Powered by Deep Web Technologies
Note: This page contains sample records for the topic "integrated coal-gasification combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Integrated Coal Gasification Power Plant Credit (Kansas)  

Broader source: Energy.gov [DOE]

Integrated Coal Gasification Power Plant Credit states that an income taxpayer that makes a qualified investment in a new integrated coal gasification power plant or in the expansion of an existing...

2

Combined cycle power plant incorporating coal gasification  

DOE Patents [OSTI]

A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

Liljedahl, Gregory N. (Tariffville, CT); Moffat, Bruce K. (Simsbury, CT)

1981-01-01T23:59:59.000Z

3

Integration of carbonate fuel cells with advanced coal gasification systems  

SciTech Connect (OSTI)

Carbonate fuel cells have attributes which make them ideally suited to operate on coal-derived fuel gas; they can convert the methane, hydrogen, and carbon monoxide present in coal derived fuel gas directly to electricity, are not subject to thermodynamic cycle limits as are heat engines, and operate at temperatures compatible with coal gasifiers. Some new opportunities for improved efficiency have been identified in integrated coal gasification/carbonate fuel cells which take advantage of low temperature catalytic coal gasification producing a methane-rich fuel gas, and the internal methane reforming capabilities of Energy Research Corporation`s carbonate fuel cells. By selecting the appropriate operating conditions and catalyst in the gasifier, methane formation is maximized to improve gasification efficiency and to take advantage of the heat management aspects of the internal reforming carbonate fuel cell. These advanced integrated gasification/carbonate fuel cell systems are projected to have better efficiencies than gasification/carbonate fuel cell systems employing conventional gasification, and also competing non-fuel cell systems. These improved efficiencies would be accompanied by a corresponding reduction in impact on the environment as well.

Steinfeld, G. [Energy Research Corp., Danbury, CT (United States); Meyers, S.J. [Fluor Daniel, Inc., Irvine, CA (United States); Hauserman, W.B. [North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center

1992-12-01T23:59:59.000Z

4

Integration of carbonate fuel cells with advanced coal gasification systems  

SciTech Connect (OSTI)

Carbonate fuel cells have attributes which make them ideally suited to operate on coal-derived fuel gas; they can convert the methane, hydrogen, and carbon monoxide present in coal derived fuel gas directly to electricity, are not subject to thermodynamic cycle limits as are heat engines, and operate at temperatures compatible with coal gasifiers. Some new opportunities for improved efficiency have been identified in integrated coal gasification/carbonate fuel cells which take advantage of low temperature catalytic coal gasification producing a methane-rich fuel gas, and the internal methane reforming capabilities of Energy Research Corporation's carbonate fuel cells. By selecting the appropriate operating conditions and catalyst in the gasifier, methane formation is maximized to improve gasification efficiency and to take advantage of the heat management aspects of the internal reforming carbonate fuel cell. These advanced integrated gasification/carbonate fuel cell systems are projected to have better efficiencies than gasification/carbonate fuel cell systems employing conventional gasification, and also competing non-fuel cell systems. These improved efficiencies would be accompanied by a corresponding reduction in impact on the environment as well.

Steinfeld, G. (Energy Research Corp., Danbury, CT (United States)); Meyers, S.J. (Fluor Daniel, Inc., Irvine, CA (United States)); Hauserman, W.B. (North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center)

1992-01-01T23:59:59.000Z

5

Coal Gasification Report.indb  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Coal Integrated Coal Gasification Combined Cycle: Market Penetration Recommendations and Strategies Produced for the Department of Energy (DOE)/ National Energy Technology Laboratory (NETL) and the Gasification Technologies Council (GTC) September 2004 Coal-Based Integrated Gasification Combined Cycle: Market Penetration Strategies and Recommendations Final Report Study Performed by:

6

Coal Gasification for Power Generation, 3. edition  

SciTech Connect (OSTI)

The report provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered include: an overview of Coal Generation including its history, the current market environment, and the status of coal gasification; a description of gasification technology including processes and systems; an analysis of the key business factors that are driving increased interest in coal gasification; an analysis of the barriers that are hindering the implementation of coal gasification projects; a discussion of Integrated Gasification Combined Cycle (IGCC) technology; an evaluation of IGCC versus other generation technologies; a discussion of IGCC project development options; a discussion of the key government initiatives supporting IGCC development; profiles of the key gasification technology companies participating in the IGCC market; and, a detailed description of existing and planned coal IGCC projects.

NONE

2007-11-15T23:59:59.000Z

7

Coal Gasification  

Broader source: Energy.gov [DOE]

DOE's Office of Fossil Energy supports activities to advance coal-to-hydrogen technologies, specifically via the process of coal gasification with sequestration. DOE anticipates that coal...

8

Coal-gasification/MHD/steam-turbine combined-cycle (GMS) power generation  

SciTech Connect (OSTI)

The coal-gasification/MHD/steam-turbine combined cycle (GMS) refers to magnetohydrodynamic (MHD) systems in which coal gasification is used to supply a clean fuel (free of mineral matter and sulfur) for combustion in an MHD electrical power plant. Advantages of a clean-fuel system include the elimination of mineral matter or slag from all components other than the coal gasifier and gas cleanup system; reduced wear and corrosion on components; and increased seed recovery resulting from reduced exposure of seed to mineral matter or slag. Efficiencies in some specific GMS power plants are shown to be higher than for a comparably sized coal-burning MHD power plant. The use of energy from the MHD exhaust gas to gasify coal (rather than the typical approach of burning part of the coal) results in these higher efficiencies.

Lytle, J.M.; Marchant, D.D.

1980-11-01T23:59:59.000Z

9

Chemical-looping combustion in combination with integrated coal gasification -- A way to avoid CO{sub 2} emission from coal fired power plants without a significant decrease in net power efficiency  

SciTech Connect (OSTI)

Observation of the increased concentration of carbon dioxide, CO{sub 2}, in the atmosphere and the thereto suspected connected global warming effect has made prevention of CO{sub 2} emission from power plants an important field of research. Today, most fuels used in thermal power plants are fossil fuels like oil, coal or natural gas which upon combustion gives rise to a net release of CO{sub 2}. To avoid this emission, different gas separation techniques like membrane separation and absorption have been suggested to separate CO{sub 2} from the other exhaust gases before the exhaust is released into the atmosphere. This separation is, however, estimated to be rather costly due to the large volume of dilute gas that needs to be treated and the energy consumed in the separation process. In chemical-looping combustion (CLC), CO{sub 2} and the other combustion products are already separated in the combustion process. This is because fuel and air never enter the same reactor. Instead of oxidizing the fuel with oxygen from the combustion air, the fuel is oxidized by an oxygen carrier, that is, an oxygen containing compound, for instance a metal oxide. Chemical-looping combustion is also thought to result in a higher fuel energy conversion efficiency. It is possible to recover some of the heat from the exhaust within the CLC system. In this paper, estimations of the performance of a chemical-looping combustion combined cycle system with integrated coal gasification and NiO, Fe{sub 2}O{sub 3} or Mn{sub 3}O{sub 4} as an oxygen carrier is compared to the performance of a similarly simulated conventional IGCC-system. Calculations show that the systems reach about the same net power efficiencies but then the chemical-looping systems have an added advantage of CO{sub 2} separation.

Anheden, M.; Svedberg, G. [Royal Inst. of Tech., Stockholm (Sweden)

1996-12-31T23:59:59.000Z

10

NETL: Coal Gasification Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal Gasification Systems News Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International Activity Program Plan...

11

Coal gasification development intensifies  

Science Journals Connector (OSTI)

Coal gasification development intensifies ... Three almost simultaneous developments in coal gasification, although widely divergent in purpose and geography, rapidly are accelerating the technology's movement into an era of commercial exploitation. ... A plant to be built in the California desert will be the first commercialsize coal gasification power plant in the U.S. In West Germany, synthesis gas from a coal gasification demonstration plant is now being used as a chemical feedstock, preliminary to scaleup of the process to commercial size. ...

1980-02-25T23:59:59.000Z

12

Coal gasification for power generation. 2nd ed.  

SciTech Connect (OSTI)

The report gives an overview of the opportunities for coal gasification in the power generation industry. It provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered in the report include: An overview of coal generation including its history, the current market environment, and the status of coal gasification; A description of gasification technology including processes and systems; An analysis of the key business factors that are driving increased interest in coal gasification; An analysis of the barriers that are hindering the implementation of coal gasification projects; A discussion of Integrated Gasification Combined Cycle (IGCC) technology; An evaluation of IGCC versus other generation technologies; A discussion of IGCC project development options; A discussion of the key government initiatives supporting IGCC development; Profiles of the key gasification technology companies participating in the IGCC market; and A description of existing and planned coal IGCC projects.

NONE

2006-10-15T23:59:59.000Z

13

Entrainment Coal Gasification Modeling  

Science Journals Connector (OSTI)

Entrainment Coal Gasification Modeling ... Equivalent Reactor Network Model for Simulating the Air Gasification of Polyethylene in a Conical Spouted Bed Gasifier ... Equivalent Reactor Network Model for Simulating the Air Gasification of Polyethylene in a Conical Spouted Bed Gasifier ...

C. Y. Wen; T. Z. Chaung

1979-10-01T23:59:59.000Z

14

Design of advanced fossil-fuel systems (DAFFS): a study of three developing technologies for coal-fired, base-load electric power generation. Integrated coal gasification/combined cycle power plant with Texaco gasification process  

SciTech Connect (OSTI)

The objectives of this report are to present the facility description, plant layouts and additional information which define the conceptual engineering design, and performance and cost estimates for the Texaco Integrated Gasification Combined Cycle (IGCC) power plant. Following the introductory comments, the results of the Texaco IGCC power plant study are summarized in Section 2. In Section 3, a description of plant systems and facilities is provided. Section 4 includes pertinent performance information and assessments of availability, natural resource requirements and environmental impact. Estimates of capital costs, operation and maintenance costs and cost of electricity are presented in Section 5. A Bechtel Group, Inc. assessment and comments on the designs provided by Burns and Roe-Humphreys and Glasgow Synthetic Fuel, Inc. are included in Section 6. The design and cost estimate reports which were prepared by BRHG for those items within their scope of responsibility are included as Appendices A and B, respectively. Appendix C is an equipment list for items within the BGI scope. The design and cost estimate classifications chart referenced in Section 5 is included as Appendix D. 8 references, 17 figures, 15 tables.

Not Available

1983-06-01T23:59:59.000Z

15

Design of advanced fossil-fuel systems (DAFFS): a study of three developing technologies for coal-fired, base-load electric power generation. Integrated coal-gasification/combined power plant with BGC/Lurgi gasification process  

SciTech Connect (OSTI)

The objectives of this report are to present the facility description, plant layouts and additional information which define the conceptual engineering design, and performance and cost estimates for the BGC/Lurgi Integrated Gasification Combined Cycle (IGCC) power plant. Following the introductory comments, the results of the British Gas Corporation (BGC)/Lurgi IGCC power plant study are summarized in Section 2. In Secion 3, a description of plant systems and facilities is provided. Section 4 includes pertinent performance information and assessments of availability, natural resource requirements and environmental impact. Estimates of capital costs, operating and maintenance costs and cost of electricity are presented in Section 5. A Bechtel Group Inc. (BGI) assessment and comments on the designs provided by Burns and Roe-Humphreys and Glasgow Synthetic Fuels, Inc. (BRHG) are included in Section 6. The design and cost estimate reports which were prepared by BRHG for those items within their scope of responsibility are included as Appendices A and B, respectively. Apendix C is an equipment list for items within the BGI scope. The design and cost estimate classifications chart referenced in Section 5 is included as Appendix D. 8 references, 18 figures, 5 tables.

Not Available

1983-06-01T23:59:59.000Z

16

Status of Coal Gasification: 1977  

Science Journals Connector (OSTI)

High-pressure technology is important to coal gasification for several reasons. When the end product ... of high pressures in all types of coal gasification reduces the pressure drop throughout the equipment,...

F. C. Schora; W. G. Bair

1979-01-01T23:59:59.000Z

17

Incentives boost coal gasification  

SciTech Connect (OSTI)

Higher energy prices are making technologies to gasify the USA's vast coal reserves attractive again. The article traces the development of coal gasification technology in the USA. IGCC and industrial gasification projects are now both eligible for a 20% investment tax credit and federal loan guarantees can cover up to 80% of construction costs. 4 photos.

Hess, G.

2006-01-16T23:59:59.000Z

18

Coal gasification 2006: roadmap to commercialization  

SciTech Connect (OSTI)

Surging oil and gas prices, combined with supply security and environmental concerns, are prompting power generators and industrial firms to further develop coal gasification technologies. Coal gasification, the process of breaking down coal into its constituent chemical components prior to combustion, will permit the US to more effectively utilize its enormous, low cost coal reserves. The process facilitates lower environmental impact power generation and is becoming an increasingly attractive alternative to traditional generation techniques. The study is designed to inform the reader as to this rapidly evolving technology, its market penetration prospects and likely development. Contents include: Clear explanations of different coal gasification technologies; Emissions and efficiency comparisons with other fuels and technologies; Examples of US and global gasification projects - successes and failures; Commercial development and forecast data; Gasification projects by syngas output; Recommendations for greater market penetration and commercialization; Current and projected gasification technology market shares; and Recent developments including proposals for underground gasification process. 1 app.

NONE

2006-05-15T23:59:59.000Z

19

Catalytic Coal Gasification Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Catalytic Coal Gasification Process Catalytic Coal Gasification Process for the Production of Methane-Rich Syngas Opportunity Research is active on the patent pending technology, titled "Production of Methane-Rich Syngas from Fuels Using Multi-functional Catalyst/Capture Agent." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview Reducing pollution emitted by coal and waste power plants in an economically viable manner and building power plants that co-generate fuels and chemicals during times of low electricity demand are pressing goals for the energy industry. One way to achieve these goals in an economically viable manner is through the use of a catalytic gasifier that

20

Modelling coal gasification  

Science Journals Connector (OSTI)

Coal gasification processes in a slurry-feed-type entrained-flow gasifier are studied. Novel simulation methods as well as numerical results are presented. We use the vorticity-stream function method to study the characteristics of gas flow and a scalar potential function is introduced to model the mass source terms. The random trajectory model is employed to describe the behaviour of slurry-coal droplets. Very detailed results regarding the impact of the O2/coal ratio on the distribution of velocity, temperature and concentration are obtained. Simulation results show that the methods are feasible and can be used to study a two-phase reacting flow efficiently.

Xiang Jun Liu; Wu Rong Zhang; Tae Jun Park

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated coal-gasification combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

PNNL Coal Gasification Research  

SciTech Connect (OSTI)

This report explains the goals of PNNL in relation to coal gasification research. The long-term intent of this effort is to produce a syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in materials, catalysts, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for 4 hours using coal feedstock. In addition, system modifications to increase operational flexibility and reliability or accommodate other fuel sources that can be used for syngas production could be useful.

Reid, Douglas J.; Cabe, James E.; Bearden, Mark D.

2010-07-28T23:59:59.000Z

22

Coal gasification vessel  

DOE Patents [OSTI]

A vessel system (10) comprises an outer shell (14) of carbon fibers held in a binder, a coolant circulation mechanism (16) and control mechanism (42) and an inner shell (46) comprised of a refractory material and is of light weight and capable of withstanding the extreme temperature and pressure environment of, for example, a coal gasification process. The control mechanism (42) can be computer controlled and can be used to monitor and modulate the coolant which is provided through the circulation mechanism (16) for cooling and protecting the carbon fiber and outer shell (14). The control mechanism (42) is also used to locate any isolated hot spots which may occur through the local disintegration of the inner refractory shell (46).

Loo, Billy W. (Oakland, CA)

1982-01-01T23:59:59.000Z

23

Beluga Coal Gasification - ISER  

SciTech Connect (OSTI)

ISER was requested to conduct an economic analysis of a possible 'Cook Inlet Syngas Pipeline'. The economic analysis was incorporated as section 7.4 of the larger report titled: 'Beluga Coal Gasification Feasibility Study, DOE/NETL-2006/1248, Phase 2 Final Report, October 2006, for Subtask 41817.333.01.01'. The pipeline would carry CO{sub 2} and N{sub 2}-H{sub 2} from a synthetic gas plant on the western side of Cook Inlet to Agrium's facility. The economic analysis determined that the net present value of the total capital and operating lifecycle costs for the pipeline ranges from $318 to $588 million. The greatest contributor to this spread is the cost of electricity, which ranges from $0.05 to $0.10/kWh in this analysis. The financial analysis shows that the delivery cost of gas may range from $0.33 to $0.55/Mcf in the first year depending primarily on the price for electricity.

Steve Colt

2008-12-31T23:59:59.000Z

24

A Stoichiometric Analysis of Coal Gasification  

Science Journals Connector (OSTI)

A Stoichiometric Analysis of Coal Gasification ... Gasification of New Zealand Coals: A Comparative Simulation Study ... Gasification of New Zealand Coals: A Comparative Simulation Study ...

James Wei

1979-07-01T23:59:59.000Z

25

Status of health and environmental research relative to coal gasification 1976 to the present  

SciTech Connect (OSTI)

Health and environmental research relative to coal gasification conducted by Argonne National Laboratory, the Inhalation Toxicology Research Institute, and Oak Ridge National Laboratory under DOE sponsorship is summarized. The studies have focused on the chemical and toxicological characterization of materials from a range of process streams in five bench-scale, pilot-plant and industrial gasifiers. They also address ecological effects, industrial hygiene, environmental control technology performance, and risk assessment. Following an overview of coal gasification technology and related environmental concerns, integrated summaries of the studies and results in each area are presented and conclusions are drawn. Needed health and environmental research relative to coal gasification is identified.

Wilzbach, K.E.; Reilly, C.A. Jr. (comps.)

1982-10-01T23:59:59.000Z

26

Improved catalysts for carbon and coal gasification  

DOE Patents [OSTI]

This invention relates to improved catalysts for carbon and coal gasification and improved processes for catalytic coal gasification for the production of methane. The catalyst is composed of at least two alkali metal salts and a particulate carbonaceous substrate or carrier is used. 10 figures, 2 tables.

McKee, D.W.; Spiro, C.L.; Kosky, P.G.

1984-05-25T23:59:59.000Z

27

Integrated Sensing and Controls for Coal Gasification - Development of Model-Based Controls for GE's Gasifier and Syngas Cooler  

SciTech Connect (OSTI)

This report summarizes the achievements and final results of this program. The objective of this program is to develop a comprehensive systems approach to integrated design of sensing and control systems for an Integrated Gasification Combined Cycle (IGCC) plant, using advanced model-based techniques. In particular, this program is focused on the model-based sensing and control system design for the core gasification section of an IGCC plant. The overall approach consists of (i) developing a first-principles physics-based dynamic model of the gasification section, (ii) performing model-reduction where needed to derive low-order models suitable for controls analysis and design, (iii) developing a sensing system solution combining online sensors with model-based estimation for important process variables not measured directly, and (iv) optimizing the steady-state and transient operation of the plant for normal operation as well as for startup using model predictive controls (MPC). Initially, available process unit models were implemented in a common platform using Matlab/Simulink{reg_sign}, and appropriate model reduction and model updates were performed to obtain the overall gasification section dynamic model. Also, a set of sensor packages were developed through extensive lab testing and implemented in the Tampa Electric Company IGCC plant at Polk power station in 2009, to measure temperature and strain in the radiant syngas cooler (RSC). Plant operation data was also used to validate the overall gasification section model. The overall dynamic model was then used to develop a sensing solution including a set of online sensors coupled with model-based estimation using nonlinear extended Kalman filter (EKF). Its performance in terms of estimating key unmeasured variables like gasifier temperature, carbon conversion, etc., was studied through extensive simulations in the presence sensing errors (noise and bias) and modeling errors (e.g. unknown gasifier kinetics, RSC fouling). In parallel, an MPC solution was initially developed using ideal sensing to optimize the plant operation during startup pre-heating as well as steady state and transient operation under normal high-pressure conditions, e.g. part-load, base-load, load transition and fuel changes. The MPC simulation studies showed significant improvements both for startup pre-heating and for normal operation. Finally, the EKF and MPC solutions were coupled to achieve the integrated sensing and control solution and its performance was studied through extensive steady state and transient simulations in the presence of sensor and modeling errors. The results of each task in the program and overall conclusions are summarized in this final report.

Aditya Kumar

2010-12-30T23:59:59.000Z

28

Coal Gasification in Australia  

Science Journals Connector (OSTI)

... P. S. Andrews gave a full account of the Federal project for the pressure gasification of non-coking coals for the combined purpose of town's gas ' and the ... of town's gas ' and the production of synthetic liquid fuel. Work on the gasification of brown coal in. Victoria was commenced in 1931 by the technical staff of ...

1955-06-11T23:59:59.000Z

29

Underground Coal Gasification in the USSR  

Science Journals Connector (OSTI)

By accomplishing in a single operation the extraction of coal and its conversion into a gaseous fuel, underground gasification makes it possible to avoid the heavy capital investments required for coal gasification

1983-01-01T23:59:59.000Z

30

Underground Coal Gasification at Tennessee Colony  

E-Print Network [OSTI]

The Tennessee Colony In Situ Coal Gasification Project conducted by Basic Resources Inc. is the most recent step in Texas Utilities Company's ongoing research into the utilization of Texas lignite. The project, an application of the Soviet...

Garrard, C. W.

1979-01-01T23:59:59.000Z

31

The Role of Oxygen in Coal Gasification  

E-Print Network [OSTI]

Air Products supplies oxygen to a number of coal gasification and partial oxidation facilities worldwide. At the high operating pressures of these processes, economics favor the use of 90% and higher oxygen purities. The effect of inerts...

Klosek, J.; Smith, A. R.; Solomon, J.

32

Environmental impact and techno-economic analysis of the coal gasification process with/without CO2 capture  

Science Journals Connector (OSTI)

Abstract Coal gasification, the technology for high-efficient utilization of coal, has been widely used in China. However, it suffers from high CO2 emissions problem due to the carbon-rich character of coal. To reduce CO2 emissions, different CO2 capture technologies are developed and integrated into the coal gasification based processes. However, involving CO2 capture would result in energetic and economic penalty. This paper analyses three cases of coal gasification processes from environmental, technical, and economical points of view. These processes are (1) a conventional coal gasification process; (2) a coal gasification process with CO2 capture and sequestration, in which CO2 is stored by mineral sequestration; (3) a coal gasification process with CO2 capture and utilization, in which CO2 is reused to produce syngas. The results show that the coal gasification process with CO2 capture and sequestration has advantage only in environmental aspect compared to the conventional process. The process with CO2 capture and utilization has advantages in both technical and environmental aspects while disadvantage in economic aspect. However, if the carbon tax higher than 15 USD/t CO2 is introduced, this disadvantage will be negligible.

Yi Man; Siyu Yang; Dong Xiang; Xiuxi Li; Yu Qian

2014-01-01T23:59:59.000Z

33

Apparatus for fixed bed coal gasification  

DOE Patents [OSTI]

An apparatus for fixed-bed coal gasification is described in which coal such as caking coal is continuously pyrolyzed with clump formation inhibited, by combining the coal with a combustible gas and an oxidant, and then continually feeding the pyrolyzed coal under pressure and elevated temperature into the gasification region of a pressure vessel. The materials in the pressure vessel are allowed to react with the gasifying agents in order to allow the carbon contents of the pyrolyzed coal to be completely oxidized. The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

Sadowski, Richard S. (Greenville, SC)

1992-01-01T23:59:59.000Z

34

Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems  

SciTech Connect (OSTI)

Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this period, we analyzed several coated and exposed samples of 409 steel by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX), and report on the findings of four samples: (1) Analysis of two porous coupons after exposure to the porous metal particulate filter of the coal gasification power plant at 370 C for 2140 hours revealed that corrosion takes place in the bulk of the sample while the most external zone surface survived the test. (2) Coating and characterization of several porous 409 steel coupons after being coated with nitrides of Ti, Al and/or Si showed that adjusting experimental conditions results in thicker coatings in the bulk of the sample. (3) Analysis of coupons exposed to simulated coal gas at 370 C for 300 hours showed that a better corrosion resistance is achieved by improving the coatings in the bulk of the samples.

Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Jordi Perez-Mariano; Angel Sanjurjo

2006-12-31T23:59:59.000Z

35

The Public Perceptions of Underground Coal Gasification (UCG)  

E-Print Network [OSTI]

The Public Perceptions of Underground Coal Gasification (UCG): A Pilot Study Simon Shackley #12;The Public Perceptions of Underground Coal Gasification (UCG): A Pilot Study Dr Simon Shackley of Underground Coal Gasification (UCG) in the United Kingdom. The objectives were to identify the main dangers

Watson, Andrew

36

Production of Hydrogen from Underground Coal Gasification  

DOE Patents [OSTI]

A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

Upadhye, Ravindra S. (Pleasanton, CA)

2008-10-07T23:59:59.000Z

37

Optimum Design of Coal Gasification Plants  

E-Print Network [OSTI]

This paper deals with the optimum design of heat recovery systems using the Texaco Coal Gasification Process (TCGP). TCGP uses an entrained type gasifier and produces hot gases at approximately 2500oF with high heat flux. This heat is removed...

Pohani, B. P.; Ray, H. P.; Wen, H.

1982-01-01T23:59:59.000Z

38

Computational fluid dynamics modeling of coal gasification in a pressurized spout-fluid bed  

SciTech Connect (OSTI)

Computational fluid dynamics (CFD) modeling, which has recently proven to be an effective means of analysis and optimization of energy-conversion processes, has been extended to coal gasification in this paper. A 3D mathematical model has been developed to simulate the coal gasification process in a pressurized spout-fluid bed. This CFD model is composed of gas-solid hydrodynamics, coal pyrolysis, char gasification, and gas phase reaction submodels. The rates of heterogeneous reactions are determined by combining Arrhenius rate and diffusion rate. The homogeneous reactions of gas phase can be treated as secondary reactions. A comparison of the calculated and experimental data shows that most gasification performance parameters can be predicted accurately. This good agreement indicates that CFD modeling can be used for complex fluidized beds coal gasification processes. 37 refs., 7 figs., 5 tabs.

Zhongyi Deng; Rui Xiao; Baosheng Jin; He Huang; Laihong Shen; Qilei Song; Qianjun Li [Southeast University, Nanjing (China). Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education

2008-05-15T23:59:59.000Z

39

Co-Production of Substitute Natural Gas/Electricity Via Catalytic Coal Gasification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 9 Co-ProduCtion of SubStitute natural GaS / eleCtriCity via CatalytiC Coal GaSifiCation Description The United States has vast reserves of low-cost coal, estimated to be sufficient for the next 250 years. Gasification-based technology, such as Integrated Gasification Combined Cycle (IGCC), is the only environmentally friendly technology that provides the flexibility to co-produce hydrogen, substitute natural gas (SNG), premium hydrocarbon liquids including transportation fuels, and electric power in desired combinations from coal and other carbonaceous feedstocks. Rising costs and limited domestic supply of crude oil and natural gas provide a strong incentive for the development of coal gasification-based co-production processes. This project addresses the co-production of SNG and electricity from coal via gasification

40

Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems  

SciTech Connect (OSTI)

Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. The primary activity this period was preparation and presentation of the findings on this project at the Twenty-Third annual Pittsburgh Coal Conference. Dr. Malhotra attended this conference and presented a paper. A copy of his presentation constitutes this quarterly report.

Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Jordi Perez Mariano; Angel Sanjurjo

2006-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "integrated coal-gasification combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fluidized bed injection assembly for coal gasification  

DOE Patents [OSTI]

A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

Cherish, Peter (Bethel Park, PA); Salvador, Louis A. (Hempfield Township, Westmoreland County, PA)

1981-01-01T23:59:59.000Z

42

Underground coal gasification : overview of an economic and environmental evaluation.  

E-Print Network [OSTI]

??This paper examines an overview of the economic and environmental aspects of Underground Coal Gasification (UCG) as a viable option to the above ground Surface… (more)

Kitaka, Richard Herbertson

2012-01-01T23:59:59.000Z

43

Short Communication Catalytic coal gasification: use of calcium versus potassium*  

E-Print Network [OSTI]

Short Communication Catalytic coal gasification: use of calcium versus potassium* Ljubisa R on the gasification in air and 3.1 kPa steam of North Dakota lignitic chars prepared under slow and rapid pyrolysis of calcium is related to its sintering via crystallite growth. (Keywords: coal; gasification; catalysis

44

Wabash River Coal Gasification Repowering Project Final Technical Report  

Office of Scientific and Technical Information (OSTI)

Wabash River Coal Gasification Wabash River Coal Gasification Repowering Project Final Technical Report August 2000 Work Performed Under Cooperative Agreement DE-FC21-92MC29310 For: The U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory Morgantown, West Virginia Prepared by: The Men and Women of Wabash River Energy Ltd. For Further Information Contact: Roy A. Dowd, CHMM Environmental Supervisor Wabash River Coal Gasification Repowering Project 444 West Sandford Avenue West Terre Haute, IN 47885 LEGAL NOTICE/DISCLAIMER This report was prepared by the Wabash River Coal Gasification Repowering Project Joint Venture pursuant to a Cooperative Agreement partially funded by the U.S. Department of Energy, and neither the Wabash River Coal Gasification Repowering

45

Key tests set for underground coal gasification  

SciTech Connect (OSTI)

Underground coal gasification (UCG) is about to undergo some tests. The tests will be conducted by Lawrence Livermore National Laboratory (LLNL) in a coal seam owned by Washington Irrigation and Development Co. A much-improved UCG system has been developed by Stephens and his associates at LLNL - the controlled retracting injection point (CRIP) method. Pritchard Corp., Kansas City, has done some conceptual process design and has further studied the feasibility of using the raw gas from a UCG burn as a feedstock for methanol synthesis and/or MTG gasoline. Each method was described. (DP)

Haggin, J.

1983-07-18T23:59:59.000Z

46

Coalbed methane production enhancement by underground coal gasification  

SciTech Connect (OSTI)

The sub-surface of the Netherlands is generally underlain by coal-bearing Carboniferous strata at greater depths (at many places over 1,500 m). These coal seams are generally thinner than 3 meter, occur in groups (5--15) within several hundred meters and are often fairly continuous over many square kilometers. In many cases they have endured complex burial history, influencing their methane saturation. In certain particular geological settings, a high, maximum coalbed methane saturation, may be expected. Carboniferous/Permian coals in the Tianjin-region (China) show many similarities concerning geological settings, rank and composition. Economical coalbed methane production at greater depths is often obstructed by the (very) low permeabilities of the coal seams as with increasing depth the deformation of the coal reduces both its macro-porosity (the cleat system) and microporosity. Experiments in abandoned underground mines, as well as after underground coal gasification tests indicate ways to improve the prospects for coalbed methane production in originally tight coal reservoirs. High permeability areas can be created by the application of underground coal gasification of one of the coal seams of a multi-seam cycle with some 200 meter of coal bearing strata. The gasification of one of the coal seams transforms that seam over a certain area into a highly permeable bed, consisting of coal residues, ash and (thermally altered) roof rubble. Additionally, roof collapse and subsidence will destabilize the overburden. In conjunction this will permit a better coalbed methane production from the remaining surrounding parts of the coal seams. Moreover, the effects of subsidence will influence the stress patterns around the gasified seam and this improves the permeability over certain distances in the coal seams above and below. In this paper the effects of the combined underground coal gasification and coalbed methane production technique are regarded for a single injection well. Known geotechnical aspects are combined with results from laboratory experiments on compaction of thermally treated rubble. An axi-symmetric numerical model is used to determine the effects induced by the gasified coal seam. The calculation includes the rubble formation, rubble compaction and induced stress effects in the overlying strata. Subsequently the stress effects are related to changes in coal permeability, based on experimental results of McKee et al.

Hettema, M.H.H.; Wolf, K.H.A.A.; Neumann, B.V.

1997-12-31T23:59:59.000Z

47

Thermophysical models of underground coal gasification and FEM analysis  

SciTech Connect (OSTI)

In this study, mathematical models of the coupled thermohydromechanical process of coal rock mass in an underground coal gasification panel are established. Combined with the calculation example, the influence of heating effects on the observed values and simulated values for pore water pressure, stress, and displacement in the gasification panel are fully discussed and analyzed. Calculation results indicate that 38, 62, and 96 days after the experiment, the average relative errors for the calculated values and measured values for the temperature and water pressure were between 8.51-11.14% and 3-10%, respectively; with the passage of gasification time, the calculated errors for the vertical stress and horizontal stress gradually declined, but the simulated errors for the horizontal and vertical displacements both showed a rising trend. On the basis of the research results, the calculated values and the measured values agree with each other very well.

Yang, L.H. [China University of Mining & Technology, Xuzhou (China)

2007-11-15T23:59:59.000Z

48

Site clean up of coal gasification residues  

SciTech Connect (OSTI)

The coal gasification plant residues tested in this research consists of various particle sizes of rock, gravel, tar-sand agglomerates, fine sand and soil. Most of the soils particles were tar free. One of the fractions examined contained over 3000 ppM polyaromatic hydrocarbons (PAHs). The residues were subjected to high pressure water jet washing, float and sink tests, and soil washing. Subsequent PAH analyses found less than 1 ppM PAHs in the water jet washing water. Soils washed with pure water lowered PAH concentrations to 276 ppM; the use of surfactants decreased PAHs to 47, 200, and 240 ppM for different test conditions. In the 47 ppM test, the surfactant temperature had been increased to 80 C, suggesting that surfactant washing efficiency can be greatly improved by increasing the solution temperature. The coal tar particles were not extracted by the surfactants used. Coke and tar-sand agglomerates collected from the float and sink gravimetric separation were tested for heating value. The tar exhibited a very high heating value, while the coke had a heating value close to that of bituminous coal. These processes are believed to have the potential to clean up coal gasification plant residues at a fairly low cost, pending pilot-scale testing and a feasibility study.

Wilson, J.W.; Ding, Y. [Univ. of Missouri, Rolla, MO (United States)

1995-12-31T23:59:59.000Z

49

How Coal Gasification Power Plants Work | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gasification » How Coal Gasification » How Coal Gasification Power Plants Work How Coal Gasification Power Plants Work How Coal Gasification Power Plants Work The heart of a gasification-based system is the gasifier. A gasifier converts hydrocarbon feedstock into gaseous components by applying heat under pressure in the presence of steam. A gasifier differs from a combustor in that the amount of air or oxygen available inside the gasifier is carefully controlled so that only a relatively small portion of the fuel burns completely. This "partial oxidation" process provides the heat. Rather than burning, most of the carbon-containing feedstock is chemically broken apart by the gasifier's heat and pressure, setting into motion chemical reactions that produce "syngas." Syngas is primarily hydrogen and carbon monoxide, but can include

50

NETL: News Release - Coal Gasification Plant Returns $79 Million to DOE in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2, 2006 2, 2006 Coal Gasification Plant Returns $79 Million to DOE in Revenue-Sharing Gas Sales Plant Currently Supplies Carbon Dioxide for DOE Sequestration Project Washington, DC -A coal gasification plant purchased from the U.S. Department of Energy (DOE) in 1988 recently paid millions of dollars to DOE as part of a revenue sharing agreement and continues to be an integral part of a Department project to sequester millions of tons of carbon dioxide while doubling an oil field's recovery rate. MORE INFO Learn more about the Great Plains Synfuels Plant The Dakota Gasification Company (DGC), which purchased the Great Plains Synfuels Plant near Beulah, N.D., recently announced the payment of more than $79 million to DOE as part of a revenue-sharing agreement signed in

51

Underground coal gasification using oxygen and steam  

SciTech Connect (OSTI)

In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

Yang, L.H.; Zhang, X.; Liu, S. [China University of Mining & Technology, Xuzhou (China)

2009-07-01T23:59:59.000Z

52

Syngas Production from Coal Gasification with CO2 Rich Gas Mixtures  

Science Journals Connector (OSTI)

Coal gasification with CO2 rich gas mixture is one of several promising new technologies associated with CO2 reduction in the atmosphere. Coal gasification with high CO2 concentration is suitable for producing la...

M. S. Alam; A. T. Wijayanta; K. Nakaso…

2013-01-01T23:59:59.000Z

53

Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems  

SciTech Connect (OSTI)

Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this period, we conducted two 300-hour tests. In the first test, we exposed samples at 900 C under conditions simulating the high-temperature heat recovery unit (HTHRU). The second test was at 370 C, corresponding to the filter units following the HTHRU. The tests were showed the resilience of silicon nitride as a coating component, and the new coating procedures better penetrated the pores in sintered metal filter samples. Finally, we also received samples that were exposed in the Wabash River plant. Unfortunately, all these samples, that were prepared last year, were severely eroded and/or corroded.

Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Jordi Perez-Mariano; Angel Sanjurjo

2005-03-15T23:59:59.000Z

54

Flow Simulation and Optimization of Plasma Reactors for Coal Gasification  

Science Journals Connector (OSTI)

This paper reports a 3-d numerical simulation system to analyze the complicated flow in plasma reactors for coal gasification, which involve complex chemical reaction, two-phase flow and plasma effect. On the basis of analytic results, the distribution of the density, temperature and components' concentration are obtained and a different plasma reactor configuration is proposed to optimize the flow parameters. The numerical simulation results show an improved conversion ratio of the coal gasification. Different kinds of chemical reaction models are used to simulate the complex flow inside the reactor. It can be concluded that the numerical simulation system can be very useful for the design and optimization of the plasma reactor.

Ji Chunjun; Zhang Yingzi; Ma Tengcai

2003-01-01T23:59:59.000Z

55

Studies of the thermal circuit of an advanced integrated gasification combined-cycle power plant  

Science Journals Connector (OSTI)

The results obtained from a study of the thermal circuit of a combined-cycle plant with coal gasification are presented, and ... of producer gas and calculated values of the combined-cycle power plant efficiency ...

D. G. Grigoruk; A. V. Turkin

2010-02-01T23:59:59.000Z

56

Study on the Nitric Compounds during Coal Gasification  

Science Journals Connector (OSTI)

This investigation involved the formation and evolution of NO? HCN and NH3 during coal gasification. Since HCN and NH3 are the precursors of NOX, their summation are considered to show the characteristics of the precursors in this paper. The experiments ... Keywords: gasification, NOX precursors, particle size, agent

Jun Xiang; Qingsen Zhao; Song Hu; Lushi Sun; Sheng Su; Kai Xu; Tengfei Lu; Gang Chen

2009-10-01T23:59:59.000Z

57

EIS-0007: Low Btu Coal Gasification Facility and Industrial Park  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy prepared this environmental impact statement which evaluates the potential environmental impacts that may be associated with the construction and operation of a low-Btu coal gasification facility and the attendant industrial park in Georgetown, Scott County, Kentucky.

58

Engineering support services for the DOE/GRI (Gas Research Institute) Coal Gasification Research Program: Quarterly report, March 28--June 26, 1987  

SciTech Connect (OSTI)

The following joint program projects comprised the scope of Foster Wheeler's current monitoring activities: KRW Energy System, Inc.-- Fluidized-Bed Gasification Process Development Unit (PDU), Madison, Pennsylvania. CNG Research Company--Acid Gas Removal System, Cleveland, Ohio. The test program in KRW's fluidized-bed gasifier PDU was resumed, following shutdown for winter maintenance. During this quarter, CNG completed construction on the new flash crystallizer PDU and started shakedown testing of the unit. Details of Foster Wheeler's monitoring activities on these projects are presented in Sections 3.0 and 4.0 of this report. Under the technical evaluation scope of modular integrated coal gasification combined cycle (IGCC) power systems. This study was authorized by DOE in mid-March 1987 and was initiated during the current period. Discussions on the status of the IGCC systems study is included in Section 5.0 of this report. 4 refs.

Mazzella, G.

1987-07-01T23:59:59.000Z

59

Improving process performances in coal gasification for power and synfuel production  

SciTech Connect (OSTI)

This paper is aimed at developing process alternatives of conventional coal gasification. A number of possibilities are presented, simulated, and discussed in order to improve the process performances, to avoid the use of pure oxygen, and to reduce the overall CO{sub 2} emissions. The different process configurations considered include both power production, by means of an integrated gasification combined cycle (IGCC) plant, and synfuel production, by means of Fischer-Tropsch (FT) synthesis. The basic idea is to thermally couple a gasifier, fed with coal and steam, and a combustor where coal is burnt with air, thus overcoming the need of expensive pure oxygen as a feedstock. As a result, no or little nitrogen is present in the syngas produced by the gasifier; the required heat is transferred by using an inert solid as the carrier, which is circulated between the two modules. First, a thermodynamic study of the dual-bed gasification is carried out. Then a dual-bed gasification process is simulated by Aspen Plus, and the efficiency and overall CO{sub 2} emissions of the process are calculated and compared with a conventional gasification with oxygen. Eventually, the scheme with two reactors (gasifier-combustor) is coupled with an IGCC process. The simulation of this plant is compared with that of a conventional IGCC, where the gasifier is fed by high purity oxygen. According to the newly proposed configuration, the global plant efficiency increases by 27.9% and the CO{sub 2} emissions decrease by 21.8%, with respect to the performances of a conventional IGCC process. 29 refs., 7 figs., 5 tabs.

M. Sudiro; A. Bertucco; F. Ruggeri; M. Fontana [University of Padova, Milan (Italy). Italy and Foster Wheeler Italiana Spa

2008-11-15T23:59:59.000Z

60

Underground coal gasification: a brief review of current status  

SciTech Connect (OSTI)

Coal gasification is a promising option for the future use of coal. Similarly to gasification in industrial reactors, underground coal gasification (UCG) produces syngas, which can be used for power generation or for the production of liquid hydrocarbon fuels and other valuable chemical products. As compared with conventional mining and surface gasification, UCG promises lower capital/operating costs and also has other advantages, such as no human labor underground. In addition, UCG has the potential to be linked with carbon capture and sequestration. The increasing demand for energy, depletion of oil and gas resources, and threat of global climate change lead to growing interest in UCG throughout the world. In this article, we review the current status of this technology, focusing on recent developments in various countries.

Shafirovich, E.; Varma, A. [Purdue University, West Lafayette, IN (United States). School of Chemical Engineering

2009-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "integrated coal-gasification combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

CAPITAL AND OPERATING COST OF HYDROGEN PRODUCTION FROM COAL GASIFICATION  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CAPITAL AND OPERATING COST OF HYDROGEN CAPITAL AND OPERATING COST OF HYDROGEN PRODUCTION FROM COAL GASIFICATION Final Report April 2003 Prepared for: The United States Department of Energy National Energy Technology Laboratory (NETL) under: Contract No. DE-AM26-99FT40465 between the NETL and Concurrent Technologies Corporation (CTC) Subcontract No. 990700362 between CTC and Parsons Infrastructure & Technology Group Inc. Task 50611 DOE Task Managers: James R. Longanbach Gary J. Stiegel Parsons Project Manager: Michael D. Rutkowski Principal Investigators: Thomas L. Buchanan Michael G. Klett Ronald L. Schoff PARSONS Capital and Operating Cost of Hydrogen Production from Coal Gasification Page i April 2003 TABLE OF CONTENTS Section Title Page List of Tables iii List of Figures iii

62

E-Print Network 3.0 - advanced coal-gasification technical Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasification to Produce SNG (Beulah, North Dakota, USA) (Source:DakotaGasification Petcoke... Source: NETL, 2009 12;12 Dakota Coal Gasification ... Source: Center for...

