Sample records for integrated coal gasification

  1. Integrated Coal Gasification Power Plant Credit (Kansas)

    Broader source: Energy.gov [DOE]

    Integrated Coal Gasification Power Plant Credit states that an income taxpayer that makes a qualified investment in a new integrated coal gasification power plant or in the expansion of an existing...

  2. Coal Integrated Gasification Fuel Cell System Study

    SciTech Connect (OSTI)

    Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

    2004-01-31T23:59:59.000Z

    This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

  3. Coal gasification-based integrated coproduction energy facilities

    SciTech Connect (OSTI)

    Baumann, P.D. (InterFact, Inc., Dallas, TX (US)); Epstein, M. (Electric Power Research Inst., Palo Alto, CA (United States)); Kern, E.E. (Houston Lighting and Power Co., TX (United States))

    1992-01-01T23:59:59.000Z

    Coal gasification has been a technological reality for over a half century, being first used in great detail in Europe as an alternative to petroleum. Several projects in the US in the last decade have led to the commercial demonstration and verification of the coal gasification process. This paper reports that, in an effort to reduce the cost of electricity from an Integrated Gasification Combined Cycle Plant, the Electric Power Research Institute embarked in a program to research, evaluate and potentially demonstrate a coal gasification-based integrated coproduction energy facility, and release an RFP in mid 1990 as Phase I of that program. Houston Lighting and Power Company responded with a proposal in its ongoing effort to study emerging technologies for electricity production. HL and P recognized the opportunities available to them in coproduction because of their close proximity to the world's largest petrochemical complex located on the Houston Ship Channel.

  4. Coal Integrated Gasification Fuel Cell System Study

    SciTech Connect (OSTI)

    Gregory Wotzak; Chellappa Balan; Faress Rahman; Nguyen Minh

    2003-08-01T23:59:59.000Z

    The pre-baseline configuration for an Integrated Gasification Fuel Cell (IGFC) system has been developed. This case uses current gasification, clean-up, gas turbine, and bottoming cycle technologies together with projected large planar Solid Oxide Fuel Cell (SOFC) technology. This pre-baseline case will be used as a basis for identifying the critical factors impacting system performance and the major technical challenges in implementing such systems. Top-level system requirements were used as the criteria to evaluate and down select alternative sub-systems. The top choice subsystems were subsequently integrated to form the pre-baseline case. The down-selected pre-baseline case includes a British Gas Lurgi (BGL) gasification and cleanup sub-system integrated with a GE Power Systems 6FA+e gas turbine and the Hybrid Power Generation Systems planar Solid Oxide Fuel Cell (SOFC) sub-system. The overall efficiency of this system is estimated to be 43.0%. The system efficiency of the pre-baseline system provides a benchmark level for further optimization efforts in this program.

  5. Integrated coal cleaning, liquefaction, and gasification process

    DOE Patents [OSTI]

    Chervenak, Michael C. (Pennington, NJ)

    1980-01-01T23:59:59.000Z

    Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.

  6. Supercritical Pulverized Coal and Integrated Gasification Combined...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cost and Performance Baseline for Fossil Energy Plants Supplement: Sensitivity to CO 2 Capture Rate in Coal-Fired Power Plants June 22, 2015 DOENETL-20151720 OFFICE OF FOSSIL...

  7. Autothermal coal gasification

    SciTech Connect (OSTI)

    Konkol. W.; Ruprecht, P.; Cornils, B.; Duerrfeld, R.; Langhoff, J.

    1982-03-01T23:59:59.000Z

    Test data from the Ruhrchemie/Ruhrkohle Texaco coal gasification demonstration plant at Oberhausen are reported. (5 refs.)

  8. Coal Gasification for Power Generation, 3. edition

    SciTech Connect (OSTI)

    NONE

    2007-11-15T23:59:59.000Z

    The report provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered include: an overview of Coal Generation including its history, the current market environment, and the status of coal gasification; a description of gasification technology including processes and systems; an analysis of the key business factors that are driving increased interest in coal gasification; an analysis of the barriers that are hindering the implementation of coal gasification projects; a discussion of Integrated Gasification Combined Cycle (IGCC) technology; an evaluation of IGCC versus other generation technologies; a discussion of IGCC project development options; a discussion of the key government initiatives supporting IGCC development; profiles of the key gasification technology companies participating in the IGCC market; and, a detailed description of existing and planned coal IGCC projects.

  9. Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    On February 22, 1988, DOE issued Program Opportunity Notice (PON) Number-DE-PS01-88FE61530 for Round II of the CCT Program. The purpose of the PON was to solicit proposals to conduct cost-shared ICCT projects to demonstrate technologies that are capable of being commercialized in the 1990s, that are more cost-effective than current technologies, and that are capable of achieving significant reduction of SO[sub 2] and/or NO[sub x] emissions from existing coal burning facilities, particularly those that contribute to transboundary and interstate pollution. The Combustion Engineering (C-E) Integrated Coal Gasification Combined Cycle (IGCC) Repowering Project was one of 16 proposals selected by DOE for negotiation of cost-shared federal funding support from among the 55 proposals that were received in response to the PON. The ICCT Program has developed a three-level strategy for complying with the National Environmental Policy Act (NEPA) that is consistent with the President's Council on Environmental Quality regulations implementing NEPA (40 CFR 1500-1508) and the DOE guidelines for compliance with NEPA (10 CFR 1021). The strategy includes the consideration of programmatic and project-specific environmental impacts during and subsequent to the reject selection process.

  10. The Caterpillar Coal Gasification Facility 

    E-Print Network [OSTI]

    Welsh, J.; Coffeen, W. G., III

    1983-01-01T23:59:59.000Z

    This paper is a review of one of America's premier coal gasification installations. The caterpillar coal gasification facility located in York, Pennsylvania is an award winning facility. The plant was recognized as the 'pace setter plant of the year...

  11. CoalFleet RD&D augmentation plan for integrated gasification combined cycle (IGCC) power plants

    SciTech Connect (OSTI)

    NONE

    2007-01-15T23:59:59.000Z

    To help accelerate the development, demonstration, and market introduction of integrated gasification combined cycle (IGCC) and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiative, which facilitates collaborative research by more than 50 organizations from around the world representing power generators, equipment suppliers and engineering design and construction firms, the U.S. Department of Energy, and others. This group advised EPRI as it evaluated more than 120 coal-gasification-related research projects worldwide to identify gaps or critical-path activities where additional resources and expertise could hasten the market introduction of IGCC advances. The resulting 'IGCC RD&D Augmentation Plan' describes such opportunities and how they could be addressed, for both IGCC plants to be built in the near term (by 2012-15) and over the longer term (2015-25), when demand for new electric generating capacity is expected to soar. For the near term, EPRI recommends 19 projects that could reduce the levelized cost-of-electricity for IGCC to the level of today's conventional pulverized-coal power plants with supercritical steam conditions and state-of-the-art environmental controls. For the long term, EPRI's recommended projects could reduce the levelized cost of an IGCC plant capturing 90% of the CO{sub 2} produced from the carbon in coal (for safe storage away from the atmosphere) to the level of today's IGCC plants without CO{sub 2} capture. EPRI's CoalFleet for Tomorrow program is also preparing a companion RD&D augmentation plan for advanced-combustion-based (i.e., non-gasification) clean coal technologies (Report 1013221). 7 refs., 30 figs., 29 tabs., 4 apps.

  12. Underground coal gasification. Presentations

    SciTech Connect (OSTI)

    NONE

    2007-07-01T23:59:59.000Z

    The 8 presentations are: underground coal gasification (UCG) and the possibilities for carbon management (J. Friedmann); comparing the economics of UCG with surface gasification technologies (E. Redman); Eskom develops UCG technology project (C. Gross); development and future of UCG in the Asian region (L. Walker); economically developing vast deep Powder River Basin coals with UCG (S. Morzenti); effectively managing UCG environmental issues (E. Burton); demonstrating modelling complexity of environmental risk management; and UCG research at the University of Queensland, Australia (A.Y. Klimenko).

  13. Opportunities in underground coal gasification

    SciTech Connect (OSTI)

    Bloomstran, M.A.; Davis, B.E.

    1984-06-01T23:59:59.000Z

    A review is presented of the results obtained on DOE-sponsored field tests of underground coal gasification in steeply-dipping beds at Rawlins, Wyoming. The coal gas composition, process parameters, and process economics are described. Steeply-dipping coal resources, which are not economically mineable using conventional coal mining methods, are identified and potential markets for underground coal gasification products are discussed. It is concluded that in-situ gasification in steeply-dipping deposits should be considered for commercialization.

  14. Coal-Biomass Feed and Gasification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal-Biomass Feed and Gasification The Coal-Biomass Feed and Gasification Key Technology is advancing scientific knowledge of the production of liquid hydrocarbon fuels from coal...

  15. PNNL Coal Gasification Research

    SciTech Connect (OSTI)

    Reid, Douglas J.; Cabe, James E.; Bearden, Mark D.

    2010-07-28T23:59:59.000Z

    This report explains the goals of PNNL in relation to coal gasification research. The long-term intent of this effort is to produce a syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in materials, catalysts, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for 4 hours using coal feedstock. In addition, system modifications to increase operational flexibility and reliability or accommodate other fuel sources that can be used for syngas production could be useful.

  16. Coal Gasification and Transportation Fuels Magazine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gasification and Transportation Fuels Magazine Current Edition: Coal Gasification and Transportation Fuels Quarterly News, Vol.1, Issue 3 (Apr 2015) Archived Editions: Coal...

  17. Autothermal coal gasification

    SciTech Connect (OSTI)

    Konkol, W.; Ruprecht, P.; Cornils, B.; Duerrfeld, R.; Langhoff, J.

    1982-03-01T23:59:59.000Z

    This paper presents test results of a pilot plant study of coal gasification system based on the process developed by Texaco. This process has been improved by the project partners Ruhrchenie A.G. and Ruhrkohle A.C. in West Germany and tested in a demonstration plant that operated for more than 10,000 hours, converting over 50,000 tons of coal into gas. The aim was to develop a process that would be sufficiently flexible when used at the commercial level to incorporate all of the advantages inherent in the diverse processes of the 'first generation' - fixed bed, fluidized bed and entrained bed processes - but would be free of the disadvantages of these processes. Extensive test results are tabulated and evaluated. Forecast for future development is included. 5 refs.

  18. WABASH RIVER COAL GASIFICATION REPOWERING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2000-09-01T23:59:59.000Z

    The close of 1999 marked the completion of the Demonstration Period of the Wabash River Coal Gasification Repowering Project. This Final Report summarizes the engineering and construction phases and details the learning experiences from the first four years of commercial operation that made up the Demonstration Period under Department of Energy (DOE) Cooperative Agreement DE-FC21-92MC29310. This 262 MWe project is a joint venture of Global Energy Inc. (Global acquired Destec Energy's gasification assets from Dynegy in 1999) and PSI Energy, a part of Cinergy Corp. The Joint Venture was formed to participate in the Department of Energy's Clean Coal Technology (CCT) program and to demonstrate coal gasification repowering of an existing generating unit impacted by the Clean Air Act Amendments. The participants jointly developed, separately designed, constructed, own, and are now operating an integrated coal gasification combined-cycle power plant, using Global Energy's E-Gas{trademark} technology (E-Gas{trademark} is the name given to the former Destec technology developed by Dow, Destec, and Dynegy). The E-Gas{trademark} process is integrated with a new General Electric 7FA combustion turbine generator and a heat recovery steam generator in the repowering of a 1950's-vintage Westinghouse steam turbine generator using some pre-existing coal handling facilities, interconnections, and other auxiliaries. The gasification facility utilizes local high sulfur coals (up to 5.9% sulfur) and produces synthetic gas (syngas), sulfur and slag by-products. The Project has the distinction of being the largest single train coal gasification combined-cycle plant in the Western Hemisphere and is the cleanest coal-fired plant of any type in the world. The Project was the first of the CCT integrated gasification combined-cycle (IGCC) projects to achieve commercial operation.

  19. Coal gasification vessel

    DOE Patents [OSTI]

    Loo, Billy W. (Oakland, CA)

    1982-01-01T23:59:59.000Z

    A vessel system (10) comprises an outer shell (14) of carbon fibers held in a binder, a coolant circulation mechanism (16) and control mechanism (42) and an inner shell (46) comprised of a refractory material and is of light weight and capable of withstanding the extreme temperature and pressure environment of, for example, a coal gasification process. The control mechanism (42) can be computer controlled and can be used to monitor and modulate the coolant which is provided through the circulation mechanism (16) for cooling and protecting the carbon fiber and outer shell (14). The control mechanism (42) is also used to locate any isolated hot spots which may occur through the local disintegration of the inner refractory shell (46).

  20. The Caterpillar Coal Gasification Facility

    E-Print Network [OSTI]

    Welsh, J.; Coffeen, W. G., III

    1983-01-01T23:59:59.000Z

    ' in 1981 and won the 'energy conservation award' for 1983. The decision to install and operate a coal gasification plant was based on severe natural gas curtailments at York with continuing supply interruptions. This paper will present a detailed...

  1. Beluga Coal Gasification - ISER

    SciTech Connect (OSTI)

    Steve Colt

    2008-12-31T23:59:59.000Z

    ISER was requested to conduct an economic analysis of a possible 'Cook Inlet Syngas Pipeline'. The economic analysis was incorporated as section 7.4 of the larger report titled: 'Beluga Coal Gasification Feasibility Study, DOE/NETL-2006/1248, Phase 2 Final Report, October 2006, for Subtask 41817.333.01.01'. The pipeline would carry CO{sub 2} and N{sub 2}-H{sub 2} from a synthetic gas plant on the western side of Cook Inlet to Agrium's facility. The economic analysis determined that the net present value of the total capital and operating lifecycle costs for the pipeline ranges from $318 to $588 million. The greatest contributor to this spread is the cost of electricity, which ranges from $0.05 to $0.10/kWh in this analysis. The financial analysis shows that the delivery cost of gas may range from $0.33 to $0.55/Mcf in the first year depending primarily on the price for electricity.

  2. Wabash River coal gasification repowering project: Public design report

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    The Wabash River Coal Gasification Repowering Project (the Project), conceived in October of 1990 and selected by the US Department of Energy as a Clean Coal IV demonstration project in September 1991, is expected to begin commercial operations in August of 1995. The Participants, Destec Energy, Inc., (Destec) of Houston, Texas and PSI Energy, Inc., (PSI) of Plainfield, Indiana, formed the Wabash River Coal Gasification Repowering Project Joint Venture (the JV) to participate in the DOE`s Clean Coal Technology (CCT) program by demonstrating the coal gasification repowering of an existing 1950`s vintage generating unit affected by the Clean Air Act Amendments (CAAA). The Participants, acting through the JV, signed the Cooperative Agreement with the DOE in July 1992. The Participants jointly developed, and separately designed, constructed, own, and will operate an integrated coal gasification combined cycle (CGCC) power plant using Destec`s coal gasification technology to repower Unit {number_sign}1 at PSI`s Wabash River Generating Station located in Terre Haute, Indiana. PSI is responsible for the new power generation facilities and modification of the existing unit, while Destec is responsible for the coal gasification plant. The Project demonstrates integration of the pre-existing steam turbine generator, auxiliaries, and coal handling facilities with a new combustion turbine generator/heat recovery steam generator tandem and the coal gasification facilities.

  3. ENCOAL Mild Coal Gasification Project

    SciTech Connect (OSTI)

    Not Available

    1992-02-01T23:59:59.000Z

    ENCOAL Corporation, a wholly-owned subsidiary of Shell Mining Company, is constructing a mild gasification demonstration plant at Triton Coal Company's Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by Shell and SGI International, utilizes low-sulfur Powder River Basin Coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). The products, as alternative fuels sources, are expected to significantly reduce current sulfur emissions at industrial and utility boiler sites throughout the nation, thereby reducing pollutants causing acid rain.

  4. Underground coal gasification: environmental update

    SciTech Connect (OSTI)

    Dockter, L.; Mcternan, E.M.

    1985-01-01T23:59:59.000Z

    To evaluate the potential for ground water contamination by underground coal gasification, extensive postburn groundwater monitoring programs are being continued at two test sites in Wyoming. An overview of the environmental concerns related to UCG and some results to date on the two field sites are presented in this report.

  5. Coal gasification for power generation. 2nd ed.

    SciTech Connect (OSTI)

    NONE

    2006-10-15T23:59:59.000Z

    The report gives an overview of the opportunities for coal gasification in the power generation industry. It provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered in the report include: An overview of coal generation including its history, the current market environment, and the status of coal gasification; A description of gasification technology including processes and systems; An analysis of the key business factors that are driving increased interest in coal gasification; An analysis of the barriers that are hindering the implementation of coal gasification projects; A discussion of Integrated Gasification Combined Cycle (IGCC) technology; An evaluation of IGCC versus other generation technologies; A discussion of IGCC project development options; A discussion of the key government initiatives supporting IGCC development; Profiles of the key gasification technology companies participating in the IGCC market; and A description of existing and planned coal IGCC projects.

  6. Coal gasification apparatus

    DOE Patents [OSTI]

    Nagy, Charles K. (Monaca, PA)

    1982-01-01T23:59:59.000Z

    Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

  7. Geosphere in underground coal gasification

    SciTech Connect (OSTI)

    Daly, D.J.; Groenewold, G.H.; Schmit, C.R.; Evans, J.M.

    1988-07-01T23:59:59.000Z

    The feasibility of underground coal gasification (UCG), the in-situ conversion of coal to natural gas, has been demonstrated through 28 tests in the US alone, mainly in low-rank coals, since the early 1970s. Further, UCG is currently entering the commercial phase in the US with a planned facility in Wyoming for the production of ammonia-urea from UCG-generated natural gas. Although the UCG process both affects and is affected by the natural setting, the majority of the test efforts have historically been focused on characterizing those aspects of the natural setting with the potential to affect the burn. With the advent of environmental legislation, this focus broadened to include the potential impacts of the process on the environment (e.g., subsidence, degradation of ground water quality). Experience to date has resulted in the growing recognition that consideration of the geosphere is fundamental to the design of efficient, economical, and environmentally acceptable UCG facilities. The ongoing RM-1 test program near Hanna, Wyoming, sponsored by the US Department of Energy and an industry consortium led by the Gas Research Institute, reflects this growing awareness through a multidisciplinary research effort, involving geoscientists and engineers, which includes (1) detailed geological site characterization, (2) geotechnical, hydrogeological, and geochemical characterization and predictive modeling, and (3) a strategy for ground water protection. Continued progress toward commercialization of the UCG process requires the integration of geological and process-test information in order to identify and address the potentially adverse environmental ramifications of the process, while identifying and using site characteristics that have the potential to benefit the process and minimize adverse impacts.

  8. Coal gasification 2006: roadmap to commercialization

    SciTech Connect (OSTI)

    NONE

    2006-05-15T23:59:59.000Z

    Surging oil and gas prices, combined with supply security and environmental concerns, are prompting power generators and industrial firms to further develop coal gasification technologies. Coal gasification, the process of breaking down coal into its constituent chemical components prior to combustion, will permit the US to more effectively utilize its enormous, low cost coal reserves. The process facilitates lower environmental impact power generation and is becoming an increasingly attractive alternative to traditional generation techniques. The study is designed to inform the reader as to this rapidly evolving technology, its market penetration prospects and likely development. Contents include: Clear explanations of different coal gasification technologies; Emissions and efficiency comparisons with other fuels and technologies; Examples of US and global gasification projects - successes and failures; Commercial development and forecast data; Gasification projects by syngas output; Recommendations for greater market penetration and commercialization; Current and projected gasification technology market shares; and Recent developments including proposals for underground gasification process. 1 app.

  9. The suitability of coal gasification in India's energy sector

    E-Print Network [OSTI]

    Simpson, Lori Allison

    2006-01-01T23:59:59.000Z

    Integrated Gasification Combined Cycle (IGCC), an advanced coal-based power generation technology, may be an important technology to help India meet its future power needs. It has the potential to provide higher generating ...

  10. Analysis of integrating compressed air energy storage concepts with coal gasification/combined-cycle systems for continuous power production

    SciTech Connect (OSTI)

    Nakhamkin, M.; Patel, M.; Andersson, L. (Energy Storage and Power Consultants, Inc., Mountainside, NJ (United States))

    1992-12-01T23:59:59.000Z

    A previous study sponsored by EPRI concluded that integrating a compressed-air energy storage (CAES) plant with a coal-gasification system (CGS) can reduce the required capacity and cost of the expensive gasification system. The results showed that when compared at an equal plant capacity, the capital cost of the CGS portion of the integrated CAES/CGS plant can be reduced by as much as 30% relative to the same portion of an integrated gasification combined cycle (IGCC) plant. Furthermore, the capital cost of the CAES/CGS.plant, configured as a peaking unit, was found to be slightly lower than that of the base-load IGCC plant. However, the overall economics of the CAES/CGS plant were adversely affected by the low capacity factor of the peak-load service, and ultimately, were found to be less attractive than the IGCC plant. The main objective of this study was to develop and analyze integrated CAES/CGS power plant concepts which provide for continuous (around-the-clock) operation of both the CAES reheat turboexpander train and the CGS facility. The developed concepts also provide utility-load management functions by driving the CAES compressor trains with off-peak electricity supplied through the grid. EPRI contracted with Energy Storage Power Consultants, Inc. (ESPC) to develop conceptual designs, optimized performance characteristics, and preliminary cost data for these CAES/CGS concepts, and to provide a technical and cost comparison to the IGCC plant. The CAES/CGS concepts developed by ESPC for the current study contrast from those of Reference 1.

  11. Improved catalysts for carbon and coal gasification

    DOE Patents [OSTI]

    McKee, D.W.; Spiro, C.L.; Kosky, P.G.

    1984-05-25T23:59:59.000Z

    This invention relates to improved catalysts for carbon and coal gasification and improved processes for catalytic coal gasification for the production of methane. The catalyst is composed of at least two alkali metal salts and a particulate carbonaceous substrate or carrier is used. 10 figures, 2 tables.

  12. Apparatus for solar coal gasification

    DOE Patents [OSTI]

    Gregg, D.W.

    1980-08-04T23:59:59.000Z

    Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials is described. Incident solar radiation is focused from an array of heliostats through a window onto the surface of a moving bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called synthesis gas, which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam in one embodiment at the rear surface of a secondary mirror used to redirect the focused sunlight. Another novel feature of the invention is the location and arrangement of the array of mirrors on an inclined surface (e.g., a hillside) to provide for direct optical communication of said mirrors and the carbonaceous feed without a secondary redirecting mirror.

  13. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    coal (PC) or integrated gasification combined cycle ( IGCC)coal (PC) or integrated gasification combined cycle (IGCC)will be integrated gasification combined cycle (IGCC) (Same

  14. Plasma gasification of coal in different oxidants

    SciTech Connect (OSTI)

    Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B. [Applied Plasma Technology, Mclean, VA (USA)

    2008-12-15T23:59:59.000Z

    Oxidant selection is the highest priority for advanced coal gasification-process development. This paper presents comparative analysis of the Powder River Basin bituminous-coal gasification processes for entrained-flow plasma gasifier. Several oxidants, which might be employed for perspective commercial applications, have been chosen, including air, steam/carbon-dioxide blend, carbon dioxide, steam, steam/air, steam/oxygen, and oxygen. Synthesis gas composition, carbon gasification degree, specific power consumptions, and power efficiency for these processes were determined. The influence of the selected oxidant composition on the gasification-process main characteristics have been investigated.

  15. NETL: Coal Gasification Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLoveReferenceAgenda Workshop AgendaGraphic of a

  16. Apparatus for fixed bed coal gasification

    DOE Patents [OSTI]

    Sadowski, Richard S. (Greenville, SC)

    1992-01-01T23:59:59.000Z

    An apparatus for fixed-bed coal gasification is described in which coal such as caking coal is continuously pyrolyzed with clump formation inhibited, by combining the coal with a combustible gas and an oxidant, and then continually feeding the pyrolyzed coal under pressure and elevated temperature into the gasification region of a pressure vessel. The materials in the pressure vessel are allowed to react with the gasifying agents in order to allow the carbon contents of the pyrolyzed coal to be completely oxidized. The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

  17. Underground coal gasification simulation. Final report

    SciTech Connect (OSTI)

    Gunn, R.D.

    1984-07-01T23:59:59.000Z

    The underground coal gasification (UCG) process - both forward gasification and reverse combustion linkage - was mathematically modeled. The models were validated with field and laboratory data. They were then used to explain some important UCG phenomena that had not been predictable with other methods. Some views on the UCG technology status are also presented. 3 references, 25 figures, 10 tables.

  18. Analyzing organic sulfur in coal/char: Integrated mild gasification/XANES methods. Technical report, 1 March--31 May 1994

    SciTech Connect (OSTI)

    Palmer, S.R. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mechanical Engineering and Energy Processes; Huffman, G.P. [Kentucky Univ., Lexington, KY (United States)

    1994-09-01T23:59:59.000Z

    The overall goal of this study is to improve the understanding of sulfur in coals/chars via the use of combined advanced non-destructive and advanced destructive methods of sulfur analysis. This study combines selective oxidation, analytical pyrolysis, and sulfur X-ray Absorption Near Edge Structure Spectroscopy (XANES) analysis. Samples with a wide variety of sulfur contents, (0.63% to 4.40%) have been prepared for use in this study. This includes steam gasification chars, oxidized coals and desulfurized coals as well of the original unaltered coals. Mild pyrolysis and preliminary XANES data shows that the sulfur chemistry of gasification chars is significantly different from that of the original coals. Mild pyrolysis of the samples that were oxidized with peroxyacetic acid showed that the level of simple thiophene structures observed in the pyrolysis products declines with increasing levels of oxidation. Sulfur XANES spectra of treated samples showed various effects depending on the treatment severity. For the less severely treated samples (demineralization and solvent extraction), the XANES spectra were similar, although not identical, to the untreated coal spectra, whereas the more severe treatments (steam at 450 C; peroxyacetic acid at 25 C) showed preferential oxidation of one or more sulfur-bearing phases in the original coal. Additional samples have recently been examined by XANES and W-band EPR and the data is currently being processed and evaluated.

  19. Underground Coal Gasification at Tennessee Colony 

    E-Print Network [OSTI]

    Garrard, C. W.

    1979-01-01T23:59:59.000Z

    The Tennessee Colony In Situ Coal Gasification Project conducted by Basic Resources Inc. is the most recent step in Texas Utilities Company's ongoing research into the utilization of Texas lignite. The project, an application of the Soviet...

  20. The Role of Oxygen in Coal Gasification 

    E-Print Network [OSTI]

    Klosek, J.; Smith, A. R.; Solomon, J.

    1986-01-01T23:59:59.000Z

    Air Products supplies oxygen to a number of coal gasification and partial oxidation facilities worldwide. At the high operating pressures of these processes, economics favor the use of 90% and higher oxygen purities. The effect of inerts...

  1. Underground Coal Gasification at Tennessee Colony

    E-Print Network [OSTI]

    Garrard, C. W.

    1979-01-01T23:59:59.000Z

    The Tennessee Colony In Situ Coal Gasification Project conducted by Basic Resources Inc. is the most recent step in Texas Utilities Company's ongoing research into the utilization of Texas lignite. The project, an application of the Soviet...

  2. Catalysts for carbon and coal gasification

    DOE Patents [OSTI]

    McKee, Douglas W. (Burnt Hills, NY); Spiro, Clifford L. (Scotia, NY); Kosky, Philip G. (Schenectady, NY)

    1985-01-01T23:59:59.000Z

    Catalyst for the production of methane from carbon and/or coal by means of catalytic gasification. The catalyst compostion containing at least two alkali metal salts. A particulate carbonaceous substrate or carrier is used.

  3. Production of Hydrogen from Underground Coal Gasification

    DOE Patents [OSTI]

    Upadhye, Ravindra S. (Pleasanton, CA)

    2008-10-07T23:59:59.000Z

    A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

  4. Water pollution control for underground coal gasification

    SciTech Connect (OSTI)

    Humenick, M.J.

    1984-06-01T23:59:59.000Z

    Water pollution arising from underground gasification of coal is one of the important considerations in the eventual commercialization of the process. Because many coal seams which are amenable to in situ gasification are also ground-water aquifers, contaminants may be released to these ground waters during and after gasification. Also, when product gas is processed above ground for use, wastewater streams are generated which are too polluted to be discharged. The purpose of this paper is to characterize the nature of the groundwater and above-ground pollutants, discuss the potential long and short-term effects on ground water, propose control and restoration strategies, and to identify potential wastewater treatment schemes.

  5. Underground coal gasification using oxygen and steam

    SciTech Connect (OSTI)

    Yang, L.H.; Zhang, X.; Liu, S. [China University of Mining & Technology, Xuzhou (China)

    2009-07-01T23:59:59.000Z

    In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

  6. Materials performance in coal gasification pilot plants

    SciTech Connect (OSTI)

    Judkins, R.R.; Bradley, R.A.

    1987-10-15T23:59:59.000Z

    This paper presents the results of several materials testing projects which were conducted in operating coal gasification pilot plants in the United States. These projects were designed to test potential materials of construction for commercial plants under actual operating conditions. Pilot plants included in the overall test program included the Hygas, Conoco Coal, Synthane, Bi-Gas, Peatgas (Hygas operating with peat), Battelle, U-Gas, Westinghouse (now KRW), General Electric (Gegas), and Mountain Fuel Resources plants. Test results for a large variety of alloys are discussed and conclusions regarding applicability of these materials in coal gasification environments are presented. 14 refs., 2 tabs.

  7. Coal properties and system operating parameters for underground coal gasification

    SciTech Connect (OSTI)

    Yang, L. [China University of Mining & Technology, Xuzhou (China)

    2008-07-01T23:59:59.000Z

    Through the model experiment for underground coal gasification, the influence of the properties for gasification agent and gasification methods on underground coal gasifier performance were studied. The results showed that pulsating gasification, to some extent, could improve gas quality, whereas steam gasification led to the production of high heating value gas. Oxygen-enriched air and backflow gasification failed to improve the quality of the outlet gas remarkably, but they could heighten the temperature of the gasifier quickly. According to the experiment data, the longitudinal average gasification rate along the direction of the channel in the gasifying seams was 1.212 m/d, with transverse average gasification rate 0.069 m/d. Experiment indicated that, for the oxygen-enriched steam gasification, when the steam/oxygen ratio was 2:1, gas compositions remained stable, with H{sub 2} + CO content virtually standing between 60% and 70% and O{sub 2} content below 0.5%. The general regularities of the development of the temperature field within the underground gasifier and the reasons for the changes of gas quality were also analyzed. The 'autopneumatolysis' and methanization reaction existing in the underground gasification process were first proposed.

  8. Short Communication Catalytic coal gasification: use of calcium versus potassium*

    E-Print Network [OSTI]

    Short Communication Catalytic coal gasification: use of calcium versus potassium* Ljubisa R of calcium is related to its sintering via crystallite growth. (Keywords: coal; gasification; catalysis was to study the relative merits (or liabilities) of these two catalysts in coal char gasification. This work

  9. The Public Perceptions of Underground Coal Gasification (UCG)

    E-Print Network [OSTI]

    Watson, Andrew

    The Public Perceptions of Underground Coal Gasification (UCG): A Pilot Study Simon Shackley #12;The Public Perceptions of Underground Coal Gasification (UCG): A Pilot Study Dr Simon Shackley of Underground Coal Gasification (UCG) in the United Kingdom. The objectives were to identify the main dangers

  10. Fluidized bed catalytic coal gasification process

    DOE Patents [OSTI]

    Euker, Jr., Charles A. (15163 Dianna La., Houston, TX 77062); Wesselhoft, Robert D. (120 Caldwell, Baytown, TX 77520); Dunkleman, John J. (3704 Autumn La., Baytown, TX 77520); Aquino, Dolores C. (15142 McConn, Webster, TX 77598); Gouker, Toby R. (5413 Rocksprings Dr., LaPorte, TX 77571)

    1984-01-01T23:59:59.000Z

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents (16) are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50.degree. C. and 250.degree. C. in an oxidation zone (24) and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone (44) at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  11. Process for fixed bed coal gasification

    DOE Patents [OSTI]

    Sadowski, Richard S. (Greenville, SC)

    1992-01-01T23:59:59.000Z

    The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

  12. Investigation of plasma-aided bituminous coal gasification

    SciTech Connect (OSTI)

    Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B. [Applied Plasma Technology, Mclean, VA (United States)

    2009-04-15T23:59:59.000Z

    This paper presents thermodynamic and kinetic modeling of plasma-aided bituminous coal gasification. Distributions of concentrations, temperatures, and velocities of the gasification products along the gasifier are calculated. Carbon gasification degree, specific power consumptions, and heat engineering characteristics of synthesis gas at the outlet of the gasifier are determined at plasma air/steam and oxygen/steam gasification of Powder River Basin bituminous coal. Numerical simulation showed that the plasma oxygen/steam gasification of coal is a more preferable process in comparison with the plasma air/steam coal gasification. On the numerical experiments, a plasma vortex fuel reformer is designed.

  13. Underground coal gasification product quality parameters

    SciTech Connect (OSTI)

    Bruggink, P.R.; Davis, B.E.

    1981-01-01T23:59:59.000Z

    A simplified model is described which will indicate the economic value of the raw product gas from an experimental underground coal gasification test on a real-time basis in order to aid in the optimization of the process during the course of the test. The model relates the properties of the product gas and the injection gas to the cost of producing each of five potential commercial products. This model was utilized to evaluate data during the Gulf-DOE underground coal gasification test at Rawlins, Wyoming in the fall of 1981. 6 refs.

  14. Development of an Integrated Multi-Contaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems

    SciTech Connect (OSTI)

    Howard Meyer

    2010-11-30T23:59:59.000Z

    This project met the objective to further the development of an integrated multi-contaminant removal process in which H2S, NH3, HCl and heavy metals including Hg, As, Se and Cd present in the coal-derived syngas can be removed to specified levels in a single/integrated process step. The process supports the mission and goals of the Department of Energyâ??s Gasification Technologies Program, namely to enhance the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of gasification-based processes. The gasification program will reduce equipment costs, improve process environmental performance, and increase process reliability and flexibility. Two sulfur conversion concepts were tested in the laboratory under this project, i.e., the solventbased, high-pressure University of California Sulfur Recovery Process â?? High Pressure (UCSRP-HP) and the catalytic-based, direct oxidation (DO) section of the CrystaSulf-DO process. Each process required a polishing unit to meet the ultra-clean sulfur content goals of <50 ppbv (parts per billion by volume) as may be necessary for fuel cells or chemical production applications. UCSRP-HP was also tested for the removal of trace, non-sulfur contaminants, including ammonia, hydrogen chloride, and heavy metals. A bench-scale unit was commissioned and limited testing was performed with simulated syngas. Aspen-Plus®-based computer simulation models were prepared and the economics of the UCSRP-HP and CrystaSulf-DO processes were evaluated for a nominal 500 MWe, coal-based, IGCC power plant with carbon capture. This report covers the progress on the UCSRP-HP technology development and the CrystaSulf-DO technology.

  15. Apparatus and method for solar coal gasification

    DOE Patents [OSTI]

    Gregg, David W. (Moraga, CA)

    1980-01-01T23:59:59.000Z

    Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials. Incident solar radiation is focused from an array of heliostats onto a tower-mounted secondary mirror which redirects the focused solar radiation down through a window onto the surface of a vertically-moving bed of coal, or a fluidized bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called "synthesis gas", which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam at the rear surface of the secondary mirror.

  16. Optimum Design of Coal Gasification Plants

    E-Print Network [OSTI]

    Pohani, B. P.; Ray, H. P.; Wen, H.

    1982-01-01T23:59:59.000Z

    This paper deals with the optimum design of heat recovery systems using the Texaco Coal Gasification Process (TCGP). TCGP uses an entrained type gasifier and produces hot gases at approximately 2500oF with high heat flux. This heat is removed...

  17. Optimum Design of Coal Gasification Plants 

    E-Print Network [OSTI]

    Pohani, B. P.; Ray, H. P.; Wen, H.

    1982-01-01T23:59:59.000Z

    This paper deals with the optimum design of heat recovery systems using the Texaco Coal Gasification Process (TCGP). TCGP uses an entrained type gasifier and produces hot gases at approximately 2500oF with high heat flux. This heat is removed...

  18. Fixed-bed gasification research using US coals. Volume 7. Gasification of Piney Tipple bituminous coal

    SciTech Connect (OSTI)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01T23:59:59.000Z

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the seventh volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Piney Tipple bituminous coal. The period of the gasification test was July 18-24, 1983. 6 refs., 20 figs., 17 tabs.

  19. Integrated Sensing and Controls for Coal Gasification - Development of Model-Based Controls for GE's Gasifier and Syngas Cooler

    SciTech Connect (OSTI)

    Aditya Kumar

    2010-12-30T23:59:59.000Z

    This report summarizes the achievements and final results of this program. The objective of this program is to develop a comprehensive systems approach to integrated design of sensing and control systems for an Integrated Gasification Combined Cycle (IGCC) plant, using advanced model-based techniques. In particular, this program is focused on the model-based sensing and control system design for the core gasification section of an IGCC plant. The overall approach consists of (i) developing a first-principles physics-based dynamic model of the gasification section, (ii) performing model-reduction where needed to derive low-order models suitable for controls analysis and design, (iii) developing a sensing system solution combining online sensors with model-based estimation for important process variables not measured directly, and (iv) optimizing the steady-state and transient operation of the plant for normal operation as well as for startup using model predictive controls (MPC). Initially, available process unit models were implemented in a common platform using Matlab/Simulink{reg_sign}, and appropriate model reduction and model updates were performed to obtain the overall gasification section dynamic model. Also, a set of sensor packages were developed through extensive lab testing and implemented in the Tampa Electric Company IGCC plant at Polk power station in 2009, to measure temperature and strain in the radiant syngas cooler (RSC). Plant operation data was also used to validate the overall gasification section model. The overall dynamic model was then used to develop a sensing solution including a set of online sensors coupled with model-based estimation using nonlinear extended Kalman filter (EKF). Its performance in terms of estimating key unmeasured variables like gasifier temperature, carbon conversion, etc., was studied through extensive simulations in the presence sensing errors (noise and bias) and modeling errors (e.g. unknown gasifier kinetics, RSC fouling). In parallel, an MPC solution was initially developed using ideal sensing to optimize the plant operation during startup pre-heating as well as steady state and transient operation under normal high-pressure conditions, e.g. part-load, base-load, load transition and fuel changes. The MPC simulation studies showed significant improvements both for startup pre-heating and for normal operation. Finally, the EKF and MPC solutions were coupled to achieve the integrated sensing and control solution and its performance was studied through extensive steady state and transient simulations in the presence of sensor and modeling errors. The results of each task in the program and overall conclusions are summarized in this final report.

  20. Methodology for technology evaluation under uncertainty and its application in advanced coal gasification processes

    E-Print Network [OSTI]

    Gong, Bo, Ph. D. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    Integrated gasification combined cycle (IGCC) technology has attracted interest as a cleaner alternative to conventional coal-fired power generation processes. While a number of pilot projects have been launched to ...

  1. ENCOAL mild coal gasification project. Annual report

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    This document is the combination of the fourth quarter report (July--September 1993) and the 1993 annual report for the ENCOAL project. The following pages include the background and process description for the project, brief summaries of the accomplishments for the first three quarters, and a detailed fourth quarter report. Its purpose is to convey the accomplishments and current progress of the project. ENCOAL Corporation, has completed the construction of a mild gasification demonstration plant at Triton Coal Company`s Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by SMC and SGI International, utilizes low-sulfur Powder River Basin coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). ENCOAL submitted an application to the US Department of Energy (DOE) in August 1989, soliciting joint funding of the project in the third round of the Clean Coal Technology Program. The project was selected by DOE in December, 1989 and the Cooperative Agreement approved in September, 1990. Construction, commissioning, and start-up of the ENCOAL mild coal gasification facility was completed in June of 1992, and the project is currently in the operations phase. Some plant modifications have been required and are discussed in this report.

  2. Wabash River Coal Gasification Repowering Project. Topical report, July 1992--December 1993

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The Wabash River Coal Gasification Repowering Project (WRCGRP, or Wabash Project) is a joint venture of Destec Energy, Inc. of Houston, Texas and PSI Energy, Inc. of Plainfield, Indiana, who will jointly repower an existing 1950 vintage coal-fired steam generating plant with coal gasification combined cycle technology. The Project is located in West Terre Haute, Indiana at PSI`s existing Wabash River Generating Station. The Project will process locally-mined Indiana high-sulfur coal to produce 262 megawatts of electricity. PSI and Destec are participating in the Department of Energy Clean Coal Technology Program to demonstrate coal gasification repowering of an existing generating unit affected by the Clean Air Act Amendments. As a Clean Coal Round IV selection, the project will demonstrate integration of an existing PSI steam turbine generator and auxiliaries, a new combustion turbine generator, heat recovery steam generator tandem, and a coal gasification facility to achieve improved efficiency, reduced emissions, and reduced installation costs. Upon completion in 1995, the Project will not only represent the largest coal gasification combined cycle power plant in the United States, but will also emit lower emissions than other high sulfur coal-fired power plants and will result in a heat rate improvement of approximately 20% over the existing plant configuration. As of the end of December 1993, construction work is approximately 20% complete for the gasification portion of the Project and 25% complete for the power generation portion.

  3. Fluidized bed gasification of extracted coal

    DOE Patents [OSTI]

    Aquino, D.C.; DaPrato, P.L.; Gouker, T.R.; Knoer, P.

    1984-07-06T23:59:59.000Z

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone with an aqueous solution having a pH above 12.0 at a temperature between 65/sup 0/C and 110/sup 0/C for a period of time sufficient to remove bitumens from the coal into said aqueous solution, and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m/sup 3/. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step. 2 figs., 1 tab.

  4. Fluidized bed gasification of extracted coal

    DOE Patents [OSTI]

    Aquino, Dolores C. (Houston, TX); DaPrato, Philip L. (Westfield, NJ); Gouker, Toby R. (Baton Rouge, LA); Knoer, Peter (Houston, TX)

    1986-01-01T23:59:59.000Z

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.

  5. Environmental effects of in situ coal gasification

    SciTech Connect (OSTI)

    Humenick, M.J.; Edgar, T.F.; Charbeneau, R.J.

    1983-01-01T23:59:59.000Z

    An assessment of avialable engineering, geological and operating data on underground coal gasification indicates that this process can cause significant air and water pollution and land subsidence. Of the possible impacts, groundwater pollution is the most serious. Modeling studies and large-scale field tests are needed to determine the long-term fate of pollutants and the degree of restoration required before UCG can become a commercial process.

  6. Fluidized bed injection assembly for coal gasification

    DOE Patents [OSTI]

    Cherish, Peter (Bethel Park, PA); Salvador, Louis A. (Hempfield Township, Westmoreland County, PA)

    1981-01-01T23:59:59.000Z

    A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

  7. Status of health and environmental research relative to coal gasification 1976 to the present

    SciTech Connect (OSTI)

    Wilzbach, K.E.; Reilly, C.A. Jr. (comps.)

    1982-10-01T23:59:59.000Z

    Health and environmental research relative to coal gasification conducted by Argonne National Laboratory, the Inhalation Toxicology Research Institute, and Oak Ridge National Laboratory under DOE sponsorship is summarized. The studies have focused on the chemical and toxicological characterization of materials from a range of process streams in five bench-scale, pilot-plant and industrial gasifiers. They also address ecological effects, industrial hygiene, environmental control technology performance, and risk assessment. Following an overview of coal gasification technology and related environmental concerns, integrated summaries of the studies and results in each area are presented and conclusions are drawn. Needed health and environmental research relative to coal gasification is identified.

  8. Fixed-bed gasification research using US coals. Volume 9. Gasification of Elkhorn bituminous coal

    SciTech Connect (OSTI)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01T23:59:59.000Z

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the ninth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Elkhorn bituminous coal. The period of gasificastion test was September 13 to October 12, 1983. 9 refs., 24 figs., 35 tabs.

  9. Hanna, Wyoming underground coal gasification field test series

    SciTech Connect (OSTI)

    Bartke, T.C.; Gunn, R.D.

    1983-01-01T23:59:59.000Z

    The six in situ coal gasification field tests conducted by LETC near Hanna, WY, demonstrated typical gasification rates of 100 tons/day for continuous operation of about 30 days. Featuring high coal recovery and high product-gas calorific values, the underground process proved to be simple, reliable, and potentially controllable.

  10. The Hanna, Wyoming, underground coal gasification field test series

    SciTech Connect (OSTI)

    Bartke, T.C.; Gunn, R.D.

    1983-01-01T23:59:59.000Z

    Six field tests of in-situ coal gasification have been conducted by the Department of Energy's Laramie Energy Technology Center Near Hanna, Wyoming with typical gasification rates of 100 tons of coal per day for continuous operation of about 30 days. This paper presents an overview of the Hanna field tests.

  11. Method for increasing steam decomposition in a coal gasification process

    DOE Patents [OSTI]

    Wilson, M.W.

    1987-03-23T23:59:59.000Z

    The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water- splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

  12. Method for increasing steam decomposition in a coal gasification process

    DOE Patents [OSTI]

    Wilson, Marvin W. (Fairview, WV)

    1988-01-01T23:59:59.000Z

    The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water-splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

  13. Flow characteristics in underground coal gasification

    SciTech Connect (OSTI)

    Chang, H.L.; Himmelblau, D.M.; Edgar, T.F.

    1982-01-01T23:59:59.000Z

    During the underground coal gasification field test at the Hoe Creek site No. 2, Wyoming, helium pulses were introduced to develop information to characterize the flow field, and to estimate the coefficients in dispersion models of the flow. Quantitative analysis of the tracer response curves shows an increasing departure from a plug flow regime with time because of the combined effects of the free and forced convection in addition to the complex non-uniformity of the flow field. The Peclet number was a function of temperature, pressure, gas recovery and characteristic velocity, as well as the split of the gas between the parallel streams in the model. 17 refs.

  14. Hydrogen Production: Coal Gasification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContamination Detectorof EnergyCoal Gasification Hydrogen

  15. "Integrated Gasification Combined Cycle"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nuclear","X" "Biomass" " - Pulverized Coal",,,"X" " - Fuel Preparation",,"X" "Geothermal ",,"X" "Municipal Solid WasteLandfill Gas",,,"X" "Conventional Hydroelectric",,,"X"...

  16. A Texas project illustrates the benefits of integrated gasification

    SciTech Connect (OSTI)

    Philcox, J. [Praxair Inc., Houston, TX (United States); Fenner, G.W. [Praxair Inc., Tonawanda, NY (United States)

    1997-07-14T23:59:59.000Z

    Gasification can be an attractive option for converting a variety of petroleum feedstocks to chemicals. Natural gas is commonly sued to produce acetic acid, isocyanates, plastics, and fibers. But low-cost, bottom-of-the-barrel feeds, such as vacuum resid, petroleum coke, and asphaltenes, also can be used. In any case, gasification products include synthesis gas, carbon monoxide, hydrogen, steam, carbon dioxide, and power. The more a gasification facility is integrated with utilities and other non-core operations of a production complex, the more economical the products are for all consumers. The paper discusses gasification of natural gas, light hydrocarbons (ethane, propanes, and butanes), and heavy hydrocarbons (distillates, heavy residues, asphalts, coals, petroleum coke). The paper then describes a Texas City Gasification Project, which gasifies methane to produce carbon monoxide, hydrogen, and alcohol. The plant is integrated with a cogeneration plant. Economics are discussed.

  17. Fixed-bed gasification research using US coals. Volume 2. Gasification of Jetson bituminous coal

    SciTech Connect (OSTI)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-03-31T23:59:59.000Z

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report describes the gasification testing of Jetson bituminous coal. This Western Kentucky coal was gasified during an initial 8-day and subsequent 5-day period. Material flows and compositions are reported along with material and energy balances. Operational experience is also described. 4 refs., 24 figs., 17 tabs.

  18. Underground coal gasification: A near-term alternate fuel

    SciTech Connect (OSTI)

    Avasthi, J.; Singleton, A.M.

    1984-06-01T23:59:59.000Z

    Since the beginning of this century underground coal gasification has been considered as an alternative to mining as a means of utilizing the coal resources not recoverable by conventional methods. The energy crunch of the seventies gave a new impetus to it, and several tests were conducted in the U.S. to demonstrate the feasibility of this method in both horizontal and steeply dipping coal resources. Gulf Research and Development Company has conducted two successful underground coal gasification tests near Rawlins, Wyoming, in steeply dipping coal beds. The results of these tests indicate that the present state of the art is advanced enough for utilization of this technique for commercial purposes. A right combination of resource, consumer, and economic factors will dictate future commercialization of underground coal gasification for the U.S. coal resources.

