.

Ozcan Konur

2012-01-01T23:59:59.000Z

493

Logistics cost analysis of rice residues for second generation bioenergy production in Ghana  

Science Journals Connector (OSTI)

Abstract This study explores the techno-economic potential of rice residues as a bioenergy resource to meet Ghanas energy demands. Major rice growing regions of Ghana have 7090% of residues available for bioenergy production. To ensure cost-effective biomass logistics, a thorough cost analysis was made for two bioenergy routes. Logistics costs for a 5MWe straw combustion plant were 39.01, 47.52 and 47.89USD/t for Northern, Ashanti and Volta regions respectively. Logistics cost for a 0.25MWe husk gasification plant (with roundtrip distance 10km) was 2.64USD/t in all regions. Capital cost (6672%) contributes significantly to total logistics costs of straw, however for husk logistics, staff (40%) and operation and maintenance costs (46%) dominate. Baling is the major processing logistic cost for straw, contributing to 4648% of total costs. Scale of straw unit does not have a large impact on logistic costs. Transport distance of husks has considerable impact on logistic costs.

Pooja Vijay Ramamurthi; Maria Cristina Fernandes; Per Sieverts Nielsen; Clemente Pedro Nunes

2014-01-01T23:59:59.000Z

494

Molecular vibration demonstrations  

Science Journals Connector (OSTI)

Molecular vibration demonstrations ... Two dynamic models that illustrate the normal-mode vibrations of the water and benzene molecules. ...

George Turrell; Robert Demol

1987-01-01T23:59:59.000Z

495

Engine ground demonstration test approach  

SciTech Connect (OSTI)

The hardware portion of the current phase of the Integrated Solar Upper Stage (ISUS) program culminates in a system ground demonstration test. The potential application of ISUS technology to a wide array of future missions complicates the process of selecting from among demonstration system design options and test approaches. The approach to this system demonstration has been to maximize system technology readiness level for the entire array of potential missions within the constraints of the program. To this end, system design and test operations planning has been carried out with a premium on demonstrating those elements of the system common to all missions. In addition, test planning has been managed to allow margin for testing those portions of the system envelope needed to confirm acceptable operation for scenarios within the mission set that are specific to a given mission or mission type. Examples drawn from the specific Engine Ground Demonstration (EGD) design selections are used to illuminate this approach, with the result that the EGD system design is not only described, but the reasons for its particular characteristics are made evident.

Kudija, C.T. [Rockwell Aerospace, Canoga Park, CA (United States). Rocketdyne Div.

1996-12-31T23:59:59.000Z

496

Radiation Emergency Procedure Demonstrations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Managing Radiation Emergencies Managing Radiation Emergencies Procedure Demonstrations Procedure Demonstrations Note: RealPlayer is needed for listening to the narration that accompany these demonstrations. Real Player Dressing To Prevent the Spread of Radioactive Contamination This demonstration shows how your team can dress to prevent the spread of radioactive contamination. Click to begin presentation on dressing to prevent the spread of radioactive contamination. Preparing The Area This demonstration shows basic steps you can take to gather equipment and prepare a room to receive a patient who may be contaminated with radioactive material. Click to begin presentation on preparing a room to receive a radioactive contaminated patient. Removing Contaminated Clothing This demonstration shows the procedure for removing clothing from a patient who may be contaminated with radioactive material.

497

LIMB demonstration project extension  

SciTech Connect (OSTI)

The purpose of the DOE limestone injection multistage burner (LIMB) Demonstration Project Extension is to extend the data base on LIMB technology and to expand DOE's list of Clean Coal Technologies by demonstrating the Coolside process as part of the project. The main objectives of this project are: to demonstrate the general applicability of LIMB technology by testing 3 coals and 4 sorbents (total of 12 coal/sorbent combinations) at the Ohio Edison Edgewater plant; and to demonstrate that Coolside is a viable technology for improving precipitator performance and reducing sulfur dioxide emissions while acceptable operability is maintained. Progress is reported. 3 figs.

Not Available

1990-09-21T23:59:59.000Z

498

West Valley Demonstration Project  

Broader source: Energy.gov [DOE]

The West Valley Demonstration Project came into being through the West Valley Demonstration Project Act of 1980. The Act requires that the DOE is responsible for solidifying the high-level waste, disposing of waste created by the solidification, and decommissioning the facilities used in the process.

499

MONTANA STATE UNIVERSITY DEPARTMENT OF LAND RESOURCES & ENVIRONMENTAL SCIENCES Degree Requirements for a B. S. in Sustainable Foods & Bioenergy Systems Agroecology Option 20142015 Catalog  

E-Print Network [OSTI]

Requirements for a B. S. in Sustainable Foods & Bioenergy Systems Agroecology Option 20142015 Catalog Name ENSC 110 Land Resources & Environmental Sciences 3 F SFBS 146 Intro Sust Food/Bioenergy Systems 3) Vegetable Production 3 F HORT 345 Organic Market Gardening 3 Su NASX 415 (even years) Native Food Systems 3

Maxwell, Bruce D.

500

Core Drilling Demonstration  

Broader source: Energy.gov [DOE]

Tank Farms workers demonstrate core drilling capabilities for Hanford single-shell tanks. Core drilling is used to determine the current condition of each tank to assist in the overall assessment...