63

Site Characterization, Sustainability Evaluation and Life Cycle Emissions Assessment of Underground Coal Gasification.  

E-Print Network [OSTI]

??Underground Coal Gasification (UCG), although not a new concept, is now attracting considerable global attention as a viable process to provide a âcleanâ and economic… (more)

Hyder, Zeshan

2012-01-01T23:59:59.000Z

64

Model-based estimation of adiabatic flame temperature during coal gasification.  

E-Print Network [OSTI]

??Coal gasification temperature distribution in the gasifier is one of the importantissues. High temperature may increase the risk of corrosion of the gasifier wall or… (more)

Sarigul, Ihsan Mert

2012-01-01T23:59:59.000Z

65

Low/medium-Btu coal-gasification-assessment program for potential users in New Jersey. Final report  

SciTech Connect (OSTI)

Burns and Roe Industrial Services Corporation and Public Service Electric and Gas in association with Scientific Design Company have completed a technical and economic evaluation of coal gasification. The evaluation also addressed the regulatory, institutional, and environmental issues of coal gasification. Two uses of coal-derived medium Btu (MBU) gas were explored: (1) substitute boiler fuel for electric generation and (2) substitute fuel for industrial customers using natural gas. The summary and conclusions of his evaluation are: The Sewaren Generating Station was selected as potentially the most suitable site for the coal gasification plant. The Texaco process was selected because it offered the best combination of efficiency and pilot plant experience; in addition, it is a pressurized process which is advantageous if gas is to be supplied to industrial customers via a pipeline. Several large industrial gas customers within the vicinities of Sewaren and Hudson Generating Stations indicated that MBG would be considered as an alternate fuel provided that its use was economically justified. The capital cost estimates for a 2000 tons/day and a 1000 tons/day gasification plant installed at Sewaren Generating Station are $115.6 million and $73.8 million, in 1980 dollars, respectively. The cost of supplying MBG to industrial customers is competitive with existing pipeline natural gas on a Btu heating value basis for gasifier capacity factors of 35% or higher.

Not Available

1981-05-01T23:59:59.000Z

66

Steam-Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture  

SciTech Connect (OSTI)

We present experimental results of coal gasification with and without the addition of calcium oxide and potassium hydroxide as dual-functioning catalyst–capture agents. Using two different coal types and temperatures between 700 and 900 °C, we studied the effect of these catalyst–capture agents on (1) the syngas composition, (2) CO{sub 2} and H{sub 2}S capture, and (3) the steam–coal gasification kinetic rate. The syngas composition from the gasifier was roughly 20% methane, 70% hydrogen, and 10% other species when a CaO/C molar ratio of 0.5 was added. We demonstrated significantly enhanced steam–coal gasification kinetic rates when adding small amounts of potassium hydroxide to coal when operating a CaO–CaCO{sub 3} chemical looping gasification reactor. For example, the steam–coal gasification kinetic rate increased 250% when dry mixing calcium oxide at a Ca/C molar ratio of 0.5 with a sub-bituminous coal, and the kinetic rate increased 1000% when aqueously mixing calcium oxide at a Ca/C molar ratio of 0.5 along with potassium hydroxide at a K/C molar ratio of 0.06. In addition, we conducted multi-cycle studies in which CaCO{sub 3} was calcined by heating to 900 °C to regenerate the CaO, which was then reused in repeated CaO–CaCO{sub 3} cycles. The increased steam–coal gasification kinetics rates for both CaO and CaO + KOH persisted even when the material was reused in six cycles of gasification and calcination. The ability of CaO to capture carbon dioxide decreased roughly 2–4% per CaO–CaCO{sub 3} cycle. We also discuss an important application of this combined gasifier–calciner to electricity generation and selling the purge stream as a precalcined feedstock to a cement kiln. In this scenario, the amount of purge stream required is fixed not by the degradation in the capture ability but rather by the requirements at the cement kiln on the amount of CaSO{sub 4} and ash in the precalcined feedstock.

Siefert, Nicholas S.; Shekhawat, Dushyant; Litster, Shawn; Berry, David, A

2013-08-01T23:59:59.000Z

67

Case-study of a coal gasification-based energy supply system for China  

E-Print Network [OSTI]

clean fuels derived via coal gasification. Emissions of air pollutants in the SC scenario are compared polygeneration technologies to meet energy needs of coal-rich areas. Polygeneration systems, based on coalCase-study of a coal gasification-based energy supply system for China Zheng Hongtao Department

68

A feasibility study for underground coal gasification at Krabi Mine, Thailand  

SciTech Connect (OSTI)

A study to evaluate the technical, economical, and environmental feasibility of underground coal gasification (UCG) in the Krabi Mine, Thailand, was conducted by the Energy and Environmental Research Center (EERC) in cooperation with B.C. Technologies (BCT) and the Electricity Generating Authority of Thailand (EGAT). The selected coal resource was found suitable to fuel a UCG facility producing 460,000 MJ/h (436 million Btu/h) of 100--125 Btu/scf gas for 20 years. The raw UCG gas could be produced for a selling price of $1.94/MMBtu. The UCG facility would require a total investment of $13.8 million for installed capital equipment, and annual operating expenses for the facility would be $7.0 million. The UCG gas could be either cofired in a power plant currently under construction or power a 40 MW simple-cycle gas turbine or a 60 MW combined-cycle power plant.

Solc, J.; Steadman, E.N. [Energy and Environmental Research Center, Grand Forks, ND (United States); Boysen, J.E. [BC Technologies, Laramie, WY (United States)

1998-12-31T23:59:59.000Z

69

Process for fixed bed coal gasification  

DOE Patents [OSTI]

The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

Sadowski, Richard S. (Greenville, SC)

1992-01-01T23:59:59.000Z

70

The ENCOAL Mild Coal Gasification Project, A DOE Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

71 71 The ENCOAL ® Mild Coal Gasification Project A DOE Assessment March 2002 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 website: www.netl.doe.gov 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

71

Encoal mild coal gasification project: Final design modifications report  

SciTech Connect (OSTI)

The design, construction and operation Phases of the Encoal Mild Coal Gasification Project have been completed. The plant, designed to process 1,000 ton/day of subbituminous Power River Basin (PRB) low-sulfur coal feed and to produce two environmentally friendly products, a solid fuel and a liquid fuel, has been operational for nearly five years. The solid product, Process Derived Fuel (PDF), is a stable, low-sulfur, high-Btu fuel similar in composition and handling properties to bituminous coal. The liquid product, Coal Derived Liquid (CDL), is a heavy, low-sulfur, liquid fuel similar in properties to heavy industrial fuel oil. Opportunities for upgrading the CDL to higher value chemicals and fuels have been identified. Significant quantities of both PDF and CDL have been delivered and successfully burned in utility and industrial boilers. A summary of the Project is given.

NONE

1997-07-01T23:59:59.000Z

72

Proceedings of the ninth annual underground coal gasification symposium  

SciTech Connect (OSTI)

The Ninth Underground Coal Gasification Symposium was held August 7 to 10, 1983 at the Indian Lakes Resort and Conference Center in Bloomingdale, Illinois. Over one-hundred attendees from industry, academia, National Laboratories, State Government, and the US Government participated in the exchange of ideas, results and future research plans. Representatives from six countries including France, Belgium, United Kingdom, The Netherlands, West Germany, and Brazil also participated by presenting papers. Fifty papers were presented and discussed in four formal sessions and two informal poster sessions. The presentations described current and future field testing plans, interpretation of field test data, environmental research, laboratory studies, modeling, and economics. All papers were processed for inclusion in the Energy Data Base.

Wieber, P.R.; Martin, J.W.; Byrer, C.W. (eds.)

1983-12-01T23:59:59.000Z

73

Selection of Coal Gasification Parameters for Injection of Gasification Products Into a Blast Furnace  

Science Journals Connector (OSTI)

An analytical study was performed on the influence of blast parameters on the course of the processes in the volume of a blast furnace and smelting rates by injection of low-grade coal gasification products. It w...

I. G. Tovarovsky; A. E. Merkulov

2014-01-01T23:59:59.000Z

74

EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming.

75

Technical analysis of advanced wastewater-treatment systems for coal-gasification plants  

SciTech Connect (OSTI)

This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

Not Available

1981-03-31T23:59:59.000Z

76

Characterizing a lignite formation before and after an underground coal gasification experiment  

E-Print Network [OSTI]

CHARACTERIZING A LIGNITE FORMATION BEFORE AND AFTER AN UNDERGROUND COAL GASIFICATION EXPERIMENT A Thesis by USMAN AHMED Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE Nay, 1981 Major Subject: Petrol eum Engineering CHARACTERIZING A LIGNITE FORMATION BEFORE AND AFTER AN UNDERGROUND COAL GASIFICATION EXPERIMENT A Thesis by USMAN AHMED approved as to sty1e and content by: airma o i ee Head f...

Ahmed, Usman

2012-06-07T23:59:59.000Z

77

The ENCOAL Mild Coal Gasification Project, A DOE Assessment  

SciTech Connect (OSTI)

This report is a post-project assessment of the ENCOAL{reg_sign} Mild Coal Gasification Project, which was selected under Round III of the U.S. Department of Energy (DOE) Clean Coal Technology (CCT) Demonstration Program. The CCT Demonstration Program is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of commercial-scale facilities. The ENCOAL{reg_sign} Corporation, a wholly-owned subsidiary of Bluegrass Coal Development Company (formerly SMC Mining Company), which is a subsidiary of Ziegler Coal Holding Company, submitted an application to the DOE in August 1989, soliciting joint funding of the project in the third round of the CCT Program. The project was selected by DOE in December 1989, and the Cooperative Agreement (CA) was approved in September 1990. Construction, commissioning, and start-up of the ENCOAL{reg_sign} mild coal gasification facility was completed in June 1992. In October 1994, ENCOAL{reg_sign} was granted a two-year extension of the CA with the DOE, that carried through to September 17, 1996. ENCOAL{reg_sign} was then granted a six-month, no-cost extension through March 17, 1997. Overall, DOE provided 50 percent of the total project cost of $90,664,000. ENCOAL{reg_sign} operated the 1,000-ton-per-day mild gasification demonstration plant at Triton Coal Company's Buckskin Mine near Gillette, Wyoming, for over four years. The process, using Liquids From Coal (LFC{trademark}) technology originally developed by SMC Mining Company and SGI International, utilizes low-sulfur Powder River Basin (PRB) coal to produce two new fuels, Process-Derived Fuel (PDF{trademark}) and Coal-Derived Liquids (CDL{trademark}). The products, as alternative fuel sources, are capable of significantly lowering current sulfur emissions at industrial and utility boiler sites throughout the nation thus reducing pollutants causing acid rain. In support of this overall objective, the following goals were established for the ENCOAL{reg_sign} Project: Provide sufficient quantity of products for full-scale test burns; Develop data for the design of future commercial plants; Demonstrate plant and process performance; Provide capital and O&M cost data; and Support future LFC{trademark} technology licensing efforts. Each of these goals has been met and exceeded. The plant has been in operation for nearly 5 years, during which the LFC{trademark} process has been demonstrated and refined. Fuels were made, successfully burned, and a commercial-scale plant is now under contract for design and construction.

National Energy Technology Laboratory

2002-03-15T23:59:59.000Z

78

Coal properties and system operating parameters for underground coal gasification  

SciTech Connect (OSTI)

Through the model experiment for underground coal gasification, the influence of the properties for gasification agent and gasification methods on underground coal gasifier performance were studied. The results showed that pulsating gasification, to some extent, could improve gas quality, whereas steam gasification led to the production of high heating value gas. Oxygen-enriched air and backflow gasification failed to improve the quality of the outlet gas remarkably, but they could heighten the temperature of the gasifier quickly. According to the experiment data, the longitudinal average gasification rate along the direction of the channel in the gasifying seams was 1.212 m/d, with transverse average gasification rate 0.069 m/d. Experiment indicated that, for the oxygen-enriched steam gasification, when the steam/oxygen ratio was 2:1, gas compositions remained stable, with H{sub 2} + CO content virtually standing between 60% and 70% and O{sub 2} content below 0.5%. The general regularities of the development of the temperature field within the underground gasifier and the reasons for the changes of gas quality were also analyzed. The 'autopneumatolysis' and methanization reaction existing in the underground gasification process were first proposed.

Yang, L. [China University of Mining & Technology, Xuzhou (China)

2008-07-01T23:59:59.000Z

79

The commercial feasibility of underground coal gasification in southern Thailand  

SciTech Connect (OSTI)

Underground Coal Gasification (UCG) is a clean coal technology with the commercial potential to provide low- or medium-Btu gas for the generation of electric power. While the abundance of economic coal and natural gas reserves in the United States of America (USA) has delayed the commercial development of this technology in the USA, potential for commercial development of UCG-fueled electric power generation currently exists in many other nations. Thailand has been experiencing sustained economic growth throughout the past decade. The use of UCG to provide electric power to meet the growing power demand appears to have commercial potential. A project to determine the commercial feasibility of UCG-fueled electric power generation at a site in southern Thailand is in progress. The objective of the project is to determine the commercial feasibility of using UCG for power generation in the Krabi coal mining area located approximately 1,000 kilometers south of Bangkok, Thailand. The project team has developed a detailed methodology to determine the technical feasibility, environmental acceptability, and commercial economic potential of UCG at a selected site. In the methodology, hydrogeologic conditions of the coal seam and surrounding strata are determined first. These results and information describing the local economic conditions are then used to assess the commercial potential of the UCG application. The methodology for evaluating the Krabi UCG site and current project status are discussed in this paper.

Solc, J.; Young, B.C.; Harju, J.A.; Schmit, C.R. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Boysen, J.E. [B.C. Technologies, Ltd., Laramie, WY (United States); Kuhnel, R.A. [IIASES, Delft (Netherlands)

1996-12-31T23:59:59.000Z

80

Evaluating the feasibility of underground coal gasification in Thailand  

SciTech Connect (OSTI)

Underground coal gasification (UCG) is a clean coal technology that converts in situ coal into a low- to medium-grade product gas without the added expense of mining and reclamation. Potential candidates for UCG are those coal resources that are not economically recoverable or that are otherwise unacceptable for conventional coal utilization processes. The Energy and Environmental Research Center (EERC), through the sponsorship of the US Trade and Development Agency and in collaboration with the Electricity Generating Authority of Thailand (EGAT), is undertaking a feasibility study for the application of UCG in the Krabi coal mining area, 620 miles south of Bangkok in Thailand. The EERC`s objective for this project is to determine the technical, environmental, and economic feasibility of demonstrating and commercializing UCG at a selected site in the Krabi coal mining area. This paper addresses the preliminary developments and ongoing strategy for evaluating the selected UCG site. The technical, environmental, and economic factors for successful UCG operation are discussed, as well as the strategic issues pertaining to future energy expansion in southern Thailand.

Young, B.C.; Harju, J.A.; Schmit, C.R.; Solc, J. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Boysen, J. [B.C. Technologies, Ltd., Laramie, WY (United States); Kuehnel, R.A. [International Inst. for Aerospace Survey and Earth Sciences, Delft (Netherlands)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "integrated coal-gasification combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Effect of petroleum coke addition on coal gasification  

Science Journals Connector (OSTI)

The main fuel for power generation is combustion of coal and/or natural gas. Natural gas is expensive but clean and less problematic whereas coal is the reverse of natural gas. Natural gas resources are expected to last until 2020 where else coal has another 200 years expectancy. To replace the natural gas synthetic gas (syngas) can be used as a substitute fuel. Syngas can be produced using coal as fuel. In this study we blend petcoke a cheap solid carboneous fuel as an alternative to coal for the production of syngas using a 30 Kwattheat bubbling fluidized bed gasifier. The equivalent ratio (ER) was set at 2.8 and a gasification temperature was maintained between 680 to 710°C by manipulating between the feed flow rates and fluidizing medium. This condition was chosen as it proved to be the optimum based on the work by the same group. Various blend of coal:petcoke between 0 to 100% was analyzed. It was found that a 20:80 petcoke to coal gives a good correlation with 100% coal gasification.

2014-01-01T23:59:59.000Z

82

Utilization of lightweight materials made from coal gasification slags  

SciTech Connect (OSTI)

Praxis is working on a DOE/METC funded project to demonstrate the technical and economic feasibility of making lightweight and ultra- lightweight aggregates from slags left as solid by-products from the coal gasification process. These aggregates are produced by controlled heating of the slags to temperatures ranging between 1600 and 1900{degrees}F. Over 10 tons of expanded slag lightweight aggregates (SLA) were produced using a direct-fired rotary kiln and a fluidized bed calciner with unit weights varying between 20 and 50 lb/ft{sup 3}. The slag-based aggregates are being evaluated at the laboratory scale as substitutes for conventional lightweight aggregates in making lightweight structural concrete, roof tiles, blocks, insulating concrete, and a number of other applications. Based on the laboratory data, large-scale testing will be performed and the durability of the finished products evaluated. Conventional lightweight aggregates made from pyroprocessing expansible shales or clays are produced for $30/ton. The net production costs of SLA are in the range of $22 to $24/ton for large systems (44 t/d) and $26-$30/ton for small systems (220 t/d). Thus, the technology provides a good opportunity for economic use of gasification slags.

NONE

1996-07-08T23:59:59.000Z

83

Kinetics of steam gasification of bituminous coals in terms of their use for underground coal gasification  

Science Journals Connector (OSTI)

Abstract The kinetics of steam gasification was examined for bituminous coals of a low coal rank. The examined coals can be the raw material for underground coal gasification. Measurements were carried out under isothermal conditions at a high pressure of 4 MPa and temperatures of 800, 900, 950, and 1000 °C. Yields of gasification products such as carbon monoxide and carbon dioxide, hydrogen and methane were calculated based on the kinetic curves of formation reactions of these products. Also carbon conversion degrees are presented. Moreover, calculations were made of the kinetic parameters of carbon monoxide and hydrogen formation reaction in the coal gasification process. The parameters obtained during the examinations enable a preliminary assessment of coal for the process of underground coal gasification.

Stanis?aw Porada; Grzegorz Czerski; Tadeusz Dziok; Przemys?aw Grzywacz; Dorota Makowska

2015-01-01T23:59:59.000Z

84

Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption  

SciTech Connect (OSTI)

Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon, zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high parity hydrogen from gaseous products of coal gasification and as an acid gas scrubber.

Ghate, Madhav R. (Morgantown, WV); Yang, Ralph T. (Williamsville, NY)

1987-01-01T23:59:59.000Z

85

Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption  

SciTech Connect (OSTI)

Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high purity hydrogen from gaseous products of coal gasification and as an acid gas scrubber. 2 figs., 2 tabs.

Ghate, M.R.; Yang, R.T.

1985-10-03T23:59:59.000Z

86

Carbon formation and metal dusting in advanced coal gasification processes  

SciTech Connect (OSTI)

The product gases generated by coal gasification systems contain high concentrations of CO and, characteristically, have relatively high carbon activities. Accordingly, carbon deposition and metal dusting can potentially degrade the operation of such gasifier systems. Therefore, the product gas compositions of eight representative gasifier systems were examined with respect to the carbon activity of the gases at temperatures ranging from 480 to 1,090 C. Phase stability calculations indicated that Fe{sub 3}C is stable only under very limited thermodynamic conditions and with certain kinetic assumptions and that FeO and Fe{sub 0.877}S tend to form instead of the carbide. As formation of Fe{sub 3}C is a necessary step in the metal dusting of steels, there are numerous gasifier environments where this type of carbon-related degradation will not occur, particularly under conditions associated with higher oxygen and sulfur activities. These calculations also indicated that the removal of H{sub 2}S by a hot-gas cleanup system may have less effect on the formation of Fe{sub 3}C in air-blown gasifier environments, where the iron oxide phase can exist and is unaffected by the removal of sulfur, than in oxygen-blown systems, where iron sulfide provides the only potential barrier to Fe{sub 3}C formation. Use of carbon- and/or low-alloy steels dictates that the process gas composition be such that Fe{sub 3}C cannot form if the potential for metal dusting is to be eliminated. Alternatively, process modifications could include the reintroduction of hydrogen sulfide, cooling the gas to perhaps as low as 400 C and/or steam injection. If higher-alloy steels are used, a hydrogen sulfide-free gas may be processed without concern about carbon deposition and metal dusting.

DeVan, J.H.; Tortorelli, P.F.; Judkins, R.R.; Wright, I.G.

1997-02-01T23:59:59.000Z

87

Application of the integrated gasification combined cycle technology and BGL gasification design for power generation  

SciTech Connect (OSTI)

Integrated gasification combined cycle (IGCC) technology promises to be the power generation technology of choice in the late 1990s and beyond. Based on the principle that almost any fuel can be burned more cleanly and efficiently if first turned into a gas, an IGCC plant extracts more electricity from a ton of coal by burning it as a gas in a turbine rather than as a solid in a boiler. Accordingly, coal gasification is the process of converting coal to a clean-burning synthetic gas. IGCC technology is the integration of the coal-gasification plant with a conventional combined-cycle plant to produce electricity. The benefits of this technology merger are many and result in a highly efficient and environmentally superior energy production facility. The lGCC technology holds significant implications for Asia-Pacific countries and for other parts of the world. High-growth regions require additional baseload capacity. Current low prices for natural gas and minimal emissions that result from its use for power generation favor its selection as the fuel source for new power generation capacity. However, fluctuations in fuel price and fuel availability are undermining the industry`s confidence in planning future capacity based upon gas-fueled generation. With the world`s vast coal reserves, there is a continuing effort to provide coal-fueled power generation technologies that use coal cleanly and efficiently. The lGCC technology accomplishes this objective. This chapter provides a summary of the status of lGCC technology and lGCC projects known to date. It also will present a technical overview of the British Gas/Lurgi (BGL) technology, one of the leading and most promising coal gasifier designs.

Edmonds, R.F. Jr.; Hulkowich, G.J.

1993-12-31T23:59:59.000Z

88

The suitability of coal gasification in India's energy sector  

E-Print Network [OSTI]

Integrated Gasification Combined Cycle (IGCC), an advanced coal-based power generation technology, may be an important technology to help India meet its future power needs. It has the potential to provide higher generating ...

Simpson, Lori Allison

2006-01-01T23:59:59.000Z

89

Thermal-Hydrological Sensitivity Analysis of Underground Coal Gasification  

SciTech Connect (OSTI)

This paper presents recent work from an ongoing project at Lawrence Livermore National Laboratory (LLNL) to develop a set of predictive tools for cavity/combustion-zone growth and to gain quantitative understanding of the processes and conditions (natural and engineered) affecting underground coal gasification (UCG). We discuss the application of coupled thermal-hydrologic simulation capabilities required for predicting UCG cavity growth, as well as for predicting potential environmental consequences of UCG operations. Simulation of UCG cavity evolution involves coupled thermal-hydrological-chemical-mechanical (THCM) processes in the host coal and adjoining rockmass (cap and bedrock). To represent these processes, the NUFT (Nonisothermal Unsaturated-saturated Flow and Transport) code is being customized to address the influence of coal combustion on the heating of the host coal and adjoining rock mass, and the resulting thermal-hydrological response in the host coal/rock. As described in a companion paper (Morris et al. 2009), the ability to model the influence of mechanical processes (spallation and cavity collapse) on UCG cavity evolution is being developed at LLNL with the use of the LDEC (Livermore Distinct Element Code) code. A methodology is also being developed (Morris et al. 2009) to interface the results of the NUFT and LDEC codes to simulate the interaction of mechanical and thermal-hydrological behavior in the host coal/rock, which influences UCG cavity growth. Conditions in the UCG cavity and combustion zone are strongly influenced by water influx, which is controlled by permeability of the host coal/rock and the difference between hydrostatic and cavity pressure. In this paper, we focus on thermal-hydrological processes, examining the relationship between combustion-driven heat generation, convective and conductive heat flow, and water influx, and examine how the thermal and hydrologic properties of the host coal/rock influence those relationships. Specifically, we conducted a parameter sensitivity analysis of the influence of thermal and hydrological properties of the host coal, caprock, and bedrock on cavity temperature and steam production.

Buscheck, T A; Hao, Y; Morris, J P; Burton, E A

2009-10-05T23:59:59.000Z

90

What should the government do to encourage technical change in the energy sector?  

E-Print Network [OSTI]

, and storage; (4) clean coal technologies, such as the Integrated Coal Gasification Combined Cycle; and (5

Deutch, John

91

Coal-Fuelled Combined Cycle Power Plants  

Science Journals Connector (OSTI)

Combined cycle power plant, when used as a generic ... which converts heat into mechanical energy in a combined gas and steam turbine process. Combined cycle processes with coal gasification or coal combustion .....

Dr. Hartmut Spliethoff

2010-01-01T23:59:59.000Z

92

Opening New Avenues for High-Efficiency, Low-Emission Coal Gasification |  

Broader source: Energy.gov (indexed) [DOE]

Opening New Avenues for High-Efficiency, Low-Emission Coal Opening New Avenues for High-Efficiency, Low-Emission Coal Gasification Opening New Avenues for High-Efficiency, Low-Emission Coal Gasification April 10, 2012 - 1:00pm Addthis A rendering of the Pratt & Whitney Rocketdyne high pressure, dry-solids feed pump. A rendering of the Pratt & Whitney Rocketdyne high pressure, dry-solids feed pump. Washington, DC - Gasification. It's a versatile technology that uses coal to produce power, chemicals, and fuels. Inherently low in air emissions, solid byproducts, and wastewater, commercial gasification plants have proven capable of exceeding the most stringent regulations for air- and solids-emissions. However, capital and operational costs have prohibited the widespread adoption of gasification, especially for power

93

Mathematical modelling of some chemical and physical processes in underground coal gasification  

SciTech Connect (OSTI)

Underground coal gasification normally involves two vertical wells which must be linked by a channel having low resistance to gas flow. There are several ways of establishing such linkage, but all leave a relatively open horizontal hole with a diameter on the order of a meter. To increase our understanding of the chemical and physical processes governing underground coal gasification LLNL has been conducting laboratory scale experiments accompanied by mathematical modelling. Blocks of selected coal types are cut to fit 55 gallon oil drums and sealed in place with plaster. A 1 cm. diameter hole is drilled the length of the block and plumbing attached to provide a flow of air or oxygen/steam mixture. After an instrumented burn the block is sawed open to examine the cavity. Mathematical modelling has been directed towards predicting the cavity shape. This paper describes some sub-models and examines their impact on predicted cavity shapes.

Creighton, J. R.

1981-08-01T23:59:59.000Z

94

Development of biological coal gasification (MicGAS process); 14th Quarterly report  

SciTech Connect (OSTI)

Reported here is the progress on the Development of Biological Coal Gasification for DOE contract No. DE-AC21-90MC27226 MOD A006. Task 1, NEPA Compliance and Updated Test Plan has been completed. Progress toward Task 2, Enhanced Methane Production, is reported in the areas of bacterial strain improvement, addition of co-substrates, and low cost nutrient amendment. Conclusions reached as a result of this work are presented. Plans for future work are briefly outlined.

NONE

1993-01-28T23:59:59.000Z

95

DIFFUSION COATINGS FOR CORROSION RESISTANT COMPONENTS IN COAL GASIFICATION SYSTEMS  

SciTech Connect (OSTI)

Advanced electric power generation systems use a coal gasifier to convert coal to a gas rich in fuels such as H{sub 2} and CO. The gas stream contains impurities such as H{sub 2}S and HCl, which attack metal components of the coal gas train, causing plant downtime and increasing the cost of power generation. Corrosion-resistant coatings would improve plant availability and decrease maintenance costs, thus allowing the environmentally superior integrated gasification combined cycle plants to be more competitive with standard power-generation technologies. A startup meeting was held at the National Energy Technology Center, Pittsburgh, PA site on July 28, 2003. SRI staff described the technical approach of the project.

Gopala N. Krishnan

2004-05-01T23:59:59.000Z

96

Storing syngas lowers the carbon price for profitable coal gasification  

SciTech Connect (OSTI)

Integrated gasification combined cycle (IGCC) electric power generation systems with carbon capture and sequestration have desirable environmental qualities but are not profitable when the carbon dioxide price is less than approximately $50 per metric ton. We examine whether an IGCC facility that operates its gasifier continuously but stores the syngas and produces electricity only when daily prices are high may be profitable at significantly lower CO{sub 2} prices. Using a probabilistic analysis, we have calculated the plant-level return on investment (ROI) and the value of syngas storage for IGCC facilities located in the U.S. Midwest using a range of storage configurations. Adding a second turbine to use the stored syngas to generate electricity at peak hours and implementing 12 h of above-ground high-pressure syngas storage significantly increases the ROI and net present value. Storage lowers the carbon price at which IGCC enters the U.S. generation mix by approximately 25%. 36 refs., 7 figs., 1 tab.

Adam Newcomer; Jay Apt [Carnegie Mellon University, Pittsburgh, PA (USA). Carnegie Mellon Electricity Industry Center

2007-12-15T23:59:59.000Z

97

Utilization of lightweight materials made from coal gasification slags  

SciTech Connect (OSTI)

The integrated-gasification combined-cycle (IGCC) process is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. In previous projects, Praxis investigated the utilization of as-generated slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, the authors found that it would be extremely difficult for as-generated slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It was further determined that the unconverted carbon, or char, in the slag is detrimental to its utilization as sand or fine aggregate. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1,400 and 1,700 F. These results confirmed the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis with funding from the Electric Power Research Institute (EPRI), Illinois Clean Coal Institute (ICCI), and internal resources. The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for various applications. The project goals are to be accomplished in two phases: Phase 1, comprising the production of LWA and ULWA from slag at the large pilot scale, and Phase 2, which involves commercial evaluation of these aggregates in a number of applications.

None

1999-09-30T23:59:59.000Z

98

UTILIZATION OF LIGHTWEIGHT MATERIALS MADE FROM COAL GASIFICATION SLAGS  

SciTech Connect (OSTI)

The integrated-gasification combined-cycle (IGCC) process is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. In previous projects, Praxis investigated the utilization of ''as-generated'' slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, we found that it would be extremely difficult for ''as-generated'' slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It was further determined that the unconverted carbon, or char, in the slag is detrimental to its utilization as sand or fine aggregate. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1400 and 1700 F. These results confirmed the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis with funding from the Electric Power Research Institute (EPRI), Illinois Clean Coal Institute (ICCI), and internal resources. The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for, various applications. The project goals are to be accomplished in two phases Phase I, comprising the production of LWA and ULWA from slag at the large pilot scale, and Phase II, which involves commercial evaluation of these aggregates in a number of applications.

Unknown

2000-04-24T23:59:59.000Z

99

Utilization of lightweight materials made from coal gasification slags  

SciTech Connect (OSTI)

The integrated-gasification combined-cycle (IGCC) process is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. In previous projects, Praxis investigated the utilization of as-generated slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, the authors found that it would be extremely difficult for as-generated slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It was further determined that the unconverted carbon, or char, in the slag is detrimental to its utilization as sand or fine aggregate. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1,400 and 1,700 F. These results confirmed the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis with funding from the Electric Power Research Institute (EPRI), Illinois Clean Coal Institute (ICCI), and internal resources. The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for various applications. The project goals are to be accomplished in two phases: Phase 1, comprising the production of LWA and ULWA from slag at the large pilot scale, and Phase 2, which involves commercial evaluation of these aggregates in a number of applications. Primary funding for the project is provided by DOE's Federal Energy Technology Center (FETC) at Morgantown, with significant cost sharing by Electric Power Research Institute (EPRI) and Illinois Clean Coal Institute (ICCI).

None

1999-12-30T23:59:59.000Z

100

Techno-economic analysis of coal gasification based co-production systems  

Science Journals Connector (OSTI)

Abstract Coal gasification based co-production systems are increasing popular in the world because they are assumed to be advantageous in energy efficiency and economic cost. However, there has been seldom researches on quantifying these advantages. In this paper, the co-prouction systems are analyzed from the technical and ecnomic point of views. During the study, the co-production system, of which the products are electricity and methanol, is modeled and simulated. For analysis, the energy analysis model and the economy analysis model are established. Results show that the co-production system has higher energy efficiency and less capital expenditure than tranditional single production systems.

Siyu Yang; Hengchong Li; Yu Qian

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated coal-gasification combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Mathematical Modeling of Coal Gasification Processes in a Well-Stirred Reactor: Effects of Devolatilization and Moisture Content  

E-Print Network [OSTI]

Mathematical Modeling of Coal Gasification Processes in a Well- Stirred Reactor: Effects in coal and biomass play an important role on the gasification performance of these fuels to simulate the gasification processes in a well-stirred reactor. This model is a first

Qiao, Li

102

Disposal of soluble salt waste from coal gasification  

SciTech Connect (OSTI)

This paper addresses pollutants in the form of soluble salts and resource recovery in the form of water and land. A design for disposal of soluble salts has been produced. The interactions of its parameters have been shown by a process design study. The design will enable harmonious compliance with United States Public Laws 92-500 and 94-580, relating to water pollution and resource recovery. In the disposal of waste salt solutions, natural water resources need not be contaminated, because an encapsulation technique is available which will immobilize the salts. At the same time it will make useful landforms available, and water as a resource can be recovered. There is a cost minimum when electrodialysis and evaporation are combined, which is not realizable with evaporation alone, unless very low-cost thermal energy is available or unless very high-cost pretreatment for electrodialysis is required. All the processes making up the proposed disposal process are commercially available, although they are nowhere operating commercially as one process. Because of the commercial availability of the processes, the proposed process may be a candidate 'best commercially available treatment' for soluble salt disposal.

McKnight, C.E.

1980-06-01T23:59:59.000Z

103

DOEIJEA-1219 ENVIRONMENTAL ASSESSMENT HOE CREEK UNDERGROUND COAL GASIFICATION TEST SITE REMEDIATION  

Broader source: Energy.gov (indexed) [DOE]

DOEIJEA-1219 DOEIJEA-1219 ENVIRONMENTAL ASSESSMENT HOE CREEK UNDERGROUND COAL GASIFICATION TEST SITE REMEDIATION CAMPBELL COUNTY, WYOMING October 1997 U.S. DEPARTMENT OF ENERGY FEDERAL ENERGY TECHNOLOGY CENTER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or use- fulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any spe- cific commercial product, process. or service by trade name, trademark, manufac-

104

DOE/NETL-2002/1164 Wabash River Coal Gasification Repowering Project: A DOE Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 4 Wabash River Coal Gasification Repowering Project: A DOE Assessment January 2002 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 website: www.netl.doe.gov 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

105

Underground coal gasification field experiment in the high-dipping coal seams  

SciTech Connect (OSTI)

In this article the experimental conditions and process of the underground gasification in the Woniushan Mine, Xuzhou, Jiangsu Province are introduced, and the experimental results are analyzed. By adopting the new method of long-channel, big-section, and two-stage underground coal gasification, the daily gas production reaches about 36,000 m{sup 3}, with the maximum output of 103,700 m{sup 3}. The daily average heating value of air gas is 5.04 MJ/m{sup 3}, with 13.57 MJ/m{sup 3} for water gas. In combustible compositions of water gas, H{sub 2} contents stand at over 50%, with both CO and CH{sub 4} contents over 6%. Experimental results show that the counter gasification can form new temperature conditions and increase the gasification efficiency of coal seams.

Yang, L.H.; Liu, S.Q.; Yu, L.; Zhang, W. [China University of Mining & Technology, Xuzhou (China). College of Resources & Geoscience

2009-07-01T23:59:59.000Z

106

Feasibility study for underground coal gasification at the Krabi Coal Mine site, Thailand. Final report  

SciTech Connect (OSTI)

This study, conducted by Energy and Environmental Research Center, was funded by the U.S Trade and Development Agency. The report summarizes the accomplishments of field, analytical data evaluation and modeling activities focused on assessment of underground coal gasification (UCG) feasibility at Krabi over a two year period. The overall objective of the project was to determine the technical issues, environmental impact, and economic of developing and commercializing UCG at the site in Krabi. The report contains an Executive Summary followed by these chapters: (1) Project Overview; (2) Project Site Characterization; (3) Inorganic and Thermal Materials Characterization; (4) Technical and Economic Feasibility of UCG At the Krabi Site; (5) Conclusions and Recommendations; (6) Acknowledgments; (7) References.

Boysen, J.; Sole, J.; Schmit, C.R.; Harju, J.A.; Young, B.C.

1997-01-01T23:59:59.000Z

107

Environmental assessment for the Hoe Creek underground, Coal Gasification Test Site Remediation, Campbell County, Wyoming  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has prepared this EA to assess environmental and human health Issues and to determine potential impacts associated with the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming. The Hoe Creek site is located south-southwest of the town of Gillette, Wyoming, and encompasses 71 acres of public land under the stewardship of the Bureau of Land Management. The proposed action identified in the EA is for the DOE to perform air sparging with bioremediation at the Hoe Creek site to remove contaminants resulting from underground coal gasification (UCG) experiments performed there by the DOE in the late 1970s. The proposed action would involve drilling additional wells at two of the UCG test sites to apply oxygen or hydrogen peroxide to the subsurface to volatilize benzene dissolved in the groundwater and enhance bioremediation of non-aqueous phase liquids present in the subsurface. Other alternatives considered are site excavation to remove contaminants, continuation of the annual pump and treat actions that have been used at the site over the last ten years to limit contaminant migration, and the no action alternative. Issues examined in detail in the EA are air quality, geology, human health and safety, noise, soils, solid and hazardous waste, threatened and endangered species, vegetation, water resources, and wildlife. Details of mitigative measures that could be used to limit any detrimental effects resulting from the proposed action or any of the alternatives are discussed, and information on anticipated effects identified by other government agencies is provided.

NONE

1997-10-01T23:59:59.000Z

108

Phase-equilibria for design of coal-gasification processes: dew points of hot gases containing condensible tars. Final report  

SciTech Connect (OSTI)

This research is concerned with the fundamental physical chemistry and thermodynamics of condensation of tars (dew points) from the vapor phase at advanced temperatures and pressures. Fundamental quantitative understanding of dew points is important for rational design of heat exchangers to recover sensible heat from hot, tar-containing gases that are produced in coal gasification. This report includes essentially six contributions toward establishing the desired understanding: (1) Characterization of Coal Tars for Dew-Point Calculations; (2) Fugacity Coefficients for Dew-Point Calculations in Coal-Gasification Process Design; (3) Vapor Pressures of High-Molecular-Weight Hydrocarbons; (4) Estimation of Vapor Pressures of High-Boiling Fractions in Liquefied Fossil Fuels Containing Heteroatoms Nitrogen or Sulfur; and (5) Vapor Pressures of Heavy Liquid Hydrocarbons by a Group-Contribution Method.

Prausnitz, J.M.

1980-05-01T23:59:59.000Z

109

A review of the factors influencing the physicochemical characteristics of underground coal gasification  

SciTech Connect (OSTI)

In this article, the physicochemical characteristics of the oxidation zone, the reduction zone, and the destructive distillation and dry zone in the process of underground coal gasification (UCG) were explained. The effect of such major factors as temperature, coal type, water-inrush or -intake rate, the quantity and quality of wind blasting, the thickness of coal seams, operational pressure, the length, and the section of gasification gallery on the quality of the underground gas and their interrelationship were discussed. Research showed that the temperature conditions determined the underground gas compositions; the appropriate water-inrush or -intake rate was conducive to the improvement in gas heat value; the properties of the gasification agent had an obvious effect on the compositions and heat value of the product gas. Under the cyclically changing pressure, heat losses decreased by 60%, with the heat efficiency and gasification efficiency being 1.4 times and 2 times those of constant pressure, respectively. The test research further proved that the underground gasifier with a long channel and a big cross-section, to a large extent, improved the combustion-gasification conditions.

Yang, L.H. [China University of Mining and Technology, Jiangsu (China)

2008-07-01T23:59:59.000Z

110

DEVELOPMENT OF NOVEL SPINEL REFRACTORIES FOR USE IN COAL GASIFICATION ENVIRONMENTS  

SciTech Connect (OSTI)

Work has been performed by Oak Ridge National Laboratory (ORNL), in collaboration with industrial refractory manufacturer (Minteq International, Inc.), academic research partner (Missouri University of Science and Technology) and end users to employ novel refractory systems and techniques to reduce energy consumption of refractory lined vessels found in industries such as aluminum, chemical, glass, and pulp and paper. The objective of the project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al 2O3 spinel structured unshaped refractory compositions (castables, gunnables, shotcretes, etc) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques. As part of the four-year project funded by the U.S. Department of Energy (DOE), materials have been developed specifically for coal gasification environments. Additionally, work has been performed to develop and apply low cost coatings using a colloidal approach for protection against corrosion attack of the refractory brick and to develop a light-weight back-up refractory system to help offset the high thermal conductivity inherent in spinel materials. This paper discusses the development of these materials, along with preliminary results achieved toward the reduction of chemical reactions and mechanical degradation by the service environment.

Hemrick, James Gordon [ORNL; Armstrong, Beth L [ORNL; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.; Smith, Jeffrey D [ORNL; O'Hara, Kelley [University of Missouri, Rolla

2011-01-01T23:59:59.000Z

111

Hanna, Wyoming underground coal gasification data base. Volume 3. The Hanna II, Phase I field test  

SciTech Connect (OSTI)

This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project, and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. Hanna II, Phase I was conducted during the spring and summer of 1975, at a site about 700 feet up dip (to the southwest) of the Hanna I test. The test was conducted in two stages - Phase IA and IB. Phase IA consisted of linking and gasification operations between Wells 1 and 3 and Phase IB of linking from the 1-3 gasification zone to Well 2, followed by a short period of gasification from Well 2 to Well 3 over a broad range of air injection rates, in order to determine system turndown capabilities and response times. This report covers: (1) site selection and characteristics; (2) test objectives; (3) facilities description; (4) pre-operational testing; (5) test operations summary; and (6) post-test activity. 7 refs., 11 figs., 8 tabs.

Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

1985-08-01T23:59:59.000Z

112

SPINEL-BASED REFRACTORIES FOR IMPROVED PERFORMANCE IN COAL GASIFICATION ENVIRONMENTS  

SciTech Connect (OSTI)

Oak Ridge National Laboratory, in collaboration with refractory manufacturer Minteq International, Inc., academic partner Missouri University of Science and Technology and refractory end users have developed novel refractory systems and techniques to reduce energy consumption of refractory lined vessels. The objective of this U.S. DOE funded project was to address the need for innovative refractory compositions by developing MgO-Al 2O3 spinel gunnable refractory compositions utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques. Materials have been developed specifically for coal gasification environments and work has been performed to develop and apply low cost coatings using a colloidal approach for protection against attack of the refractory brick by the service environment and to develop a light-weight back-up refractory system to help offset the high thermal conductivity inherent in spinel materials. This paper discusses the systematic development of these materials, laboratory testing and evaluation of these materials, and relevant results achieved toward the reduction of chemical reactions and mechanical degradation by the service environment though compositional and processing modifications.