  19. High-pressure gasification of Montana subbituminous coal

    SciTech Connect (OSTI)

    Goyal, A.; Bryan, B.; Rehmat, A.

    1991-01-01T23:59:59.000Z

    A data base for the fluidized-bed gasification of different coals at elevated pressures has been developed at the Institute of Gas Technology (IGT) with different ranks of coal at pressures up to 450 psig and at temperatures dictated by the individual coals. Adequate data have been obtained to characterize the effect of pressure on the gasification of Montana Rosebud subbituminous coal and North Dakota lignite. The results obtained with Montana Rosebud subbituminous coal are presented here. This program was funded by the Gas Research Institute. 9 refs., 10 figs., 3 tabs.

  20. Is Integrated Gasification Combined Cycle with Carbon Capture-Storage the Solution for Conventional Coal Power Plants

    E-Print Network [OSTI]

    Kundi, Manish

    2011-12-16T23:59:59.000Z

    in the sulfur recovery process. Therefore, the fuel gas produced is virtually free of fuel- bound nitrogen. By maintaining a low fuel-air ratio (lean combustion) and adding a diluent (e.g., nitrogen from the air separation unit or steam), the flame temperature... includes two trains of air separation units, two operating gasification trains, a single acid gas removal train, two combustion turbines and Heat Recovery Steam Generation (HRSG)’s and a single reheat steam turbine(Booras and Holt 2004). The gasification...

  1. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    SciTech Connect (OSTI)

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-12-01T23:59:59.000Z

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

  2. LLNL Capabilities in Underground Coal Gasification

    SciTech Connect (OSTI)

    Friedmann, S J; Burton, E; Upadhye, R

    2006-06-07T23:59:59.000Z

    Underground coal gasification (UCG) has received renewed interest as a potential technology for producing hydrogen at a competitive price particularly in Europe and China. The Lawrence Livermore National Laboratory (LLNL) played a leading role in this field and continues to do so. It conducted UCG field tests in the nineteen-seventies and -eighties resulting in a number of publications culminating in a UCG model published in 1989. LLNL successfully employed the ''Controlled Retraction Injection Point'' (CRIP) method in some of the Rocky Mountain field tests near Hanna, Wyoming. This method, shown schematically in Fig.1, uses a horizontally-drilled lined injection well where the lining can be penetrated at different locations for injection of the O{sub 2}/steam mixture. The cavity in the coal seam therefore gets longer as the injection point is retracted as well as wider due to reaction of the coal wall with the hot gases. Rubble generated from the collapsing wall is an important mechanism studied by Britten and Thorsness.

  3. Program for large-scale underground-coal-gasification tests

    SciTech Connect (OSTI)

    Hammesfahr, F.W.; Winter, P.L.

    1982-11-01T23:59:59.000Z

    The continuing development of underground coal gasification technology requires extended multi-module field programs in which the output gas is linked to surface usage. This effort was to appraise whether existing surface facilities in the utility, petroleum refinery, or natural gas industries could be used to reduce the cost of such an extended multi-module test and whether regional demand in areas having underground coal gasification coal resources could support the manufacture of transportation fuels from underground coal gasification gases. To limit the effort to a reasonable level but yet to permit a fair test of the concept, effort was focused on five states, Illinois, New Mexico, Texas, Washington, and Wyoming, which have good underground coal gasification reserves. Studies of plant distribution located 25 potential sites within 3 miles of the underground coal gasification amenable reserves in the five states. Distribution was 44% to utilities, 44% to refineries, and 12% to gas processing facilities. The concept that existing surface facilities, currently or potentially gas-capable, might contribute to the development of underground coal gasification technology by providing a low cost industrial application for the gas produced in a multi-module test appears valid. To further test the concept, three industries were reviewed in depth. These were the electric utility, natural gas, and petroleum industries. When looking at a fuel substitution of the type proposed, each industry had its special perspective. These are discussed in detail in the report.

  4. Biological treatment of underground coal gasification wastewaters

    SciTech Connect (OSTI)

    Bryant, C.W. Jr.; Humenick, M.J.; Cawein, C.C.; Nolan, B.T. III

    1985-05-01T23:59:59.000Z

    Biotreatability studies using underground coal gasification (UCG) wastewaters were performed by the University of Arizona and the University of Wyoming. The University of Arizona researchers found that UCG condensate could be effectively treated by activated sludge, using feed wastewaters of up to 50% strength. Total organic carbon (TOC) and chemical oxygen demand (COD) removals approached 90% during this research. The University of Wyoming researchers found that solvent extraction and hot-gas stripping were effective pretreatments for undiluted UCG condensate and that addition of powdered activated carbon enhanced the biotreatment process. TOC and COD removals resulting from the combination of pretreatments and biotreatment were 91% and 95%, respectively. The yield, decay, and substrate removal rate coefficients were greater in the University of Wyoming study than in the University of Arizona study. This was possibly caused by removing bioinhibitory substances, such as ammonia, with pretreatment. 18 refs., 25 figs., 6 tabs.

  5. Rocky Mountain 1 Underground Coal Gasification Project

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    The Rocky Mountain 1 Underground Coal Gasification Test or Burn was conducted from approximately mid-November, 1987 through February, 1988. After the burn the project began proceeding with the following overall tasks: venting, flushing and cooling of the cavities; subsurface or groundwater cleanup; post-burn coring and drilling; groundwater monitoring, and site restoration/reclamation. By the beginning of 1991 field activities associated with venting, flushing and cooling of the cavities and post-burn coring and drilling had been completed. However, data analysis continued including the University of North Dakota analyzing drilling and coring data, and the US Department of Energy (DOE)/EG G developing a chronological listing of project events.

  6. Flow characteristics in underground coal gasification

    SciTech Connect (OSTI)

    Chang, H.L.; Himmelblau, D.M.; Edgar, T.F.

    1982-01-01T23:59:59.000Z

    During the Hoe Creek No. 2 (Wyoming) underground-coal-gasification field test, researchers introduced helium pulses to characterize the flow field and to estimate the coefficients in dispersion models of the flow. Flow models such as the axial-dispersion and parallel tanks-in-series models allowed interpretation of the in situ combustion flow field from the residence time distribution of the tracer gas. A quantitative analysis of the Hoe Creek tracer response curves revealed an increasing departure from a plug-flow regime with time, which was due to the combined effects of the free and forced convection in addition to the complex nonuniformity of the flow field. The Peclet number was a function of temperature, pressure, gas recovery, and characteristic velocity, as well as the split of the gas between the parallel streams in the model.

  7. Environmental Permitting of a Low-BTU Coal Gasification Facility

    E-Print Network [OSTI]

    Murawczyk, C.; Stewart, J. T.

    1983-01-01T23:59:59.000Z

    that merits serious consideration since only relatively small modifications to the existing oil or gas burner system may be required, and boiler derating can be minimized. The environmental permitting and planning process for a low-Btu coal gasification...

  8. Environmental Permitting of a Low-BTU Coal Gasification Facility 

    E-Print Network [OSTI]

    Murawczyk, C.; Stewart, J. T.

    1983-01-01T23:59:59.000Z

    that merits serious consideration since only relatively small modifications to the existing oil or gas burner system may be required, and boiler derating can be minimized. The environmental permitting and planning process for a low-Btu coal gasification...

  9. EIS-0409: Kemper County Integrated Gasification Combined Cycle Project, Mississippi

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to provide funding for the Kemper County Integrated Gasification Combined Cycle Project in Kemper County, Mississippi to assess the potential environmental impacts associated with the construction and operation of a project proposed by Southern Power Company, through its affiliate Mississippi Power Company, which has been selected by DOE for consideration under the Clean Coal Power Initiative (CCPI) program.

  10. Mathematical model of the pyrolysis and gasification of coal

    SciTech Connect (OSTI)

    Kalinenko, R.A.; Levitskii, A.A.; Mirokhin, Yu.A.; Polak, L.S.

    1987-12-01T23:59:59.000Z

    A kinetic model of the pyrolysis and gasification of coal at moderate (1100-1300 K) and high (2000-3000 K) temperatures, which includes reactions resulting in the release of volatile substances and their further conversions and takes into account the processes of heat and mass transfer, has been developed. A calculation of the composition of the gasification products of brown coals on the basis of the model has displayed good agreement with experimental data.

  11. Summary report: Trace substance emissions from a coal-fired gasification plant

    SciTech Connect (OSTI)

    Williams, A.; Wetherold, B.; Maxwell, D.

    1996-10-16T23:59:59.000Z

    The U.S. Department of Energy (DOE), the Electric Power Research Institute (EPRI), and Louisiana Gasification Technology Inc. (LGTI) sponsored field sampling and analyses to characterize emissions of trace substances from LGTI`s integrated gasification combined cycle (IGCC) power plant at Plaquemine, Louisiana. The results indicate that emissions from the LGTI facility were quite low, often in the ppb levels, and comparable to a well-controlled pulverized coal-fired power plant.

  12. Influence of pressure on coal pyrolysis and char gasification

    SciTech Connect (OSTI)

    Haiping Yang; Hanping Chen; Fudong Ju; Rong Yan; Shihong Zhang [Huazhong University of Science and Technology, Wuhan (China). State Key Laboratory of Coal Combustion

    2007-12-15T23:59:59.000Z

    Coal char structure varied greatly with pyrolysis pressure, which has a significant influence on the gasification reactivity. In this study, the influence of pressure on the behavior of coal pyrolysis and physicochemical structure and gasification characteristics of the resultant coal char was investigated using a pressurized thermogravimetric analyzer combined with an ambient thermogravimetric analyzer. First, the pyrolysis of Shenfu (SF) bituminous coal was performed in a pressurized thermogravimetric analyzer (TGA) at different pressures (0.1, 0.8, 1.5, 3, and 5 MPa). The volatile mainly evolved out at 400-800{sup o}C. The gas products are mainly CO{sub 2}, CO, CH{sub 4}, and light aliphatics with some water. It was observed that the pyrolysis of coal was shifted to lower temperature (50{sup o}C) with pressure increasing from ambient to 5 MPa, and the devolatilization rate of coal pyrolysis was decreased and the coal char yield was increased slightly. The structure of solid coal char was analyzed using FTIR, ASAP2020, and CNHS. In the solid char, the main organic functional groups are mainly CO, C-C (alkane), C-H ar, C-O-C, and C=C ar. The carbon content was increased while H content decreased. Finally, the gasification of the solid char was preformed at ambient pressure with CO{sub 2} as gasify agent. The gasification process of coal char can be divided into postpyrolysis and char gasification. Higher pressure accelerated the initial stage of char gasification, and higher gasification reactivity was observed for char derived at 5 MPa. 23 refs., 8 figs., 5 tabs.

  13. Underground coal gasification: a brief review of current status

    SciTech Connect (OSTI)

    Shafirovich, E.; Varma, A. [Purdue University, West Lafayette, IN (United States). School of Chemical Engineering

    2009-09-15T23:59:59.000Z

    Coal gasification is a promising option for the future use of coal. Similarly to gasification in industrial reactors, underground coal gasification (UCG) produces syngas, which can be used for power generation or for the production of liquid hydrocarbon fuels and other valuable chemical products. As compared with conventional mining and surface gasification, UCG promises lower capital/operating costs and also has other advantages, such as no human labor underground. In addition, UCG has the potential to be linked with carbon capture and sequestration. The increasing demand for energy, depletion of oil and gas resources, and threat of global climate change lead to growing interest in UCG throughout the world. In this article, we review the current status of this technology, focusing on recent developments in various countries.

  14. Solar coal gasification reactor with pyrolysis gas recycle

    DOE Patents [OSTI]

    Aiman, William R. (Livermore, CA); Gregg, David W. (Morago, CA)

    1983-01-01T23:59:59.000Z

    Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

  15. A sweep efficiency model for underground coal gasification

    SciTech Connect (OSTI)

    Chang, H.L.; Edgar, T.F.; Himmelblau, D.M.

    1985-01-01T23:59:59.000Z

    A new model to predict sweep efficiency for underground coal gasification (UCG) has been developed. The model is based on flow through rubble in the cavity as well as through the open channel and uses a tanks-in-series model for the flow characteristics. The model can predict cavity growth and product gas composition given the rate of water influx, roof collapse, and spalling. Self-gasification of coal is taken into account in the model, and the coal consumption rate and the location of the flame front are determined by material and energy balances at the char surface. The model has been used to predict the results of the Hoe Creek III field tests (for the air gasification period). Predictions made by the model such as cavity shape, product gas composition, temperature profile, and overall reaction stoichiometry between the injected oxygen and the coal show reasonable agreement with the field test results.

  16. Pressurized pyrolysis and gasification of Chinese typical coal samples

    SciTech Connect (OSTI)

    Hanping Chen; Zhiwu Luo; Haiping Yang; Fudong Ju; Shihong Zhang [Huazhong University of Science and Technology, Wuhan (China). State Key Laboratory of Coal Combustion

    2008-03-15T23:59:59.000Z

    This paper aims to understand the pyrolysis and gasification behavior of different Chinese coal samples at different pressures. First, the pyrolysis of four typical Chinese coals samples (Xiaolongtan brown coal, Shenfu bituminous coal, Pingzhai anthracite coal, and Heshan lean coal) were carried out using a pressurized thermogravimetric analyzer at ambient pressure and 3 MPa, respectively. The surface structure and elemental component of the resultant char were measured with an automated gas adsorption apparatus and element analyzer. It was observed that higher pressure suppressed the primary pyrolysis, while the secondary pyrolysis of coal particles was promoted. With respect to the resultant solid char, the carbon content increased while H content decreased; however, the pore structure varied greatly with increasing pressure for different coal samples. For Xiaolongtan brown coal (XLT) char, it decreased greatly, while it increased obviously for the other three char types. Then, the isothermal gasification behavior of solid char particles was investigated using an ambient thermal analyzer with CO{sub 2} as the gasifying agent at 1000{sup o}C. The gasification reactivity of solid char was decreased greatly with increasing pyrolysis pressure. However, the extent of change displayed a vital relation with the characteristics of the original coal sample. 26 refs., 5 figs., 5 tabs.

  17. In-situ coal-gasification data look promising

    SciTech Connect (OSTI)

    Not Available

    1980-07-21T23:59:59.000Z

    According to a report given at the 6th Underground Coal Conversion Symposium (Afton, Oklahoma 1980), the Hoe Creek No. 3 underground coal-gasification experiments Oil Gas J. 77 sponsored by the U.S. Department of Energy and the Gas Research Institute and directed by the University of California Lawrence Livermore Laboratory demonstrated the feasibility of in-situ coal conversion and featured the use of a directionally drilled channel to connect the injection and production wells rather than the reverse-burn ordinarily used to produce the connecting channel. In the test, 2816 cu m of coal weighing (APPROX) 4200 tons was consumed, with (APPROX) 18% of the product gas escaping through the overburden or elsewhere. When air injection was used, the average heating value was 217 Btu/std cu ft. The average thermal efficiency of the burn was 65%, and the average gas composition was 35% hydrogen, 5% methane, 11% carbon monoxide, and 44% carbon dioxide. Subsidence occurred after completion of the test. The Uniwell gasification method, scheduled for use in the final experiment in the Deep-1 series of underground coal-gasification tests in Wyoming, seeks to prevent subsidence by use of concentric pipes which are inserted into the vertical well to control the combustion zone. Underground coal-gasification prospects and the mechanics of subsidence are discussed.

  18. Diffusion Coatings for Corrosion Resistant Components in Coal Gasification Systems

    SciTech Connect (OSTI)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

    2005-01-01T23:59:59.000Z

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve its resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this reporting period we focused on getting a bench-scale test system to expose alloy coupons to simulated gasifier environment. The test facility was designed to allow about 20 specimen coupons to be exposed simultaneously for an extend period to a simulated coal gas stream at temperatures up to 1000 C. The simulated gas stream contained about 26%H{sub 2}, 39%CO, 17%CO{sub 2}, 1.4% H{sub 2}S and balance steam. We successfully ran a 100+h test with coated and uncoated stainless steel coupons. The tested alloys include SS304, SS316, SS405, SS409, SS410, and IN800. The main finding is that Ti/Ta coating provides excellent protection to SS405 under conditions where uncoated austenitic and ferritic stainless steel alloy coupons are badly corroded. Cr coatings also appear to afford some protection against corrosion.

  19. Air-blown Integrated Gasification Combined Cycle demonstration project

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    Clean Power Cogeneration, Inc. (CPC) has requested financial assistance from DOE for the design construction, and operation of a normal 1270 ton-per-day (120-MWe), air-blown integrated gasification combined-cycle (IGCC) demonstration plant. The demonstration plant would produce both power for the utility grid and steam for a nearby industrial user. The objective of the proposed project is to demonstrate air-blown, fixed-bed Integrated Gasification Combined Cycle (IGCC) technology. The integrated performance to be demonstrated will involve all the subsystems in the air-blown IGCC system to include coal feeding; a pressurized air-blown, fixed-bed gasifier capable of utilizing caking coal; a hot gas conditioning systems for removing sulfur compounds, particulates, and other contaminants as necessary to meet environmental and combustion turbine fuel requirements; a conventional combustion turbine appropriately modified to utilize low-Btu coal gas as fuel; a briquetting system for improved coal feed performance; the heat recovery steam generation system appropriately modified to accept a NO{sub x} reduction system such as the selective catalytic reduction process; the steam cycle; the IGCC control systems; and the balance of plant. The base feed stock for the project is an Illinois Basin bituminous high-sulfur coal, which is a moderately caking coal. 5 figs., 1 tab.

  20. Fixed-bed gasification research using US coals. Volume 17. Gasification and liquids recovery of four US coals

    SciTech Connect (OSTI)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-12-01T23:59:59.000Z

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and government agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the seventeenth in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This report describes the gasification and pyrolysis liquids recovery test for four different coals: Illinois No. 6, SUFCO, Indianhead lignite, and Hiawatha. This test series spanned from July 15, 1985, through July 28, 1985. 4 refs., 16 figs., 19 tabs.

  1. Coalbed methane production enhancement by underground coal gasification

    SciTech Connect (OSTI)

    Hettema, M.H.H.; Wolf, K.H.A.A.; Neumann, B.V.

    1997-12-31T23:59:59.000Z

    The sub-surface of the Netherlands is generally underlain by coal-bearing Carboniferous strata at greater depths (at many places over 1,500 m). These coal seams are generally thinner than 3 meter, occur in groups (5--15) within several hundred meters and are often fairly continuous over many square kilometers. In many cases they have endured complex burial history, influencing their methane saturation. In certain particular geological settings, a high, maximum coalbed methane saturation, may be expected. Carboniferous/Permian coals in the Tianjin-region (China) show many similarities concerning geological settings, rank and composition. Economical coalbed methane production at greater depths is often obstructed by the (very) low permeabilities of the coal seams as with increasing depth the deformation of the coal reduces both its macro-porosity (the cleat system) and microporosity. Experiments in abandoned underground mines, as well as after underground coal gasification tests indicate ways to improve the prospects for coalbed methane production in originally tight coal reservoirs. High permeability areas can be created by the application of underground coal gasification of one of the coal seams of a multi-seam cycle with some 200 meter of coal bearing strata. The gasification of one of the coal seams transforms that seam over a certain area into a highly permeable bed, consisting of coal residues, ash and (thermally altered) roof rubble. Additionally, roof collapse and subsidence will destabilize the overburden. In conjunction this will permit a better coalbed methane production from the remaining surrounding parts of the coal seams. Moreover, the effects of subsidence will influence the stress patterns around the gasified seam and this improves the permeability over certain distances in the coal seams above and below. In this paper the effects of the combined underground coal gasification and coalbed methane production technique are regarded for a single injection well. Known geotechnical aspects are combined with results from laboratory experiments on compaction of thermally treated rubble. An axi-symmetric numerical model is used to determine the effects induced by the gasified coal seam. The calculation includes the rubble formation, rubble compaction and induced stress effects in the overlying strata. Subsequently the stress effects are related to changes in coal permeability, based on experimental results of McKee et al.

  2. Process analysis and simulation of underground coal gasification

    SciTech Connect (OSTI)

    Chang, H.L.

    1984-01-01T23:59:59.000Z

    This investigation pertains to the prediction of cavity growth and the prediction of product gas composition in underground coal gasification (ICG) via mathematical model. The large-scale simulation model of the UCG process is comprised of a number of sub-models, each describing definable phenomena in the process. Considerable effort has been required in developing these sub-models, which are described in this work. In the first phase of the investigation, the flow field in field experiments was analyzed using five selected flow models and a combined model was developed based on the Hoe Creek II field experimental observations. The combined model was a modified tanks-in-series mode, and each tank consisted of a void space and a rubble zone. In the second phase of this work, a sub-model for self-gasification of coal was developed and simulated to determine the effect of water influx on the consumption of coal and whether self-gasification of coal alone was shown to be insufficient to explain the observed cavity growth. In the third phase of this work, a new sweep efficiency model was developed and coded to predict the cavity growth and product gas composition. Self-gasification of coal, water influx, and roof collapse and spalling were taken into account in the model. Predictions made by the model showed reasonable agreement with the experimental observations and calculations.

  3. Integration of stripping of fines slurry in a coking and gasification process

    DOE Patents [OSTI]

    DeGeorge, Charles W. (Chester, NJ)

    1980-01-01T23:59:59.000Z

    In an integrated fluid coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a wet scrubbing process and wherein the resulting solids-liquid slurry is stripped to remove acidic gases, the stripped vapors of the stripping zone are sent to the gas cleanup stage of the gasification product gas. The improved stripping integration is particularly useful in the combination coal liquefaction process, fluid coking of bottoms of the coal liquefaction zone and gasification of the product coke.

  4. Modeling of contaminant transport in underground coal gasification

    SciTech Connect (OSTI)

    Lanhe Yang; Xing Zhang [China University of Mining and Technology, Xuzhou (China). College of Resources and Geosciences

    2009-01-15T23:59:59.000Z

    In order to study and discuss the impact of contaminants produced from underground coal gasification on groundwater, a coupled seepage-thermodynamics-transport model for underground gasification was developed on the basis of mass and energy conservation and pollutant-transport mechanisms, the mathematical model was solved by the upstream weighted multisell balance method, and the model was calibrated and verified against the experimental site data. The experiment showed that because of the effects of temperature on the surrounding rock of the gasification panel the measured pore-water-pressure was higher than the simulated one; except for in the high temperature zone where the simulation errors of temperature, pore water pressure, and contaminant concentration were relatively high, the simulation values of the overall gasification panel were well fitted with the measured values. As the gasification experiment progressed, the influence range of temperature field expanded, the gradient of groundwater pressure decreased, and the migration velocity of pollutant increased. Eleven months and twenty months after the test, the differences between maximum and minimum water pressure were 2.4 and 1.8 MPa, respectively, and the migration velocities of contaminants were 0.24-0.38 m/d and 0.27-0.46 m/d, respectively. It was concluded that the numerical simulation of the transport process for pollutants from underground coal gasification was valid. 42 refs., 13 figs., 1 tab.

  5. Integrated gasification combined-cycle research development and demonstration activities

    SciTech Connect (OSTI)

    Ness, H.M.; Reuther, R.B.

    1995-12-01T23:59:59.000Z

    The United States Department of Energy (DOE) has selected six integrated gasification combined-cycle (IGCC) advanced power systems for demonstration in the Clean Coal Technology (CCT) Program. DOE`s Office of Fossil Energy, Morgantown Energy Technology Center, is managing a research development and demonstration (RD&D) program that supports the CCT program, and addresses long-term improvements in support of IGCC technology. This overview briefly describes the CCT projects and the supporting RD&D activities.

  6. Large-block experiments in underground coal gasification

    SciTech Connect (OSTI)

    Not Available

    1982-11-01T23:59:59.000Z

    A major objective of the nation's energy program is to develop processes for cleanly producing fuels from coal. One of the more promising of these is underground coal gasification (UCG). If successful, UCG would quadruple recoverable U.S. coal reserves. Under the sponsorship of the Department of Energy (DOE), Lawrence Livermore National Laboratory (LLNL) performed an early series of UCG field experiments from 1976 through 1979. The Hoe Creek series of tests were designed to develop the basic technology of UCG at low cost. The experiments were conducted in a 7.6-m thick subbituminous coal seam at a relatively shallow depth of 48 m at a site near Gillette, Wyoming. On the basis of the Hoe Creek results, more extensive field experiments were designed to establish the feasibility of UCG for commercial gas production under a variety of gasification conditions. Concepts and practices in UCG are described, and results of the field tests are summarized.

  7. Supercritical Pulverized Coal and Integrated Gasification Combined Cycle Partial CO2 Capture Cases - Updated Performance and Cost Effects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer.SupercomputingSuperconductivity at DawnCost

  8. Separating hydrogen from coal gasification gases with alumina membranes

    SciTech Connect (OSTI)

    Egan, B.Z. (Oak Ridge National Lab., TN (USA)); Fain, D.E.; Roettger, G.E.; White, D.E. (Oak Ridge K-25 Site, TN (USA))

    1991-01-01T23:59:59.000Z

    Synthesis gas produced in coal gasification processes contains hydrogen, along with carbon monoxide, carbon dioxide, hydrogen sulfide, water, nitrogen, and other gases, depending on the particular gasification process. Development of membrane technology to separate the hydrogen from the raw gas at the high operating temperatures and pressures near exit gas conditions would improve the efficiency of the process. Tubular porous alumina membranes with mean pore radii ranging from about 9 to 22 {Angstrom} have been fabricated and characterized. Based on hydrostatic tests, the burst strength of the membranes ranged from 800 to 1600 psig, with a mean value of about 1300 psig. These membranes were evaluated for separating hydrogen and other gases. Tests of membrane permeabilities were made with helium, nitrogen, and carbon dioxide. Measurements were made at room temperature in the pressure range of 15 to 589 psi. Selected membranes were tested further with mixed gases simulating a coal gasification product gas. 5 refs., 7 figs.

  9. Thermophysical models of underground coal gasification and FEM analysis

    SciTech Connect (OSTI)

    Yang, L.H. [China University of Mining & Technology, Xuzhou (China)

    2007-11-15T23:59:59.000Z

    In this study, mathematical models of the coupled thermohydromechanical process of coal rock mass in an underground coal gasification panel are established. Combined with the calculation example, the influence of heating effects on the observed values and simulated values for pore water pressure, stress, and displacement in the gasification panel are fully discussed and analyzed. Calculation results indicate that 38, 62, and 96 days after the experiment, the average relative errors for the calculated values and measured values for the temperature and water pressure were between 8.51-11.14% and 3-10%, respectively; with the passage of gasification time, the calculated errors for the vertical stress and horizontal stress gradually declined, but the simulated errors for the horizontal and vertical displacements both showed a rising trend. On the basis of the research results, the calculated values and the measured values agree with each other very well.

  10. EIS-0007: Low Btu Coal Gasification Facility and Industrial Park

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this environmental impact statement which evaluates the potential environmental impacts that may be associated with the construction and operation of a low-Btu coal gasification facility and the attendant industrial park in Georgetown, Scott County, Kentucky.

  11. Two-stage coal gasification and desulfurization apparatus

    DOE Patents [OSTI]

    Bissett, Larry A. (Morgantown, WV); Strickland, Larry D. (Morgantown, WV)

    1991-01-01T23:59:59.000Z

    The present invention is directed to a system which effectively integrates a two-stage, fixed-bed coal gasification arrangement with hot fuel gas desulfurization of a first stream of fuel gas from a lower stage of the two-stage gasifier and the removal of sulfur from the sulfur sorbent regeneration gas utilized in the fuel-gas desulfurization process by burning a second stream of fuel gas from the upper stage of the gasifier in a combustion device in the presence of calcium-containing material. The second stream of fuel gas is taken from above the fixed bed in the coal gasifier and is laden with ammonia, tar and sulfur values. This second stream of fuel gas is burned in the presence of excess air to provide heat energy sufficient to effect a calcium-sulfur compound forming reaction between the calcium-containing material and sulfur values carried by the regeneration gas and the second stream of fuel gas. Any ammonia values present in the fuel gas are decomposed during the combustion of the fuel gas in the combustion chamber. The substantially sulfur-free products of combustion may then be combined with the desulfurized fuel gas for providing a combustible fluid utilized for driving a prime mover.

  12. DIFFUSION COATINGS FOR CORROSION RESISTANT COMPONENTS IN COAL GASIFICATION SYSTEMS

    SciTech Connect (OSTI)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

    2005-01-01T23:59:59.000Z

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve is resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this reporting period we coated coupons of selected alloy steels with diffusion coatings of Cr and Al, as well as with titanium and tantalum nitrides. The coated samples were analyzed for their surface composition. In several instances, the samples were also cut to determine the depth profile of the coating. Several of the early runs did not yield uniform or deep enough coatings and hence a significant portion of the effort in this period was devoted fixing the problems with our fluidized bed reactor. Before the end of the quarter we had prepared a number of samples, many of them in duplicates, and sent one set to Wabash River Energy Laboratory for them to install in their gasifier. The gasifier was undergoing a scheduled maintenance and thus presented an opportunity to place some of our coupons in the stream of an operating gasifier. The samples submitted included coated and uncoated pairs of different alloys.

  13. Proceedings of the eleventh annual underground coal gasification symposium

    SciTech Connect (OSTI)

    Not Available

    1985-12-01T23:59:59.000Z

    The Eleventh Annual Underground Coal Gasification Symposium was sponsored by the Laramie Project Office of the Morgantown Energy Technology Center, US Department of Energy, and hosted by the Western Research Institute, University of Wyoming research Corporation, in Denver, Colorado, on August 11 to 14, 1985. The five-session symposium included 37 presentations describing research on underground coal gasification (UCG) being performed throughout the world. Eleven of the presentations were from foreign countries developing UCG technology for their coal resources. The papers printed in the proceedings have been reproduced from camera-ready manuscripts furnished by the authors. The papers have not been refereed, nor have they been edited extensively. All papers have been processed for inclusion in the Energy Data Base.

  14. Method for gasification of deep, thin coal seams

    DOE Patents [OSTI]

    Gregg, David W. (Moraga, CA)

    1982-01-01T23:59:59.000Z

    A method of gasification of coal in deep, thin seams by using controlled bending subsidence to confine gas flow to a region close to the unconsumed coal face. The injection point is moved sequentially around the perimeter of a coal removal area from a production well to sweep out the area to cause the controlled bending subsidence. The injection holes are drilled vertically into the coal seam through the overburden or horizontally into the seam from an exposed coal face. The method is particularly applicable to deep, thin seams found in the eastern United States and at abandoned strip mines where thin seams were surface mined into a hillside or down a modest dip until the overburden became too thick for further mining.

  15. Method for gasification of deep, thin coal seams. [DOE patent

    DOE Patents [OSTI]

    Gregg, D.W.

    1980-08-29T23:59:59.000Z

    A method of gasification of coal in deep, thin seams by using controlled bending subsidence to confine gas flow to a region close to the unconsumed coal face is given. The injection point is moved sequentially around the perimeter of a coal removal area from a production well to sweep out the area to cause the controlled bending subsidence. The injection holes are drilled vertically into the coal seam through the overburden or horizontally into the seam from an exposed coal face. The method is particularly applicable to deep, thin seams found in the eastern United States and at abandoned strip mines where thin seams were surface mined into a hillside or down a modest dip until the overburden became too thick for further mining.

  16. Combined cycle power plant incorporating coal gasification

    DOE Patents [OSTI]

    Liljedahl, Gregory N. (Tariffville, CT); Moffat, Bruce K. (Simsbury, CT)

    1981-01-01T23:59:59.000Z

    A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

  17. Underground coal gasification field experiment in the high-dipping coal seams

    SciTech Connect (OSTI)

    Yang, L.H.; Liu, S.Q.; Yu, L.; Zhang, W. [China University of Mining & Technology, Xuzhou (China). College of Resources & Geoscience

    2009-07-01T23:59:59.000Z

    In this article the experimental conditions and process of the underground gasification in the Woniushan Mine, Xuzhou, Jiangsu Province are introduced, and the experimental results are analyzed. By adopting the new method of long-channel, big-section, and two-stage underground coal gasification, the daily gas production reaches about 36,000 m{sup 3}, with the maximum output of 103,700 m{sup 3}. The daily average heating value of air gas is 5.04 MJ/m{sup 3}, with 13.57 MJ/m{sup 3} for water gas. In combustible compositions of water gas, H{sub 2} contents stand at over 50%, with both CO and CH{sub 4} contents over 6%. Experimental results show that the counter gasification can form new temperature conditions and increase the gasification efficiency of coal seams.

  18. Combustion Engineering Integrated Gasification Combined Cycle (IGCC) Repowering Project -- Clean Coal II Project. Annual report, November 20, 1990--December 31, 1991

    SciTech Connect (OSTI)

    Not Available

    1993-03-01T23:59:59.000Z

    The IGCC system will consist of CE`s air-blown, entrained-flow, two-stage, pressurized coal gasifier; an advanced hot gas cleanup process; a combustion turbine adapted to use low-Btu coal gas; and all necessary coal handling equipment. The IGCC will include CE`s slogging, entrained-flow, gasifier operating in a pressurized mode and using air as the oxidant. The hot gas will be cleaned of particulate matter (char) which is recycled back to the gasifier. After particulate removal, the product gas will be cleaned of sulfur prior to burning in a gas turbine. The proposed project includes design and demonstration of two advanced hot gas cleanup processes for removal of sulfur from the product gas of the gasifier. The primary sulfur removal method features a newly developed moving-bed zinc ferrite system downstream of the gasifier. The process data from these pilot tests is expected to be sufficient for the design of a full-scale system to be used in the proposed demonstration. A second complementary process is in situ desulfurization achieved by adding limestone or dolomite directly to the coal feed. The benefit, should such an approach prove viable, is that the downstream cleanup system could be reduced in size. In this plant, the gasifier will be producing a low-Btu gas (LBG). The LBG will be used as fuel in a standard GE gas turbine to produce power. This gas turbine will have the capability to fire LBG and natural gas (for start-up). Since firing LBG uses less air than natural gas, the gas turbine air compressor will have extra capacity. This extra compressed air will be used to pressurize the gasifier and supply the air needed in the gasification process. The plant is made of three major blocks of equipment as shown in Figure 2. They are the fuel gas island which includes the gasifier and gas cleanup, gas turbine power block, and the steam turbine block which includes the steam turbine and the HRSG.

  19. Mass balances for underground coal gasification in steeply dipping beds

    SciTech Connect (OSTI)

    Lindeman, R.; Ahner, P.; Davis, B.E.

    1980-01-01T23:59:59.000Z

    Two different mass balances were used during the recent underground coal gasification tests conducted in steeply dipping coal beds at Rawlins, Wyoming. The combination of both mass balances proved extremely useful in interpreting the test results. One mass balance which assumed char could be formed underground required the solution of 3 simultaneous equations. The assumption of no char decouples the 3 equations in the other mass balance. Both mass balance results are compared to the test data to provide an interpretation of the underground process.

  20. High frequency electromagnetic burn monitoring for underground coal gasification

    SciTech Connect (OSTI)

    Deadrick, F.J.; Hill, R.W.; Laine, E.F.

    1981-06-17T23:59:59.000Z

    This paper describes the use of high frequency electromagnetic waves to monitor an in-situ coal gasification burn process, and presents some recent results obtained with the method. Both the technique, called HFEM (high frequency electromagnetic) probing, the HFEM hardware used are described, and some of the data obtained from the LLNL Hoe Creek No. 3 underground coal gasification experiment conducted near Gillette, Wyoming are presented. HFEM was found to be very useful for monitoring the burn activity found in underground coal gasification. The technique, being a remote sensing method which does not require direct physical contact, does not suffer from burnout problems as found with thermocouples, and can continue to function even as the burn progresses on through the region of interest. While HFEM does not replace more conventional instrumentation such as thermocouples, the method does serve to provide data which is unobtainable by other means, and in so doing it complements the other data to help form a picture of what cannot be seen underground.

  1. Rawlins UCG (underground coal gasification) Demonstration Project site characterization report

    SciTech Connect (OSTI)

    Not Available

    1989-04-01T23:59:59.000Z

    The US Department of Energy and Energy International, Inc. have entered into a Cooperative Agreement to conduct a cost-shared UCG field test demonstrating the operation of commercial scale underground coal gasification (UCG) on steeply dipping bed modules to provide synthesis gas for a small scale commercial ammonia plant. The field test and the commercial ammonia plant will be located at the North Knobs site near Rawlins, Wyoming. During this demonstration test, two or more UCG modules will be operated simultaneously until one module is completely consumed and an additional module is brought on line. During this period, the average coal gasification rate will be between 500 and 1200 tons per day. A portion of the raw UCG product gas will be cleaned and converted into a synthesis gas, which will be used as feedstock to a 400--500 ton per day ammonia plant. The UCG facility will continue to operate subsequent to the test demonstration to provide feedstock for the commercial plant. The objective of the geologic site characterization program is to provide a descriptive model that accurately represents the geologic environment of the coal resource that is to be gasified. This model is to be used as an aid in understanding the hydrology of the coal bearing sequence, as a framework for installation of the process wells and the subsequent exploitation of the coal resources. 3 figs., 3 tabs.

  2. Encoal mild coal gasification project: Final design modifications report

    SciTech Connect (OSTI)

    NONE

    1997-07-01T23:59:59.000Z

    The design, construction and operation Phases of the Encoal Mild Coal Gasification Project have been completed. The plant, designed to process 1,000 ton/day of subbituminous Power River Basin (PRB) low-sulfur coal feed and to produce two environmentally friendly products, a solid fuel and a liquid fuel, has been operational for nearly five years. The solid product, Process Derived Fuel (PDF), is a stable, low-sulfur, high-Btu fuel similar in composition and handling properties to bituminous coal. The liquid product, Coal Derived Liquid (CDL), is a heavy, low-sulfur, liquid fuel similar in properties to heavy industrial fuel oil. Opportunities for upgrading the CDL to higher value chemicals and fuels have been identified. Significant quantities of both PDF and CDL have been delivered and successfully burned in utility and industrial boilers. A summary of the Project is given.

  3. The ENCOAL Mild Coal Gasification Project, A DOE Assessment

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2002-03-15T23:59:59.000Z

    This report is a post-project assessment of the ENCOAL{reg_sign} Mild Coal Gasification Project, which was selected under Round III of the U.S. Department of Energy (DOE) Clean Coal Technology (CCT) Demonstration Program. The CCT Demonstration Program is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of commercial-scale facilities. The ENCOAL{reg_sign} Corporation, a wholly-owned subsidiary of Bluegrass Coal Development Company (formerly SMC Mining Company), which is a subsidiary of Ziegler Coal Holding Company, submitted an application to the DOE in August 1989, soliciting joint funding of the project in the third round of the CCT Program. The project was selected by DOE in December 1989, and the Cooperative Agreement (CA) was approved in September 1990. Construction, commissioning, and start-up of the ENCOAL{reg_sign} mild coal gasification facility was completed in June 1992. In October 1994, ENCOAL{reg_sign} was granted a two-year extension of the CA with the DOE, that carried through to September 17, 1996. ENCOAL{reg_sign} was then granted a six-month, no-cost extension through March 17, 1997. Overall, DOE provided 50 percent of the total project cost of $90,664,000. ENCOAL{reg_sign} operated the 1,000-ton-per-day mild gasification demonstration plant at Triton Coal Company's Buckskin Mine near Gillette, Wyoming, for over four years. The process, using Liquids From Coal (LFC{trademark}) technology originally developed by SMC Mining Company and SGI International, utilizes low-sulfur Powder River Basin (PRB) coal to produce two new fuels, Process-Derived Fuel (PDF{trademark}) and Coal-Derived Liquids (CDL{trademark}). The products, as alternative fuel sources, are capable of significantly lowering current sulfur emissions at industrial and utility boiler sites throughout the nation thus reducing pollutants causing acid rain. In support of this overall objective, the following goals were established for the ENCOAL{reg_sign} Project: Provide sufficient quantity of products for full-scale test burns; Develop data for the design of future commercial plants; Demonstrate plant and process performance; Provide capital and O&M cost data; and Support future LFC{trademark} technology licensing efforts. Each of these goals has been met and exceeded. The plant has been in operation for nearly 5 years, during which the LFC{trademark} process has been demonstrated and refined. Fuels were made, successfully burned, and a commercial-scale plant is now under contract for design and construction.

  4. Role of site characteristics in coal gasification. [Hanna, Wyoming

    SciTech Connect (OSTI)

    Bader, B.E.; Glass, R.E.

    1981-12-01T23:59:59.000Z

    Field test data for a series of four underground coal gasification tests (UCG) at a site near Hanna, Wyoming are presented. Results of these field tests were combined with modeling efforts to identify site selective parameters broadly identified as the flow and mechanical properties of a coal seam that can help determine the degree to which any UCG test would be successful. Specifically, the characteristics shown to be important are concluded to be: (1) permeability structure and mobile water, which play a crucial role in determining air flow paths; (2) high permeability zones at midstream and above to act as the primary air flow path; (3) spacing of injection and production wells can be varied to enhance the chance of keeping the air flow paths low in the coal seam; (4) completion of the process wells in a manner that minimizes neighboring permeability inhibits the chance of override; (5) the orthotropic permeability of coal improve UCG results; (6) thermochemical properties of coal are important with respect to the manner of combustion front propogation; and (7) heating will result in stress dependent anisotropic strength characteristics of the coal. Other properties characteristic of a given coal, petrographic constitutents of a coal, chemistry of combustion and the in situ stress distribution are also pointed out as significant factors to be considered in the most efficient use of UCG technique. 14 references, (BLM)

  5. Coal-Biomass Feed and Gasification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t zManufacturing:DOECoach Compliance Form MyCoalCoal

  6. Heat exchanger for coal gasification process

    DOE Patents [OSTI]

    Blasiole, George A. (Greensburg, PA)

    1984-06-19T23:59:59.000Z

    This invention provides a heat exchanger, particularly useful for systems requiring cooling of hot particulate solids, such as the separated fines from the product gas of a carbonaceous material gasification system. The invention allows effective cooling of a hot particulate in a particle stream (made up of hot particulate and a gas), using gravity as the motive source of the hot particulate. In a preferred form, the invention substitutes a tube structure for the single wall tube of a heat exchanger. The tube structure comprises a tube with a core disposed within, forming a cavity between the tube and the core, and vanes in the cavity which form a flow path through which the hot particulate falls. The outside of the tube is in contact with the cooling fluid of the heat exchanger.

  7. Improving process performances in coal gasification for power and synfuel production

    SciTech Connect (OSTI)

    M. Sudiro; A. Bertucco; F. Ruggeri; M. Fontana [University of Padova, Milan (Italy). Italy and Foster Wheeler Italiana Spa

    2008-11-15T23:59:59.000Z

    This paper is aimed at developing process alternatives of conventional coal gasification. A number of possibilities are presented, simulated, and discussed in order to improve the process performances, to avoid the use of pure oxygen, and to reduce the overall CO{sub 2} emissions. The different process configurations considered include both power production, by means of an integrated gasification combined cycle (IGCC) plant, and synfuel production, by means of Fischer-Tropsch (FT) synthesis. The basic idea is to thermally couple a gasifier, fed with coal and steam, and a combustor where coal is burnt with air, thus overcoming the need of expensive pure oxygen as a feedstock. As a result, no or little nitrogen is present in the syngas produced by the gasifier; the required heat is transferred by using an inert solid as the carrier, which is circulated between the two modules. First, a thermodynamic study of the dual-bed gasification is carried out. Then a dual-bed gasification process is simulated by Aspen Plus, and the efficiency and overall CO{sub 2} emissions of the process are calculated and compared with a conventional gasification with oxygen. Eventually, the scheme with two reactors (gasifier-combustor) is coupled with an IGCC process. The simulation of this plant is compared with that of a conventional IGCC, where the gasifier is fed by high purity oxygen. According to the newly proposed configuration, the global plant efficiency increases by 27.9% and the CO{sub 2} emissions decrease by 21.8%, with respect to the performances of a conventional IGCC process. 29 refs., 7 figs., 5 tabs.

  8. Pricetown I underground coal gasification field test: operations report

    SciTech Connect (OSTI)

    Agarwal, A.K.; Seabaugh, P.W.; Zielinski, R.E.

    1981-01-01T23:59:59.000Z

    An Underground Coal Gasification (UCG) field test in bituminous coal was successfully completed near Pricetown, West Virginia. The primary objective of this field test was to determine the viability of the linked vertical well (LVV) technology to recover the 900 foot deep, 6 foot thick coal seam. A methane rich product gas with an average heating value of approximately 250 Btu/SCF was produced at low air injection flow rates during the reverse combustion linkage phase. Heating value of the gas produced during the linkage enhancement phase was 221 Btu/SCF with air injection. The high methane formation has been attributed to the thermal and hydrocracking of tars and oils along with hydropyrolysis and hydrogasification of coal char. The high heating value of the gas was the combined effect of residence time, flow pattern, injection flow rate, injection pressure, and back pressure. During the gasification phase, a gas with an average heating value of 125 Btu/SCF was produced with only air injection, which resulted in an average energy production of 362 MMBtu/day.

  9. Case-study of a coal gasification-based energy supply system for China

    E-Print Network [OSTI]

    Engineering, Tsinghua University, 100084 Beijing, China ``Syngas city'' (SC) is a concept for a coal. Introduction ``Syngas city'' (SC) is a concept for coal gasification- based energy supply systems that deploy

  10. UTILIZATION OF LIGHTWEIGHT MATERIALS MADE FROM COAL GASIFICATION SLAGS

    SciTech Connect (OSTI)

    Vas Choudhry; Stephen Kwan; Steven R. Hadley

    2001-07-01T23:59:59.000Z

    The objective of the project entitled ''Utilization of Lightweight Materials Made from Coal Gasification Slags'' was to demonstrate the technical and economic viability of manufacturing low-unit-weight products from coal gasification slags which can be used as substitutes for conventional lightweight and ultra-lightweight aggregates. In Phase I, the technology developed by Praxis to produce lightweight aggregates from slag (termed SLA) was applied to produce a large batch (10 tons) of expanded slag using pilot direct-fired rotary kilns and a fluidized bed calciner. The expanded products were characterized using basic characterization and application-oriented tests. Phase II involved the demonstration and evaluation of the use of expanded slag aggregates to produce a number of end-use applications including lightweight roof tiles, lightweight precast products (e.g., masonry blocks), structural concrete, insulating concrete, loose fill insulation, and as a substitute for expanded perlite and vermiculite in horticultural applications. Prototypes of these end-use applications were made and tested with the assistance of commercial manufacturers. Finally, the economics of expanded slag production was determined and compared with the alternative of slag disposal. Production of value-added products from SLA has a significant potential to enhance the overall gasification process economics, especially when the avoided costs of disposal are considered.

  11. Method for using fast fluidized bed dry bottom coal gasification

    DOE Patents [OSTI]

    Snell, George J. (Fords, NJ); Kydd, Paul H. (Lawrenceville, NJ)

    1983-01-01T23:59:59.000Z

    Carbonaceous solid material such as coal is gasified in a fast fluidized bed gasification system utilizing dual fluidized beds of hot char. The coal in particulate form is introduced along with oxygen-containing gas and steam into the fast fluidized bed gasification zone of a gasifier assembly wherein the upward superficial gas velocity exceeds about 5.0 ft/sec and temperature is 1500.degree.-1850.degree. F. The resulting effluent gas and substantial char are passed through a primary cyclone separator, from which char solids are returned to the fluidized bed. Gas from the primary cyclone separator is passed to a secondary cyclone separator, from which remaining fine char solids are returned through an injection nozzle together with additional steam and oxygen-containing gas to an oxidation zone located at the bottom of the gasifier, wherein the upward gas velocity ranges from about 3-15 ft/sec and is maintained at 1600.degree.-200.degree. F. temperature. This gasification arrangement provides for increased utilization of the secondary char material to produce higher overall carbon conversion and product yields in the process.

  12. Plasma-enhanced gasification of low-grade coals for compact power plants

    SciTech Connect (OSTI)

    Uhm, Han S. [Department of Electrophysics, Kwangwoon University, 447-1 Wolgye-Dong, Nowon-Gu, Seoul 139-701 (Korea, Republic of); Hong, Yong C.; Shin, Dong H.; Lee, Bong J. [Convergence Plasma Research Center, National Fusion Research Institute, 113 Gwahangno, Yuseong-Gu, Daejeon 305-333 (Korea, Republic of)

    2011-10-15T23:59:59.000Z

    A high temperature of a steam torch ensures an efficient gasification of low-grade coals, which is comparable to that of high-grade coals. Therefore, the coal gasification system energized by microwaves can serve as a moderately sized power plant due to its compact and lightweight design. This plasma power plant of low-grade coals would be useful in rural or sparsely populated areas without access to a national power grid.