Hemrick, James Gordon [ORNL; Armstrong, Beth L [ORNL; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.; Smith, Jeffrey D [ORNL; O'Hara, Kelley [University of Missouri, Rolla

2013-01-01T23:59:59.000Z

113

Refractory Materials based on Magnesia-Alumina Spinel for Improved Performance in Coal Gasification Environments  

SciTech Connect (OSTI)

As part of a larger project to develop novel refractory systems and techniques to reduce energy consumption of refractory lined vessels, a team composed of Oak Ridge National Laboratory, refractory manufacturer Minteq International, Inc., and academic partner Missouri University of Science and Technology have developed new refractory materials and coating systems specifically for application in coal gasification environments. Materials were developed under this U.S. DOE funded project to address the need for innovative refractory compositions by developing MgO-Al2O3 spinel gunnable refractory compositions utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques. Work was conducted to develop and deploy these new materials and to develop and apply low cost coatings using a colloidal approach for protection against attack of the refractory brick by the serviced environment. Additionally, a light-weight back-up refractory system was developed to help offset the high thermal conductivity inherent in spinel materials. This paper discusses the efforts involved in the development of these materials, along with the laboratory testing and evaluation of these materials leading to relevant results achieved toward the reduction of chemical reactions and mechanical degradation by the service environment though compositional and processing modifications.

Hemrick, James Gordon [ORNL; Armstrong, Beth L [ORNL; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.; Smith, Jeffrey D [ORNL; O'Hara, Kelley [University of Missouri, Rolla

2013-01-01T23:59:59.000Z

114

Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption  

SciTech Connect (OSTI)

This patent describes the method for bulk separation of multi-component gases generated in a coal gasification process wherein coal is gasified in a gasifier to produce gasification products including a mixture of gases comprising hydrogen, carbon monoxide, methane, and acid gas components carbon dioxide and hydrogen sulfide. It consists of the steps of conveying a stream comprising the mixture of gases into one end of an elongated column containing a solid adsorbent for each of the gases forming the mixture of gases and pressurizing the charge of gases within the column to a pressure within a range sufficient to effect the adsorption by the adsorbent of the conveyed gases including the hydrogen defining the least absorbable gas in the mixture of gases. Then, decreasing the partial pressure of the charge of gases in the column to effect the sequential desorption of the gases hydrogen, carbon monoxide, and methane from the adsorbent in the column, and conveying the adsorbed gases from the column upon desorption thereof from the adsorbent.

Ghate, M.H.; Yang, R.T.

1987-09-29T23:59:59.000Z

115

Novel hydrogen separation device development for coal gasification system applications. Final report  

SciTech Connect (OSTI)

This study was undertaken for the development of a novel Electrochemical Hydrogen Separator (EHS) technology for low-cost hydrogen separation from coal derived gases. Design and operating parameter testing was performed using subscale cells (25 cm{sup 2}). High H{sub 2} purity, >99% is one of the main features of the EHS. It was found that N{sub 2}, CO{sub 2} and CH{sub 4} behave as equivalent inerts; EHS performance is not affected by the balance of feed gas containing these components. This product purity level is not sacrificed by increased H{sub 2} recovery. CO, however, does adversely affect EHS performance and therefore feed stream pretreatment is recommended. Low levels of H{sub 2}S and NH{sub 3} were added to the feed gas stream and it was verified that these impurities did not affect EHS performance. Task 2 demonstrated the scale-up to full size multi-cell module operation while maintaining a stable energy requirement. A 10-cell full-size module (1050 cm{sup 2} cell active area) was operated for over 3,800 hours and gave a stable baseline performance. Several applications for the EHS were investigated. The most economically attractive systems incorporating an EHS contain low pressure, dilute hydrogen streams, such as coal gasification carbonate fuel cell systems, hydrogen plant purification and fluid catalytic cracker units. In addition, secondary hydrogen recovery from PSA or membrane tailstreams using an EHS may increase overall system efficiency.

Not Available

1993-08-01T23:59:59.000Z

116

Coal gasification power generation, and product market study. Topical report, March 1, 1995--March 31, 1996  

SciTech Connect (OSTI)

This Western Research Institute (WRI) project was part of a WRI Energy Resource Utilization Program to stimulate pilot-scale improved technologies projects to add value to coal resources in the Rocky Mountain region. The intent of this program is to assess the application potential of emerging technologies to western resources. The focus of this project is on a coal resource near the Wyoming/Colorado border, in Colorado. Energy Fuels Corporation/Kerr Coal Company operates a coal mine in Jackson County, Colorado. The coal produces 10,500 Btu/lb and has very low sulfur and ash contents. Kerr Coal Company is seeking advanced technology for alternate uses for this coal. This project was to have included a significant cost-share from the Kerr Coal Company ownership for a market survey of potential products and technical alternatives to be studied in the Rocky Mountain Region. The Energy Fuels Corporation/Kerr Coal Company and WRI originally proposed this work on a cost reimbursable basis. The total cost of the project was priced at $117,035. The Kerr Coal Company had scheduled at least $60,000.00 to be spent on market research for the project that never developed because of product market changes for the company. WRI and Kerr explored potential markets and new technologies for this resource. The first phase of this project as a preliminary study had studied fuel and nonfuel technical alternatives. Through related projects conducted at WRI, resource utilization was studied to find high-value materials that can be targeted for fuel and nonfuel use and eventually include other low-sulfur coals in the Rocky Mountain region. The six-month project work was spread over about a three-year period to observe, measure, and confirm over time-any trends in technology development that would lead to economic benefits in northern Colorado and southern Wyoming from coal gasification and power generation.

Sheesley, D.; King, S.B.

1998-12-31T23:59:59.000Z

117

CoalFleet RD&D augmentation plan for integrated gasification combined cycle (IGCC) power plants  

SciTech Connect (OSTI)

To help accelerate the development, demonstration, and market introduction of integrated gasification combined cycle (IGCC) and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiative, which facilitates collaborative research by more than 50 organizations from around the world representing power generators, equipment suppliers and engineering design and construction firms, the U.S. Department of Energy, and others. This group advised EPRI as it evaluated more than 120 coal-gasification-related research projects worldwide to identify gaps or critical-path activities where additional resources and expertise could hasten the market introduction of IGCC advances. The resulting 'IGCC RD&D Augmentation Plan' describes such opportunities and how they could be addressed, for both IGCC plants to be built in the near term (by 2012-15) and over the longer term (2015-25), when demand for new electric generating capacity is expected to soar. For the near term, EPRI recommends 19 projects that could reduce the levelized cost-of-electricity for IGCC to the level of today's conventional pulverized-coal power plants with supercritical steam conditions and state-of-the-art environmental controls. For the long term, EPRI's recommended projects could reduce the levelized cost of an IGCC plant capturing 90% of the CO{sub 2} produced from the carbon in coal (for safe storage away from the atmosphere) to the level of today's IGCC plants without CO{sub 2} capture. EPRI's CoalFleet for Tomorrow program is also preparing a companion RD&D augmentation plan for advanced-combustion-based (i.e., non-gasification) clean coal technologies (Report 1013221). 7 refs., 30 figs., 29 tabs., 4 apps.

NONE

2007-01-15T23:59:59.000Z

118

Methodology for technology evaluation under uncertainty and its application in advanced coal gasification processes  

E-Print Network [OSTI]

Integrated gasification combined cycle (IGCC) technology has attracted interest as a cleaner alternative to conventional coal-fired power generation processes. While a number of pilot projects have been launched to ...

Gong, Bo, Ph. D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

119

Biological removal of organic constituents in quench water from a slagging, fixed-bed coal-gasification pilot plant  

SciTech Connect (OSTI)

This study is part of an effort to assess the efficiency of activated-sludge treatment for removal of organic constituents from high-Btu coal-gasification pilot-plant quench waters. A sample of raw-gas quench water was obtained from the Grand Forks Energy and Technology Center's pilot plant, which employs the slagging, fixed-bed gasification process. The quench water generated in the processing of Indian Head lignite was pretreated to reduce ammonia and alkalinity, and then diluted and subjected to long-term biological treatment, followed by detailed characterization and analysis of organic constituents. The pretreated (influent) and treated (effluent) samples were extracted using a methylene chloride, pH-fractionation method to obtain acid, base, and neutral fractions, which were analyzed by capillary-column gas chromatography/mass spectrometry (GC/MS). Over 99% of the total extractable and chromatographable organic material in the influent acid fraction was composed of phenol and alkylated phenols. Biological treatment removed these compounds almost completely. Major components of the influent base fraction were alkylated pyridines, anilines, aminopyrroles, imidazoles and/or pyrazoles, diazines, and quinolines. Removal efficiency of these compounds ranged between 90 and 100%. The influent neutral fraction was composed mainly of cycloalkanes, cycloalkenes, naphthalene, indole, acetophenone, and benzonitrile. Alkylated benzenes were generally absent. Removal efficiencies of these compounds were generally very good, except for certain alkylated cycloalkanes and cycloalkenes. Results are compared with those of a similar study on HYGAS coal-gasification quench water.

Stamoudis, V C; Luthy, R G

1980-02-01T23:59:59.000Z

120

Chemistry and mechanism of molten-salt catalysts in coal-gasification processes. Final report, January 1984-January 1985  

SciTech Connect (OSTI)

Alkali metal salts have been recognized as effective catalysts in coal gasification. However, the presence of reducing gases, in particular carbon monoxide, has recently been shown to have serious inhibitory effects on the catalyst performance. This program has addressed the question of the chemical interactions between carbon monoxide gas containing mixtures and the salt catalysts in liquid form by probing the solution chemistry by dynamic electrochemical techniques. The results of this study show that oxalate ions are formed by the reaction between carbonate ions and carbon monoxide gas. At temperatures above 700/sup 0/C, sulfate ions are directly attacked by carbon monoxide. The oxalate ions are electroactive and their electrochemistry has been studied and found to involve adsorption of oxalate and formation of reactive intermediates. The pathway likely involves an ECE sequence. The formation of active adsorbed species such as oxalate or sulfides at high temperature may be the means by which catalytic function of the salts is inhibited.

White, S.H.; Twardoch, U.M.

1985-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated coal-gasification combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Corrosion and degradation of test materials in the Westinghouse 15 ton/day Coal Gasification Process Development Unit  

SciTech Connect (OSTI)

Two periods of in-plant exposures of candidate materials in the Westinghouse PDU have been completed. Coupons were exposed in the gasifier, hot-gas cyclone, quench scrubber, and gas cooler vessels. Corrosion monitoring of test materials is currently being conducted in the Westinghouse Coal Gasification Process Development Unit (PDU) coal gasification pilot plant. The corrosion data presented are from work during 1981 through 1984. During these two exposure periods, several coals ranging from lignites to bituminous coals and two petroleum cokes were gasified in the steam-oxygen mode. Fouling was observed on most corrosion racks. The effect of this process-related material was to promote corrosion. In the gasifier environment, alloys 6B, IN 671, and 18SR were the best performing alloys. Nickel-base alloys with Ni/Cr ratios >1.5, namely IN-617, IN-825, and alloy X, incurred severe corrosion attack in both exposures. Other alloys, although generally acceptable in corrosion performance, were not immune to solids-induced corrosion around coupon mounting holes. Several refractories such as Brickram 90, Harbison-Walker Ruby, and Chemal 85B showed little degradation in both gasifier exposures. Nitride bonded silicon carbon Refrax 20 had the greatest reduction in abrasion resistance as well as other properties. Single-phase structural ceramics including siliconized SiC, sintered ..cap alpha..-SiC, and Al/sub 2/O/sub 3/ did not suffer any noticeable damage. Materials evaluation in the hot-gas cyclone showed IN-671 and 26-1 to be more resistant than Type 310 and Type 310 aluminized. 18 refs., 23 figs., 24 tabs.

Yurkewycz, R.

1985-01-31T23:59:59.000Z

122

An evaluation of integrated-gasification-combined-cycle and pulverized-coal-fired steam plants: Volume 1, Base case studies: Final report  

SciTech Connect (OSTI)

An evaluation of the performance and costs for a Texaco-based integrated gasification combined cycle (IGCC) power plant as compared to a conventional pulverized coal-fired steam (PCFS) power plant with flue gas desulfurization (FGD) is provided. A general set of groundrules was used within which each plant design was optimized. The study incorporated numerous sensitivity cases along with up-to-date operating and cost data obtained through participation of equipment vendors and process developers. Consequently, the IGCC designs presented in this study use the most recent data available from Texaco's ongoing international coal gasification development program and General Electric's continuing gas turbine development efforts. The Texaco-based IGCC has advantages over the conventional PCFS technology with regard to environmental emissions and natural resource requirements. SO/sub 2/, NOx, and particulate emissions are lower. Land area and water requirements are less for IGCC concepts. Coal consumption is less due to the higher plant thermal efficiency attainable in the IGCC plant. The IGCC plant also has the capability to be designed in several different configurations, with and without the use of natural gas or oil as a backup fuel. This capability may prove to be particularly advantageous in certain utility planning and operation scenarios. 107 figs., 114 tabs.

Pietruszkiewicz, J.; Milkavich, R.J.; Booras, G.S.; Thomas, G.O.; Doss, H.

1988-09-01T23:59:59.000Z

123

Feasibility study for underground coal gasification at the Krabi coal mine site, Thailand: Volume 1. Progress report, December 1--31, 1995; Export trade information  

SciTech Connect (OSTI)

The report, conducted by Energy and Environmental Research Center, was funded by the US Trade and Development Agency. The objective of this report was to determine the technical, environmental and economic feasibility of developing, demonstrating, and commercializing underground coal gasification (UCG) at the Krabi coal mine site in Southern Thailand. This is Volume 1, the Progress Report for the period December 1, 1995, through December 31, 1995.

Young, B.C.; Schmit, C.R.

1996-01-01T23:59:59.000Z

124

Conceptual Design of a Fossil Hydrogen Infrastructure with Capture and Sequestration of Carbon Dioxide: Case Study in Ohio  

E-Print Network [OSTI]

production of H 2 using coal gasification and 2) distributeda more modern integrated gasification combined cycle (IGCC)and efficient integrated gasification combined cycle (IGCC)

2005-01-01T23:59:59.000Z

125

Molten Salt Coal Gasification Process Development Unit. Phase 2. Quarterly technical progress report No. 2, October-December 1980  

SciTech Connect (OSTI)

This represents the second quarterly progress report on Phase 2 of the Molten Salt Coal Gasification Process Development Unit (PDU) Program. Phase 1 of this program started in March 1976 and included the design, construction, and initial operation of the PDU. On June 25, 1980, Phase 2 of the program was initiated. It covers a 1-year operations program utilizing the existing PDU and is planned to include five runs with a targeted total operating time of 9 weeks. During this report period, Run 6, the initial run of the Phase 2 program was completed. The gasification system was operated for a total of 95 h at pressures up to 10 atm. Average product gas HHV values of 100 Btu/scf were recorded during 10-atm operation, while gasifying coal at a rate of 1100 lb/h. The run was terminated when the melt overflow system plugged after 60 continuous hours of overflow. Following this run, melt withdrawal system revisions were made, basically by changing the orifice materials from Monofrax to an 80 Cobalt-20 Chromium alloy. By the end of the report period, the PDU was being prepared for Run 7.

Not Available

1981-01-20T23:59:59.000Z

126

Hanna, Wyoming underground coal gasification data base. Volume 4. Hanna II, Phases II and III field test research report  

SciTech Connect (OSTI)

This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. Hanna II, Phases II and III, were conducted during the winter of 1975 and the summer of 1976. The two phases refer to linking and gasification operations conducted between two adjacent well pairs as shown in Figure 1 with Phase II denoting operations between Wells 5 and 6 and Phase III operations between Wells 7 and 8. All of the other wells shown were instrumentation wells. Wells 7 and 8 were linked in November and December 1975. This report covers: (1) specific site selection and characteristics; (2) test objectives; (3) facilities description; (4) pre-operation tests; (5) test operations summary; and (6) post-test activity. 16 refs., 21 figs., 17 tabs.

Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

1985-08-01T23:59:59.000Z

127

Biological removal of organic constituents in quench waters from high-Btu coal-gasification pilot plants  

SciTech Connect (OSTI)

Studies were initiated to assess the efficiency of bench-scale, activated-sludge treatment for removal of organic constituents from coal-gasification process effluents. Samples of pilot-plant, raw-gas quench waters were obtained from the HYGAS process of the Institute of Gas Technology and from the slagging, fixed-bed (SFB) process of the Grand Forks Energy Technology Center. The types of coal employed were Bituminous Illinois No. 6 for the HYGAS and Indian Head lignite for the SFB process. These pilot-plant quench waters, while not strictly representative of commercial condensates, were considered useful to evaluate the efficiency of biological oxidation for the removal of organics. Biological-reactor influent and effluent samples were extracted using a methylene chloride pH-fractionation method into acid, base, and neutral fractions, which were analyzed by capillary-column gas-chromatography/mass-spectrometry. Influent acid fractions of both HYGAS and SFB condensates showed that nearly 99% of extractable and chromatographable organic material comprised phenol and alkylated phenols. Activated-sludge treatment removed these compounds almost completely. Removal efficiency of base-fraction organics was generally good, except for certain alkylated pyridines. Removal of neutral-fraction organics was also good, except for certain alkylated benzenes, certain polycyclic aromatic hydrocarbons, and certain cycloalkanes and cycloalkenes, especially at low influent concentrations.

Stamoudis, V C; Luthy, R G

1980-02-01T23:59:59.000Z

128

Underground coal gasification (UCG) gas to methanol and MTG-gasoline: an economic and sensitivity study, Task B  

SciTech Connect (OSTI)

This report, identified as Task B, examines the technical and economic aspects of the production of methanol and MTG-Gasoline using gas from an underground coal gasification (UCG) facility. The report is a sequel to a previous study performed in 1981 and identified as Task A. The Task A report, titled Cost Saving Concepts on the Production of Methanol from Underground Gasified Coal, examined the economics of producing fuel grade methanol using UCG gas. In this study we examine the economics of producing MTG-Gasoline as well as a number of other aspects of the economics of upgrading UCG gas. Capital and operating costs for three different capacities of MTG-Gasoline plant are presented. These are 1600 BPD, 4800 BPD, and 9600 BPD. These capacities are equivalent to fuel grade methanol plants having capacities of 4000 BPD, 12,000 BPD, and 24,000 BPD - the methanol capacities considered in the previous studies. The economics of the MTG-Gasoline plant were developed using published information and our best estimate of the processing steps in the MTG-Gasoline process. As part of this study, several sensitivity studies were undertaken to examine the sensitivity of both methanol and MTG-Gasoline product cost to changes in technical and economic parameters. Table 1.1 lists the various sensitivity studies undertaken. All cost figures are in first quarter 1982 dollars.

Not Available

1982-06-01T23:59:59.000Z

129

Wabash inside  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 SEPTEMBER 2000 The Wabash River Coal Gasification Repowering Project An Update TOPICAL REPORT NUMBER 20 SEPTEMBER 2000 The Wabash River Coal Gasification Repowering Project A report on a project conducted jointly under a cooperative agreement between: The U.S. Department of Energy and Wabash River Coal Gasification Project Joint Venture A 262 MWe Commercial Scale Integrated Gasification Combined Cycle Power Plant An Update View of the Wabash River Coal Gasification Repowering project with the Wabash River and the flat terrain of west central Indiana in the background. Cover image: The Wabash River Coal Gasification Repowering Project Executive Summary ........................................................................................... 1 Background ........................................................................................................

130

Effects of Reducing Conditions on the Properties of Molten Slag in an Entrained Bed Gasifier  

Science Journals Connector (OSTI)

The integrated gasification combined cycle (IGCC) system combines coal gasification with gas turbine and steam turbine power generation, is the most advanced technology for cleanly generating electricity from ...

Y. Wei; H. Li; N. Yamada; A. Sato; Y. Ninomiya…

2013-01-01T23:59:59.000Z

131

Utilization of lightweight materials made from coal gasification slags. Quarterly report, September--November 1995  

SciTech Connect (OSTI)

Integrated-gasification combined-cycle (IGCC) technology is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. Slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln. The potential exists for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed. The project scope consists of collecting a 20-ton sample of slag (primary slag), processing it for char removal, and subjecting it to pyroprocessing to produce expanded slag aggregates of various size gradations and unit weights, ranging from 12 to 50 lb/ft{sup 3}. A second smaller slag sample will be used for confirmatory testing. The expanded slag aggregates will then be tested for their suitability in manufacturing precast concrete products (e.g., masonry blocks and roof tiles) and insulating concrete, first at the laboratory scale and subsequently in commercial manufacturing plants. These products will be evaluated using ASTM and industry test methods. Technical data generated during production and testing of the products will be used to assess the overall technical viability of expanded slag production. In addition, a market assessment will be made based on an evaluation of both the expanded slag aggregates and the final products, and market prices for these products will be established in order to assess the economic viability of these utilization technologies.

NONE

1995-12-01T23:59:59.000Z

132

Development of the Shell-Koppers Coal Gasification Process [and Discussion  

Science Journals Connector (OSTI)

...research-article Development of the Shell-Koppers...entrained-bed technology, is characterized...production of a clean gas without by-products...featuring both gas and steam turbines. The integration...feed coals. The development programme includes...

1981-01-01T23:59:59.000Z

133

Improved System Integration for Integrated Gasification Combined Cycle (IGCC) Systems  

Science Journals Connector (OSTI)

Improved System Integration for Integrated Gasification Combined Cycle (IGCC) Systems ... The model is applied to evaluate integration schemes involving nitrogen injection, air extraction, and combinations of both, as well as different ASU pressure levels. ... The optimal nitrogen injection only case in combination with an elevated pressure ASU had the highest efficiency and power output and approximately the lowest emissions per unit output of all cases considered, and thus is a recommended design option. ...

H. Christopher Frey; Yunhua Zhu

2006-02-02T23:59:59.000Z

134

Integrated production of fuel gas and oxygenated organic compounds from synthesis gas  

DOE Patents [OSTI]

An oxygenated organic liquid product and a fuel gas are produced from a portion of synthesis gas comprising hydrogen, carbon monoxide, carbon dioxide, and sulfur-containing compounds in a integrated feed treatment and catalytic reaction system. To prevent catalyst poisoning, the sulfur-containing compounds in the reactor feed are absorbed in a liquid comprising the reactor product, and the resulting sulfur-containing liquid is regenerated by stripping with untreated synthesis gas from the reactor. Stripping offgas is combined with the remaining synthesis gas to provide a fuel gas product. A portion of the regenerated liquid is used as makeup to the absorber and the remainder is withdrawn as a liquid product. The method is particularly useful for integration with a combined cycle coal gasification system utilizing a gas turbine for electric power generation.

Moore, Robert B. (Allentown, PA); Hegarty, William P. (State College, PA); Studer, David W. (Wescosville, PA); Tirados, Edward J. (Easton, PA)

1995-01-01T23:59:59.000Z

135

Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems  

SciTech Connect (OSTI)

Advanced electric power generation systems use a coal gasifier to convert coal to a gas rich in fuels such as H{sub 2} and CO. The gas stream contains impurities such as H{sub 2}S and HCl, which attack metal components of the coal gas train, causing plant downtime and increasing the cost of power generation. Corrosion-resistant coatings would improve plant availability and decrease maintenance costs, thus allowing the environmentally superior integrated-gasification-combined-cycle (IGCC) plants to be more competitive with standard power-generation technologies. Heat-exchangers, particle filters, turbines, and other components in the IGCC system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy will improve is resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. The Fe- and Ni-based high-temperature alloys are susceptible to sulfidation attack unless they are fortified with high levels of Cr, Al, and Si. To impart corrosion resistance, these elements need not be in the bulk of the alloy and need only be present at the surface layers. In this study, the use of corrosion-resistant coatings on low alloy steels was investigated for use as high-temperature components in IGCC systems. The coatings were deposited using SRI's fluidized-bed reactor chemical vapor deposition technique. Diffusion coatings of Cr and Al were deposited by this method on to dense and porous, low alloy stainless steel substrates. Bench-scale exposure tests at 900 C with a simulated coal gas stream containing 1.7% H{sub 2}S showed that the low alloy steels such SS405 and SS409 coated with {approx}20%Cr and Al each can be resistant to sulfidation attack for 500 h. However, exposure to an actual coal gasifier gas stream at the Wabash River gasifier facility for 1000 h in the temperature range 900 to 950 C indicated that Cr and Al present in the coating diffused further into the substrate decreasing the protective ability of these elements against attack by H{sub 2}S. Similarly, adherent multilayer coatings containing Si, Ti, Al, and Nb were also deposited with subsequent nitridation of these elements to increase the corrosion resistance. Both dense and porous SS409 or SS 410 alloy substrates were coated by using this method. Multilayer coatings containing Ti-Al-Si nitrides along with a diffusion barrier of Nb were deposited on SS410 and they were found also to be resistant to sulfidation attack in the bench scale tests at 900 C. However, they were corroded during exposure to the actual coal gasifier stream at the Wabash River gasifier facility for 1000 h. The Cr/Al coatings deposited inside a porous substrate was found to be resistant to sulfidation attack in the bench-scale simulated tests at 370 C. The long-term exposure test at the Wabash River gasifier facility at 370 C for 2100 h showed that only a minor sulfidation attack occurred inside the porous SS 409 alloy coupons that contained Cr and Al diffusion coatings. This attack can be prevented by improving the coating process to deposit uniform coatings at the interior of the porous structure. It is recommended that additional studies be initiated to optimize the FBR-CVD process to deposit diffusion coatings of the corrosion resistant elements such as Cr, Al, and Ti inside porous metal filters to increase their corrosion resistance. Long-term exposure tests using an actual gas stream from an operating gasifier need to be conducted to determine the suitability of the coatings for use in the gasifier environment.

Gopala N. Krishnan; Ripudaman Malhotra; Jordi Perez; Marc Hornbostel; Kai-Hung Lau; Angel Sanjurjo

2007-05-31T23:59:59.000Z

136

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

and power via biomass gasification. Biomass and Bioenergyrenewables Integrated coal gasification combined cycle withLubricants Waxes Naptha Gasification Ethane, Benzene, and

2007-01-01T23:59:59.000Z

137

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

and power via biomass gasification. Biomass and Bioenergyrenewables Integrated coal gasification combined cycle withLubricants Waxes Naptha Gasification Ethane, Benzene, and

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

138

Numerical study on convection diffusion for gasification agent in underground coal gasification. Part I: establishment of mathematical models and solving method  

SciTech Connect (OSTI)

The aim of this article is to discuss the distribution law of the gasification agent concentration in a deep-going way during underground coal gasification and the new method of solving the problem for the convection diffusion of the gas. In this paper, the basic features of convection diffusion for the gas produced in underground coal gasification are studied. On the basis of the model experiment, through the analysis of the distribution and patterns of variation for the fluid concentration field in the process of the combustion and gasification of the coal seams within the gasifier, the 3-D non-linear unstable mathematical models on the convection diffusion for oxygen are established. In order to curb such pseudo-physical effects as numerical oscillation and surfeit which frequently occurred in the solution of the complex mathematical models, the novel finite unit algorithm, the upstream weighted multi-cell balance method is advanced in this article, and its main derivation process is introduced.

Yang, L.H.; Ding, Y.M. [China University of Mining & Technology, Xuzhou (China). College of Resources and Geoscience

2009-07-01T23:59:59.000Z

139

Coal gasification system with a modulated on/off control system  

DOE Patents [OSTI]

A modulated control system is provided for improving regulation of the bed level in a fixed-bed coal gasifier into which coal is fed from a rotary coal feeder. A nuclear bed level gauge using a cobalt source and an ion chamber detector is used to detect the coal bed level in the gasifier. The detector signal is compared to a bed level set point signal in a primary controller which operates in proportional/integral modes to produce an error signal. The error signal is modulated by the injection of a triangular wave signal of a frequency of about 0.0004 Hz and an amplitude of about 80% of the primary deadband. The modulated error signal is fed to a triple-deadband secondary controller which jogs the coal feeder speed up or down by on/off control of a feeder speed change driver such that the gasifier bed level is driven toward the set point while preventing excessive cycling (oscillation) common in on/off mode automatic controllers of this type. Regulation of the bed level is achieved without excessive feeder speed control jogging.

Fasching, George E. (Morgantown, WV)

1984-01-01T23:59:59.000Z

140

Coal gasification apparatus  

DOE Patents [OSTI]

Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

Nagy, Charles K. (Monaca, PA)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated coal-gasification combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Coal gasification: Belgian first  

Science Journals Connector (OSTI)

... hope for Europe's coal production came with the announcement this month that the first gasification of coal at depths of nearly 1,000 metres would take place this May in ... of energy.

Jasper Becker

1982-03-04T23:59:59.000Z

142

Coal Gasification Systems Solicitations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low Cost Coal Conversion to High Hydrogen Syngas; FE0023577 Alstom's Limestone Chemical Looping Gasification Process for High Hydrogen Syngas Generation; FE0023497 OTM-Enhanced...

143

Combination and Integration of DPF-SCR Aftertreatment Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Combination and Integration of DPF-SCR Aftertreatment Technologies Combination and Integration of DPF-SCR Aftertreatment Technologies 2010 DOE Vehicle Technologies and Hydrogen...

144

Combination and Integration of DPF-SCR Aftertreatment Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ace025rappe2011o.pdf More Documents & Publications Combination and Integration of DPF-SCR Aftertreatment Technologies Combination and Integration of DPF-SCR Aftertreatment...

145

Combination and Integration of DPF-SCR Aftertreatment Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ace025rappe2012o.pdf More Documents & Publications Combination and Integration of DPF-SCR Aftertreatment Technologies Combination & Integration of DPF-SCR Aftertreatment...

146

Combined Heat and Power (CHP) Integrated with Burners for Packaged...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers Providing Clean, Low-Cost,...

147

Carbon dioxide recovery from an integrated coal gasifier, combined cycle plant using membrane separation and a CO2 gas turbine  

Science Journals Connector (OSTI)

A scheme is described for electricity production based on coal gasification with recovery of carbon dioxide. In this scheme, coal is gasified into a coal gas, consisting mainly of hydrogen and carbon monoxide. A ...

Chris Hendriks

1994-01-01T23:59:59.000Z

148

ITP Industrial Distributed Energy: 4th Annual Combined Heat and...  

Broader source: Energy.gov (indexed) [DOE]

prime movers * Fossil - Coal gasification - Natural Gas - Diesel * Renewable - Biogas - Solar Identify market opportunities driven by...

149

Combination & Integration of DPF-SCR Aftertreatment Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Aftertreatment Technologies Combination & Integration of DPF-SCR Aftertreatment Technologies Work is undertaken to examine the feasibility of integrating SCR and DPF technologies...

150

Effects of silicon and titanium on the corrosion of low-alloy steels in a simulated coal gasification environment at 600 C  

SciTech Connect (OSTI)

Results of corrosion tests carried out on a series of Fe-12% Cr alloys in coal gasification environments t 600 C were studied. Effects of Si and Ti on corrosion resistance were assessed using data obtained from a commercial 12% Cr alloy, type 410 (UNS S41000), three specially cast model 12% Cr alloys containing 2.7% Si with Ti levels of 0%, 0.4% and 0.7%, respectively, and a higher alloy (type 28 [UNS N08028]) heat exchanger steel. Corrosion tests were carried out using simulated dry-feed entrained slagging gasifier gas The gas (64% carbon monoxide [CO], 3.8% carbon dioxide [CO{sub 2}], 0.8% hydrogen sulfide [H{sub 2}S], and balance H{sub 2} [in vol%]) was premixed and passed over the test pieces at a rate high enough to prevent thermodynamic equilibrium achievement. Results showed that Si had a strongly beneficial influence on corrosion resistance. Ti, depending upon the amount added, exerted a positive or negative influence on corrosion resistance and reduced problems associated with workability. The kinetics of corrosion were presented in terms of weight-change and metal-loss measurements, the synergistic influences of Si and Ti were discussed, and corrosion resistance was compared with that exhibited by a commercial 12% Cr steel and type 28, the higher alloy material.

Soler, J.L.J.; Baxter, D.J.; Norton, J.F.

1999-12-01T23:59:59.000Z

151

Survey of tar sand deposits, heavy oil fields, and shallow light oil fields of the United States for underground coal gasification applications  

SciTech Connect (OSTI)

A literature survey was conducted to identify areas of the United States where tar sand deposits, heavy oil fields, or shallow light oil fields might be suitably associated with coal deposits for production of oil by in situ thermal recovery methods using heat derived from underground coal gasification (UCG) processes. The survey is part of a Department of Energy-sponsored program to develop new applications for UCG technology in utilizing coal resources that are unattractive for mining. Results from the survey indicate tar sand deposits, heavy oil fields, or light oil fields are probably or possibly located within 5 miles of suitable coal in 17 states (Table 1). Especially promising areas are in the Uinta Basin of Utah; the North Slope of Alaska; the San Miguel deposit in southwest Texas; the Illinois-Eastern Interior Basin area of western Kentucky, southwestern Indiana and Illinois; the tri-state area of Missouri, Kansas and Oklahoma; and the northern Appalachian Basin in eastern Ohio and northwestern Pennsylvania. The deposits in these areas warrant further evaluation. 30 refs., 4 figs., 1 tab.

Trudell, L.G.

1986-06-01T23:59:59.000Z

152

Utilization of lightweight materials made from coal gasification slags. Quarterly report, September 1, 1996--November 30, 1996  

SciTech Connect (OSTI)

Integrated-gasification combined-cycle (IGCC) technology is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. In previous projects, Praxis investigated the utilization of {open_quotes}as-generated{close_quotes} slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, we found that it would be extremely difficult for {open_quotes}as-generated{close_quotes} slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It was further determined that the unconverted carbon, or char, in the slag is detrimental to its utilization as sand or fine aggregate. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1400 and 1700{degrees}F. These results confirmed the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for various applications.

NONE

1997-04-01T23:59:59.000Z

153

Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands  

Science Journals Connector (OSTI)

Abstract This paper examines the techno-economic viability of hydrogen production from underground coal gasification (UCG) in Western Canada, for the servicing of the oil sands bitumen upgrading industry. Hydrogen production for bitumen upgrading is predominantly achieved via steam methane reforming (SMR); which involves significant greenhouse gas (GHG) emissions along with considerable feedstock (natural gas) cost volatility. UCG is a formidable candidate for cost-competitive environmentally sustainable hydrogen production; given its negligible feedstock cost, the enormity of deep coal reserves in Western Canada and the favourable CO2 sequestration characteristics of potential UCG sites in the Western Canadian sedimentary basin (WCSB). Techno-economic models were developed for UCG and SMR with and without CCS, to estimate the cost of hydrogen production including delivery to a bitumen upgrader. In this paper, at base case conditions, a 5% internal rate of return (IRR) differential between UCG and SMR was considered so as to account for the increased investment risk associated with UCG. The cost of UCG hydrogen production without CCS is estimated to be $1.78/kg of H2. With CCS, this increases to range of $2.11–$2.70/kg of H2, depending on the distance of the site for CO2 sequestration from the UCG plant. The SMR hydrogen production cost without CCS is estimated to be $1.73/kg of H2. In similar fashion to UCG, this rises to a range of $2.14 to $2.41/kg of H2 with the consideration of CCS. Lastly, for hydrogen production without CCS, UCG has a superior cost competitiveness in comparison to SMR for an IRR differential less than 4.6%. This competitive threshold rises to 5.4% for hydrogen production with CCS.

Babatunde Olateju; Amit Kumar

2013-01-01T23:59:59.000Z

154

Natural Gas Combined Cycle Power Plant Integrated to Capture Plant  

Science Journals Connector (OSTI)

Natural Gas Combined Cycle Power Plant Integrated to Capture Plant ... A natural gas combined cycle (NGCC) power plant with capacity of about 430 MW integrated to a chemical solvent absorber/stripping capture plant is investigated. ... The natural gas combined cycle (NGCC) is an advanced power generation technology that improves the fuel efficiency of natural gas. ...

Mehdi Karimi; Magne Hillestad; Hallvard F. Svendsen

2012-01-19T23:59:59.000Z

155

Integrated Gasification Combined Cycle Based on Pressurized Fluidized Bed Gasification  

Science Journals Connector (OSTI)

Enviropower Inc. has developed a modern power plant concept based on an integrated pressurized fluidized bed gasification and gas turbine combined cycle (IGCC)....

Kari Salo; J. G. Patel

1997-01-01T23:59:59.000Z

156

Development of biological coal gasification (MicGas process): 13th Quarterly report, [July 1--September 30, 1993  

SciTech Connect (OSTI)

In examining methods for enhancing the biomethanation of TxL, several experiments were conducted to study the mechanisms of lowering the pH during biomethanation of Texas lignite (TxL) at higher solids loadings. Results indicated that: Treatment of TxL with different pH solutions did not influence the biomethanation process; The decrease in methane production at higher solids loadings still needs further investigations; Anaerobic conditions containing deoxygenated nitrogen:carbon dioxide provide better methanation of TxL; The most promising combination between the isolates from Mic-1 and Mic-4 was found to be combination D (KS14RMK8-1458); The KS14RMK8 shows the highest accumulation of acetate in the cell-free culture broth from this consortium.

Not Available

1993-10-28T23:59:59.000Z

157

Integration Strategy of Gasification Technology:? A Gateway to Future Refining  

Science Journals Connector (OSTI)

The historical evidence of the operation of a coal gasification plant goes as far back in time as 1878.1 The United State's first power plant based on coal gasification technology was installed in 1980.2 The concept of gasification has begun to attract much attention from the refining industry because of stringent environmental regulations on transportation fuel, slashing demands for fuel oils, and uncertainty in the availability of good crude oils. ... Therefore, it is a challenging task for refining industries to economically integrate gasification technology, and this is the major theme of the paper. ... Gasification is superior to many of the available power production and waste disposal technologies by addressing various issues together regarding environmental emissions, maintaining quality of refining products, and waste management. ...

Jhuma Sadhukhan; X. X. Zhu

2002-02-09T23:59:59.000Z

158

Avestar® - Integrated Gasification Combined Cycle (IGCC) Dynamic Simulator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Gasification Combined Cycle (IGCC) Dynamic Simulator Integrated Gasification Combined Cycle (IGCC) Dynamic Simulator The AVESTAR® center offers courses using the Integrated Gasification Combined Cycle (IGCC) Dynamic Simulator. The IGCC simulator builds on and reaches beyond existing combined-cycle and conventional-coal power plant simulators to combine--for the first time--a Gasification with CO2 Capture process simulator with a Combined-Cycle power simulator together in a single dynamic simulation framework. The AVESTAR® center IGCC courses provide unique, comprehensive training on all aspects of an IGCC plant, illustrating the high-efficiency aspects of the gasifier, gas turbine, and steam turbine integration. IGCC Operator training station HMI display for overview of IGCC Plant - Train A Reference:

159

Revised users manual, Pulverized Coal Gasification or Combustion: 2-dimensional (87-PCGC-2): Final report, Volume 2. [87-PCGC-2  

SciTech Connect (OSTI)

A two-dimensional, steady-state model for describing a variety of reactive and non-reactive flows, including pulverized coal combustion and gasification, is presented. Recent code revisions and additions are described. The model, referred to as 87-PCGC-2, is applicable to cylindrical axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using either a flux method or discrete ordinates method. The particle phase is modeled in a Lagrangian framework, such that mean paths of particle groups are followed. Several multi-step coal devolatilization schemes are included along with a heterogeneous reaction scheme that allows for both diffusion and chemical reaction. Major gas-phase reactions are modeled assuming local instantaneous equilibrium, and thus the reaction rates are limited by the turbulent rate mixing. A NO/sub x/ finite rate chemistry submodel is included which integrates chemical kinetics and the statistics of the turbulence. The gas phase is described by elliptic partial differential equations that are solved by an iterative line-by-line technique. Under-relaxation is used to achieve numerical stability. The generalized nature of the model allows for calculation of isothermal fluid mechanicsgaseous combustion, droplet combustion, particulate combustion and various mixtures of the above, including combustion of coal-water and coal-oil slurries. Both combustion and gasification environments are permissible. User information and theory are presented, along with sample problems. 106 refs.

Smith, P.J.; Smoot, L.D.; Brewster, B.S.

1987-12-01T23:59:59.000Z

160

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IL Breakthrough Hybrid CTL Process Integrating Advanced Technologies for Coal Gasification, NG Partial... To determine the optimum configuration of coal gasification and NG...

Note: This page contains sample records for the topic "integrated coal-gasification combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Development of an Integrated Multicontaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

an Integrated an Integrated Multicontaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems Background The U.S. has more coal than any other country, and it can be converted through gasification into electricity, liquid fuels, chemicals, or hydrogen. However, for coal gasification to become sufficiently competitive to benefit the U.S. economy and help reduce our dependence on foreign fuels, gasification costs must be reduced

162

Integration of coal utilization and environmental control in integrated gasification combined cycle systems  

Science Journals Connector (OSTI)

Integration of coal utilization and environmental control in integrated gasification combined cycle systems ... The Cost of Carbon Capture and Storage for Natural Gas Combined Cycle Power Plants ... The Cost of Carbon Capture and Storage for Natural Gas Combined Cycle Power Plants ...

H. Christopher Frey; Edward S. Rubin

1992-10-01T23:59:59.000Z

163

Coal Gasification Report.indb  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Booz Allen Hamilton Booz Allen Hamilton Final Report, September 3, 2004 list of acronyms List of Acronyms AEO Annual Energy Outlook ASU Air Separation Unit BACT Best Available Control Technology BTU British Thermal Unit CCPI Clean Coal Power Initiative CFB Circulating Fluidized Bed CO Carbon Monoxide CO 2 Carbon Dioxide COE Cost of Electricity Co-Op Co-Operative CRS Congressional Research Service DG Distributed Generation

164

Coal Gasification | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

concentrated CO2 stream can subsequently be captured and sequestered. Learn more about carbon capture and sequestration. Why Is This Technology Being Considered? The United...

165

Clean Fuels from Coal Gasification  

Science Journals Connector (OSTI)

...been operated as a "pure" gasifier but to supply power gas for...was the air-blown Winkler gasifier pro-ducing power gas at Leuna...fines, additional gasification medium (air or oxygen-steam) is...partial pressure of steam in a gasifier blown with oxygen and steam...

Arthur M. Squires

1974-04-19T23:59:59.000Z

166

Clean Fuels from Coal Gasification  

Science Journals Connector (OSTI)

...A. G. Horsler, Gas Counc. (Gt. Brit...England, 1962; Gas J. 312, 19 (1962...be-come overdependent on natural gas and oil to supply...gasifier at elevated pressure with a downward flow...operability on coals of high ash-fusion temperature...

Arthur M. Squires

1974-04-19T23:59:59.000Z

167

Clean Fuels from Coal Gasification  

Science Journals Connector (OSTI)

...appreciably larger sizes than coal to other...they grew to a size to fall upon an...air-blown Winkler gasifier pro-ducing power...additional gasification medium (air or oxygen-steam...provide "pure" gasifier Test revamp Develop larger sizes Develop pressure...

Arthur M. Squires

1974-04-19T23:59:59.000Z

168

Clean Fuels from Coal Gasification  

Science Journals Connector (OSTI)

...superheating and water-heating sections of the boiler...percent on a higher heating value basis. Conclusions...made historically by heating bitumi-nous coal in...heart of the anthracite district only about 5 years ago...energy, wind, and geothermal steam and brines, will...

Arthur M. Squires

1974-04-19T23:59:59.000Z

169

Fusion and combination in audio-visual integration  

Science Journals Connector (OSTI)

...February 2008 research-article 1003 44 104 Fusion and combination in audio-visual integration...AV pairs in causing the McGurk effect (fusion or combination) based on the relationship...mouth movement typically results in a fusion response, in which a new phoneme different...

2008-01-01T23:59:59.000Z

170

EIS-0431: Hydrogen Energy California's Integrated Gasification Combined  

Broader source: Energy.gov (indexed) [DOE]

1: Hydrogen Energy California's Integrated Gasification 1: Hydrogen Energy California's Integrated Gasification Combined Cycle and Carbon Capture and Sequestration Project, California EIS-0431: Hydrogen Energy California's Integrated Gasification Combined Cycle and Carbon Capture and Sequestration Project, California Summary This EIS evaluates the potential environmental impacts of a proposal to provide financial assistance for the construction and operation of Hydrogen Energy California LLC (HECA's) project, which would produce and sell electricity, carbon dioxide and fertilizer. DOE selected this project for an award of financial assistance through a competitive process under the Clean Coal Power Initiative program. Public Comment Opportunities None available at this time. Documents Available for Download September 5, 2013

171

Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage Reactor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnhancEd hydrogEn Production EnhancEd hydrogEn Production intEgratEd with co 2 SEParation in a SinglE-StagE rEactor Description One alternative for the United States to establish independence from foreign energy sources is to utilize the nation's abundant domestic reserves of coal. Gasification provides a route to produce liquid fuels, chemical feedstocks, and hydrogen from coal. Coal continues to be viewed as the fuel source for the 21st century. Products from coal gasification, however, contain other gases, particularly carbon dioxide, as well as other contaminants that must be removed to produce the pure stream of hydrogen needed to operate fuel cells and other devices. This project seeks to demonstrate a technology to efficiently produce a pure hydrogen stream from

172

Development and application of earth system models  

Science Journals Connector (OSTI)

...supplying potable water, and waste disposal. The environmental...energy consumers, such as industry, households, and...energy-intensive and other industries; services; industrial...and coal), integrated coal gasification with combined cycle (with...

Ronald G. Prinn

2013-01-01T23:59:59.000Z

173

future energy resources irtually every energy study recommends that  

E-Print Network [OSTI]

production, transmission, and storage; (4) clean coal technologies, such as the Integrated Coal Gasification

174

EIS-0409: Kemper County Integrated Gasification Combined Cycle Project, Mississippi  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's decision to provide funding for the Kemper County Integrated Gasification Combined Cycle Project in Kemper County, Mississippi to assess the potential environmental impacts associated with the construction and operation of a project proposed by Southern Power Company, through its affiliate Mississippi Power Company, which has been selected by DOE for consideration under the Clean Coal Power Initiative (CCPI) program.

175

"Integrated Gasification Combined Cycle"  

U.S. Energy Information Administration (EIA) Indexed Site

Status of technologies and components modeled by EIA" Status of technologies and components modeled by EIA" ,"Revolutionary","Evolutionary","Mature" "Pulverized Coal",,,"X" "Pulverized Coal with CCS" " - Non-CCS portion of Pulverized Coal Plant",,,"X" " - CCS","X" "Integrated Gasification Combined Cycle" " - Advanced Combustion Turbine",,"X" " - Heat Recovery Steam Generator",,,"X" " - Gasifier",,"X" " - Balance of Plant",,,"X" "Conventional Natural Gas Combined Cycle" " - Conventional Combustion Turbine",,,"X" " - Heat Recovery Steam Generator",,,"X" " - Balance of Plant",,,"X"

176

Potential solar thermal integration in Spanish combined cycle gas turbines  

Science Journals Connector (OSTI)

Abstract Combined cycle gas turbines (CCGTs) are volumetric machines, which means that their net power output decreases at air temperatures above the design point. Such temperatures generally occur during periods of high solar irradiation. Many countries where these conditions occur, including Spain, have installed a significant number of \\{CCGTs\\} in recent years, with the subsequent yield losses in the summer. This implies enormous potential for solar hybridization, increasing production in peak hours and overall efficiency and reducing CO2 emissions. This paper analyzes the overall potential for solar thermal integration in 51 CCGTS (25,340 MW) in mainland Spain under different operating scenarios based on increasing yield, solar fraction and the hourly operational range adapted to the Spanish electricity market, considering actual meteorological conditions. A production model for integrating solar energy into combined cycles is proposed and described and the code in R is freely released so that the assessment can be replicated.

J. Antonanzas; E. Jimenez; J. Blanco; F. Antonanzas-Torres

2014-01-01T23:59:59.000Z

177

Life Cycle Analysis: Integrated Gasification Combined Cycle (IGCC) Power Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Life Cycle Analysis: Integrated Life Cycle Analysis: Integrated Gasification Combined Cycle (IGCC) Power Plant Revision 2, March 2012 DOE/NETL-2012/1551 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or

178

Integrated low emissions cleanup system for coal fueled turbines Phase III bench-scale testing and evaluation  

SciTech Connect (OSTI)

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of coal-fired turbine technologies such as Pressurized Fluidized Bed Combustion (PFBC), coal Gasification Combined Cycles (GCC), and Direct Coal-Fired Turbines (DCFT). A major technical development challenge remaining for coal-fired turbine systems is high-temperature gas cleaning to meet environmental emissions standards, as well as to ensure acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, has evaluated an Integrated Low Emissions Cleanup (ILEC) concept that has been configured to meet this technical challenge. This ceramic hot gas filter (HGF), ILEC concept controls particulate emissions, while simultaneously contributing to the control of sulfur and alkali vapor contaminants in high-temperature, high-pressure, fuel gases or combustion gases. This document reports on the results of Phase III of the ILEC evaluation program, the final phase of the program. In Phase III, a bench-scale ILEC facility has been tested to (1) confirm the feasibility of the ILEC concept, and (2) to resolve some major filter cake behavior issues identified in PFBC, HGF applications.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M. [and others

1995-08-01T23:59:59.000Z

179

NOVEL GAS CLEANING/ CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

INTEGRATED GASIFICATION COMBINED CYCLE VOLUME I - CONCEPTUAL COMMERCIAL EVALUATION OPTIONAL PROGRAM FINAL REPORT September 1, 2001 - December 31, 2005 By Dennis A. Horazak (Siemens), Program Manager Richard A. Newby (Siemens) Eugene E. Smeltzer (Siemens) Rachid B. Slimane (GTI) P. Vann Bush (GTI) James L. Aderhold, Jr. (GTI) Bruce G. Bryan (GTI) December 2005 DOE Award Number: DE-AC26-99FT40674 Prepared for U.S. Department of Energy National Energy Technology Laboratory Prepared by Siemens Power Generation, Inc. 4400 Alafaya Trail Orlando, FL 32826 & Gas Technology Institute 1700 S. Mt. Prospect Rd. Des Plaines, Illinois 60018 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government.

180

Computational Modeling of Combined Steam Pyrolysis and Hydrogasification of Ethanol  

E-Print Network [OSTI]

JL, Kinetics of Coal Gasification, New York, John Wiley &applications to technical gasification processes- A review.kinetics of steam gasification for a transport gasifier.

Singh, S; Park, C S; Norbeck, J N

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated coal-gasification combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Model Predictive Control of Integrated Gasification Combined Cycle Power Plants  

SciTech Connect (OSTI)

The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

B. Wayne Bequette; Priyadarshi Mahapatra

2010-08-31T23:59:59.000Z

182

THERMODYNAMIC MODELLING OF BIOMASS INTEGRATED GASIFICATION COMBINED CYCLE (BIGCC) POWER GENERATION SYSTEM.  

E-Print Network [OSTI]

??An attractive and practicable possibility of biomass utilization for energy production is gasification integrated with a combined cycle. This technology seems to have the possibility… (more)

Desta, Melaku

2011-01-01T23:59:59.000Z

183

Integrated Combined Heat and Power/Advanced Reciprocating Internal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combined Heat and PowerAdvanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications Development of an Improved Modular Landfill Gas Cleanup and...

184

Modeling and Optimization of Membrane Reactors for Carbon Capture in Integrated Gasification Combined Cycle Units  

Science Journals Connector (OSTI)

Modeling and Optimization of Membrane Reactors for Carbon Capture in Integrated Gasification Combined Cycle Units ... This paper investigates the alternative of precombustion capture of carbon dioxide from integrated gasification combined cycle (IGCC) plants using membrane reactors equipped with H2-selective zeolite membranes for the water gas shift reaction. ...

Fernando V. Lima; Prodromos Daoutidis; Michael Tsapatsis; John J. Marano

2012-03-08T23:59:59.000Z

185

Combination & Integration of DPF-SCR Aftertreatment Technologies  

Broader source: Energy.gov [DOE]

Work is undertaken to examine the feasibility of integrating SCR and DPF technologies for the next generation of emission control systems for on-road heavy-truck application

186

Catalysts for carbon and coal gasification  

DOE Patents [OSTI]

Catalyst for the production of methane from carbon and/or coal by means of catalytic gasification. The catalyst compostion containing at least two alkali metal salts. A particulate carbonaceous substrate or carrier is used.

McKee, Douglas W. (Burnt Hills, NY); Spiro, Clifford L. (Scotia, NY); Kosky, Philip G. (Schenectady, NY)

1985-01-01T23:59:59.000Z

187

Heat exchanger for coal gasification process  

DOE Patents [OSTI]

This invention provides a heat exchanger, particularly useful for systems requiring cooling of hot particulate solids, such as the separated fines from the product gas of a carbonaceous material gasification system. The invention allows effective cooling of a hot particulate in a particle stream (made up of hot particulate and a gas), using gravity as the motive source of the hot particulate. In a preferred form, the invention substitutes a tube structure for the single wall tube of a heat exchanger. The tube structure comprises a tube with a core disposed within, forming a cavity between the tube and the core, and vanes in the cavity which form a flow path through which the hot particulate falls. The outside of the tube is in contact with the cooling fluid of the heat exchanger.

Blasiole, George A. (Greensburg, PA)

1984-06-19T23:59:59.000Z

188

Coal Gasification in a Transport Reactor  

Science Journals Connector (OSTI)

These simulations were used to compare the response of coals gasified to those combusted substoichiometrically, to evaluate the optimum operating conditions and to predict the performance in larger-scale units with less heat loss. ... Entrained-flow gasifiers use high temperatures (1350?1550 °C) and gasify coals in 2?3 s. ... Kinetic studies were carried out to elucidate the mechanisms of steam and CO2 gasification of char and the interactions of these gasifying agents. ...

Lawrence J. Shadle; Esmail R. Monazam; Michael L. Swanson

2001-05-25T23:59:59.000Z

189

Transport and Other Effects in Coal Gasification  

Science Journals Connector (OSTI)

The paper summarizes the kinetics of coal char gasification excepted surface reactions (mechanisms). The following subjects controlling coal char gasification are treated: Coal as the raw material ... of particle...

K. J. Hüttinger

1988-01-01T23:59:59.000Z

190

Fluidized bed catalytic coal gasification process  

DOE Patents [OSTI]

Coal or similar carbonaceous solids impregnated with gasification catalyst constituents (16) are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50.degree. C. and 250.degree. C. in an oxidation zone (24) and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone (44) at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

Euker, Jr., Charles A. (15163 Dianna La., Houston, TX 77062); Wesselhoft, Robert D. (120 Caldwell, Baytown, TX 77520); Dunkleman, John J. (3704 Autumn La., Baytown, TX 77520); Aquino, Dolores C. (15142 McConn, Webster, TX 77598); Gouker, Toby R. (5413 Rocksprings Dr., LaPorte, TX 77571)

1984-01-01T23:59:59.000Z

191

Coal Gasification for Electric Power Generation  

Science Journals Connector (OSTI)

...iv) high plant availability...petro-leum and natural gas and the installation...inefficient, low-pressure, low-capacity...atmospheric pressure. It is comnmercially...its low-pressure operation...synthesis gas produced...extremely high temperatures...synthetic natural gas (SNG...

Dwain F. Spencer; Michael J. Gluckman; Seymour B. Alpert

1982-03-26T23:59:59.000Z

192

Preliminary Experimental Studies of Waste Coal Gasification  

Science Journals Connector (OSTI)

Coal mining is one of Australia’s most important industries. It was estimated that coal washery rejects ... . To ensure sustainability of the Australian coal industry, we have explored a new potential pathway to ...

S. Su; Y. G. Jin; X. X. Yu; R. Worrall

2013-01-01T23:59:59.000Z

193

Catalytic combustor for integrated gasification combined cycle power plant  

DOE Patents [OSTI]

A gasification power plant 10 includes a compressor 32 producing a compressed air flow 36, an air separation unit 22 producing a nitrogen flow 44, a gasifier 14 producing a primary fuel flow 28 and a secondary fuel source 60 providing a secondary fuel flow 62 The plant also includes a catalytic combustor 12 combining the nitrogen flow and a combustor portion 38 of the compressed air flow to form a diluted air flow 39 and combining at least one of the primary fuel flow and secondary fuel flow and a mixer portion 78 of the diluted air flow to produce a combustible mixture 80. A catalytic element 64 of the combustor 12 separately receives the combustible mixture and a backside cooling portion 84 of the diluted air flow and allows the mixture and the heated flow to produce a hot combustion gas 46 provided to a turbine 48. When fueled with the secondary fuel flow, nitrogen is not combined with the combustor portion.

Bachovchin, Dennis M. (Mauldin, SC); Lippert, Thomas E. (Murrysville, PA)

2008-12-16T23:59:59.000Z

194

An update technology for integrated biomass gasification combined cycle power plant  

Science Journals Connector (OSTI)

A discussion is presented on the technical analysis of a 6.4 MWe integrated biomass gasification combined cycle (IBGCC) plant. It features three numbers ... producing 5.85 MW electrical power in open cycle and 55...

Paritosh Bhattacharya; Suman Dey

2014-01-01T23:59:59.000Z

195

Advanced CO2 Capture Technology for Low Rank Coal Integrated Gasification Combined Cycle (IGCC) Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO CO 2 Capture Technology for Low Rank Coal Integrated Gasification Combined Cycle (IGCC) Systems Background Gasification of coal or other solid feedstocks (wood waste, petroleum coke, etc.) is a clean way to produce electricity and produce or co-produce a variety of commercial products. The major challenge is cost reduction; current integrated gasification combined cycle (IGCC) technology is estimated to produce power at a cost higher than that of pulverized coal combustion. However, the Gasification

196

The importance of combined cycle generating plants in integrating large levels of wind power generation  

SciTech Connect (OSTI)

Integration of high wind penetration levels will require fast-ramping combined cycle and steam cycles that, due to higher operating costs, will require proper pricing of ancillary services or other forms of compensation to remain viable. Several technical and policy recommendations are presented to help realign the generation mix to properly integrate the wind. (author)

Puga, J. Nicolas

2010-08-15T23:59:59.000Z

197

Carbon Dioxide Sequestration:  

Science Journals Connector (OSTI)

...known as integrated gasification combined cycle, or...and petro-chemical industries (Fig. 4). FIGURE...Schematic of an integrated gasification combined cycle (IGCC...CO2/y from a coal gasification plant in North Dakota...proportionally more solid waste and requires more chemicals...

Edward S. Rubin

198

Benefits of Integrating PWR and RTI Advanced Gasification Technologies for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Syngas Processing Systems Syngas Processing Systems Benefits of Integrating PWR and RTI Advanced Gasification Technologies for Hydrogen-Rich Syngas Production Research Triangle Institute (RTI) Project Number: FE0012066 Project Description The project will assess the potential for integrated advanced technologies to substantially reduce capital and production costs for hydrogen-rich syngas with near-zero emissions from coal gasification for power production with carbon capture and for coal-to-liquids (specifically methanol) with carbon capture. These integrated technologies include those already tested successfully at pilot-scale with a new and innovative water-gas-shift technology, to show how multiple advanced technologies will leverage each other for significant cost and efficiency gains.

199

Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project, Final Environmental Impact Statement  

Broader source: Energy.gov (indexed) [DOE]

8 8 U.S. Department of Energy Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project Final Environmental Impact Statement November 2002 U.S. Department of Energy National Energy Technology Laboratory COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: Kentucky Pioneer Integrated Gasification Combined Cycle (IGCC) Demonstration Project Final Environmental Impact Statement (EIS) (DOE/EIS-0318) Location: Clark County, Kentucky Contacts: For further information on this environmental For further information on the DOE National impact statement (EIS), call: Environmental Policy Act (NEPA) process, call: 1-800-432-8330 ext. 5460 1-800-472-2756 or contact: or contact: Mr. Roy Spears Ms. Carol Borgstrom

200

Thermodynamic evaluation of solar integration into a natural gas combined cycle power plant  

Science Journals Connector (OSTI)

Abstract The term integrated solar combined-cycle (ISCC) has been used to define the combination of solar thermal energy into a natural gas combined-cycle (NGCC) power plant. Based on a detailed thermodynamic cycle model for a reference ISCC plant, the impact of solar addition is thoroughly evaluated for a wide range of input parameters such as solar thermal input and ambient temperature. It is shown that solar hybridization into an NGCC plant may give rise to a substantial benefit from a thermodynamic point of view. The work here also indicates that a significant solar contribution may be achieved in an ISCC plant, thus implying substantial fuel savings and environmental benefits.

Guangdong Zhu; Ty Neises; Craig Turchi; Robin Bedilion

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated coal-gasification combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Heat Integration Strategy for Economic Production of Combined Heat and Power from Biomass Waste  

Science Journals Connector (OSTI)

Heat Integration Strategy for Economic Production of Combined Heat and Power from Biomass Waste ... Dilution of hydrogen rich fuels resulting from coal or heavy hydrocarbon gasification processes with nitrogen prior to the entrance of the gas turbines may be desirable in precombustion carbon capture and storage (CCS) routes, in order to ensure safe operations of gas turbines. ...

Jhuma Sadhukhan; Kok Siew Ng; Nilay Shah; Howard J. Simons

2009-09-15T23:59:59.000Z

202

Tr7-cover.jpg:Corel PHOTO-PAINT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 7 The Wabash River Coal Gasification Repowering Project A 262 MWe Commercial Scale Integrated Gasification Combined Cycle Power Plant A report on a project conducted jointly under a cooperative agreement between: The United States Department of Energy and Wabash River Coal Gasification Project Joint Venture NOVEMBER 1996 Cover Image: View of the Wabash River Coal Gasification Repowering project with the Wabash River and the flat terrain of west central Indiana in the background. Preparation and printing of this document con- forms to the general funding provisions of a cooperative agreement between Destec En- ergy Inc., PSI Energy, Inc., and the U.S. De- partment of Energy. The funding contribution of the industrial participant permitted inclusion of multicolored artwork and photographs at no

203

New Projects Set to Target Efficiency, Environmental Gains at Advanced Coal  

Broader source: Energy.gov (indexed) [DOE]

Projects Set to Target Efficiency, Environmental Gains at Projects Set to Target Efficiency, Environmental Gains at Advanced Coal Gasification Facilities New Projects Set to Target Efficiency, Environmental Gains at Advanced Coal Gasification Facilities July 27, 2010 - 1:00pm Addthis Washington, D.C. -- Four projects that will demonstrate an innovative technology that could eventually enhance hydrogen fuel production, lower greenhouse gas (GHG) emissions, improve efficiencies and lower consumer electricity costs from advanced coal gasification power systems have been selected by the U.S. Department of Energy (DOE). The projects will test membrane technology to separate hydrogen and carbon dioxide (CO2) from coal or coal/biomass-derived synthesis gas (syngas), such as from Integrated Gasification Combined Cycle (IGCC) power systems.

204

Analysis of Biomass/Coal Co-Gasification for Integrated Gasification Combined Cycle (IGCC) Systems with Carbon Capture.  

E-Print Network [OSTI]

?? In recent years, Integrated Gasification Combined Cycle Technology (IGCC) has become more common in clean coal power operations with carbon capture and sequestration (CCS).… (more)

Long, Henry A, III

2011-01-01T23:59:59.000Z

205

Study of Gas-steam Combined Cycle Power Plants Integrated with MCFC for Carbon Dioxide Capture  

Science Journals Connector (OSTI)

Abstract In the field of fossil-fuel based technologies, natural gas combined cycle (NGCC) power plants are currently the best option for electricity generation, having an efficiency close to 60%. However, they produce significant CO2 emissions, amounting to around 0.4 tonne/MWh for new installations. Among the carbon capture and sequestration (CCS) technologies, the process based on chemical absorption is a well-established technology, but markedly reduces the NGCC performances. On the other side, the integration of molten carbonate fuel cells (MCFCs) is recognized as an attractive option to overcome the main drawbacks of traditional CCS technologies. If the cathode side is fed by NGCC exhaust gases, the MCFC operates as a CO2 concentrator, beside providing an additional generating capacity. In this paper the integration of MCFC into a two pressure levels combined cycle is investigated through an energy analysis. To improve the efficiency of MCFC and its integration within the NGCC, plant configurations based on two different gas recirculation options are analyzed. The first is a traditional recirculation of exhaust gases at the compressor inlet; the second, mainly involving the MCFC stack, is based on recirculating a fraction of anode exhaust gases at the cathode inlet. Effects of MCFC operating conditions on energy and environmental performances of the integrated system are evaluated.

Roberto Carapellucci; Roberto Saia; Lorena Giordano

2014-01-01T23:59:59.000Z

206

Modeling and optimization of a combined cycle Stirling-ORC system and design of an integrated microchannel Stirling heat rejector.  

E-Print Network [OSTI]

??The performance of a combined Stirling-ORC power cycle is evaluated, and an integrated microchannel heat exchanger is designed as an annular cold-side heat rejector for… (more)

Ingram-Goble, Robbie

2010-01-01T23:59:59.000Z

207

Off-design performance of integrated waste-to-energy, combined cycle plants  

Science Journals Connector (OSTI)

This paper focuses on the off-design operation of plants where a waste-to-energy (WTE) system fed with municipal solid waste (MSW) is integrated with a natural gas-fired combined cycle (CC). Integration is accomplished by sharing the steam cycle: saturated steam generated in a MSW grate combustor is exported to the heat recovery steam generator (HRSG) of the combined cycle, where it is superheated and then fed to a steam turbine serving both the CC and the WTE plant. Most likely, the WTE section and the natural gas-fired CC section are subject to different operation and maintenance schedules, so that the integrated plant operates in conditions different from those giving full power output. In this paper we discuss and give performance estimates for the two situations that delimit the range of operating conditions: (a) WTE plant at full power and gas turbine down; (b) WTE plant down and gas turbine at full power. This is done for two integrated plants having the same WTE section, i.e. grate combustors with an overall MSW combustion power of 180 MWLHV, coupled with Combined Cycles based on two different heavy-duty gas turbines: a medium-size, 70 MW class turbine and a large-size, 250 MW class turbine. For each situation we discuss the control strategy and the actions that can help to achieve safe and reliable off-design operation. Heat and mass balances and performances at off-design conditions are estimated by accounting for the constraints imposed by the available heat transfer areas in boilers, heaters and condenser, as well as the characteristic curve of the steam turbine. When the gas turbine is down the net electric efficiency of the WTE section is very close to the one of the stand-alone WTE plant; instead, when the WTE section is down, the efficiency of the CC is much below the one of a stand alone CC. These performances appear most congenial to what is likely to be the operational strategy of these plants, i.e. paramount priority to waste treatment and CC dispatched according to the requirements of the national grid.

Stefano Consonni; Paolo Silva

2007-01-01T23:59:59.000Z

208

Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project, Final Environmental Impact Statement  

Broader source: Energy.gov (indexed) [DOE]

S-1 S-1 SUMMARY The U.S. Department of Energy (DOE) prepared this environmental impact statement (EIS) on the proposed Kentucky Pioneer Integrated Gasification Combined Cycle (IGCC) Demonstration Project in compliance with the National Environmental Policy Act (NEPA). The National Environmental Policy Act Process NEPA is a federal law that serves as the basic national charter for protection of the environment. For major federal actions that may significantly affect the quality of the environment, NEPA requires federal agencies to prepare a detailed statement that includes the potential environmental impacts of the Proposed Action and reasonable alternatives. A fundamental objective of NEPA is to foster better decisionmaking by ensuring that high quality environmental information is available to public officials and members of the

209

A review of integrated solar combined cycle system (ISCCS) with a parabolic trough technology  

Science Journals Connector (OSTI)

Abstract The huge amount of solar energy available on Earth?s surface has heightened awareness in Concentrating Solar Power, and more particularly in hybrid concepts. The integrated solar combined cycle system (ISCCS) is one of the more promising hybrid configurations for converting solar energy into electricity and it might become the technology of choice in the near future. This article reviews the R&D activities and published studies since the introduction of such a concept in the 1990s. The review includes the current status and describes different hybridizations of solar energy with natural gas, coal and other renewable energy sources. Furthermore, it provides in-depth analysis of real and expected R&D finding.

Omar Behar; Abdallah Khellaf; Kamal Mohammedi; Sabrina Ait-Kaci

2014-01-01T23:59:59.000Z

210

Method and system to estimate variables in an integrated gasification combined cycle (IGCC) plant  

DOE Patents [OSTI]

System and method to estimate variables in an integrated gasification combined cycle (IGCC) plant are provided. The system includes a sensor suite to measure respective plant input and output variables. An extended Kalman filter (EKF) receives sensed plant input variables and includes a dynamic model to generate a plurality of plant state estimates and a covariance matrix for the state estimates. A preemptive-constraining processor is configured to preemptively constrain the state estimates and covariance matrix to be free of constraint violations. A measurement-correction processor may be configured to correct constrained state estimates and a constrained covariance matrix based on processing of sensed plant output variables. The measurement-correction processor is coupled to update the dynamic model with corrected state estimates and a corrected covariance matrix. The updated dynamic model may be configured to estimate values for at least one plant variable not originally sensed by the sensor suite.

Kumar, Aditya; Shi, Ruijie; Dokucu, Mustafa

2013-09-17T23:59:59.000Z

211

Model predictive control system and method for integrated gasification combined cycle power generation  

SciTech Connect (OSTI)

Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

2013-04-09T23:59:59.000Z

212

California's Energy Future - The View to 2050  

E-Print Network [OSTI]

CCS with combustion or gasification of fossil fuels, each ofHigh-efficiency coal gasification, high-efficiency Injectionefficiency, integrated gasification injection systems with

2011-01-01T23:59:59.000Z

213

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Park, NC Breakthrough Hybrid CTL Process Integrating Advanced Technologies for Coal Gasification, NG Partial... Activities will include the testing of a laboratory research system...

214

California’s Energy Future: The View to 2050 - Summary Report  

E-Print Network [OSTI]

CCS with combustion or gasification of fossil fuels, each ofHigh-efficiency coal gasification, high-efficiency Injectionefficiency, integrated gasification injection systems with

Yang, Christopher

2011-01-01T23:59:59.000Z

215

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CA Breakthrough Hybrid CTL Process Integrating Advanced Technologies for Coal Gasification, NG Partial... Aerojet Rocketdyne activities will be limited to labor in support of...

216

Carbon Dioxide Capture from Integrated Gasification Combined Cycle Gas Streams Using the Ammonium Carbonate-Ammonium Bicarbonate Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Integrated Gasification Combined Cycle Gas Streams Using the Ammonium Carbonate- Ammonium Bicarbonate Process Description Current commercial processes to remove carbon dioxide (CO 2 ) from conventional power plants are expensive and energy intensive. The objective of this project is to reduce the cost associated with the capture of CO 2 from coal based gasification processes, which convert coal and other carbon based feedstocks to synthesis gas.

217

Review of underground coal gasification technologies and carbon capture  

Science Journals Connector (OSTI)

It is thought that the world coal reserve is close to 150?years, which only includes recoverable reserves using conventional techniques. Mining is the typical method of extracting coal, but it has been estimat...

Stuart J Self; Bale V Reddy; Marc A Rosen

2012-08-01T23:59:59.000Z

218

Method for increasing steam decomposition in a coal gasification process  

DOE Patents [OSTI]

The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water-splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

Wilson, Marvin W. (Fairview, WV)

1988-01-01T23:59:59.000Z

219

Method for using fast fluidized bed dry bottom coal gasification  

DOE Patents [OSTI]

Carbonaceous solid material such as coal is gasified in a fast fluidized bed gasification system utilizing dual fluidized beds of hot char. The coal in particulate form is introduced along with oxygen-containing gas and steam into the fast fluidized bed gasification zone of a gasifier assembly wherein the upward superficial gas velocity exceeds about 5.0 ft/sec and temperature is 1500.degree.-1850.degree. F. The resulting effluent gas and substantial char are passed through a primary cyclone separator, from which char solids are returned to the fluidized bed. Gas from the primary cyclone separator is passed to a secondary cyclone separator, from which remaining fine char solids are returned through an injection nozzle together with additional steam and oxygen-containing gas to an oxidation zone located at the bottom of the gasifier, wherein the upward gas velocity ranges from about 3-15 ft/sec and is maintained at 1600.degree.-200.degree. F. temperature. This gasification arrangement provides for increased utilization of the secondary char material to produce higher overall carbon conversion and product yields in the process.

Snell, George J. (Fords, NJ); Kydd, Paul H. (Lawrenceville, NJ)

1983-01-01T23:59:59.000Z

220

Wabash River Coal Gasification Repowering Project Final Technical...  

Office of Scientific and Technical Information (OSTI)

the rod mill and weigh belt feeder undergo most expected maintenance requirements. All tanks, drums, and other areas of potential atmospheric exposure of the product slurry or...

Note: This page contains sample records for the topic "integrated coal-gasification combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Presence of an Unusual Methanogenic Bacterium in Coal Gasification Waste  

Science Journals Connector (OSTI)

...waste were enriched in a mineral salts medium containing hydrogen and acetate as potential...Transfer of the enrichments to methanol medium resulted in the initial growth of a strain...waste were enriched in a mineral salts medium containing hydrogen and acetate as potential...

Francisco A. Tomei; Dwight Rouse; James S. Maki; Ralph Mitchell

1988-12-01T23:59:59.000Z

222

Instrumentation and process control development for in situ coal gasification  

SciTech Connect (OSTI)

This report describes (1) the results of calculations made to determine the influence of various permeability structures on reverse combustion linkage for UCG, and (2) the results of heavy oil fireflood mapping by the Controlled Source Audio Magnetotelluric (CSAMT) method proposed for UCG process mapping. A two-phase, two-dimension reservoir model called RESEV was used for the permeability effects work; the results indicate that high permeability horizontal zones, well completion and separation, and orthotropic permeability all have significant influence on the success of reverse combustion linkage. Specific conclusions are made which emphasize the need for careful site characterization and for proper well completions. Regarding the second activity, CSAMT-derived resistivity maps provided good descriptions of the progress of the fireflood, which is being conducted by BETC near Bartlette, KS. The combustion front apparently did not proceed in a uniform, radial manner.

Love, S.L. (ed.)

1981-03-01T23:59:59.000Z

223

Solar coal gasification reactor with pyrolysis gas recycle  

DOE Patents [OSTI]

Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

Aiman, William R. (Livermore, CA); Gregg, David W. (Morago, CA)

1983-01-01T23:59:59.000Z

224

Improving heat capture for power generation in coal gasification plants  

E-Print Network [OSTI]

Improving the steam cycle design to maximize power generation is demonstrated using pinch analysis targeting techniques. Previous work models the steam pressure level in composite curves based on its saturation temperature ...

Botros, Barbara Brenda

2011-01-01T23:59:59.000Z

225

Storing Syngas Lowers the Carbon Price for Profitable Coal Gasification  

Science Journals Connector (OSTI)

There are currently eight gasification facilities operating worldwide producing about 1.7 GW of electricity from coal or petcoke feedstock (10), and in all of these facilities, the syngas is used immediately after it is produced. ...

Adam Newcomer; Jay Apt

2007-10-17T23:59:59.000Z

226

Presence of an Unusual Methanogenic Bacterium in Coal Gasification Waste  

Science Journals Connector (OSTI)

...stoppered bottle and degassing the media at least three times with 80% N2-20% CO2. The media were then reduced with the...using 0.22-p,m- pore-size Millex-GV filter units...autoclave. By equilibrating the media with 0.4 atm (ca. 40...

Francisco A. Tomei; Dwight Rouse; James S. Maki; Ralph Mitchell

1988-12-01T23:59:59.000Z

227

Method for increasing steam decomposition in a coal gasification process  

DOE Patents [OSTI]

The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water- splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

Wilson, M.W.

1987-03-23T23:59:59.000Z

228

Subtask 4.2 - Coal Gasification Short Course  

SciTech Connect (OSTI)

Major utilities, independent power producers, and petroleum and chemical companies are intent on developing a fleet of gasification plants primarily because of high natural gas prices and the implementation of state carbon standards, with federal standards looming. Currently, many projects are being proposed to utilize gasification technologies to produce a synthesis gas or fuel gas stream for the production of hydrogen, liquid fuels, chemicals, and electricity. Financing these projects is challenging because of the complexity, diverse nature of gasification technologies, and the risk associated with certain applications of the technology. The Energy & Environmental Research Center has developed a gasification short course that is designed to provide technical personnel with a broad understanding of gasification technologies and issues, thus mitigating the real or perceived risk associated with the technology. Based on a review of research literature, tutorial presentations, and Web sites on gasification, a short course presentation was prepared. The presentation, consisting of about 500 PowerPoint slides, provides at least 7 hours of instruction tailored to an audience's interests and needs. The initial short course is scheduled to be presented September 9 and 10, 2009, in Grand Forks, North Dakota.

Kevin Galbreath

2009-06-30T23:59:59.000Z

229

Development of biological coal gasification (MicGAS Process)  

SciTech Connect (OSTI)

The overall goal of the project is to develop an advanced, clean coal biogasification (MicGAS) Process. The objectives of the research during FY 1993--94 were to: (1) enhance kinetics of methane production (biogasification, biomethanation) from Texas lignite (TxL) by the Mic-1 consortium isolated and developed at ARCTECH, (2) increase coal solids loading, (3) optimize medium composition, and (4) reduce retention time. A closer analysis of the results described here indicate that biomethanation of TxL at >5% solids loading is feasible through appropriate development of nutrient medium and further adaptation of the microorganisms involved in this process. Further understanding of the inhibitory factors and some biochemical manipulations to overcome those inhibitions will hasten the process considerably. Results are discussed on the following: products of biomethanation and enhance of methane production including: bacterial adaptation; effect of nutrient amendment substitutes; effects of solids loading; effect of initial pH of the culture medium; effect of hydrogen donors and carbon balance.

Walia, D.S.; Srivastava, K.C.

1994-10-01T23:59:59.000Z

230

Off-Design Performance of Power Plants: An Integrated Gasification Combined-Cycle Example  

Science Journals Connector (OSTI)

...that of a normal natural gas-fired combined-cycle...for operation in the natural gas-fired combined-cycle...inlet flow around the high-pressure section of the turbine...when converting from natural gas firing to IGCC opera-tion...

M. R. ERBES; J. N. PHILLIPS; M. S. JOHNSON; J. PAFFENBARGER; M. GLUCKMAN; R. H. EUSTIS

1987-07-24T23:59:59.000Z

231

Feasibility Studies to Improve Plant Availability and Reduce Total Installed Cost in Integrated Gasification Combined Cycle Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Feasibility Studies to Improve Plant Feasibility Studies to Improve Plant Availability and Reduce Total Installed Cost in Integrated Gasification Combined Cycle Plants Background Gasification provides the means to turn coal and other carbonaceous solid, liquid and gaseous feedstocks as diverse as refinery residues, biomass, and black liquor into synthesis gas and valuable byproducts that can be used to produce low-emissions power, clean-burning fuels and a wide range of commercial products to support

232

Is Integrated Gasification Combined Cycle with Carbon Capture-Storage the Solution for Conventional Coal Power Plants  

E-Print Network [OSTI]

Engineering Management Field Project Is Integrated Gasification Combined Cycle with Carbon Capture-Storage the Solution for Conventional Coal Power Plants By Manish Kundi Fall Semester, 2011 An EMGT Field Project report... 2.4 Environmental Aspects-Emissions 23 3.0 Procedure & Methodology 3.1 Working technology – Conventional Coal Plants 30 3.2 Working technology – IGCC Power Plants 32 3.3 Carbon Capture and Storage 35 3...

Kundi, Manish

2011-12-16T23:59:59.000Z

233

Integrated Gasification Combined Cycle (IGCC) demonstration project, Polk Power Station -- Unit No. 1. Annual report, October 1993--September 1994  

SciTech Connect (OSTI)

This describes the Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project which will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,300 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 Btu/scf (LHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product.

NONE

1995-05-01T23:59:59.000Z

234

Technoeconomic Analysis and Life Cycle Assessment of an Integrated Biomass Gasification Combined Cycle System  

Science Journals Connector (OSTI)

A biomass gasification combined-cycle power plant, consisting of a low pressure...®...Economic analyses were then performed to determine the levelized cost of electricity. The economic viability and efficiency of...

M. K. Mann; P. L. Spath

1997-01-01T23:59:59.000Z

235

Major Demonstrations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Major Demonstrations Major Demonstrations Major Demonstrations A state-of-the-art integrated coal gasification combined-cycle (IGCC) power plant, Tampa Electric's Polk Power Station produces enough electricity to serve 75,000 homes. A state-of-the-art integrated coal gasification combined-cycle (IGCC) power plant, Tampa Electric's Polk Power Station produces enough electricity to serve 75,000 homes. The Office of Fossil Energy is co-funding large-scale demonstrations of clean coal technologies to hasten their adoption into the commercial marketplace. Through the year 2030, electricity consumption in the United States is expected to grow by about 1 percent per year. The ability of coal-fired generation to help meet this demand could be limited by concerns over greenhouse gas emissions. While the Major Demonstrations performed to date

236

Integration of biomass fast pyrolysis and precedent feedstock steam drying with a municipal combined heat and power plant  

Science Journals Connector (OSTI)

Abstract Biomass fast pyrolysis (BFP) is a promising pre-treatment technology for converting biomass to transport fuel and in the future also for high-grade chemicals. BFP can be integrated with a municipal combined heat and power (CHP) plant. This paper shows the influence of BFP integration on a CHP plant's main parameters and its effect on the energetic and environmental performance of the connected district heating network. The work comprises full- and part-load operation of a CHP plant integrated with BFP and steam drying. It also evaluates different usage alternatives for the BFP products (char and oil). The results show that the integration is possible and strongly beneficial regarding energetic and environmental performance. Offering the possibility to provide lower district heating loads, the operation hours of the plant can be increased by up to 57%. The BFP products should be sold rather than applied for internal use as this increases the district heating network's primary energy efficiency the most. With this integration strategy future CHP plants can provide valuable products at high efficiency and also can help to mitigate global CO2 emissions.

Thomas Kohl; Timo P. Laukkanen; Mika P. Järvinen

2014-01-01T23:59:59.000Z

237

High Temperature Syngas Cleanup Technology Scale-up  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RECOVERY ACT: Scale-Up of RECOVERY ACT: Scale-Up of High-Temperature Syngas Cleanup Technology Background Coal gasification generates a synthesis gas (syngas)-predominantly a mixture of carbon monoxide (CO) and hydrogen (H 2 )-that can be used for chemical production of hydrogen, methanol, substitute natural gas (SNG), and many other industrial chemicals, or for electric power generation. Conventional integrated gasification combined cycle (IGCC) power plants use this syngas as a fuel for a combustion

238

Improved analytical representation of combinations of Fermi-Dirac integrals for finite-temperature density functional calculations  

E-Print Network [OSTI]

Smooth, highly accurate analytical representations of Fermi-Dirac (FD) integral combinations important in free-energy density functional calculations are presented. Specific forms include those that occur in the local density approximation (LDA), generalized gradient approximation (GGA), and fourth-order gradient expansion of the non-interacting free energy as well as in the LDA and second-order gradient expansion for exchange. By construction, all the representations and their derivatives of any order are continuous on the full domains of their independent variables. The same type of technique provides an analytical representation of the function inverse to the FD integral of order $1/2$. It plays an important role in physical problems related to the electron gas at finite temperature. From direct evaluation, the quality of these improved representations is shown to be substantially superior to existing ones, many of which were developed before the era of large-scale computation or early in the era.

Karasiev, Valentin V; Trickey, S B

2014-01-01T23:59:59.000Z

239

Study on a gas-steam combined cycle system with CO2 capture by integrating molten carbonate fuel cell  

Science Journals Connector (OSTI)

Abstract This paper studies a gas-steam combined cycle system with CO2 capture by integrating the MCFC (molten carbonate fuel cell). With the Aspen plus software, this paper builds the model of the overall MCFC-GT hybrid system with CO2 capture and analyzes the effects of the key parameters on the performances of the overall system. The result shows that compared with the gas-steam combined cycle system without CO2 capture, the efficiency of the new system with CO2 capture does not decrease obviously and keeps the same efficiency with the original gas steam combined cycle system when the carbon capture percentage is 45%. When the carbon capture percentage reaches up to 85%, the efficiency of the new system is about 54.96%, only 0.67 percent points lower than that of the original gas-steam combined cycle system. The results show that the new system has an obvious superiority of thermal performance. However, its technical economic performance needs be improved with the technical development of MCFC and ITM (oxygen ion transfer membrane). Achievements from this paper will provide the useful reference for CO2 capture with lower energy consumption from the traditional power generation system.