  13. Encoal mild coal gasification project: Commercial plant feasibility study

    SciTech Connect (OSTI)

    NONE

    1997-07-01T23:59:59.000Z

    In order to determine the viability of any Liquids from Coal (LFC) commercial venture, TEK-KOL and its partner, Mitsubishi Heavy Industries (MHI), have put together a technical and economic feasibility study for a commercial-size LFC Plant located at Zeigler Coal Holding Company`s North Rochelle Mine site. This resulting document, the ENCOAL Mild Coal Gasification Plant: Commercial Plant Feasibility Study, includes basic plant design, capital estimates, market assessment for coproducts, operating cost assessments, and overall financial evaluation for a generic Powder River Basin based plant. This document and format closely resembles a typical Phase II study as assembled by the TEK-KOL Partnership to evaluate potential sites for LFC commercial facilities around the world.

  14. In-situ coal gasification: a new technology

    SciTech Connect (OSTI)

    Agarwal, A.K.; Zielinski, R.E.; Seabaugh, P.W.; Liberatore, A.J.; Martin, J.W.

    1982-01-01T23:59:59.000Z

    While the technology for underground gasification of Western US subbituminous coals is advancing through efforts at the Hanna and Hoe Creek test sites, the development of an Eastern bituminous coal technology has only begun. The Pricetown 1 field test proved the feasibility of gasifying the thin-seam, swelling bituminous coal resources. Key issues remaining to be demonstrated include an effective linkage method, means of controlling gas production and composition, and scale-up. A major field-test program could entail three phases: (1) resolving the linkage and process control problems in the Appalachian basin, (2) assessing the technology in the untested Illinois basin, and (3) testing a multimodule commercial-scale prototype.

  15. NETL, USDA design coal-stabilized biomass gasification unit

    SciTech Connect (OSTI)

    NONE

    2008-09-30T23:59:59.000Z

    Coal, poultry litter, contaminated corn, rice hulls, moldly hay, manure sludge - these are representative materials that could be tested as fuel feedstocks in a hybrid gasification/combustion concept studied in a recent US Department of Energy (DOE) design project. DOE's National Energy Technology Laboratory (NETL) and the US Department of Agriculture (USDA) collaborated to develop a design concept of a power system that incorporates Hybrid Biomass Gasification. This system would explore the use of a wide range of biomass and agricultural waste products as gasifier feedstocks. The plant, if built, would supply one-third of electrical and steam heating needs at the USDA's Beltsville (Maryland) Agricultural Research Center. 1 fig., 1 photo.

  16. Coal Gasification and Transportation Fuels Magazine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t zManufacturing:DOECoach Compliance Form My teamCoal

  17. Comparison of coal tars generated by pyrolysis of Hanna coal and UCG (underground coal gasification) Hanna IVB coal tars

    SciTech Connect (OSTI)

    Barbour, F.A.; Cummings, R.E.

    1986-04-01T23:59:59.000Z

    The compositions of coal tars produced by laboratory and pilot scale apparatus have been compared to those produced during underground coal gasification (UCG) experiments at Hanna, Wyoming. Four coal tars were generated by pyrolysis using the block reactor and the laboratory reference retort, and a fifth coal tar was composited from products produced by UCG. Coal tars were separated into chemically defined fractions and were characterized by gas chromatography. Specific compounds were not identified, but rather fingerprinting or compound-type profiling was used for identifying similarities and differences in the product tars. This permitted the evaluation of the different methods of tar production with respect to one another. The UCG coal tars appeared to have undergone more secondary cracking than the pyrolytic products. The coal tar products from the laboratory reference retort appear to be more indicative of the coal's chemical structure. Products from the block reactor contained lesser amounts of the lighter boiling material. In addition there is organic sulfur contamination as indicated by the large amount of sulfur present in the product tar from the block reactor. 11 refs., 16 figs., 11 tabs.

  18. LLNL Underground Coal Gasification Project annual report - fiscal year 1984

    SciTech Connect (OSTI)

    Stephens, D.R.; O'Neal, E.M. (eds.)

    1985-06-15T23:59:59.000Z

    The Laboratory has been conducting an interdisciplinary underground coal gasification program since 1974 under the sponsorship of DOE and its predecessors. We completed three UCG tests at the Hoe Creek site near Gillette, Wyoming, during the period 1975 to 1979. Five small field experiments, the large-block tests, were completed from 1981 to 1982 at the exposed coal face in the WIDCO coal mine near Centralia, Washington. A larger test at the same location, the partial-seam CRIP test, was completed during fiscal year 1984. In conjunction with the DOE and an industrial group lead by the Gas Research Institute, we have prepared a preliminary design for a large-scale test at the WIDCO site. The planned test features dual injection and production wells, module interaction, and consumption of 20,000 tons of coal during a hundred-day steam-oxygen gasification. During fiscal year 1984, we documented the large-block excavations. The cavities were elongated, the cavity cross sections were elliptical, and the cavities contained ash and slag at the bottom, char and dried coal above that, and a void at the top. The results from the large-block tests provided enough data to allow us to construct a composite model, CAVSM. Preliminary results from the model agree well with the product-gas chemistry and cavity shape observed in the large-block tests. Other models and techniques developed during the year include a transient, moving-front code, a two-dimensional, reactive-flow code using the method of lines, and a wall-recession-rate model. In addition, we measured the rate of methane decomposition in the hot char bed and developed an engineering rate expression to estimate the magnitude of the methane-decomposition reaction. 16 refs., 30 figs., 1 tab.

  19. Tampa Electric Company`s Polk Power Station Integrated Gasification Combined Cycle Project

    SciTech Connect (OSTI)

    Jenkins, S.D.; Shafer, J.R.

    1994-12-31T23:59:59.000Z

    Tampa Electric Company (TEC) is in the construction phase for the new Polk Power Station, Unit {number_sign}1. This will be the first unit at a new site and will use Integrated Gasification Combined Cycle (IGCC) technology for power generation. The unit will utilize oxygen-blown entrained-flow coal gasification, along with combined cycle technology, to provide nominal net 26OMW of generation. As part of the environmental features of this process, the sulfur species in the coal will be recovered as a commercial grade sulfuric acid by-product. The sulfur will be removed from the synthesis gas utilizing a cold gas clean-up system (CGCU).

  20. Arco's research and development efforts in underground coal gasification

    SciTech Connect (OSTI)

    Bell, G.J.; Bailey, D.W.; Brandenburg, C.F.

    1983-01-01T23:59:59.000Z

    Arco has studied underground coal gasification (UCG) since the mid-1970's in an attempt to advance the technology. This paper is a review of past and present UCG research and development efforts, starting with Arco's Rocky Hill No. 1 test. Although this first experiment gave Arco invaluable experience for conducting UCG in the deep, wet, thick coal resources of the Powder River Basin in Wyoming, many formidable questions remain to be addressed with the operation of a larger-scale, multi-well test. Unresolved issues include such items as site selection, well design, well linking, overburden subsidence, ground water protection, surface treatment of product gas, and the interaction of simultaneously operating modules.

  1. Computational fluid dynamics modeling of coal gasification in a pressurized spout-fluid bed

    SciTech Connect (OSTI)

    Zhongyi Deng; Rui Xiao; Baosheng Jin; He Huang; Laihong Shen; Qilei Song; Qianjun Li [Southeast University, Nanjing (China). Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education

    2008-05-15T23:59:59.000Z

    Computational fluid dynamics (CFD) modeling, which has recently proven to be an effective means of analysis and optimization of energy-conversion processes, has been extended to coal gasification in this paper. A 3D mathematical model has been developed to simulate the coal gasification process in a pressurized spout-fluid bed. This CFD model is composed of gas-solid hydrodynamics, coal pyrolysis, char gasification, and gas phase reaction submodels. The rates of heterogeneous reactions are determined by combining Arrhenius rate and diffusion rate. The homogeneous reactions of gas phase can be treated as secondary reactions. A comparison of the calculated and experimental data shows that most gasification performance parameters can be predicted accurately. This good agreement indicates that CFD modeling can be used for complex fluidized beds coal gasification processes. 37 refs., 7 figs., 5 tabs.

  2. Rawlins UCG (underground coal gasification) Demonstration Project site characterization report

    SciTech Connect (OSTI)

    Not Available

    1989-04-01T23:59:59.000Z

    The United States Department of Energy and Energy International, Inc. have entered into a Cooperative Agreement to conduct a cost-shared UCG field test demonstrating the operation of commercial scale Underground Coal Gasification (UCG) on steeply dipping bed modules to provide synthesis gas for a small scale commercial ammonia plant. The field test and the commercial ammonia plant will be located at the North Knobs site near Rawlins, Wyoming. During this demonstration test, two or more UCG modules will be operated simultaneously until one module is completely consumed and an additional module is brought on line. During this period, the average coal gasification rate will be between 500 and 1200 tons per day. A portion of the raw UCG product gas will be cleaned and converted into a synthesis gas, which will be used as feedstock to a 400--500 ton per day ammonia plant. The UCG facility will continue to operate subsequent to the test demonstration to provide feedstock for the commercial plant. The objective of the hydrologic site characterization program is to provide an accurate representation of the hydrologic environment within the area to be gasified. This information will aid in the placement and operation of the process wells in relation to the ground water source. 21 refs., 14 figs., 6 tabs.

  3. Lawrence Livermore National Laboratory Underground Coal Gasification project

    SciTech Connect (OSTI)

    Thorsness, C.B.; Britten, J.A.

    1989-10-15T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) has been actively developing Underground Coal Gasification (UCG) technology for 15 years. The goal of the project has been to develop a fundamental technological understanding of UCG and foster the commercialization of the process. In striving to achieve this goal the LLNL project has carried out laboratory experiments, developed mathematical models, actively participated in technology transfer programs, and conducted field test experiments. As a result of this work the Controlled Retracting Injection Point (CRIP) concept was developed which helps insure optimum performance of an underground gasifier in a flat seam, and provides a means to produce multiple gasification cavities. The LLNL field work culminated in the Rocky Mountain I field test in which a gasifier using the CRIP technology generated gas of a quality equal to that of surface gasifiers. This last test and others preceding it have demonstrated beyond any reasonable doubt, that UCG is technically feasible in moderately thick coal seams at modest depths. 2 refs., 2 tabs.

  4. Gasification Characteristics of Coal/Biomass Mixed Fuels

    SciTech Connect (OSTI)

    Mitchell, Reginald

    2013-09-30T23:59:59.000Z

    A research project was undertaken that had the overall objective of developing the models needed to accurately predict conversion rates of coal/biomass mixtures to synthesis gas under conditions relevant to a commercially-available coal gasification system configured to co- produce electric power as well as chemicals and liquid fuels. In our efforts to accomplish this goal, experiments were performed in an entrained flow reactor in order to produce coal and biomass chars at high heating rates and temperatures, typical of the heating rates and temperatures fuel particles experience in real systems. Mixed chars derived from coal/biomass mixtures containing up to 50% biomass and the chars of the pure coal and biomass components were subjected to a matrix of reactivity tests in a pressurized thermogravimetric analyzer (TGA) in order to obtain data on mass loss rates as functions of gas temperature, pressure and composition as well as to obtain information on the variations in mass specific surface area during char conversion under kinetically-limited conditions. The experimental data were used as targets when determining the unknown parameters in the chemical reactivity and specific surface area models developed. These parameters included rate coefficients for the reactions in the reaction mechanism, enthalpies of formation and absolute entropies of adsorbed species formed on the carbonaceous surfaces, and pore structure coefficients in the model used to describe how the mass specific surface area of the char varies with conversion. So that the reactivity models can be used at high temperatures when mass transport processes impact char conversion rates, Thiele modulus – effectiveness factor relations were also derived for the reaction mechanisms developed. In addition, the reactivity model and a mode of conversion model were combined in a char-particle gasification model that includes the effects of chemical reaction and diffusion of reactive gases through particle pores and energy exchange between the particle and its environment. This char-particle gasification model is capable of predicting the average mass loss rates, sizes, apparent densities, specific surface areas, and temperatures of the char particles produced when co-firing coal and biomass to the type environments established in entrained flow gasifiers operating at high temperatures and elevated pressures. A key result of this work is the finding that the reactivities of the mixed chars were not always in between the reactivities of the pure component chars at comparable gasification conditions. Mixed char reactivity to CO{sub 2} was lower than the reactivities of both the pure Wyodak coal and pure corn stover chars to CO{sub 2}. In contrast, mixed char reactivity to H{sub 2}O was higher than the reactivities of both the pure Wyodak coal and pure corn stover chars to H{sub 2}O. This was found to be in part, a consequence of the reduced mass specific surface areas of the coal char particles formed during devolatilization when the coal and biomass particles are co-fired. The biomass particles devolatilize prior to the coal particles, impacting the temperature and the composition of the environment in which the coal particles devolatilize. This situation results in coal char particles within the mixed char that differ in specific surface area and reactivity from the coal char particles produced in the absence of the devolatilizing biomass particles. Due to presence of this “affected” coal char, it was not possible to develop a mixed char reactivity model that uses linear mixing rules to determine the reactivity of a mixed char from only the reactivities of the pure mixture components. However, it was possible to predict both mixed char specific surface area and reactivity for a wide range of fuel mixture rat os provided the specific surface area and reactivity of the affected coal char particles are known. Using the kinetic parameters determined for the Wyodak coal and corn stover chars, the model was found to adequately predict the observed conversion times a

  5. Effects of aquifer interconnection resulting from underground coal gasification

    SciTech Connect (OSTI)

    Stone, R.

    1983-09-01T23:59:59.000Z

    Lawrence Livermore National Laboratory evaluated the effects of aquifer interconnection caused by the collapse of cavities formed in coal seams by two small underground coal gasification experiments in the Powder River Basin, Wyoming. Flow models and field measurements were used to show that the water from one or both of the upper aquifers enters the collapse, rubble and flows down to the lowest aquifer (the gasified coal seam) where it flows away from the collapse zones. The investigations showed that the hydraulic conductivity of the collapse rubble is less than that of the aquifers and provides only a moderately permeable interconnection between them, a marked reduction in hydraulic conductivity of the gasified coal seam near the collapse zones restricts the flow in the seam, away from them; changes in the hydraulic head and flow patterns caused by aquifer interconnection extend generally only 60-90 m away from the experiment sites, whereas flow in the uppermost aquifer at one of the sites may be influenced as far away as 122 m. At both sites, the aquifer interconnection allows water from the uppermost (sand) aquifer, which contains the poorest quality water of the 3 aquifers, to enter one or both of the underlying aquifers.

  6. Fate of trace elements in UK coals during gasification processes

    SciTech Connect (OSTI)

    Bushell, A.J.; Williamson, J. [Imperial College of Science, Technology and Medicine, London (United Kingdom)

    1996-12-31T23:59:59.000Z

    Five UK coals were selected to cover the range of mineral matter and ash contents typically encountered in UK bituminous coals. Trace element analysis was performed on both the whole coals and size separated fractions using ICP analysis for 21 trace elements, including Be, Cr, Co, Ni, As, Cd, Sb, Hg, and Pb, elements deemed to be the most environmentally hazardous. Small quantities of each coal were gasified in a laboratory gasifier in an atmosphere of N{sub 2} containing 15% O{sub 2}. Samples of bed ash, cyclone ash, and a fine gas-filtered ash were collected and analyzed to determine the partition of the trace elements between the gasification products. Mass balance calculations showed that the recovery of the trace elements varied from 20 to 97%; the low recovery of some trace elements highlighting the difficulties of collecting representative samples from a laboratory system. A parallel study on samples taken from a pilot plant gasifier showed significantly higher recovery rates, indicating the value of larger scale trials.

  7. Fundamental investigations of underground coal gasification. Final report, March 1982-December 1986

    SciTech Connect (OSTI)

    Gunn, R.D.

    1987-08-01T23:59:59.000Z

    The report presents several mathematical models of underground coal-gasification processes. Through these models, a much better theoretical understanding of underground coal gasification becomes possible. Specific phenomena studied were the effects of high-amplitude pressure oscillation, reverse combustion, spontaneous ignition at high pressures, an analytical model of reverse-combustion channeling, an exploratory study of electrolinking, cavity-growth behavior, and a technical evaluation of the Forestburg underground coal-gasification field test at Forestburg, Alberta. This test is especially interesting because the site was escavated after completion of the experiment.

  8. Fundamental investigations of underground coal gasification. Annual report Mar 82-Mar 83

    SciTech Connect (OSTI)

    Dunn, R.D.

    1983-03-01T23:59:59.000Z

    Coal deposits in the Appalachian and Midwest Coal Regions consist primarily of thin relatively deep seams of swelling bituminous coal, but little scientific effort in the United States has been directed toward underground coal gasification in these important industrial areas. In Europe, however, major work is under way on underground coal gasification in thin, deep seams of swelling coal. The principal investigator and a graduate student are participating in field tests in Belgium and supporting laboratory experiments in Germany. Mathematical models are being developed to interpret these experimental data, and a better understanding of the underground coal gasification process is emerging. This understanding is essential for evaluating potential problems, for devising solutions to such problems and for designing field tests.

  9. Thermal-Hydrological Sensitivity Analysis of Underground Coal Gasification

    SciTech Connect (OSTI)

    Buscheck, T A; Hao, Y; Morris, J P; Burton, E A

    2009-10-05T23:59:59.000Z

    This paper presents recent work from an ongoing project at Lawrence Livermore National Laboratory (LLNL) to develop a set of predictive tools for cavity/combustion-zone growth and to gain quantitative understanding of the processes and conditions (natural and engineered) affecting underground coal gasification (UCG). We discuss the application of coupled thermal-hydrologic simulation capabilities required for predicting UCG cavity growth, as well as for predicting potential environmental consequences of UCG operations. Simulation of UCG cavity evolution involves coupled thermal-hydrological-chemical-mechanical (THCM) processes in the host coal and adjoining rockmass (cap and bedrock). To represent these processes, the NUFT (Nonisothermal Unsaturated-saturated Flow and Transport) code is being customized to address the influence of coal combustion on the heating of the host coal and adjoining rock mass, and the resulting thermal-hydrological response in the host coal/rock. As described in a companion paper (Morris et al. 2009), the ability to model the influence of mechanical processes (spallation and cavity collapse) on UCG cavity evolution is being developed at LLNL with the use of the LDEC (Livermore Distinct Element Code) code. A methodology is also being developed (Morris et al. 2009) to interface the results of the NUFT and LDEC codes to simulate the interaction of mechanical and thermal-hydrological behavior in the host coal/rock, which influences UCG cavity growth. Conditions in the UCG cavity and combustion zone are strongly influenced by water influx, which is controlled by permeability of the host coal/rock and the difference between hydrostatic and cavity pressure. In this paper, we focus on thermal-hydrological processes, examining the relationship between combustion-driven heat generation, convective and conductive heat flow, and water influx, and examine how the thermal and hydrologic properties of the host coal/rock influence those relationships. Specifically, we conducted a parameter sensitivity analysis of the influence of thermal and hydrological properties of the host coal, caprock, and bedrock on cavity temperature and steam production.

  10. Integrating catalytic coal gasifiers with solid oxide fuel cells

    SciTech Connect (OSTI)

    Siefert, N.; Shamsi, A.; Shekhawat, D.; Berry, D.

    2010-01-01T23:59:59.000Z

    A review was conducted for coal gasification technologies that integrate with solid oxide fuel cells (SOFC) to achieve system efficiencies near 60% while capturing and sequestering >90% of the carbon dioxide [1-2]. The overall system efficiency can reach 60% when a) the coal gasifier produces a syngas with a methane composition of roughly 25% on a dry volume basis, b) the carbon dioxide is separated from the methane-rich synthesis gas, c) the methane-rich syngas is sent to a SOFC, and d) the off-gases from the SOFC are recycled back to coal gasifier. The thermodynamics of this process will be reviewed and compared to conventional processes in order to highlight where available work (i.e. exergy) is lost in entrained-flow, high-temperature gasification, and where exergy is lost in hydrogen oxidation within the SOFC. The main advantage of steam gasification of coal to methane and carbon dioxide is that the amount of exergy consumed in the gasifier is small compared to conventional, high temperature, oxygen-blown gasifiers. However, the goal of limiting the amount of exergy destruction in the gasifier has the effect of limiting the rates of chemical reactions. Thus, one of the main advantages of steam gasification leads to one of its main problems: slow reaction kinetics. While conventional entrained-flow, high-temperature gasifiers consume a sizable portion of the available work in the coal oxidation, the consumed exergy speeds up the rates of reactions. And while the rates of steam gasification reactions can be increased through the use of catalysts, only a few catalysts can meet cost requirements because there is often significant deactivation due to chemical reactions between the inorganic species in the coal and the catalyst. Previous research into increasing the kinetics of steam gasification will be reviewed. The goal of this paper is to highlight both the challenges and advantages of integrating catalytic coal gasifiers with SOFCs.

  11. Assessment of advanced coal-gasification processes. [AVCO high throughput gasification in process; Bell High Mass Flux process; CS-R process; and Exxon Gasification process

    SciTech Connect (OSTI)

    McCarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

    1981-06-01T23:59:59.000Z

    This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process, Bell Single - Stage High Mass Flux (HMF) Process, Cities Service/Rockwell (CS/R) Hydrogasification Process, and the Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic fluidbed reactor producing all of the raw product methane in the gasifier.

  12. Corrosion and mechanical behavior of materials for coal gasification applications

    SciTech Connect (OSTI)

    Natesan, K.

    1980-05-01T23:59:59.000Z

    A state-of-the-art review is presented on the corrosion and mechanical behavior of materials at elevated temperatures in coal-gasification environments. The gas atmosphere in coal-conversion processes are, in general, complex mixtures which contain sulfur-bearing components (H/sub 2/S, SO/sub 2/, and COS) as well as oxidants (CO/sub 2//CO and H/sub 2/O/H/sub 2/). The information developed over the last five years clearly shows sulfidation to be the major mode of material degradation in these environments. The corrosion behavior of structural materials in complex gas environments is examined to evaluate the interrelationships between gas chemistry, alloy chemistry, temperature, and pressure. Thermodynamic aspects of high-temperature corrosion processes that pertain to coal conversion are discussed, and kinetic data are used to compare the behavior of different commercial materials of interest. The influence of complex gas environments on the mechanical properties such as tensile, stress-rupture, and impact on selected alloys is presented. The data have been analyzed, wherever possible, to examine the role of environment on the property variation. The results from ongoing programs on char effects on corrosion and on alloy protection via coatings, cladding, and weld overlay are presented. Areas of additional research with particular emphasis on the development of a better understanding of corrosion processes in complex environments and on alloy design for improved corrosion resistance are discussed. 54 references, 65 figures, 24 tables.

  13. ENCOAL mild coal gasification project public design and construction report

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    This Public Design Report describes the 1000 ton per day ENCOAL mild coal gasification demonstration plant now in operation at the Buckskin Mine near Gillette, Wyoming. The objective of the project is to demonstrate that the proprietary Liquids From Coal (LFC) technology can reliably and economically convert low Btu PRB coal into a superior, high-Btu solid fuel (PDF), and an environmentally attractive low-sulfur liquid fuel (CDL). The Project`s plans also call for the production of sufficient quantities of PDF and CDL to permit utility companies to carry out full scale burn tests. While some process as well as mechanical design was done in 1988, the continuous design effort was started in July 1990. Civil construction was started in October 1990; mechanical erection began in May 1991. Virtually all of the planned design work was completed by July 1991. Most major construction was complete by April 1992 followed by plant testing and commissioning. Plant operation began in late May 1992. This report covers both the detailed design and initial construction aspects of the Project.

  14. Preburn versus postburn mineralogical and geochemical characteristics of overburden and coal at the Hanna, Wyoming underground coal gasification site

    SciTech Connect (OSTI)

    Oliver, R.L.; Youngberg, A.D.

    1983-12-01T23:59:59.000Z

    Hundreds of mineralogic and geochemical tests were done under US Department of Energy contracts on core samples taken from the Hanna underground coal gasification site. These tests included x-ray diffraction studies of minerals in coal ash, overburden rocks, and heat-altered rocks; x-ray fluorescence analyses of oxides in coal ash and heat-altered rocks; semi-quantitative spectrographic analyses of elements in coal, overburden, and heat-altered rocks; chemical analyses of elements and compounds in coal, overburden, and heat-altered rocks and ASTM proximate and ultimate analyses of coal and heat-altered coal. These data sets were grouped, averaged, and analyzed to provide preburn and postburn mineralogic and geochemical characteristics of rock units at the site. Where possible, the changes in characteristics from the preburn to the postburn state are related to underground coal gasification processes. 11 references, 13 figures, 8 tables.

  15. Pyrolysis and gasification of coal at high temperatures

    SciTech Connect (OSTI)

    Zygourakis, K.

    1988-01-01T23:59:59.000Z

    Coals of different ranks will be pyrolyzed in a microscope hot-stage reactor using inert and reacting atmospheres. The macropore structure of the produced chars will be characterized using video microscopy and digital image processing techniques to obtain pore size distributions. Comparative studies will quantify the effect of pyrolysis conditions (heating rates, final heat treatment temperatures, particle size and inert or reacting atmosphere) on the pore structure of the devolatilized chars. The devolatilized chars will be gasified in the regime of strong intraparticle diffusional limitations using O{sub 2}/N{sub 2} and O{sub 2}/H{sub 2}O/N{sub 2}2 mixtures. Constant temperature and programmed-temperature experiments in a TGA will be used for these studies. Additional gasification experiments performed in the hot-stage reactor will be videotaped and selected images will be analyzed to obtain quantitative data on particle shrinkage and fragmentation. Discrete mathematical models will be developed and validated using the experimental gasification data.

  16. Analysis of forward combustion underground coal gasification models

    SciTech Connect (OSTI)

    Fausett, L.K.; Fausett, D.W.

    1984-01-01T23:59:59.000Z

    A survey has been made of forward combustion gasification models that are available in the public domain. The six models obtained for study have been mathematically analyzed to determine their conceptual completeness and computational complexity. The models range in scope of generality from a simple constrained mass balance model to a two-dimensional unsteady-state model. The computer code for each model has been implemented on the University of Wyoming CDC CYBER 730/760 computer system. Computed analyses with each of the programs are compared using data (taken primarily from the Lawrence Livermore National Laboratory (LLNL) Underground Coal Gasification (UCG) Data Base) corresponding to six representative DOE sponsored field experiments at Hanna, Hoe Creek, Rawlins, and Pricetown. Four of the field tests were air injection experiments and two were oxygen/steam injection experiments. This study provides a direct comparison of input data requirements and computer resource requirements of the six computer codes. It furnishes an indication of the applicability of each model to the various operating conditions in the different field tests. Computational capabilities and limitations of each model are discussed in detail. 20 references, 47 figures, 13 tables.

  17. Results from the third LLL underground coal gasification experiment at Hoe Creek

    SciTech Connect (OSTI)

    Hill, R.W.; Thorsness, C.B.; Cena, R.J.; Aiman, W.R.; Stephens, D.R.

    1980-05-20T23:59:59.000Z

    A major objective of the US Energy Program is the development of processes to produce clean fuels from coal. Underground coal gasification is one of the most promising of these processes. If successful, underground coal gasification (UCG) would quadruple the proven reserves of the US coal. Cost for products produced from UCG are projected to be 65 to 75% of those from conventional coal conversion. Finally, UCG appears to possess environmental advantages since no mining is involved and there are less solid wastes produced. In this paper we describe results from the Hoe Creek No. 3 underground coal gasification test. The experiment employed a drilled channel between process wells spaced 130' apart. The drilled channel was enlarged by reverse combustion prior to forward gasification. The first week of forward gasification was carried out using air injection, during which 250 tons of coal were consumed yielding an average dry product gas heating value of 114 Btu/scf. Following this phase, steam and oxygen were injected (generally a 50-50 mixture) for 47 days, during which 3945 tons of coal were consumed at an average rate of 84 tons of coal per day and an average dry gas heating value of 217 Btu/scf. The average gas composition during the steam-oxygen phase was 37% H/sub 2/, 5% CH/sub 4/, 11% CO, and 44% CO/sub 2/. Gas recovery was approximately 82% during the test, and the average thermochemical efficiency was near 65%.

  18. Proceedings of the ninth annual underground coal gasification symposium

    SciTech Connect (OSTI)

    Wieber, P.R.; Martin, J.W.; Byrer, C.W. (eds.)

    1983-12-01T23:59:59.000Z

    The Ninth Underground Coal Gasification Symposium was held August 7 to 10, 1983 at the Indian Lakes Resort and Conference Center in Bloomingdale, Illinois. Over one-hundred attendees from industry, academia, National Laboratories, State Government, and the US Government participated in the exchange of ideas, results and future research plans. Representatives from six countries including France, Belgium, United Kingdom, The Netherlands, West Germany, and Brazil also participated by presenting papers. Fifty papers were presented and discussed in four formal sessions and two informal poster sessions. The presentations described current and future field testing plans, interpretation of field test data, environmental research, laboratory studies, modeling, and economics. All papers were processed for inclusion in the Energy Data Base.

  19. Review of underground coal gasification field experiments at Hoe Creek

    SciTech Connect (OSTI)

    Thorsness, C.B.; Creighton, J.R.

    1983-01-01T23:59:59.000Z

    LLNL has conducted three underground coal gasification experiments at the Hoe Creek site near Gillette, WY. Three different linking methods were used: explosive fracturing, reverse burning and directional drilling. Air was injected on all three experiments and a steam/oxygen mixture during 2 days of the second and most of the third experiment. Comparison of results show that the linking method didn't influence gas quality. The heat of combustion of the product gas was higher with steam/oxygen injection, mainly because of reduced inert diluent. Gas quality was generally independent of other operating parameters, but declined from its initial value over a period of time. This was due to heat loss to the wet overburden and extensive roof collapse in the second and third experiments.

  20. Review of underground coal gasification field experiments at Hoe Creek

    SciTech Connect (OSTI)

    Thorsness, C.B.; Creighton, J.R.

    1983-01-01T23:59:59.000Z

    In three underground coal gasification experiments at the Hoe Creek site near Gillette, WY, LLNL applied three different linking methods: explosive fracture, reverse burning, and directional drilling. Air was injected in all three experiments; a steam/oxygen mixture, during 2 days of the second and most of the third experiment. Comparison of results show that the type of linking method did not influence gas quality. The heat of combustion of the product gas was higher with steam/oxygen injection, mainly because of reduced inert diluent. Gas quality was generally independent of other operating parameters but declined from its initial value over a period of time because of heat loss to the wet overburden and extensive roof collapse in the second and third experiments.

  1. Utilization of solid wastes from the gasification of coal-water slurries

    SciTech Connect (OSTI)

    M.Y. Shpirt; N.P. Goryunova [Institute for Fossil Fuels, Moscow (Russian Federation)

    2009-07-01T23:59:59.000Z

    It was found that only fly and bottom ashes are the solid wastes of water-coal slurry gasification in a direct-flow gasifier. The yields and chemical compositions of fly and bottom ashes obtained after the gasification of water-coal slurries prepared using brown (B) and long-flame (D) coals from the Berezovskii and Mokhovskii strip mines (Kansk-Achinsk and Kuznetsk Basins, respectively) were characterized. Based on an analysis of currently available information, the areas of utilization of fly and bottom ashes after water-coal slurry gasification with dry ash removal were summarized. The use of these wastes in the construction of high-ways and earthwork structures (for the parent coals of B and D grades) and in the manufacture of ash concrete (for the parent coal of D grade) is most promising.

  2. Recent regulatory experience of low-Btu coal gasification. Volume III. Supporting case studies

    SciTech Connect (OSTI)

    Ackerman, E.; Hart, D.; Lethi, M.; Park, W.; Rifkin, S.

    1980-02-01T23:59:59.000Z

    The MITRE Corporation conducted a five-month study for the Office of Resource Applications in the Department of Energy on the regulatory requirements of low-Btu coal gasification. During this study, MITRE interviewed representatives of five current low-Btu coal gasification projects and regulatory agencies in five states. From these interviews, MITRE has sought the experience of current low-Btu coal gasification users in order to recommend actions to improve the regulatory process. This report is the third of three volumes. It contains the results of interviews conducted for each of the case studies. Volume 1 of the report contains the analysis of the case studies and recommendations to potential industrial users of low-Btu coal gasification. Volume 2 contains recommendations to regulatory agencies.

  3. EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming.

  4. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    SciTech Connect (OSTI)

    FuelCell Energy

    2005-05-16T23:59:59.000Z

    With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.

  5. Hanna, Wyoming underground coal gasification data base. Volume 1. General information and executive summary

    SciTech Connect (OSTI)

    Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

    1985-08-01T23:59:59.000Z

    This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation. This report covers: (1) history of underground coal gasification leading to the Hanna tests; (2) area characteristics (basic meteorological and socioeconomic data); (3) site selection history; (4) site characteristics; (5) permitting; and (6) executive summary. 5 figs., 15 tabs.

  6. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    SciTech Connect (OSTI)

    Not Available

    1981-03-31T23:59:59.000Z

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  7. Steam-Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture

    E-Print Network [OSTI]

    Litster, Shawn

    Steam-Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture Nicholas S. Siefert Virginia 26507, United States ABSTRACT: We present experimental results of coal gasification. Using two different coal types and temperatures between 700 and 900 °C, we studied the effect

  8. Assessment of underground coal gasification in bituminous coals. Volume I. Executive summary. Final report

    SciTech Connect (OSTI)

    None

    1981-01-01T23:59:59.000Z

    This report describes the bituminous coal resources of the United States, identifies those resources which are potentially amenable to Underground Coal Gasification (UCG), identifies products and markets in the vicinity of selected target areas, identifies UCG concepts, describes the state of the art of UCG in bituminous coal, and presents three R and D programs for development of the technology to the point of commercial viability. Of the 670 billion tons of bituminous coal remaining in-place as identified by the National Coal Data System, 32.2 billion tons or 4.8% of the total are potentially amenable to UCG technology. The identified amenable resource was located in ten states: Alabama, Colorado, Illinois, Kentucky, New Mexico, Ohio, Oklahoma, Utah, Virginia, and West Virginia. The principal criteria which eliminated 87.3% of the resource was the minimum thickness (42 inches). Three R and D programs were developed using three different concepts at two different sites. Open Borehole, Hydraulic Fracture, and Electrolinking concepts were developed. The total program costs for each concept were not significantly different. The study concludes that much of the historical information based on UCG in bituminous coals is not usable due to the poor siting of the early field tests and a lack of adequate diagnostic equipment. This information gap requires that much of the early work be redone in view of the much improved understanding of the role of geology and hydrology in the process and the recent development of analytical tools and methods.

  9. A study of toxic emissions from a coal-fired gasification plant. Final report

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    Under the Fine Particulate Control/Air Toxics Program, the US Department of Energy (DOE) has been performing comprehensive assessments of toxic substance emissions from coal-fired electric utility units. An objective of this program is to provide information to the US Environmental Protection Agency (EPA) for use in evaluating hazardous air pollutant emissions as required by the Clean Air Act Amendments (CAAA) of 1990. The Electric Power Research Institute (EPRI) has also performed comprehensive assessments of emissions from many power plants and provided the information to the EPA. The DOE program was implemented in two. Phase 1 involved the characterization of eight utility units, with options to sample additional units in Phase 2. Radian was one of five contractors selected to perform these toxic emission assessments.Radian`s Phase 1 test site was at southern Company Service`s Plant Yates, Unit 1, which, as part of the DOE`s Clean Coal Technology Program, was demonstrating the CT-121 flue gas desulfurization technology. A commercial-scale prototype integrated gasification-combined cycle (IGCC) power plant was selected by DOE for Phase 2 testing. Funding for the Phase 2 effort was provided by DOE, with assistance from EPRI and the host site, the Louisiana Gasification Technology, Inc. (LGTI) project This document presents the results of that effort.

  10. Viability of underground coal gasification in the 'deep coals' of the Powder River Basin, Wyoming

    SciTech Connect (OSTI)

    NONE

    2007-06-15T23:59:59.000Z

    The objective of this work is to evaluate the PRB coal geology, hydrology, infrastructure, environmental and permitting requirements and to analyze the possible UCG projects which could be developed in the PRB. Project economics on the possible UCG configurations are presented to evaluate the viability of UCG. There are an estimated 510 billion tons of sub-bituminous coal in the Powder River Basin (PRB) of Wyoming. These coals are found in extremely thick seams that are up to 200 feet thick. The total deep coal resource in the PRB has a contained energy content in excess of twenty times the total world energy consumption in 2002. However, only approximately five percent of the coal resource is at depths less than 500 feet and of adequate thickness to be extracted by open pit mining. The balance is at depths between 500 and 2,000 feet below the surface. These are the PRB 'deep coals' evaluated for UCG in this report. The coal deposits in the Powder River Basin of Wyoming are thick, laterally continuous, and nearly flat lying. These deposits are ideal for development by Underground Coal Gasification. The thick deep coal seams of the PRB can be harvested using UCG and be protective of groundwater, air resources, and with minimum subsidence. Protection of these environmental values requires correct site selection, site characterization, impact definition, and impact mitigation. The operating 'lessons learned' of previous UCG operations, especially the 'Clean Cavity' concepts developed at Rocky Mountain 1, should be incorporated into the future UCG operations. UCG can be conducted in the PRB with acceptable environmental consequences. The report gives the recommended development components for UCG commercialization. 97 refs., 31 figs., 57 tabs., 1 app.

  11. Fundamental research on novel process alternatives for coal gasification: Final report

    SciTech Connect (OSTI)

    Hill, A H; Knight, R A; Anderson, G L; Feldkirchner, H L; Babu, S P

    1986-10-01T23:59:59.000Z

    The Institute of Gas Technology has conducted a fundamental research program to determine the technical feasibility of and to prepare preliminary process evaluations for two new approaches to coal gasification. These two concepts were assessed under two major project tasks: Task 1. CO/sub 2/-Coal Gasification Process Concept; Task 2. Internal Recirculation Catalysts Coal Gasification Process Concept. The first process concept involves CO/sub 2/-O/sub 2/ gasification of coal followed by CO/sub 2/ removal from the hot product gas by a solid MgO-containing sorbent. The sorbent is regenerated by either a thermal- or a pressure-swing step and the CO/sub 2/ released is recycled back to the gasifier. The product is a medium-Btu gas. The second process concept involves the use of novel ''semivolatile'' materials as internal recirculating catalysts for coal gasification. These materials remain in the gasifier because their vapor pressure-temperature behavior is such that they will be in the vapor state at the hotter, char exit part of the reactor and will condense in the colder, coal-inlet part of the reactor. 21 refs., 43 figs., 43 tabs.

  12. Performance of solid oxide fuel cells operaated with coal syngas provided directly from a gasification process

    SciTech Connect (OSTI)

    Hackett, G.; Gerdes, K.; Song, X.; Chen, Y.; Shutthanandan, V.; Englehard, M.; Zhu, Z.; Thevuthasan, S.; Gemmen, R.

    2012-01-01T23:59:59.000Z

    Solid oxide fuel cells (SOFCs) are being developed for integrated gasification power plants that generate electricity from coal at 50% efficiency. The interaction of trace metals in coal syngas with Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but test data from direct coal syngas exposure are sparsely available. This effort evaluates the significance of performance losses associated with exposure to direct coal syngas. Specimen are operated in a unique mobile test skid that is deployed to the research gasifier at NCCC in Wilsonville, AL. The test skid interfaces with a gasifier slipstream to deliver hot syngas to a parallel array of twelve SOFCs. During the 500 h test period, all twelve cells are monitored for performance at four current densities. Degradation is attributed to syngas exposure and trace material attack on the anode structure that is accelerated at increasing current densities. Cells that are operated at 0 and 125 mA cm{sup 2} degrade at 9.1 and 10.7% per 1000 h, respectively, while cells operated at 250 and 375 mA cm{sup 2} degrade at 18.9 and 16.2% per 1000 h, respectively. Spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

  13. Changes in major organic contaminants in the groundwater at the Hoe Creek underground coal gasification site

    SciTech Connect (OSTI)

    Wang, F.; Mead, W.

    1985-08-01T23:59:59.000Z

    The results of groundwater analysis at the Hoe Creek underground coal gasification (UCG) site have indicated that, after gasification, the phenolic compounds and neutral aromatic hydrocarbons decrease more slowly than expected on the basis of our laboratory studies. The field data also fail to confirm the expected inverse relationship between a contaminant's water solubility and the extent to which it is sorbed by surrounding coal. The authors described a mechanism for the deposition of coal pyrolysis products that may help to elucidate the observed behavior of these organic contaminants. 7 refs., 7 figs.

  14. Analysis of mathematical models of underground coal gasification

    SciTech Connect (OSTI)

    Fausett, L.V.

    1984-01-01T23:59:59.000Z

    Results are reported of a survey and comparison of forward combustion underground coal gasification (UCG) models that are available in the public domain. The six models obtained for study were mathematically analyzed to determine their conceptual completeness and computational complexity. The computer code for each model was implemented on the University of Wyoming CDC CYBER 730/760 computer system. Computed analyses were made with each of the programs using data to simulate six representative UCG field tests. Four of the field tests were air injection experiments and two were oxygen/steam. Modifications were necessary to two models in order for them to simulate oxygen/steam injection experiments. A mistake in the computer code for one model was discovered and corrected; this enabled the code to execute with data from one field test for which the original version had failed. An alternate numerical solution technique for one mdoel was studied, and improved correlations for the model were developed. An approximate analytical solution to the model was obtained that is valid over the region where difficulties were encountered, using both multiple shooting and collocation numerical solutions. The applicability of each model to the various conditions occurring in the different field tests was determined.

  15. Proceedings of the thirteenth annual underground coal gasification symposium

    SciTech Connect (OSTI)

    Martin, J.W.; Barone, S.P. (eds.)

    1987-08-01T23:59:59.000Z

    The Thirteenth Annual Underground Coal Gasification Symposium was cosponsored by the Morgantown Energy Technology Center's Laramie Projects Office and Gas Research Institute of Chicago, Illinois, and hosted by the Western Research Institute of Laramie, Wyoming. The symposium was held in Laramie, Wyoming, during the period, August 24 to 26, 1987. Papers printed in these Proceedings were reproduced from camera-ready manuscripts furnished by the authors. They have not been refereed nor have they been edited after receipt for publishing. The purpose for this annual meeting is to provide an opportunity for scientists working in the technology to present their research results, exchange ideas, and discuss their future plans. Nearly 100 attendees from industry, academia, Government, and eight countries, including Belgium, Brazil, France, the Netherlands, Japan, West Germany, India, and Yugoslavia participated. Forty-seven papers were presented in five formal sessions covering Technology, International, Environmental, and General Topics and one informal poster session dominantly covering laboratory and modeling studies. Industrial papers have been processed for inclusion in the Energy Data Base.

  16. Integrated gasification combined-cycle research development and demonstration activities in the US

    SciTech Connect (OSTI)

    Ness, H.M.; Brdar, R.D.

    1996-09-01T23:59:59.000Z

    The United States Department of Energy (DOE)`s Office of Fossil Energy, Morgantown Energy Technology Center, is managing a research development and demonstration (RD&D) program that supports the commercialization of integrated gasification combined-cycle (IGCC) advanced power systems. This overview briefly describes the supporting RD&D activities and the IGCC projects selected for demonstration in the Clean Coal Technology (CCT) Program.

  17. Integrated gasification combined-cycle research development and demonstration activities in the U.S.

    SciTech Connect (OSTI)

    Ness, H.M.

    1994-12-31T23:59:59.000Z

    The United States Department of Energy (DOE) has selected seven integrated gasification combined-cycle (IGCC) advanced power systems for demonstration in the Clean Coal Technology (CCT) Program. DOE`s Office of Fossil Energy, Morgantown Energy Technology Center, is managing a research development and demonstration (RD&D)program that supports the CCT program, and addresses long-term improvements in support of IGCC technology. This overview briefly describes the CCT projects and the supporting RD&D activities.

  18. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    SciTech Connect (OSTI)

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31T23:59:59.000Z

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  19. Rocky Mountain 1: Underground coal gasification test, Hanna, Wyoming. Volume 1. Operations. Summary report

    SciTech Connect (OSTI)

    Not Available

    1989-03-01T23:59:59.000Z

    The Rocky Mountain 1 underground coal gasification (UCG) test was conducted near Hanna, Wyoming during the period January 1986 through March 1988. The report focuses on operations phases that included site selection, facility design, facility construction, well drilling, gasification and environmental monitoring. Two technologies were evaluated as separate modules: the Extended Linked Well (ELW) and the Controlled Retracting Injection Point (CRIP) processes. The test results, along with a discussion of the key test parameters and conclusions of the gasification phase, are provided. A bibliography and schematics are included.

  20. Fluidized-bed catalytic coal-gasification process. [US patent; pretreatment to minimize agglomeration

    DOE Patents [OSTI]

    Euker, C.A. Jr.; Wesselhoft, R.D.; Dunkleman, J.J.; Aquino, D.C.; Gouker, T.R.

    1981-09-14T23:59:59.000Z

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents are oxidized by contact with a gas containing between 2 vol % and 21 vol % oxygen at a temperature between 50 and 250/sup 0/C in an oxidation zone and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  1. Mutagenic and toxic activity of environmental effluents from underground coal gasification experiments

    SciTech Connect (OSTI)

    Timourian, H.

    1982-05-01T23:59:59.000Z

    Using bacterial bioassays, the authors have screened for the presence of mutagens and toxins in extracts from groundwater, and in tar from product gas, at the Hoe Creek II and III in situ coal gasification sites. The sites exhibited different potential biological hazards, suggesting that different gasification processes may represent different human health concerns. It was found that mutagens are present in groundwater, they persist for at least 2 years after gasification has been terminated, and they show a change in activity with time, possibly in parallel with changes in chemical composition. The tar may represent a disposal problem, since it is mutagenic, but with a low level of activity.

  2. LLNL Underground-Coal-Gasification Project. Quarterly progress report, July-September 1981

    SciTech Connect (OSTI)

    Stephens, D.R.; Clements, W. (eds.) [eds.

    1981-11-09T23:59:59.000Z

    We have continued our laboratory studies of forward gasification in small blocks of coal mounted in 55-gal drums. A steam/oxygen mixture is fed into a small hole drilled longitudinally through the center of the block, the coal is ignited near the inlet and burns toward the outlet, and the product gases come off at the outlet. Various diagnostic measurements are made during the course of the burn, and afterward the coal block is split open so that the cavity can be examined. Development work continues on our mathematical model for the small coal block experiments. Preparations for the large block experiments at a coal outcrop in the Tono Basin of Washington State have required steadily increasing effort with the approach of the scheduled starting time for the experiments (Fall 1981). Also in preparation is the deep gasification experiment, Tono 1, planned for another site in the Tono Basin after the large block experiments have been completed. Wrap-up work continues on our previous gasification experiments in Wyoming. Results of the postburn core-drilling program Hoe Creek 3 are presented here. Since 1976 the Soviets have been granted four US patents on various aspects of the underground coal gasification process. These patents are described here, and techniques of special interest are noted. Finally, we include ten abstracts of pertinent LLNL reports and papers completed during the quarter.

  3. Research on chemical factors in underground coal gasification. Final technical report

    SciTech Connect (OSTI)

    Edgar, T.F.

    1985-09-01T23:59:59.000Z

    The goal of this research has been to acquire experimental data and develop mathematical models in order to analyze results from laboratory-scale and field-scale experiments on underground coal gasification (UCG), especially for low-rank coals such as Texas lignite. Experimental data for water injection in a combustion tube, coal core combustion, and coal block gasification are reported; in parallel, a mathematical model for the combustion tube temperature profile and gas composition was developed which compared favorably with experimental data. A mathematical model for predicting gas composition and coal recovery in the Hoe Creek field experiment has been completed and verified with field data. Two experiments have been constructed to obtain data on reactions of interest to UCG; these include an apparatus for determining the kinetics of tar cracking and a microreactor for analyzing the process dynamics of the water gas shift reaction carried out in a fixed bed catalytic system. 44 refs., 60 figs., 22 tabs.