Liqiang Duan; Jingnan Zhu; Long Yue; Yongping Yang

2014-01-01T23:59:59.000Z

240

18.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AN ENVIRONMENTAL ASSESSMENT OF IGCC POWER SYSTEMS AN ENVIRONMENTAL ASSESSMENT OF IGCC POWER SYSTEMS by Jay A. Ratafia-Brown, Lynn M. Manfredo, Jeff W. Hoffmann, Massood Ramezan Science Applications International Corporation and Gary J. Stiegel U.S. DOE/National Energy Technology Laboratory Presented at the Nineteenth Annual Pittsburgh Coal Conference, September 23 - 27, 2002 INTRODUCTION Coal gasification is a well-proven technology that started with the production of coal gas for urban areas, progressed to the production of fuels, such as oil and synthe tic natural gas (SNG), chemicals, and most recently, to large-scale Integrated Gasification Combined Cycle (IGCC) power generation. IGCC is an innovative electric power generation concept that combines modern coal gasification technology with both gas turbine (Brayton cycle) and steam turbine

Note: This page contains sample records for the topic "integrated coal-gasification combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Methods and Issues for the Combined Use of Integral Experiments and Covariance Data: Results of a NEA International Collaborative Study  

SciTech Connect (OSTI)

The Working Party on International Nuclear Data Evaluation Cooperation (WPEC) of the Nuclear Science Committee under the Nuclear Energy Agency (NEA/OECD) established a Subgroup (called “Subgroup 33”) in 2009 on “Methods and issues for the combined use of integral experiments and covariance data.” The first stage was devoted to producing the description of different adjustment methodologies and assessing their merits. A detailed document related to this first stage has been issued. Nine leading organizations (often with a long and recognized expertise in the field) have contributed: ANL, CEA, INL, IPPE, JAEA, JSI, NRG, IRSN and ORNL. In the second stage a practical benchmark exercise was defined in order to test the reliability of the nuclear data adjustment methodology. A comparison of the results obtained by the participants and major lessons learned in the exercise are discussed in the present paper that summarizes individual contributions which often include several original developments not reported separately. The paper provides the analysis of the most important results of the adjustment of the main nuclear data of 11 major isotopes in a 33-group energy structure. This benchmark exercise was based on a set of 20 well defined integral parameters from 7 fast assembly experiments. The exercise showed that using a common shared set of integral experiments but different starting evaluated libraries and/or different covariance matrices, there is a good convergence of trends for adjustments. Moreover, a significant reduction of the original uncertainties is often observed. Using the a–posteriori covariance data, there is a strong reduction of the uncertainties of integral parameters for reference reactor designs, mainly due to the new correlations in the a–posteriori covariance matrix. Furthermore, criteria have been proposed and applied to verify the consistency of differential and integral data used in the adjustment. Finally, recommendations are given for an appropriate use of sensitivity analysis methods and indications for future work are provided.

Giuseppe Palmiotti; Massimo Salvatores

2014-04-01T23:59:59.000Z

242

Integrated Gasification Combined Cycle Dynamic Model: H2S Absorption/Stripping, Water?Gas Shift Reactors, and CO2 Absorption/Stripping  

Science Journals Connector (OSTI)

Integrated Gasification Combined Cycle Dynamic Model: H2S Absorption/Stripping, Water?Gas Shift Reactors, and CO2 Absorption/Stripping ... Future chemical plants may be required to have much higher flexibility and agility than existing process facilities in order to be able to handle new hybrid combinations of power and chemical units. ...

Patrick J. Robinson; William L. Luyben

2010-04-26T23:59:59.000Z

243

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology to Mitigate Syngas Technology to Mitigate Syngas Cooler Fouling Background Coal gasification, in conjunction with integrated gasification combined cycle (IGCC) power production, is under development to increase efficiency and reduce greenhouse gas emissions associated with coal-based power production. However, coal gasification plants have not achieved their full potential for superior performance and economics due to challenges with reliability and availability. In particular, performance of the syngas cooler located downstream of the gasifier has been an issue. The syngas cooler is a fire tube heat exchanger located between the gasifier and the gas turbine. The purpose of the syngas cooler is to cool the raw syngas from the gasifier and recover heat. Although

244

Major Environmental Aspects of Gasification-Based Power Generation Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Detailed Detailed Evaluation of the Environmental Performance of Gasification-Based Power Systems DECEMBER 2002 U.S. DOE/NETL 2-1 2. DETAILED EVALUATION OF THE ENVIRONMENTAL PERFORMANCE OF GASIFICATION-BASED POWER SYTEMS 2.1 Introduction and Summary of Information Presented The single most compelling reason for utilities to consider coal gasification for electric power generation is superior environmental performance. 1 As shown in Figure 2-1, gasification has fundamental environmental advantages over direct coal combustion. Commercial-scale plants for both integrated gasification combined cycle (IGCC) electric power generation and chemicals applications have already successfully demonstrated these advantages. The superior environmental capabilities of coal gasification apply to all three areas of concern: air emissions, water discharges, and solid

245

Major Environmental Aspects of Gasification-Based Power Generation Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Detailed Evaluation of the Environmental Performance of Gasification-Based Power Systems Detailed Evaluation of the Environmental Performance of Gasification-Based Power Systems DECEMBER 2002 U.S. DOE/NETL 2-1 2. DETAILED EVALUATION OF THE ENVIRONMENTAL PERFORMANCE OF GASIFICATION-BASED POWER SYTEMS 2.1 Introduction and Summary of Information Presented The single most compelling reason for utilities to consider coal gasification for electric power generation is superior environmental performance. 1 As shown in Figure 2-1, gasification has fundamental environmental advantages over direct coal combustion. Commercial-scale plants for both integrated gasification combined cycle (IGCC) electric power generation and chemicals applications have already successfully demonstrated these advantages. The superior environmental capabilities of coal gasification apply to all three areas of concern: air emissions,

246

DKRW Advanced Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

DKRW Advanced Fuels LLC DKRW Advanced Fuels LLC Jump to: navigation, search Name DKRW Advanced Fuels LLC Place Houston, Texas Zip 77056 Product Focues on projects that utilise coal gasification technology, including coal-to-liquids, methanation, and integrated coal gasification combined cycle power projects. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

247

EFFECT OF FUEL IMPURITY ON STRUCTURAL INTEGRITY OF Ni-YSZ ANODE OF SOFCs  

SciTech Connect (OSTI)

Electricity production through the integration of coal gasification with solid oxide fuel cells (SOFCs) may potentially be an efficient technique for clean energy generation. However, multiple minor and trace components are naturally present in coals. These impurities in coal gas not only degrade the electrochemical performance of Ni-YSZ anode used in SOFCs, but also severely endanger the structural integrity of the Ni-YSZ anode. In this paper, effect of the trace impurity of the coal syngases on the mechanical degradation of Ni-YSZ anode was studied by using an integrated experimental/modeling approach. Phosphorus is taken as an example of impurity. Anode-support button cell was used to experimentally explore the migration of phosphorous impurity in the Ni-YSZ anode of SOFCs. X-ray mapping was used to show elemental distributions and new phase formation. The subsequent finite element stress analyses were conducted using the actual microstructure of the anode to illustrate the degradation mechanism. It was found that volume expansion induced by the Ni phase change produces high stress level such that local failure of the Ni-YSZ anode is possible under the operating conditions

Liu, Wenning N.; Sun, Xin; Marina, Olga A.; Pederson, Larry R.; Khaleel, Mohammad A.

2011-01-01T23:59:59.000Z

248

Energetic analysis of a syngas-fueled chemical-looping combustion combined cycle with integration of carbon dioxide sequestration  

Science Journals Connector (OSTI)

Abstract Chemical-looping combustion for power generation has significant advantages over conventional combustion. Mainly, it allows an integration of CO2 capture in the power plant without energy penalty; secondly, a less exergy destruction in the combustion chemical transformation is achieved, leading to a greater overall thermal efficiency. Most efforts have been devoted to systems based on methane as a fuel, although other systems for alternative fuels have can be proposed. This paper focus on the study of the energetic performance of this concept of combustion in a gas turbine combined cycle when synthesis gas is used as fuel. After optimization of some thermodynamic parameters of the cycle, the power plant performance is evaluated under diverse working conditions and compared to a conventional gas turbine system. Energy savings related with CO2 capture and storage have been quantified. The overall efficiency increase is found to be significant, reaching values of around 5% (even more in some cases). In order to analyze the influence of syngas composition on the results, different H2-content fuels are considered. In a context of real urgency to reduce green house gas emissions, this work is intended to contribute to the conceptual development of highly efficient alternative power generation systems.

Ángel Jiménez Álvaro; Ignacio López Paniagua; Celina González Fernández; Rafael Nieto Carlier; Javier Rodríguez Martín

2014-01-01T23:59:59.000Z

249

Filter system cost comparison for integrated gasification combined cycle and pressurized fluidized-bed combustion power systems  

SciTech Connect (OSTI)

To assess the relative cost of components and sub-systems for a hot gas particulate cleanup system a cost comparison between the filter systems for two advanced coal-based power plants was conducted. Assessing component and sub-system costs permits the most beneficial areas for product improvement to be identified. The results from this study are presented. The filter system is based on a Westinghouse Advanced Particulate Filter Concept which is designed to operate with ceramic candle filters. The Foster Wheeler second Generation 453 MWe (net) Pressurized Fluidized-Bed Combustor (PFBC) and the KRW 458 MWe (net) Integrated Gasification Combined Cycle (IGCC) power plants are used for the comparison. The comparison presents the general differences of the two power plants and the process related filtration conditions for PFBC and IGCC systems. The results present the conceptual designs for the PFBC and IGCC filter systems as well as a cost summary comparison. The cost summary comparison includes the total plant cost, the fixed operating and maintenance cost, the variable operating and maintenance cost and the effect on the cost of electricity for the two filter systems. The most beneficial areas for product improvement are identified.

Dennis, R.A.; McDaniel, H.M. [Dept. of Energy, Morgantown, WV (United States). Morgantown Energy Technology Center; Buchanan, T.; Chen, H.; Harbaugh, L.B.; Klett, M.; Zaharchuk, R. [Gilbert/Commonwealth, Reading, PA (United States)

1995-12-31T23:59:59.000Z

250

Integrated gasification fuel cell (IGFC) demonstration test  

SciTech Connect (OSTI)

As concern about the environment generates interest in ultra-clean energy plants, fuel cell power plants can respond to the challenge. Fuel cells convert hydrocarbon fuels to electricity at efficiencies exceeding conventional heat engine technologies while generating extremely low emissions. Emissions of SOx and NOx are expected to be well below current and anticipated future standards. Nitrogen oxides, a product of combustion, will be extremely low in this power plant because power is produced electrochemically rather than by combustion. Due to its higher efficiencies, a fuel cell power plant also produces less carbon dioxide. Fuel cells in combination with coal gasification, are an efficient and environmentally acceptable means to utilize the abundant coal reserves both in the US and around the world. To demonstrate this technology, FuelCell Energy, Inc. (FCE), is planning to build and test a 2-MW Fuel Cell Power Plant for operation on coal derived gas. This power plant is based on Direct Fuel Cell (DFC{trademark}) technology and will be part of a Clean Coal V IGCC project supported by the US DOE. A British Gas Lurgi (BGL) slagging fixed-bed gasification system with cold gas clean up is planned as part of a 400 MW IGCC power plant to provide a fuel gas slip stream to the fuel cell. The IGFC power plant will be built by Kentucky Pioneer Energy, A subsidiary of Global Energy, in Clark County, KY. This demonstration will result in the world's largest fuel cell power plant operating on coal derived gas. The objective of this test is to demonstrate fuel cell operation on coal derived gas at a commercial scale and to verify the efficiency and environmental benefits.

Steinfeld, G.; Ghezel-Ayagh, H.; Sanderson, R.; Abens, S.

2000-07-01T23:59:59.000Z

251

An integrated assessment of the energy savings and emissions-reduction potential of combined heat and power  

SciTech Connect (OSTI)

Combined Heat and Power (CHP) systems, or cogeneration systems, generated electrical/mechanical and thermal energy simultaneously, recovering much of the energy normally lost in separate generation. This recovered energy can be used for heating or cooling purposes, eliminating the need for a separate boiler. Significant reductions in energy, criteria pollutants, and carbon emissions can be achieved from the improved efficiency of fuel use. Generating electricity on or near the point of use also avoids transmission and distribution losses and defers expansion of the electricity transmission grid. Several recent developments make dramatic expansion of CHP a cost-effective possibility over the next decade. First, advances in technologies such as combustion turbines, steam turbines, reciprocating engines, fuel cells. and heat-recovery equipment have decreased the cost and improved the performance of CHP systems. Second, a significant portion of the nation's boiler stock will need to be replaced in the next decade, creating an opportunity to upgrade this equipment with clean and efficient CHP systems. Third, environmental policies, including addressing concerns about greenhouse gas emissions, have created pressures to find cleaner and more efficient means of using energy. Finally, electric power market restructuring is creating new opportunities for innovations in power generation and smaller-scale distributed systems such as CHP. The integrated analysis suggests that there is enormous potential for the installation of cost-effective CHP in the industrial, district energy, and buildings sectors. The projected additional capacity by 2010 is 73 GW with corresponding energy savings of 2.6 quadrillion Btus, carbon emissions reductions of 74 million metric tons, 1.4 million tons of avoided SO{sub 2} emissions, and 0.6 million tons of avoided NO{sub x} emissions. The authors estimate that this new CHP would require cumulative capital investments of roughly $47 billion over ten years.

Kaarsberg, T.M.; Elliott, R.N.; Spurr, M.

1999-07-01T23:59:59.000Z

252

ENHANCED HYDROGEN PRODUCTION INTEGRATED WITH CO2 SEPARATION IN A SINGLE-STAGE REACTOR  

SciTech Connect (OSTI)

The water gas shift reaction (WGSR) plays a major role in increasing the hydrogen production from fossil fuels. However, the enhanced hydrogen production is limited by thermodynamic constrains posed by equilibrium limitations of WGSR. This project aims at using a mesoporous, tailored, highly reactive calcium based sorbent system for incessantly removing the CO{sub 2} product which drives the equilibrium limited WGSR forward. In addition, a pure sequestration ready CO{sub 2} stream is produced simultaneously. A detailed project vision with the description of integration of this concept with an existing coal gasification process for hydrogen production is presented. Conceptual reactor designs for investigating the simultaneous water gas shift and the CaO carbonation reactions are presented. In addition, the options for conducting in-situ sorbent regeneration under vacuum or steam are also reported. Preliminary, water gas shift reactions using high temperature shift catalyst and without any sorbent confirmed the equilibrium limitation beyond 600 C demonstrating a carbon monoxide conversion of about 80%. From detailed thermodynamic analyses performed for fuel gas streams from typical gasifiers the optimal operating temperature range to prevent CaO hydration and to effect its carbonation is between 575-830 C.

Himanshu Gupta; Mahesh Iyer; Bartev Sakadjian; Liang-Shih Fan

2005-03-10T23:59:59.000Z

253

Integrating catalytic coal gasifiers with solid oxide fuel cells  

SciTech Connect (OSTI)

A review was conducted for coal gasification technologies that integrate with solid oxide fuel cells (SOFC) to achieve system efficiencies near 60% while capturing and sequestering >90% of the carbon dioxide [1-2]. The overall system efficiency can reach 60% when a) the coal gasifier produces a syngas with a methane composition of roughly 25% on a dry volume basis, b) the carbon dioxide is separated from the methane-rich synthesis gas, c) the methane-rich syngas is sent to a SOFC, and d) the off-gases from the SOFC are recycled back to coal gasifier. The thermodynamics of this process will be reviewed and compared to conventional processes in order to highlight where available work (i.e. exergy) is lost in entrained-flow, high-temperature gasification, and where exergy is lost in hydrogen oxidation within the SOFC. The main advantage of steam gasification of coal to methane and carbon dioxide is that the amount of exergy consumed in the gasifier is small compared to conventional, high temperature, oxygen-blown gasifiers. However, the goal of limiting the amount of exergy destruction in the gasifier has the effect of limiting the rates of chemical reactions. Thus, one of the main advantages of steam gasification leads to one of its main problems: slow reaction kinetics. While conventional entrained-flow, high-temperature gasifiers consume a sizable portion of the available work in the coal oxidation, the consumed exergy speeds up the rates of reactions. And while the rates of steam gasification reactions can be increased through the use of catalysts, only a few catalysts can meet cost requirements because there is often significant deactivation due to chemical reactions between the inorganic species in the coal and the catalyst. Previous research into increasing the kinetics of steam gasification will be reviewed. The goal of this paper is to highlight both the challenges and advantages of integrating catalytic coal gasifiers with SOFCs.

Siefert, N.; Shamsi, A.; Shekhawat, D.; Berry, D.

2010-01-01T23:59:59.000Z

254

Investigation of gasification chemical looping combustion combined cycle performance  

SciTech Connect (OSTI)

A novel combined cycle based on coal gasification and chemical looping combustion (CLC) offers a possibility of both high net power efficiency and separation of the greenhouse gas CO{sub 2}. The technique involves the use of a metal oxide as an oxygen carrier, which transfers oxygen from the combustion air to the fuel, and the avoidance of direct contact between fuel and combustion air. The fuel gas is oxidized by an oxygen carrier, an oxygen-containing compound, in the fuel reactor. The oxygen carrier in this study is NiO. The reduced oxygen carrier, Ni, in the fuel reactor is regenerated by the air in the air reactor. In this way, fuel and air are never mixed, and the fuel oxidation products CO{sub 2} and water vapor leave the system undiluted by air. All that is needed to get an almost pure CO{sub 2} product is to condense the water vapor and to remove the liquid water. When the technique is combined with gas turbine and heat recovery steam generation technology, a new type of combined cycle is formed which gives a possibility of obtaining high net power efficiency and CO{sub 2} separation. The performance of the combined cycle is simulated using the ASPEN software tool in this paper. The influence of the water/coal ratio on the gasification and the influence of the CLC process parameters such as the air reactor temperature, the turbine inlet supplementary firing, and the pressure ratio of the compressor on the system performance are discussed. Results show that, assuming an air reactor temperature of 1200{sup o}C, a gasification temperature of 1100 {sup o}C, and a turbine inlet temperature after supplementary firing of 1350{sup o}C, the system has the potential to achieve a thermal efficiency of 44.4% (low heating value), and the CO{sub 2} emission is 70.1 g/(kW h), 90.1% of the CO{sub 2} captured. 22 refs., 7 figs., 6 tabs.

Wenguo Xiang; Sha Wang; Tengteng Di [Southeast University, Nanjing (China). Key Laboratory of Clean Coal Power Generation and Combustion Technology of the Ministry of Education

2008-03-15T23:59:59.000Z

255

Asymptotic Analysis II (1995) 31-54 31 North-Holland  

E-Print Network [OSTI]

deposits, oil and gas reserves, assessing the integrity of chemical and nuclear waste repositories, and even in mineral extraction processes such as in situ coal gasification, enhanced oil recovery

Peirce, Anthony

256

An Assessment of Industrial Cogeneration Potential in Pennsylvania  

E-Print Network [OSTI]

such as atmospheric fluidized bed combustion, coal-gasification combined cycles, fuel cells and bottoming cycles were analyzed in addition to the economic assessment of conventional cogeneration systems; Industry-specific rates of market penetration were developed...

Hinkle, B. K.; Qasim, S.; Ludwig, E. V., Jr.

1983-01-01T23:59:59.000Z

257

Development of Gas Turbine Combustors for Low BTU Gas  

Science Journals Connector (OSTI)

Large-capacity combined cycles with high-temperature gas turbines burning petroleum fuel or LNG have already ... the other hand, as the power generation technology utilizing coal burning the coal gasification com...

I. Fukue; S. Mandai; M. Inada

1992-01-01T23:59:59.000Z

258

Topping of a combined gas- and steam-turbine powerplant using a TAM combustor  

SciTech Connect (OSTI)

The objective of this program is to evaluate the engineering and economic feasibility of a thermionic array module (TAM) topped combustor for a gas turbine. A combined gas- and steam-turbine system was chosen for this study. The nominal output of the gas and steam turbines were 70 MW and 30 MW, respectively. The gas-turbine fuel was a coal-derived medium-Btu gas assumed to be from an oxygen blown Texaco coal-gasification process which produces pressurized gas with an approximate composition of 52% CO and 36% H/sub 2/. Thermionic converters are assumed to line the walls of the gas-turbine combustor, so that the high-temperature gases heat the thermionic converter emitter. The thermionic converters produce electricity while the rejected heat is used to preheat the combustion air. To maximize the production of power from the thermionic converter, the highest practical flame temperature is obtained by preheating the combustor air with the thermionic collectors and rich combustion. A portion of the air, which bypassed the combustor, is reintroduced to complete the combustion at a lower temperature and the mixed gases flow to the turbine. The exhaust gases from the turbine flow to the heat recovery boilers to the bottoming steam cycle. The gas and steam turbine system performance calculation was based on data from Brown Boveri Turbomachinery, Inc. The performance of the thermionic converters (TAM) for the reference case was based on actual measurements of converters fired with a natural gas flame. These converters have been operated in a test furnace for approximately 15,000 device hours.

Miskolczy, G.; Wang, C.C.; Lovell, B.T.; McCrank, J.

1981-03-01T23:59:59.000Z

259

Analysis of Membrane and Adsorbent Processes for Warm Syngas Cleanup in Integrated Gasification Combined-Cycle Power with CO2 Capture and Sequestration  

Science Journals Connector (OSTI)

Analysis of Membrane and Adsorbent Processes for Warm Syngas Cleanup in Integrated Gasification Combined-Cycle Power with CO2 Capture and Sequestration ... The clean syngas is diluted with N2 from the ASU and enters the gas turbine burner. ... The amount of N2 diluent to be added is determined by the requirement of maintaining the appropriate lower heating value of the syngas feeding into the gas turbine burner to achieve sufficiently low NOx emissions (15–35 ppmv at 15% O2)(36) and to keep the temperature of the gas low enough to avoid blade failure. ...

David J. Couling; Kshitij Prakash; William H. Green

2011-08-11T23:59:59.000Z

260

June 2005 Pub_v2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

June 2005 June 2005 *Sequestration in the News *Recent Publications *Events and Announcements *Legislative Activity Sequestration in the News New York Times, "Dirty Secret: Coal Plants Could Be Much Cleaner." Article discusses integrated coal gasification combined cycle (IGCC) technology. No new IGCC power plants have been built in the U.S. since the Tampa Electric plant was commissioned nearly a decade ago, and nine out of ten coal-fired power plants in the planning stages will use combustion technology. The National Commission on Energy Policy, an independent, bipartisan advisory body, has recommended that the federal government spend an additional $4 billion over 10 years to speed the power industry's

Note: This page contains sample records for the topic "integrated coal-gasification combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Measurement and modeling of advanced coal conversion processes, Volume I, Part 1. Final report, September 1986--September 1993  

SciTech Connect (OSTI)

The objective of this program was the development of a predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. The foundation to describe coal specific conversion behavior was AFR`s Functional Group and Devolatilization, Vaporization and Crosslinking (DVC) models, which had been previously developed. The combined FG-DVC model was integrated with BYU`s comprehensive two-dimensional reactor model for combustion and coal gasification, PCGC-2, and a one-dimensional model for fixed-bed gasifiers, FBED-1. Progress utilizing these models is described.

Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [and others

1995-09-01T23:59:59.000Z

262

[Tampa Electric Company IGCC project]. Final public design report; Technical progress report  

SciTech Connect (OSTI)

This final Public Design Report (PDR) provides completed design information about Tampa Electric Company`s Polk Power Station Unit No. 1, which will demonstrate in a commercial 250 MW unit the operating parameters and benefits of the integration of oxygen-blown, entrained-flow coal gasification with advanced combined cycle technology. Pending development of technically and commercially viable sorbent for the Hot Gas Cleanup System, the HGCU also is demonstrated. The report is organized under the following sections: design basis description; plant descriptions; plant systems; project costs and schedule; heat and material balances; general arrangement drawings; equipment list; and miscellaneous drawings.

NONE

1996-07-01T23:59:59.000Z

263

Dynamic simulation and load-following control of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture  

SciTech Connect (OSTI)

Load-following control of future integrated gasification combined cycle (IGCC) plants with pre-combustion CO{sub 2} capture is expected to be far more challenging as electricity produced by renewable energy is connected to the grid and strict environmental limits become mandatory requirements. To study control performance during load following, a plant-wide dynamic simulation of a coal-fed IGCC plant with CO{sub 2} capture has been developed. The slurry-fed gasifier is a single-stage, downward-fired, oxygen-blown, entrained-flow type with a radiant syngas cooler (RSC). The syngas from the outlet of the RSC goes to a scrubber followed by a two-stage sour shift process with inter-stage cooling. The acid gas removal (AGR) process is a dual-stage physical solvent-based process for selective removal of H{sub 2}S in the first stage and CO{sub 2} in the second stage. Sulfur is recovered using a Claus unit with tail gas recycle to the AGR. The recovered CO{sub 2} is compressed by a split-shaft multistage compressor and sent for sequestration after being treated in an absorber with triethylene glycol for dehydration. The clean syngas is sent to two advanced “F”-class gas turbines (GTs) partially integrated with an elevated-pressure air separation unit. A subcritical steam cycle is used for heat recovery steam generation. A treatment unit for the sour water strips off the acid gases for utilization in the Claus unit. The steady-state model developed in Aspen Plus® is converted to an Aspen Plus Dynamics® simulation and integrated with MATLAB® for control studies. The results from the plant-wide dynamic model are compared qualitatively with the data from a commercial plant having different configuration, operating condition, and feed quality than what has been considered in this work. For load-following control, the GT-lead with gasifier-follow control strategy is considered. A modified proportional–integral–derivative (PID) control is considered for the syngas pressure control. For maintaining the desired CO{sub 2} capture rate while load-following, a linear model predictive controller (LMPC) is implemented in MATLAB®. A combined process and disturbance model is identified by considering a number of model forms and choosing the final model based on an information-theoretic criterion. The performance of the LMPC is found to be superior to the conventional PID control for maintaining CO{sub 2} capture rates in an IGCC power plant while load following.

Bhattacharyya, D,; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

264

ELEVATED TEMPERATURE CORROSION BEHAVIOR OF IRON-BASE TERNARY ALLOYS THAT DEVELOP Cr2O3 AND/OR Al2O3 BARRIER SCALES  

E-Print Network [OSTI]

Resistant Alloy for Coal Gasification Service, LockheedI.M. , Table H Coal gasification atmosphere (mol fraction).development of "coal gasification" processes. large number

Nagarajan, V.

2011-01-01T23:59:59.000Z

265

BOUNDARY LAYER CONTROL IN PIPES THROUGH STRONG INJECTION  

E-Print Network [OSTI]

normal-injection model. y Coal gasification gas mixture ,ZUSAMMENFASSUNG) In coal gasification, oxidation andthan that in the coal gasification mixture. Outside the

Yeung, William Chor Chun

2014-01-01T23:59:59.000Z

266

Optimal Dynamic Strategy of Building a Hydrogen Infrastructure in Beijing  

E-Print Network [OSTI]

central plant, coal gasification central plant (with andinfrastructure of 2 coal gasification plants, 350km pipelinestep central plant via coal gasification with CO2 capture,

Lin, Zhenhong; Ogden, Joan M; Fan, Yueyue; Sperling, Dan

2005-01-01T23:59:59.000Z

267

SOLVENT EXTRACTION OF PHENOLS FROM WATER  

E-Print Network [OSTI]

Shale Retorting, Synthane Coal Gasification and COED CoalBeychok, M.R. , "Coal Gasification and the Phenosolvanwaters formed during coal gasification and liquefaction (Ho,

Greminger, Douglas C.

2012-01-01T23:59:59.000Z

268

Low-Btu coal gasification in the United States: company topical. [Brick producers  

SciTech Connect (OSTI)

Hazelton and other brick producers have proved the reliability of the commercial size Wellman-Galusha gasifier. For this energy intensive business, gas cost is the major portion of the product cost. Costs required Webster/Hazelton to go back to the old, reliable alternative energy of low Btu gasification when the natural gas supply started to be curtailed and prices escalated. Although anthracite coal prices have skyrocketed from $34/ton (1979) to over $71.50/ton (1981) because of high demand (local as well as export) and rising labor costs, the delivered natural gas cost, which reached $3.90 to 4.20/million Btu in the Hazelton area during 1981, has allowed the producer gas from the gasifier at Webster Brick to remain competitive. The low Btu gas cost (at the escalated coal price) is estimated to be $4/million Btu. In addition to producing gas that is cost competitive with natural gas at the Webster Brick Hazelton plant, Webster has the security of knowing that its gas supply will be constant. Improvements in brick business and projected deregulation of the natural gas price may yield additional, attractive cost benefits to Webster Brick through the use of low Btu gas from these gasifiers. Also, use of hot raw gas (that requires no tar or sulfur removal) keeps the overall process efficiency high. 25 references, 47 figures, 14 tables.

Boesch, L.P.; Hylton, B.G.; Bhatt, C.S.

1983-07-01T23:59:59.000Z

269

Image analysis measurements of particle coefficient of restitution for coal gasification applications  

SciTech Connect (OSTI)

New robust Lagrangian computational fluid dynamic (CFD) models are powerful tools that can be used to study the behavior of a diverse population of coal particle sizes, densities, and mineral compositions in entrained gasifiers. By using this approach, the responses of the particles impacting the wall were characterized over a range of velocities (1 to 8 m/s) and incident angles (90 to 20°). Within CFD models, the kinematic coefficient of restitution is the boundary condition defining the particle wall behavior. Four surfaces were studied to simulate the physical conditions of different entrained-flow gasification particle–surface collision scenarios: 1) a flat metal plate 2) a low viscosity silicon adhesive, 3) a high viscosity silicon adhesive, and 4) adhered particles on a flat metal plate with Young's modulus of elasticity ranging from 0.9 to 190 GPa. Entrained flow and drop experiments were conducted with granular coke particles, polyethylene beads and polystyrene pellets. The particle normal and tangential coefficients of restitution were measured using high speed imaging and particle tracking. The measured coefficients of restitution were observed to have a strong dependence on the rebound angles for most of the data. Suitable algebraic expressions for the normal and the tangential component of the coefficient of restitution were developed based upon ANOVA analysis. These expressions quantify the effect of normalized Young's modulus, particle equancy, and relative velocity on the coefficient of restitution. The coefficient of restitution did not have a strong dependence on the particle velocity over the range considered as long as the velocity was above the critical velocity. However, strong correlations were found between the degree of equancy of the particles and the mean coefficient of restitution such that the coefficient of restitution decreased for smaller particle equancies. It was concluded that the degree of equancy and the normalized Young's modulus should be considered in applications such as gasification and other cases involving the impact of non-spherical particles and complex surfaces. Sliding was observed when particles impacted on oblique surfaces; however, the resulting effects were within the range of measurement uncertainties.

Gibson, LaTosha M.; Gopalan, Balaji; Pisupati, Sarma V.; Shadle, Lawrence J.

2013-10-01T23:59:59.000Z

270

In situ formation of coal gasification catalysts from low cost alkali metal salts  

DOE Patents [OSTI]

A carbonaceous material, such as crushed coal, is admixed or impregnated with an inexpensive alkali metal compound, such as sodium chloride, and then pretreated with a stream containing steam at a temperature of 350.degree. to 650.degree. C. to enhance the catalytic activity of the mixture in a subsequent gasification of the mixture. The treatment may result in the transformation of the alkali metal compound into another, more catalytically active, form.

Wood, Bernard J. (Santa Clara, CA); Brittain, Robert D. (Cupertino, CA); Sancier, Kenneth M. (Menlo Park, CA)

1985-01-01T23:59:59.000Z

271

Gasification of an Indonesian subbituminous coal in a pilot-scale coal gasification system  

Science Journals Connector (OSTI)

Indonesian Roto Middle subbituminous coal was gasified in a pilot-scale dry-feeding gasification system and the produced syngas was purified...2, and 5–8% CO2. Particulates in syngas were 99.8% removed by metal f...

Yongseung Yun; Seok Woo Chung

2007-07-01T23:59:59.000Z

272

Fluidized-bed catalytic coal-gasification process. [US patent; pretreatment to minimize agglomeration  

DOE Patents [OSTI]

Coal or similar carbonaceous solids impregnated with gasification catalyst constituents are oxidized by contact with a gas containing between 2 vol % and 21 vol % oxygen at a temperature between 50 and 250/sup 0/C in an oxidation zone and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

Euker, C.A. Jr.; Wesselhoft, R.D.; Dunkleman, J.J.; Aquino, D.C.; Gouker, T.R.

1981-09-14T23:59:59.000Z

273

Numerical Simulation and Evaluation of Cavity Growth in In Situ Coal Gasification  

Science Journals Connector (OSTI)

Park and Edgar(11) developed an unsteady 1D model with a moving burning front based on the work of Massaquoi and Riggs(10) to describe lateral cavity growth in UCG (with flow perpendicular to the coal surface). ... Abdel-Hadi and Hsu(12) extended previous coal block models by developing pseudo-2D geometry with a moving burn front. ... In this case with low oxygen availability, the amount of combustion cannot supply enough heat, and the reactions that cause the cavity growth gradually stop after turning off the burner at 3000 s. Figure 11b shows the variation of the heating value of the produced syngas with time. ...

Ahad Sarraf Shirazi; Shayan Karimipour; Rajender Gupta

2013-07-26T23:59:59.000Z

274

Determination of Anions in Cooling Tower Wastewater from Coal Gasification by Ion Chromatography  

Science Journals Connector (OSTI)

......oxygen-blown slagging fixed-bed gasifier utilizing lignite in the United...Dakota. During this research, gasifier wastewater was prepared as...reaction of the ion in an acid medium to form a colored complex...data interpretation. Sample Gasifier wastewater was produced from......

Michael E. Potts; Todd A. Potas

1985-09-01T23:59:59.000Z

275

Improving Process Performances in Coal Gasification for Power and Synfuel Production  

Science Journals Connector (OSTI)

The basic idea is to thermally couple a gasifier, fed with coal and steam, and a combustor where coal is burnt with air, thus overcoming the need of expensive pure oxygen as a feedstock. ... Considering the world’s insatiable appetite for energy and oil, the only reasonable large-scale conventional source left in the medium term will have to be coal. ...

M. Sudiro; A. Bertucco; F. Ruggeri; M. Fontana

2008-09-17T23:59:59.000Z

276

Development of the Shell-Koppers Coal Gasification Process [and Discussion  

Science Journals Connector (OSTI)

...The gas produced (93-98 vol.% hydrogen and carbon monoxide) is suitable for the manufacture of hydrogen or reducing gas and, with further processing...of 2500 t/day are contemplated. The economy, especially of these large size units...

1981-01-01T23:59:59.000Z

277

Life Cycle Comparison of Coal Gasification by Conventional versus Calcium Looping Processes  

Science Journals Connector (OSTI)

After separation of H2, the remaining gas is used as fuel in a boiler to produce steam that is used in a steam turbine to produce electricity. ... Note that, as described in Section 2.1, the conventional process has nonzero GHG emissions due to combustion of the gases remaining after CO2 and H2S removal, while CLP does not have any GHG emissions. ... The conventional process with CO2 recovery from flue gas was compared with the calcium looping process based on their life cycle land use, water use, and GHG emissions. ...

Berrin Kursun; Shwetha Ramkumar; Bhavik R. Bakshi; Liang-Shih Fan

2014-03-10T23:59:59.000Z

278

Assessment of modular IGCC plants based on entrained flow coal gasification supplemental studies  

SciTech Connect (OSTI)

In a previous study (1), Foster Wheeler made an assessment of modular IGCC power systems employing Texaco entrained flow gasification of Illinois No. 6 coal. In that study, five case studies were developed in order to compare the relative performance and economics of air vs. oxygen blown gasification and high temperature vs. low temperature gas cleanup. As a supplemental study, two additional IGCC design cases were developed as alternate to the original Case 2 and Case 3 configurations. The objective of the Case 2 alternate study was to assess the potential of zinc titanate in place of zinc ferrite. Compared to zinc ferrite, the zinc titanate system offered the following potential advantages: Does not require steam conditioning of the feed gas to avoid carbon formation; does not require reductive regeneration and the corresponding use of fuel gas; operates at higher temperature, about 1350{degree}F; and has a longer projected sorbent life. The objective of the alternate Case 3 study was to determine the economic impact of producing sulfuric acid, instead of elemental sulfur, as the by-product from high temperature desulfurization using zinc ferrite. Sulfur recovery as by-product sulfuric acid therefore offered the potential for reducing both the capital and operating costs. 6 refs., 5 figs., 15 tabs.

Fu, R.K.

1989-10-01T23:59:59.000Z

279

Stabilization of spent sorbents from coal gasification. Final technical report, September 1, 1992--August 31, 1993  

SciTech Connect (OSTI)

The objective of this investigation was to determine the rates of reactions involving partially sulfided dolomite and oxygen, which is needed for the design of the reactor system for the stabilization of sulfide-containing solid wastes from gasification of high sulfur coals. To achieve this objective, samples of partially sulfided dolomite were reacted with oxygen at a variety of operating conditions in a fluidized-bed reactor. The effect of external diffusion was eliminated by using small quantities of the sorbent and maintaining a high flow rate of the reactant gas. The reacted sorbents were analyzed to determine the extent of conversion as a function of operating variables including sorbent particle size, reaction temperature and pressure, and oxygen concentration. The results of sulfation tests indicate that the rate of reaction increases with increasing temperature, increasing oxygen partial pressure, and decreasing sorbent particle size. The rate of the sulfation reaction can be described by a diffuse interface model where both chemical reaction and intraparticle diffusion control the reaction rate. The kinetic model of the sulfation reaction was used to determine the requirements for the reactor system, i.e., reactor size and operating conditions, for successful stabilization of sulfide-containing solid wastes from gasification of high sulfur coals (with in-bed desulfurization using calcium based sorbents). The results indicate that the rate of reaction is fast enough to allow essentially complete sulfation in reactors with acceptable dimensions. The optimum sulfation temperature appears to be around 800{degrees}C for high pressure as well as atmospheric stabilization of the spent sorbents.

Abbasian, J.; Hill, A.H.; Rue, D.M.; Wangerow, J.R. [Institute of Gas Technology, Chicago, IL (United States)

1993-12-31T23:59:59.000Z

280

Feasibility studies of in-situ coal gasification in the Warrior coal field. Quarterly report  

SciTech Connect (OSTI)

Studies in support of in-situ gasification involved experiments in bench-scale combustors where three parameters were varied independently: initial fuel bed temperature, applied air flow and water vapor influx rate. Methods for measuring the thermal conductivity of solids at high temperatures were evaluated and measurements of the thermal conductivity and thermal diffusivity were made over a temperature range for several samples of coke. (LTN)

Douglas G.W.; McKinley, M.D.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated coal-gasification combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Slang characterization and removal using pulse detonation technology during coal gasification  

SciTech Connect (OSTI)

Boiler slagging and fouling as a result of inorganic impurities in combustion gases being deposited on heat transfer tubes have caused severe problems in coal-fired power plant operation. These problems are fuel, system design, and operating condition dependent. Pulse detonation technology for the purpose of removing slag and fouling deposits in coal-fired utility power plant boilers offers great potential. The detonation wave technique based on high impact velocity with sufficient energy and thermal shock on the slag deposited on gas contact surfaces offers a convenient, inexpensive, yet efficient and effective way to supplement existing slag removal methods. These detonation waves have been demonstrated experimentally to have exceptionally high shearing capability important to the task of removing slag and fouling deposits. The experimental results show that the single shot detonation wave is capable of removing the entire slag (types of slag deposited on economizer) even at a distance of 8 in. from the exit of a detonation engine tube. Wave strength and slag orientation also have different effects on the chipping off of the slag. This paper discusses about the results obtained in effectively removing the economizer slag.

Huque, Z.; Mei, D.; Biney, P.O.; Zhou, J.

1997-03-25T23:59:59.000Z

282

The Use of Reverse Osmosis for the Purification of Coal Gasification Liquors  

Science Journals Connector (OSTI)

Laboratory trials have been conducted at the Westfield Development Centre to assess the potential of reverse osmosis as a stage in the treatment of ... effluent suitable for sewer or estuary discharge. Reverse osmosis

A. R. Williams

1991-01-01T23:59:59.000Z

283

A Brief Review of Viscosity Models for Slag in Coal Gasification  

SciTech Connect (OSTI)

Many researchers have defined the phenomenon of 'slagging' as the deposition of ash in the radiative section of a boiler, while 'fouling' refers to the deposition of ash in the convective-pass region. Among the important parameters affecting ash deposition that need to be studied are ash chemistry, its transport, deposit growth, and strength development; removability of the ash deposit; heat transfer mechanisms; and the mode of operation for boilers. The heat transfer at the walls of a combustor depends on many parameters including ash deposition. This depends on the processes or parameters controlling the impact efficiency and the sticking efficiency. For a slagging combustor or furnace, however, the temperatures are so high that much of the coal particles are melted and the molten layer, in turn, captures more particles as it flows. The main problems with ash deposition are reduced heat transfer in the boiler and corrosion of the tubes. Common ways of dealing with these issues are soot blowing and wall blowing on a routine basis; however, unexpected or uncontrolled depositions can also complicate the situation, and there are always locations inaccessible to the use of such techniques. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1300 C and 1500 C, the viscosity is approximately 25 Pa {center_dot} s. As the operating temperature decreases, the slag cools and solid crystals begin to form. In such cases the slag should be regarded as a non-Newtonian suspension, consisting of liquid silicate and crystals. A better understanding of the rheological properties of the slag, such as yield stress and shear-thinning, are critical in determining the optimum operating conditions. To develop an accurate heat transfer model in any type of coal combustion or gasification process, the heat transfer and to some extent the rheological properties of ash and slag, especially in high-temperature environments need to be understood and properly modeled. The viscosity of slag and the thermal conductivity of ash deposits are among two of the most important constitutive parameters that need to be studied. The accurate formulation or representations of the (transport) properties of coal (and biomass for co-firing cases) present a special challenge of modeling efforts in computational fluid dynamics applications. In this report, we first provide a brief review of the various approaches taken by different researchers in formulating or obtaining a slag viscosity model. In general, these models are based on experiments. Since slag behaves as a non-linear fluid, we discuss the constitutive modeling of slag and the important parameters that must be studied.

Massoudi, Mehrdad; Wang, Ping

2011-11-01T23:59:59.000Z

284

A parametric study on coal gasification for the production of syngas  

Science Journals Connector (OSTI)

In this parametric study, the effects of coal and oxidiser type, air-to-fuel ratio, steam-to-fuel ratio, reactor temperature, and pressure on H2 and CO amounts at the gasifier output, H2/CO, and higher heating va...

Afsin Gungor; Murat Ozbayoglu; Cosku Kasnakoglu; Atilla Biyikoglu…

2012-07-01T23:59:59.000Z

285

Characterization of Filter Elements for Service in a Coal Gasification Environment  

SciTech Connect (OSTI)

The Power Systems Development Facility (PSDF) is a joint Department of Energy/Industry sponsored engineering-scale facility for testing advanced coal-based power generation technologies. High temperature, high pressure gas cleaning is critical to many of these advanced technologies. Barrier filter elements that can operate continuously for nearly 9000 hours are required for a successful gas cleaning system for use in commercial power generation. Since late 1999, the Kellogg Brown & Root Transport reactor at the PSDF has been operated in gasification mode. This paper describes the test results for filter elements operating in the Siemens-Westinghouse particle collection device (PCD) with the Transport reactor in gasification mode. Operating conditions in the PCD have varied during gasification operation as described elsewhere in these proceedings (Martin et al, 2002).

Spain, J.D.

2002-09-19T23:59:59.000Z

286

An evaluation of Substitute natural gas production from different coal gasification processes based on modeling  

Science Journals Connector (OSTI)

Coal and lignite will play a significant role in the future energy production. However, the technical options for the reduction of CO2 emissions will define the extent of their share in the future energy mix. The production of synthetic or substitute natural gas (SNG) from solid fossil fuels seems to be a very attractive process: coal and lignite can be upgraded into a methane rich gas which can be transported and further used in high efficient power systems coupled with CO2 sequestration technologies. The aim of this paper is to present a modeling analysis comparison between substitute natural gas production from coal by means of allothermal steam gasification and autothermal oxygen gasification. In order to produce SNG from syngas several unit operations are required such as syngas cooling, cleaning, potential compression and, of course, methanation reactors. Finally the gas which is produced has to be conditioned i.e. removal of unwanted species, such as CO2 etc. The heat recovered from the overall process is utilized by a steam cycle, producing power. These processes were modeled with the computer software IPSEpro™. An energetic and exergetic analysis of the coal to SNG processes have been realized and compared.