  4. FUNDAMENTAL INVESTIGATION OF FUEL TRANSFORMATIONS IN PULVERIZED COAL COMBUSTION AND GASIFICATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Robert Hurt; Joseph Calo; Thomas H. Fletcher; Alan Sayre

    2005-04-29T23:59:59.000Z

    The goal of this project was to carry out the necessary experiments and analyses to extend current capabilities for modeling fuel transformations to the new conditions anticipated in next-generation coal-based, fuel-flexible combustion and gasification processes. This multi-organization, multi-investigator project has produced data, correlations, and submodels that extend present capabilities in pressure, temperature, and fuel type. The combined experimental and theoretical/computational results are documented in detail in Chapters 1-8 of this report, with Chapter 9 serving as a brief summary of the main conclusions. Chapters 1-3 deal with the effect of elevated pressure on devolatilization, char formation, and char properties. Chapters 4 and 5 deal with advanced combustion kinetic models needed to cover the extended ranges of pressure and temperature expected in next-generation furnaces. Chapter 6 deals with the extension of kinetic data to a variety of alternative solid fuels. Chapter 7 focuses on the kinetics of gasification (rather than combustion) at elevated pressure. Finally, Chapter 8 describes the integration, testing, and use of new fuel transformation submodels into a comprehensive CFD framework. Overall, the effects of elevated pressure, temperature, heating rate, and alternative fuel use are all complex and much more work could be further undertaken in this area. Nevertheless, the current project with its new data, correlations, and computer models provides a much improved basis for model-based design of next generation systems operating under these new conditions.

  5. ENCOAL Mild Coal Gasification Demonstration Project. Annual report, October 1993--September 1994

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    ENCOAL Corporation, a wholly-owned subsidiary of SMC Mining Company (formerly Shell Mining Company, now owned by Zeigler Coal Holding Company), has completed the construction and start-up of a mild gasification demonstration plant at Triton Coal Company`s Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by SMC and SGI International, utilizes low-sulfur Powder River Basin coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). The LFC technology uses a mild pyrolysis or mild gasification process which involves heating the coal under carefully controlled conditions. The process causes chemical changes in the feed coal in contrast to conventional drying, which leads only to physical changes. Wet subbituminous coal contains considerable water, and conventional drying processes physically remove some of this moisture, causing the heating value to increase. The deeper the coal is physically dried, the higher the heating value and the more the pore structure permanently collapses, preventing resorption of moisture. However, deeply dried Powder River Basin coals exhibit significant stability problems when dried by conventional thermal processes. The LFC process overcomes these stability problems by thermally altering the solid to create PDF and CDL. Several of the major objectives of the ENCOAL Project have now been achieved. The LFC Technology has been essentially demonstrated. Significant quantities of specification CDL have been produced from Buckskin coal. Plant operation in a production mode with respectable availability (approaching 90%) has been demonstrated.

  6. Oil shale, tar sands, and underground coal gasification. Quarterly progress report, July-September, 1983

    SciTech Connect (OSTI)

    Not Available

    1983-10-28T23:59:59.000Z

    Technical progress made for the second quarter, July 1, 1983 through September 30, 1983 are described for three areas, oil shale, tar sand and underground gasification of coal. The oil shale program is divided into the following tasks: chemistry and physics; retort bed analysis; novel processing methods; and environmental impact mitigation. The tar sand investigation covers: recovery processes; preparation; novel processing methods; and environmental impact mitigation. Underground coal gasification covers: recovery processes; field project evaluation; novel processing methods; and environmental impact mitigation. An executive summary is provided for the three programs. 19 figures, 23 tables.

  7. Steam tracer experiment at the Hoe Creek No. 3 underground coal gasification field test

    SciTech Connect (OSTI)

    Thorsness, C.B.

    1980-11-26T23:59:59.000Z

    Water plays an important role in in-situ coal gasification. To better understand this role, we conducted a steam tracer test during the later stages of the Hoe Creek No. 3 underground coal gasification field test. Deuterium oxide was used as the tracer. This report describes the tracer test and the analysis of the data obtained. The analysis indicates that at Hoe Creek the injected steam interacts with a large volume of water as it passes through the underground system. We hypothesize that this water is undergoing continual reflux in the underground system, resulting in a tracer response typical of a well-stirred tank.

  8. Structural characteristics and gasification reactivity of chars prepared from K{sub 2}CO{sub 3} mixed HyperCoals and coals

    SciTech Connect (OSTI)

    Atul Sharma; Hiroyuki Kawashima; Ikuo Saito; Toshimasa Takanohashi [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan). Advanced Fuel Group

    2009-04-15T23:59:59.000Z

    HyperCoal is a clean coal with mineral matter content <0.05 wt %. Oaky Creek (C = 82%), and Pasir (C = 68%) coals were subjected to solvent extraction method to prepare Oaky Creek HyperCoal, and Pasir HyperCoal. Experiments were carried out to compare the gasification reactivity of HyperCoals and parent raw coals with 20, 40, 50 and 60% K{sub 2}CO{sub 3} as a catalyst at 600, 650, 700, and 775{sup o}C with steam. Gasification rates of coals and HyperCoals were strongly influenced by the temperature and catalyst loading. Catalytic steam gasification of HyperCoal chars was found to be chemical reaction controlled in the 600-700{sup o}C temperature range for all catalyst loadings. Gasification rates of HyperCoal chars were found to be always higher than parent coals at any given temperature for all catalyst loadings. However, X-ray diffraction results showed that the microstructures of chars prepared from coals and HyperCoals were similar. Results from nuclear magnetic resonance spectroscopy show no significant difference between the chemical compositions of the chars. Significant differences were observed from scanning electron microscopy images, which showed that the chars from HyperCoals had coral-reef like structures whereas dense chars were observed for coals. 26 refs., 8 figs., 2 tabs.

  9. Differences in gasification behaviors and related properties between entrained gasifier fly ash and coal char

    SciTech Connect (OSTI)

    Jing Gu; Shiyong Wu; Youqing Wu; Ye Li; Jinsheng Gao [East China University of Science and Technology, Shanghai (China). Department of Chemical Engineering for Energy Resources and Key Laboratory of Coal Gasification of Ministry of Education

    2008-11-15T23:59:59.000Z

    In the study, two fly ash samples from Texaco gasifiers were compared to coal char and the physical and chemical properties and reactivity of samples were investigated by scanning electron microscopy (SEM), SEM-energy-dispersive spectrometry (EDS), X-ray diffraction (XRD), N{sub 2} and CO{sub 2} adsorption method, and isothermal thermogravimetric analysis. The main results were obtained. The carbon content of gasified fly ashes exhibited 31-37%, which was less than the carbon content of 58-59% in the feed coal. The fly ashes exhibited higher Brunauer-Emmett-Teller (BET) surface area, richer meso- and micropores, more disordered carbon crystalline structure, and better CO{sub 2} gasification reactivity than coal char. Ashes in fly ashes occurred to agglomerate into larger spherical grains, while those in coal char do not agglomerate. The minerals in fly ashes, especial alkali and alkaline-earth metals, had a catalytic effect on gasification reactivity of fly ash carbon. In the low-temperature range, the gasification process of fly ashes is mainly in chemical control, while in the high-temperature range, it is mainly in gas diffusion control, which was similar to coal char. In addition, the carbon in fly ashes was partially gasified and activated by water vapor and exhibited higher BET surface area and better gasification activity. Consequently, the fact that these carbons in fly ashes from entrained flow gasifiers are reclaimed and reused will be considered to be feasible. 15 refs., 7 figs., 5 tabs.

  10. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect (OSTI)

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01T23:59:59.000Z

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  11. ENCOAL Mild Coal Gasification Project. Annual report, October 1990--September 1991

    SciTech Connect (OSTI)

    Not Available

    1992-02-01T23:59:59.000Z

    ENCOAL Corporation, a wholly-owned subsidiary of Shell Mining Company, is constructing a mild gasification demonstration plant at Triton Coal Company`s Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by Shell and SGI International, utilizes low-sulfur Powder River Basin Coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). The products, as alternative fuels sources, are expected to significantly reduce current sulfur emissions at industrial and utility boiler sites throughout the nation, thereby reducing pollutants causing acid rain.

  12. Revised users manual, Pulverized Coal Gasification or Combustion: 2-dimensional (87-PCGC-2): Final report, Volume 2. [87-PCGC-2

    SciTech Connect (OSTI)

    Smith, P.J.; Smoot, L.D.; Brewster, B.S.

    1987-12-01T23:59:59.000Z

    A two-dimensional, steady-state model for describing a variety of reactive and non-reactive flows, including pulverized coal combustion and gasification, is presented. Recent code revisions and additions are described. The model, referred to as 87-PCGC-2, is applicable to cylindrical axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using either a flux method or discrete ordinates method. The particle phase is modeled in a Lagrangian framework, such that mean paths of particle groups are followed. Several multi-step coal devolatilization schemes are included along with a heterogeneous reaction scheme that allows for both diffusion and chemical reaction. Major gas-phase reactions are modeled assuming local instantaneous equilibrium, and thus the reaction rates are limited by the turbulent rate mixing. A NO/sub x/ finite rate chemistry submodel is included which integrates chemical kinetics and the statistics of the turbulence. The gas phase is described by elliptic partial differential equations that are solved by an iterative line-by-line technique. Under-relaxation is used to achieve numerical stability. The generalized nature of the model allows for calculation of isothermal fluid mechanicsgaseous combustion, droplet combustion, particulate combustion and various mixtures of the above, including combustion of coal-water and coal-oil slurries. Both combustion and gasification environments are permissible. User information and theory are presented, along with sample problems. 106 refs.

  13. advanced coal gasification: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion and Utilization Websites Summary: Kumfer, ACERF Manager Consortium for Clean Coal Utilization Fly ash utilization Be a resourceADVANCED COAL & ENERGY RESEARCH...

  14. A review of the factors influencing the physicochemical characteristics of underground coal gasification

    SciTech Connect (OSTI)

    Yang, L.H. [China University of Mining and Technology, Jiangsu (China)

    2008-07-01T23:59:59.000Z

    In this article, the physicochemical characteristics of the oxidation zone, the reduction zone, and the destructive distillation and dry zone in the process of underground coal gasification (UCG) were explained. The effect of such major factors as temperature, coal type, water-inrush or -intake rate, the quantity and quality of wind blasting, the thickness of coal seams, operational pressure, the length, and the section of gasification gallery on the quality of the underground gas and their interrelationship were discussed. Research showed that the temperature conditions determined the underground gas compositions; the appropriate water-inrush or -intake rate was conducive to the improvement in gas heat value; the properties of the gasification agent had an obvious effect on the compositions and heat value of the product gas. Under the cyclically changing pressure, heat losses decreased by 60%, with the heat efficiency and gasification efficiency being 1.4 times and 2 times those of constant pressure, respectively. The test research further proved that the underground gasifier with a long channel and a big cross-section, to a large extent, improved the combustion-gasification conditions.

  15. Synthesis gas production with an adjustable H{sub 2}/CO ratio through the coal gasification process: effects of coal ranks and methane addition

    SciTech Connect (OSTI)

    Yan Cao; Zhengyang Gao; Jing Jin; Hongchang Zhou; Marten Cohron; Houying Zhao; Hongying Liu; Weiping Pan [Western Kentucky University (WKU), Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology (ICSET)

    2008-05-15T23:59:59.000Z

    Direct production of synthesis gas using coal as a cheap feedstock is attractive but challenging due to its low H{sub 2}/CO ratio of generated synthesis gas. Three typical U.S. coals of different ranks were tested in a 2.5 in. coal gasifier to investigate their gasification reactivity and adjustability on H{sub 2}/CO ratio of generated synthesis gas with or without the addition of methane. Tests indicated that lower-rank coals (lignite and sub-bituminous) have higher gasification reactivity than bituminous coals. The coal gasification reactivity is correlated to its synthesis-gas yield and the total percentage of H{sub 2} and CO in the synthesis gas, but not to the H{sub 2}/CO ratio. The H{sub 2}/CO ratio of coal gasification was found to be correlated to the rank of coals, especially the H/C ratio of coals. Methane addition into the dense phase of the pyrolysis and gasification zone of the cogasification reactor could make the best use of methane in adjusting the H{sub 2}/CO ratio of the generated synthesis gas. The maximum methane conversion efficiency, which was likely correlated to its gasification reactivity, could be achieved by 70% on average for all tested coals. The actual catalytic effect of generated coal chars on methane conversion seemed coal-dependent. The coal-gasification process benefits from methane addition and subsequent conversion on the adjustment of the H{sub 2}/CO ratio of synthesis gas. The methane conversion process benefits from the use of coal chars due to their catalytic effects. This implies that there were likely synergistic effects on both. 25 refs., 3 figs., 3

  16. Subtask 4.2 - Coal Gasification Short Course

    SciTech Connect (OSTI)

    Kevin Galbreath

    2009-06-30T23:59:59.000Z

    Major utilities, independent power producers, and petroleum and chemical companies are intent on developing a fleet of gasification plants primarily because of high natural gas prices and the implementation of state carbon standards, with federal standards looming. Currently, many projects are being proposed to utilize gasification technologies to produce a synthesis gas or fuel gas stream for the production of hydrogen, liquid fuels, chemicals, and electricity. Financing these projects is challenging because of the complexity, diverse nature of gasification technologies, and the risk associated with certain applications of the technology. The Energy & Environmental Research Center has developed a gasification short course that is designed to provide technical personnel with a broad understanding of gasification technologies and issues, thus mitigating the real or perceived risk associated with the technology. Based on a review of research literature, tutorial presentations, and Web sites on gasification, a short course presentation was prepared. The presentation, consisting of about 500 PowerPoint slides, provides at least 7 hours of instruction tailored to an audience's interests and needs. The initial short course is scheduled to be presented September 9 and 10, 2009, in Grand Forks, North Dakota.

  17. Catalytic steam gasification reactivity of HyperCoals produced from different rank of coals at 600-775{degree}C

    SciTech Connect (OSTI)

    Atul Sharma; Ikuo Saito; Toshimasa Takanohashi [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan). Advanced Fuel Group, Energy Technology Research Institute

    2008-11-15T23:59:59.000Z

    HyperCoal is a clean coal with ash content <0.05 wt %. HyperCoals were prepared from a brown coal, a sub-bituminous coal, and a bituminous raw coal by solvent extraction method. Catalytic steam gasification of these HyperCoals was carried out with K{sub 2}CO{sub 3} at 775, 700, 650, and 600 {degree}C, and their rates were compared. HyperCoals produced from low-rank coals were more reactive than those produced from the high-rank coals. XRD measurements were carried out to understand the difference in gasification reactivity of HyperCoals. Arrhenius plot of ln (k) vs 1/T in the temperature range 600-825{degree}C was a curve rather than a straight line. The point of change was observed at 700{degree}C for HyperCoals from low-rank coals and at 775{degree}C for HyperCoals from high-rank coals. Using HyperCoal produced from low-rank coals as feedstock, steam gasification of coal may be possible at temperatures less than 650{degree}C. 22 refs., 6 figs., 2 tabs.

  18. Shaped-charge tests in support of the coal-gasification program

    SciTech Connect (OSTI)

    Scheloske, R.F.

    1981-12-01T23:59:59.000Z

    The LLNL concept for in-situ coal gasification requires forming horizontal holes in deep coal beds to connect vertical bore shafts. These lateral holes are required to provide a passage for the gases between the vertical shafts. Shaped charges are being considered for producing these horizontal bore holes. This report describes a test method for evaluating new shaped charge designs and presents the results for three designs.

  19. Performance of solid oxide fuel cells operated with coal syngas provided directly from a gasification process

    SciTech Connect (OSTI)

    Hackett, Gregory A.; Gerdes, Kirk R.; Song, Xueyan; Chen, Yun; Shutthanandan, V.; Engelhard, Mark H.; Zhu, Zihua; Thevuthasan, Suntharampillai; Gemmen, Randall

    2012-09-15T23:59:59.000Z

    Solid oxide fuel cells (SOFCs) are presently being developed for gasification integrated power plants that generate electricity from coal at 50+% efficiency. The interaction of trace metals in coal syngas with the Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but direct test data from coal syngas exposure are sparsely available. This research effort evaluates the significance of SOFC performance losses associated with exposure of a SOFC anode to direct coal syngas. SOFC specimen of industrially relevant composition are operated in a unique mobile test skid that was deployed to the research gasifier at the National Carbon Capture Center (NCCC) in Wilsonville, AL. The mobile test skid interfaces with a gasifier slipstream to deliver hot syngas (up to 300°C) directly to a parallel array of 12 button cell specimen, each of which possesses an active area of approximately 2 cm2. During the 500 hour test period, all twelve cells were monitored for performance at four discrete operating current densities, and all cells maintained contact with a data acquisition system. Of these twelve, nine demonstrated good performance throughout the test, while three of the cells were partially compromised. Degradation associated with the properly functioning cells was attributed to syngas exposure and trace material attack on the anode structure that was accelerated at increasing current densities. Cells that were operated at 0 and 125 mA/cm² degraded at 9.1 and 10.7% per 1000 hours, respectively, while cells operated at 250 and 375 mA/cm² degraded at 18.9 and 16.2% per 1000 hours, respectively. Post-trial spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

  20. HYDROGENOLYSIS OF A SUB-BITUMINOUS COAL WITH MOLTEN ZINC CHLORIDE SOLUTIONS

    E-Print Network [OSTI]

    Holten, R.R.

    2010-01-01T23:59:59.000Z

    or gaseous fuels, coal gasification has advanced furthestrapidly. While coal gasification may reach commercializa-5272 (1976). COal Processing - Gasification, Liguefaction,

  1. Oil shale, tar sands, and underground coal gasification. Quarterly progress report, April-June 1984

    SciTech Connect (OSTI)

    Not Available

    1984-08-15T23:59:59.000Z

    Highlights of progress achieved during the quarter ending June 30, 1984 are summarized. This research involves three resource areas: oil shale, tar sands, and underground gasification of coal. Separate abstracts have been prepared for each section for inclusion in the Energy Database. (DMC)

  2. Markets for low- and medium-Btu coal gasification: an analysis of 13 site specific studies

    SciTech Connect (OSTI)

    Not Available

    1981-09-01T23:59:59.000Z

    In 1978 the US Department of Energy (DOE), through its Office of Resource Applications, developed a commercialization plan for low- and medium-Btu coal gasification. Several initial steps have been taken in that process, including a comprehensive study of industrial markets, issuance of a Notice of Program Interest, and funding of proposals under the Alternate Fuels Legislation (P.L. 96-126). To assist it in the further development and administration of the commercialization plan, the Office of Resource Applications has asked Booz, Allen and Hamilton to assess the market prospects for low- and medium-Btu coal gasification. This report covers the detailed findings of the study. Following the introduction which discusses the purpose of the study, approach used for the assignment and current market attitudes on coal gasification, there are three chapters on: systems configurations and applications; economic and finanical attractiveness; and summary of management decisions based on feasibility study results. The final chapter briefly assesses the management decisions. The general consensus seems to be that coal gasification is a technology that will be attractive in the future but is marginal now. 6 figures, 5 tables.

  3. Mathematical modeling of cavity growth during underground coal gasification

    SciTech Connect (OSTI)

    Jung, K.S.

    1987-01-01T23:59:59.000Z

    Four two-dimensional cavity growth models are developed based on the permeation process concept in order to understand what has happened in previous field tests, and to learn better methods for future field tests and commercial scale operations. The first model considers only a wet coal region beyond the cavity. In the second model, dried coal is added to the first model, so that there are two different coal regions: the wet coal and dried coal regions. The third model includes the effect of links formed by reverse combustion, but the dried coal region is not included. Also in this model, plugging phenomenon, due to particulates carried by the injectant to the cavity wall, is introduced. The final model incorporates nonisotropic permeability, a dried coal region, links and plugging phenomenon. Considerations of a wet coal region only or of wet coal and coal drying do not explain the high recovery of coal observed in field tests. However, plugging phenomenon prevents channeling of gases down high-permeability links, and thereby the recovery of coal is increased. Also link configurations have a marked effect on the coal source recovery. Computation results from the fourth model show that coal recovery is improved greatly if a large dried coal zone exists around the cavity.

  4. Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems

    SciTech Connect (OSTI)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

    2006-06-01T23:59:59.000Z

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. In previous tests, we had frequently encountered problems with our steam generator that were exacerbated by the very low flow rates that we needed. During this period we installed a new computer-controlled system for injecting water into the steam generator that eliminated this problem. We also tested alloy coupons coated by using the improved procedures described in our last quarterly report. Most of these coatings were nitrided Ti and Ta coatings, either by themselves, or sometimes with barrier layers of Al and Si nitrides. The samples were tested for 300 h at 900 C in a gas stream designed to mimic the environment in the high temperature heat recovery unit (HTHRU). Three samples that showed least corrosion were exposed for an additional 100 h.

  5. Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems

    SciTech Connect (OSTI)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

    2005-12-01T23:59:59.000Z

    Heat exchangers, particle filters, turbines, and other components in an integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high-alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this reporting period, we conducted a simulated gasifier test primarily with TiN-coated steel samples. Although the test showed these coatings to offer significant protection against corrosion, they also revealed a lack of uniformity in the coatings. We spent a considerable amount of effort improving our coatings procedure as well as the fluidized bed reactor and its heater. Based on the results collected thus far, we selected 12 samples and sent them to ConocoPhillips for testing in their gasifier at the Wabash River Energy plant.

  6. The Development of a Hydrothermal Method for Slurry Feedstock Preparation for Gasification Technology

    E-Print Network [OSTI]

    He, Wei

    2011-01-01T23:59:59.000Z

    Affairs, Carbon and coal gasification: science andand B.F. Towler, Coal Gasification and Its Applications .Coal Chars , in Coal Gasification . 1974, AMERICAN CHEMICAL

  7. Rocky mountain 1: Underground coal-gasification test, Hanna, Wyoming. Summary report, Volume 1. Appendix. Final report

    SciTech Connect (OSTI)

    Vardaman, M.H.

    1989-02-01T23:59:59.000Z

    The Rocky Mountain 1 underground coal gasification test was conducted near Hanna, Wyoming during the period January 1986 through March 1988. These appendixes include information supporting Volume I as well as complete data for certain aspects of the gasification phase. These aspects include daily operations reports, raw and corrected process data, thermocouple and Time Domain Reflectometer results, and monitoring well pressure and level data obtained during the gasification phase. Piping and instrumentation diagrams and supplemental informations on the data acquisition system are included.

  8. Hydrogen production by high-temperature steam gasification of biomass and coal

    SciTech Connect (OSTI)

    Kriengsak, S.N.; Buczynski, R.; Gmurczyk, J.; Gupta, A.K. [University of Maryland, College Park, MD (United States). Dept. of Mechanical Engineering

    2009-04-15T23:59:59.000Z

    High-temperature steam gasification of paper, yellow pine woodchips, and Pittsburgh bituminous coal was investigated in a batch-type flow reactor at temperatures in the range of 700 to 1,200{sup o}C at two different ratios of steam to feedstock molar ratios. Hydrogen yield of 54.7% for paper, 60.2% for woodchips, and 57.8% for coal was achieved on a dry basis, with a steam flow rate of 6.3 g/min at steam temperature of 1,200{sup o}C. Yield of both the hydrogen and carbon monoxide increased while carbon dioxide and methane decreased with the increase in gasification temperature. A 10-fold reduction in tar residue was obtained at high-temperature steam gasification, compared to low temperatures. Steam and gasification temperature affects the composition of the syngas produced. Higher steam-to-feedstock molar ratio had negligible effect on the amount of hydrogen produced in the syngas in the fixed-batch type of reactor. Gasification temperature can be used to control the amounts of hydrogen or methane produced from the gasification process. This also provides mean to control the ratio of hydrogen to CO in the syngas, which can then be processed to produce liquid hydrocarbon fuel since the liquid fuel production requires an optimum ratio between hydrogen and CO. The syngas produced can be further processed to produce pure hydrogen. Biomass fuels are good source of renewable fuels to produce hydrogen or liquid fuels using controlled steam gasification.

  9. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    is produced via coal gasification, then, depending on thenot be amenable to coal gasification and, thus, Eastern coalto represent a coal-to- hydrogen gasification process that

  10. Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    The major objectives of the joint SCS/DOE study of air-blown gasification power plants with hot gas cleanup are to: (1) Evaluate various power plant configurations to determine if an air-blown gasification-based power plant with hot gas cleanup can compete against pulverized coal with flue gas desulfurization for baseload expansion at Georgia Power Company's Plant Wansley; (2) determine if air-blown gasification with hot gas cleanup is more cost effective than oxygen-blown IGCC with cold gas cleanup; (3) perform Second-Law/Thermoeconomic Analysis of air-blown IGCC with hot gas cleanup and oxygen-blown IGCC with cold gas cleanup; (4) compare cost, performance, and reliability of IGCC based on industrial gas turbines and ISTIG power island configurations based on aeroderivative gas turbines; (5) compare cost, performance, and reliability of large (400 MW) and small (100 to 200 MW) gasification power plants; and (6) compare cost, performance, and reliability of air-blown gasification power plants using fluidized-bed gasifiers to air-blown IGCC using transport gasification and pressurized combustion.

  11. Assessment of underground coal gasification in bituminous coals: potential UCG products and markets. Final report, Phase I

    SciTech Connect (OSTI)

    None

    1982-01-31T23:59:59.000Z

    The following conclusions were drawn from the study: (1) The US will continue to require new sources of energy fuels and substitutes for petrochemical feedstocks into the foreseeable future. Most of this requirement will be met using coal. However, the cost of mining, transporting, cleaning, and preparing coal, disposing of ash or slag and scrubbing stack gases continues to rise; particularly, in the Eastern US where the need is greatest. UCG avoids these pitfalls and, as such, should be considered a viable alternative to the mining of deeper coals. (2) Of the two possible product gases LBG and MBG, MBG is the most versatile. (3) The most logical use for UCG product in the Eastern US is to generate power on-site using a combined-cycle or co-generation system. Either low or medium Btu gas (LBG or MBG) can be used. (4) UCG should be an option whenever surface gasification is considered; particularly, in areas where deeper, higher sulfur coal is located. (5) There are environmental and social benefits to use of UCG over surface gasification in the Eastern US. (6) A site could be chosen almost anywhere in the Illinois and Ohio area where amenable UCG coal has been determined due to the existence of existing transportation or transmission systems. (7) The technology needs to be demonstrated and the potential economic viability determined at a site in the East-North-Central US which has commercial quantities of amenable bituminous coal before utilities will show significant interest.

  12. Product Characterization for Entrained Flow Coal/Biomass Co-Gasification

    SciTech Connect (OSTI)

    Shawn Maghzi; Ramanathan Subramanian; George Rizeq; Surinder Singh; John McDermott; Boris Eiteneer; David Ladd; Arturo Vazquez; Denise Anderson; Noel Bates

    2011-09-30T23:59:59.000Z

    The U.S. Department of Energyâ??s National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GEâ??s bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and gas-phase reactions were properly reproduced and lead to representative syngas composition at the syngas cooler outlet. The experimental work leveraged other ongoing GE R&D efforts such as biomass gasification and dry feeding systems projects. Experimental data obtained under this project were used to provide guidance on the appropriate clean-up system(s) and operating parameters to coal and biomass combinations beyond those evaluated under this project.

  13. Product Characterization for Entrained Flow Coal/Biomass Co-Gasification

    SciTech Connect (OSTI)

    Maghzi, Shawn; Subramanian, Ramanathan; Rizeq, George; Singh, Surinder; McDermott, John; Eiteneer, Boris; Ladd, David; Vazquez, Arturo; Anderson, Denise; Bates, Noel

    2011-09-30T23:59:59.000Z

    The U.S. Department of Energy‘s National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE‘s bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and gas-phase reactions were properly reproduced and lead to representative syngas composition at the syngas cooler outlet. The experimental work leveraged other ongoing GE R&D efforts such as biomass gasification and dry feeding systems projects. Experimental data obtained under this project were used to provide guidance on the appropriate clean-up system(s) and operating parameters to coal and biomass combinations beyond those evaluated under this project.

  14. The particulate and vapor phase components of airborne polyaromatic hydrocarbons (PAHs) in coal gasification pilot plants 

    E-Print Network [OSTI]

    Brink, Eric Jon

    1980-01-01T23:59:59.000Z

    , the hot gases flow into a condenser where they are (1-3, 7) cooled and the liquid sulfur 1s removed. The final steps 1n the gasif1cation process are to compr ess the methanated gas from appr oximately 140 psig to pipel1ne pr essure of 1000 psig...THE PARTICULATE AND VAPOR PHASE COMPONENTS OF AIRBORNE POLYAROMATIC HYDROCARBONS(PAHs) IN COAL GASIFICATION PILOT PLANTS A Thesis by ERIC JON BRINK Submitted to the Graduate College of Texas A & M University in partial fulfillment...

  15. Effect of pretreatment and additives on boron release during pyrolysis and gasification of coal

    SciTech Connect (OSTI)

    Yuuki Mochizuki; Katsuyasu Sugawara; Yukio Enda [Akita University, Akita (Japan). Faculty of Engineering and Resources Science

    2009-09-15T23:59:59.000Z

    Boron is one of the most toxic and highly volatile elements present in coal. As part of a series of studies carried out on coal cleaning to prevent environmental problems and to promote efficient coal utilization processes, the removal of boron by leaching with water and acetic acid has been investigated. The effects of the addition of ash components, that is, SiO{sub 2}, Al{sub 2}O{sub 3}, and CaO on the control of boron release during pyrolysis and gasification were investigated. Here, 20-70% of boron in coal was removed by leaching the coal with water and acetic acid. Boron leached by water and acetic acid was related to the volatiles released from coal in pyrolysis below 1173 K. The addition of ash components such as SiO{sub 2} and Al{sub 2}O{sub 3} was found to be effective in suppressing the release of boron during pyrolysis at temperatures below and above 1173 K, respectively. The addition of CaO to coal was effective in suppressing the release of boron during gasification at 1173 K. 26 refs., 7 figs., 3 tabs.

  16. Geological evaluation of the proposed Rocky Mountain 1 underground coal gasification test site, Hanna, Wyoming

    SciTech Connect (OSTI)

    Oliver, R.L.

    1987-02-01T23:59:59.000Z

    To characterize the proposed Rocky Mountain 1 underground coal gasification test site near Hanna, Wyoming, 30 drill and/or core holes were completed and downhole geophysically logged during the summer of 1986. Core testing was conducted to identify coal quality and predict behavior during gasification. Data were then interpreted to provide information on process parameters and restoration to be used by process and environmental engineers. The coal seam at the Rocky Mountain 1 site dips to the northeast at 7/sup 0/ and shows only minor folding of strata. A fault with 30 feet of stratigraphic displacement is located approximately 300 feet northeast of the northern boundary of the proposed burn area. From core and outcrop observations, tectonic fracturing is predicted to be minor, although local areas of fracturing may exist. Overburden stratigraphy consists of interbedded sandstone, siltstone, and shale with minor coal. The Hanna No. 1 coal (target of the experiments) is approximately 30 feet thick. It contains an upper bench approximately 3 to 4 feet thick of lower quality (higher ash, lower Btu), a central bench about 20 feet thick of higher quality (lower ash, higher Btu), and a lower bench approximately 3 to 4 feet thick also of lower quality. The benches are separated by shaley zones approximately 1 to 2 feet thick, which are correlative across the site. Another shaley zone exists near the base of the central bench. The coal varies vertically and somewhat laterally across the site but averages at a high volatile C bituminous rank. Average-as-received proximate analysis values for the coal are 8.8 wt % moisture, 27.3 wt % ash, 32.0 wt % volatile matter, 31.9 wt % fixed carbon, and approximately 8600 Btu/lb heating value. Average-as-received sulfur content is 0.7 wt %. Site characteristics are very amenable to underground coal gasification, and no hindrances to the test due to geologic conditions are expected. 9 refs., 21 figs., 6 tabs.

  17. Effect of steam partial pressure on gasification rate and gas composition of product gas from catalytic steam gasification of HyperCoal

    SciTech Connect (OSTI)

    Atul Sharma; Ikuo Saito; Toshimasa Takanohashi [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan). Advanced Fuel Group

    2009-09-15T23:59:59.000Z

    HyperCoal was produced from coal by a solvent extraction method. The effect of the partial pressure of steam on the gasification rate and gas composition at temperatures of 600, 650, 700, and 750{sup o}C was examined. The gasification rate decreased with decreasing steam partial pressure. The reaction order with respect to steam partial pressure was between 0.2 and 0.5. The activation energy for the K{sub 2}CO{sub 3}-catalyzed HyperCoal gasification was independent of the steam partial pressure and was about 108 kJ/mol. The gas composition changed with steam partial pressure and H{sub 2} and CO{sub 2} decreased and CO increased with decreasing steam partial pressure. By changing the partial pressure of the steam, the H{sub 2}/CO ratio of the synthesis gas can be controlled. 18 refs., 7 figs., 2 tabs.

  18. TVA coal-gasification commercial demonstration plant project. Volume 5. Plant based on Koppers-Totzek gasifier. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-11-01T23:59:59.000Z

    This volume presents a technical description of a coal gasification plant, based on Koppers-Totzek gasifiers, producing a medium Btu fuel gas product. Foster Wheeler carried out a conceptual design and cost estimate of a nominal 20,000 TPSD plant based on TVA design criteria and information supplied by Krupp-Koppers concerning the Koppers-Totzek coal gasification process. Technical description of the design is given in this volume.

  19. Geology of the Hanna Formation, Hanna Underground Coal Gasification Site, Hanna, Wyoming

    SciTech Connect (OSTI)

    Oliver, R.L.; Youngberg, A.D.

    1984-01-01T23:59:59.000Z

    The Hanna Underground Coal Gasification (UCG) study area consists of the SW1/4 of Section 29 and the E1/2SE1/4 of Section 30 in Township 22 North, Range 81 West, Wyoming. Regionally, this is located in the coal-bearing Hanna Syncline of the Hanna Basin in southeast Wyoming. The structure of the site is characterized by beds dipping gently to the northeast. An east-west fault graben complex interrupts this basic trend in the center of the area. The target coal bed of the UCG experiments was the Hanna No. 1 coal in the Hanna Formation. Sedimentary rocks comprising the Hanna Formation consist of a sequence of nonmarine shales, sandstones, coals and conglomerates. The overburden of the Hanna No. 1 coal bed at the Hanna UCG site was divided into four broad local stratigraphic units. Analytical studies were made on overburden and coal samples taken from cores to determine their mineralogical composition. Textural and mineralogical characteristics of sandstones from local stratigraphic units A, B, and C were analyzed and compared. Petrographic analyses were done on the coal including oxides, forms of sulfur, pyrite types, maceral composition, and coal rank. Semi-quantitative spectrographic and analytic geochemical analyses were done on the overburden and coal and relative element concentrations were compared. Trends within each stratigraphic unit were also presented and related to depositional environments. The spectrographic analysis was also done by lithotype. 34 references, 60 figures, 18 tables.

  20. Encoal mild coal gasification project: Encoal project final report, July 1, 1997--July 31, 1997

    SciTech Connect (OSTI)

    NONE

    1997-07-01T23:59:59.000Z

    This document is the summative report on the ENCOAL Mild Coal Gasification Project. It covers the time period from September 17, 1990, the approval date of the Cooperative Agreement between ENCOAL and the US Department of Energy (DOE), to July 17, 1997, the formal end of DOE participation in the Project. The Cooperative Agreement was the result of an application by ENCOAL to the DOE soliciting joint funding under Round III of the Clean Coal Technology Program. By June 1992, the ENCOAL Plant had been built, commissioned and started up, and in October 1994, ENCOAL was granted a two-year extension, carrying the project through to September 17, 1996. No-cost extensions have moved the Cooperative Agreement end date to July 17, 1997 to allow for completion of final reporting requirements. At its inception, ENCOAL was a subsidiary of Shell Mining Company. In November 1992, Shell Mining Company changed ownership, becoming a subsidiary of Zeigler Coal Holding Company (Zeigler) of Fairview Heights, Illinois. Renamed successively as SMC Mining Company and then Bluegrass Coal Development Company, it remained the parent entity for ENCOAL, which has operated a 1,000-ton/day mild coal gasification demonstration plant near Gillette, Wyoming for nearly 5 years. ENCOAL operates at the Buckskin Mine owned by Triton Coal Company (Triton), another Zeigler subsidiary.

  1. Characterizing a lignite formation before and after an underground coal gasification experiment

    E-Print Network [OSTI]

    Ahmed, Usman

    1981-01-01T23:59:59.000Z

    water. To answer questions relating to the amount of lignite gasified, subsidence, ground water pollution problems and to obtain a better understanding of the process itself, work is needed to define the size, shape and orientation of the cavity...CHARACTERIZING A LIGNITE FORMATION BEFORE AND AFTER AN UNDERGROUND COAL GASIFICATION EXPERIMENT A Thesis by USMAN AHMED Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree...

  2. In situ formation of coal gasification catalysts from low cost alkali metal salts

    DOE Patents [OSTI]

    Wood, Bernard J. (Santa Clara, CA); Brittain, Robert D. (Cupertino, CA); Sancier, Kenneth M. (Menlo Park, CA)

    1985-01-01T23:59:59.000Z

    A carbonaceous material, such as crushed coal, is admixed or impregnated with an inexpensive alkali metal compound, such as sodium chloride, and then pretreated with a stream containing steam at a temperature of 350.degree. to 650.degree. C. to enhance the catalytic activity of the mixture in a subsequent gasification of the mixture. The treatment may result in the transformation of the alkali metal compound into another, more catalytically active, form.

  3. Estimated groundwater restoration costs associated with commercial underground coal gasification operations. Topical report

    SciTech Connect (OSTI)

    Fischer, D.D.

    1985-12-17T23:59:59.000Z

    The objective of this program was to complete a preliminary cost estimate for groundwater restoration for the Hoe Creek commercial underground coal gasification (UCG) facility under a set of ground rules based on field data measurements and specific compound removal requirements. Of the three approaches evaluated for disposal of the contaminated groundwater, deep well injection is the least expensive, followed by the alternate treatment approach.

  4. Integrated production/use of ultra low-ash coal, premium liquids and clean char

    SciTech Connect (OSTI)

    Kruse, C.W.

    1991-01-01T23:59:59.000Z

    This integrated, multi-product approach for utilizing Illinois coal starts with the production of ultra low-ash coal and then converts it to high-vale, coal-derived, products. The ultra low-ash coal is produced by solubilizing coal in a phenolic solvent under ChemCoal{trademark} process conditions, separating the coal solution from insoluble ash, and then precipitating the clean coal by dilution of the solvent with methanol. Two major products, liquids and low-ash char, are then produced by mild gasification of the low-ash coal. The low ash-char is further upgraded to activated char, and/or an oxidized activated char which has catalytic properties. Characterization of products at each stage is part of this project.

  5. anthracite coal gasification: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Demonstrations (5050) Clear Skies Reduced Carbon Intensity Clean Coal First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23...

  6. Advances in the development of wire mesh reactor for coal gasification studies - article no. 084102

    SciTech Connect (OSTI)

    Zeng, C.; Chen, L.; Liu, G.; Li, W.H.; Huang, B.M.; Zhu, H.D.; Zhang, B.; Zamansky, V. [GE Global Research Shanghai, Shanghai (China)

    2008-08-15T23:59:59.000Z

    In an effort to further understand the coal gasification behavior in entrained-flow gasifiers, a high pressure and high temperature wire mesh reactor with new features was recently built. An advanced LABVIEW-based temperature measurement and control system were adapted. Molybdenum wire mesh with aperture smaller than 70 {mu} m and type D thermocouple were used to enable high carbon conversion ({gt}90%) at temperatures {gt}1000 {sup o}C. Gaseous species from wire mesh reactor were quantified using a high sensitivity gas chromatography. The material balance of coal pyrolysis in wire mesh reactor was demonstrated for the first time by improving the volatile's quantification techniques.

  7. Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems

    SciTech Connect (OSTI)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

    2006-01-01T23:59:59.000Z

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this period we tested coated alloy coupons under conditions designed to mimic the conditions in the filter unit after the high-temperature heat recovery unit (HTHRU). The filter unit is another important area where corrosion has caused unscheduled downtime, and the remedy has been the use of sintered metal tubes made of expensive alloys such as inconel. The objective of our test was to determine if those coatings on 400-series steel that were not able to withstand the harsher conditions of the HTHRU, may be sufficiently resistant for use in the filter unit, at the reduced temperatures. Indeed, most of our coatings survived well; the exceptions were the coated porous samples of SS316. We continued making improvements to our coatings apparatus and the procedure began during the last quarter. As a result of these modifications, the coupons we are now producing are uniform. We describe the improved procedure for preparing diffusion coatings. Finally, because porous samples of steel in grades other than SS316 are not readily available, we also decided to procure SS409 powder and fabricate our own sintered porous coupons.

  8. Arco's research and development efforts in underground coal gasification

    SciTech Connect (OSTI)

    Bell, G.J.; Brandenburg, C.F.; Bailey, D.W.

    1983-01-01T23:59:59.000Z

    Arco's Rocky Hill No. 1 field test provided invaluable experience in gasifying the deep, thick coal resources in Wyoming. Reverse combustion successfully linked the wells and allowed conversion of the highly permeable, very wet coal to a high-quality gas. The test also produced data on overburden subsidence and groundwater effects. Unresolved issues include such items as site selection, ground water protection, surface treatment of product gas, and the interaction of simultaneously operating gas production modules.

  9. Hoe Creek experiments: LLNL's underground coal-gasification project in Wyoming

    SciTech Connect (OSTI)

    Stephens, D.R.

    1981-10-01T23:59:59.000Z

    Under the sponsorship of the US Department of Energy and predecessor organizations, the Lawrence Livermore National Laboratory carried out a laboratory program and three field, underground coal gasification tests near Gillette, Wyoming. This report summarizes that work. Three methods of linking or connecting injection and production wells were used for the UCG field tests: Hoe Creek No. 1 employed explosive fracturing, Hoe Creek No. 2 featured use of reverse combustion, and directional drilling was used for the Hoe Creek No. 3. The Gas Research Institute cosponsored the latter test. Laboratory experiments and modeling, together with a laboratory and field environment program, are necessary adjuncts to the field program. Explosive fracturing in coal was simulated using computer models and laboratory tests. We developed a relationship of total inelastic strains to permeability, which we used to design and interpret a coal outcrop, explosive fracturing experiment at Kemmerer, Wyoming. Coal gasification was also simulated in laboratory experiments and with computer models. The primary aim has been to predict and correlate reaction, thermal-front propagation rates, and product gas composition as a function of bed properties and process operating conditions. Energy recovery in the form of produced gas and liquids amounted to 73% of the energy in the consumed coal. There were essentially no losses to the subsurface formation. The greatest energy loss was in steam production.

  10. ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE

    E-Print Network [OSTI]

    Ferrell, G.C.

    2010-01-01T23:59:59.000Z

    74. Any coal application (coal gasification, coal combustionFixed-Bed Low-Btu Coal Gasification Systems for RetrofittingPower Plants Employing Coal Gasification," Bergman, P. D. ,

  11. ENCOAL mild coal gasification demonstration project. Annual report, October 1994--September 1995

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    This document is the combination of the fourth quarter report (July - September 1995) and the 1995 annual report for the ENCOAL project. The following pages include the background and process description for the project, brief summaries of the accomplishments for the first three quarters, and a detailed fourth quarter report. Its purpose is to convey the accomplishments and current progress of the project. ENCOAL Corporation, a wholly-owned subsidiary of SMC Mining Company (formerly Shell Mining company, now owned by Zeigler Coal Holding Company), has completed the construction and start-up of a mild gasification demonstration plant at Triton Coal Company`s Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by SMC and SGI International, utilizes low-sulfur Powder River Basis coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). The products, as alternative fuels sources, are expected to significantly lower current sulfur emissions at industrial and utility boiler sites throughout the nation, thereby reducing pollutants causing acid rain. In the LFC technology, coal is first deeply dried to remove water physically. The temperature is further raised in a second stage which results in decomposition reactions that form the new products. This chemical decomposition (mild gasification) creates gases by cracking reactions from the feed coal. The chemically altered solids are cooled and further processed to make PDF. The gases are cooled, condensing liquids as CDL, and the residual gases are burned in the process for heat. The process release for the ENCOAL plant predicted that one ton of feed coal would yield roughly {1/2} ton of PDF and {1/2} barrel of CDL. By varying plant running conditions, however, it has since been learned that the actual CDL recovery rate may be as much as 15% to 20% above the projections.

  12. Fixed-bed gasification research using US coals. Volume 1. Program and facility description

    SciTech Connect (OSTI)

    Thimsen, D.; Maurer, R.E.; Poole, A.R.; Pui, D.; Liu, B.; Kittleson, D.

    1984-10-01T23:59:59.000Z

    The United States Department of Interior, Bureau of Mines, Twin Cities Research Center, Minneapolis, Minnesota is the site of a 6.5 foot diameter Wellman-Galusha gasifier, installed in 1977-1978. This gasifier, combustor/incinerator, and flue gas scrubber system in the past had been operated jointly by Bureau of Mines personnel, personnel from member companies of the Mining and Industrial Fuel Gas Group, and United States Department of Energy personnel-consultants. Numerous tests using a variety of coals have to date been performed. In May of 1982, Black, Sivalls and Bryson, Incorporated (BS and B) was awarded the contract to plan, execute, and report gasification test performance data from this small industrial fixed-bed gasification test facility. BS and B is responsible for program administration, test planning, test execution, and all documentation of program activities and test reports. The University of Minnesota, Particle Technology Laboratory (UMPTL) is subcontractor to BS and B to monitor process parameters, and provide analysis for material inputs and outputs. This report is the initial volume in a series of reports describing the fixed-bed gasification of US coals at the Bureau of Mines, Twin Cities Research Center. A history of the program is given in Section 1 and a thorough description of the facility in Section 2. The operation of the facility is described in Section 3. Monitoring systems and procedures are described in Sections 4 and 5. Data reduction tools are outlined in Section 6. There is no executive summary or conclusions as this volume serves only to describe the research program. Subsequent volumes will detail each gasification test and other pertinent results of the gasification program. 32 references, 23 figures, 15 tables.

  13. Coal gasification power generation, and product market study. Topical report, March 1, 1995--March 31, 1996

    SciTech Connect (OSTI)

    Sheesley, D.; King, S.B.

    1998-12-31T23:59:59.000Z

    This Western Research Institute (WRI) project was part of a WRI Energy Resource Utilization Program to stimulate pilot-scale improved technologies projects to add value to coal resources in the Rocky Mountain region. The intent of this program is to assess the application potential of emerging technologies to western resources. The focus of this project is on a coal resource near the Wyoming/Colorado border, in Colorado. Energy Fuels Corporation/Kerr Coal Company operates a coal mine in Jackson County, Colorado. The coal produces 10,500 Btu/lb and has very low sulfur and ash contents. Kerr Coal Company is seeking advanced technology for alternate uses for this coal. This project was to have included a significant cost-share from the Kerr Coal Company ownership for a market survey of potential products and technical alternatives to be studied in the Rocky Mountain Region. The Energy Fuels Corporation/Kerr Coal Company and WRI originally proposed this work on a cost reimbursable basis. The total cost of the project was priced at $117,035. The Kerr Coal Company had scheduled at least $60,000.00 to be spent on market research for the project that never developed because of product market changes for the company. WRI and Kerr explored potential markets and new technologies for this resource. The first phase of this project as a preliminary study had studied fuel and nonfuel technical alternatives. Through related projects conducted at WRI, resource utilization was studied to find high-value materials that can be targeted for fuel and nonfuel use and eventually include other low-sulfur coals in the Rocky Mountain region. The six-month project work was spread over about a three-year period to observe, measure, and confirm over time-any trends in technology development that would lead to economic benefits in northern Colorado and southern Wyoming from coal gasification and power generation.

  14. LLNL underground coal gasification project. Quarterly progress report, October-December 1980

    SciTech Connect (OSTI)

    Olness, D.U. (ed.)

    1981-01-26T23:59:59.000Z

    We have continued laboratory studies of forward gasification through drilled holes in small blocks of coal (approx. 30 cm on a side). Such studies give insight into cavity growth mechanisms and particulate production. In addition, we have been developing a mathematical model for these experiments in order to further our understanding of the physical and chemical processes governing the burning of the coal and the growth of the cavity within the block. This model will be adapted, later, to larger-scale coal-block experiments, and finally to full-scale field exoperiments. We hope to obtain scaling laws and other insights from the model. The small-block experiments are beginning to provide information relevant to the early-time cavity growth. The natural extension of these experiments to larger blocks, perhaps 10ft or more on a side, is presently being planned. The large-block tests will be conducted at a mine, where blocks of coal will be isolated by the experimenter; the objective will be to quantify early-time cavity growth. We completed planning for the directionally drilled injection well for DOE Experiment No. 1. Assessment of the data obtained during the various underground coal gasification tests is continuing. Results from the four different diagnostic systems have been combined to produce a description of the shape of the burn cavity as a function of time during the Hoe Creek No. 3 experiment. Groundwater samples from wells located at distances of a few feet to several hundred feet from the gasification cavities have been collected before, during, and after each of the Hoe Creek tests. The analysis of the groundwater contamination data pertinent to the Hoe Creek No. 2 test was completed.

  15. Effect of CO2 gasification reaction on oxycombustion of pulverized coal char.

    SciTech Connect (OSTI)

    Molina, Alejandro (Universidad Nacional de Colombia, Medellin, Colombia); Hecht, Ethan S.; Shaddix, Christopher R.; Haynes, Brian S. (University of Sydney, New South Wales, Australia)

    2010-07-01T23:59:59.000Z

    For oxy-combustion with flue gas recirculation, as is commonly employed, it is recognized that elevated CO{sub 2} levels affect radiant transport, the heat capacity of the gas, and other gas transport properties. A topic of widespread speculation has concerned the effect of the CO{sub 2} gasification reaction with coal char on the char burning rate. To give clarity to the likely impact of this reaction on the oxy-fuel combustion of pulverized coal char, the Surface Kinetics in Porous Particles (SKIPPY) code was employed for a range of potential CO{sub 2} reaction rates for a high-volatile bituminous coal char particle (130 {micro}m diameter) reacting in several O{sub 2} concentration environments. The effects of boundary layer chemistry are also examined in this analysis. Under oxygen-enriched conditions, boundary layer reactions (converting CO to CO{sub 2}, with concomitant heat release) are shown to increase the char particle temperature and burning rate, while decreasing the O{sub 2} concentration at the particle surface. The CO{sub 2} gasification reaction acts to reduce the char particle temperature (because of the reaction endothermicity) and thereby reduces the rate of char oxidation. Interestingly, the presence of the CO{sub 2} gasification reaction increases the char conversion rate for combustion at low O{sub 2} concentrations, but decreases char conversion for combustion at high O{sub 2} concentrations. These calculations give new insight into the complexity of the effects from the CO{sub 2} gasification reaction and should help improve the understanding of experimentally measured oxy-fuel char combustion and burnout trends in the literature.

  16. Burn cavity growth during the Hoe Creek No. 3 underground coal gasification experiment

    SciTech Connect (OSTI)

    Hill, R.W.

    1981-01-14T23:59:59.000Z

    A detailed history is given of the growth of the burn cavity during the first month of the Hoe Creek No. 3 underground coal gasification experiment near Gillette, Wyoming, in 1979. The changing shape of the cavity with time is inferred from data from three types of instruments installed throughout the experimental zone: (1) thermocouples at various levels in a number of holes, to map temperatures; (2) extensometers at various levels in other holes, to detect motions of the overburden material; and (3) high-frequency electromagnetic (HFEM) scans made between various pairs of holes, to detect cavities and zones of burning coal. Additional data on the final shape of the underground cavity are derived from the results of a core drilling program carried out from the surface after the burn had ended. This study of cavity growth history has contributed significantly to our understanding of how the in situ coal gasification process operates in sites like Hoe Creek. The diagnostic system provided invaluable information on cavity growth and on the interaction between the two coal seams. Some new problems with injection well survival and slag production in oxygen-steam burns were brought out, and the importance of understanding and controlling heat loss mechanisms was amply demonstrated. Although no one system of underground diagnostics can give all of the information needed to fully describe the in situ process, a combination of several diagnostic systems can be used to deduce a self-consistent description.

  17. Burn cavity growth during the Hoe Creek No. 3 underground-coal-gasification experiment

    SciTech Connect (OSTI)

    Hill, R.W.

    1981-06-08T23:59:59.000Z

    A detailed history is given of the growth of the burn cavity during the first month of the Hoe Creek No. 3 underground coal gasification experiment near Gillette, Wyoming, in 1979. The changing shape of the cavity with time is inferred from data from three types of instruments installed throughout the experimental zone: (1) thermocouples at various levels in a number of holes, to map temperatures; (2) extensometers at various levels in other holes, to detect motions of the overburden material; and (3) high-frequency electromagnetic scans made between various pairs of holes, to detect cavities and zones of burning coal. Additional data on the final shape of the underground cavity is derived from the results of a core drilling program carried out from the surface after the burn had ended. This study of cavity growth history has contributed significantly to our understanding of how the in-situ coal gasification process operates in sites like Hoe Creek. The diagnostic system provided invaluable information on cavity growth and on the interaction between the two coal seams. Some new problems with injection well survival and slag production in oxygen-steam burns were brought out, and the importance of understanding and controlling heat loss mechanisms was amply demonstrated. Although no one system of underground diagnostics can give all of the information needed to fully describe the in-situ process, a combination of several diagnostic systems can be used to deduce a self-consistent description.

  18. Hanna, Wyoming underground coal gasification data base. Volume 3. The Hanna II, Phase I field test

    SciTech Connect (OSTI)

    Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

    1985-08-01T23:59:59.000Z

    This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project, and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. Hanna II, Phase I was conducted during the spring and summer of 1975, at a site about 700 feet up dip (to the southwest) of the Hanna I test. The test was conducted in two stages - Phase IA and IB. Phase IA consisted of linking and gasification operations between Wells 1 and 3 and Phase IB of linking from the 1-3 gasification zone to Well 2, followed by a short period of gasification from Well 2 to Well 3 over a broad range of air injection rates, in order to determine system turndown capabilities and response times. This report covers: (1) site selection and characteristics; (2) test objectives; (3) facilities description; (4) pre-operational testing; (5) test operations summary; and (6) post-test activity. 7 refs., 11 figs., 8 tabs.

  19. Low/medium-Btu coal-gasification assessment program for specific sites of two New York utilities

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    The scope of this study is to investigate the technical and economic aspects of coal gasification to supply low- or medium-Btu gas to the two power plant boilers selected for study. This includes the following major studies (and others described in the text): investigate coals from different regions of the country, select a coal based on its availability, mode of transportation and delivered cost to each power plant site; investigate the effects of burning low- and medium-Btu gas in the selected power plant boilers based on efficiency, rating and cost of modifications and make recommendations for each; and review the technical feasibility of converting the power plant boilers to coal-derived gas. The following two coal gasification processes have been used as the basis for this Study: the Combustion Engineering coal gasification process produces a low-Btu gas at approximately 100 Btu/scf at near atmospheric pressure; and the Texaco coal gasification process produces a medium-Btu gas at 292 Btu/scf at 800 psig. The engineering design and economics of both plants are described. Both plants meet the federal, state, and local environmental requirements for air quality, wastewater, liquid disposal, and ground level disposal of byproduct solids. All of the synthetic gas alternatives result in bus bar cost savings on a yearly basis within a few years of start-up because the cost of gas is assumed to escalate at a lower rate than that of fuel oil, approximately 4 to 5%.

  20. LLNL in situ coal gasification project. Quarterly progress report, April-June 1980

    SciTech Connect (OSTI)

    Olness, D.U. (ed.)

    1980-07-25T23:59:59.000Z

    We have continued our laboratory work on forward gasification through drilled holes in blocks of coal. These tests have produced some insight into cavity growth mechanisms and particulate production in Wyodak coal. The results will be presented at the Sixth Underground Coal Conversion Symposium in July. The data from the Hanna 4B experiment have been incorporated into the UCC Data Base and have been analyzed in the same way as the Hoe Creek data. Eventually, all of the Department of Energy (DOE) test data will be included in this continuing program. Site-restoration work has been started at the Hoe Creek site. This work includes the sealing of abandoned wells, some grading and reseeding of the ground surface, and general cleanup. A search for a site for underground coal-gasification (UCG) testing and possible commercial development has been carried out in Washington. The Tono basin was chosen as a tentative UCG test site, and a preliminary investigation of the site has been accomplished. Although the Tono basin appears suitable for UCG testing, additional geohydrologic investigation is needed. Our effort to survey the Soviet literature is continuing; in particular, experiments that yielded results similar to those obtained at Hoe Creek have been analyzed carefully. The Soviets conducted a series of directed-flow experiments in 1955 and 1956. In each experiment, both those in which the roof subsided and those in which it did not, the product-gas heating value was quite stable throughout the gasification period and there was no general decline in heating value, as is customarily observed.

  1. Numerical study on convection diffusion for gasification agent in underground coal gasification. Part I: establishment of mathematical models and solving method

    SciTech Connect (OSTI)

    Yang, L.H.; Ding, Y.M. [China University of Mining & Technology, Xuzhou (China). College of Resources and Geoscience

    2009-07-01T23:59:59.000Z

    The aim of this article is to discuss the distribution law of the gasification agent concentration in a deep-going way during underground coal gasification and the new method of solving the problem for the convection diffusion of the gas. In this paper, the basic features of convection diffusion for the gas produced in underground coal gasification are studied. On the basis of the model experiment, through the analysis of the distribution and patterns of variation for the fluid concentration field in the process of the combustion and gasification of the coal seams within the gasifier, the 3-D non-linear unstable mathematical models on the convection diffusion for oxygen are established. In order to curb such pseudo-physical effects as numerical oscillation and surfeit which frequently occurred in the solution of the complex mathematical models, the novel finite unit algorithm, the upstream weighted multi-cell balance method is advanced in this article, and its main derivation process is introduced.

  2. Coal Problems 1. Name two examples of clean coal technology and in what manner do they clean the coal?

    E-Print Network [OSTI]

    Bowen, James D.

    Coal Problems 1. Name two examples of clean coal technology and in what manner do they clean the coal? a. Coal Washing- Crushing coal then mixing it with a liquid to allow the impurities to settle. b burning coal altogether. With integrated gasification combined cycle (IGCC) systems, steam and hot

  3. Organic contaminants in groundwater mar an underground coal gasification site in northeastern Wyoming

    SciTech Connect (OSTI)

    Stuermer, D.H.

    1982-09-01T23:59:59.000Z

    Three groundwater samples collected near two underground coal gasification (UCG) sites 15 months after the end of gasification were analysed for dissolved organic contaminants. The contaminants consisted of phenols, aromatic carboxylic acids, aromatic hydrocarbons, ketones, aldehydes, pyridines, quinolines, isoquinolines, and aromatic amines. Concentrations ranged up to about 50 ppm with large variations both in the relative concentrations of acidic, neutral, and basic constituents and in the concentrations of individual compounds. Naphthalene o-xylene, 2-methylpyridine, and o-cresol were consistently present in high concentrations and were identified as UCG contaminant-indicator compounds that appear to be particularly useful for monitoring purposes. A simplified method of analysis for these compounds was developed.

  4. Organic contaminants in groundwater near an underground coal gasification site in northeastern Wyoming

    SciTech Connect (OSTI)

    Stuermer, D.H.; Ng, D.J.; Morris, C.J.

    1982-09-01T23:59:59.000Z

    Three groundwater samples collected near two underground coal gasification (UCG) sites 15 months after the end of gasification were analyzed for dissolved organic contaminants. The contaminants consisted of phenols, aromatic carboxylic acids, aromatic hydrocarbons, ketones, aldehydes, pyridines, quinolines, isoquinolines, and aromatic amines. Concentrations ranged up to about 50 ppm with large variations both in the relative concentrations of acidic, neutral, and basic constituents and in the concentrations of individual compounds. Naphthalene, o-xylene, 2-methylpyridine, and o-cresol were consistently present in high concentrations and were identified as UCG contaminant-indicator compounds that appear to be particularly useful for monitoring purposes. A simplified method of analysis for these compounds was developed.

  5. Integrated Gasification Combined Cycle (IGCC) demonstration project, Polk Power Station -- Unit No. 1. Annual report, October 1993--September 1994

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    This describes the Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project which will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,300 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 Btu/scf (LHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product.

  6. Investigation of tar sand and heavy oil deposits of Wyoming for underground coal gasification applications

    SciTech Connect (OSTI)

    Trudell, L.G.

    1985-02-01T23:59:59.000Z

    A literature review was conducted to identify and evaluate tar sand and heavy oil deposits of Wyoming which are potentially suitable for in situ processing with process heat or combustible gas from underground coal gasification (UCG). The investigation was undertaken as part of a project to develop novel concepts for expanding the role of UCG in maximizing energy recovery from coal deposits. Preliminary evaluations indicate six surface deposits and three shallow heavy oil fields are within 5 miles of coal deposits, the maximum distance judged to be feasible for UCG applications. A tar sand or heavy oil deposit in the northeast Washakie Basin is less than 250 feet above a zone of four coal seams suitable for UCG, and another deposit near Riverton appears to be interbedded with coal. Three shallow light oil fields found to be within 5 miles of coal may be amenable to application of UCG technology for enhanced oil recovery. Sufficient data are not available for estimating the size of Wyoming's tar sand and heavy oil resource which is suitable for UCG development. Additional investigations are recommended to more fully characterize promising deposits and to assess the potential resource for UCG applications. 54 refs., 10 figs., 2 tabs.

  7. LLNL underground-coal-gasification project. Quarterly progress report, April-June 1982

    SciTech Connect (OSTI)

    Not Available

    1982-08-06T23:59:59.000Z

    Cavity mapping has been completed for the large block experiments, which were done near Centralia, Washington, in the winter of 1981-1982. Postburn excavations into the experimental sites show all the cavities to be largely filled with rubble consisting of dried coal, char, ash, and slag. None of the five injection holes remained completely open through its associated cavity. Temperature histories for all the in situ thermocouples in the large block experiments have been analyzed. The interpretation of most of this temperature data is straightforward and consistent with other observations. As a further refinement in our underground coal gasification (UCG) modeling effort, transient temperature profiles have been calculated for open borehole gasification in wet coal by the isotherm migration method, using the LSODE computer code developed at LLNL. The next logical step in this calculation would be to make the rate of combustion surface movement a function of the rate of steam generation at the vaporization interface. Follow-up observations have continued at the Hoe Creek UCG experiment sites in Wyoming. Phenols have been detected at very low but significant levels in groundwater 400 ft from the Hoe Creek 2 experiment, which was done in 1977. It appears important to continue this investigation of phenol transport at Hoe Creek, and to extend it by drilling and sampling additional wells. The controlled retracting injection point (CRIP) technique, which was devised for UCG application, may also have applications in enhanced recovery of crude oil.

  8. Availability analysis of an integrated gasification-combined cycle: Final report

    SciTech Connect (OSTI)

    Not Available

    1987-06-01T23:59:59.000Z

    The Electric Power Research Institute (EPRI) contracted with ARINC Research Corporation to perform availability assessments of an integrated coal gasification-combined-cycle (IGCC) design. The objective of the study was to quantify the availability impact associated with several design and operating options specified by EPRI. In addition, several scheduled maintenance options for the IGCC plant were evaluated. The IGCC plant addressed in this analysis employs many modular design features that give the plant high equivalent availability through redundancy. The study focused on evaluating and quantifying the expected changes in unit capability, equivalent availability, and heat rate associated with various design alternatives. The findings of the baseline case studies are as follows: (1) The Baseline IGCC design using four gasifiers with 11.2% spare gasification capacity and three combustion turbine/HRSGs sets will have an expected equivalent availability of 86.18% and an average heat rate of 9002 Btu/kWh. (2) The Baseline with Supplemental Firing design using four gasifiers with the 11.2% spare gasification capacity being used to produce supplemental steam and with three combustion turbine HRSG sets will have an expected equivalent availability of 85.64% and an average heat rate of 9147 Btu/kWh. (3) The Baseline with Natural Gas Backup design using four gasifiers and three combustion turbine/HRSG sets with supplemental natural gas backup will have an expected equivalent availability of 91.53% with an average heat rate of 8981 Btu/kWh and a coal-to-natural gas fuel mixture of 23:1. 49 figs., 66 tabs.

  9. Energy, Environmental, and Economic Analyses of Design Concepts for the Co-Production of Fuels and Chemicals with Electricity via Co-Gasification of Coal and Biomass

    SciTech Connect (OSTI)

    Eric Larson; Robert Williams; Thomas Kreutz; Ilkka Hannula; Andrea Lanzini; Guangjian Liu

    2012-03-11T23:59:59.000Z

    The overall objective of this project was to quantify the energy, environmental, and economic performance of industrial facilities that would coproduce electricity and transportation fuels or chemicals from a mixture of coal and biomass via co-gasification in a single pressurized, oxygen-blown, entrained-flow gasifier, with capture and storage of CO{sub 2} (CCS). The work sought to identify plant designs with promising (Nth plant) economics, superior environmental footprints, and the potential to be deployed at scale as a means for simultaneously achieving enhanced energy security and deep reductions in U.S. GHG emissions in the coming decades. Designs included systems using primarily already-commercialized component technologies, which may have the potential for near-term deployment at scale, as well as systems incorporating some advanced technologies at various stages of R&D. All of the coproduction designs have the common attribute of producing some electricity and also of capturing CO{sub 2} for storage. For each of the co-product pairs detailed process mass and energy simulations (using Aspen Plus software) were developed for a set of alternative process configurations, on the basis of which lifecycle greenhouse gas emissions, Nth plant economic performance, and other characteristics were evaluated for each configuration. In developing each set of process configurations, focused attention was given to understanding the influence of biomass input fraction and electricity output fraction. Self-consistent evaluations were also carried out for gasification-based reference systems producing only electricity from coal, including integrated gasification combined cycle (IGCC) and integrated gasification solid-oxide fuel cell (IGFC) systems. The reason biomass is considered as a co-feed with coal in cases when gasoline or olefins are co-produced with electricity is to help reduce lifecycle greenhouse gas (GHG) emissions for these systems. Storing biomass-derived CO{sub 2} underground represents negative CO{sub 2} emissions if the biomass is grown sustainably (i.e., if one ton of new biomass growth replaces each ton consumed), and this offsets positive CO{sub 2} emissions associated with the coal used in these systems. Different coal:biomass input ratios will produce different net lifecycle greenhouse gas (GHG) emissions for these systems, which is the reason that attention in our analysis was given to the impact of the biomass input fraction. In the case of systems that produce only products with no carbon content, namely electricity, ammonia and hydrogen, only coal was considered as a feedstock because it is possible in theory to essentially fully decarbonize such products by capturing all of the coal-derived CO{sub 2} during the production process.

  10. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01T23:59:59.000Z

    flow sheet of a K-T coal gasification complex for producingslag or bottom ash, coal gasification, or coal liquefactionCoal (Ref. 46). COAL PREPARATION GASIFICATION 3 K·T GASI FI

  11. EIS-0429: Department of Energy Loan Guarantee for Indiana Integrated Gasification Combined Cycle, Rockport, IN

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a coal-to-substitute natural gas facility proposed to be built in Rockport, IN by Indiana Gasification. The facility would utilize Illinois Basin coal. Other products would be marketable sulfuric acid, argon, and electric power.

  12. LLNL underground coal gasification project. Quarterly progress report, January-March 1981

    SciTech Connect (OSTI)

    Olness, D.U.; Clements, W. (eds.)

    1981-04-27T23:59:59.000Z

    We have continued our laboratory studies of forward gasification through drilled holes in small blocks of coal, approximately 1 foot on a side. Such studies give insight into cavity growth mechanisms and particulate production. However, because of the small dimensions involved, the information these tests provide is necessarily limited to aspects of cavity growth at very early times. The preliminary process design of the Tono No. 1 field experiment in Washington has been completed. The experimental plan and operational strategy have been developed to ensure that the injection point remains near the bottom of the coal seam and that the experiment continues at least until a period of stable operation has been reached and sustained for a time. We have continued to develop a mathematical model for the small coal block experiments in order to further our understanding of the physical and chemical processes governing the burning of the coal and the growth of the cavity within the block. This model will be adapted, later, to larger-scale coal block experiments, and finally to full-scale field experiments. We hope to obtain scaling laws and other insights from the model. Groundwater samples from wells located at distances of a few feet to several hundred feet from the gasification cavities were collected before, during, and after each of the Hoe Creek tests. The analysis of the groundwater contamination data pertinent to the Hoe Creek No. 3 test was completed. This is an ongoing project, and we will continue to obtain and analyze groundwater samples from these test sites.

  13. Subsidence associated with single and multi-cavities for underground coal gasification

    SciTech Connect (OSTI)

    Avasthi, J.M.; Harloff, G.J.

    1982-06-01T23:59:59.000Z

    An extension of the 3-dimensional theoretical development of Berry and Sales has brought their subsidence predictions into agreement with the NCB's comprehensive set of empirical data. The new elastic parameters fit the amplitude of ground level subsidence. Another modification of the theory makes the subsidence profiles agree with the NCB data. The extended theory has predicted: (1) subsidence for an actual US coalmining case with multiple cavities, and (2) subsidence level and profile for a recent in situ coal-gasification test carried out in Wyoming in a steeply dipping seam.

  14. Instrumentation and process control development for in situ coal gasification. Quarterly report, December 1979-March 1980

    SciTech Connect (OSTI)

    Glass, R.E. (ed.)

    1980-06-01T23:59:59.000Z

    The analysis of data for the Hanna IV and Hoe Creek in situ coal gasification tests raised questions concerning the fundamental controlling mechanisms of the process. The two main areas of concern are: (1) the air flow patterns; and (2) the initial cavity growth. Sandia National Laboratories is addressing these concerns by developing models of these processes. Results to date are in qualitative agreement with known phenomena. There have also been developments in data handling capability. These include improved data presentation ability and development of routine storage, access and back up methods.

  15. Techniques and equipment used in contaminant detection at Hoe Creek underground coal gasification experimental site

    SciTech Connect (OSTI)

    Davidson, S.C.

    1984-01-01T23:59:59.000Z

    Data obtained from existing monitoring wells at an experimental coal gasification site indicated that local groundwater supplies were under risk from organic contaminants, particularly phenols. A more extensive monitoring system was installed. A drilling and open-hole sampling programme was devised to locate the edge of the contaminated area and indicate where additional monitoring wells were required. Geophysical logging was employed to determine the optimal position of gas-driven groundwater samplers/piezometers. The system successfully delineated the extent of the contaminant plume on 3 sides, but further work is required on the fourth side.

  16. Hydrogen separation by ceramic membranes in coal gasification. Final report

    SciTech Connect (OSTI)

    Gavalas, G.R.

    1993-08-01T23:59:59.000Z

    The general objective of this project was to develop hydrogen permselective membranes for hydrogen production from coal gas. The project consisted of the following tasks: (i) membrane preparation and characterization, (ii) membrane stability testing, and (iii) analysis and economic evaluation of a membrane-assisted ammonia from coal process. Several oxides (SiO{sub 2}, TiO{sub 2}, Al{sub 2}O{sub 3}, B{sub 2}O{sub 3}) in dense (or nonporous) form were identified to be permselective to hydrogen at elevated temperatures. To obtain reasonable permeance it is necessary that the membrane consists of a thin selective layer of the dense oxide supported on or within the pores of a porous support tube (or plate). Early in the project we chose porous Vycor tubes (5mm ID, 7 mm OD, 40 {Angstrom} mean pore diameter) supplied by Corning Inc. as the membrane support. To form the permselective layer (SiO{sub 2}, TiO{sub 2}, Al{sub 2}O{sub 3}, B{sub 2}O{sub 3}) we employed chemical vapor deposition using the reaction of the chloride (SiCl{sub 4}, etc.) vapor and water vapor at high temperatures. Deposition of the selective layer was carried out in a simple concentric tube reactor comprising the porous support tube surrounded by a wider concentric quartz tube and placed in an electrically heated split tube furnace. In one deposition geometry (the opposing reactants or two-sided geometry) the chloride vapor in nitrogen carrier was passed through the inner tube while the water vapor also in nitrogen carrier was passed in the same direction through the annulus between the two tubes. In the other (two-sided) geometry the chloride-containing stream and the water-containing stream were both passed through the inner tube or both through the annulus.

  17. High resolution seismic survey (of the) Rawlins, Wyoming underground coal gasification area. Final report

    SciTech Connect (OSTI)

    Youngberg, A.D.; Berkman, E.; Orange, A.S.

    1983-01-01T23:59:59.000Z

    In October 1982, a high resolution seismic survey was conducted at the Gulf Research and Development Company's underground coal gasification test site near Rawlins, Wyoming. The objectives of the survey were to utilize high resolution seismic technology to locate and characterize two underground coal burn zones. Seismic data acquisition and processing parameters were specifically designed to emphasize reflections at the shallow depths of interest. A three-dimensional grid of data was obtained over the Rawlins burn zones. Processing included time varying filters, trace composition, and two-dimensional areal stacking of the data in order to identify burn zone anomalies. An anomaly was discernable resulting from the rubble-collapse cavity associated with the burn zone which was studied in detail at the Rawlins 1 and 2 test sites. 21 refs., 20 figs.

  18. Role of hydrogeology in Rocky Mountain 1 underground coal gasification test, Hanna basin, Wyoming

    SciTech Connect (OSTI)

    Daly, D.J.; Schmit, C.R.; Beaver, F.W.; Evans, J.M. (North Dakota Mining and Mineral Resources Research Institute, Grand Forks (USA))

    1989-09-01T23:59:59.000Z

    Experience has shown that the designs and implementation of Underground Coal Gasification (UCG) operations that are technically sound and environmentally safe require a thorough understanding of the hydrogeology of the UCG site, complemented by an understanding of the potential interactions between the elements of the hydrogeologic system and UCG process. This is significant because UCG is conducted in the saturated zone, consumes large volumes of ground water, and has the potential to adversely affect ground water quality and flow. The textural, mineralogical, chemical, and structural character of the geologic materials constituting the UCG reactor, as well as the occurrence, flow, and quality of fluids moving through that three-dimensional matrix of geologic materials, must be understood. The US Department of Energy and an industry consortium led by the Gas Research Institute recently conducted the Rocky Mountain 1 Test in the Hanna basin of Wyoming. For this test, the hydrogeologic aspects of the site were characterized to an extent unprecedented in UCG testing. This information was then used to develop and evaluate operating strategies intended to prevent or minimize contamination. Such strategies included gasifying at less than hydrostatic pressure to enhance ground water flow toward the gasification modules and to restrict contamination to the module area. Hydrogeologic information also allowed a more complete evaluation of process-setting interactions. For example, a substantial and widespread drop in elevation heat noted for the ground water in the target coal emphasized the importance of an adequate water supply for UCG, particularly in a long-term commercial operation.

  19. Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption

    DOE Patents [OSTI]

    Ghate, Madhav R. (Morgantown, WV); Yang, Ralph T. (Williamsville, NY)

    1987-01-01T23:59:59.000Z

    Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon, zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high parity hydrogen from gaseous products of coal gasification and as an acid gas scrubber.

  20. Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption

    DOE Patents [OSTI]

    Ghate, M.R.; Yang, R.T.

    1985-10-03T23:59:59.000Z

    Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high purity hydrogen from gaseous products of coal gasification and as an acid gas scrubber. 2 figs., 2 tabs.

  1. Application of geological studies to overburden collapse at underground coal gasification experiments

    SciTech Connect (OSTI)

    Ethridge, F.G.; Alexander, W.G.; Craig, G.N. II; Burns, L.K.; Youngberg, A.D.

    1983-08-01T23:59:59.000Z

    Detailed geologic and mineralogic studies were conducted on the Hanna, Wyoming, and Hoe Creek, Wyoming, underground coal gasification sites. These studies demonstrate the importance geologic factors have on controlling overburden collapse into the reactor cavity during and after coal gasification and on subsequent environmental problems. Parameters that control the collapse of overburden material into the reactor cavity include: duration of the burn; maximum span of unsupported roof rock; lateral and vertical homogeneity, permeability and rock strength; and thickness of overburden materials. At the Hoe Creek I experiment, a small reactor cavity and a correspondingly short maximum span of unsupported roof rock consisting of fine-grained, low permeability overbank deposits resulted in minimal collapse. At the Hoe Creek II experiment, a significant amount of collapse occurred due to an increased span of unsupported roof rock comprised of poorly consolidated, more permeable channel sandstones and a limited amount of overburden mudstones and siltstones. Roof rock collapse extended to the surface at the Hoe Creek III experiment where the roof rock consisted of highly permeable, poorly consolidated channel sandstones. The unit comprising the reactor cavity roof rock at the Hanna II experimental site is a laterally continuous lacustrine delta deposit, which primarily consists of sandstones with lesser amounts of interbedded siltstones and claystones. Calcite cement has reduced permeability and interstitial waters which probably kept spalling of the roof rock to a minimum. Consequently, roof rock collapse at the Hanna II experiment was much less extensive than at the Hoe Creek II and III experiments.

  2. Groundwater restoration field test at the Hoe Creek underground coal gasification site

    SciTech Connect (OSTI)

    Nordin, J.S.; Barrash, W.; Nolan, B.T.

    1988-02-01T23:59:59.000Z

    Three underground coal gasification burns were conducted at the Hoe Creek Site in the Powder River Basin. Some contaminants were released in the groundwater. The Department of Energy (DOE) analyzed the water from a network of wells. Two million gallons of groundwater were pumped from wells adjacent to the Hoe Creek II underground coal gasification cavity, passed through filters and carbon adsorbers, and reinjected into the cavity. Phenol was the target compound of the water treatment system. The phenol concentration pumped from well WS-10 decreased from 974 parts per billion (ppB) when treatment began on July 2, 1987, to about 200 ppB when treatment ceased on August 29, 1987. Phenol concentrations pumped from well WS-22 fluctuated during the tests, but they decreased to the 150 to 200 ppB range by the time treatment was terminated. The phenol concentration of treated water reinjected into the Hoe Creek II cavity was below detectable limits (less than 20 ppB). Pumping rates were about 18 gallons per minute (gpm) from well WS-10 and 6 to 8 gpm from well WS-22. Hoe Creek is located approximately 20 miles southwest of Gillette, Wyoming. 12 refs., 5 figs., 8 tabs.

  3. Steam-Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture

    SciTech Connect (OSTI)

    Siefert, Nicholas S.; Shekhawat, Dushyant; Litster, Shawn; Berry, David, A

    2013-08-01T23:59:59.000Z

    We present experimental results of coal gasification with and without the addition of calcium oxide and potassium hydroxide as dual-functioning catalyst–capture agents. Using two different coal types and temperatures between 700 and 900 °C, we studied the effect of these catalyst–capture agents on (1) the syngas composition, (2) CO{sub 2} and H{sub 2}S capture, and (3) the steam–coal gasification kinetic rate. The syngas composition from the gasifier was roughly 20% methane, 70% hydrogen, and 10% other species when a CaO/C molar ratio of 0.5 was added. We demonstrated significantly enhanced steam–coal gasification kinetic rates when adding small amounts of potassium hydroxide to coal when operating a CaO–CaCO{sub 3} chemical looping gasification reactor. For example, the steam–coal gasification kinetic rate increased 250% when dry mixing calcium oxide at a Ca/C molar ratio of 0.5 with a sub-bituminous coal, and the kinetic rate increased 1000% when aqueously mixing calcium oxide at a Ca/C molar ratio of 0.5 along with potassium hydroxide at a K/C molar ratio of 0.06. In addition, we conducted multi-cycle studies in which CaCO{sub 3} was calcined by heating to 900 °C to regenerate the CaO, which was then reused in repeated CaO–CaCO{sub 3} cycles. The increased steam–coal gasification kinetics rates for both CaO and CaO + KOH persisted even when the material was reused in six cycles of gasification and calcination. The ability of CaO to capture carbon dioxide decreased roughly 2–4% per CaO–CaCO{sub 3} cycle. We also discuss an important application of this combined gasifier–calciner to electricity generation and selling the purge stream as a precalcined feedstock to a cement kiln. In this scenario, the amount of purge stream required is fixed not by the degradation in the capture ability but rather by the requirements at the cement kiln on the amount of CaSO{sub 4} and ash in the precalcined feedstock.

  4. 2007 gasification technologies workshop papers

    SciTech Connect (OSTI)

    NONE

    2007-03-15T23:59:59.000Z

    Topics covered in this workshop are fundamentals of gasification, carbon capture, reviews of financial and regulatory incentives, coal to liquids, and focus on gasification in the Western US.

  5. Assessment of the SRI Gasification Process for Syngas Generation with HTGR Integration -- White Paper

    SciTech Connect (OSTI)

    A.M. Gandrik

    2012-04-01T23:59:59.000Z

    This white paper is intended to compare the technical and economic feasibility of syngas generation using the SRI gasification process coupled to several high-temperature gas-cooled reactors (HTGRs) with more traditional HTGR-integrated syngas generation techniques, including: (1) Gasification with high-temperature steam electrolysis (HTSE); (2) Steam methane reforming (SMR); and (3) Gasification with SMR with and without CO2 sequestration.

  6. Excavation of the Partial Seam CRIP underground coal gasification test site

    SciTech Connect (OSTI)

    Cena, R.J.; Britten, J.A.; Thorsness, C.B.

    1987-08-14T23:59:59.000Z

    In the fall of 1983, Lawrence Livermore National Laboratory conducted the Partial Seam CRIP (PSC) underground coal gasification (UCG) field experiment at the Washington Irrigation and Development Company mine near Centralia, Washington. The test, in the subbituminous Big Dirty coal seam, lasted 30 days during which time 1400 cubic meters of coal were consumed from two injection/production well combinations. In the spring of 1986, normal mining activity in the vicinity of the PSC test allowed the opportunity to carefully excavate the experiment and examine the post-burn cavities. The mining operation dug out the front and back half of the test area and most of the overburden above the UCG cavities, leaving approximately 23,000 cubic meters of earth containing the main portion of the test area undisturbed. Under direction of the Wyoming Research Institute (WRI), this remaining earth was carefully excavated, in slices perpendicular to the original injection/production line, using small earthmoving equipment to uncover and sample the final burn cavities. Preliminary results of the excavation were presented by WRI at the 12th Underground Coal Conversion Symposium. We present additional results and conclusions based on all of the information obtained. Topics covered include: comparison to material balance and thermal instrumentation data, analysis and composition of samples taken from the cavity and general cavity shape and characteristics in comparison with mechanistic models of cavity growth. 10 refs., 10 figs., 1 tab.

  7. Postburn evaluation for Hanna II, Phases 2 and 3, underground coal gasification experiments, Hanna, Wyoming

    SciTech Connect (OSTI)

    Youngberg, A.D.; Sinks, D.J.; Craig, G.N. II; Ethridge, F.G.; Burns, L.K.

    1983-12-01T23:59:59.000Z

    During 1980 and 1981 the Laramie Energy Technology Center (LETC) conducted a post-burn study at the Hanna II, Phases 2 and 3 underground coal gasification (UCG) site, Hanna, Wyoming. This report contains a summary of the field and laboratory results from the study. Lithologic and geophysical well log data from twenty-two (22) drill holes, combined with high resolution seismic data delineate a reactor cavity 42.7m (140 ft.) long, 35.1 m (115 ft.) and 21.3 m (70 ft.) high that is partially filled with rubble, char and pyrometamorphic rock. Sedimentographic studies were completed on the overburden. Reflectance data on coal samples within the reactor cavity and cavity wall reveal that the coal was altered by temperatures ranging from 245/sup 0/C to 670/sup 0/C (472/sup 0/-1238/sup 0/F). Overburden rocks found within the cavity contain various pyrometamorphic minerals, indicating that temperatures of at least 1200/sup 0/C (2192/sup 0/F) were reached during the tests. The calcite cemented fine-grained sandstone and siltstone directly above the Hanna No. 1 coal bed formed a strong roof above the cavity, unlike other UCG sites such as Hoe Creek which is not calcite cemented. 30 references, 27 figures, 8 tables.

  8. Underground coal gasification data base. [Information on 14 US DOE sponsored tests; also available on computer tapes

    SciTech Connect (OSTI)

    Cena, R.J.; Thorsness, C.B.; Ott, L.L.

    1982-11-24T23:59:59.000Z

    The Lawrence Livermore National Laboratory has developed a data base containing results from fourteen DOE-sponsored underground coal gasification (UCG) field tests. These tests include three performed by LLNL near Gillette, Wyoming at the Hoe Creek site, eight performed by LETC at a site near Hanna, Wyoming, two by GULF near Rawlings, Wyoming, and one performed by METC near Princetown, West Virginia. All tests were done in flat lying coal seams except the Rawlings tests, which utilized a steeply dipping seam. The report presents process parameters and the results of material and energy balances for each test in a variety of forms. The raw process data used to construct the data base is first discussed along with material and energy balance conventions. Following this, each test is described with the process geometry and a brief operating chronology given. Differential and integral summary information in tabular and graphic form is provided for each test. Computer tapes of the entire data base may be requested from the authors through the Lawrence Livermore National Laboratory.

  9. Hoe Creek No. 3: first long-term underground coal gasification experiment with oxygen-steam injection

    SciTech Connect (OSTI)

    Not Available

    1980-05-01T23:59:59.000Z

    There are compelling reasons for pursuing underground coal gasification. The resource that could be exploited is huge - enough to quadruple present proved coal reserves - if the process is successful. Cost estimates indicate that substitute natural gas or gasoline may be producible at reasonable prices by the technique. In the Hoe Creek No. 3 underground coal gasification experiment linkage paths were established between the injection and production wells by drilling a horizontal borehole between them near the bottom of the coal seam. The drilled linkage hole was enlarged by reverse burning, then the forward gasification process began - first with air injection for one week, then with oxygen-steam injection for the remainder of the experiment. During the oxygen-steam injection period, approximately 3900 tons of coal was gasified in 47 days, at an average rate of 83 tons/day. The heating value of the dry product gas averaged 218 Btu/SCF (194 kj/mol), suitable for input to a processing plant for upgrading to pipeline quality, which is approximately 900 Btu/SCF (800 kj/mol).

  10. BioCoComb -- Gasification of biomass and co-combustion of the gas in a pulverized-coal-boiler

    SciTech Connect (OSTI)

    Anderl, H.; Zotter, T.; Mory, A.

    1999-07-01T23:59:59.000Z

    In a demonstration project supported by an European Community Thermie Fund a biomass gasifier for bark, wood chips, saw dust, etc. has been installed by Austrian Energy and Environment at the 137 MW{sub el} pulverized-coal fired power station in Zeltweg, Austria. The project title BioCoComb is an abbreviation for Preparation of Biofuel for Co-Combustion, where co-combustion means combustion together with coal in existing power plants. According to the thermal capacity of 10 MW the produced gas substitutes approx. 3% of the coal fired in the boiler. Only the coarse fraction of the biomass has to pass a shredder and is then fed together with the fine fraction without any further pretreatment into the gasifier. In the gasification process the biomass will combust in a substoichiometric atmosphere, create the necessary temperature of 820 C and partly gasify due to the lack of oxygen in the combustion chamber (autothermal operation). The gasifier uses circulating fluidized bed technology, which guarantees even relatively low temperatures in all parts of the gasifier to prevent slagging. The intense motion of the bed material also favors attrition of the biomass particles. Via a hot gas duct the produced low calorific value (LCV) gas is directly led into the furnace of the existing pulverized coal fired boiler for combustion. The gas also contains fine wood char particles, that can pass the retention cyclone and burn out in the furnace of the coal boiler. The main advantages of the BioCoComb concept are: low gas quality sufficient for co-firing; no gas cleaning or cooling; no predrying of the biomass; relatively low temperatures in the gasifier to prevent slagging; favorable effects on power plant emissions (CO{sub 2}, NO{sub x}); no severe modifications of the existing coal fired boiler; and high flexibility in arranging and integrating the main components into existing plants. The plant started its trial run in November 1997 and has been in successful commercial operation since January 1998.

  11. Hoe Creek No. 3 - First long-term underground coal gasification experiment with oxygen-steam injection

    SciTech Connect (OSTI)

    Not Available

    1980-05-01T23:59:59.000Z

    The paper describes the first long-term underground coal gasification experiment with oxygen-steam injection. In the Hoe Creek No. 3 underground experiment, linkage paths were established between the injection and production wells by drilling a horizontal borehole between them near the bottom of the coal seam. The drilled linkage hole was enlarged by reverse burning, and then the forward gasification process was started - first with air injection for one week, then with oxygen-steam injection for the remainder of the experiment. During the oxygen-steam injection period, about 3900 tons of coal were gasified in 47 days, at an average rate of 83 tons per day. The heating value of the dry product gas averaged 218 Btu/scf, suitable for input to a processing plant for upgrading to pipeline quality, which is about 900 Btu/scf.

  12. Hanna, Wyoming underground coal gasification data base. Volume 5. Hanna III field test research report

    SciTech Connect (OSTI)

    Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

    1985-08-01T23:59:59.000Z

    This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. Hanna III was conducted during the spring and summer of 1977. The test involved only two process wells but also had twelve water monitoring wells, eight in the Hanna No. 1 coal seam and four in an aquifer above the coal seam. The test was designed to obtain information regarding the effects of the process on groundwater within the target seam and the overlying aquifer. The site for Hanna III had a low productivity aquifer above the Hanna No. 1 seam. The wells within the seam and the overlying aquifer were placed in such a manner that maximum information on groundwater flow and quality could be obtained. This report covers: (1) site selection and characterization; (2) test objectives; (3) facilities description; (4) pre-operation tests; (5) test operations summary; and (6) post-test activity. 4 refs., 11 figs., 5 tabs.

  13. Lawrence Livermore National Laboratory underground coal gasification data base. [US DOE-supported field tests; data

    SciTech Connect (OSTI)

    Cena, R. J.; Thorsness, C. B.

    1981-08-21T23:59:59.000Z

    The Department of Energy has sponsored a number of field projects to determine the feasibility of converting the nation's vast coal reserves into a clean efficient energy source via underground coal gasification (UCG). Due to these tests, a significant data base of process information has developed covering a range of coal seams (flat subbituminous, deep flat bituminous and steeply dipping subbituminous) and processing techniques. A summary of all DOE-sponsored tests to data is shown. The development of UCG on a commercial scale requires involvement from both the public and private sectors. However, without detailed process information, accurate assessments of the commercial viability of UCG cannot be determined. To help overcome this problem the DOE has directed the Lawrence Livermore National Laboratory (LLNL) to develop a UCG data base containing raw and reduced process data from all DOE-sponsored field tests. It is our intent to make the data base available upon request to interested parties, to help them assess the true potential of UCG.

  14. High resolution seismic survey of the Hanna, Wyoming underground coal gasification area

    SciTech Connect (OSTI)

    Not Available

    1983-08-01T23:59:59.000Z

    In June 1983 a high resolution seismic survey was conducted at the Department of Energy, Laramie Energy Technology Center's underground coal gasification test site near Hanna, Wyoming. The objectives of the survey were to locate and characterize underground burn zones and to identify shallow geologic faults at the test site. Seismic data acquisition and processing parameters were based upon prior work in the area, and were specifically designed to emphasize reflections at the shallow, 61 to 91 meter (200 to 300 ft) depths of interest. Data were obtained on two north-south lines along the test site boundary in addition to a three-dimensional grid over the Hanna IV experiment area. Processing included time varying filters, deconvolution, trace composition, and three-dimensional areal stacking of the data in order to identify burn zone anomalies. Anomalies were discernable resulting from the rubble-collapse void above the burn zones in the vicinity of the injection wells at the Hanna IV experiment area. The fault studies disclosed faults at the Hanna IV experiment area which may be responsible for the unexpected problems experienced in the early in-site gasification tests. For the test site the fault system was found to be a generally arcuate east-west trending graben complex with numerous antithetic faults. 15 references, 33 figures, 6 tables.

  15. Wabash River Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The proposed project would result in a combined-cycle power plant with lower emissions and higher efficiency than most existing coal-fired power plants of comparable size. The net plant heat rate (energy content of the fuel input per useable electrical generation output; i.e., Btu/kilowatt hour) for the new repowered unit would be a 21% improvement over the existing unit, while reducing SO{sub 2} emissions by greater than 90% and limiting NO{sub x} emissions by greater than 85% over that produced by conventional coal-fired boilers. The technology, which relies on gasified coal, is capable of producing as much as 25% more electricity from a given amount of coal than today`s conventional coal-burning methods. Besides having the positive environmental benefit of producing less pollutants per unit of power generated, the higher overall efficiency of the proposed CGCC project encourages greater utilization to meet base load requirements in order to realize the associated economic benefits. This greater utilization (i.e., increased capacity factor) of a cleaner operating plant has global environmental benefits in that it is likely that such power would replace power currently being produced by less efficient plants emitting a greater volume of pollutants per unit of power generated.

  16. Analysis of Rocky Mountain I Underground Coal Gasification test. Topical report, March 1989-December 1989

    SciTech Connect (OSTI)

    Lan, S.S.; Floyd, F.M.

    1989-12-01T23:59:59.000Z

    In the Rocky Mountain I Underground Coal Gasification (UCG) Project, the Extended Linked Well (ELW) module and the Controlled Retracting Injection Point (CRIP) module were operated and demonstrated side-by-side. This engineering analysis of the process data was conducted to establish the viability of these technologies for commercial use. The data indicate that an optimum oxygen rate (700 SCFM) exists for the CRIP module and that the optimum steam/oxygen rate is comparable to that for moving bed gasifiers (1.3:1). Data from the post oxygen injection period indicate that 6-10% of carbon in the product gas from the ELW module was a result of pyrolysis. The gas produced by devolatilization was essentially free of carbon dioxide.

  17. The Hanna and Hoe Creek underground coal gasification test sites: Status report, (June 1986-June 1987)

    SciTech Connect (OSTI)

    Berdan, G.L.; Nolan, B.T.; Barteaux, W.L.; Barrash, W.

    1987-06-01T23:59:59.000Z

    To comply with a cooperative agreement with the U.S. Department of Energy (DOE), the Western Research Institute (WRI) is required to submit an annual report summarizing the status of environmentally related work performed by WRI at the Hanna and Hoe Creek underground coal gasification (UCG) sites. The following is a summary of work performed at these two sites from June 1986 to June 1987. Several tasks for restoring the water quailty at Hoe Creek were: (1) groundwater treatment demonstration (1986); (2) bench-scale carbon adsorption experiments (1987); (3) design of the scaled-up treatment system (1987); (4) well-pumping test (1987). A summary of the results of each task is presented. 6 refs., 8 figs., 4 tabs.

  18. Environmental assessment for the Hoe Creek underground, Coal Gasification Test Site Remediation, Campbell County, Wyoming

    SciTech Connect (OSTI)

    NONE

    1997-10-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has prepared this EA to assess environmental and human health Issues and to determine potential impacts associated with the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming. The Hoe Creek site is located south-southwest of the town of Gillette, Wyoming, and encompasses 71 acres of public land under the stewardship of the Bureau of Land Management. The proposed action identified in the EA is for the DOE to perform air sparging with bioremediation at the Hoe Creek site to remove contaminants resulting from underground coal gasification (UCG) experiments performed there by the DOE in the late 1970s. The proposed action would involve drilling additional wells at two of the UCG test sites to apply oxygen or hydrogen peroxide to the subsurface to volatilize benzene dissolved in the groundwater and enhance bioremediation of non-aqueous phase liquids present in the subsurface. Other alternatives considered are site excavation to remove contaminants, continuation of the annual pump and treat actions that have been used at the site over the last ten years to limit contaminant migration, and the no action alternative. Issues examined in detail in the EA are air quality, geology, human health and safety, noise, soils, solid and hazardous waste, threatened and endangered species, vegetation, water resources, and wildlife. Details of mitigative measures that could be used to limit any detrimental effects resulting from the proposed action or any of the alternatives are discussed, and information on anticipated effects identified by other government agencies is provided.

  19. The U.S. Department of Energy`s integrated gasification combined cycle research, development and demonstration program

    SciTech Connect (OSTI)

    Brdar, R.D.; Cicero, D.C.

    1996-07-01T23:59:59.000Z

    Historically, coal has played a major role as a fuel source for power generation both domestically and abroad. Despite increasingly stringent environmental constraints and affordable natural gas, coal will remain one of the primary fuels for producing electricity. This is due to its abundance throughout the world, low price, ease of transport an export, decreasing capital cost for coal-based systems, and the need to maintain fuel diversity. Recognizing the role coal will continue to play, the US Department of Energy (DOE) is working in partnership with industry to develop ways to use this abundant fuel resource in a manner that is more economical, more efficient and environmentally superior to conventional means to burn coal. The most promising of these technologies is integrated gasification combined cycle (IGCC) systems. Although IGCC systems offer many advantages, there are still several hurdles that must be overcome before the technology achieves widespread commercial acceptance. The major hurdles to commercialization include reducing capital and operating costs, reducing technical risk, demonstrating environmental and technical performance at commercial scale, and demonstrating system reliability and operability. Overcoming these hurdles, as well as continued progress in improving system efficiency, are the goals of the DOE IGCC research, development and demonstrate (RD and D) program. This paper provides an overview of this integrated RD and D program and describes fundamental areas of technology development, key research projects and their related demonstration scale activities.

  20. advanced integrated gasification: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    program considerably facilitated its operation which can now be remotely done. The gasification of sorghum, CGT and manure showed that they contained high amounts of...

  1. Fixed Bed Counter Current Gasification of Mesquite and Juniper Biomass Using Air-steam as Oxidizer

    E-Print Network [OSTI]

    Chen, Wei 1981-

    2012-11-27T23:59:59.000Z

    contains high percentage of Nitrogen, the heating value of the gasification gas is very low. The oxygen-blow gasification produce a syngas with medium heating value and steam blow gasification lead to the production of a syngas with an acceptable HHV... schematic flow diagram of an integrated Gasification Combined Cycle (IGCC) plan. Coal, heavy petroleum residues, or biomass is gasified in the gasifier using air or steam media to generate syngas under high temperature and pressure. The syngas was first...