S. Karellas; K.D. Panopoulos; G. Panousis; A. Rigas; J. Karl; E. Kakaras

2012-01-01T23:59:59.000Z

287

Development of Biological Coal Gasification (MicGAS Process). Topical report, July 1991--February 1993  

SciTech Connect (OSTI)

Laboratory and bench scale reactor research carried out during the report period confirms the feasibility of biomethanation of Texas lignite (TxL) and some other low-rank coals to methane by specifically developed unique anaerobic microbial consortia. The data obtained demonstrates specificity of a particular microbial consortium to a given lignite. Development of a suitable microbial consortium is the key to the success of the process. The Mic-1 consortium was developed to tolerate higher coal loadings of 1 and 5% TxL in comparison to initial loadings of 0.01% and 0.1% TxL. Moreover, the reaction period was reduced from 60 days to 14 to 21 days. The cost of the culture medium for bioconversion was reduced by studying the effect of different growth factors on the biomethanation capability of Mic-1 consortium. Four different bench scale bioreactor configurations, namely Rotating Biological Contactor (RBC), Upflow Fluidized Bed Reactor (UFBR), Trickle Bed Reactor (TBR), and Continuously Stirred Tank Reactor (CSTR) were evaluated for scale up studies. Preliminary results indicated highest biomethanation of TxL by the Mic-1 consortium in the CSTR, and lowest in the trickle bed reactor. However, highest methane production and process efficiency were obtained in the RBC.

Srivastava, K.C.

1993-06-01T23:59:59.000Z

288

Development of biological coal gasification (MicGAS Process). Quarterly report, January--March 1995  

SciTech Connect (OSTI)

This paper reports on the progress of several subtasks of the project. Another test with dual bioreactors was started to confirm the results obtained previously. Coal samples from the experiment in upflow bioreactors were characterized for mineral content. Solid residues from the bioreactor experiment were analyzed for humic acid content. Results are given for all three investigations.

NONE

1995-04-01T23:59:59.000Z

289

Development of biological coal gasification (MicGas process): 12th Quarterly report  

SciTech Connect (OSTI)

Several experiments were conducted to study the efficiency of granulated sludge consortium (GSC) on the biomethanation of Texas lignite (TxL). With an aim of obtaining a better culture than Mic-1, GSC was used as inoculum at different concentrations. The first experiment was conducted under anaerobic conditions in 60-mL vials containing 40 mL 0.01% SNTM + 1% TxL + 10% GSC. Methane production was measured periodically in the vial headspace and after 20 days of incubation, methane was found to be up to 67 mole%. The second experiment was conducted to determine whether methane production was from biogasification of coal or from substrates used for growing the GSC. The effect of two different anaerobic conditions on biomethanation of Texas lignite was also studied.

Not Available

1993-07-29T23:59:59.000Z

290

Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage  

SciTech Connect (OSTI)

Enhancement in the production of high purity hydrogen from fuel gas, obtained from coal gasification, is limited by thermodynamics of the Water Gas Shift Reaction. However, this constraint can be overcome by concurrent water-gas shift (WGS) and carbonation reactions to enhance H{sub 2} production by incessantly driving the equilibrium-limited WGS reaction forward and in-situ removing the CO2 product from the gas mixture. The spent sorbent is then regenerated by calcining it to produce a pure stream of CO{sub 2} and CaO which can be reused. However while performing the cyclic carbonation and calcination it was observed that the CO{sub 2} released during the in-situ calcination causes the deactivation of the iron oxide WGS catalyst. Detailed understanding of the iron oxide phase diagram helped in developing a catalyst pretreatment procedure using a H{sub 2}/H{sub 2}O system to convert the deactivated catalyst back to its active magnetite (Fe{sub 3}O{sub 4}) form. The water gas shift reaction was studied at different temperatures, different steam to carbon monoxide ratios (S/C) 3:1, 2:1, 1:1 and different total pressures ranging from 0-300 psig. The combined water gas shift and carbonation reaction was investigated at temperatures ranging from 600-700C, S/C ratio of 3:1 to 1:1 and at different pressures of 0-300 psig and the calcium looping process was found to produce high purity hydrogen with in-situ CO{sub 2} capture.

Mahesh Iyer; Shwetha Ramkumar; Liang-Shih Fan

2006-09-30T23:59:59.000Z

291

Modeling and economic evaluation of the integration of carbon capture and storage technologies into coal to liquids plants  

Science Journals Connector (OSTI)

Abstract This paper analyzes the technical and economic feasibility of the integration of Fischer–Tropsch process based Coal to Liquid (CTL) plants with Carbon Capture and Storage Technologies (CCS). CTL plants could be multipurpose, and for this reason, starting from coal can produce different energy products like liquid fuels, such as diesel and gasoline, chemicals, electricity and hydrogen. Different plant configurations are possible especially in the case of integration with CCS technologies. Obviously, the choice of the optimal process configuration is one that better meets technical and economical requirements. In order to make a first assessment, a screening of suitable technologies has been made. The CTL facility study here proposed is based on commercial coal gasification and Fischer–Tropsch technologies. The system configuration selected and the plant performance has been evaluated using Aspen Plus software. The plant size considered is about 10,000 bbl/d of liquid fuel products, equivalent to a consumption of about 4500 ton/d of coal fed to the gasification island. The declared objective is to evaluate the potential of the identified plant and to perform a first economic evaluation. The ultimate goal is to determine the specific cost of produced liquid fuels and to evaluate the economic performance of the system. The economic analysis was done to estimate the Internal Rate of Return (IRR), the payback period and the net present value for configurations with CCS or without CO2 capture. Results shows that the CCS introduction in CTL plants has a lighter impact on plant costs and performance since CO2 capture it is already included in the base plant.

Claudia Bassano; Paolo Deiana; Giuseppe Girardi

2014-01-01T23:59:59.000Z

292

The United States of America and the People`s Republic of China experts report on integrated gasification combined-cycle technology (IGCC)  

SciTech Connect (OSTI)

A report written by the leading US and Chinese experts in Integrated Gasification Combined Cycle (IGCC) power plants, intended for high level decision makers, may greatly accelerate the development of an IGCC demonstration project in the People`s Republic of China (PRC). The potential market for IGCC systems in China and the competitiveness of IGCC technology with other clean coal options for China have been analyzed in the report. Such information will be useful not only to the Chinese government but also to US vendors and companies. The goal of this report is to analyze the energy supply structure of China, China`s energy and environmental protection demand, and the potential market in China in order to make a justified and reasonable assessment on feasibility of the transfer of US Clean Coal Technologies to China. The Expert Report was developed and written by the joint US/PRC IGCC experts and will be presented to the State Planning Commission (SPC) by the President of the CAS to ensure consideration of the importance of IGCC for future PRC power production.

NONE

1996-12-01T23:59:59.000Z

293

APPLICATION OF A DAMPED LOCALLY OPTIMIZED COMBINATION OF IMAGES METHOD TO THE SPECTRAL CHARACTERIZATION OF FAINT COMPANIONS USING AN INTEGRAL FIELD SPECTROGRAPH  

SciTech Connect (OSTI)

High-contrast imaging instruments are now being equipped with integral field spectrographs (IFSs) to facilitate the detection and characterization of faint substellar companions. Algorithms currently envisioned to handle IFS data, such as the Locally Optimized Combination of Images (LOCI) algorithm, rely on aggressive point-spread function (PSF) subtraction, which is ideal for initially identifying companions but results in significantly biased photometry and spectroscopy owing to unwanted mixing with residual starlight. This spectrophotometric issue is further complicated by the fact that algorithmic color response is a function of the companion's spectrum, making it difficult to calibrate the effects of the reduction without using iterations involving a series of injected synthetic companions. In this paper, we introduce a new PSF calibration method, which we call 'damped LOCI', that seeks to alleviate these concerns. By modifying the cost function that determines the weighting coefficients used to construct PSF reference images, and also forcing those coefficients to be positive, it is possible to extract companion spectra with a precision that is set by calibration of the instrument response and transmission of the atmosphere, and not by post-processing. We demonstrate the utility of this approach using on-sky data obtained with the Project 1640 IFS at Palomar. Damped LOCI does not require any iterations on the underlying spectral type of the companion, nor does it rely on priors involving the chromatic and statistical properties of speckles. It is a general technique that can readily be applied to other current and planned instruments that employ IFSs.

Pueyo, Laurent [Department of Physics and Astronomy, Johns Hopkins University, 366 Bloomberg Center, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Crepp, Justin R.; Hinkley, Sasha; Hillenbrand, Lynne; Dekany, Richard; Bouchez, Antonin; Roberts, Jenny [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Vasisht, Gautam; Roberts, Lewis C.; Shao, Mike; Burruss, Rick [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Brenner, Douglas; Oppenheimer, Ben R.; Zimmerman, Neil [American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Parry, Ian [Institute of Astronomy, University of Cambridge, Madingley Rd., Cambridge, CB3 0HA (United Kingdom); Beichman, Charles [NASA Exoplanet Science Institute, 770 S. Wilson Avenue, Pasadena, CA 91225 (United States); Soummer, Remi, E-mail: lap@pha.jhu.edu [Space Telescope Science Institute, 3700 San Marin Drive, Baltimore, MD 21218 (United States)

2012-03-01T23:59:59.000Z

294

Optimized Pathways for Regional H2 Infrastructure Transitions: A Case Study for Southern California  

E-Print Network [OSTI]

production technologies including biomass gasification,coal gasification, natural gas reforming, and waterby biomass central gasification and then coal gasification

Lin, Zhenhong; Fan, Yueyue; Ogden, Joan M; Chen, Chien-Wei

2008-01-01T23:59:59.000Z

295

Optimized Pathways for Regional H2 Infrastructure Transitions: The Least-Cost Hydrogen for Southern California  

E-Print Network [OSTI]

production technologies including biomass gasification,coal gasification, natural gas reforming, and waterby biomass central gasification and then coal gasification

Lin, Zhenhong; Chen, Chien-Wei; Fan, Yueyue; Ogden, Joan M.

2008-01-01T23:59:59.000Z

296

Design, Installation, and Field Verification of Integrated Active Desiccant Hybrid Rooftop Systems Combined with a Natural Gas Driven Cogeneration Package, 2008  

Broader source: Energy.gov [DOE]

Report summary of a research/demonstration project involving a custom 230 kW cogeneration package with four integrated active desiccant rooftop (IADR) systems

297

Sensor placement algorithm development to maximize the efficiency of acid gas removal unit for integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture  

SciTech Connect (OSTI)

Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In this work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. In this presentation, we will share our experience in setting up parallel computing using GA in the MATLAB® environment and present the overall approach for achieving higher computational efficiency in this framework.

Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

298

Sensor placement algorithm development to maximize the efficiency of acid gas removal unit for integrated gasifiction combined sycle (IGCC) power plant with CO2 capture  

SciTech Connect (OSTI)

Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In this work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. In this presentation, we will share our experience in setting up parallel computing using GA in the MATLAB® environment and present the overall approach for achieving higher computational efficiency in this framework.

Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

299

Cost of energy analysis of integrated gasification combined cycle (IGCC) power plant with respect to CO2 capture ratio under climate change scenarios  

Science Journals Connector (OSTI)

This paper presents the results of the cost of energy (COE) analysis of an integrated gasification...2...capture ratio under the climate change scenarios. To obtain process data for a COE analysis, simulation mod...

Kyungtae Park; Dongil Shin; Gibaek Lee…

2012-09-01T23:59:59.000Z

300

Progress on a New Integrated 3-D UCG Simulator and its Initial Application  

SciTech Connect (OSTI)

A comprehensive simulator is being developed for underground coal gasification (UCG), with the capability to support site selection, design, hazard analyses, operations, and monitoring (Nitao et al., 2010). UCG is computationally challenging because it involves tightly-coupled multi-physical/chemical processes, with vastly different timescales. This new capability will predict cavity growth, product gas composition and rate, and the interaction with the host environment, accounting for site characteristics, injection gas composition and rate, and associated water-well extraction rates. Progress on the new simulator includes completion and system integration of a wall model, a rock spalling model, a cavity boundary tracking model, a one-dimensional cavity gas reactive transport model, a rudimentary rubble heat, mass, and reaction model, and coupling with a pre-existing hydrology simulator. An existing geomechanical simulator was enhanced to model cavity collapse and overburden subsidence. A commercial computational fluid dynamics (CFD) code is being evaluated to model cavity gas flow and combustion in two and three dimensions. Although the simulator is midway in its development, it was applied to modeling the Hoe Creek III field test (Stephens, 1981) conducted in the 1970s, in order to evaluate and demonstrate the simulator's basic capabilities, gain experience, and guide future development. Furthermore, it is consistent with our philosophy of incremental, spiral software development, which helps in identifying and resolving potential problems early in the process. The simulation accounts for two coal seams, two injection points, and air and oxygen phases. Approximate extent and shape of cavity growth showed reasonable agreement with interpreted field data. Product gas composition and carbon consumed could not be simultaneously matched for a given set of parameter values due to the rudimentary rubble model currently used, although they can be matched using separate parameter sets. This result is not surprising and confirms plans for a more sophisticated rubble model as our next step, as well as adding geomechanical collapse modeling and higher accuracy cavity gas reactive transport models. The results are very encouraging and demonstrate that our approach is sound.

Nitao, J J; Camp, D W; Buscheck, T A; White, J A; Burton, G C; Wagoner, J L; Chen, M

2011-09-22T23:59:59.000Z

Note: This page contains sample records for the topic "integrated coal-gasification combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

David_and_Herzog.PDF  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

COST OF CARBON CAPTURE COST OF CARBON CAPTURE Jeremy David and Howard Herzog Massachusetts Institute of Technology (MIT), Cambridge, MA, USA ABSTRACT We have conducted a detailed analysis of costs associated with today's technology for CO 2 separation and capture at three types of power plants: integrated coal gasification combined cycles (IGCC), pulverized coal-fired simple cycles (PC), and natural gas-fired combined cycles (NGCC). The analysis was based on studies from the literature that analyzed the economics of capturing CO 2 emitted at power plants. In this paper, we present a composite cost model and perform a sensitivity analysis to identify the cost-drivers for capture. We conclude that with new developments, CO 2 capture and sequestration can become a cost-effective mitigation pathway.

302

Stochastic Modeling for Uncertainty Analysis and Multiobjective Optimization of IGCC System with Single-Stage Coal Gasification  

Science Journals Connector (OSTI)

The work initially focuses on developing a computational fluid dynamics (CFD) model for the single-stage coal gasifier, which is a part of the IGCC system. ... Medium pressure (MP) steam is produced from the heat liberated from this reaction. ...

Yogendra Shastri; Urmila Diwekar

2010-11-22T23:59:59.000Z

303

A life cycle comparison of greenhouse emissions for power generation from coal mining and underground coal gasification  

Science Journals Connector (OSTI)

For the emissions from energy and equipment use of underground coal mining, the data from the office of Energy Efficiency and Renewable Energy’s (EERE) hypothetical eastern U.S. underground coalmine is used (EERE

Zeshan Hyder; Nino S. Ripepi…

2014-05-01T23:59:59.000Z

304

Fabrication of Pd/Pd-Alloy Films by Surfactant Induced Electroless Plating for Hydrogen Separation from Advanced Coal Gasification Processes  

SciTech Connect (OSTI)

Dense Pd, Pd-Cu and Pd-Ag composite membranes on microporous stainless steel substrate (MPSS) were fabricated by a novel electroless plating (EP) process. In the conventional Pd-EP process, the oxidation-reduction reactions between Pd-complex and hydrazine result in an evolution of NH{sub 3} and N{sub 2} gas bubbles. When adhered to the substrate surface and in the pores, these gas bubbles hinder uniform Pd-film deposition which results in dendrite growth leading to poor film formation. This problem was addressed by introducing cationic surfactant in the electroless plating process known as surfactant induced electroless plating (SIEP). The unique features of this innovation provide control of Pd-deposition rate, and Pd-grain size distribution. The surfactant molecules play an important role in the EP process by tailoring grain size and the process of agglomeration by removing tiny gas bubbles through adsorption at the gas-liquid interface. As a result surfactant can tailor a nanocrystalline Pd, Cu and Ag deposition in the film resulting in reduced membrane film thickness. Also, it produces a uniform, agglomerated film structure. The Pd-Cu and Pd-Ag membranes on MPSS support were fabricated by sequential deposition using SIEP method. The pre- and post-annealing characterizations of these membranes (Pd, Pd-Cu and Pd-Ag on MPSS substrate) were carried out by SEM, EDX, XRD, and AFM studies. The SEM images show significant improvement of the membrane surface morphology, in terms of metal grain structures and grain agglomeration compared to the membranes fabricated by conventional EP process. The SEM images and helium gas-tightness studies indicate that dense and thinner films of Pd, Pd-Cu and Pd-Ag membranes can be produced with shorter deposition time using surfactant. H{sub 2} Flux through the membranes fabricated by SIEP shows large improvement compared to those by CEP with comparable permselectivity. Pd-MPSS composite membrane was subjected to test for long term performance and thermal cycling (573 - 723 - 573 K) at 15 psi pressure drop for 1200 hours. Pd membranes showed excellent hydrogen permeability and thermal stability during the operational period. Under thermal cycling (573 K - 873 K - 573 K), Pd-Cu-MPSS membrane was stable and retained hydrogen permeation characteristics for over three months of operation. From this limited study, we conclude that SIEP is viable method for fabrication of defect-free, robust Pd-alloy membranes for high-temperature H{sub 2}-separation applications.

Ilias, Shamsuddin; Kumar, Dhananjay

2012-07-31T23:59:59.000Z

305

Steam–Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture  

Science Journals Connector (OSTI)

These two coals represent the two main types of non-lignite coals currently used in the U.S.: a medium-sulfur eastern bituminous coal and a low-sulfur western sub-bituminous coal. ... At a commercial scale, this would likely mean that there could be a roughly 3-fold decrease in the size of the gasifier compared to the case of dry mixing coal and the regenerated calcium oxide. ...

Nicholas S. Siefert; Dushyant Shekhawat; Shawn Litster; David A. Berry

2013-03-03T23:59:59.000Z

306

HIGH TEMPERATURE REMOVAL OF H{sub 2}S FROM COAL GASIFICATION PROCESS STREAMS USING AN ELECTROCHEMICAL MEMBRANE SYSTEM  

SciTech Connect (OSTI)

A bench scale set-up was constructed to test the cell performance at 600-700 C and 1 atm. The typical fuel stream inlet proportions were 34% CO, 22% CO{sub 2}, 35% H{sub 2}, 8% H{sub 2}O, and 450-2000 ppm H{sub 2}S. The fundamental transport restrictions for sulfur species in an electrochemical cell were examined. Temperature and membrane thickness were varied to examine how these parameters affect the maximum flux of H{sub 2}S removal. It was found that higher temperature allows more sulfide species to enter the electrolyte, thus increasing the sulfide flux across the membrane and raising the maximum flux of H{sub 2}S removal. The results identify sulfide diffusion across the membrane as the rate-limiting step in H{sub 2}S removal. The maximum H{sub 2}S removal flux of 1.1 x 10-6 gmol H{sub 2}S min{sup -1} cm{sup -2} (or 3.5 mA cm{sup -2}) was obtained at 650 C, with a membrane that was 0.9 mm thick, 36% porous, and had an estimated tortuosity of 3.6. Another focus of this thesis was to examine the stability of cathode materials in full cell trials. A major hurdle that remains in process scale-up is cathode selection, as the lifetime of the cell will depend heavily on the lifetime of the cathode material, which is exposed to very sour gas. Materials that showed success in the past (i.e. cobalt sulfides and Y{sub 0.9}Ca{sub 0.1}FeO{sub 3}) were examined but were seen to have limitations in operating environment and temperature. Therefore, other novel metal oxide compounds were studied to find possible candidates for full cell trials. Gd{sub 2}TiMoO{sub 7} and La{sub 0.7}Sr{sub 0.3}VO{sub 3} were the compounds that retained their structure best even when exposed to high H{sub 2}S, CO{sub 2}, and H{sub 2}O concentrations.

Jack Winnick; Meilin Liu

2003-06-01T23:59:59.000Z

307

Development of biological coal gasification (MicGAS Process). Fifteenth quarterly report, [January 1, 1994--March 31, 1994  

SciTech Connect (OSTI)

Maximum methane production was obtained in the experimental vials that contained 0.2% SNTM supplemented with 10 mM sodium citrate and 1% TxL (144 cc), while in the control vials CH{sub 4} production was only 58 cc. The conversion efficiency was 24%. This clearly shows citrate to be an important mediator for the formation of acetate (main precursor for CH{sub 4} formation) in the glyoxylate cycle, on the one hand, and as a sequestering agent, on the other. These results further indicate that citrate can, be successfully used as co-substrate for enhancement of the TxL biogasification process. The results obtained reconfirmed our hypothesis that the metals (such as Fe{sup 3+}, Mn{sup 2+}, Mg{sup 2+}, CO{sup 2+}, Zr{sup 2+}, etc., present in the coal structure) are chelated/sequestered by the addition of citrate. Mass balance calculations show that this increase in CH{sup 4} production is due to the biomethanation of TxL and not because of the chemical conversion of co-substrate(s) to CH{sub 4} (Table 1). The effect of sodium citrate on biomethanation of TXL from the first experiment ``Effect of co-substrate addition No. 1`` was reconfirmed in this experiment. The peak in acetate concentration (1317 ppm) on day 7 was followed by a rapid conversion of this precursor to CH{sub 4} (Figure 16). The VFA data obtained from both experiments (``Effect of co-substrate addition No. 1 and No. 2``) confirms the hypothesis that citrate and methanol can significantly enhance the biomethanation of TxL (Figure 17).

Srivastava, K.C.

1994-04-26T23:59:59.000Z

308

LWA demonstration applications using Illinois coal gasification slag: Phase 2. Technical report, September 1--November 30, 1993  

SciTech Connect (OSTI)

The objectives of this program are to demonstrate the feasibility of producing ultra-lightweight aggregates (ULWA) from solid residues (slag) generated during the gasification of Illinois coals, and to test the products as substitutes for conventional aggregates produced by pyroprocessing of perlite ores. In Phase 1 of this project, Praxis developed a pilotscale production technique and produced a large batch of expanded aggregates from an Illinois coal slag feed. The Phase 2 work focuses on characterization and applications-oriented testing of the expanded slag products as substitutes for conventional ULWAs. Target applications include high-volume uses such as loose fill insulation, insulating concrete, lightweight precast products (blocks), waterproof wallboard, rooftiles, and filtration media. The precast products will be subjected to performance and characterization testing in conjunction with a commercial manufacturer of such products in order to obtain input from a potential user. The production of value-added products from slag will eliminate a solid waste and possibly enhance the overall gasification process economics, especially when the avoided costs of disposal are taken into consideration.

Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States); Steck, P. [Harvey Cement Products, Inc. (United States)

1993-12-31T23:59:59.000Z

309

LWA demonstration applications using Illinois coal gasification slag: Phase II. Technical report, 1 March--31 May 1994  

SciTech Connect (OSTI)

The major objective of this project is to demonstrate the suitability of using ultra-lightweight aggregates (ULWA) produced by thermal expansion of solid residues (slag) generated during the gasification of Illinois coals as substitutes for conventional aggregates, which are typically produced by pyroprocessing of perlite ores. To meet this objective, expanded slag aggregates produced from an Illinois coal slag feed in Phase I will be subjected to characterization and applications-oriented testing. Target applications include the following: aggregates in precast products (blocks and rooftiles); construction aggregates (loose fill insulation and insulating concrete); and other applications as identified from evaluation of expanded slag properties. The production of value-added products from slag is aimed at eliminating a solid waste and possibly enhancing the overall economics of the gasification process, especially when the avoided costs of disposal are taken into consideration.

Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States); Steck, P. [Harvey Cement Products, Inc. (United States)

1994-09-01T23:59:59.000Z

310

Utilization of lightweight materials made from coal gasification slags. Quarterly report, December 1, 1995--February 28, 1996  

SciTech Connect (OSTI)

The project scope consists of collecting a 20-ton sample of slag (primary slag), processing it for chart removal, and subjecting it to pyroprocessing to produce expanded slag aggregates of various size gradations and unit weights, ranging from 12 to 50 lb/fg{sup 3}. A second smaller slag sample will be used for confirmatory testing. The expanded slag aggregates will then be tested for their suitability in manufacturing precast concrete products (e.g., masonry blocks and roof tiles) and insulating concrete, first at the laboratory scale and subsequently in commercial manufacturing plants. These products will be evaluated using ASTM and industry test methods. Technical data generated during production and testing of the products will be used to assess the overall technical viability of expanded slag production. In addition, a market assessment will be made based on an evaluation of both the expanded slag aggregates and the final products, and market prices for these products will be established in order to assess the economic viability of these utilization technologies. Relevant cost data for physical and pyroprocessing of slag to produce expanded slag aggregates will be gathered for comparison with (1) the management and disposal costs for slag or similar wastes and (2) production costs for conventional materials which the slag aggregates would replace. This will form the basis for an overall economic evaluation of expanded slag utilization technologies.

NONE

1996-12-31T23:59:59.000Z

311

LWA demonstration applications using Illinois coal gasification slag. Phase 2, [Quarterly] technical report, December 1, 1993--February 28, 1994  

SciTech Connect (OSTI)

The objectives of this program are to demonstrate the feasibility of producing ultra-lightweight aggregates (ULWA) , from solid residues (slag) generated during the gasification of Illinois coals, and to test the products as substitutes for conventional aggregates produced by pyroprocessing of perlite ores. During this reporting period, major accomplishments were the selection of mix designs and test methods for preparation of specimens of expanded slag for testing in precast applications (Task 3) and construction aggregate applications (Task 4). In addition, characterization data (Task 1) were,analyzed, and evaluation of the expanded slag products as substitutes for conventional ULWAs (Task 2) was completed. Potential applications that were identified are: (1) Loose fill insulation; Insulating concrete (roof, floor, and walls); Precast products (blocks and rooftiles). Experimental work during the project is focused on these applications.

Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States); Steck, P. [Harvey Cement Products, Inc. (United States)

1994-06-01T23:59:59.000Z

312

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Emissions Emissions On This Page Concerns about GHG... Growth of carbon... Sulfur dioxide emissions... Nitrogen oxide emissions... Concerns about GHG legislation affect the long-term outlook for coal In the Reference case, the cost of capital for investments in GHG-intensive technologies-including conventional coal-fired power plants, CTL plants, CBTL plants, and integrated coal gasification and combined cycle plants without CCS-is increased by 3 percentage points to reflect the behavior of utilities, other energy companies, and regulators concerning the possible enactment of GHG legislation which could mandate that owners purchase allowances, invest in CCS, or invest in other projects to offset their emissions in the future. A No GHG Concern case, in which the additional 3 percentage points for GHG-intensive technologies is removed,

313

NETL: LabNotes - March 2011  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

March 2011 March 2011 Push for Higher Efficiency Turbines Drives Innovation The National Energy Technology Laboratory (NETL) is developing technology to make coal-burning power plants more efficient and cleaner. Higher efficiencies will mean that less coal is burned, and thus, less greenhouse gases are generated. However, in order to reduce greenhouse gas emissions substantially, the power plants must also be designed to capture, rather than emit, CO2. To meet these challenges, research is underway on coal gasification, ways to separate the CO2 from a mixed gas stream (either before or after combustion) so it can be geologically sequestered, oxy-fuel pulverized coal (PC) combustion, and advanced turbines for integrated gasification combined cycle (IGCC) power plants.

314

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

31 - 23640 of 31,917 results. 31 - 23640 of 31,917 results. Page EIS-0382: Mesaba Energy Project Itasca County, Minnesota NOTE: All DOE funding has been expended. This EIS evalutes the environmental impacts of a proposal to construct and demonstrate a commercial utility-scale next-generation Integrated Gasification Combined Cycle (IGCC) electric power generating facility having a capacity of 606 MWe (net). It will incorporate over 1,600 design and operational lessons learned from the successful but smaller-scale 262 MWe (net) Wabash River Coal Gasification Repowering Project, located in Terre Haute, Indiana. http://energy.gov/nepa/eis-0382-mesaba-energy-project-itasca-county-minnesota Page EIS-0435: Modification of the Groton Generation Station Interconnection Agreement, Brown County, South Dakota

315

Warm Gas Cleanup  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Warm Gas Cleanup Warm Gas Cleanup NETL Office of Research and Development Project Number: FWP-2012.03.03 Task 5 Project Description The Environmental Protection Agency (EPA) has established strict regulations for the trace contaminant emissions from integrated gasification combined cycle (IGCC) systems. The Department of Energy (DOE) performance goals for trace contaminant removal were selected to meet or exceed EPA's standard limits for contaminants, as well as to avoid poisoning of: the catalysts utilized in making liquids from fuel gas the electrodes in fuel cells selective catalytic reduction (SCR) catalysts The objective of the NETL's ORD Warm Gas Cleanup project is to assist in achieving both DOE and EPA targets for trace contaminant capture from coal gasification, while preserving the high thermal efficiency of the IGCC system. To achieve this, both lab and pilot-scale research is underway to develop sorbents capable of removing the following contaminants from high temperature syngas (up to 550°F):

316

U.S. Energy Information Administration (EIA) - Topics  

Gasoline and Diesel Fuel Update (EIA)

Emissions AEO 2011 Emissions from energy use Emissions AEO 2011 Emissions from energy use Mkt trends Market Trends In the AEO2011 Reference case, the cost of capital for investments in GHG-intensive technologies-including conventional coal-fired power plants, CTL plants, CBTL plants, and integrated coal gasification and combined cycle (IGCC) plants without carbon capture and storage (CCS)-is increased by 3 percentage points to reflect the behavior of utilities, other energy companies, and regulators concerning the possible enactment of GHG legislation which could mandate that owners purchase allowances, invest in CCS, or invest in other projects to offset their emissions in the future. A No GHG Concern case, in which the additional 3 percentage points for GHG-intensive technologies is removed, is used to evaluate the impact

317

DOE Science Showcase - Energy Plants of the Future | OSTI, US Dept of  

Office of Scientific and Technical Information (OSTI)

DOE Science Showcase - Energy Plants of the Future DOE Science Showcase - Energy Plants of the Future Advanced Integrated Gasification Combined Cycle Power Plants Advanced IGCC is a flexible technology for generating low-cost electricity while meeting all future environment requirements Secretary Chu Announces $14 Million for Six New Projects to Advance IGCC Technology DOE Press Release DOE-Sponsored IGCC Project in Texas Takes Important Step Forward, Fossil Energy Techline Gasification Technology R&D How Coal Gasification Power Plants Work 2010 Worldwide Gasification Database Follow NETL Gasification IGCC Research in DOE Databases Energy Citations Database Information Bridge Science.gov WorldWideScience.org Visit the Science Showcase homepage. OSTI Homepage Mobile Gallery Subscribe to RSS OSTI Blog Get Widgets Get Alert Services

318

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

801 - 17810 of 26,764 results. 801 - 17810 of 26,764 results. Page EIS-0382: Mesaba Energy Project Itasca County, Minnesota NOTE: All DOE funding has been expended. This EIS evalutes the environmental impacts of a proposal to construct and demonstrate a commercial utility-scale next-generation Integrated Gasification Combined Cycle (IGCC) electric power generating facility having a capacity of 606 MWe (net). It will incorporate over 1,600 design and operational lessons learned from the successful but smaller-scale 262 MWe (net) Wabash River Coal Gasification Repowering Project, located in Terre Haute, Indiana. http://energy.gov/nepa/eis-0382-mesaba-energy-project-itasca-county-minnesota Page EIS-0435: Modification of the Groton Generation Station Interconnection Agreement, Brown County, South Dakota

319

EIS-0382: Mesaba Energy Project Itasca County, Minnesota | Department of  

Broader source: Energy.gov (indexed) [DOE]

EIS-0382: Mesaba Energy Project Itasca County, Minnesota EIS-0382: Mesaba Energy Project Itasca County, Minnesota EIS-0382: Mesaba Energy Project Itasca County, Minnesota Summary NOTE: All DOE funding has been expended. This EIS evaluates the environmental impacts of a proposal to construct and demonstrate a commercial utility-scale next-generation Integrated Gasification Combined Cycle (IGCC) electric power generating facility having a capacity of 606 MWe (net). It will incorporate over 1,600 design and operational lessons learned from the successful but smaller-scale 262 MWe (net) Wabash River Coal Gasification Repowering Project, located in Terre Haute, Indiana. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download November 20, 2009 EIS-0382: Final Environmental Impact Statement

320

NETL: Gasifipedia  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasifier: Commercial Gasifiers: Entrained Flow Gasifiers Gasifier: Commercial Gasifiers: Entrained Flow Gasifiers CB&I E-Gas(tm) Gasifiers Originally owned by Global Energy, Destec and Dow, later by ConocoPhillips, and currently owned by CB&I, E-Gas(tm) coal gasifier technology was first demonstrated at the Louisiana Gasification Technology Inc. (LGTI) integrated gasification combined cycle (IGCC) plant (also known as the Dow Syngas Project), which operated from 1987 to 1995. The technology is currently incorporated in the Wabash River Coal Gasification Repowering Project, funded under the DOE Clean Coal Demonstration Program in the 1990s. The Wabash IGCC plant has been in operation since 1995. Diagram of the E-Gas Gasifier source: ConocoPhillips Operation The E-Gas(tm) coal gasifier is a pressurized, upflow, entrained slagging

Note: This page contains sample records for the topic "integrated coal-gasification combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

MULTIOBJECTIVE OPTIMIZATION POWER GENERATION SYSTEMS INVOLVING CHEMICAL LOOPING COMBUSTION  

SciTech Connect (OSTI)

Integrated Gasification Combined Cycle (IGCC) system using coal gasification is an important approach for future energy options. This work focuses on understading the system operation and optimizing it in the presence of uncertain operating conditions using ASPEN Plus and CAPE-OPEN compliant stochastic simulation and multiobjective optimization capabilities developed by Vishwamitra Research Institute. The feasible operating surface for the IGCC system is generated and deterministic multiobjective optimization is performed. Since the feasible operating space is highly non-convex, heuristics based techniques that do not require gradient information are used to generate the Pareto surface. Accurate CFD models are simultaneously developed for the gasifier and chemical looping combustion system to characterize and quantify the process uncertainty in the ASPEN model.

Juan M. Salazar; Urmila M. Diwekar; Stephen E. Zitney

2009-01-01T23:59:59.000Z

322

Tampa Electric Company, Polk Power Station Unit No. 1, preliminary public design report  

SciTech Connect (OSTI)

This preliminary Public Design Report (PDR) provides design information about Tampa Electric Company`s Polk Power Station Unit No. 1, which will demonstrate in a commercial 250 MW unit the benefits of the integration of oxygen-blown, entrained-flow coal gasification with advanced combined cycle technology. This project is partially funded by the US Department of Energy (DOE) under Round III of its Clean Coal Technology (CCT) Program under the provisions of Cooperative Agreement between DOE and Tampa Electric Company, novated on March 5,1992. The project is highlighted by the inclusion of a new hot gas cleanup system. DOE`s project management is based at its Morgantown Energy Technology Center (METC) in West Virginia. This report is preliminary, and the information contained herein is subject to revision. Definitive information will be available in the final PDR, which will be published at the completion of detailed engineering.

NONE

1994-06-01T23:59:59.000Z

323

Mesaba next-generation IGCC plant  

SciTech Connect (OSTI)

Through a US Department of Energy (DOE) cooperative agreement awarded in June 2006, MEP-I LLC plans to demonstrate a next generation integrated gasification-combined cycle (IGCC) electric power generating plant, the Mesaba Energy Project. The 606-MWe plant (the first of two similarly sized plants envisioned by project sponsors) will feature next-generation ConocoPhillips E-Gas{trademark} technology first tested on the DOE-funded Wabash River Coal Gasification Repowering project. Mesaba will benefit from recommendations of an industry panel applying the Value Improving Practices process to Wabash cost and performance results. The project will be twice the size of Wabash, while demonstrating better efficient, reliability and pollutant control. The $2.16 billion project ($36 million federal cost share) will be located in the Iron Range region north of Duluth, Minnesota. Mesaba is one of four projects selected under Round II of the Clean Coal Power Initiative. 1 fig.

NONE

2006-01-01T23:59:59.000Z

324

THE COST OF CARBON CAPTURE Jeremy David and Howard Herzog  

E-Print Network [OSTI]

THE COST OF CARBON CAPTURE Jeremy David and Howard Herzog Massachusetts Institute of Technology's technology for CO2 separation and capture at three types of power plants: integrated coal gasification (NGCC). The analysis was based on studies from the literature that analyzed the economics of capturing

325

Resource characterization and residuals remediation, Task 1.0: Air quality assessment and control, Task 2.0: Advanced power systems, Task 3.0: Advanced fuel forms and coproducts, Task 4.0  

SciTech Connect (OSTI)

This report addresses three subtasks related to the Resource Characterization and Residuals Remediation program: (1) sulfur forms in coal and their thermal transformations, (2) data resource evaluation and integration using GIS (Geographic Information Systems), and (3) supplementary research related to the Rocky Mountain 1 (RM1) UCG (Underground Coal Gasification) test program.

Hawthorne, S.B.; Timpe, R.C.; Hartman, J.H. [and others

1994-02-01T23:59:59.000Z

326

Combination & Integration of DPF-SCR Aftertreatment  

Broader source: Energy.gov [DOE]

Work focused on optimizing SCR washcoat within the DPF substrate, and maximizing the capacity for passive soot oxidation exhibited in the system

327

Comparison of Preanode and Postanode Carbon Dioxide Separation for IGFC Systems  

SciTech Connect (OSTI)

This paper examines the arrangement of a solid oxide fuel cell (SOFC) within a coal gasification cycle, this combination generally being called an integrated gasification fuel cell cycle. This work relies on a previous study performed by the National Energy Technology Laboratory (NETL) that details thermodynamic simulations of integrated gasification combined cycle (IGCC) systems and considers various gasifier types and includes cases for 90% CO2 capture (2007, “Cost and Performance Baseline for Fossil Energy Plants, Vol. 1: Bituminous Coal and Natural Gas to Electricity,” National Energy Technology Laboratory Report No. DOE/NETL-2007/1281). All systems in this study assume a Conoco Philips gasifier and cold-gas clean up conditions for the coal gasification system (Cases 3 and 4 in the NETL IGCC report). Four system arrangements, cases, are examined. Cases 1 and 2 remove the CO2 after the SOFC anode. Case 3 assumes steam addition, a water-gas-shift (WGS) catalyst, and a Selexol process to remove the CO2 in the gas cleanup section, sending a hydrogen-rich gas to the fuel cell anode. Case 4 assumes Selexol in the cold-gas cleanup section as in Case 3; however, there is no steam addition, and the WGS takes places in the SOFC and after the anode. Results demonstrate significant efficiency advantages compared with IGCC with CO2 capture. The hydrogen-rich case (Case 3) has better net electric efficiency compared with typical postanode CO2 capture cases (Cases 1 and 2), with a simpler arrangement but at a lower SOFC power density, or a lower efficiency at the same power density. Case 4 gives an efficiency similar to Case 3 but also at a lower SOFC power density. Carbon deposition concerns are also discussed

Eric Liese

2010-01-01T23:59:59.000Z

328

DIFFUSION OF A CHEMICAL SPECIES THROUGH A VISCOUS BOUNDARY LAYER  

E-Print Network [OSTI]

2.3 Evaluation of a Coal Gasification Atmosphere. . -iv-a highly cor- rosive coal gasification mixture. It is shown2.3 Evaluation of a Coal Gasification Atmosphere The purpose

Keller, J.

2011-01-01T23:59:59.000Z

329

EROSION PREDICTION NEAR A STAGNATION POINT RESULTING FROM ENVIRONMENTAL SOLID PARTICLES  

E-Print Network [OSTI]

opera- tion of coal gasification, fired turbine facilities.flow typical of a coal gasification system is analyzed.is typical of coal gasification systems. XBL 7712-6550 U ;)

Laitone, J.

2011-01-01T23:59:59.000Z

330

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network [OSTI]

Al MUilE 16 MMTIVl COAL GASIFICATION - HIGH STU 1250 MMCF/Olfacilities, particularly coal gasification plants,coal-fired5 5T/yr ore) Coal Gasification (Hi BTU (80Xl0 9 ft 3/yr)

Authors, Various

2010-01-01T23:59:59.000Z

331

Energy Conservation  

Science Journals Connector (OSTI)

...systems, such as a system conibining a gas turbine with electricity, could significantly...needed traffic flows, upheavals in life styles, damage to industries de-pendent...combination of coal gasification with a gas turbine-steam turbine power plant, is...

G. A. Lincoln

1973-04-13T23:59:59.000Z

332

Review of China's Low-Carbon City Initiative and Developments in the Coal Industry  

E-Print Network [OSTI]

2010. “Development of Coal Gasification & Polygeneration insystem based on coal- gasification. ” Energy for Sustainablethrough oxygen- blown gasification to produce a syngas

Fridley, David

2014-01-01T23:59:59.000Z

333

Climate Change, Adaptation, and Development  

E-Print Network [OSTI]

climate change is coal gasification, which can make theworld leaders in coal gasification tech- nology, has beenexperimenting with "in situ" gasification, where the coal is

Cole, Daniel H.

2008-01-01T23:59:59.000Z

334

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network [OSTI]

application (coal gasification, coal combustion followed byversions of advanced gasification processes show promise ofFixed-Bed Low-Btu Coal Gasification Systems for Retrofitting

Ferrell, G.C.

2010-01-01T23:59:59.000Z

335

THE EFFECT OF COAL CHAR ON THE CORROSION OF 304 SS  

E-Print Network [OSTI]

of Materials for Coal Gasification Applications". of Highcommercially proven coal gasification processes exist. Theseprocesses. more efficient gasification Much of this work is

Foerster, Thomas Friedrich Wilhelm

2011-01-01T23:59:59.000Z

336

DOE - Office of Legacy Management -- Hoe Creek Underground Coal...  

Office of Legacy Management (LM)

Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location:...

337

Distributed Energy Systems in California's Future: A Preliminary Report Volume 2  

E-Print Network [OSTI]

WASTE BIOMASS FARM GEOTHERMAL HEAT GEOTHERMAL ELECTRIC COAL CENT. ELECTRIC COAL FLUID BED COAL GASIFICATION

Balderston, F.

2010-01-01T23:59:59.000Z

338

SYSTEMS OPTIMIZATION LABORATORY DEPARTMENT OF OPERATIONS RESEARCH  

E-Print Network [OSTI]

Liquefaction Coal Gasification Thermal Electric Power Generation Oil Shale Conversion Fuel Refining Coal Slurry

Stanford University

339

Transportation and Stationary Power Integration Workshop | Department...  