  2. Results of the groundwater restoration project, Hanna Underground Coal Gasification Test Site, Wyoming: Topical report

    SciTech Connect (OSTI)

    Oliver, R.L.

    1988-01-01T23:59:59.000Z

    Underground coal gasification (UCG) experiments conducted during the 1970s at the Department of Energy (DOE) site near Hanna, Wyoming, formed six underground cavities in the Hanna No. 1 coal seam, an aquifer of low permeability. When the first Hanna UCG experiment began in March 1973, researchers had little information about what effects the geologic or hydrologic characteristics of the area might have on the UCG process; likewise, the effects of UCG on the environment were unknown. Since the UCG experiments were completed, dilute concentrations of pyrolysis products and leachates have been detected in groundwater monitoring wells in and near some of the six cavities. Three primary UCG indicator constituents have been measured at elevated concentrations: phenols, TDS, and sulfate. The Hanna III cavity water exceeded the DOE target level for TDS and sulfate, and the Hanna I cavity water exceeded the DOE target level for phenols. The indicated phenols contamination, however, was in groundwater sampled from a well which was previously used as a production well during the experiment. Water pumped during the restoration project and a new well located approximately 10 ft from the old production well was sampled and no elevated phenols concentration was detected. Therefore, the restoration performed on the Hanna I cavity water was not necessary. The restoration was performed, however, because these indications were not available until during the restoration. Locally, various other constituents exceed DOE target levels, but concentrations are very near target levels and are well within livestock use limits. 2 refs., 7 figs., 5 tabs.

  3. Hanna, Wyoming underground coal gasification data base. Volume 2. The Hanna I field test

    SciTech Connect (OSTI)

    Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

    1985-08-01T23:59:59.000Z

    This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project, and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. Based on the recommendations of A.D. Little, Inc. in a 1971 report prepared for the US Bureau of Mines, the Hanna I test represented the first field test in reestablishing a field program by the US Bureau of Mines. The test was directed toward comparing results from a thick subbitiminous coal seam with those obtained during the field test series conducted at Gorgas, AL, in the 1940's and 1950's. Hanna I was conducted from March 1973 through February 1974. This report covers: (1) site selection and characteristics; (2) test objectives; (3) facility description; (4) pre-operation tests; (5) test operations summary; and (6) post-test activity. 9 refs., 10 figs., 4 tabs.

  4. In situ small angle x-ray studies of coal gasification

    SciTech Connect (OSTI)

    Jensen, K F

    1983-01-01T23:59:59.000Z

    This report summarizes the progress made the first 12 months of a planned 36 month project on small angle x-ray studies of coal and char pore structure. Model carbon studies have been employed to demonstrate the usefulness of small angle x-ray scattering (SAXS) in monitoring the structural changes in porous carbonaceous materials during gasification. Scattering data from particles gasified to varying levels of conversion show increases in the micropore sizes with conversion. This is also supported by surface area measurements by SAXS showing a maximum at intermediate conversion in agreements with previous studies by conventional means. The application of SAXS to PSOC coal samples is also demonstrated. Existing models for the porous structure have been reviewed and percolation theory has been selected as a consistent framework for both the modelling and the data analysis. This theory will make it possible to describe the porous structure in terms of its geometry and connectivity, rather than being limited to a fixed geometry as in conventional approaches. Two graduate students and the PI have been trained in SAXS and the associated theory. Results from the model carbon studies have been published. 18 references, 9 figures, 2 tables.

  5. Environmental controls for underground coal gasification: ground-water effects and control technologies

    SciTech Connect (OSTI)

    Mead, W.; Raber, E.

    1980-03-14T23:59:59.000Z

    Underground coal gasfication (UCG) promises to provide economic access to an enormous deep-coal resource. It is, therefore, of considerable importance to develop appropriate environmental controls for use in conjunction with the UCG process. The Lawrence Livermore Laboratory has conducted three UCG experiments at its Hoe Creek site in northeastern Wyoming. Environmental studies are being conducted in conjunction with these UCG experiments, including an investigation of changes in local ground-water quality and subsidence effects. Ground-water monitoring and geotechnical measurements have helped to clarify the environmental significance of reaction-product contaminants that remain underground following gasification, and the implications of cavity roof collapse and aquifer interconnection. These investigations have led to the development of preliminary plans for a specific method of ground water quality restoration utilizing activated carbon adsorption. Unconventional technologies are also being investigated that may be appropriate for restoring ground water that has been contaminated as a result of UCG operations. These water treatment technologies are being explored as possible supplements to natural controls and process restrictions.

  6. Combined Air Sparge and Bioremediation of an Underground Coal Gasification Site

    SciTech Connect (OSTI)

    Covell, J.R.; Thomas, M.H.

    1996-12-01T23:59:59.000Z

    EG&G Technical Services of West Virginia (TSWV) Inc. is successfully remediating a former underground coal gasification (UCG) test site in northeastern Wyoming. EG&G is demonstrating the effectiveness of combined air sparge and biostimulation technology. This project is being conducted for the U.S. Department of Energy (DOE ) - Morgantown Energy Technology Center (METC), the lease holder of the site. UCG testing from 1976 through 1979 contaminated three water-bearing units at the site with benzene. Previous pump and treat operations at the site showed the presence of a persistent non-dissolved benzene source material. The Felix I coal seam is the most contaminated unit at the site and was the target unit for the initial demonstration. Air sparging was selected to strip dissolved benzene, volatilize the non- dissolved benzene source material, and to provide oxygen for increasing aerobic bacteria populations. Indigenous bacteria populations were stimulated with ammonium phosphate addition. EG&G designed the remediation system to take advantage of the hydrogeologic environment to produce a cost-effective approach to the groundwater remediation. Groundwater pumping was used to manipulate subsurface air flow, nutrient transport, and biomass management. Demonstration operations began on September 29, 1995, and were suspended on April 30, 1996 to begin demonstration expansion. Initial results of the demonstration show substantial reduction in benzene concentrations across the demonstration area. Benzene concentration reductions greater than 80% were observed two months after demonstration operations were suspended.

  7. HYDROGENOLYSIS OF A SUB-BITUMINOUS COAL WITH MOLTEN ZINC CHLORIDE SOLUTIONS

    E-Print Network [OSTI]

    Holten, R.R.

    2010-01-01T23:59:59.000Z

    for Liquefaction and Gasification of Western Coals", in5272 (1976). COal Processing - Gasification, Liguefaction,or gaseous fuels, coal gasification has advanced furthest

  8. ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE

    E-Print Network [OSTI]

    Ferrell, G.C.

    2010-01-01T23:59:59.000Z

    application (coal gasification, coal combustion followed byversions of advanced gasification processes show promise ofFixed-Bed Low-Btu Coal Gasification Systems for Retrofitting

  9. THE EFFECT OF COAL CHAR ON THE CORROSION OF 304 SS

    E-Print Network [OSTI]

    Foerster, Thomas Friedrich Wilhelm

    2011-01-01T23:59:59.000Z

    of Materials for Coal Gasification Applications". of Highcommercially proven coal gasification processes exist. TheseDiagram of the Synthane Coal Gasification Process (from Ref.

  10. Rheological Study of Comingled Biomass and Coal Slurries with HydrothermalPretreatment

    E-Print Network [OSTI]

    He, W; Park, C S; Norbeck, J N

    2009-01-01T23:59:59.000Z

    based fuels or coal gasification. 1 The transportation andemissions in the coal gasification process while maintainingbe very efficient for gasification of both coal and biomass

  11. LWA demonstration applications using Illinois coal gasification slag: Phase II. Technical report, 1 March--31 May 1994

    SciTech Connect (OSTI)

    Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States); Steck, P. [Harvey Cement Products, Inc. (United States)

    1994-09-01T23:59:59.000Z

    The major objective of this project is to demonstrate the suitability of using ultra-lightweight aggregates (ULWA) produced by thermal expansion of solid residues (slag) generated during the gasification of Illinois coals as substitutes for conventional aggregates, which are typically produced by pyroprocessing of perlite ores. To meet this objective, expanded slag aggregates produced from an Illinois coal slag feed in Phase I will be subjected to characterization and applications-oriented testing. Target applications include the following: aggregates in precast products (blocks and rooftiles); construction aggregates (loose fill insulation and insulating concrete); and other applications as identified from evaluation of expanded slag properties. The production of value-added products from slag is aimed at eliminating a solid waste and possibly enhancing the overall economics of the gasification process, especially when the avoided costs of disposal are taken into consideration.

  12. Engineering support services for the DOE/GRI coal gasification research program. Final technical progress report, October 1978-November 1982

    SciTech Connect (OSTI)

    Bostwick, L.E.

    1982-01-01T23:59:59.000Z

    The agreement between the United States Government Department of Energy and the Gas Research Institute for the Joint Coal Gasification Research Program provided for one or more technical evaluation contractors. Pullman Kellogg (now the M.W. Kellogg Company) was selected as evaluation contractor to assess, and report to the DOE/GRI Operating Committee on, the relative merits of the active programs covered by the agreement. This report includes the period from 1 October 1978 to 30 November 1982. The objective was to provide engineering support for the DOE/GRI high Btu coal gasification program. This support generally consisted of assistance in developing or advancing each process to its maximum potential. Kellogg monitored and evaluated the startup and operational activities of all pilot plant projects within the combined DOE/GRI program. Kellogg evaluated proposals to determine their technical feasibility as potential processes or as viable processing operations for commercial-scale gasification of coal. Kellogg also recorded observations on the reliability, maintainability, and availability of the equipment used in the pilot plant or PDU facilities. Kellogg performed design reviews, data analyses, and engineering evaluations of proposals, cost estimates and monthly progress reports to provide information considered essential to the overall objectives of the combined DOE/GRI program.

  13. An evaluation of the United Kingdom Clean Coal Power Generation Group`s air-blown gasification cycle

    SciTech Connect (OSTI)

    Wheeldon, J.M.; Brown, R.A. [Electric Power Research Inst., Palo Alto, CA (United States); McKinsey, R.R. [Bechtel Group, Inc., San Francisco, CA (United States); Dawes, S.G. [British Coal Corp., Cheltenham (United Kingdom)

    1996-12-31T23:59:59.000Z

    The Electric Power Research Institute (EPRI) is conducting an engineering and economic study of various pressurized fluidized-bed combustor (PFBC) designs. Studies have been completed on bubbling and circulating PFBC technologies and on an advanced PFBC power plant technology, in which the feed coal is partially gasified and the residual char burned in a PFBC. The United Kingdom Clean Coal Power Generation Group`s (CCPGG) air-blown gasification cycle (ABGC), known formerly as the British Coal Topping Cycle, also partially gasifies the feed coal, but uses a circulating atmospheric fluidized-bed combustor (AFBC) to burn the residual char. Although not a PFBC plant, the study was completed to effect a comparison with the advanced PFBC cycle.

  14. Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT)

    SciTech Connect (OSTI)

    Conocophillips

    2007-09-30T23:59:59.000Z

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project was established to evaluate integrated electrical power generation and methanol production through clean coal technologies. The project was under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy Inc. in July 2003. The project has completed both Phase 1 and Phase 2 of development. The two project phases include the following: (1) Feasibility study and conceptual design for an integrated demonstration facility at SG Solutions LLC (SGS), previously the Wabash River Energy Limited, Gasification Facility located in West Terre Haute, Indiana, and for a fence-line commercial embodiment plant (CEP) operated at the Dow Chemical Company or Dow Corning Corporation chemical plant locations. (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. Phase 1 of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase 2 was supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The SGS integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other carbonaceous fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas (syngas) is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-Gas technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and later COP and the industrial partners investigated the use of syngas produced by the E-Gas technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort were to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from syngas derived from coal, or, coal in combination with some other carbonaceous feedstock. The intended result of the project was to provide the necessary technical, economic, and environmental information that would be needed to move the EECP forward to detailed design, construction, and operation by industry. The EECP study conducted in Phase 1 of the IMPPCCT Project confirmed that the concept for the integration of gasification-based (E-Gas) electricity generation from coal and/or petroleum coke and methanol production (Liquid Phase Methanol or LPMEOH{trademark}) processes was feasible for the coproduction of power and chemicals. The results indicated that while there were minimal integration issues that impact the deployment of an IMPPCCT CEP, the major concern was the removal of sulfur and other trace contaminants, which are known methanol catalyst poisons, from the syngas. However, economic concerns in the domestic methanol market which is driven by periodic low natural gas prices and cheap offshore supplies limit the commercial viability of this more capital intensive concept. The objective of Phase 2 was to conduct RD&T as outlined in the Phase 1 RD&T Plan to enhance the development and commercial acceptance of coproduction technology. Studies were designed to address the technical concerns that would mak

  15. Carbon Dioxide Capture from Coal-Fired

    E-Print Network [OSTI]

    Carbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis May 2005 MIT LFEE 2005. LFEE 2005-002 Report #12;#12;i ABSTRACT Investments in three coal-fired power generation technologies environment. The technologies evaluated are pulverized coal (PC), integrated coal gasification combined cycle

  16. Integrated production/use of ultra low-ash coal, premium liquids and clean char. [Quarterly] report, December 1, 1991--February 29, 1992

    SciTech Connect (OSTI)

    Kruse, C.W. [Illinois State Geological Survey, Champaign, IL (United States)

    1992-08-01T23:59:59.000Z

    The first step in the integrated, mufti-product approach for utilizing Illinois coal is the production of ultra low-ash coal. Subsequent steps convert low-ash coal to high-value, coal-derived, products. The ultra low-ash coal is produced by solubilizing coal in a phenolic solvent under ChemCoal{trademark} process conditions, separating the coal solution from insoluble ash, and then precipitating the clean coal by dilution of the solvent with methanol. Two major products, liquids and low-ash char, are then produced by mild gasification of the low-ash coal. The low ash-char is further upgraded to activated char, and/or an oxidized activated char which has catalytic properties. Characterization of products at each stage is part of this project.

  17. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    such as synthetic crude gasification combined cycle powerstand-alone integrated gasification combined cycle powertransmission integrated gasification, combined cycle power

  18. Changes in char structure during the gasification of a Victorian brown coal in steam and oxygen at 800{degree}C

    SciTech Connect (OSTI)

    Xin Guo; Hui Ling Tay; Shu Zhang; Chun-Zhu Li [Monash University, Vic. (Australia). Department of Chemical Engineering

    2008-11-15T23:59:59.000Z

    Char structure is an important factor influencing its reactivity during gasification. This study aims to investigate the changes in char structure during the gasification of brown coal. A Victorian brown coal was gasified in a fluidized-bed/fixed-bed reactor at 800{degree}C in atmospheres containing 15% H{sub 2}O, 2000 ppm O{sub 2}, or 15% H{sub 2}O and 2000 ppm O{sub 2}, respectively. Although the char gasification in 2000 ppm O{sub 2} was mainly rate-limited by the external diffusion of O{sub 2}, the char-H{sub 2}O reaction was mainly rate-limited by the chemical reactions. The structural features of char at different levels of char gasification conversion were examined with FT-Raman spectroscopy. Our results show that the chars from the gasification in the mixture of 2000 ppm O{sub 2} and 15% H{sub 2}O had almost the same features as the chars from the gasification in 15% H{sub 2}O alone when the same levels of char conversion were achieved. Both the thermal decomposition of char and the char gasification reactions could result in changes in char structure during gasification. 29 refs., 5 figs., 1 tab.

  19. LLL in situ Coal Gasification Project. Quarterly progress report, January-March 1980

    SciTech Connect (OSTI)

    Olness, D.U. (ed.)

    1980-05-30T23:59:59.000Z

    We have performed three small-scale, coal-block reactor experiments in order to gain some insight into the performance of the proposed injection well design for the next field test, and to better understand some of the observed in situ phenomena which occurred during the Hoe Creek No. 3 field test. The modeling group has begun to consolidate into a single data base the data from Hoe Creek No. 1, No. 2, and No. 3, permitting some comparisons which are presented and discussed. During and after the Hoe Creek experiments, groundwater samples were collected from wells located at a distance of a few feet to several hundred feet from the gasification cavities. Analysis of the water was performed and work is continuing to understand and to explain the observed increased concentration of several cations. Several sources of information, including two recent papers by Zvyaghintsev covering Soviet UCG stations, have been analyzed. The Soviets developed an effective method for UCG in the 1950's. Plans were developed to increase UCG production from 0.7 billion m/sup 3/ in 1958 to over 40 billion m/sup 3//yr. These plans were not implemented; production peaked in 1966 at 2 billion m/sup 3//yr and declined to 0.7 billion m/sup 3//yr by 1977. The reasons for this decline are presumed to be the poorer heating values, closer wellbore spacings, and higher product gas losses at Angren than expected. Comparable results would produce unfavorable economics in the US. Also, UCG technology in the USSR faced stiff competition from natural gas production and efficient open-pit coal mining.

  20. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Thomas Lynch

    2004-01-07T23:59:59.000Z

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead previously by Gasification Engineering Corporation (GEC). The project is now under the leadership of ConocoPhillips Company (COP) after it acquired GEC and the E-Gas{trademark} gasification technology from Global Energy in July 2003. The Phase I of this project was supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while the Phase II is supported by Gas Technology Institute, TDA Research, Inc., and Nucon International, Inc. The two project phases planned for execution include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The WREL facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and now COP and the industrial partners are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

  1. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Albert Tsang

    2003-03-14T23:59:59.000Z

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over several years, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana.

  2. Pioneering Gasification Plants | Department of Energy

    Energy Savers [EERE]

    lighting street lights fueled by "town gas," frequently the product of early forms of coal gasification. Gasification of fuel also provided fuel for steel mills, and toward the...

  3. intro to gasification | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gasifier Gasification Introduction Gasification is a technological process that can convert any carbonaceous (carbon-based) raw material such as coal into fuel gas, also known as...

  4. history gasification | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gasification is first conceived when Philippe Lebon led efforts to gasify wood. 1. Coal Energy Systems, Bruce G. Miller, pg 247 Gasification Background Markets for...

  5. Coal gasification system with a modulated on/off control system

    DOE Patents [OSTI]

    Fasching, George E. (Morgantown, WV)

    1984-01-01T23:59:59.000Z

    A modulated control system is provided for improving regulation of the bed level in a fixed-bed coal gasifier into which coal is fed from a rotary coal feeder. A nuclear bed level gauge using a cobalt source and an ion chamber detector is used to detect the coal bed level in the gasifier. The detector signal is compared to a bed level set point signal in a primary controller which operates in proportional/integral modes to produce an error signal. The error signal is modulated by the injection of a triangular wave signal of a frequency of about 0.0004 Hz and an amplitude of about 80% of the primary deadband. The modulated error signal is fed to a triple-deadband secondary controller which jogs the coal feeder speed up or down by on/off control of a feeder speed change driver such that the gasifier bed level is driven toward the set point while preventing excessive cycling (oscillation) common in on/off mode automatic controllers of this type. Regulation of the bed level is achieved without excessive feeder speed control jogging.

  6. Modeling of the coal gasification processes in a hybrid plasma torch

    SciTech Connect (OSTI)

    Matveev, I.B.; Serbin, S.I. [Applied Plasma Technology, Mclean, VA (USA)

    2007-12-15T23:59:59.000Z

    The major advantages of plasma treatment systems are cost effectiveness and technical efficiency. A new efficient electrodeless 1-MW hybrid plasma torch for waste disposal and coal gasification is proposed. This product merges several solutions such as the known inductive-type plasma torch, innovative reverse-vortex (RV) reactor and the recently developed nonequilibrium plasma pilot and plasma chemical reactor. With the use of the computational-fluid-dynamics-computational method, preliminary 3-D calculations of heat exchange in a 1-MW plasma generator operating with direct vortex and RV have been conducted at the air flow rate of 100 g/s. For the investigated mode and designed parameters, reduction of the total wall heat transfer for the reverse scheme is about 65 kW, which corresponds to an increase of the plasma generator efficiency by approximately 6.5%. This new hybrid plasma torch operates as a multimode, high power plasma system with a wide range of plasma feedstock gases and turn down ratio, and offers convenient and simultaneous feeding of several additional reagents into the discharge zone.

  7. SPINEL-BASED REFRACTORIES FOR IMPROVED PERFORMANCE IN COAL GASIFICATION ENVIRONMENTS

    SciTech Connect (OSTI)

    Hemrick, James Gordon [ORNL; Armstrong, Beth L [ORNL; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.; Smith, Jeffrey D [ORNL; O'Hara, Kelley [University of Missouri, Rolla

    2013-01-01T23:59:59.000Z

    Oak Ridge National Laboratory, in collaboration with refractory manufacturer Minteq International, Inc., academic partner Missouri University of Science and Technology and refractory end users have developed novel refractory systems and techniques to reduce energy consumption of refractory lined vessels. The objective of this U.S. DOE funded project was to address the need for innovative refractory compositions by developing MgO-Al 2O3 spinel gunnable refractory compositions utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques. Materials have been developed specifically for coal gasification environments and work has been performed to develop and apply low cost coatings using a colloidal approach for protection against attack of the refractory brick by the service environment and to develop a light-weight back-up refractory system to help offset the high thermal conductivity inherent in spinel materials. This paper discusses the systematic development of these materials, laboratory testing and evaluation of these materials, and relevant results achieved toward the reduction of chemical reactions and mechanical degradation by the service environment though compositional and processing modifications.

  8. DEVELOPMENT OF NOVEL SPINEL REFRACTORIES FOR USE IN COAL GASIFICATION ENVIRONMENTS

    SciTech Connect (OSTI)

    Hemrick, James Gordon [ORNL; Armstrong, Beth L [ORNL; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.; Smith, Jeffrey D [ORNL; O'Hara, Kelley [University of Missouri, Rolla

    2011-01-01T23:59:59.000Z

    Work has been performed by Oak Ridge National Laboratory (ORNL), in collaboration with industrial refractory manufacturer (Minteq International, Inc.), academic research partner (Missouri University of Science and Technology) and end users to employ novel refractory systems and techniques to reduce energy consumption of refractory lined vessels found in industries such as aluminum, chemical, glass, and pulp and paper. The objective of the project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al 2O3 spinel structured unshaped refractory compositions (castables, gunnables, shotcretes, etc) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques. As part of the four-year project funded by the U.S. Department of Energy (DOE), materials have been developed specifically for coal gasification environments. Additionally, work has been performed to develop and apply low cost coatings using a colloidal approach for protection against corrosion attack of the refractory brick and to develop a light-weight back-up refractory system to help offset the high thermal conductivity inherent in spinel materials. This paper discusses the development of these materials, along with preliminary results achieved toward the reduction of chemical reactions and mechanical degradation by the service environment.

  9. Refractory Materials based on Magnesia-Alumina Spinel for Improved Performance in Coal Gasification Environments

    SciTech Connect (OSTI)

    Hemrick, James Gordon [ORNL; Armstrong, Beth L [ORNL; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.; Smith, Jeffrey D [ORNL; O'Hara, Kelley [University of Missouri, Rolla

    2013-01-01T23:59:59.000Z

    As part of a larger project to develop novel refractory systems and techniques to reduce energy consumption of refractory lined vessels, a team composed of Oak Ridge National Laboratory, refractory manufacturer Minteq International, Inc., and academic partner Missouri University of Science and Technology have developed new refractory materials and coating systems specifically for application in coal gasification environments. Materials were developed under this U.S. DOE funded project to address the need for innovative refractory compositions by developing MgO-Al2O3 spinel gunnable refractory compositions utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques. Work was conducted to develop and deploy these new materials and to develop and apply low cost coatings using a colloidal approach for protection against attack of the refractory brick by the serviced environment. Additionally, a light-weight back-up refractory system was developed to help offset the high thermal conductivity inherent in spinel materials. This paper discusses the efforts involved in the development of these materials, along with the laboratory testing and evaluation of these materials leading to relevant results achieved toward the reduction of chemical reactions and mechanical degradation by the service environment though compositional and processing modifications.

  10. Environmental evaluation and restoration plan of the Hoe Creek Underground Coal Gasification Site, Wyoming: Topical report

    SciTech Connect (OSTI)

    Barteaux, W.L.; Berdan, G.L.; Lawrence, J.

    1986-09-01T23:59:59.000Z

    Three underground coal gasification (UCG) experiments were conducted by Lawrence Livermore National Laboratory (LLNL) at the Hoe Creek Site, Wyoming; the Hoe Creek I experiment was conducted in 1976, the Hoe Creek II experiment in 1977, and the Hoe Creek III experiment in 1979. These experiments have had an impact on the land and groundwater quality at the site, and the Department of Energy (DOE) has requested that Western Research Institute (WRI) develop and implement a site restoration plan. The purpose of the plan is to restore the site to conditions being negotiated with the Wyoming Department of Environmental Quality (WDEQ). To prepare for developing a plan, WRI compiled background information on the site. The geologic and hydrologic characteristics of the site were determined, and the water quality data were analyzed. Modelling the site was considered and possible restoration methods were examined. Samples were collected and laboratory tests were conducted. WRI then developed and began implementing a field-scale restoration test. 41 refs, 46 figs., 13 tabs.

  11. Investigation of an integrated switchgrass gasification/fuel cell power plant. Final report for Phase 1 of the Chariton Valley Biomass Power Project

    SciTech Connect (OSTI)

    Brown, R.C.; Smeenk, J. [Iowa State Univ., Ames, IA (United States); Steinfeld, G. [Energy Research Corp., Danbury, CT (United States)

    1998-09-30T23:59:59.000Z

    The Chariton Valley Biomass Power Project, sponsored by the US Department of Energy Biomass Power Program, has the goal of converting switchgrass grown on marginal farmland in southern Iowa into electric power. Two energy conversion options are under evaluation: co-firing switchgrass with coal in an existing utility boiler and gasification of switchgrass for use in a carbonate fuel cell. This paper describes the second option under investigation. The gasification study includes both experimental testing in a pilot-scale gasifier and computer simulation of carbonate fuel cell performance when operated on gas derived from switchgrass. Options for comprehensive system integration between a carbonate fuel cell and the gasification system are being evaluated. Use of waste heat from the carbonate fuel cell to maximize overall integrated plant efficiency is being examined. Existing fuel cell power plant design elements will be used, as appropriate, in the integration of the gasifier and fuel cell power plant to minimize cost complexity and risk. The gasification experiments are being performed by Iowa State University and the fuel cell evaluations are being performed by Energy Research Corporation.

  12. Computer models to support investigations of surface subsidence and associated ground motion induced by underground coal gasification. [STEALTH Codes

    SciTech Connect (OSTI)

    Langland, R.T.; Trent, B.C.

    1981-01-01T23:59:59.000Z

    Two computer codes compare surface subsidence induced by underground coal gasification at Hoe Creek, Wyoming, and Centralia, Washington. Calculations with the STEALTH explicit finite-difference code are shown to match equivalent, implicit finite-element method solutions for the removal of underground material. Effects of removing roof material, varying elastic constants, investigating thermal shrinkage, and burning multiple coal seams are studied. A coupled, finite-difference continuum rigid-block caving code is used to model underground opening behavior. Numerical techniques agree qualitatively with empirical studies but, so far, underpredict ground surface displacement. The two methods, numerical and empirical, are most effective when used together. It is recommended that the thermal characteristics of coal measure rock be investigated and that additional calculations be carried out to longer times so that cooling influences can be modeled.

  13. Computer models to support investigations of surface subsidence and associated ground motion induced by underground coal gasification

    SciTech Connect (OSTI)

    Trent, B.C.; Langland, R.T.

    1981-08-01T23:59:59.000Z

    Two computer codes compare surface subsidence induced by underground coal gasification at Hoe Creek, Wyoming, and Centralia, Washington. Calculations with the STEALTH explicit finite-difference code are shown to match equivalent, implicit finite-element method solutions for the removal of underground material. Effects of removing roof material, varying elastic constants, investigating thermal shrinkage, and burning multiple coal seams are studied. A coupled, finite-difference continuum rigid-block caving code is used to model underground opening behavior. Numerical techniques agree qualitatively with empirical studies but, so far, underpredict ground surface displacement. The two methods, numerical and empirical, are most effective when used together. It is recommended that the thermal characteristics of coal measure rock be investigated and that additional calculations be carried out to longer times so that cooling influences can be modeled.

  14. A Brief Review of Viscosity Models for Slag in Coal Gasification

    SciTech Connect (OSTI)

    Massoudi, Mehrdad; Wang, Ping

    2011-11-01T23:59:59.000Z

    Many researchers have defined the phenomenon of 'slagging' as the deposition of ash in the radiative section of a boiler, while 'fouling' refers to the deposition of ash in the convective-pass region. Among the important parameters affecting ash deposition that need to be studied are ash chemistry, its transport, deposit growth, and strength development; removability of the ash deposit; heat transfer mechanisms; and the mode of operation for boilers. The heat transfer at the walls of a combustor depends on many parameters including ash deposition. This depends on the processes or parameters controlling the impact efficiency and the sticking efficiency. For a slagging combustor or furnace, however, the temperatures are so high that much of the coal particles are melted and the molten layer, in turn, captures more particles as it flows. The main problems with ash deposition are reduced heat transfer in the boiler and corrosion of the tubes. Common ways of dealing with these issues are soot blowing and wall blowing on a routine basis; however, unexpected or uncontrolled depositions can also complicate the situation, and there are always locations inaccessible to the use of such techniques. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1300 C and 1500 C, the viscosity is approximately 25 Pa {center_dot} s. As the operating temperature decreases, the slag cools and solid crystals begin to form. In such cases the slag should be regarded as a non-Newtonian suspension, consisting of liquid silicate and crystals. A better understanding of the rheological properties of the slag, such as yield stress and shear-thinning, are critical in determining the optimum operating conditions. To develop an accurate heat transfer model in any type of coal combustion or gasification process, the heat transfer and to some extent the rheological properties of ash and slag, especially in high-temperature environments need to be understood and properly modeled. The viscosity of slag and the thermal conductivity of ash deposits are among two of the most important constitutive parameters that need to be studied. The accurate formulation or representations of the (transport) properties of coal (and biomass for co-firing cases) present a special challenge of modeling efforts in computational fluid dynamics applications. In this report, we first provide a brief review of the various approaches taken by different researchers in formulating or obtaining a slag viscosity model. In general, these models are based on experiments. Since slag behaves as a non-linear fluid, we discuss the constitutive modeling of slag and the important parameters that must be studied.

  15. Image analysis measurements of particle coefficient of restitution for coal gasification applications

    SciTech Connect (OSTI)

    Gibson, LaTosha M.; Gopalan, Balaji; Pisupati, Sarma V.; Shadle, Lawrence J.

    2013-10-01T23:59:59.000Z

    New robust Lagrangian computational fluid dynamic (CFD) models are powerful tools that can be used to study the behavior of a diverse population of coal particle sizes, densities, and mineral compositions in entrained gasifiers. By using this approach, the responses of the particles impacting the wall were characterized over a range of velocities (1 to 8 m/s) and incident angles (90 to 20°). Within CFD models, the kinematic coefficient of restitution is the boundary condition defining the particle wall behavior. Four surfaces were studied to simulate the physical conditions of different entrained-flow gasification particle–surface collision scenarios: 1) a flat metal plate 2) a low viscosity silicon adhesive, 3) a high viscosity silicon adhesive, and 4) adhered particles on a flat metal plate with Young's modulus of elasticity ranging from 0.9 to 190 GPa. Entrained flow and drop experiments were conducted with granular coke particles, polyethylene beads and polystyrene pellets. The particle normal and tangential coefficients of restitution were measured using high speed imaging and particle tracking. The measured coefficients of restitution were observed to have a strong dependence on the rebound angles for most of the data. Suitable algebraic expressions for the normal and the tangential component of the coefficient of restitution were developed based upon ANOVA analysis. These expressions quantify the effect of normalized Young's modulus, particle equancy, and relative velocity on the coefficient of restitution. The coefficient of restitution did not have a strong dependence on the particle velocity over the range considered as long as the velocity was above the critical velocity. However, strong correlations were found between the degree of equancy of the particles and the mean coefficient of restitution such that the coefficient of restitution decreased for smaller particle equancies. It was concluded that the degree of equancy and the normalized Young's modulus should be considered in applications such as gasification and other cases involving the impact of non-spherical particles and complex surfaces. Sliding was observed when particles impacted on oblique surfaces; however, the resulting effects were within the range of measurement uncertainties.

  16. LLNL underground coal gasification project. Quarterly progress report, July-Sep 1980. [Hoe Creek and Gorgas, Alabama tests

    SciTech Connect (OSTI)

    Olness, D.U. (ed.)

    1980-10-14T23:59:59.000Z

    Laboratory studies of forward gasification through drilled holes in blocks of coal have continued. Such studies give insight into cavity growth mechanisms and particulate production. In addition to obtaining a qualitative comparison of the forward burn characteristics of two coals, we obtained information on the influence of bedding plane/cleat structure orientation on the early-time shape of the burn cavity in the Roland coal. We have improved our model of the coal drying rate during underground coal gasification (UCG) by adding refinements to the model. To aid in analyzing and predicting the performance of UCG tests, we have developed a simple gas-compositional model. When the model was tested against experimental data from the three Hoe Creek experiments, it was able to match very closely the observed gas compositions, energy fractions, and water influxes. This model can be used to make performance predictions consistent with the material and energy balance constraints of the underground system. A postburn coring and wireline-logging study is under way at the Hoe Creek No. 3 site to investigate the overall effect of the directionally-drilled, horizontal linking hole to better estimate the amount of coal gasified and the shape of the combustion front, and to provide additional information on subsurface deformation and thermal effects. The site reclamation work was completed, including the dismantling of all surface equipment and piping and the plugging and sealing of process and diagnostics wells. Final grading of the reclaimed land has been completed, and the area is ready for disk-seeding. Our survey of the UCG literature has continued with a review of the extensive tests at Gorgas, Alabama, carried on by the US Bureau of Mines from 1947 to 1959.

  17. Integrated Biomass Gasification with Catalytic Partial Oxidation for Selective Tar Conversion

    SciTech Connect (OSTI)

    Zhang, Lingzhi; Wei, Wei; Manke, Jeff; Vazquez, Arturo; Thompson, Jeff; Thompson, Mark

    2011-05-28T23:59:59.000Z

    Biomass gasification is a flexible and efficient way of utilizing widely available domestic renewable resources. Syngas from biomass has the potential for biofuels production, which will enhance energy security and environmental benefits. Additionally, with the successful development of low Btu fuel engines (e.g. GE Jenbacher engines), syngas from biomass can be efficiently used for power/heat co-generation. However, biomass gasification has not been widely commercialized because of a number of technical/economic issues related to gasifier design and syngas cleanup. Biomass gasification, due to its scale limitation, cannot afford to use pure oxygen as the gasification agent that used in coal gasification. Because, it uses air instead of oxygen, the biomass gasification temperature is much lower than well-understood coal gasification. The low temperature leads to a lot of tar formation and the tar can gum up the downstream equipment. Thus, the biomass gasification tar removal is a critical technology challenge for all types of biomass gasifiers. This USDA/DOE funded program (award number: DE-FG36-O8GO18085) aims to develop an advanced catalytic tar conversion system that can economically and efficiently convert tar into useful light gases (such as syngas) for downstream fuel synthesis or power generation. This program has been executed by GE Global Research in Irvine, CA, in collaboration with Professor Lanny Schmidt's group at the University of Minnesota (UoMn). Biomass gasification produces a raw syngas stream containing H2, CO, CO2, H2O, CH4 and other hydrocarbons, tars, char, and ash. Tars are defined as organic compounds that are condensable at room temperature and are assumed to be largely aromatic. Downstream units in biomass gasification such as gas engine, turbine or fuel synthesis reactors require stringent control in syngas quality, especially tar content to avoid plugging (gum) of downstream equipment. Tar- and ash-free syngas streams are a critical requirement for commercial deployment of biomass-based power/heat co-generation and biofuels production. There are several commonly used syngas clean-up technologies: (1) Syngas cooling and water scrubbing has been commercially proven but efficiency is low and it is only effective at small scales. This route is accompanied with troublesome wastewater treatment. (2) The tar filtration method requires frequent filter replacement and solid residue treatment, leading to high operation and capital costs. (3) Thermal destruction typically operates at temperatures higher than 1000oC. It has slow kinetics and potential soot formation issues. The system is expensive and materials are not reliable at high temperatures. (4) In-bed cracking catalysts show rapid deactivation, with durability to be demonstrated. (5) External catalytic cracking or steam reforming has low thermal efficiency and is faced with problematic catalyst coking. Under this program, catalytic partial oxidation (CPO) is being evaluated for syngas tar clean-up in biomass gasification. The CPO reaction is exothermic, implying that no external heat is needed and the system is of high thermal efficiency. CPO is capable of processing large gas volume, indicating a very compact catalyst bed and a low reactor cost. Instead of traditional physical removal of tar, the CPO concept converts tar into useful light gases (eg. CO, H2, CH4). This eliminates waste treatment and disposal requirements. All those advantages make the CPO catalytic tar conversion system a viable solution for biomass gasification downstream gas clean-up. This program was conducted from October 1 2008 to February 28 2011 and divided into five major tasks. - Task A: Perform conceptual design and conduct preliminary system and economic analysis (Q1 2009 ~ Q2 2009) - Task B: Biomass gasification tests, product characterization, and CPO tar conversion catalyst preparation. This task will be conducted after completing process design and system economics analysis. Major milestones include identification of syngas cleaning requirements for proposed system

  18. Characterizing a lignite formation before and after an underground coal gasification experiment 

    E-Print Network [OSTI]

    Ahmed, Usman

    1981-01-01T23:59:59.000Z

    ) . Grid Break Up System for the Areal Model Pressure Drawdown (Semi-log Plot) on Well 9 (Post-Gasification). 24 25 27 31 16 Ei-Function Plot. Drawdown on Well 9 and Inter- ference on Wells 10, 13 and 18 (Post-Gasification) . . 32 17 Pressure... Drawdown (Semi-log Plot) on Well 10 (Post-Gasification). 34 18 Ei-Function Plot. Drawdown on Well 10 and Inter- ference on Wells 9, 13 and 18 (Post-Gasification). . . 35 ~Fi ure 19 LIST OF FIGURES (Continued) Pressure Drawdown (Semi-log Plot) on Well...

  19. Integrated production/use of ultra low-ash coal, premium liquids and clean char. Technical report, September 1, 1991--November 30, 1991

    SciTech Connect (OSTI)

    Kruse, C.W.

    1991-12-31T23:59:59.000Z

    This integrated, multi-product approach for utilizing Illinois coal starts with the production of ultra low-ash coal and then converts it to high-vale, coal-derived, products. The ultra low-ash coal is produced by solubilizing coal in a phenolic solvent under ChemCoal{trademark} process conditions, separating the coal solution from insoluble ash, and then precipitating the clean coal by dilution of the solvent with methanol. Two major products, liquids and low-ash char, are then produced by mild gasification of the low-ash coal. The low ash-char is further upgraded to activated char, and/or an oxidized activated char which has catalytic properties. Characterization of products at each stage is part of this project.

  20. CORROSION OF IRON-BASE ALLOYS BY COAL CHAR AT 871 AND 982 C

    E-Print Network [OSTI]

    Gordon, Bruce Abbott

    2011-01-01T23:59:59.000Z

    1973, Chapter 5. "Synthane Coal Gasification Pilot Plant, IIReactions jn Coal Gasification/Combination Atmosphen~s,"

  1. A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage

    E-Print Network [OSTI]

    Apps, J.A.

    2006-01-01T23:59:59.000Z

    Elements During Coal Gasification 1 Element Participatingconsistency with the coal gasification process. n.m. = notthose occurring during coal gasification. The composition of

  2. Evaluation of sorbents for the cleanup of coal-derived synthesis gas at elevated temperatures

    E-Print Network [OSTI]

    Couling, David Joseph

    2012-01-01T23:59:59.000Z

    Integrated Gasification Combined Cycle (IGCC) with carbon dioxide capture is a promising technology to produce electricity from coal at a higher efficiency than with traditional subcritical pulverized coal (PC) power plants. ...

  3. Interaction of iron-copper mixed metal oxide oxygen carriers with simulated synthesis gas derived from steam gasification of coal

    SciTech Connect (OSTI)

    Siriwardane, Ranjani V. [U.S. DOE; Ksepko, Ewelina; Tian, Hanging [URS

    2013-01-01T23:59:59.000Z

    The objective of this work was to prepare supported bimetallic Fe–Cu oxygen carriers and to evaluate their performance for the chemical-looping combustion (CLC) process with simulated synthesis gas derived from steam gasification of coal/air. Ten-cycle CLC tests were conducted with Fe–Cu oxygen carriers in an atmospheric thermogravimetric analyzer utilizing simulated synthesis gas derived from the steam gasification of Polish Janina coal and Illinois #6 coal as fuel. The effect of temperature on reaction rates, chemical stability, and oxygen transport capacity were determined. Fractional reduction, fractional oxidation, and global rates of reactions were calculated from the thermogravimetric analysis (TGA) data. The supports greatly affected reaction performance. Data showed that reaction rates and oxygen capacities were stable during the 10-cycle TGA tests for most Fe–Cu/support oxygen carriers. Bimetallic Fe–Cu/support oxygen carriers showed higher reduction rates than Fe-support oxygen carriers. The carriers containing higher Cu content showed better stabilities and better reduction rates. An increase in temperature from 800 °C to 900 °C did not have a significant effect on either the oxygen capacity or the reduction rates with synthesis gas derived from Janina coal. Oxidation reaction was significantly faster than reduction reaction for all supported Fe–Cu oxygen carriers. Carriers with higher Cu content had lower oxidation rates. Ten-cycle TGA data indicated that these oxygen carriers had stable performances at 800–900 °C and might be successfully used up to 900 °C for coal CLC reaction in the presence of steam.

  4. Conceptual design report -- Gasification Product Improvement Facility (GPIF)

    SciTech Connect (OSTI)

    Sadowski, R.S.; Skinner, W.H.; House, L.S.; Duck, R.R. [CRS Sirrine Engineers, Inc., Greenville, SC (United States); Lisauskas, R.A.; Dixit, V.J. [Riley Stoker Corp., Worcester, MA (United States); Morgan, M.E.; Johnson, S.A. [PSI Technology Co., Andover, MA (United States). PowerServe Div.; Boni, A.A. [PSI-Environmental Instruments Corp., Andover, MA (United States)

    1994-09-01T23:59:59.000Z

    The problems heretofore with coal gasification and IGCC concepts have been their high cost and historical poor performance of fixed-bed gasifiers, particularly on caking coals. The Gasification Product Improvement Facility (GPIF) project is being developed to solve these problems through the development of a novel coal gasification invention which incorporates pyrolysis (carbonization) with gasification (fixed-bed). It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration caused in the conventional process of gradually heating coal through the 400 F to 900 F range. In so doing, the coal is rapidly heated sufficiently such that the coal tar exists in gaseous form rather than as a liquid. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can become chemically bound to aluminosilicates in (or added to) the ash. To reduce NH{sub 3} and HCN from fuel born nitrogen, steam injection is minimized, and residual nitrogen compounds are partially chemically reduced in the cracking stage in the upper gasifier region. Assuming testing confirms successful deployment of all these integrated processes, future IGCC applications will be much simplified, require significantly less mechanical components, and will likely achieve the $1,000/kWe commercialized system cost goal of the GPIF project. This report describes the process and its operation, design of the plant and equipment, site requirements, and the cost and schedule. 23 refs., 45 figs., 23 tabs.

  5. Use of the finite element method to predict roof collapse and subsidence resulting from the underground gasification of coal

    SciTech Connect (OSTI)

    Jegbefume, E.U.

    1981-01-01T23:59:59.000Z

    The plane strain two-dimensional finite element model employing the method of negative reaction loading was used to model roof collapse and subsidence that result from underground coal gasification. Subsidence results from a preliminary finite element model were compared with those from a theoretical model having identical assumptions. The finite element model was extended to include dry zones of rock around the cavity resulting from the underground gasification. The model was further extended to include thermal loading, thermal softening and roof collapse. Roof collapse initiation and growth were modelled by examining the portion of the roof immediately above the cavity. A creep program utilizing the method incremental strains was developed and run in conjunction with the Pafec 70 + program. The overburden rock was treated as a linear viscoelastic material having deformation parameters of the generalized Kelvin model. Finally, the finite element model was used to carry out a case history study of subsidence and roof collapse of an underground gasification field experiment in Wyoming.

  6. Underground coal gasification: Development of theory, laboratory experimentation, interpretation, and correlation with the Hanna field tests: Final report

    SciTech Connect (OSTI)

    Gunn, R.D.; Krantz, W.B.

    1987-03-01T23:59:59.000Z

    The following report is a description of a 7 year effort to develop a theoretical understanding of the underground coal gasification process. The approach used is one of the mathematical model development from known chemical and principles, simplification of the models to isolate important effects, and through validation of models to isolate important effects, and through validation of models with laboratory experiments and field test data. Chapter I contains only introductory material. Chapter II describes the development of two models for reverse combustion: a combustion model and a linearized model for combustion front instability. Both models are required for realistic field predictions. Chapter III contains a discussion of a successful forward gasification model. Chapter IV discusses the spalling-enhanced-drying model is applicable to prediction of cavity growth and subsidence. Chapter VI decribes the correct use of energy and material balances for the analysis of UCG field test data. Chapter VII shows how laboratory experiments were used to validate the models for reverse combustion and forward gasification. It is also shown that laboratory combustion tube experiments can be used to simulate gas compositions expected from field tests. Finally, Chapter VII presents results from a comprehensive economic analysis of UCG involving 1296 separate cases. 37 refs., 49 figs., 12 tabs.

  7. Surface detection of retort gases from an underground coal gasification reactor in steeply dipping beds near Rawlins, Wyoming

    SciTech Connect (OSTI)

    Jones, V.T.; Thune, H.W.

    1982-01-01T23:59:59.000Z

    A near-surface soil-gas geochemical survey was executed at the North Knobs, Wyoming, GR and DC-DOE underground coal gasification (UCG) facility in 1981. The soil-gas detection method offers a new technique for locating potential gas leakage areas before any significant migration avenues can develop. The survey demonstrates that residual gases from the phase 1 burn are still present in the near surface, and product gases generated during the phase II burn clearly were evident. Casing leakage explains most anomalies located in the rock sequence stratigraphically below the coal. It is concluded that a properly designed and operated UCG facility would not experience adverse product gas leakage and would pose no hazard.

  8. Hydrometallurgical recovery of germanium from coal gasification fly ash: pilot plant scale evaluation

    SciTech Connect (OSTI)

    Arroyo, F.; Fernandez-Pereira, C.; Olivares, J.; Coca, P. [University of Seville, Seville (Spain)

    2009-04-15T23:59:59.000Z

    In this article, a hydrometallurgical method for the selective recovery of germanium from fly ash (FA) has been tested at pilot plant scale. The pilot plant flowsheet comprised a first stage of water leaching of FA, and a subsequent selective recovery of the germanium from the leachate by solvent extraction method. The solvent extraction method was based on Ge complexation with catechol in an aqueous solution followed by the extraction of the Ge-catechol complex (Ge(C{sub 6}H{sub 4}O{sub 2}){sub 3}{sup 2-}) with an extracting organic reagent (trioctylamine) diluted in an organic solvent (kerosene), followed by the subsequent stripping of the organic extract. The process has been tested on a FA generated in an integrated gasification with combined cycle (IGCC) process. The paper describes the designed 5 kg/h pilot plant and the tests performed on it. Under the operational conditions tested, approximately 50% of germanium could be recovered from FA after a water extraction at room temperature. Regarding the solvent extraction method, the best operational conditions for obtaining a concentrated germanium-bearing solution practically free of impurities were as follows: extraction time equal to 20 min; aqueous phase/organic phase volumetric ratio equal to 5; stripping with 1 M NaOH, stripping time equal to 30 min, and stripping phase/organic phase volumetric ratio equal to 5. 95% of germanium were recovered from water leachates using those conditions.

  9. Hanna, Wyoming underground coal gasification data base. Volume 6. Hanna IVA and IVB field test research report

    SciTech Connect (OSTI)

    Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

    1985-08-01T23:59:59.000Z

    This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. The reports in this series include: The Hanna IV test was designed as the first underground coal gasification test using commercial well spacings of 100 and 150 feet between well pairs in a linear 3-well pattern. The test was initiated in late 1977 and completed in late 1979. This long duration was due to unfavorable geologic conditions (faulting) which could not be successfully overcome resulting in the test being split into Hanna IVA and Hanna IVB with about one year between the conduct of each. This report covers: (1) specific site selection and characteristics; (2) test objectives; (3) facility description; (4) pre-operation tests; (5) test operations summary; and (6) post-test activity. 5 refs., 19 figs., 13 tabs.

  10. Study of the treatability of wastewater from a coal-gasification plant. Final report, July 15, 1978-July 14, 1980

    SciTech Connect (OSTI)

    Iglar, A. F.

    1980-01-01T23:59:59.000Z

    This study focused on the coal gasification facility serving the Holston Army Ammunition Plant in Kingsport, Tennessee. Objectives were to characterize the wastewater produced by the gasification facility, and to evaluate technology for treating the waste in preparation for dischage to the environment. Most wastewater was recycled for scrubbing and cooling the product gas, with the excess requiring disposal found to be an average of only 1170 gallons per day (53 gallons per ton of coal, as received, and 366 gallons per million cubic feet of product gas). Analysis indicated that the waste was warm, high in alkaline material, especially ammonia, high in organic material, especially phenols, and also contaminated with other substances. Sulfides and thiocyanates were especially high in concentration. It was found that pretreatment could be accomplished by stripping (air injection) at high pH, removal of grease and oil (by pH suppression and light aeration) and neutralizatin. Equations were developed to describe the first two steps. Biological treatment through activated sludge was found to be successful, but effected only a moderate degree of treatment, and was troubled with frequent process upset. Attempts to improve treatment efficiency and stability are described. The data indicated the need to study aerated waste stabilization ponds as an alternative to activated sludge. Biological reaction kinetics were studied for activated sludge. Evaluation of the application of granular activated carbon suggested that this could be an effective practical tertiary treatment.

  11. THE EFFECT OF COAL CHAR ON THE CORROSION OF 304 SS

    E-Print Network [OSTI]

    Foerster, Thomas Friedrich Wilhelm

    2011-01-01T23:59:59.000Z

    of Materials for Coal Gasification Applications". of Highcommercially proven coal gasification processes exist. Theseprocesses. more efficient gasification Much of this work is

  12. Gasification system

    DOE Patents [OSTI]

    Haldipur, Gaurang B. (Hempfield, PA); Anderson, Richard G. (Penn Hills, PA); Cherish, Peter (Bethel Park, PA)

    1983-01-01T23:59:59.000Z

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  13. Gasification system

    DOE Patents [OSTI]

    Haldipur, Gaurang B. (Hempfield, PA); Anderson, Richard G. (Penn Hills, PA); Cherish, Peter (Bethel Park, PA)

    1985-01-01T23:59:59.000Z

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  14. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    ACWH consists of a 3,000 MW coal gasification combined cycleconsists of a 3,000 MW coal gasification, combined cycleless expensive in a coal gasification, combined cycle power

  15. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01T23:59:59.000Z

    of coal sulfur K-T gasification process SRC I process U. S.flow sheet of a K-T coal gasification complex for producingProduction via K-T Gasification" © CEP Aug. 78. Feed

  16. An Integrated Assessment of the Impacts of Hydrogen Economy on Transportation, Energy Use, and Air Emissions

    E-Print Network [OSTI]

    Yeh, Sonia; Loughlin, Daniel H.; Shay, Carol; Gage, Cynthia

    2007-01-01T23:59:59.000Z

    Annual Energy Outlook coal gasification compressed naturalof natural gas, coal gasification was the preferred methodcompared to SMR and coal gasification. Production costs can

  17. Fixed Bed Countercurrent Low Temperature Gasification of Dairy Biomass and Coal-Dairy Biomass Blends Using Air-Steam as Oxidizer

    E-Print Network [OSTI]

    Gordillo Ariza, Gerardo

    2010-10-12T23:59:59.000Z

    W) countercurrent fixed bed gasifier was rebuilt to perform gasification studies under quasisteady state conditions using dairy biomass (DB) as feedstock and various air-steam mixtures as oxidizing sources. A DB-ash (from DB) blend and a DB-Wyoming coal blend were...

  18. Ground-water hydrologic effects resulting from underground coal gasification experiments at the Hoe Creek Site near Gillette, Wyoming. Interim report, October 1979-March 1980

    SciTech Connect (OSTI)

    Raber, E.; Stone, R.

    1980-05-01T23:59:59.000Z

    This technical note summarizes our activities, to date, on the research project: Ground-Water Hydrologic Effects Resulting from Underground Coal Gasification Experiments (EPA-IAG-79-D-X0795). The gasified coal seam (Felix No. 2 coal) and two overlying aquifers (Felix No. 1 coal and overlying sand) appear to have become interconnected as a result of roof collapse and subsidence at both Hoe Creek Sites II and III near Gillette, Wyoming. To evaluate changes in the ground-water flow regime at the two sites, completion of supplementary wells was necessary to define the distance versus head drawdown relationships in each of the three aquifers. Hydraulic head potentials have been measured at Site III since gasification ended on October 10, 1979. These data are presented in graphic format. Although hydraulic head measurements at Site II seemed to be approaching a steady-state condition 1.5 years after gasification, the subsequent gasification at Site III temporarily altered the ground-water flow patterns. These changes will have a definite effect on contaminant dispersal and will need to be taken into consideration.

  19. Sustainable development with clean coal

    SciTech Connect (OSTI)

    NONE

    1997-08-01T23:59:59.000Z

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  20. Fixed bed gasification studies on coal-feedlot biomass and coal-chicken litter biomass under batch mode operation 

    E-Print Network [OSTI]

    Priyadarsan, Soyuz

    2002-01-01T23:59:59.000Z

    of the processes for energy conversion of biomass fuels is thermochemical gasification. For the current study, a laboratory scale, 10 kW[th], fixed-bed gasifier (reactor internal diameter 0.15 m, reactor height 0.30 m) facility was built at the Texas A...

  1. Fixed bed gasification studies on coal-feedlot biomass and coal-chicken litter biomass under batch mode operation

    E-Print Network [OSTI]

    Priyadarsan, Soyuz

    2002-01-01T23:59:59.000Z

    of the processes for energy conversion of biomass fuels is thermochemical gasification. For the current study, a laboratory scale, 10 kW[th], fixed-bed gasifier (reactor internal diameter 0.15 m, reactor height 0.30 m) facility was built at the Texas A...

  2. Assessment of underground coal gasification in bituminous coals: catalog of bituminous coals and site selection. Appendix A. National coal resource data system: Ecoal, Wcoal, and Bmalyt. Final report, Phase I. [Bituminous coal; by state; coal seam depth and thickness; identification

    SciTech Connect (OSTI)

    None

    1982-01-31T23:59:59.000Z

    Appendix A is a catalog of the bituminous coal in 29 states of the contiguous United States which contain identified bituminous coal resources.

  3. GASIFICATION FOR DISTRIBUTED GENERATION

    SciTech Connect (OSTI)

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01T23:59:59.000Z

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

  4. Technical and economic assessment of the IGT peat-gasification process. Engineering support services for the DOE/GRI Coal Gasification Research Program

    SciTech Connect (OSTI)

    Bostwick, L.E.; Hubbard, D.A.; Laramore, R.W.; Senules, E.A.; Shah, K.V.

    1981-04-01T23:59:59.000Z

    Kellogg has completed a moderately detailed design and cost estimate of a 250 billion Btu/Day grass-roots SNG plant using the Peatgas process. Results indicate that the cost of SNG would be $4.40/MM Btu, using a cost of $1.50/MM Btu for peat feedstock at 50% moisture. The SNG cost is reasonably competitive with that currently estimated for SNG from coal, and Kellogg would anticipate that capital cost reductions, via design optimization, could reduce the NSG cost to a level which is quite competitive. The cost of peat feedstock is a critical area of concern in evaluating economics of the Peatgas process. The value chosen for the base-case economics ($1.50/MM Btu) is in the higher portion of the price range considered typical by most investigators; the price of $1.50/MM Btu was chosen arbitrarily to represent a 50% increase over the cost of coal ($1.00/MM Btu) used by Kellogg in parallel studies, to reflect higher costs for land use and reclamation and for harvesting and dewatering of peat. In a study concurrent with that reported here, Kellogg found that one method of wet harvesting and mechanical/thermal dewatering yields a peat (50% moisture) cost which is unfavorably high and was therefore rejected for use as a base-case cost since much cheaper feedstock is apparently available by other harvesting/dewatering methods. The base-case cost of SNG is moderate somewhat by the values placed on the benzene and oil coproducts (i.e., $1.10 and $0.75 per gallon, respectively). The total of such credits amounts to about 39% of the gross operating cost; a reduction in value of the coproducts would adversely affect the cost of SNG. Certain technical factors are discussed: materials handling problems, high reactivity, low sulfur content, and limited gasification data.

  5. Transient studies of an Integrated Gasification Combined Cycle (IGCC) plant with CO2 capture

    SciTech Connect (OSTI)

    Bhattacharyya, D.; Turton, R.; Zitney, S.

    2010-01-01T23:59:59.000Z

    Next-generation coal-fired power plants need to consider the option for CO2 capture as stringent governmental mandates are expected to be issued in near future. Integrated gasification combined cycle (IGCC) plants are more efficient than the conventional coal combustion processes when the option for CO2 capture is considered. However, no IGCC plant with CO2 capture currently exists in the world. Therefore, it is important to consider the operability and controllability issues of such a plant before it is commercially built. To facilitate this objective, a detailed plant-wide dynamic simulation of an IGCC plant with 90% CO2 capture has been developed in Aspen Plus Dynamics{reg_sign}. The plant considers a General Electric Energy (GEE)-type downflow radiant-only gasifier followed by a quench section. A two-stage water gas shift (WGS) reaction is considered for conversion of CO to CO2. A two-stage acid gas removal (AGR) process based on a physical solvent is simulated for selective capture of H2S and CO2. Compression of the captured CO2 for sequestration, an oxy-Claus process for removal of H2S and NH3, black water treatment, and the sour water treatment are also modeled. The tail gas from the Claus unit is recycled to the SELEXOL unit. The clean syngas from the AGR process is sent to a gas turbine followed by a heat recovery steam generator. This turbine is modeled as per published data in the literature. Diluent N2 is used from the elevated-pressure ASU for reducing the NOx formation. The heat recovery steam generator (HRSG) is modeled by considering generation of high-pressure, intermediate-pressure, and low-pressure steam. All of the vessels, reactors, heat exchangers, and the columns have been sized. The basic IGCC process control structure has been synthesized by standard guidelines and existing practices. The steady state results are validated with data from a commercial gasifier. In the future grid-connected system, the plant should satisfy the environmental targets and quality of the feed to other sections, wherever applicable, without violating the operating constraints, and without sacrificing the efficiency. However, it was found that the emission of acid gases may far exceed the environmental targets and the overshoot of some of the key variables may be unacceptable under transient operation while following the load. A number of operational strategies and control configurations is explored for achieving these stringent requirements. The transient response of the plant is also studied by perturbing a number of key inputs.

  6. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Gary Harmond; Albert Tsang

    2003-03-14T23:59:59.000Z

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the U.S. Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. During the reporting period, various methods to remove low-level contaminants for the synthesis gas were reviewed. In addition, there was a transition of the project personnel for GEC which has slowed the production of the outstanding project reports.

  7. Testing Kentucky Coal to Set Design Criteria for a Lurgi Gasification Plant 

    E-Print Network [OSTI]

    Roeger, A., III; Jones, J. E., Jr.

    1983-01-01T23:59:59.000Z

    Tri-State Synfuels Company, in cooperation with the Commonwealth of Kentucky, undertook a comprehensive coal testing program to support the development of an indirect coal liquefaction project. One of the major elements of the program was a...

  8. EA-1642-S1: Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis, Lexington, KY

    Broader source: Energy.gov [DOE]

    This draft Supplemental Environmental Assessment (SEA) analyzes the potential environmental impacts of DOE’s proposed action of providing cost-shared funding for the University of Kentucky (UK) Center for Applied Energy Research (CAER) Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis project and of the No-Action Alternative.

  9. The O{sub 2}-enriched air gasification of coal, plastics and wood in a fluidized bed reactor

    SciTech Connect (OSTI)

    Mastellone, Maria Laura, E-mail: mlaura.mastellone@unina2.it [Department of Environmental Sciences-Second University of Naples, Via Vivaldi, 43 81100 Caserta (Italy); Zaccariello, Lucio; Santoro, Donato; Arena, Umberto [Department of Environmental Sciences-Second University of Naples, Via Vivaldi, 43 81100 Caserta (Italy)

    2012-04-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer The effect of the O{sub 2} in the gasification stream of a BFB gasifier has been studied. Black-Right-Pointing-Pointer Main advantage of the O{sub 2}-enriched air is the increasing of the bed temperature. Black-Right-Pointing-Pointer No remarkable effects on tar reduction. Decreasing of recognized PAHs. Black-Right-Pointing-Pointer Gasification reactions completed inside the dense bed and splashing zone. Black-Right-Pointing-Pointer Polycondensation reactions occur mainly in the freeboard region. - Abstract: The effect of oxygen-enriched air during fluidized bed co-gasification of a mixture of coal, plastics and wood has been investigated. The main components of the obtained syngas were measured by means of on-line analyzers and a gas chromatograph while those of the condensate phase were off-line analysed by means of a gas chromatography-mass spectrometer (GC-MS). The characterization of condensate phase as well as that of the water used as scrubbing medium completed the performed diagnostics. The experimental results were further elaborated in order to provide material and substances flow analyses inside the plant boundaries. These analyses allowed to obtain the main substance distribution between solid, gaseous and condensate phases and to estimate the conversion efficiency of carbon and hydrogen but also to easily visualise the waste streams produced by the process. The process performance was then evaluated on the basis of parameters related to the conversion efficiency of fuels into valuable products (i.e. by considering tar and particulate as process losses) as well as those related to the energy recovery.

  10. Materials testing at the Hanna-IV and Hoe Creek-III in situ coal-gasification sites

    SciTech Connect (OSTI)

    Loop, R.B.; LaRue, D.M.

    1981-03-01T23:59:59.000Z

    Candidate structural alloys were exposed to the direct product gas stream during three different in situ coal gasification experiments at two sites. Physical appearance and chemical analysis indicate that the coating on the specimens following exposure is typical of condensed hydrocarbons, coal char, coal ash, and mineral particles from the overburden. Deposits on specimens from one test had a fairly high concentration of sulfur (about 8 w/o) while the others had very low sulfur concentrations (0.313 w/o and 0.014 w/o, respectively). Energy-dispersive x-ray spectra indicate that corrosion occurred principally by oxidation, with some sulfidation. Mean penetration rates expressed in millimetres/year were calculated from weight loss data. No material evaluated showed a truly unacceptable degradation. There was no consistent difference in the amount of material removed from specimens with or without welds. Specimens from one test experienced no consistent difference in material removal between different exposure angles; a consistent difference in material loss and dents from particle impact indicated that erosion may have occurred in the other two tests. There was no indication of carburization, decarburization, or severe localized attack in the form of pitting or intergranular corrosion on any of the specimens examined. Results obtained for the flame-sprayed 316 SS specimens and one of the Alonized specimens indicated that use of these processes may be questionable in this environment.

  11. Rapid gasification of nascent char in steam atmosphere during the pyrolysis of Na- and Ca-ion-exchanged brown coals in a drop-tube reactor

    SciTech Connect (OSTI)

    Ondej Maek; Sou Hosokai; Koyo Norinaga; Chun-Zhu Li; Jun-ichiro Hayashi [Hokkaido University, Kita-ku (Japan). Center for Advanced Research of Energy Conversion Materials

    2009-09-15T23:59:59.000Z

    Several recent studies on in situ steam gasification of coal suggest a possibility of extremely fast steam gasification of char from rapid pyrolysis of pulverized brown coal. The unprecedented rate of char steam gasification can be achieved by exposing nascent char, that is, after tar evolution (temperature range >600{sup o}C), but before devolatilization (<900{sup o}C), to steam in the presence of Na and/or Ca dispersed in/on the char. In this study, we conducted rapid pyrolysis experiments using ion-exchanged Loy Yang brown coal samples, that is, H-form coal with Na/Ca contents <0.001 wt %, Na-form coal with Na content = 2.8 wt % and Ca-form coal with Ca content = 3.2 wt %. These samples were pyrolyzed in an atmospheric drop-tube reactor at a temperature of 900{sup o}C, inlet steam concentration of 50 vol. %, and a particle residence times of 2.8 s. The char yields from the pyrolysis of Na-form and Ca-form coals were as low as 12 and 33% on the respective coal carbon bases, and accounted for only 18 and 53% of the char yields from the full devolatilization of the respective coals at 900{sup o}C. In addition, the pyrolysis also consumed as much as 0.7-1.1 mol of H{sub 2}O per mol of coal C. On the other hand, the nascent char from the H-form coal allowed carbon deposition from the nascent tar, resulting in a char yield as high as 115% of that from the full devolatilization. The chars from the Na-form and Ca-form coals also acted as catalysts for steam reforming of tar, which was evidenced by significant negative synergistic effects of blending of H-form coal with Na-form coal or Ca-form coal on the tar and soot yields. 57 refs., 6 figs.

  12. Hanna, Wyoming underground coal gasification data base. Volume 4. Hanna II, Phases II and III field test research report

    SciTech Connect (OSTI)

    Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

    1985-08-01T23:59:59.000Z

    This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. Hanna II, Phases II and III, were conducted during the winter of 1975 and the summer of 1976. The two phases refer to linking and gasification operations conducted between two adjacent well pairs as shown in Figure 1 with Phase II denoting operations between Wells 5 and 6 and Phase III operations between Wells 7 and 8. All of the other wells shown were instrumentation wells. Wells 7 and 8 were linked in November and December 1975. This report covers: (1) specific site selection and characteristics; (2) test objectives; (3) facilities description; (4) pre-operation tests; (5) test operations summary; and (6) post-test activity. 16 refs., 21 figs., 17 tabs.

  13. Pyrolysis and gasification of coal at high temperatures. Quarterly progress report No. 5, September 15, 1988--December 15, 1988

    SciTech Connect (OSTI)

    Zygourakis, K.

    1988-12-31T23:59:59.000Z

    Coals of different ranks will be pyrolyzed in a microscope hot-stage reactor using inert and reacting atmospheres. The macropore structure of the produced chars will be characterized using video microscopy and digital image processing techniques to obtain pore size distributions. Comparative studies will quantify the effect of pyrolysis conditions (heating rates, final heat treatment temperatures, particle size and inert or reacting atmosphere) on the pore structure of the devolatilized chars. The devolatilized chars will be gasified in the regime of strong intraparticle diffusional limitations using O{sub 2}/N{sub 2} and O{sub 2}/H{sub 2}O/N{sub 2}2 mixtures. Constant temperature and programmed-temperature experiments in a TGA will be used for these studies. Additional gasification experiments performed in the hot-stage reactor will be videotaped and selected images will be analyzed to obtain quantitative data on particle shrinkage and fragmentation. Discrete mathematical models will be developed and validated using the experimental gasification data.

  14. Laboratory studies on evaluation of in situ biodegradation at the Hoe Creek UCG (underground coal gasification) site

    SciTech Connect (OSTI)

    Nolan, B.T.; Suthersan, S.

    1987-09-01T23:59:59.000Z

    Laboratory experiments were conducted to evaluate the potential for in situ biodegradation in the contaminated groundwater aquifer at the Hoe Creek underground coal gasification site. Experiments were performed in electrolytic respirometric cells under simulated environmental conditions. An orthogonal, fractional factorial design was used to evaluate the effects of the following factors on phenol degradation: nutrient dose, amount of bacterial inoculum, temperature, light conditions, and substrate concentration. Microorganisms native to the environment were used as the inoculum, and phosphorus was used as the nutrient. The amount of inoculum introduced and the nutrient dose were found to have a positive effect on phenol degradation. Temperature changes from 15{degree}C (59{degree}F) to 25{degree}C (77{degree}F) had no significant effect. The light conditions (fluorescent or dark) also had no significant effect on phenol degradation. Higher concentrations of substrate required increased amounts of oxygen for biodegradation. 24 refs., 1 fig., 4 tabs.

  15. Review of underground coal-gasification field experiments at Hoe Creek. [Hoe Creek 1, 2, and 3

    SciTech Connect (OSTI)

    Thorsness, C.B.; Creighton, J.R.

    1982-05-26T23:59:59.000Z

    LLNL has conducted three underground coal gasification experiments at the Hoe Creek site near Gillette, Wyoming. Three different linking methods were used: explosive fracture, reverse burning and directional drilling. Air was injected on all three experiments and a steam/oxygen mixture during 2 days of the second and most of the third experiment. Comparison of results show that the linking method didn't influence gas quality. The heat of combustion of the product gas was higher with steam/oxygen injection, mainly because of reduced inert diluent. Gas quality was generally independent of other operating parameters, but declined from its initial value over a period of time. This was due to heat loss to the wet overburden and extensive roof collapse in the second and third experiments.

  16. NOVEL GAS CLEANING/CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE

    SciTech Connect (OSTI)

    Dennis A. Horazak; Richard A. Newby; Eugene E. Smeltzer; Rachid B. Slimane; P. Vann Bush; James L. Aderhold Jr; Bruce G. Bryan

    2005-12-01T23:59:59.000Z

    Development efforts have been underway for decades to replace dry-gas cleaning technology with humid-gas cleaning technology that would maintain the water vapor content in the raw gas by conducting cleaning at sufficiently high temperature to avoid water vapor condensation and would thus significantly simplify the plant and improve its thermal efficiency. Siemens Power Generation, Inc. conducted a program with the Gas Technology Institute (GTI) to develop a Novel Gas Cleaning process that uses a new type of gas-sorbent contactor, the ''filter-reactor''. The Filter-Reactor Novel Gas Cleaning process described and evaluated here is in its early stages of development and this evaluation is classified as conceptual. The commercial evaluations have been coupled with integrated Process Development Unit testing performed at a GTI coal gasifier test facility to demonstrate, at sub-scale the process performance capabilities. The commercial evaluations and Process Development Unit test results are presented in Volumes 1 and 2 of this report, respectively. Two gas cleaning applications with significantly differing gas cleaning requirements were considered in the evaluation: IGCC power generation, and Methanol Synthesis with electric power co-production. For the IGCC power generation application, two sets of gas cleaning requirements were applied, one representing the most stringent ''current'' gas cleaning requirements, and a second set representing possible, very stringent ''future'' gas cleaning requirements. Current gas cleaning requirements were used for Methanol Synthesis in the evaluation because these cleaning requirements represent the most stringent of cleaning requirements and the most challenging for the Filter-Reactor Novel Gas Cleaning process. The scope of the evaluation for each application was: (1) Select the configuration for the Filter-Reactor Novel Gas Cleaning Process, the arrangement of the individual gas cleaning stages, and the probable operating conditions of the gas cleaning stages to conceptually satisfy the gas cleaning requirements; (2) Estimate process material & energy balances for the major plant sections and for each gas cleaning stage; (3) Conceptually size and specify the major gas cleaning process equipment; (4) Determine the resulting overall performance of the application; and (5) Estimate the investment cost and operating cost for each application. Analogous evaluation steps were applied for each application using conventional gas cleaning technology, and comparison was made to extract the potential benefits, issues, and development needs of the Filter-Reactor Novel Gas Cleaning technology. The gas cleaning process and related gas conditioning steps were also required to meet specifications that address plant environmental emissions, the protection of the gas turbine and other Power Island components, and the protection of the methanol synthesis reactor. Detailed material & energy balances for the gas cleaning applications, coupled with preliminary thermodynamic modeling and laboratory testing of candidate sorbents, identified the probable sorbent types that should be used, their needed operating conditions in each stage, and their required levels of performance. The study showed that Filter-Reactor Novel Gas Cleaning technology can be configured to address and conceptually meet all of the gas cleaning requirements for IGCC, and that it can potentially overcome several of the conventional IGCC power plant availability issues, resulting in improved power plant thermal efficiency and cost. For IGCC application, Filter-Reactor Novel Gas Cleaning yields 6% greater generating capacity and 2.3 percentage-points greater efficiency under the Current Standards case, and more than 9% generating capacity increase and 3.6 percentage-points higher efficiency in the Future Standards case. While the conceptual equipment costs are estimated to be only slightly lower for the Filter-Reactor Novel Gas Cleaning processes than for the conventional processes, the improved power plant capacity results in the potentia

  17. Integrated production/use of ultra low-ash coal, premium liquids and clean char. Technical report, March 1, 1992--May 31, 1992

    SciTech Connect (OSTI)

    Kruse, C.W.; Carlson, S.L. [Illinois State Geological Survey, Champaign, IL (United States); Snoeyink, V.L.; Feizoulof, C.; Assanis, D.N.; Syrimis, M. [Illinois Univ., Urbana, IL (United States); Fatemi, S.M. [Amoco Research Center, Naperville, IL (United States)

    1992-10-01T23:59:59.000Z

    The first step in the envisioned integrated, multi-product approach for utilizing Illinois coal is the production of ultra low-ash coal. Subsequent steps would convert low-ash coal to high-value products through mild gasification, char activation, and oxidation reactions. Approximately eight pounds of low-ash coal has been obtained from the crude reactor slurry produced for us at the University of North Dakota Energy and Environmental Research Center (UNDEERC). After treatment to remove the remaining meta-cresol, this material will be subjected to mild gasification. Low-ash mild gasification char will be activated and a catalyst surface will be added by oxidation. A 20% coal: 80% diesel fuel slurry was tested in cylinder two of a two-cylinder, diesel engine after the necessary modifications in the engine`s fuel injection system were made. Four tests indicated that the coal successfully substitutes for diesel fuel in the slurry. The fuel burns in the cylinder, with slightly improved thermal and combustion efficiency. The tests were performed at 1800 rpm and 2200 rpm and 75% load. The change in the surface properties of Calgon F-400 commercial activated carbon caused by several treatments were examined by X-ray Photoelectron Spectroscopy (XPS).

  18. Catalytic combustor for integrated gasification combined cycle power plant

    DOE Patents [OSTI]

    Bachovchin, Dennis M. (Mauldin, SC); Lippert, Thomas E. (Murrysville, PA)

    2008-12-16T23:59:59.000Z

    A gasification power plant 10 includes a compressor 32 producing a compressed air flow 36, an air separation unit 22 producing a nitrogen flow 44, a gasifier 14 producing a primary fuel flow 28 and a secondary fuel source 60 providing a secondary fuel flow 62 The plant also includes a catalytic combustor 12 combining the nitrogen flow and a combustor portion 38 of the compressed air flow to form a diluted air flow 39 and combining at least one of the primary fuel flow and secondary fuel flow and a mixer portion 78 of the diluted air flow to produce a combustible mixture 80. A catalytic element 64 of the combustor 12 separately receives the combustible mixture and a backside cooling portion 84 of the diluted air flow and allows the mixture and the heated flow to produce a hot combustion gas 46 provided to a turbine 48. When fueled with the secondary fuel flow, nitrogen is not combined with the combustor portion.

  19. Results of Phase 1 postburn drilling and coring, Rocky Mountain 1 Underground Coal Gasification Site, Hanna Basin, Wyoming

    SciTech Connect (OSTI)

    Lindblom, S.R.; Covell, J.R.; Oliver, R.L.

    1990-09-01T23:59:59.000Z

    The Rocky Mountain 1 (RM1) Underground Coal Gasification (UCG) test consisted of two different module configurations: the controlled retracting injection point (CRIP) and elongated linked well (ELW) configurations. The postburn coring of the RM1 UCG site was designed in two phases to fulfill seven objectives outlined in the Western Research Institute's (WRI) annual project plan for 1988--1989. The seven objectives were to (1) delineate the areal extent of the cavities, (2) identify the extent of roof collapse, (3) obtain samples of all major cavity rock types, (4) characterize outflow channels and cavity stratigraphy, (5) characterize the area near CRIP points and ignition points, (6) further define the structural geology of the site, and (7) identify the vertical positioning of the horizontal process wells within the coal seam. Phase 1 of the coring was completed in the summer of 1989 and served to partially accomplish all seven objectives. In relation to the seven objectives, WRI determined that (1) the ELW cavity extends farther to the west and the CRIP cavity was located 5--10 feet farther to the south than anticipated; (2) roof collapse was contained within unit A in both modules; (3) samples of all major rock types were recovered; (4) insufficient data were obtained to characterize the outflow channels, but cavity stratigraphy was well defined; (5) bore holes near the CRIP points and ignition point did not exhibit characteristics significantly different from other bore holes in the cavities; (6) a fault zone was detected between VIW=1 and VIW-2 that stepped down to the east; and (7) PW-1 was only 7--12 feet below the top of the coal seam in the eastern part of the ELW module area; and CIW-1 was located 18--20 feet below the top of the coal seam in the CRIP module area. 7 refs., 7 figs., 1 tab.

  20. Instrumentation and process control development for in situ coal gasification. Seventeenth, eighteenth, and nineteenth quarterly reports, December 1978 through August 1979

    SciTech Connect (OSTI)

    Glass, R.E. (ed.)

    1980-02-01T23:59:59.000Z

    The second phase of the Hanna IV In Situ Coal Gasification Test, Hanna IV-B, was initiated on April 20, 1979. The reverse combustion linking process was completed July 13, 1979, and gasification began July 28, 1979. Sandia Laboratories is providing support by fielding and monitoring diagnostic and remote monitoring instrumentation techniques. All techniques are supported by a minicomputer-based, field data acquisition system developed for this application which provides on-site, real-time reduction, analysis and display of the experimental data. Results to date show the development of at least three links, and the progress of the gasification front is being monitored. There have also been developments in hardware for use in the planned Hoe Creek III experiment, notably an inverted thermocouple string with a lateral transmission device. To support all field activities an in-house computing system with complete data base storage capability has been assembled.

  1. A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage

    E-Print Network [OSTI]

    Apps, J.A.

    2006-01-01T23:59:59.000Z

    from combustion and gasification of coal – an equilibriumHolysh, M. 2005. Coke Gasification: Advanced technology forfrom a Coal-Fired Gasification Plant. Final Report, December

  2. Results of Phase 2 postburn drilling, coring, and logging: Rocky Mountain 1 Underground Coal Gasification Test, Hanna, Wyoming

    SciTech Connect (OSTI)

    Oliver, R.L.; Lindblom, S.R.; Covell, J.R.

    1991-02-01T23:59:59.000Z

    The Rocky Mountain 1 (RM1) Underground Coal Gasification (UCG) site consisted of two different module configurations: the controlled retracting injection point (CRIP) and elongated linked well (ELW) configurations. The postburn coring of the RM1 UCG site was designed in two phases to fulfill seven objectives outlined in Western Research Institute's Annual Project Plan for 1989 (Western Research Institute 1989). The seven objectives were to (1) delineate the areal extent of the cavities, (2) identify the extent of roof collapse, (3) obtain samples of all major cavity rock types, (4) characterize outflow channels and cavity stratigraphy, (5) characterize the area near CRIP points and ignition points, (6) further define the structural geology of the site, and (7) identify the vertical positioning of the horizontal process wells within the coal seam. Phase 1 of the coring was completed during the summer of 1989 and served to partially accomplish all seven objectives. A detailed description of Phase 1 results was presented in a separate report (Lindblom et al. 1990). Phase 2, completed during the summer of 1990, was designed to complete the seven objectives; more specifically, to further define the areal extent and location of the cavities, to evaluate the outflow channels for both modules, and to further characterize the structural geology in the ELW module area.

  3. Results of Phase 2 postburn drilling, coring, and logging: Rocky Mountain 1 Underground Coal Gasification Test, Hanna, Wyoming

    SciTech Connect (OSTI)

    Oliver, R.L.; Lindblom, S.R.; Covell, J.R.

    1991-02-01T23:59:59.000Z

    The Rocky Mountain 1 (RM1) Underground Coal Gasification (UCG) site consisted of two different module configurations: the controlled retracting injection point (CRIP) and elongated linked well (ELW) configurations. The postburn coring of the RM1 UCG site was designed in two phases to fulfill seven objectives outlined in Western Research Institute`s Annual Project Plan for 1989 (Western Research Institute 1989). The seven objectives were to (1) delineate the areal extent of the cavities, (2) identify the extent of roof collapse, (3) obtain samples of all major cavity rock types, (4) characterize outflow channels and cavity stratigraphy, (5) characterize the area near CRIP points and ignition points, (6) further define the structural geology of the site, and (7) identify the vertical positioning of the horizontal process wells within the coal seam. Phase 1 of the coring was completed during the summer of 1989 and served to partially accomplish all seven objectives. A detailed description of Phase 1 results was presented in a separate report (Lindblom et al. 1990). Phase 2, completed during the summer of 1990, was designed to complete the seven objectives; more specifically, to further define the areal extent and location of the cavities, to evaluate the outflow channels for both modules, and to further characterize the structural geology in the ELW module area.

  4. Market integration in the international coal industry: A cointegration approach

    SciTech Connect (OSTI)

    Warell, L. [University of Lulea, Lulea (Sweden). Dept. of Business Administration & Social Science

    2006-07-01T23:59:59.000Z

    The purpose of this paper is to test the hypothesis of the existence of a single economic market for the international coal industry, separated for coking and steam coal, and to investigate market integration over time. This has been conducted by applying cointegration and error-correction models on quarterly price series data in Europe and Japan over the time period 1980-2000. Both the coking and the steam coal markets show evidence of global market integration, as demonstrated by the stable long-run cointegrating relationship between the respective price series in different world regions. This supports the hypothesis of a globally integrated market. However, when analyzing market integration over time it is not possible to confirm cointegration in the 1990s for steam coal. Thus, compared to the coking coal market, the steam coal market looks somewhat less global in scope.

  5. coal | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Technologies for Coal Storage and Feed Preparation AlternativesSupplements to Coal - Feedstock Flexibility DOE Supported R&D for CoalBiomass Feed and Gasification...

  6. Gasification: A Cornerstone Technology

    SciTech Connect (OSTI)

    Gary Stiegel

    2008-03-26T23:59:59.000Z

    NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

  7. Gasification: A Cornerstone Technology

    ScienceCinema (OSTI)

    Gary Stiegel

    2010-01-08T23:59:59.000Z

    NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

  8. Highly Selective H2 Separation Zeolite Membranes for Coal Gasification Membrane Reactor Applications

    SciTech Connect (OSTI)

    Mei Hong; Richard D. Noble; John L. Falconer

    2006-09-24T23:59:59.000Z

    Zeolite membranes are thermally, chemically, and mechanically stable. They also have tunable molecular sieving and catalytic ability. These unique properties make zeolite membrane an excellent candidate for use in catalytic membrane reactor applications related to coal conversion and gasification, which need high temperature and high pressure range separation in chemically challenging environment where existing technologies are inefficient or unable to operate. Small pore, good quality, and thin zeolite membranes are needed for highly selective H{sub 2} separation from other light gases (CO{sub 2}, CH{sub 4}, CO). However, zeolite membranes have not been successful for H{sub 2} separation from light gases because the zeolite pores are either too big or the membranes have a large number of defects. The objective of this study is to develop zeolite membranes that are more suitable for H{sub 2} separation. In an effort to tune the size of zeolite pores and/or to decrease the number of defects, medium-pore zeolite B-ZSM-5 (MFI) membranes were synthesized and silylated. Silylation on B-ZSM-5 crystals reduced MFI-zeolite pore volume, but had little effect on CO{sub 2} and CH{sub 4} adsorption. Silylation on B-ZSM-5 membranes increased H{sub 2} selectivity both in single component and in mixtures with CO{sub 2}CO{sub 2}, CH{sub 4}, or N2. Single gas and binary mixtures of H{sub 2}/CO{sub 2} and H{sub 2}/CH{sub 4} were separated through silylated B-ZSM-5 membranes at feed pressures up to 1.7 MPa and temperatures up to 773 K. For one BZSM-5 membrane after silylation, the H2/CO{sub 2} separation selectivity at 473 K increased from 1.4 to 37, whereas the H{sub 2}/CH{sub 4} separation selectivity increased from 1.6 to 33. Hydrogen permeance through a silylated B-ZSM-5 membrane was activated, but the CO{sub 2} and CH4 permeances decreased slightly with temperature in both single gas and in mixtures. Therefore, the H{sub 2} permeance and H{sub 2}/CO{sub 2} and H{sup 2} /CH{sub 4} separation selectivities increased with temperature. At 673 K, the H2 permeance was 1.0x10-7 molxm-2xs-1xPa-1, and the H{sub 2}/CO{sub 2} separation selectivity was 47. Above 673 K, the silylated membrane catalyzed reverse water gas shift reaction and still separated H{sub 2} with high selectivity; and it was thermally stable. However, silylation decreased H{sub 2} permeance more than one order of magnitude. The H{sub 2} separation performance of the silylated B-ZSM-5 membranes depended on the initial membrane quality and acidity, as well as the silane precursors. Increasing the membrane feed pressure also increased the H{sub 2} flux and the H{sub 2} mole fraction in the permeate stream for both mixtures. Another approach used in this study is optimizing the synthesis of small-pore SAPO-34 (CHA) membranes and/or modifying SAPO-34 membranes by silylation or ion exchange. For SAPO-34 membranes, strong CO{sub 2} adsorption inhibited H{sub 2} adsorption and decreased H2 permeances, especially at low temperatures. At 253 K, CO{sub 2}/H{sub 2} separation selectivities of a SAPO-34 membrane were greater than 100 with CO{sub 2} permeances of about 3 x 10-8 mol m-2 s-1 Pa-1. The high reverse-selectivity of the SAPO-34 membranes can minimize H{sub 2} recompression because H{sub 2} remained in the retentate stream at a higher pressure. The CO{sub 2}/H{sub 2} separation selectivity exhibited a maximum with CO{sub 2} feed concentration possibly caused by a maximum in the CO{sub 2}/H{sub 2} sorption selectivity with increased CO{sub 2} partial pressure. The SAPO-34 membrane separated H{sub 2} from CH{sub 4} because CH{sub 4} is close to the SAPO-34 pore size so its diffusivity is much lower than the H{sup 2} diffusivity. The H{sub 2}/CH{sub 4} separation selectivity was almost independent of temperature, pressure, and feed composition. Silylation on SAPO-34 membranes increased H{sup 2}/CH{sub 4} and CO{sub 2}/CH{sub 4} selectivities but did not increase H{sub 2}/CO{sub 2} and H{sub 2}/N{sub 2} selectivities because silylation only blocked defects in SAPO-34 membranes. Hydr

  9. Highly Selective H2 Separation Zeolite Membranes for Coal Gasification Membrane Reactor Applications

    SciTech Connect (OSTI)

    Mei Hong; Richard Noble; John Falconer

    2007-09-24T23:59:59.000Z

    Zeolite membranes are thermally, chemically, and mechanically stable. They also have tunable molecular sieving and catalytic ability. These unique properties make zeolite membrane an excellent candidate for use in catalytic membrane reactor applications related to coal conversion and gasification, which need high temperature and high pressure range separation in chemically challenging environment where existing technologies are inefficient or unable to operate. Small pore, good quality, and thin zeolite membranes are needed for highly selective H2 separation from other light gases (CO2, CH4, CO). However, current zeolite membranes have either too big zeolite pores or a large number of defects and have not been successful for H2 separation from light gases. The objective of this study is to develop zeolite membranes that are more suitable for H2 separation. In an effort to tune the size of zeolite pores and/or to decrease the number of defects, medium-pore zeolite B-ZSM-5 (MFI) membranes were synthesized and silylated. Silylation on B-ZSM-5 crystals reduced MFI-zeolite pore volume, but had little effect on CO2 and CH4 adsorption. Silylation on B-ZSM-5 membranes increased H2 selectivity both in single component and in mixtures with CO2, CH4, or N2. Single gas and binary mixtures of H2/CO2 and H2/CH4 were permeated through silylated B-ZSM-5 membranes at feed pressures up to 1.7 MPa and temperatures up to 773 K. For one B-ZSM-5 membrane after silylation, the H2/CO2 separation selectivity at 473 K increased from 1.4 to 37, whereas the H2/CH4 separation selectivity increased from 1.6 to 33. Hydrogen permeance through a silylated BZSM-5 membrane was activated with activation energy of {approx}10 kJ/mol, but the CO2 and CH4 permeances decreased slightly with temperature in both single gas and in mixtures. Therefore, the H2 permeance and H2/CO2 and H2/CH4 separation selectivities increased with temperature. At 673 K, the H2 permeance was 1.0x10-7 mol{center_dot}m-2{center_dot}s-1{center_dot}Pa-1, and the H2/CO2 separation selectivity was 47. Above 673 K, the silylated membrane catalyzed reverse water gas shift reaction and still separated H2 with high selectivity; and it was thermally stable. However, silylation decreased H2 permeance more than one order of magnitude. Increasing the membrane feed pressure increased the H2 flux and the H2 mole fraction in the permeate stream for both H2/CO2 and H2/CH4 mixtures. The H2 separation performance of the silylated B-ZSM-5 membranes depended on the initial membrane quality and acidity, as well as the silane precursors. Another approach used in this study is optimizing the synthesis of small-pore SAPO-34 (CHA) membranes and/or modifying SAPO-34 membranes by silylation or ion exchange. For SAPO-34 membranes, strong CO2 adsorption inhibited H2 adsorption and decreased H2 permeances, especially at low temperatures. At 253 K, CO2/H2 separation selectivities of a SAPO-34 membrane were greater than 100 with CO2 permeances of about 3 x 10-8 mol{center_dot}m-2{center_dot}s-1{center_dot}Pa-1. The high reverse-selectivity of the SAPO-34 membranes can minimize H2 recompression because H2 remained in the retentate stream at a higher pressure. The CO2/H2 separation selectivity exhibited a maximum with CO2 feed concentration possibly caused by a maximum in the CO2/H2 sorption selectivity with increased CO2 partial pressure. The SAPO-34 membrane separated H2 from CH4 because CH4 is close to the SAPO-34 pore size so its diffusivity (ABSTRACT TRUNCATED)

  10. Development of high energy density fuels from mild gasification of coal. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-12-01T23:59:59.000Z

    METC has concluded that MCG technology has the potential to simultaneously satisfy the transportation and power generation fuel needs in the most cost-effective manner. MCG is based on low temperature pyrolysis, a technique known to the coal community for over a century. Most past pyrolysis developments were aimed at maximizing the liquids yield which results in a low quality tarry product requiring significant and capital intensive upgrading. By properly tailoring the pyrolysis severity to control the liquid yield-liquid quality relationship, it has been found that a higher quality distillate-boiling liquid can be readily ``skimmed`` from the coal. The resultant liquids have a much higher H/C ratio than conventional pyrolytic tars and therefore can be hydroprocessed at lower cost. These liquids are also extremely enriched in l-, 2-, and 3-ring aromatics. The co-product char material can be used in place of coal as a pulverized fuel (pf) for power generation in a coal combustor. In this situation where the original coal has a high sulfur content, the MCG process can be practiced with a coal-lime mixture and the calcium values retained on the char can tie up the unconverted coal sulfur upon pf combustion of the char. Lime has also been shown to improve the yield and quality of the MCG liquids.

  11. Development of high energy density fuels from mild gasification of coal

    SciTech Connect (OSTI)

    Greene, Marvin

    1991-12-01T23:59:59.000Z

    METC has concluded that MCG technology has the potential to simultaneously satisfy the transportation and power generation fuel needs in the most cost-effective manner. MCG is based on low temperature pyrolysis, a technique known to the coal community for over a century. Most past pyrolysis developments were aimed at maximizing the liquids yield which results in a low quality tarry product requiring significant and capital intensive upgrading. By properly tailoring the pyrolysis severity to control the liquid yield-liquid quality relationship, it has been found that a higher quality distillate-boiling liquid can be readily skimmed'' from the coal. The resultant liquids have a much higher H/C ratio than conventional pyrolytic tars and therefore can be hydroprocessed at lower cost. These liquids are also extremely enriched in l-, 2-, and 3-ring aromatics. The co-product char material can be used in place of coal as a pulverized fuel (pf) for power generation in a coal combustor. In this situation where the original coal has a high sulfur content, the MCG process can be practiced with a coal-lime mixture and the calcium values retained on the char can tie up the unconverted coal sulfur upon pf combustion of the char. Lime has also been shown to improve the yield and quality of the MCG liquids.

  12. The particulate and vapor phase components of airborne polyaromatic hydrocarbons (PAHs) in coal gasification pilot plants

    E-Print Network [OSTI]

    Brink, Eric Jon

    1980-01-01T23:59:59.000Z

    sources. Technologies with some promise of fulfilling this need include solar power, laser fusion, nuclear fission, nuclear fusion, geothermal power, wind power, wave power, hydr oelectric power, oil shale, tar sands, and coal conversion. Although...

  13. Fossil fuel gasification technical evaluation services. Final report 1978-83

    SciTech Connect (OSTI)

    Johnson, C.D.

    1983-05-01T23:59:59.000Z

    Technical evaluations performed prior to 1981 were published as a separate document, Topical Reports 1978-1980, by C F Braun and Co, November 1982, Report No. GRI-80/0168. These evaluations include the Cities Service-Rockwell, Exxon Catalytic, Mountain Fuels, Slagging Lurgi, U-Gas, and Westinghouse processes for coal gasification, the Peatgas process for peat gasification, the GE Membrane process for acid gas removal, and an integrated test facility for use in the development of gasification processes. Evaluations performed in the 1981 to 1983 period are included in the present document, the Final Report. These evaluations include the Westinghouse process for coal gasification, the Engelhard, Stone and Webster and Texaco processes for gasification of coal derived liquids, the Catalysis Research Corporation (CRC) process for direct methanation of raw gas streams, and the CNG Research Company process for removal of acid gases from coal gasification process streams. Other recent investigations include the evaluation of materials of construction, fundamental design data, and heat recovery technology for coal gasification processes.

  14. Mutagenic and toxic activity of environmental effluents from underground coal gasification experiments

    SciTech Connect (OSTI)

    Timourian, H.; Felton, J.S.; Stuermer, D.H.

    1982-01-01T23:59:59.000Z

    Using bacterial bioassays, researchers have screened for the presence of mutagens and toxins in extracts from groundwater, and in tar from product gas, at the sites of two Lawrence Livermore National Laboratory (LLNL) in situ experiments: Hoe Creek II and Hoe Creek III. The sites exhibited different potential biological hazards, suggesting that different gasification processes may represent different human health concerns. Researchers found that mutagens are present in groundwater, persist for at least 2 yr after gasification has been terminated, and show a change in activity with time - possibly in parallel with changes in chemical composition. Preliminary evidence suggests that the mutagens in groundwater are quinoline and aniline derivatives, while the toxins in groundwater may be phenolic compounds. In tar from the product gas, the organic bases and neutrals were found to be genotoxic in both bacterial and mammalian cells; the neutral compounds appear to be the major mutagenic health hazards. Neutral compounds constitute most of the tar (85 to 97 wt %) and were mutagenic in both the bacterial and mammalian cell assays. Tar in the gas stream may be a problem for the aboveground environment if gas escapes through fractures in the overburden. Because it is mutagenic and induces chromosomal damage to mammalian cells, the tar may represent a disposal problem as well. However, it is difficult to assess tar quantitatively as a health hazard because its mutagenic activity is low, possibly due to contaminants in the neutral fraction that act to suppress mutagenicity.

  15. Mutagenic and toxic activity of environmental effluents from underground coal gasification experiments

    SciTech Connect (OSTI)

    Timourian, H.; Felton, J.S.; Stuermer, D.H.; Healy, S.; Berry, P.; Tompkins, M.; Battaglia, G.; Hatch, F.T.; Thompson, L.H.; Carrano, A.V.

    1982-05-01T23:59:59.000Z

    Using bacterial bioassays, the authors screened for the presence of mutagens and toxins in extracts from ground water, and in tar from product gas, at the sites of two Lawrence Livermore National Laboratory (LLNL) in situ experiments: Hoe Creek II and Hoe Creek III. The sites exhibited different potential biological hazards, suggesting that different gasification processes may represent different human health concerns. It was found that mutagens are present in groundwater persist for at least 2 years after gasification has been terminated, and show a change in activity with time - possibly in parallel with changes in chemical composition. Preliminary evidence suggests that the mutagens in ground water are quinoline and aniline derivatives, while the toxins in groundwater may be phenolic compounds. In tar from the product gas, the organic bases and neutrals were found to be genotoxic in both bacterial and mammalian cells; the neutral compounds appear to be the major mutagenic health hazards. Neutral compounds constitute most of the tar (85-97 wt%) and were mutagenic in both the bacterial and mammalian cell assays. Tar in the gas stream may be a problem for the above ground environment if gas escapes through fractures in the overburden. Because it is mutagenic and induces chromosomal damage to mammalian cells, the tar may represent a disposal problem as well. However, it is difficult to assess tar quantitatively as a health hazard because its mutagenic activity is low, possibly due to contaminants in the neutral fraction that act to suppress mutagenicity.