Broader source: Energy.gov (indexed) [DOE]

and other groups met to discuss the topic of integrating stationary fuel cell combined heat and power (CHP) systems and hydrogen production infrastructure for vehicles. The...

340

Biomass Gasification Combined Cycle  

SciTech Connect (OSTI)

Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

Judith A. Kieffer

2000-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated coal-gasification combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Microsoft PowerPoint - 100727 UTC Power final.ppt [Read-Only] [Compatibility Mode]  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Review Program Review 11 th Annual SECA Workshop Pittsburgh, PA 27 July 2010 27 July 2010 David Brengel - Project Manager 1 SECA Objectives * Reduce SOFC-based electrical power generation system cost to ≤ $400/kWe (2002 dollars) for a >100MW Integrated Gasification ≤ $400/kWe (2002 dollars) for a >100MW Integrated Gasification Fuel Cell (IGFC) power plant, exclusive of coal gasification and CO 2 separation subsystem costs * Achieve an overall IGFC power plant efficiency of ≥50%, from coal (HHV) to AC power (inclusive of coal gasification and carbon separation processes) * Reduce the release of CO 2 to the environment in an IGFC power plant to ≤ 10% of the carbon in the coal feedstock * Increase SOFC stack reliability to achieve a design life of >40,000 hours

342

Novel Sorption Enhanced Reaction Process for Simultaneous Production of CO2 and H2 from Synthesis Gas Produced by Coal Gasification  

SciTech Connect (OSTI)

The goal of this project is to evaluate the extensive feasibility of a novel concept called Thermal Swing Sorption Enhanced Reaction (TSSER) process to simultaneously produce H{sub 2} and CO{sub 2} as a single unit operation in a sorber-reactor. The successful demonstration of the potential feasibility of the TSSER concept implies that it is worth pursuing further development of the idea. This can be done by more extensive evaluation of the basic sorptive properties of the CO{sub 2} chemisorbents at realistic high pressures and by continuing the experimental and theoretical study of the TSSER process. This will allow us to substantiate the assumptions made during the preliminary design and evaluation of the process and firm up the initial conclusions. The task performed under this project consists of (i) retrofitting an existing single column sorption apparatus for measurement of high pressure CO{sub 2} sorption characteristics, (ii) measurement of high pressure CO{sub 2} chemisorption equilibria, kinetics and sorption-desorption column dynamic characteristics under the conditions of thermal swing operation of the TSSER process, (iii) experimental evaluation of the individual steps of the TSSER process (iv) development of extended mathematical model for simulating cyclic continuous operation of TSSER to aid in process scale-up and for guiding future work, (v) simulate and test SER concept using realistic syngas composition, (vi) extensive demonstration of the thermal stability of sorbents using a TGA apparatus, (vii) investigation of the surfaces of the adsorbents and adsorbed CO{sub 2} ,and (viii) test the effects of sulfur compounds found in syngas on the CO{sub 2} sorbents.

Shivaji Sircar; Hugo S. Caram; Kwangkook Jeong; Michael G. Beaver; Fan Ni; Agbor Tabi Makebe

2010-06-04T23:59:59.000Z

343

Process development studies in coal gasification. Volume II. Reaction of aromatic compounds with steam. Final report, August 1, 1979-November 30, 1983  

SciTech Connect (OSTI)

The objective of this research has been to explore and define the potential of steam reforming to produce light gases from coal-derived liquids. This was achieved through a study of the reaction of a model aromatic compound and of a coal-derived liquid with steam over an alumina supported nickel catalyst. The reaction of steam with benzene and SRC-II liquids over an alumina supported nickel catalyst has been investigated in a plug flow reactor. The primary process variables investigated were reactor pressure and temperature, contact time, and steam/carbon ratio. A proposed reaction network was also developed to explain the data obtained in this study. The effect of process variables on the conversion and product distribution when steam reforming the SRC-II coal-derived liquid was similar to that observed for benzene-steam reforming. The results indicated that a high yield of methane is favored at high pressures, low temperatures, and low steam-to-carbon ratios; and that a high yield of hydrogen is favored at low pressures and high steam-to-carbon ratios. The empirical rate equation for the benzene steam reforming reaction at 973 K, 300 psig, and a steam/carbon ratio of approximately 3 was r/sub C/sub 6/H/sub 6// = 1.92 x 10/sup -3/ P/sub C/sub 6/H/sub 6//. The activation energy was 88 KJ/mol, or 21 kcal/mol in the temperature range 748-973 K. A correlation was developed to predict product yields and hydrocarbon conversion over the range of process variables investigated. A second correlation was developed to predict the yields and conversion beyond the range of variables investigated. A reaction network for aromatic steam reforming was proposed. 87 refs., 47 figs., 3 tabs.

Oblad, A.G.

1984-12-12T23:59:59.000Z

344

Synthesis Gas Production with an Adjustable H2/CO Ratio through the Coal Gasification Process: Effects of Coal Ranks And Methane Addition  

Science Journals Connector (OSTI)

With the decline of oil reserves and production, the gas-to-liquids (GTL) part of Fischer–Tropsch (F-T) synthesis technology has become increasing important. ... The Department of Energy (DOE) Energy Information Administration (EIA) estimates that over 50% of the coal reserve base in the United States (U.S.) is bituminous coal, about 30% is sub-bituminous, and 9% is lignite. ...

Yan Cao; Zhengyang Gao; Jing Jin; Hongchang Zhou; Marten Cohron; Houying Zhao; Hongying Liu; Weiping Pan

2008-03-25T23:59:59.000Z

345

Utilization of Illinois coal gasification slags for production of ultra-lightweight aggregates. Final technical report, September 1, 1992--August 31, 1993  

SciTech Connect (OSTI)

This research was aimed at testing and developing the expansion potential of solid residues (slag) from gasification of Illinois coals to manufacture ultra-lightweight aggregates (ULWA). Conventional ULWAs are manufactured by pyroprocessing perlite or vermiculite ores and have unit weights in the 5--12 lb/ ft{sup 3} range. These materials sell for approximately $200/ton ($1.00/ft{sup 3}) and have numerous applications. The incentive for this effort was based on previous experimental results in which lightweight aggregates (LWA) with unit weights of 25--55 lb/ft{sup 3} were produced from Illinois slag using a direct-fired furnace. In this program, bench-scale expansion tests conducted with two Illinois coal slags resulted in product unit weights of 12 and 18.5 lb/ ft{sup 3}, thus confirming the feasibility of producing ULWA from Illinois slags. During initial pilot vertical shaft furnace test runs, two Illinois slags were expanded to generate products with unit weights of 12.5--26.5 and 20--52 lb/ ft{sup 3}. Further attempts to lower the product unit weights resulted in fusion of the slag. This problem could be overcome by methods including surface treatment of the slag, blending the slag with other materials, or utilization of indirect firing methods. To lower the product unit weights, an indirect-fired horizontal shaft furnace was used and products with unit weights of 12.4--52.0 lb/ft{sup 3} were generated, thus indicating that this method can be used to produce a wide range of expanded products. A large batch of expanded slag was produced using an 18-in. diameter x 12-ft long indirect-fired pilot furnace. A sample from this batch was characterized. Specimens of insulating concrete made from expanded slag had a unit weight 43.3 lb/ft{sup 3} and thermal conductivity of 1.34 Btu-in./h/ft{sup 2}/{degrees}F. This compares well with a value of 1. 2 Btu-in./h/ft{sup 2}/{degrees}F for insulating concrete of a similar weight made from perlite, as per ASTM C 332-82.

Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States); Zimmerle, T. [Silbrico Corp. (United States)

1993-12-31T23:59:59.000Z

346

Utilization of Illinois coal gasification slags for production of ultra-lightweight aggregates. [Quarterly] technical report, March 1--May 31, 1993  

SciTech Connect (OSTI)

This research is aimed at testing and developing the expansion potential of gasification solid residues (slag) to manufacture ultra-lightweight aggregates (ULWA). Conventional ULWAs are manufactured by pyroprocessing of perlite or vermiculite ores and have unit weights in the range of 5--15 lb/ ft3. These materials are sold for approximately $200/ton (or $1.00/ft3) and have numerous applications including loose fill insulation, insulating concrete, precast products, filtration media, and agricultural applications. In a previous project, Praxis Engineers demonstrated that lightweight aggregates (LWA) with unit weights of 25--55 lb/ ft3 can be produced from Illinois coal slags and used as substitutes for conventional LWAs. In this program, tests are being undertaken in a pilot-scale vertical shaft furnace to identify operating conditions for the expansion of Illinois slags such that the product can be substituted for ULWA. Upon completion of testing, a large batch of expanded slag will be produced for evaluation in various applications, both in this phase and in subsequent Phase II testing. During the initial pilot plant runs using two Illinois slags, expanded products with unit weights of 12.5--26.5 and 20--52 lb/ ft3, respectively, were produced. Efforts are under way to generate products with lower unit weights.

Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States); Zimmerle, T. [Silbrico Corp. (United States)

1993-09-01T23:59:59.000Z

347

DOE Hydrogen Analysis Repository: Biomass Integrated Gasification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Integrated Gasification Combined-Cycle Power Systems Biomass Integrated Gasification Combined-Cycle Power Systems Project Summary Full Title: Cost and Performance Analysis of Biomass-Based Integrated Gasification Combined-Cycle (BIGCC) Power Systems Project ID: 106 Principal Investigator: Margaret Mann Brief Description: This project examines the cost and performance potential of three biomass-based integrated gasification combined cycle (IGCC) systems--high-pressure air blown, low-pressure air blown, and low-pressure indirectly heated. Purpose Examine the cost and performance potential of three biomass-based integrated gasification combined cycle (IGCC) systems - a high pressure air-blown, a low pressure indirectly heated, and a low pressure air-blown. Performer Principal Investigator: Margaret Mann

348

New and Underutilized Technology: Integrated Daylighting Systems |  

Broader source: Energy.gov (indexed) [DOE]

Integrated Daylighting Systems Integrated Daylighting Systems New and Underutilized Technology: Integrated Daylighting Systems October 4, 2013 - 4:56pm Addthis The following information outlines key deployment considerations for integrated daylighting systems within the Federal sector. Benefits Integrated daylighting systems can be combined with electronic dimmable fluorescent ballasts, photo sensors, and occupancy sensors where appropriate. Network components, workstation controls, and building management options can also be integrated to provide significant savings on applied systems. Application Integrated daylighting systems are applicable in perimeter and interior spaces with daylight exposure via windows and skylights. Key Factors for Deployment Acceptable levels of daylight are required and must be factored into

349

TABLE OF CONTENTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Turbines The Gas Turbine Handbook The Gas Turbine Handbook TABLE OF CONTENTS Acknowledgements Updated Author Contact Information Introduction - Rich Dennis, Turbines Technology Manager 1.1 Simple and Combined Cycles - Claire Soares 1.1-1 Introduction 1.1-2 Applications 1.1-3 Applications versatility 1.1-4 The History of the Gas Turbine 1.1-5 Gas Turbine, Major Components, Modules, and systems 1.1-6 Design development with Gas Turbines 1.1-7 Gas Turbine Performance 1.1-8 Combined Cycles 1.1-9 Notes 1.2 Integrated Coal Gasification Combined Cycle (IGCC) - Massod Ramezan and Gary Stiegel 1.2-1 Introduction 1.2-2 The Gasification Process 1.2-3 IGCC Systems 1.2-4 Gasifier Improvements 1.2-5 Gas Separation Improvements 1.2-6 Conclusions 1.2-7 Notes 1.2.1 Different Types of Gasifiers and Their Integration with Gas Turbines - Jeffrey Phillips

350

The Cascaded Humidified Advanced Turbine (CHAT)  

SciTech Connect (OSTI)

This paper introduces the Cascaded Humidified Advanced Turbine (CHAT) plant, a gas turbine based power generation plant utilizing intercooling, reheat, and humidification. It is based upon the integration of an existing heavy duty gas turbine with an additional shaft comprising industrial compressors and high pressure expander. CHAT capitalizes on the latest proven gas turbine technology, which, combined with a sophisticated thermal cycle configuration, results in substantial improvement in gas turbine efficiency, compared to a simple cycle, while still maintaining typical advantages and merits of a combustion turbine plant. Built with a commercial combustion turbine and available industrial compressors and expanders, the CHAT plant does not require extensive product development and testing. As a result, the CHAT power plant can be offered with specific capital costs up to 20 percent lower than the combined cycle plant, and with competing efficiency. Compared to a combined cycle plant, the CHAT plant offers lower emissions (due to air humidification) and other significant operating advantages with regard to start-up time and costs, better efficiency at part load, lower power degradation at higher ambient temperatures, and simpler operations and maintenance due to elimination of the complexities and costs associated with steam production. The CHAT plant also integrates very effectively with coal gasification and particularly well with the water quench design. This feature has been discussed in previous publications.

Nakhamkin, M.; Swensen, E.C. [Energy Storage and Power Consultants, Inc., Mountainside, NJ (United States); Wilson, J.M.; Gaul, G. [Westinghouse Electric Corp., Orlando, FL (United States); Polsky, M. [Polsky Energy Corp., Northbrook, IL (United States)

1996-07-01T23:59:59.000Z

351

Development of an Entrained Flow Gasifier Model for Process Optimization Study  

Science Journals Connector (OSTI)

Coal gasification is a versatile process to convert a solid fuel in syngas, which can be further converted and separated in hydrogen, which is a valuable and environmentally acceptable energy carrier. ... (5) The gasification reactions occur in the top section where pulverized dry coal is fed through a burner along with substoichiometric oxygen (from an air separation unit). ... The PSA purge gas is compressed and burned in a conventional gas turbine combined cycle, generating co-product electricity. ...

Enrico Biagini; Alessio Bardi; Gabriele Pannocchia; Leonardo Tognotti

2009-09-10T23:59:59.000Z

352

The combined cycle  

Science Journals Connector (OSTI)

Any combination of at least two cyclic processes converting thermal energy (‘heat’) to work forms a combined cycle. In principle, the potential number of ... number of options reduces to a variety of cycles consi...

R. U. Pitt

1995-01-01T23:59:59.000Z

353

Insolation integrator  

DOE Patents [OSTI]

An electric signal representative of the rate of insolation is integrated to determine if it is adequate for operation of a solar energy collection system.

Dougherty, John J. (Norristown, PA); Rudge, George T. (Lansdale, PA)

1980-01-01T23:59:59.000Z

354

E-Print Network 3.0 - adaptive gain integrating Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is based on a hybrid combination of gain scheduling, B- spline... combination of gain scheduling, B-spline approximation, variable structure control and integral control... the...

355

Modeling the Performance, Emissions, and Cost of an Entrained-Flow Gasification Combined Cycle System Using  

E-Print Network [OSTI]

1 Modeling the Performance, Emissions, and Cost of an Entrained-Flow Gasification Combined Cycle-based Integrated Gasification Combined Cycle (IGCC) system using ASPEN. ASPEN is a steady-state chemical process-flow Integrated Gasification Combined Cycle (IGCC) system. This study aims at developing a base case analysis

Frey, H. Christopher

356

Combined Heat and Power  

Office of Environmental Management (EM)

energy costs and 31 emissions while also providing more resilient and reliable electric power and thermal energy 1 . CHP 32 systems combine the production of heat (for both...

357

Combined Heat & Power  

Broader source: Energy.gov (indexed) [DOE]

available today." -American Council for an Energy-Efficient Economy What is Combined Heat & Power (CHP)? Federal Utility Partnership Working Group May 7 - 8, 2014 Virginia...

358

Systems Integration  

Broader source: Energy.gov [DOE]

Through the SunShot Initiative, the U.S. Department of Energy (DOE) supports the development of innovative, cost-effective solutions that allow increasing amounts of solar energy to integrate...

359

Integration elements  

Science Journals Connector (OSTI)

Market-based integration is simple: Do whatever you want, the rest is up to the market. This model of the individual and its relation to others best suits the logic of the consumer society ?self-orientation an...

Dr. Eric Dieth

2011-01-01T23:59:59.000Z

360

Procurement Integrity  

Broader source: Energy.gov (indexed) [DOE]

employment with certain bidders or offerors. This chapter is intended to act as a primer for all DOE employees on issues related to procurement integrity. As such, not all...

Note: This page contains sample records for the topic "integrated coal-gasification combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution  

Buildings Energy Data Book [EERE]

7 7 Characteristics of New and Stock Generating Capacities, by Plant Type Total Capital Costs Size Overnight Costs (2) of Typical New Plant New Plant Type (MW) (2010 $/kW) ($2010 million) Scrubbed Coal 1300 2809 3652 Integrated Coal-Gasification Combined Cycle (IGCC) 1200 3182 3818 IGCC w/Carbon Sequestration 520 5287 2749 Conv. Gas/Oil Combined Cycle 540 967 522 Adv. Gas/Oil Combined Cycle 400 991 396 Conv. Combustion Turbine 85 961 82 Adv. Combustion Turbine 210 658 138 Fuel Cell 10 6752 68 Advanced Nuclear 2236 5275 11795 Municipal Solid Waste 50 8237 412 Conventional Hydropower (3) 500 2221 1111 Wind 100 2409 241 Stock Plant Type 2010 2015 2020 2025 2030 2035 Fossil Fuel Steam Heat Rate (Btu/kWh) Nuclear Energy Heat Rate (Btu/kWh) Note(s): Source(s): 1) Plant use of electricity is included in heat rate calculations; however, transmission and distribution losses of the electric grid are excluded.

362

An analysis of cost effective incentives for initial commercial deployment of advanced clean coal technologies  

SciTech Connect (OSTI)

This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologies mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.

Spencer, D.F. [SIMTECHE, Half Moon Bay, CA (United States)

1997-12-31T23:59:59.000Z

363

Using and Measuring the Combined Heat and Power Advantage  

E-Print Network [OSTI]

Combined Heat and Power (CHP), also known as cogeneration, refers to the integration of thermal energy with power generation. CHP is a powerful energy conservation measure that has been identified as an important greenhouse gas reduction measure...

John, T.

2011-01-01T23:59:59.000Z

364

NREL: Energy Systems Integration - Integrated Deployment Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Deployment Workshop Integrated Deployment Workshop The Energy Systems Integration Facility workshop, Integrated Deployment, was held August 21 - 23, 2012 at the National Renewable Energy Laboratory in Golden, Colorado. Each day of the workshop, which included a tour of the Energy Systems Integration Facility, focused on a different topic: Day 1: Utility-Scale Renewable Integration Day 2: Distribution-Level Integration Day 3: Isolated and Islanded Grid Systems The agenda and presentations from the workshop are below. Agenda Energy Systems Integration Facility Overview ESIF Technology Partnerships Integrated Deployment Model Integrated Deployment and the Energy Systems Integration Facility: Workshop Proceedings Printable Version Energy Systems Integration Home Research & Development

365

Grand Challenges of Enterprise Integration  

SciTech Connect (OSTI)

Enterprise Integration connects and combines people, processes, systems, and technologies to ensure that the right people and the right processes have the right information and the right resources at the right time. A consensus roadmap for Technologies for Enterprise Integration was created as part of an industry/government/academia partnership in the Integrated Manufacturing Technology Initiative (IMTI). Two of the grand challenges identified by the roadmapping effort will be addressed here--Customer Responsive Enterprises and Totally Connected Enterprises. Each of these challenges is briefly discussed as to the current state of industry and the future vision as developed in the roadmap.

Brosey, W.D; Neal, R.E.; Marks, D.

2001-04-01T23:59:59.000Z

366

Economic development through biomass system integration. Volumes 2--4  

SciTech Connect (OSTI)

Report documents a feasibility study for an integrated biomass power system, where an energy crop (alfalfa) is the feedstock for a processing plant and a power plant (integrated gasification combined cycle) in a way that benefits the facility owners.

DeLong, M.M.

1995-10-01T23:59:59.000Z

367

An analysis of the TR-BDF2 integration scheme  

E-Print Network [OSTI]

We intend to try to better our understanding of how the combined L-stable 'Trapezoidal Rule with the second order Backward Difference Formula' (TR-BDF2) integrator and the standard A-stable Trapezoidal integrator perform ...

Dharmaraja, Sohan

2007-01-01T23:59:59.000Z

368

Combination and Integration of DPF-SCR Aftertreatment Technologies  

Broader source: Energy.gov (indexed) [DOE]

control systems Probe interaction of DPF-SCR couples to better understand the optimization of the coupled units Determine system limitations, define basic requirements for...

369

Combined Heat and Power (CHP) Integrated with Burners for Packaged...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sectors that will most likely benefit are small industrial plants, schools, and health care facilities. Barriers Developing a new ULNB that considers the optimum...

370

Combination and Integration of DPF-SCR Aftertreatment Technologies  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

371

Combination and Integration of DPF-SCR Aftertreatment Technologies  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

372

Combination and Integration of DPF-SCR Aftertreatment Technologies  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

373

Integrated Energy Systems (IES) for Buildings: A Market Assessment...  

Broader source: Energy.gov (indexed) [DOE]

Energy Systems (IES) for Buildings: A Market Assessment, September 2002 Integrated Energy Systems (IES) combine on-site power or distributed generation technologies with thermally...

374

integr~1  

Broader source: Energy.gov (indexed) [DOE]

7 7 AUDIT REPORT THE U.S. DEPARTMENT OF ENERGY' S MANAGEMENT OF RESEARCH AND DEVELOPMENT INTEGRATION MARCH 1998 U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF AUDIT SERVICES DEPARTMENT OF ENERGY Washington, DC 20585 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Principal Deputy Inspector General SUBJECT: INFORMATION : Audit Report on "Audit of the Department of Energy's Management of Research and Development Integration" BACKGROUND The Congress, independent task forces, and advisory groups have pointed out the need for the Department to improve its integration of research and development (R&D) projects. In the past, R&D management was carried out by different program offices with the research being

375

GEOMETRIC COMPUTATIONAL ELECTRODYNAMICS WITH VARIATIONAL INTEGRATORS  

E-Print Network [OSTI]

GEOMETRIC COMPUTATIONAL ELECTRODYNAMICS WITH VARIATIONAL INTEGRATORS AND DISCRETE DIFFERENTIAL develop a structure-preserving discretization of the Lagrangian framework for electromagnetism, combining) and remains one of the most successful numerical meth- ods used in the field of computational electromagnetics

Desbrun, Mathieu

376

NETL: Gasification - Recovery Act: Scale-Up of Hydrogen Transport Membranes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recovery Act: Scale-Up of Hydrogen Transport Membranes for IGCC and FutureGen Plants Recovery Act: Scale-Up of Hydrogen Transport Membranes for IGCC and FutureGen Plants Eltron Research & Development Inc. Project Number: FC26-05NT42469 Project Description The Eltron Hydrogen Transport Membrane (HTM) technology uses composite metal alloy materials to separate H2 from coal-derived syngas (a mixture of H2, CO, CO2, and steam). Carbon dioxide on the feed side of the membrane remains at high pressure and in a concentrated form suitable for capture and re-use or storage. The Eltron HTM system is an enabling technology for the production of high purity H2 and the capture of CO2 at high pressure that is applicable to future integrated gasification combined cycle (IGCC) and central station H2 production plants. These novel membranes have an operating temperature of 280 to 440 degrees Celsius (°C), which is well-matched with emerging coal gas cleaning technologies and has the potential to significantly improve the overall efficiency and process economics for future gasification-based power, fuels, and chemical production plants. Eltron's membranes can withstand differential pressures of up to 1,000 pounds per square inch gauge (psig) without structural failure, allowing for successful integration into advanced, high-pressure coal gasification plants.

377

FutureGen: Pathway to Near-Zero Emissions and Sustainable Energy  

SciTech Connect (OSTI)

This presentation will highlight the U.S. Department of Energy’s (DOE) FutureGen project ? a $1 billion government-industry partnership to design, build, and operate a near-zero emissions coal-fueled power plant. The lead organization for the FutureGen initiative is the National Energy Technology Laboratory (NETL), a multi-purpose laboratory operated by the U.S. DOE’s Office of Fossil Energy. NETL has a mission to conduct R&D from fundamental science to technology demonstration for resolving the environmental, supply, and reliability constraints of producing and using fossil energy resources. The commercial-scale FutureGen R&D facility is a pathway toward future fossil-energy power plants that will produce hydrogen and electricity while nearly eliminating emissions, including carbon dioxide. The 275-megawatt FutureGen plant will initiate operations around 2012 and employ advanced coal gasification technology integrated with combined cycle electricity generation, hydrogen production, and carbon capture and sequestration. Low carbon emissions would be achieved by integrating CO2 capture and sequestration operations with the power plant.

Zitney, S.E.; Sarkus, T.A

2007-11-04T23:59:59.000Z

378

Integrated decontamination process for metals  

DOE Patents [OSTI]

An integrated process for decontamination of metals, particularly metals that are used in the nuclear energy industry contaminated with radioactive material. The process combines the processes of electrorefining and melt refining to purify metals that can be decontaminated using either electrorefining or melt refining processes.

Snyder, Thomas S. (Oakmont, PA); Whitlow, Graham A. (Murrysville, PA)

1991-01-01T23:59:59.000Z

379

Combined construction method  

Science Journals Connector (OSTI)

When selecting the optimal scheme of performing earthworks with volumes exceeding 800, 000 m3, it is revommended to consider the use of the combined methods. This is especially necessary in those cases when the u...

B. M. Shkundin

1987-10-01T23:59:59.000Z

380

Are renewables portfolio standards cost-effective emission abatement policy?  

SciTech Connect (OSTI)

Renewables portfolio standards (RPS) could be an important policy instrument for 3P and 4P control. The authors examine the costs of renewable power, accounting for the federal production tax credit, the market value of a renewable credit, and the value of producing electricity without emissions of SO{sub 2}, NOx, mercury, and CO{sub 2}. The focus is on Texas, which has a large RPS and is the largest U.S. electricity producer and one of the largest emitters of pollutants and CO{sub 2}. The private and social costs of wind generation in an RPS is compared with the current cost of fossil generation, accounting for the pollution and CO{sub 2} emissions. It was found that society paid about 5.7 cents/kWh more for wind power, counting the additional generation, transmission, intermittency, and other costs. The higher cost includes credits amounting to 1.1 cents/kWh in reduced SO{sub 2}, NOx, and Hg emissions. These pollution reductions and lower CO{sub 2} emissions could be attained at about the same cost using pulverized coal (PC) or natural gas combined cycle (NGCC) plants with carbon capture and sequestration (CCS); the reductions could be obtained more cheaply with an integrated coal gasification combined cycle (IGCC) plant with CCS. 35 refs., 7 tabs.

Katerina Dobesova; Jay Apt; Lester B. Lave [Carnegie Mellon University, Pittsburgh, PA (United States). Carnegie Mellon Electricity Industry Center

2005-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "integrated coal-gasification combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Integrated System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Window System Our research activities in the field of high performance windows have led us to conclude that even by using high performance insulating glass units, low conductivity frames, and warm edge spacers, there are still untapped sources for improving energy efficiency in the design and use of residential windows. While such high performance windows are a dramatic improvement over conventional units, they do not reduce conductive losses through wall framing around the window, offer guarantees against excessive wall/window infiltration nor do they adapt to the daily and seasonal potentials for night insulation and summer shading. To meet this need, we have been working on the design, development, and prototyping of Integrated Window Systems (IWS) since 1993. Integrated Window Systems are a form of panelized construction where the wall panel includes an operable or fixed window sash, recessed night insulation, integral solar shading, and is built in a factory setting in order to minimize thermal short circuits and infiltration at joints. IWSs can be built in modular lengths to facilitate their installation with conventional wood frame stick construction or other forms of panelized construction.

382

HETEROGENEOUS CATALYSIS RESEARCH MEETING  

E-Print Network [OSTI]

synthesis gas by coal gasification is very expensive andin the cost of coal gasification would have a significantas K co , to promote gasification would be beneficial s1nce

Authors, Various

2011-01-01T23:59:59.000Z

383

Catalytic steam gasification of coals  

Science Journals Connector (OSTI)

Catalytic steam gasification of coals ... Steam–Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ... Steam–Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ...

P. Pereira; G. A. Somorjai; H. Heinemann

1992-07-01T23:59:59.000Z

384

MATERIALS AND MOLECULAR RESEARCH DIVISION Annual Report 1977.  

E-Print Network [OSTI]

Stainless Steel in Coal Gasification Environments, LBL-733Z.of Materials Used in Coal Gasification Plants, AGA- ERDA-MPCon ~hterials for the Gasification of Coal, presented to the

Authors, Various

2011-01-01T23:59:59.000Z

385

Isolation and Characterization of the Major Fluoranthene-Hemoglobin Adducts Formed in Vivo in the Rat  

Science Journals Connector (OSTI)

...produc tion (5), coal gasification (6...International Symposium on Combustion, pp. 649-661. Cam bridge, MA: Combustion Institute, 1973...hygiene assessment of coal gasification plants...components. Bio chemistry, 9: 4396-4401...

Deborah A. Hutchins; Paul L. Skipper; Stephen Naylor; and Steven R. Tannenbaum

1988-09-01T23:59:59.000Z

386

The Influence Factor Analyses of Non-stable Combustion in the Ignition Process of Gasifier  

Science Journals Connector (OSTI)

The pulverized coal gasification technology is large-scale carried out in China for more than 10 years, and more and more coal gasification technology, such as SCGP, GSP, GE, indigenous gasifier, have been widely...

Kuang Jian-ping; Zhang Shi-cheng; Jie Tao…

2013-01-01T23:59:59.000Z

387

Importance of cobalt for individual trophic groups in an anaerobic methanol-degrading consortium.  

Science Journals Connector (OSTI)

...Methanol metabolism Waste Disposal, Fluid...in wastewaters, wastes, and the natural...several chemical industries, such as in the...31) and coal gasification installations...Purdue Industrial Waste Conference, Lafayette...compounds in coal-gasification condensate water...

L Florencio; J A Field; G Lettinga

1994-01-01T23:59:59.000Z

388

Anaerobic Biodegradation of Indole to Methane  

Science Journals Connector (OSTI)

...compounds are contained in waste products from many industrial...processes, especially industries in- volved in thermal...material, such as coal gasification, petroleum refining...the treatment of coal gasification wastewater. Biotechnol...

Yi-Tin Wang; Makram T. Suidan; John T. Pfeffer

1984-11-01T23:59:59.000Z

389

Klystron-linac combination  

DOE Patents [OSTI]

A combination klystron-linear accelerator which utilizes anti-bunch electrons generated in the klystron section as a source of electrons to be accelerated in the accelerator section. Electron beam current is controlled by second harmonic bunching, constrictor aperture size and magnetic focusing. Rf coupling is achieved by internal and external coupling.

Stein, W.E.

1980-04-24T23:59:59.000Z

390

Thermal and chemical degradation of inorganic membrane materials. Final report, August 1992--May 1995  

SciTech Connect (OSTI)

SRI International conducted a theoretical and experimental program to evaluate the long-term thermal and chemical degradation of inorganic membranes that are being developed to separate the gaseous products of coal gasification. A variety of developmental efforts are underway, including a number of projects sponsored by the US Department of Energy (DOE), to improve the selectivity and permeability of porous inorganic membranes. DOE is also sponsoring efforts to extend the use of metallic membranes to new applications. Most developmental efforts have focused on hydrogen separation by inorganic membranes, which may be used to maximize hydrogen production from coal gas or to remove H{sub 2}S and NH{sub 3} contaminants via thermal or catalytic decomposition in integrated-gasification combined-cycle (IGCC) systems. Inorganic membranes that have a high separation efficiency and exhibit both thermal and chemical stability would improve the economics of power generation from coal. Membrane materials that have been investigated include glass (silica), alumina, carbon, and metals (Pd and Pt). This report describes inorganic membrane materials, long term membrane exposure tests, membrane permeation tests, coal gasifier exposure tests, conclusions, and recommendations.

Damle, A.S.; Krishnan, G.N.; Sanjurjo, A.; Wood, B.J.; Lau, K.H.

1995-05-01T23:59:59.000Z

391

Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2  

SciTech Connect (OSTI)

GE Global Research is developing an innovative energy technology for coal gasification with high efficiency and near-zero pollution. This Unmixed Fuel Processor (UFP) technology simultaneously converts coal, steam and air into three separate streams of hydrogen-rich gas, sequestration-ready CO{sub 2}, and high-temperature, high-pressure vitiated air to produce electricity in gas turbines. This is the draft final report for the first stage of the DOE-funded Vision 21 program. The UFP technology development program encompassed lab-, bench- and pilot-scale studies to demonstrate the UFP concept. Modeling and economic assessments were also key parts of this program. The chemical and mechanical feasibility were established via lab and bench-scale testing, and a pilot plant was designed, constructed and operated, demonstrating the major UFP features. Experimental and preliminary modeling results showed that 80% H{sub 2} purity could be achieved, and that a UFP-based energy plant is projected to meet DOE efficiency targets. Future work will include additional pilot plant testing to optimize performance and reduce environmental, operability and combined cycle integration risks. Results obtained to date have confirmed that this technology has the potential to economically meet future efficiency and environmental performance goals.

George Rizeq; Janice West; Raul Subia; Arnaldo Frydman; Parag Kulkarni; Jennifer Schwerman; Valadimir Zamansky; John Reinker; Kanchan Mondal; Lubor Stonawski; Hana Loreth; Krzysztof Piotrowski; Tomasz Szymanski; Tomasz Wiltowski; Edwin Hippo

2005-02-28T23:59:59.000Z

392

Highly Attrition Resistant Zinc Oxide-Based Sorbents for H2S Removal by Spray Drying Technique  

SciTech Connect (OSTI)

Primary issues for the fluidized-bed/transport reactor process are high attrition resistant sorbent, its high sorption capacity and regenerability, durability, and cost. The overall objective of this project is the development of a superior attrition resistant zinc oxide-based sorbent for hot gas cleanup in integrated coal gasification combined cycle (IGCC). Sorbents applicable to a fluidized-bed hot gas desulfurization process must have a high attrition resistance to withstand the fast solid circulation between a desulfurizer and a regenerator, fast kinetic reactions, and high sulfur sorption capacity. The oxidative regeneration of zinc-based sorbent usually initiated at greater than 600 C with highly exothermic nature causing deactivation of sorbent as well as complication of sulfidation process by side reaction. Focusing on solving the sorbent attrition and regenerability of zinc oxide-based sorbent, we have adapted multi-binder matrices and direct incorporation of regeneration promoter. The sorbent forming was done with a spray drying technique that is easily scalable to commercial quantity.

Ryu, C.K.; Lee, J.B.; Ahn, D.H.; Kim, J.J.; Yi, C.K.

2002-09-19T23:59:59.000Z

393

Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants  

SciTech Connect (OSTI)

The objective of this project was to develop an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. A family of hydrogen separation membranes was developed including single phase mixed conducting ceramics, ceramic/ceramic composites, cermet membranes, cermet membranes containing a hydrogen permeable metal, and intermediate temperature composite layered membranes. Each membrane type had different operating parameters, advantages, and disadvantages that were documented over the course of the project. Research on these membranes progressed from ceramics to cermets to intermediate temperature composite layered membranes. During this progression performance was increased from 0.01 mL x min{sup -1} x cm{sup -2} up to 423 mL x min{sup -1} x cm{sup -2}. Eltron and team membranes not only developed each membrane type, but also membrane surface catalysis and impurity tolerance, creation of thin film membranes, alternative applications such as membrane promoted alkane dehydrogenation, demonstration of scale-up testing, and complete engineering documentation including process and mechanical considerations necessary for inclusion of Eltron membranes in a full scale integrated gasification combined cycle power plant. The results of this project directly led to a new $15 million program funded by the Department of Energy. This new project will focus exclusively on scale-up of this technology as part of the FutureGen initiative.

Carl R. Evenson; Shane E. Roark

2006-03-31T23:59:59.000Z

394

International low carbon technology transfer: Do intellectual property regimes matter?  

Science Journals Connector (OSTI)

Abstract Transfer of low carbon technologies to developing countries has been recognized as important in global efforts to limit climate change. Yet the mechanics of international technology transfer, especially around intellectual property rights, have remained a controversial issue in international negotiations. Using a new dataset on international partnerships in China and India in three key low carbon technologies—solar photovoltaics, electric vehicles, and coal gasification/integrated gasification combined cycle—and complementary expert interviews we study the dynamics of the transfer of intellectual property and the underlying drivers that guide the development of business strategies and partnerships in the context of transitioning intellectual property regimes in emerging markets. We find that weak intellectual property regimes are indeed a hindrance to the diffusion of certain classes of low carbon technologies: (i) for cutting-edge technologies, (ii) for fully-embodied (explicitly codified) technologies, and (iii) for small firms. However, we also find that intellectual property issues do not represent a barrier to the diffusion of the relatively mature and low to medium cost low carbon technologies that are materially (at scale) most important for carbon dioxide emissions reduction in the short to medium term. Competitive technology supply, shifting market dynamics, and increasingly vigorous domestic innovation coupled with mechanisms and opportunities to structure credible intellectual property deals allow for the diffusion of key low carbon technologies to occur within the context of existing business, political, and institutional structures.

Varun Rai; Kaye Schultz; Erik Funkhouser

2014-01-01T23:59:59.000Z

395

Gasification Plant Databases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

coal gasification projects throughout the world. These databases track proposed gasification projects with approximate outputs greater than 100 megawatts electricity...

396

solicitations | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

International Activity Project Information Project Portfolio Publications Coal Gasification Magazine Solicitations All NETL Solicitations Funding Opportunity Announcements...

397

advanced-fuels-synthesis-index | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

International Activity Project Information Project Portfolio Publications Coal Gasification Magazine Solicitations The Advanced Fuels Synthesis Key Technology is focused on...

398

project information | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

International Activity Project Information Project Portfolio Publications Coal Gasification Magazine Solicitations Coal-Biomass Feed and Gasification Agreement Number Project...

399

index | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

International Activity Project Information Project Portfolio Publications Coal Gasification Magazine Solicitations TABLE OF CONTENTS Technical Presentations & Papers...

400

Duke, China's Huaneng to 'explore' clean tech  

SciTech Connect (OSTI)

A vaguely worded press release said the two companies will focus on carbon capture and sequestration (CCS) and coal gasification.

NONE

2009-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "integrated coal-gasification combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Techno-Economic Analysis of Coal-Based Hydrogen and Electricity Cogeneration Processes with CO2 Capture  

Science Journals Connector (OSTI)

The baseline coal gasification process and the novel membrane and syngas chemical-looping processes are evaluated. ... burner ...

Fanxing Li; Liang Zeng; Liang-Shih Fan

2010-07-29T23:59:59.000Z

402

Analyzing the Levelized Cost of Centralized and Distributed Hydrogen...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

gasification * Central grid electrolysis * Central coal gasification (with and without carbon sequestration) * Central natural gas reforming (with and without carbon...

403

NREL: Transmission Grid Integration - Wind Integration Datasets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Integration Datasets The Wind Integration Datasets provide energy professionals with a consistent set of wind profiles for the eastern United States and the western United...

404

2008 Colorado State University Combined Research and Extension Annual Report of Accomplishments and Results  

E-Print Network [OSTI]

2008 Colorado State University Combined Research and Extension Annual Report of Accomplishments and Results Status: Submitted Date Submitted: 03/31/09 2008 Colorado State University Combined Research, integrated and interactive efforts from Colorado State University research and extension programs. Integral

405

Europ. J. Combinatorics (1995) 16,357-369 Integral Bases and p-Twisted Digrapbs  

E-Print Network [OSTI]

combination of the basis vectors. We call such a set of cycles an integral cycle-basis for D. The fundamental connected digraph D = (V, A) there exists a set of directed cycles the incidence vectors of which form, every integral circulation can be written as an integral combination of these vectors. In this paper, we

Schneider, Hans

406

MHD Integrated Topping Cycle Project  

SciTech Connect (OSTI)

The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

Not Available

1992-03-01T23:59:59.000Z

407

Natural Gas Combined Cycle  

E-Print Network [OSTI]

The “Coal Ash Corrosion Resistant Materials Testing Program ” is being conducted by B&W at Reliant Energy’s Niles plant in Niles, Ohio. The total estimated cost of $1,864,603 is co-funded by DOE contributing 37.5%, OCDO providing 33.3 % and B&W providing 17%. The remaining 12 % is in-kind contributions by Reliant Energy and tubing suppliers. Materials development is important to the power industry, and to the use of coal. Figure 1 compares the cost of electricity for subcritical and supercritical coal-fired plants with a natural gas combined cycle (NGCC) plant based on an 85 % capacity factor. This shows that at $1.20/MBtu for fuel, coal is competitive with NGCC when gas is at $3.40/MBtu or higher. An 85 % capacity factor is realistic for a coal-fired plant, but NGCC plants are currently only achieving about 60%. This gives coal an advantage if compared on the basis of cost per kW generated per year. When subcritical and supercritical plants are compared,

Dennis K. Mcdonald; Subcritical Coal Plant; Supercritical Coal Plant

408

Investigation of Gasification Chemical Looping Combustion Combined Cycle Performance  

Science Journals Connector (OSTI)

Combining CLC with a gas turbine combined cycle offers a novel power generation technique with high efficiency and CO2 separation. ... Here, we have developed looping materials based on the integration of NiO, as solid reactants, with a composite metal oxide of NiAl2O4, as a binder, leading to a significant role in improving reaction rate, conversion, and regenerability in cyclic reaction in this combustor, compared with the other materials. ... Chemical looping combustion for combined cycles with CO2 capture. ...

Wenguo Xiang; Sha Wang; Tengteng Di

2008-02-19T23:59:59.000Z

409

Thermal Control & System Integration  

Broader source: Energy.gov [DOE]

The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

410

Distribution Grid Integration  

Broader source: Energy.gov [DOE]

The DOE Systems Integration team funds distribution grid integration research and development (R&D) activities to address the technical issues that surround distribution grid planning,...

411

A review of combined wave and offshore wind energy  

Science Journals Connector (OSTI)

Abstract The sustainable development of the offshore wind and wave energy sectors requires optimising the exploitation of the resources, and it is in relation to this and the shared challenge for both industries to reduce their costs that the option of integrating offshore wind and wave energy arose during the past decade. The relevant aspects of this integration are addressed in this work: the synergies between offshore wind and wave energy, the different options for combining wave and offshore wind energy, and the technological aspects. Because of the novelty of combined wave and offshore wind systems, a comprehensive classification was lacking. This is presented in this work based on the degree of integration between the technologies, and the type of substructure. This classification forms the basis for the review of the different concepts. This review is complemented with specific sections on the state of the art of two particularly challenging aspects, namely the substructures and the wave energy conversion.

C. Pérez-Collazo; D. Greaves; G. Iglesias

2015-01-01T23:59:59.000Z

412

Power Systems Integration Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Power Systems Integration Laboratory at the Energy Systems Integration Facility. At NREL's Power Systems Integration Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on developing and testing large-scale distributed energy systems for grid-connected, stand-alone, and microgrid applications. The laboratory can accommodate large power system components such as inverters for photovoltaic (PV) and wind systems, diesel and natural gas generators, battery packs, microgrid interconnection switchgear, and vehicles. Closely coupled with the research electrical distribution bus at the ESIF, the Power Systems Integration Laboratory will offer power testing capability of megawatt-scale DC and AC power systems, as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Thermal heating and cooling loops and fuel also allow testing of combined heating/cooling and power systems (CHP).

Not Available

2011-10-01T23:59:59.000Z

413

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 4  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wabash River Coal Gasification Repowering Project - Project Brief [PDF-250KB] Wabash River Coal Gasification Repowering Project - Project Brief [PDF-250KB] Wabash River Coal Gasification Repowering Project Joint Venture West Terre Haute, IN Program Publications Final Reports Wabash River Coal Gasification Repowering Project, Final Technical Report [PDF-8.2MB] (Aug 2000) Annual/Quarterly Technical Reports Wabash River Coal Gasification Repowering Project, Annual Technical Progress Reports 1995 [PDF-1.7MB] (Mar 1999) 1996 [PDF-3.8MB] (Feb 2000) 1997 [PDF-4.8MB] 1998 [PDF-3.6MB] 1999 [PDF-3.4MB] (June 2000) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Wabash River Coal Gasification Repowering Project, Project Performance Summary [PDF-2.5MB] (June 2002) Wabash River Coal Gasification Repowering Project: A DOE Assessment [PDF-295KB] (Jan 2002)

414

Building-integrated solar energy devices based on wavelength selective films.  

E-Print Network [OSTI]

??A potentially attractive option for building integrated solar is to employ hybrid solar collectors which serve dual purposes, combining solar thermal technology with either thin… (more)

Ulavi, Tejas U.

2013-01-01T23:59:59.000Z

415

Clean coal technology using process integration : a focus on the IGCC.  

E-Print Network [OSTI]

?? The integrated gasification combined cycle (IGCC) is the most environmentally friendly coal-fired power generation technology that offers near zero green house gas emissions. This… (more)

Madzivhandila, Vhutshilo

2011-01-01T23:59:59.000Z

416

Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage Reactor  

SciTech Connect (OSTI)

Hydrogen production from coal gasification can be enhanced by driving the equilibrium limited Water Gas Shift reaction forward by incessantly removing the CO{sub 2} by-product via the carbonation of calcium oxide. This project aims at using the OSU patented high-reactivity mesoporous precipitated calcium carbonate sorbent for removing the CO{sub 2} product. Preliminary experiments demonstrate the show the superior performance of the PCC sorbent over other naturally occurring calcium sorbents. Gas composition analyses show the formation of 100% pure hydrogen. Novel calcination techniques could lead to smaller reactor footprint and single-stage reactors that can achieve maximum theoretical H{sub 2} production for multicyclic applications. Sub-atmospheric calcination studies reveal the effect of vacuum level, diluent gas flow rate, thermal properties of the diluent gas and the sorbent loading on the calcination kinetics which play an important role on the sorbent morphology. Steam, which can be easily separated from CO{sub 2}, is envisioned to be a potential diluent gas due to its enhanced thermal properties. Steam calcination studies at 700-850 C reveal improved sorbent morphology over regular nitrogen calcination. A mixture of 80% steam and 20% CO{sub 2} at ambient pressure was used to calcine the spent sorbent at 820 C thus lowering the calcination temperature. Regeneration of calcium sulfide to calcium carbonate was achieved by carbonating the calcium sulfide slurry by bubbling CO{sub 2} gas at room temperature.

Mahesh Iyer; Himanshu Gupta; Danny Wong; Liang-Shih Fan

2005-09-30T23:59:59.000Z

417

Residential Buildings Integration Program  

Broader source: Energy.gov [DOE]

Residential Buildings Integration Program Presentation for the 2013 Building Technologies Office's Program Peer Review

418

Renewable Diesel from Algal Lipis: An Integrated Baseline for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

digestion (AD) for energy and nutrient recycling. Energy recycling was accomplished by biogas combustion in a combined heat and power (CHP) system that was heat-integrated with the...

419

Photonic integration in a commercial scaled bulk-CMOS process  

E-Print Network [OSTI]

We demonstrate the first photonic chip designed for a commercial bulk CMOS process (65 nm-node) using standard process layers combined with post-processing, enabling dense photonic integration with high-performance ...

Kaertner, Franz X.

420

Accelerating Combined Heat & Power Deployment  

Broader source: Energy.gov (indexed) [DOE]

ACCELERATING COMBINED HEAT & POWER DEPLOYMENT An Industry Consultation by the United States Energy Association August 31, 2011 Cover Photograph: CHP Plant at the Mueller Energy...

Note: This page contains sample records for the topic "integrated coal-gasification combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Combined neutron reflectometry and rheology  

Science Journals Connector (OSTI)

Neutron reflectometry is combined with rheology in order to reveal the near surface structure of liquids and polymers under well defined deformation.

Wolff, M.

2013-10-26T23:59:59.000Z

422

Integrated Datasets (IDs) Wood/Bretherton proposal  

E-Print Network [OSTI]

Integrated Datasets (IDs) Wood/Bretherton proposal ID Rationale Space/Time scale; Location; Platforms Parameters Combined Drizzle Dataset (CD ID) Collocated precipitation, aerosol and cloud micro, precip. rate, cloud Cross- Section Dataset (XS-ID) Data on E-W cross- section along 20°S from coast

Wood, Robert

423

Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability  

Broader source: Energy.gov [DOE]

Breakout Session 3B—Integration of Supply Chains III: Algal Biofuels Strategy Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability Martin Sabarsky, Chief Executive Officer, Cellana

424

Systems Integration Methodology  

SciTech Connect (OSTI)

A multi-disciplinary team led by the Advanced Power and Energy Program (APEP) of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into power plant systems that meet performance and emission goals of VISION 21. The myriad of fuels, fuel processing, power generation, and emission control technologies are narrowed down to selected scenarios by a screening analysis to identify those combinations that have the potential to achieve the VISION 21 goals consisting of 60% efficiency (HHV) for coal based systems and 75% efficiency (LHV) for gas-based systems. The selected promising cycle scenarios are then analyzed in detail to develop the performance and costs for each. The methodology used in arriving at these promising cases and the preliminary results of the cycle analyses are presented. The technology levels considered are based on projected technical and manufacturing advances being made in industry and on advances identified in current and future government supported research such as the Clean Coal Program, Combustion 2000 (LEBS and HIPPS), Advanced Turbine Systems program, Low-Cost Advanced Fuel Cell programs, and the Flexible Gas Turbine Systems program. Examples of systems included in these advanced cycles are solid oxide and molten carbonate fuel cells, advanced gas turbines, ion transport membrane separation and hydrogen-oxygen combustion.

Samuelsen, Scott; Rao, Ashok

2001-11-06T23:59:59.000Z

425

Combination moisture and hydrogen getter  

DOE Patents [OSTI]

A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (1) a solid acetylenic compound and (2) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

Harrah, L.A.; Mead, K.E.; Smith, H.M.

1983-09-20T23:59:59.000Z

426

Seamlessly Integrating Software & Hardware Modelling for Large-Scale Systems  

E-Print Network [OSTI]

Engineering, with the math- ematical modelling approach, Modelica, to address the software/hardware integration problem. The environment and hardware components are modelled in Modelica and integrated that a software/hardware combination with an 2nd International Workshop on Equation-Based Object-Oriented

Zhao, Yuxiao

427

Buried waste integrated demonstration technology integration process  

SciTech Connect (OSTI)

A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE`s Office of Technology Development (OTD).

Ferguson, J.S.; Ferguson, J.E.

1992-04-01T23:59:59.000Z

428

Buried waste integrated demonstration technology integration process  

SciTech Connect (OSTI)

A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD).

Ferguson, J.S.; Ferguson, J.E.

1992-04-01T23:59:59.000Z

429

Combined Experiment Phase 1. Final report  

SciTech Connect (OSTI)

How does wind tunnel airfoil data differ from the airfoil performance on an operating horizontal axis wind turbine (HAWT)? The National Renewable Energy laboratory has been conducting a comprehensive test program focused on answering this question and understanding the basic fluid mechanics of rotating HAWT stall aerodynamics. The basic approach was to instrument a wind rotor, using an airfoil that was well documented by wind tunnel tests, and measure operating pressure distributions on the rotating blade. Based an the integrated values of the pressure data, airfoil performance coefficients were obtained, and comparisons were made between the rotating data and the wind tunnel data. Care was taken to the aerodynamic and geometric differences between the rotating and the wind tunnel models. This is the first of two reports describing the Combined Experiment Program and its results. This Phase I report covers background information such as test setup and instrumentation. It also includes wind tunnel test results and roughness testing.

Butterfield, C.P.; Musial, W.P.; Simms, D.A.

1992-10-01T23:59:59.000Z

430

CO2 Reforming of Methane in a Molten Carbonate Salt Bath for Use in Solar Thermochemical Processes  

Science Journals Connector (OSTI)

From the point of view of the chemical pathway for this process, several high-temperature endothermic reactions have been investigated as solar high-temperature thermochemical processes, such as a multistep water-splitting reaction,4-6 coal gasification,7,8 and natural gas reforming. ... The calorifically upgraded product of syngas can be stored and transported to be combusted in a conventional gas turbine (GC) or a combined cycle (CC), to generate electricity with a high conversion efficiency (up to 55% in a modern, large CC). ... The dry effluent gases were analyzed by gas chromatography equipment (Shimadzu, GC-4C) with a TCD detector. ...

T. Kodama; T. Koyanagi; T. Shimizu; Y. Kitayama

2000-11-17T23:59:59.000Z

431

Membrane separation advances in FE hydrogen program  

SciTech Connect (OSTI)

Since its inception in Fiscal Year 2003 the US Office of Fossil Energy (FE) Hydrogen from Coal Program has sponsored more than 60 projects and made advances in the science of separating out pure hydrogen from syngas produced through coal gasification. The Program is focusing on advanced hydrogen separation technologies, which include membranes, and combining the WGS reaction and hydrogen separation in a single operation known as process intensification. The article explains the technologies and describes some key FE membrane projects. More details are available from http://www.fossil.energy.gov. 1 fig.

NONE

2007-12-31T23:59:59.000Z

432

Energy Systems Integration  

Broader source: Energy.gov (indexed) [DOE]

Systems Integration Systems Integration Ben Kroposki, PhD, PE Director, Energy Systems Integration National Renewable Energy Laboratory 2 Reducing investment risk and optimizing systems in a rapidly changing energy world * Increasing penetration of variable RE in grid * Increasing ultra high energy efficiency buildings and controllable loads * New data, information, communications and controls * Electrification of transportation and alternative fuels * Integrating energy storage (stationary and mobile) and thermal storage * Interactions between electricity/thermal/fuels/data pathways * Increasing system flexibility and intelligence Current Energy Systems Future Energy Systems Why Energy Systems Integration? 3 Energy Systems Integration Continuum Scale Appliance (Plug)

433

NREL: Vehicle Ancillary Loads Reduction - Integrated Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Modeling Integrated Modeling NREL's Vehicle Ancillary Loads Reduction (VALR) team predicts the impact of advanced vehicle cooling technologies before testing by using an integrated modeling process. Evaluating the heat load on a vehicle under real world conditions is a difficult task. An accepted method to evaluate passenger compartment airflow and heat transfer is computational fluid dynamics. (CFD). Combining analytical models with CFD provides a powerful tool to assist industry both on current vehicles and on future design studies. Flow chart showing the vehicle integrated modeling process which considers solar radiation, air conditioning, and vehicles with CAD, glazing, cabin thermal/fluid, and thermal comfort modeling tools. Results are provided for fuel economy, tailpipe emissions and occupant thermal comfort.

434

INTEGRATING PHOTOVOLTAIC SYSTEMS  

E-Print Network [OSTI]

INTEGRATING PHOTOVOLTAIC SYSTEMS INTO PUBLIC SECTOR PERFORMANCE CONTRACTS IN DELAWARE FINAL for Energy and Environmental Policy University of Delaware February 2006 #12;INTEGRATING PHOTOVOLTAIC..................................................................................................... 1 1.2 Photovoltaics in Performance Contracts: An Overview

Delaware, University of

435

Two-step fuel oxidation to improve efficiency in the conversion of chemical energy into work  

SciTech Connect (OSTI)

It is well known that in the conversion of chemical exergy into work a remarkable percentage of exergy is destroyed during the combustion process. Obviously, hypothetical reversible combustions, as proposed in some papers, are not to be taken into account. On the contrary, recent studies of a new system to increase the efficiency of the conversion of chemical exergy into work appear interesting. The proposed system includes a gas turbine system with chemical-looping combustion where a metal oxide is used as an oxygen carrier. Instead of conventional combustion, the oxidation of fuel is carried out in a two-step reaction. The first step is an endothermic reaction in which a metal oxide is reduced by fuel at low temperature and the second step an exothermic reaction in which the products of the former reaction are subjected to oxidation. The thermal energy of low exergy value in the exhaust gas is employed to drive the endothermic reaction. Various systems have been proposed and tested. The power-generation system (called CLSA), with chemical-looping combustion and air saturation seems the most convenient. When only saturated air is used, exergy destruction becomes small in the middle- and low temperature range. However, the inefficiency in the high temperature range remains. On the other hand, when only chemical-looping combustion is used, exergy destruction becomes small in the high- and middle temperature range. However, the inefficiency in the low-temperature range is now not removed. When both technologies are combined, exergy efficiency may become much greater than that obtained from each individual process. The synergistic effect of combining these two technologies is analogous to the improvement achieved when a combined system was designed as a new power-generation system by combining a gas turbine with a steam turbine. For a model system, an exergy efficiency of 53.3% is obtained when the process water is recovered and a value of about 55% is obtained when water is not recovered. A significant advantage of the CLSA system is that CO{sub 2} can be easily recovered. The CO{sub 2} produced in the reduction reactor is not diluted by air since air and fuel enter different reactors. This is quite different from a traditional combustor in which CO{sub 2} is diluted in air and hence cannot be concentrated and separated economically. In the CLSA system, since the exhaust gas from the reduction reactor is composed only of high-concentration CO{sub 2} and water vapor, CO{sub 2} can be easily recovered by cooling the exhaust gas and removing the liquid water, i.e. very little energy expenditure is required for recovering CO{sub 2} from the exhaust gas. The recovered CO{sub 2} may be utilized, e.g., in artificial photosynthesis, whereas a simple recovery without any utilization but only to reduce greenhouse effect seems questionable. Another significant characteristic of CLSA system is that the most of the water vapor in the exhaust gas can be recovered by cooling the exhaust gas from the oxidation reactor. In chemical-looping combustion, fuel is not burned directly and the gas discharged from the oxidation reactor has no impurities from the fuel. Hence, there will be no corrosion of the apparatus when the exhaust gas is cooled to a very low temperature and low cost materials can be utilized for the heat exchangers. Because of the recycling of the most part of water, the CLSA system can be used in locations with limited water resources. Chemical-looping combustion system can be also combined with an integrated coal gasification and this topic appears very interesting. Indeed, to achieve better conversion efficiencies and lower pollutant emissions in power plants, new technologies that combines coal gasification with a gas turbine based combined cycle have been extensively studied worldwide.

Bisio, G.; Rubatto, R.; Marletta, L.

1998-07-01T23:59:59.000Z

436

Transmission Commercial Project Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improvement (CBPI) Customer Forum Energy Imbalance Market Generator Interconnection Reform Implementation Network Integration Transmission Service (NT Service) Network Open...

437

FUEL CELL/MICRO-TURBINE COMBINED CYCLE  

SciTech Connect (OSTI)

A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

1999-12-01T23:59:59.000Z

438

Vertical integration and market power  

SciTech Connect (OSTI)

One of the continuing debates of industrial organization surrounds the importance of market structure in determining a firm's performance. This controversy develops naturally from the difficulties in measuring the relevant variables and the hazards of statistical analysis. The focus of this empirical study is the relationship between vertical integration, as an element of market structure, and market power, as a component of a firm's performance. The model presented in this paper differs from previous efforts because vertical integration is measured by the Vertical Industry Connections (VIC) index. VIC is defined as a function of the relative net interactions among the industries in which a firm operates, and is calculated by use of the national input-output tables. A linear regression model is estimated by means of a random sample of firms selected from the Standard and Poor's COMPUSTAT data base for 1963, 1967, and 1972. Combined cross-sectional, time-series methods are employed. The dependent variable is the price-cost margin; the independent variables include not only VIC, but also the concentration ratio, diversification index, value of assets, capital-output ratio, and sales growth. The results indicate that VIC is significant in increasing the price-cost margin, and thus support the hypothesis that vertical integration is a strategy to enhance market power. 1 figure, 3 tables.

Maddigan, R.J.

1980-01-01T23:59:59.000Z

439

Procurement Integrity Brochure What is Procurement Integrity...  

Broader source: Energy.gov (indexed) [DOE]

involved in agency procurements and contracts. This brochure is intended to act as a primer for all DOE employees on issues related to procurement integrity. As such, not all...

440

Sandia National Laboratories: Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Grid Integration Energy Supply Transformation Needed On February 20, 2013, in DETL, Distribution Grid Integration, Energy, Energy Assurance, Energy Surety, Grid Integration,...

Note: This page contains sample records for the topic "integrated coal-gasification combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Advanced Integrated Systems Technology Development  

E-Print Network [OSTI]

conditioning in buildings featuring integrated design withconditioning in buildings featuring integrated design withof a building with advanced integrated design involving one

2013-01-01T23:59:59.000Z

442

Combined Cycles and Cogeneration - An Alternative for the Process Industries  

E-Print Network [OSTI]

SYSTEM Gasification Numerous programs are underway for gasification of solid fuels and heavy oils and it is among these systems that many feel medium Btu gas will be pro duced for use in combined cycle systems. Many of the problems now facing... the gasification approach are economic in nature caused by the compe titive costs of gas and oil. In addition, in areas lacking a coal infrastructure, extraordinary costs still exist in the early years. FIG. 13 INTEGRATED INTERMEDIATE Btu GASIFICATION CYCLE...

Harkins, H. L.

1981-01-01T23:59:59.000Z

443

Three wafer stacking for 3D integration.  

SciTech Connect (OSTI)

Vertical wafer stacking will enable a wide variety of new system architectures by enabling the integration of dissimilar technologies in one small form factor package. With this LDRD, we explored the combination of processes and integration techniques required to achieve stacking of three or more layers. The specific topics that we investigated include design and layout of a reticle set for use as a process development vehicle, through silicon via formation, bonding media, wafer thinning, dielectric deposition for via isolation on the wafer backside, and pad formation.

Greth, K. Douglas; Ford, Christine L.; Lantz, Jeffrey W.; Shinde, Subhash L.; Timon, Robert P.; Bauer, Todd M.; Hetherington, Dale Laird; Sanchez, Carlos Anthony

2011-11-01T23:59:59.000Z

444

Capturing the emerging market for climate-friendly technologies: opportunities for Ohio  

SciTech Connect (OSTI)

This paper briefly describes the factors driving the growing demand for climate-friendly technologies, some of the key existing companies, organizations, and resources in Ohio, and the potential for Ohio to become a leading supplier of climate solutions. These solutions include a new generation of lower-emitting coal technologies, components for wind turbines, and the feedstocks and facilities to produce biofuels. Several public-private partnerships and initiatives have been established in Ohio. These efforts have encouraged the development of numerous federal- and state-funded projects and attracted major private investments in two increasingly strategic sectors of the Ohio economy: clean-coal technology and alternative energy technology, with a focus on fuel cells. Several major clean-coal projects have been recently initiated in Ohio. In April 2006, the Public Utilities Commission of Ohio approved American Electric Power's (AEP) plan to build a 600 MW clean-coal plant along the Ohio River in Meigs County. The plant will use Integrated Gasification Combined Cycle (IGCC) technology which makes it easier to capture carbon dioxide for sequestration. Three other potential coal gasification facilities are being considered in Ohio: a combination IGCC and synthetic natural gas plant in Allen County by Global Energy/Lima Energy; a coal-to-fuels facility in Lawrence County by Baard Energy, and a coal-to-fuels facility in Scioto County by CME North American Merchant Energy. The paper concludes with recommendations for how Ohio can capitalize on these emerging opportunities. These recommendations include focusing and coordinating state funding of climate technology programs, promoting the development of climate-related industry clusters, and exploring export opportunities to states and countries with existing carbon constraints.

NONE

2006-11-15T23:59:59.000Z

445

Sandia National Laboratories: Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of renewable energy technology programs (Wind, Concentrating Solar Power, Geothermal, and Energy Systems Analysis). Transmission Grid Integration Distribution Grid Integration...

446

NETL: Combined Pressure, Temperature Contrast, and Surface-Enhanced  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IEP – Post-Combustion CO2 Emissions Control Combined Pressure, Temperature Contrast, and Surface-Enhanced Separation of Carbon Dioxide (CO2) for Post-Combustion Carbon Capture Project No.: DE-FE0007531 Rice University is investigating CO2-capture cost-reduction opportunities by developing a novel gas absorption process. Specific project research topics include the following: Combining the absorber and stripper columns into a single, integrated unit. The use of vacuum stripping in combination with waste heatfor regeneration of carbon dioxide (CO2) absorbent. The use of a very high surface area ceramic foam gas-liquid contactor for enhanced mass transfer. Preparing surfaces of the ceramic foam gas-liquid contactor with basic and acidic functional groups to enhance mass transfer during gas absorption and stripping, respectively.

447

Integrated Safety Management (ISM)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Safety Management Integrated Safety Management Home ISM Policy ISM Champions ISM Workshops Resources Archives Contact Us Health and Safety HSS Logo Integrated Safety Management (ISM) ism logo Welcome to the Department of Energy's Office of Health, Safety and Security (HSS) Integrated Safety Management (ISM) Web Site. The Department and its contractors remain firmly committed to ISM as first defined in 1996. The objective of ISM is to perform work in a safe and environmentally sound manner. More specifically, as described in DOE P 450.4, Safety Management System Policy: "The Department and Contractors must systematically integrate safety into management and work practices at all levels so that missions are accomplished while protecting the public, the worker, and the environment. This is to be accomplished through effective integration of safety management into all facets of work planning and execution." "

448

Nuclear Fuel Cycle Integrated System Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cycle Integrated System Analysis Fuel Cycle Integrated System Analysis Abdellatif M. Yacout Argonne National Laboratory Nuclear Engineering Division The nuclear fuel cycle is a complex system with multiple components and activities that are combined to provide nuclear energy to a variety of end users. The end uses of nuclear energy are diverse and include electricity, process heat, water desalination, district heating, and possibly future hydrogen production for transportation and energy storage uses. Components of the nuclear fuel cycle include front end components such as uranium mining, conversion and enrichment, fuel fabrication, and the reactor component. Back end of the fuel cycle include used fuel coming out the reactor, used fuel temporary and permanent storage, and fuel reprocessing. Combined with those components there

449

MAXIMALLY EQUIDISTRIBUTED COMBINED TAUSWORTHE GENERATORS  

E-Print Network [OSTI]

MAXIMALLY EQUIDISTRIBUTED COMBINED TAUSWORTHE GENERATORS PIERRE L'ECUYER Abstract. Tausworthe random number generators based on a primitive tri­ nomial allow an easy and fast implementation when their parameters obey certain restrictions. However, such generators, with those restrictions, have bad statistical

L'Ecuyer, Pierre

450

Integrated Energy Efficiency  

E-Print Network [OSTI]

10 Off The Grid Sensor Integration Natural Daylight Base and Peak Energy Reduction 11 Lowest Cost Renewable Solar Integrated Lighting $1.0 million/MW $6 – 9 million/MW Wind $1.3 - 1.9 million/MW Biomass $1.5 – 2.5 million/MW Geothermal $1.6 million... 10 Off The Grid Sensor Integration Natural Daylight Base and Peak Energy Reduction 11 Lowest Cost Renewable Solar Integrated Lighting $1.0 million/MW $6 – 9 million/MW Wind $1.3 - 1.9 million/MW Biomass $1.5 – 2.5 million/MW Geothermal $1.6 million...

Heins, S.

451

Graphene Integrated Microwave Photonics  

Science Journals Connector (OSTI)

This paper proposes and analyzes the incorporation of graphene to integrated waveguides and circuits for application to the field of microwave photonics (MWP). We discuss the main...

Capmany, José; Doménech, David; Muñoz, Pascual

2014-01-01T23:59:59.000Z

452

Integrated LED Headlamp Module  

Science Journals Connector (OSTI)

LED headlamp module integrates all necessary optics, electronics, and heat management into one compact unit that fits into standard mechanical headlamp frame. It provides high beam,...

Popelek, Jan

453

Technology Integration Overview  

Broader source: Energy.gov (indexed) [DOE]

Technology Integration Overview Dennis A. Smith - Clean Cities Deployment Connie Bezanson - Vehicle Education June 17, 2014 VEHICLE TECHNOLOGIES OFFICE This presentation does not...

454

Technology Integration Overview  

Broader source: Energy.gov (indexed) [DOE]

-Technology Integration Overview - Dennis A. Smith Connie Bezanson U. S. Department of Energy Headquarters Office - Washington, D.C. May 2013 Project ID: TI000 2013 Department of...

455

Integrated Technology Deployment  

Office of Energy Efficiency and Renewable Energy (EERE)

Integrated technology deployment is a comprehensive approach to implementing solutions that increase the use of energy efficiency and renewable energy technologies. Federal, state, and local...

456

Assessment of fire pump caisson integrity  

SciTech Connect (OSTI)

Fire pump and water lift caissons often suffer damage due to combinations of corrosion, fatigue and repeated impacts. These effects have been investigated in the context of integrity evaluations for a number of caissons and a number of contributory factors have been identified and investigated. The paper describes these investigations in some detail, as well as the mitigation measures identified and adopted to eliminate the problem.

Ellinas, C.P. [Advanced Mechanics and Engineering Ltd., Croydon (United Kingdom); Weir, T. [Total Oil Marine, Aberdeen (United Kingdom)

1995-12-31T23:59:59.000Z

457

Coal Integrated Gasification Fuel Cell System Study  

SciTech Connect (OSTI)

This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

2004-01-31T23:59:59.000Z

458

FCT Technology Validation: Integrated Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Projects to Integrated Projects to someone by E-mail Share FCT Technology Validation: Integrated Projects on Facebook Tweet about FCT Technology Validation: Integrated Projects on Twitter Bookmark FCT Technology Validation: Integrated Projects on Google Bookmark FCT Technology Validation: Integrated Projects on Delicious Rank FCT Technology Validation: Integrated Projects on Digg Find More places to share FCT Technology Validation: Integrated Projects on AddThis.com... Home Transportation Projects Stationary/Distributed Generation Projects Integrated Projects DOE Projects Non-DOE Projects Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Manufacturing Codes & Standards Education Systems Analysis Contacts Integrated Projects To maximize overall system efficiencies, reduce costs, and optimize

459

On Walley's Combination Rule for Statistical Evidence  

E-Print Network [OSTI]

Dempster’s rule of combination is the commonly used rule for combining independent belief functions. In 1987, Peter Walley proposed an alternative rule for combining belief function representations of independent ...

Cinicioglu, Esma N.; Shenoy, Prakash P.

2006-07-01T23:59:59.000Z

460

Modular Integrated Energy Systems  

E-Print Network [OSTI]

Honeywell #12;Modular Integrated Energy Systems Task 5 Prototype Development Reference Design DocumentationModular Integrated Energy Systems Prepared for: Oak Ridge National Laboratory P.O. Box 2008 Building 3147 Oak Ridge, TN 37831 April 27, 2006 Prepared by: Honeywell Laboratories 3660 Technology Drive

Oak Ridge National Laboratory

Note: This page contains sample records for the topic "integrated coal-gasification combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Systems Integration (Fact Sheet)  

SciTech Connect (OSTI)

The Systems Integration (SI) subprogram works closely with industry, universities, and the national laboratories to overcome technical barriers to the large-scale deployment of solar technologies. To support these goals, the subprogram invests primarily in four areas: grid integration, technology validation, solar resource assessment, and balance of system development.

Not Available

2011-10-01T23:59:59.000Z

462

Portland Community College Celebrates Commissioning of Combined...  

Broader source: Energy.gov (indexed) [DOE]

Portland Community College Celebrates Commissioning of Combined Heat and Power Fuel Cell System Portland Community College Celebrates Commissioning of Combined Heat and Power Fuel...

463

Gasification Product Improvement Facility (GPIF). Final report  

SciTech Connect (OSTI)

The gasifier selected for development under this contract is an innovative and patented hybrid technology which combines the best features of both fixed-bed and fluidized-bed types. PyGas{trademark}, meaning Pyrolysis Gasification, is well suited for integration into advanced power cycles such as IGCC. It is also well matched to hot gas clean-up technologies currently in development. Unlike other gasification technologies, PyGas can be designed into both large and small scale systems. It is expected that partial repowering with PyGas could be done at a cost of electricity of only 2.78 cents/kWh, more economical than natural gas repowering. It is extremely unfortunate that Government funding for such a noble cause is becoming reduced to the point where current contracts must be canceled. The Gasification Product Improvement Facility (GPIF) project was initiated to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology at a cost approaching $1,000 per kilowatt for electric power generation applications. The project was to include an innovative, advanced, air-blown, pressurized, fixed-bed, dry-bottom gasifier and a follow-on hot metal oxide gas desulfurization sub-system. To help defray the cost of testing materials, the facility was to be located at a nearby utility coal fired generating site. The patented PyGas{trademark} technology was selected via a competitive bidding process as the candidate which best fit overall DOE objectives. The paper describes the accomplishments to date.

NONE

1995-09-01T23:59:59.000Z

464

Energy and environmental research emphasizing low-rank coal: Task 3.9 catalytic tar cracking  

SciTech Connect (OSTI)

Tar produced in the gasification of coal is deleterious to the operation of downstream equipment, including fuel cells, gas turbines, hot-gas stream cleanup filters, and pressure-swing absorption systems. Catalytic cracking of tars to smaller hydrocarbons can be an effective means of removing these tars from gas streams and, in the process, generating useful products, such as methane gas, which is crucial to operation of molten carbonate fuel cells. Aerosol tars are not readily removed from gas streams by conventional means and, as a consequence, often end up plugging filters or fouling fuel cells, turbines, or sorbents. Catalytic cracking of these tars to molecular moieties of C{sub 10} or smaller would prevent the problems commonly attributed to the tars. As an example, the moving Bourdon fixed-bed gasifier, by virtue of its efficient countercurrent heat exchange and widespread commercial use, may offer the lowest-cost integrated gasification combined-cycle (IGCC) system if tar generation and wastewater contamination can be minimized. We evaluate the potential of selected catalysts to minimize tar accumulation and maximize char conversion to useful liquid and/or gaseous products. Owing to the potential for production of extremely toxic nickel carbonyl gas, care must be exercised in the use of a NISMM catalyst for cracking tars at high temperatures in reducing atmospheres such as those produced by coal gasification. We observed a fifty percent or more of tar produced during steam gasification of Beulah lignite at temperatures of 400{degrees}-800+{degrees}C when cracked by either dolomite or zeolite maintained at a temperature of 50{degrees}C-100{degrees}C below that of the reactor.

Timpe, R.C.

1995-09-01T23:59:59.000Z

465

Carbon Dioxide Capture and Separation Techniques for Gasification-based Power Generation Point Sources  

SciTech Connect (OSTI)

The capture/separation step for carbon dioxide (CO2) from large-point sources is a critical one with respect to the technical feasibility and cost of the overall carbon sequestration scenario. For large-point sources, such as those found in power generation, the carbon dioxide capture techniques being investigated by the in-house research area of the National Energy Technology Laboratory possess the potential for improved efficiency and reduced costs as compared to more conventional technologies. The investigated techniques can have wide applications, but the research has focused on capture/separation of carbon dioxide from flue gas (post-combustion from fossil fuel-fired combustors) and from fuel gas (precombustion, such as integrated gasification combined cycle or IGCC). With respect to fuel gas applications, novel concepts are being developed in wet scrubbing with physical absorption; chemical absorption with solid sorbents; and separation by membranes. In one concept, a wet scrubbing technique is being investigated that uses a physical solvent process to remove CO2 from fuel gas of an IGCC system at elevated temperature and pressure. The need to define an ideal solvent has led to the study of the solubility and mass transfer properties of various solvents. Pertaining to another separation technology, fabrication techniques and mechanistic studies for membranes separating CO2 from the fuel gas produced by coal gasification are also being performed. Membranes that consist of CO2-philic ionic liquids encapsulated into a polymeric substrate have been investigated for permeability and selectivity. Finally, dry, regenerable processes based on sorbents are additional techniques for CO2 capture from fuel gas. An overview of these novel techniques is presented along with a research progress status of technologies related to membranes and physical solvents.

Pennline, H.W.; Luebke, D.R.; Jones, K.L.; Morsi, B.I. (Univ. of Pittsburgh, PA); Heintz, Y.J. (Univ. of Pittsburgh, PA); Ilconich, J.B. (Parsons)

2007-06-01T23:59:59.000Z

466

Carbon dioxide capture and separation techniques for advanced power generation point sources  

SciTech Connect (OSTI)

The capture/separation step for carbon dioxide (CO2) from large-point sources is a critical one with respect to the technical feasibility and cost of the overall carbon sequestration scenario. For large-point sources, such as those found in power generation, the carbon dioxide capture techniques being investigated by the in-house research area of the National Energy Technology Laboratory possess the potential for improved efficiency and costs as compared to more conventional technologies. The investigated techniques can have wide applications, but the research has focused on capture/separation of carbon dioxide from flue gas (postcombustion from fossil fuel-fired combustors) and from fuel gas (precombustion, such as integrated gasification combined cycle – IGCC). With respect to fuel gas applications, novel concepts are being developed in wet scrubbing with physical absorption; chemical absorption with solid sorbents; and separation by membranes. In one concept, a wet scrubbing technique is being investigated that uses a physical solvent process to remove CO2 from fuel gas of an IGCC system at elevated temperature and pressure. The need to define an ideal solvent has led to the study of the solubility and mass transfer properties of various solvents. Fabrication techniques and mechanistic studies for hybrid membranes separating CO2 from the fuel gas produced by coal gasification are also being performed. Membranes that consist of CO2-philic silanes incorporated into an alumina support or ionic liquids encapsulated into a polymeric substrate have been investigated for permeability and selectivity. An overview of two novel techniques is presented along with a research progress status of each technology.

Pennline, H.W.; Luebke, D.R.; Morsi, B.I.; Heintz, Y.J.; Jones, K.L.; Ilconich, J.B.

2006-09-01T23:59:59.000Z

467

Cooperative Research in C1 Chemistry  

SciTech Connect (OSTI)

C1 chemistry refers to the conversion of simple carbon-containing materials that contain one carbon atom per molecule into valuable products. The feedstocks for C1 chemistry include natural gas, carbon dioxide, carbon monoxide, methanol and synthesis gas (a mixture of carbon monoxide and hydrogen). Synthesis gas, or syngas, is produced primarily by the reaction of natural gas, which is principally methane, with steam. It can also be produced by gasification of coal, petroleum coke, or biomass. The availability of syngas from coal gasification is expected to increase significantly in the future because of increasing development of integrated gasification combined cycle (IGCC) power generation. Because of the abundance of remote natural gas, the advent of IGCC, and environmental advantages, C1 chemistry is expected to become a major area of interest for the transportation fuel and chemical industries in the relatively near future. The CFFLS will therefore perform a valuable national service by providing science and engineering graduates that are trained in this important area. Syngas is the source of most hydrogen. Approximately 10 trillion standard cubic feet (SCF) of hydrogen are manufactured annually in the world. Most of this hydrogen is currently used for the production of ammonia and in a variety of refining and chemical operations. However, utilization of hydrogen in fuel cells is expected to grow significantly in the next century. Syngas is also the feedstock for all methanol and Fischer-Tropsch plants. Currently, world consumption of methanol is over 25 million tons per year. There are many methanol plants in the U.S. and throughout the world. Methanol and oxygenated transportation fuel products play a significant role in the CFFLS C1 program. Currently, the only commercial Fischer-Tropsch plants are overseas, principally in South Africa (SASOL). However, new plants are being built or planned for a number of locations. One possible location for future F-T plant development in the U.S. is in the Alaskan oil fields.

Gerald P. Huffman

2000-10-27T23:59:59.000Z

468

PEV Integration with Renewables (Presentation)  

SciTech Connect (OSTI)

This presentation discusses current research at NREL on integrating plug-in electric vehicles with the grid and using renewable energy to charge the grid. The Electric Vehicle Grid Integration (EVGI) and Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) are addressing the opportunities and technical requirements for vehicle grid integration that will increase marketability and lead to greater petroleum reduction.

Markel, T.

2014-06-18T23:59:59.000Z

469

Pipeline integrity programs help optimize resources  

SciTech Connect (OSTI)

Natural Gas Pipeline Co. of America has developed an integrity program. NGPL operates approximately 13,000 miles of large-diameter parallel gas pipelines, which extend from traditional supply areas to the Chicago area. Line Number 1, the 24-in. Amarillo-to-Chicago mainline, was built in 1931, and parts of it are still in operation today. More than 85% of the NGPL systems is more than 25 years old, and continues to provide very reliable service. The company operated for many years with specialized crews dedicated to pipeline systems, and a corrosion department. Under this organization, employees developed an intimate knowledge of the pipeline and related integrity issues. NGPL relied on this knowledge to develop its integrity program. The risk assessment program is a very valuable tool for identifying areas that may need remedial work. However, it is composed of many subjective evaluations and cannot predict failure nor ensure good performance. The program is an excellent data management tool that enables a pipeline operator to combine all available information needed to make integrity decisions. The integrity of a pipeline is continually changing, and any program should be updated on a regular basis.

Dusek, P.J. (Natural Gas Pipeline Co. of America, Lombard, IL (United States))

1994-03-01T23:59:59.000Z

470

Gap and stripline combined monitor  

DOE Patents [OSTI]

A combined gap and stripline monitor device for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchrotron radiation facility is disclosed. The monitor has first and second beam pipe portions with an axial gap therebetween. An outer pipe cooperates with the first beam pipe portion to form a gap enclosure, while inner strips cooperate with the first beam pipe portion to form a stripline monitor, with the stripline length being the same as the gap enclosure length. 4 figs.

Yin, Y.

1986-08-19T23:59:59.000Z

471

Combined neutron reflectometry and rheology  

E-Print Network [OSTI]

We have combined neutron reflectometry with rheology in order to investigate the solid boundary of liquids and polymers under shear deformation. Our approach allows one to apply a controlled stress to a material while resolving the structural arrangements on the sub nanometer length scale with neutron reflectivity, off-specular and small angle scattering at the same time. The specularly reflected neutron intensity of a 20 % by weight solution of the Pluronic F127 in deuterated water is evaluated. We find pronounced changes in the near interface structure under applied deformation for surfaces with different surface energies, which are correlated with changes in the storage and loss modulus.

Max Wolff; Peter Kuhns; Georg Liesche; John F. Ankner; Jim F. Browning; Philipp Gutfreund

2013-04-18T23:59:59.000Z

472

Combination process for upgrading naphtha  

SciTech Connect (OSTI)

A straight-run naphtha is fractionated at about 66/sup 0/C, which is just below the boiling point of methylcyclopentane. The 66/sup 0/C+ fraction is reformed, and at least a portion of the reformate combined with the 66/sup 0/C- fraction and reacted under aromatization conditions over a zsm-5-type catalyst to form a C5+ product rich in aromatics. The C5+ aromaticized product and the remaining reformate can be either sent for BTx recovery or used as a high-octane component of a gasoline blending pool.

Hughes, T.R.; Miller, S.J.

1980-02-26T23:59:59.000Z

473

Economic development through biomass system integration: Volume 1  

SciTech Connect (OSTI)

This report documents a feasibility study for an integrated biomass power system, where an energy crop (alfalfa) is the feedstock for a processing plant and a power plant (integrated gasification combined cycle) in a way that benefits the facility owners. Chapters describe alfalfa basics, production risks, production economics, transportation and storage, processing, products, market analysis, business analysis, environmental impact, and policy issues. 69 figs., 63 tabs.

DeLong, M.M. [Northern States Power Co., Minneapolis, MN (United States)

1995-10-01T23:59:59.000Z

474

Combined Retrieval, Microphysical Retrievals and Heating Rates  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Microphysical retrievals and heating rates from the AMIE/Gan deployment using the PNNL Combined Retrieval.

Feng, Zhe

475

NREL: Distributed Grid Integration - Solar Distributed Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Distributed Grid Integration Projects Solar Distributed Grid Integration Projects NREL provides grid integration support, system-level testing, and systems analysis for DOE's Solar Distributed Grid Integration Projects supported by the SunShot Initiative. These projects address technical issues and develop solutions for high penetration grid integration of solar technologies into the electric power system to meet the following goals: Reduce cost: reduce interconnection costs by developing streamlined procedures including advanced integration models for utility interconnection of photovoltaics (PV) Reduce market barriers: work with utilities and system integrators to reduce market barriers by providing research on impacts of integration of high penetration of PV systems and developing solutions.

476

The Advanced Microgrid: Integration and Integration and Interoperabili...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Microgrid: Integration and Integration and Interoperability (March 2014) This white paper provides a synopsis of many elements of microgrid component technologies and...

477

Wellbore Integrity Network  

SciTech Connect (OSTI)

In this presentation, we review the current state of knowledge on wellbore integrity as developed in the IEA Greenhouse Gas Programme's Wellbore Integrity Network. Wells are one of the primary risks to the successful implementation of CO{sub 2} storage programs. Experimental studies show that wellbore materials react with CO{sub 2} (carbonation of cement and corrosion of steel) but the impact on zonal isolation is unclear. Field studies of wells in CO{sub 2}-bearing fields show that CO{sub 2} does migrate external to casing. However, rates and amounts of CO{sub 2} have not been quantified. At the decade time scale, wellbore integrity is driven by construction quality and geomechanical processes. Over longer time-scales (> 100 years), chemical processes (cement degradation and corrosion) become more important, but competing geomechanical processes may preserve wellbore integrity.

Carey, James W. [Los Alamos National Laboratory; Bachu, Stefan [Alberta Innovates

2012-06-21T23:59:59.000Z

478

Energy Systems Integration  

Broader source: Energy.gov [DOE]

Presentation—given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers the National Renewable Energy Laboratory's Energy Systems Integration Facility (ESIF) and its capabilities.

479

Discrete Hamiltonian variational integrators  

Science Journals Connector (OSTI)

......Journal of Numerical Analysis (2011) 31, 1497-1532 doi:10.1093/imanum/drq027 Advance Access publication on March 17, 2011 Discrete Hamiltonian variational integrators MELVIN LEOK Department of Mathematics, University of California, San......

Melvin Leok; Jingjing Zhang

2011-10-01T23:59:59.000Z

480

Enabling Processes and Integration  

Science Journals Connector (OSTI)

Integrating a process on a chip requires a thorough and, throughout the development cycle, continuous understanding of how it will be applied. This includes the definition of a set of required components, comp...

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated coal-gasification combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Integrable quantum mappings  

Science Journals Connector (OSTI)

A quantum R-matrix structure is presented for a family of exactly integrable multidimensional rational mappings