  16. DOE - Office of Legacy Management -- Hoe Creek Underground Coal...

    Office of Legacy Management (LM)

    Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location:...

  17. Testing for market integration crude oil, coal, and natural gas

    SciTech Connect (OSTI)

    Bachmeier, L.J.; Griffin, J.M. [Texas A& amp; M Univ, College Station, TX (United States)

    2006-07-01T23:59:59.000Z

    Prompted by the contemporaneous spike in coal, oil, and natural gas prices, this paper evaluates the degree of market integration both within and between crude oil, coal, and natural gas markets. Our approach yields parameters that can be readily tested against a priori conjectures. Using daily price data for five very different crude oils, we conclude that the world oil market is a single, highly integrated economic market. On the other hand, coal prices at five trading locations across the United States are cointegrated, but the degree of market integration is much weaker, particularly between Western and Eastern coals. Finally, we show that crude oil, coal, and natural gas markets are only very weakly integrated. Our results indicate that there is not a primary energy market. Despite current price peaks, it is not useful to think of a primary energy market, except in a very long run context.

  18. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Doug Strickland; Albert Tsang

    2002-10-14T23:59:59.000Z

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial plants operated at Dow Chemical or Dow Corning chemical plant locations; (2) Research, development, and testing to define any technology gaps or critical design and integration issues; and (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. This report describes management planning, work breakdown structure development, and feasibility study activities by the IMPPCCT consortium in support of the first project phase. Project planning activities have been completed, and a project timeline and task list has been generated. Requirements for an economic model to evaluate the West Terre Haute implementation and for other commercial implementations are being defined. Specifications for methanol product and availability of local feedstocks for potential commercial embodiment plant sites have been defined. The WREL facility is a project selected and co-funded under the fifth phase solicitation of the U.S. Department of Energy's Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the U.S. Department of Energy, working under a Cooperative Agreement Award from the ''Early Entrance Coproduction Plant'' (EECP) initiative, the GEC and an Industrial Consortia are investigating the application of synthesis gas from the E-GAS{trademark} technology to a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

  19. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Albert Tsang

    2003-03-14T23:59:59.000Z

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., parent company of GEC and WREL, as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. During the reporting period, effort continues on identifying potential technologies for removing contaminants from synthesis gas to the level required by methanol synthesis. A liquid phase Claus process and a direct sulfur oxidation process were evaluated. Preliminary discussion was held with interested parties on cooperating on RD&T in Phase II of the project. Also, significant progress was made during the period in the submission of project deliverables. A meeting was held at DOE's National Energy Technology Laboratory in Morgantown between GEC and the DOE IMPPCCT Project Manager on the status of the project, and reached an agreement on the best way to wrap up Phase I and transition into the Phase II RD&T. Potential projects for the Phase II, cost, and fund availability were also discussed.

  20. Nine clean coal projects chosen by DOE

    SciTech Connect (OSTI)

    Not Available

    1986-09-01T23:59:59.000Z

    On July 25, 1986 the US Department of Energy announced the nine projects selected as DOE's top choices in their Clean Coal Technology Program. The projects are: pressurized fluidized bed combustion combined cycle utility retrofit; extended tests of limestone injection multi-stage burner plus sorbent duct injection; slagging combustor with sorbent injection into combustor; gas reburning and sorbent injection retrofit into 3 utility boilers; steeply dipping bed underground coal gasification integrated with indirect liquefaction; integrated coal gasification steam injection gas turbine demonstration plants (2) with hot gas cleanup; coal-oil coprocessing liquefaction; fluidized bed gasification with hot gas cleanup integrated combined cycle demonstration plant; and direct iron ore reduction to replace coke oven/blast furnace for steelmaking. A table lists the 14 runner-up projects any of which could be selected if cooperative agreements are not reached with any of the nine companies selected. Brief descriptions are given of the nine selected projects.

  1. Support research on chemical, mechanical, and environmental factors in underground coal gasification. Final technical report

    SciTech Connect (OSTI)

    Edgar, T.F.; Humenick, M.J.; Thompson, T.W.

    1984-03-01T23:59:59.000Z

    The general goal of this research has been to develop basic data and mathematical models in order to better understand information obtained from large scale field experimentation in underground gasification of Texas lignite. The chemical engineering research has focused on the topics of combustion tube studies of water influx, investigation of cavity growth mechanisms, cracking of pyrolysis products, and analysis of flow patterns in UCG. The petroleum engineering research has focused on subsidence analysis, creep testing and modeling, and effects of overburden drying. Good agreement between subsidence model predictions and data from the Hoe Creek No. 2 field experiment has been obtained. Environmental effects of UCG have been studied both for surface processing of wastewater as well as subsurface phenomena. Activated sludge processing of wastewater seems feasible and pertinent laboratory data have been acquired. Adsorption characteristics and microbial activity for different species in contaminated groundwater have been determined for the Tennessee Colony, Texas, field test site. 100 references, 95 figures, 10 tables.

  2. An Integrated Assessment of the Impacts of Hydrogen Economy on Transportation, Energy Use, and Air Emissions

    E-Print Network [OSTI]

    Yeh, Sonia; Loughlin, Daniel H.; Shay, Carol; Gage, Cynthia

    2007-01-01T23:59:59.000Z

    Energy Outlook coal gasification compressed natural gastechnologies, including gasification and water electrolysis.of natural gas, coal gasification was the preferred method

  3. Study on the effect of heat treatment and gasification on the carbon structure of coal chars and metallurgical cokes using fourier transform Raman spectroscopy

    SciTech Connect (OSTI)

    S. Dong; P. Alvarez; N. Paterson; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

    2009-03-15T23:59:59.000Z

    Differences in the development of carbon structures between coal chars and metallurgical cokes during high-temperature reactions have been investigated using Raman spectroscopy. These are important to differentiate between different types of carbons in dust recovered from the top gas of the blast furnace. Coal chars have been prepared from a typical injectant coal under different heat-treatment conditions. These chars reflected the effect of peak temperature, residence time at peak temperature, heating rate and pressure on the evolution of their carbon structures. The independent effect of gasification on the development of the carbon structure of a representative coal char has also been studied. A similar investigation has also been carried out to study the effect of heat-treatment temperature (from 1300 to 2000{sup o}C) and gasification on the carbon structure of a typical metallurgical coke. Two Raman spectral parameters, the intensity ratio of the D band to the G band (I{sub D}/I{sub G}) and the intensity ratio of the valley between D and G bands to the G band (I{sub V}/I{sub G}), have been found useful in assessing changes in carbon structure. An increase in I{sub D}/I{sub G} indicates the growth of basic graphene structural units across the temperature range studied. A decrease in I{sub V}/I{sub G} appears to suggest the elimination of amorphous carbonaceous materials and ordering of the overall carbon structure. The Raman spectral differences observed between coal chars and metallurgical cokes are considered to result from the difference in the time-temperature history between the raw injectant coal and the metallurgical coke and may lay the basis for differentiation between metallurgical coke fines and coal char residues present in the dust carried over the top of the blast furnace. 41 refs., 17 figs., 3 tabs.

  4. Engineering support services for the DOE/GRI coal gasification research program. Safety audits of pilot plants and PDU's

    SciTech Connect (OSTI)

    Bostwick, L.E.; Hubbard, D.A.; Lee, M.D.; Miller, G.R.; Bernard, D.M.

    1981-04-01T23:59:59.000Z

    M.W. Kellogg (formerly Pullmann Kellogg) was requested by DOE to investigate and to evaluate normal and emergency operating procedures and the drawing record systems of the coal gasification pilot plants and process development units (PDU). The purpose of this Safety Audit was to identify deficiencies in operating policies or procedures which could lead to potential hazards. The evaluation of safety-related documentation at the pilot plants and PDU's was also included in the audit. The safety audit visits and meetings were conducted at the following research sites: Bell Aerosopace, BCR BI-GAS, Exxon, IGT Hygas/Peatgas, Rockwell International, and Westinghouse. Kellogg conducted the safety audits requested by DOE. These reviews show the developers as possessing very sincere, positive attitudes toward safety and as being committed to ongoing safety programs. Kellogg found that (in general) all of the developers: use written statements of objectives, operating procedures and check lists; have some form of formal safety training for operators; review equipment and procedural revisions with operators; and maintain timely and accurate drawing records.

  5. Coal pump

    DOE Patents [OSTI]

    Bonin, John H. (Sunnyvale, CA); Meyer, John W. (Palo Alto, CA); Daniel, Jr., Arnold D. (Alameda County, CA)

    1983-01-01T23:59:59.000Z

    A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

  6. Integrated two-stage coal liquefaction process

    DOE Patents [OSTI]

    Bronfenbrenner, James C. (Allentown, PA); Skinner, Ronald W. (Allentown, PA); Znaimer, Samuel (Vancouver, CA)

    1985-01-01T23:59:59.000Z

    This invention relates to an improved two-stage process for the production of liquid carbonaceous fuels and solvents from carbonaceous solid fuels, especially coal.

  7. PressurePressure Indiana Coal Characteristics

    E-Print Network [OSTI]

    Fernández-Juricic, Esteban

    TimeTime PressurePressure · Indiana Coal Characteristics · Indiana Coals for Coke · CoalTransportation in Indiana · Coal Slurry Ponds Evaluation · Site Selection for Coal Gasification · Coal-To-Liquids Study, CTL · Indiana Coal Forecasting · Under-Ground Coal Gasification · Benefits of Oxyfuel Combustion · Economic

  8. Testing Kentucky Coal to Set Design Criteria for a Lurgi Gasification Plant

    E-Print Network [OSTI]

    Roeger, A., III; Jones, J. E., Jr.

    1983-01-01T23:59:59.000Z

    's subcontractors, the Commonwealth of Kentucky or any agency thereof, or the United States Government or any agency thereof. INTRODUCTION Tri-State Synfuels Project Tri-State Synfuels Company, a partnershi of Texas Eastern Corporation and Texas Gas Transmis...Eion Corporat ion affiliates, proposes to produce li~Uid transportation fuels and substitute natural gas rom coal using the indirect liquefaction appr ach (Reference 1). The proj ect is sited in Hende son County, Kentucky and will, if built, use COIer...

  9. ANNUAL REPORT OCTOBER 1, 1979-SEPTEMBER 30, 1980 CHEMISTRY AND MORPHOLOGY OF COAL LIQUEFACTION

    E-Print Network [OSTI]

    Heinemann, Heinz

    2013-01-01T23:59:59.000Z

    effect on its behavior during gasification and liquefactionand observation of the gasification reactions in-situ in anfrom coal instead of gasification to CO and H 2 • Since

  10. Development of Biological Coal Gasification (MicGAS Process). Topical report, July 1991--February 1993

    SciTech Connect (OSTI)

    Srivastava, K.C.

    1993-06-01T23:59:59.000Z

    Laboratory and bench scale reactor research carried out during the report period confirms the feasibility of biomethanation of Texas lignite (TxL) and some other low-rank coals to methane by specifically developed unique anaerobic microbial consortia. The data obtained demonstrates specificity of a particular microbial consortium to a given lignite. Development of a suitable microbial consortium is the key to the success of the process. The Mic-1 consortium was developed to tolerate higher coal loadings of 1 and 5% TxL in comparison to initial loadings of 0.01% and 0.1% TxL. Moreover, the reaction period was reduced from 60 days to 14 to 21 days. The cost of the culture medium for bioconversion was reduced by studying the effect of different growth factors on the biomethanation capability of Mic-1 consortium. Four different bench scale bioreactor configurations, namely Rotating Biological Contactor (RBC), Upflow Fluidized Bed Reactor (UFBR), Trickle Bed Reactor (TBR), and Continuously Stirred Tank Reactor (CSTR) were evaluated for scale up studies. Preliminary results indicated highest biomethanation of TxL by the Mic-1 consortium in the CSTR, and lowest in the trickle bed reactor. However, highest methane production and process efficiency were obtained in the RBC.

  11. GRI highlights underground gasification effort

    SciTech Connect (OSTI)

    Not Available

    1987-03-01T23:59:59.000Z

    A consortium headed by the Gas Research Institute is supporting major underground coal gasification tests to take place over the next two years at a site near Hanna, Wyoming. About 200 tons of coal will be gasified per day. Directional drilling will be used to form the horizontal gasification pathways linking the injection and production wells. The objectives of the program include a further evaluation of the controlled-retracting-injection-point technology. The technology involves the use of a device that is capable of igniting successive coal zones as it is retracted through a borehole in the coal seam. Comparable data will also be obtained during the test in sections where a linked-vertical-well concept will be used instead of the retracting-injection method. The linked-vertical-well concept, which has been used in most coal gasification tests, involves drilling a series of vertical wells into the coal seam gasification pathway for the ignition of successive coal zones. A parallel program will be conducted to evaluate environmental control technology applicable to underground coal gasification and to define the process requirements that must be satisfied to meet environmental quality standards. The results of these combined programs will provide the process and environmental data bases necessary to assess the economic potential of underground coal gasification from various US locations for a variety of end-product applications.

  12. Capture-Ready Coal Plants -Options, Technologies and Economics Mark C. Bohm1

    E-Print Network [OSTI]

    1 Capture-Ready Coal Plants - Options, Technologies and Economics Mark C. Bohm1 , Howard J. Herzog1 be employed during the initial design and construction of a both pulverized coal and integrated gasification the Internet in the summer of 2006 [7]. Introduction Interest in the construction of coal-fired power

  13. DEVELOPMENT OF NOVEL CERAMIC NANOFILM-FIBER INTEGRATED OPTICAL SENSORS FOR RAPID DETECTION OF COAL DERIVED SYNTHESIS GAS

    SciTech Connect (OSTI)

    Junhang Dong; Hai Xiao; Xiling Tang; Hongmin Jiang; Kurtis Remmel; Amardeep Kaur

    2012-09-30T23:59:59.000Z

    The overall goal of this project is to conduct fundamental studies on advanced ceramic materials and fiber optic devices for developing new types of high temperature (>500{degree}C) fiber optic chemical sensors (FOCS) for monitoring fossil (mainly coal) and biomass derived gases in power plants. The primary technical objective is to investigate and demonstrate the nanocrystalline doped-ceramic thin film enabled FOCS that possess desired stability, sensitivity and selectivity for in-situ, rapid gas detection in the syngas streams from gasification and combustion flue gases. This report summarizes research works of two integrated parts: (1) development of metal oxide solid thin films as sensing materials for detection and measurement of important gas components relevant to the coal- and biomass-derived syngas and combustion gas streams at high temperatures; and (2) development of fiber optic devices that are potentially useful for constructing FOCS in combination with the solid oxide thin films identified in this program.

  14. SLAG CHARACTERIZATION AND REMOVAL USING PULSE DETONATION TECHNOLOGY DURING COAL GASIFICATION

    SciTech Connect (OSTI)

    DR. DANIEL MEI; DR. JIANREN ZHOU; DR. PAUL O. BINEY; DR. ZIAUL HUQUE

    1998-07-30T23:59:59.000Z

    Pulse detonation technology for the purpose of removing slag and fouling deposits in coal-fired utility power plant boilers offers great potential. Conventional slag removal methods including soot blowers and water lances have great difficulties in removing slags especially from the down stream areas of utility power plant boilers. The detonation wave technique, based on high impact velocity with sufficient energy and thermal shock on the slag deposited on gas contact surfaces offers a convenient, inexpensive, yet efficient and effective way to supplement existing slag removal methods. A slight increase in the boiler efficiency, due to more effective ash/deposit removal and corresponding reduction in plant maintenance downtime and increased heat transfer efficiency, will save millions of dollars in operational costs. Reductions in toxic emissions will also be accomplished due to reduction in coal usage. Detonation waves have been demonstrated experimentally to have exceptionally high shearing capability, important to the task of removing slag and fouling deposits. The experimental results describe the parametric study of the input parameters in removing the different types of slag and operating condition. The experimental results show that both the single and multi shot detonation waves have high potential in effectively removing slag deposit from boiler heat transfer surfaces. The results obtained are encouraging and satisfactory. A good indication has also been obtained from the agreement with the preliminary computational fluid dynamics analysis that the wave impacts are more effective in removing slag deposits from tube bundles rather than single tube. This report presents results obtained in effectively removing three different types of slag (economizer, reheater, and air-heater) t a distance of up to 20 cm from the exit of the detonation tube. The experimental results show that the softer slags can be removed more easily. Also closer the slag to the exit of the detonation tube, the better are their removals. Side facing slags are found to shear off without breaking. Wave strength and slag orientation also has different effects on the chipping off of the slag. One of the most important results from this study is the observation that the pressure of the waves plays a vital role in removing slag. The wave frequency is also important after a threshold pressure level is attained.

  15. Development of an advanced, continuous mild gasification process for the production of co-products (Task 1), Volume 1

    SciTech Connect (OSTI)

    Knight, R.A.; Gissy, J.L.; Onischak, M.; Babu, S.P.; Carty, R.H. (Institute of Gas Technology, Chicago, IL (United States)); Duthie, R.G. (Bechtel Group, Inc., San Francisco, CA (United States)); Wootten, J.M. (Peabody Holding Co., Inc., St. Louis, MO (United States))

    1991-09-01T23:59:59.000Z

    Under US DOE sponsorship, a project team consisting of the Institute of Gas Technology, Peabody Holding Company, and Bechtel Group, Inc. has been developing an advanced, mild gasification process to process all types of coal and to produce solid and condensable liquid co-products that can open new markets for coal. The three and a half year program (September 1987 to June 1991) consisted of investigations in four main areas. These areas are: (1) Literature Survey of Mild Gasification Processes, Co-Product Upgrading and Utilization, and Market Assessment; (2) Mild Gasification Technology Development: Process Research Unit Tests Using Slipstream Sampling; (3) Bench-Scale Char Upgrading Study; (4) Mild Gasification Technology Development: System Integration Studies. In this report, the literature and market assessment of mild gasification processes are discussed.

  16. Engineering support services for the DOE/GRI coal-gasification research program. Monthly technical progress report, 22 August - 25 September, 1981

    SciTech Connect (OSTI)

    Bostwick, L.E.; Ethridge, T.R.; Starr, D.W.; Hubbard, D.A.; Koneru, P.B.; Smith, M.R.; Ward, W.E.; Wong, E.W.

    1982-01-01T23:59:59.000Z

    The objective of this contract is to provide engineering support services to the Department of Energy/Gas Research Institute in the high Btu coal gasification research program. The gasification research program is to determine the specific process and/or combination of component processing steps that offer the greatest economic potential for commercial application. During September, Kellogg continued active monitoring of operations at Westinghouse, IGT, Peatgas, and BI-GAS. Efforts relative to Hygas, Rockwell, Exxon and Bell were minimal. Test runs monitored and reported here are BI-GAS tests 17E and 17F, Westinghouse PDU test TP-028-3, and IGT Peatgas test 3. Kellog attended meetings on 1 and 22 September to discuss the review of the Hygas final report. Comments on Kellogg's draft report on the Hygas data base evaluation were received. Kellogg's evaluations of PDU operating data from Westinghouse and Exxon continues. The Kellogg report on Peatgas PDU data base evaluation was issued in draft form. At DOE's request, Kellogg began work on an evaluation of the existing data base (by IGT) for single-stage gasification of peat. Work on the descriptive brochure continued, aimed toward issue of a draft in the near future. Kellogg also provided input regarding Westinghouse test runs to a DOE consultant.

  17. Model predictive control system and method for integrated gasification combined cycle power generation

    DOE Patents [OSTI]

    Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

    2013-04-09T23:59:59.000Z

    Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

  18. Method and system to estimate variables in an integrated gasification combined cycle (IGCC) plant

    DOE Patents [OSTI]

    Kumar, Aditya; Shi, Ruijie; Dokucu, Mustafa

    2013-09-17T23:59:59.000Z

    System and method to estimate variables in an integrated gasification combined cycle (IGCC) plant are provided. The system includes a sensor suite to measure respective plant input and output variables. An extended Kalman filter (EKF) receives sensed plant input variables and includes a dynamic model to generate a plurality of plant state estimates and a covariance matrix for the state estimates. A preemptive-constraining processor is configured to preemptively constrain the state estimates and covariance matrix to be free of constraint violations. A measurement-correction processor may be configured to correct constrained state estimates and a constrained covariance matrix based on processing of sensed plant output variables. The measurement-correction processor is coupled to update the dynamic model with corrected state estimates and a corrected covariance matrix. The updated dynamic model may be configured to estimate values for at least one plant variable not originally sensed by the sensor suite.

  19. LLL in situ coal gasification project. Quarterly progress report, October-December 1979. [Hoe Creek No. 3 and planning

    SciTech Connect (OSTI)

    Cena, R.J.; Strack, B.S. (eds.)

    1980-04-23T23:59:59.000Z

    The major effort this quarter has been postexperiment analysis of Hoe Creek No. 3 and planning for future gasification experiments. Hoe Creek No. 3: Thermal data have been analyzed to determine the performance of the drilled horizontal channel during forward gasification. Thermal and material balance data are combined to determine late-time burn boundaries for the experiment. Surface subsidence after the experiment was completed is described. Process wells were inspected to determine failure characteristics and pinpoint late-time injection location. Ground-water quality before and after Hoe Creek No. 3 and the effects of aquifer interconnection on hydraulic measurements at the Hoe Creek No. 2 and No. 3 sites are discussed. Future experiments: Potential UCG sites are being characterized for future tests. Two sites in the Powder River Basin near Gillette, Wyoming are discussed. Preliminary plans for a deep site gasification experiment and a new method for in situ gasification of thick seams are presented.

  20. Instrumentation and process control development for in situ coal gasification. Twentieth quarterly report: September-November 1979. [Hanna IV and Hoe Creek III

    SciTech Connect (OSTI)

    Glass, R.E.

    1980-04-01T23:59:59.000Z

    The second phase of the Hanna IV in situ coal gasification test, Hanna IV-B, which was initiated on April 20, 1979, was completed on October 4, 1979. Sandia National Laboratories provided support by fielding and monitoring diagnostic and remote monitoring instrumentation techniques. During the final gasification stage, 765 tons of coal were reacted involving 17,000 cubic feet. The Hoe Creek III experiment conducted by Lawrence Livermore Laboratories began on August 15, 1979, and was terminated on October 10, 1979. The purpose of the experiment was to test the drilled borehole linking concept. Sandia National Laboratories' involvement consisted of fielding and monitoring both an inverted thermocouple and a surface electrical resistivity network. The inverted thermocouple was successfully tested and provided thermal data from beneath the burn zone. A real time analysis procedure for the electrical resistivity technique was implemented at Hoe Creek III. Unfortunately, there was insufficient change in the data for this to have been a useful diagnostic. Efforts are continuing to identify the reason for this lack of response.

  1. Clean coal technologies in electric power generation: a brief overview

    SciTech Connect (OSTI)

    Janos Beer; Karen Obenshain [Massachusetts Institute of Technology (MIT), MA (United States)

    2006-07-15T23:59:59.000Z

    The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

  2. The United States of America and the People`s Republic of China experts report on integrated gasification combined-cycle technology (IGCC)

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    A report written by the leading US and Chinese experts in Integrated Gasification Combined Cycle (IGCC) power plants, intended for high level decision makers, may greatly accelerate the development of an IGCC demonstration project in the People`s Republic of China (PRC). The potential market for IGCC systems in China and the competitiveness of IGCC technology with other clean coal options for China have been analyzed in the report. Such information will be useful not only to the Chinese government but also to US vendors and companies. The goal of this report is to analyze the energy supply structure of China, China`s energy and environmental protection demand, and the potential market in China in order to make a justified and reasonable assessment on feasibility of the transfer of US Clean Coal Technologies to China. The Expert Report was developed and written by the joint US/PRC IGCC experts and will be presented to the State Planning Commission (SPC) by the President of the CAS to ensure consideration of the importance of IGCC for future PRC power production.

  3. Synthetic fuel production by indirect coal liquefaction

    E-Print Network [OSTI]

    and dimethyl ether) by indirect coal liquefaction (ICL). Gasification of coal pro- duces a synthesis gas by coal gasification. The principal con- stituents of ``syngas'' are carbon monoxide and hydrogen, which modern coal gasification facilities in operation to make hydrogen for ammonia production. Also

  4. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system. Quarterly progress report, April 1-June 30, 1982

    SciTech Connect (OSTI)

    None

    1982-10-21T23:59:59.000Z

    The overall objective of the Westinghouse coal gasification program is to demonstrate the viability of the Westinghouse pressurized, fluidized bed, gasification system for the production of medium-Btu fuel gas for syngas, electrical power generation, chemical feedstocks, or industrial fuels and to obtain performance and scaleup data for the process and hardware. Progress reports are presented for the following tasks: (1) operation and maintenance of the process development unit (PDU); (2) process analysis; (3) cold flow scaleup facility; (4) process and component engineering and design; and (5) laboratory support studies. Some of the highlights for this period are: TP-032-1, a single stage, oxygen-steam blown gasifier test was conducted in three operational phases from March 30, 1982 through May 2, 1982; TP-032-2 was conducted in two operational phases from May 20, 1982 through May 27, 1982; TP-032-1 and TP-032-2 successfully served as shakedown and demonstrations of the full cyclone cold wall; no visible deposits were found on the cold wall after processing highly fouling coals; samples of product gas produced during TP-032-1, were passed through four different scrubbing solutions and analyzed for 78 EPA primary organic pollutants, all of which were found to be below detection limits; TP-M004, a CO/sub 2/ tracer gas test, was initiated and completed; data analysis of test TP-M002-2 was completed and conclusions are summarized in this report; design, procurement and fabrication of the solids injection device were completed; laboratory studies involved gas-solids flow modeling and coal/ash behavior. 2 references, 11 figures, 39 tables.

  5. Multiphysics modeling of carbon gasification processes in a well-stirred reactor with detailed gas-phase chemistry

    E-Print Network [OSTI]

    Qiao, Li

    : Coal gasification Carbon gasification Detailed chemistry Heterogeneous surface reactions Radiation Multi-physics numerical modeling a b s t r a c t Fuel synthesis through coal and biomass gasification Fuel synthesis through coal gasification offers a potential solu- tion to the problem of increasing

  6. HYDROGENATION AND CRACKING OF COAL RELATED FUSED-RING STRUCTURES USING ZnCl2 AND AlCl3 CATALYSTS

    E-Print Network [OSTI]

    Salim, Sadie S.

    2013-01-01T23:59:59.000Z

    effective catalyst for coal gasification at severe reactionliquefaction as well as gasification has been observed (3).and susceptibility to gasification (4,5). of Ross et al.

  7. Engineering support services for the DOE/GRI coal gasification research program. Quarterly technical progress report, July-September 1979

    SciTech Connect (OSTI)

    Cover, A.E.; Bostwick, L.E.; Gunderson, J.M.

    1981-12-01T23:59:59.000Z

    Kellogg activities during the third quarter of 1979 included the continued monitoring of test operations at the Hygas, BI-GAS, Westinghouse, Exxon and Rockwell plant sites. Test runs monitored and reported were: Hygas 80, 81 and 82, BI-GAS G-8, G-8A and G-8B, Westinghouse TP-022-2, TP-023-1, Exxon startup activities and Rockwell 318-011 through 318-023. Kellogg continued to monitor design and construction of the Bell Aerospace PDU and the bench-scale and non-integrated PDU activities on peat at the IGT laboratories. Kellogg participated in discussion with DOE and GRI concerning the proposed extension of Kellogg's contract to 31 March 1981. Kellog personnel attended program review meetings at IGT in July, at Rockwell and C.F. Braun in August and at Westinghouse in September. Kellogg continued participation in Metals Properties Council activities. At the request of MPC members, Kellogg prepared a series of recommendations for obtaining data useful for future design of gasification plants. Kellogg personnel attended the semi-annual meeting of MPC Subcommittee 9. Work on the draft report on DOE Task No. 3, Consultation on Westinghouse PDU, has been completed. Work on DOE Task No. 4, PDU Screening Analysis continued with final definitions of process flowsheets and operating conditions. Kellogg continued work on DOE Task No. 5, Safety Assurance Study. Information and data are being gathered on the safety-related aspects of the several processes. Work on DOE Task No. 6, Westinghouse Risk Analysis, has been started.

  8. EIS-0428: Mississippi Gasification, LLC, Industrial Gasification...

    Broader source: Energy.gov (indexed) [DOE]

    8: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS EIS-0428: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS...

  9. EIS-0429: Indiana Gasification, LLC, Industrial Gasification...

    Office of Environmental Management (EM)

    9: Indiana Gasification, LLC, Industrial Gasification Facility in Rockport, IN and CO2 Pipeline EIS-0429: Indiana Gasification, LLC, Industrial Gasification Facility in Rockport,...

  10. Gasification world database 2007. Current industry status

    SciTech Connect (OSTI)

    NONE

    2007-10-15T23:59:59.000Z

    Information on trends and drivers affecting the growth of the gasification industry is provided based on information in the USDOE NETL world gasification database (available on the www.netl.doe.gov website). Sectors cover syngas production in 2007, growth planned through 2010, recent industry changes, and beyond 2010 - strong growth anticipated in the United States. A list of gasification-based power plant projects, coal-to-liquid projects and coal-to-SNG projects under consideration in the USA is given.

  11. Integration of waste pyrolysis with coal/oil coprocessing

    SciTech Connect (OSTI)

    Hu, J.; Zhou, P.; Lee, T.L.K.; Comolli, A. [Hydrocarbon Technologies, Inc., Lawrenceville, NJ (United States)

    1998-04-01T23:59:59.000Z

    HTI has developed a novel process, HTI CoPro Plus{trademark}, to produce alternative fuels and chemicals from the combined liquefaction of waste materials, coal, and heavy petroleum residues. Promising results have been obtained from a series of bench tests (PB-01 through PB-06) under the DOE Proof of Concept Program. Recently, HTI acquired a proven technology for the mild co-pyrolysis of used rubber tires and waste refinery or lube oils, developed by the University of Wyoming and Amoco. The feasibility of integration of pyrolysis with coal-oil coprocessing was studied in the eighth bench run (PB-08) of the program. The objective of Run PB-08 was to study the coprocessing of coal with oils derived from mild pyrolysis of scrap tires, waste plastics, and waste lube oils to obtain data required for economic comparisons with the DOE data base. A specific objective was also to study the performance of HTI`s newly improved GelCat{trademark} catalyst in coal-waste coprocessing under low-high (Reactor 1-Reactor 2 temperatures) operating mode. This paper presents the results obtained from Run PB-08, a 17-day continuous operation conducted in August 1997. A total of 5 conditions were tested, including a baseline coal-only condition. During the coprocessing conditions, 343{degrees}C+ pyrolysis oils derived from co-pyrolysis of rubber tires or a mixture of rubber tires and plastics with waste lube oil, were coprocessed with Black Thunder coal using HTI GelCat{trademark} catalyst. In the last condition, rubber tires were pyrolyzed with 524{degrees}C- coal liquid to study the possible elimination of lube oil used as pyrolysis processing oil. Overall coal conversion above 90 W% was achieved.

  12. Integrated supercritical water gasification combined cycle (IGCC) systems for improved performance and reduced operating costs in existing plants

    SciTech Connect (OSTI)

    Tolman, R.; Parkinson, W.J.

    1999-07-01T23:59:59.000Z

    A revolutionary hydrothermal heat recovery steam generator (HRSG) is being developed to produce clean fuels for gas turbines from slurries and emulsions of opportunity fuels. Water can be above 80% by weight and solids below 20%, including coal fines, coal water fuels, biomass, composted municipal refuse, sewage sludge and bitumen/Orimulsion. The patented HRSG tubes use a commercial method of particle scrubbing to improve heat transfer and prevent corrosion and deposition on heat transfer surfaces. A continuous-flow pilot plant is planned to test the HRSG over a wide range of operating conditions, including the supercritical conditions of water, above 221 bar (3,205 psia) and 374 C (705 F). Bench scale data shows, that supercritical water gasification below 580 C (1,076 F) and low residence time without catalysts or an oxidizer can produce a char product that can contain carbon up to the amount of fixed carbon in the proximate analysis of the solids in the feed. This char can be burned with coal in an existing combustion system to provide the heat required for gasification. The new HRSG tubes can be retrofitted into existing power plant boilers for repowering of existing plants for improved performance and reduced costs. A special condensing turbine allows final low-temperature cleaning and maintains quality and combustibility of the fuel vapor for modern gas turbine in the new Vapor Transmission Cycle (VTC). Increased power output and efficiency can be provided for existing plants, while reducing fuel costs. A preliminary computer-based process simulation model has been prepared that includes material and energy balances that simulate commercial-scale operations of the VTC on sewage sludge and coal. Results predict over 40% HHV thermal efficiency to electric power from sewage sludge at more than 83% water by weight. The system appears to become autothermal (no supplemental fuel required) at about 35% fixed carbon in the feed. Thus, bituminous and lignite coal slurries could be gasified at less than 25% coal and more than 75% water. Preliminary life cycle cost analyses indicate that disposal fees for sewage sludge improve operating economics over fuel that must be purchased, the cost and schedule advantages of natural gas-fired combined cycle systems are preserved. Sensitivity analyses show that increasing capital costs by 50% can be offset by an increase in sewage sludge disposal fees of $10/metric ton.

  13. Overburden characterization and post-burn study of the Hoe Creek, Wyoming underground coal gasification site and comparison with the Hanna, Wyoming site

    SciTech Connect (OSTI)

    Ethridge, F.C.; Burns, L.K.; Alexander, W.G.; Craig, G.N. II; Youngberg, A.D.

    1983-01-01T23:59:59.000Z

    In 1978 the third test (Hoe Creek III) in a series of underground coal gasification (UCG) experiments was completed at a site south of Gillette, Wyoming. The post-burn study of the geology of the overburden and interlayered rock of the two coal seams affected by the experiment is based on the study of fifteen cores. The primary purpose of the study was to characterize the geology of the overburden and interlayered rock and to determine and evaluate the mineralogical and textural changes that were imposed by the experiment. Within the burn cavity the various sedimentary units have been brecciated and thermally altered to form several pyrometamorphic rock types of paralava rock, paralava breccia, buchite, buchite breccia and hornfels. High temperature minerals of mullite, cordierite, oligo-clase-andesine, tridymite, cristobalite, clinopyroxenes, and magnetite are common in the pyrometamorphic rocks. The habit of these minerals indicates that they crystallized from a melt. These minerals and textures suggest that the rocks were formed at temperatures between 1200/sup 0/ and 1400/sup 0/C. A comparison of geologic and geological-technological factors between the Hoe Creek III site, which experienced substantial roof collapse, and the Hanna II site, which had only moderate roof collapse, indicates that overburden thickness relative to coal seam thickness, degree of induration of overburden rock, injection-production well spacing, and ultimate cavity size are important controls of roof collapse in the structural setting of the two sites.

  14. Development of an advanced, continuous mild gasification process for the production of co-products (Task 1), Volume 1. Final report

    SciTech Connect (OSTI)

    Knight, R.A.; Gissy, J.L.; Onischak, M.; Babu, S.P.; Carty, R.H. [Institute of Gas Technology, Chicago, IL (United States); Duthie, R.G. [Bechtel Group, Inc., San Francisco, CA (United States); Wootten, J.M. [Peabody Holding Co., Inc., St. Louis, MO (United States)

    1991-09-01T23:59:59.000Z

    Under US DOE sponsorship, a project team consisting of the Institute of Gas Technology, Peabody Holding Company, and Bechtel Group, Inc. has been developing an advanced, mild gasification process to process all types of coal and to produce solid and condensable liquid co-products that can open new markets for coal. The three and a half year program (September 1987 to June 1991) consisted of investigations in four main areas. These areas are: (1) Literature Survey of Mild Gasification Processes, Co-Product Upgrading and Utilization, and Market Assessment; (2) Mild Gasification Technology Development: Process Research Unit Tests Using Slipstream Sampling; (3) Bench-Scale Char Upgrading Study; (4) Mild Gasification Technology Development: System Integration Studies. In this report, the literature and market assessment of mild gasification processes are discussed.

  15. Coal Gasification Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Recommendations 4.5. Non-Fossil Technologies Non-fossil technologies include nuclear, photovoltaic, solar thermal, biomass IGCC, municipal solid waste, geothermal, wind,...

  16. Engineering-support services for the DOE/GRI Coal-Gasification Research Program. Quarterly technical progress report, July-September 1980

    SciTech Connect (OSTI)

    Bostwick, L.E.; Brancheau, R.J.; Castiglioni, B.P.

    1982-01-01T23:59:59.000Z

    Kellogg activities included contained monitoring of test operations at the Hygas, BI-GAS, Westinghoue, Exxon and Bell plant sites. Peat gasification laboratory tests were also monitored; Rockwell testing ended during June. Pilot Plant/PDU test runs monitored and reported were: Hygas Test 87 (the last of the pilot plant series), BI-GAS Tests G-13 and G-14, Westinghouse test runs TP-027, TP-027-4 and TP-027-5, Exxon test periods 19 through 21 and Bell Tests 2174 through 3195. Kellogg continued its work on the Hygas data base evaluation and began an evaluation of the scaleup risks of the Westinghouse oxygen-blown gasifier. Work under new task orders was initiated. The topics included are: Technical/Economic Assessments of Westinghouse, Exxon and Peatgas, Gasifier Vessel Design, Technical/Economic Comparisons of Westinghouse and U-Gas, Peat Harvesting and Dewatering, and Carbonyl Formation in Coal Gasification processes. Economics are essentially complete for the Screening Evaluations of Westinghouse, Exxon and Rockwell and report preparation has begun. Work on the Pilot/Plant PDU Safety Evaluation Task continued.

  17. coal feeding | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Supported R&D for CoalBiomass Feed and Gasification Gasification Systems Program R&D The Department of Energy is currently developing technology for high pressure dry coal...

  18. Integration of waste pyrolysis with coal/oil coprocessing

    SciTech Connect (OSTI)

    Hu, J.; Zhou, P.; Lee, T.L.K.; Comolli, A.

    1998-07-01T23:59:59.000Z

    HTI has developed a novel process, HTI CoPro Plus{trademark}, to produce alternative fuels and chemicals from the combined liquefaction of waste materials, coal, and heavy petroleum residues. Promising results have been obtained from a series of bench tests (PB-01 through PB-06) under the DOE Proof of Concept Program. Recently, HTI acquired a proven technology for the mild co-pyrolysis of used rubber tires and waste refinery or lube oils, developed by the University of Wyoming and Amoco. The feasibility of integration of pyrolysis with coal-oil coprocessing was studied in the eighth bench run (PB-08) of the program. The objective of Run PM-08 was to study the coprocessing of coal with oils derived from mild pyrolysis of scrap tires, waste plastics, and waste lube oils to obtain data required for economic comparisons with the DOE data base. A specific objective was also to study the performance of HTI's newly improved GelCat{trademark} catalyst in coal-waste coprocessing under low-high (Reactor 1-Reactor 2 temperatures) operating mode. This paper presents the results obtained from Run PB-08, a 17-day continuous operation conducted in August 1997. A total of 5 conditions, 343 C + pyrolysis oils derived from co-pyrolysis of rubber tires or a mixture of rubber tires and plastics with waste lube oil, were coprocessed with Black Thunder coal using HTI GelCat{trademark} catalyst. In the last condition, rubber tires were pyrolyzed with 524 C coal liquid to study the possible elimination of lube oil used as pyrolysis processing oil. Overall coal conversion above 90 W% was achieved. Distillate yield as high as 69.2 W% was obtained while hydrogen consumption was only 4.4 W%. The distinct advantage of this process is the increase in hydrogen efficiency as both hydrogen consumption and C{sub 1}{minus}C{sub 3} gas yield decrease. Economic evaluation shows that co-processing of plastics with oil, coal, or mixed oil and coal reduces the equivalent crude oil price to a competitive level. This demonstrates that a combined process of coal liquefaction and waste pyrolysis is economically viable.

  19. Gasification Product Improvement Facility status

    SciTech Connect (OSTI)

    Carson, R.D.; Dixit, V.B.; Sadowski, R.S.; Thamaraichelvan, P.; Culberson, H.

    1995-11-01T23:59:59.000Z

    Department of Energy (DOE) has awarded a two phase contract for the construction of a Gasification Product Improvement Facility (GPIF) to develop an innovative air blown, dry bottom, pressurized fixed bed gasifier based on the patented PyGas{trademark} fixed bed process. The objective of the project is to provide a test site to support early commercialization of the Integrated Gasification Combined Cycle (IGCC) technology. The GPIF will be capable of processing run of mine high swelling coals that comprise 87% of all Eastern US coals. This program will generate useful scale up data that will be utilized to develop commercial size designs. The project will also support the development of a hot gas clean up subsystem and the gasifier infrastructure consisting of controls, special instrumentation and interconnects with Allegheny Power System`s host power plant, Fort Martin Station in Maidesville, West Virginia. This paper presents the status of the GPIF project. It describes the work performed in the past year on the PyGas process development, gasifier design, plant engineering/layout, tie in with the existing Fort Martin facility, procurement, site permitting and project scheduling.

  20. EIS-0432: Department of Energy Loan Guarantee for Medicine Bow Gasification and Liquefaction Coal-to-Liquids, Carbon County, Wyoming

    Broader source: Energy.gov [DOE]

    DOE is assessing the potential environmental impacts for its proposed action of issuing a Federal loan guarantee to Medicine Bow Fuel & Power LLC (MBFP), a wholly-owned subsidiary of DKRW Advanced Fuels LLC. MBFP submitted an application to DOE under the Federal loan guarantee program pursuant to the Energy Policy Act of 2005 to support the construction and startup of the MBFP coal-to-liquids facility, a coal mine and associated coal handling facilities. This project is inactive.

  1. Engineering support services for the DOE/GRI coal gasification research program. Quarterly technical progress report, January-March 1982

    SciTech Connect (OSTI)

    Bostwick, L.E.; Ethridge, T.R.; Starr, D.W.; Koneru, P.B.; Hubbard, D.A.; Shah, K.V.; Smith, M.R.; Ward, W.E.; Wong, E.W.

    1982-05-01T23:59:59.000Z

    Kellogg continued to actively monitor operations at BI-GAS, Westinghouse and IGT (for peat gasification). Pilot plant/PDU test runs which were monitored and reported included BI-GAS Tests G-18, G-18A and G-18B; Westinghouse PDU Test TP-032-1 and CFSF Test TP-M003; and Peatgas Pilot Plant Test No. 5. Kellogg also monitored winterization/maintenance activities at BI-GAS and Westinghouse and precommissioning of the IGT Wet Carbonization PDU. The final report on the Hygas Data Base Evaluation was issued, while final revisions were completed for the reports concerning PDU data base evaluations of Peatgas and single-stage peat gasification. Efforts toward completion of the brochure describing the DOE/GRI Joint Program proceeded. Normal MPC activities continued. Several technical progress reports were issued during this quarter.

  2. Laboratory characterization of the spalling properties of the rock cores from the UCG (Underground Coal Gasification) test site near Porto Alegre in Brazil

    SciTech Connect (OSTI)

    Tantekin, S.B.; Sperry, D.P.; Krantz, W.B.; Britten, J.A.

    1988-02-22T23:59:59.000Z

    One of the principal problems encountered in most of the Underground Coal Gasification (UCG) field tests conducted thus far has been excessive water influx. Spalling-enhanced-drying of coal and overburdens rock has been identified as the principal mechanism of water influx observed in the Hanna UCG field tests in Wyoming Spalling is defined as the chipping, fracturing and breaking off of small rock fragments from the cavity roof due to the combined action of mechanical loading and thermally induced stresses. Spalling is also responsibble for vertical cavity growth and a portion of the heat losses during UCG. A laboratory core characterization method has been developed to determine the spalling properties of overburden rock which are essential to make influx and cavity geometry predictions for a prospective field test. In this study, the spalling properties of the representative rock cores from the UCG test site near Porto Alegre in Brazil have been determined using the laboratory core characterization test which utilizes the temperature-gradient-induced spalling hypothesis.

  3. Illinois Coal Revival Program (Illinois)

    Broader source: Energy.gov [DOE]

    The Illinois Coal Revival Program is a grants program providing partial funding to assist with the development of new, coal-fueled electric generation capacity and coal gasification or IGCC units...

  4. Gasification Technologie: Opportunities & Challenges

    SciTech Connect (OSTI)

    Breault, R.

    2012-01-01T23:59:59.000Z

    This course has been put together to provide a single source document that not only reviews the historical development of gasification but also compares the process to combustion. It also provides a short discussion on integrated gasification and combined cycle processes. The major focus of the course is to describe the twelve major gasifiers being developed today. The hydrodynamics and kinetics of each are reviewed along with the most likely gas composition from each of the technologies when using a variety of fuels under different conditions from air blown to oxygen blown and atmospheric pressure to several atmospheres. If time permits, a more detailed discussion of low temperature gasification will be included.

  5. RESEARCH & DEVELOPMENT TO PREPARE AND CHARACTERIZE ROBUST COAL/BIOMASS MIXTURES FOR DIRECT CO-FEEDING INTO GASIFICATION SYSTEMS

    SciTech Connect (OSTI)

    Felix, Larry; Farthing, William; Hoekman, S. Kent

    2014-12-31T23:59:59.000Z

    This project was initiated on October 1, 2010 and utilizes equipment and research supported by the Department of Energy, National Energy Technology Laboratory, under Award Number DE- FE0005349. It is also based upon previous work supported by the Department of Energy, National Energy Technology Laboratory, under Award Numbers DOE-DE-FG36-01GOl1082, DE-FG36-02G012011 or DE-EE0000272. The overall goal of the work performed was to demonstrate and assess the economic viability of fast hydrothermal carbonization (HTC) for transforming lignocellulosic biomass into a densified, friable fuel to gasify like coal that can be easily blended with ground coal and coal fines and then be formed into robust, weather-resistant pellets and briquettes. The specific objectives of the project include: • Demonstration of the continuous production of a uniform densified and formed feedstock from loblolly pine (a lignocellulosic, short rotation woody crop) in a hydrothermal carbonization (HTC) process development unit (PDU). • Demonstration that finely divided bituminous coal and HTC loblolly pine can be blended to form 90/10 and 70/30 weight-percent mixtures of coal and HTC biomass for further processing by pelletization and briquetting equipment to form robust weather resistant pellets and/or briquettes suitable for transportation and long term storage. • Characterization of the coal-biomass pellets and briquettes to quantify their physical properties (e.g. flow properties, homogeneity, moisture content, particle size and shape), bulk physical properties (e.g. compressibility, heat transfer and friability) and assess their suitability for use as fuels for commercially-available coal gasifiers. • Perform economic analyses using Aspen-based process simulations to determine the costs for deploying and operating HTC processing facilities for the production of robust coal/biomass fuels suitable for fueling commercially-available coal-fired gasifiers. This Final Project Scientific/Technical Report discusses and documents the project work required to meet each of these objectives.

  6. Engineering support services for the DOE/GRI coal-gasification research program. Evaluation of the IGT Peatgas PDU data base

    SciTech Connect (OSTI)

    Bostwick, L.E.; Chen, R.G.; Hubbard, D.A.

    1982-03-01T23:59:59.000Z

    As requested by DOE, Kellogg has reviewed the data base generated by IGT for the Peatgas process during laboratory and PDU testing. Kellogg's central finding, from the review reported here, is that the existing data base contains sufficient evidence to warrant further evaluation of the Peatgas process at pilot plant scale. The existing data base relates to testing with peats from (primarily) Minnesota, North Carolina and Maine. Thermobalance studies were employed to define a few kinetic parameters, i.e., the rate of base carbon conversion. Numerous tests using a small coiled-tube reactor and the lift-line PDU were conducted to investigate hydrogasification, where hydrogen or a steam/hydrogen mixture was the reactive gas. A fluidized bed PDU was employed to investigate steam-oxygen gasification and fluidization relationships were studied. The primary advantages to be gained by Peatgas pilot plant testing are, in Kellogg's opinion, the demonstration and evaluation of the three process stages (drying, hydrogasification and steam-oxygen gasification) in an integrated mode. The lack of integrated operation is a significant shortcoming of the existing data base and as such Kellogg would not recommend use of the data base for purposes other than pilot plant design and preliminary engineering studies. Other more specific comments regarding the data base are given.

  7. Mathematical Modeling of Coal Gasification Processes in a Well-Stirred Reactor: Effects of Devolatilization and Moisture Content

    E-Print Network [OSTI]

    Qiao, Li

    and syngas production). The results show that the syngas yield is most sensitive to the reaction rates on the syngas composition. The coal conversion time is most sensitive to the heat transfer rates including both

  8. Development of biological coal gasification (MicGAS process). Final report, May 1, 1990--May 31, 1995

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    ARCTECH has developed a novel process (MicGAS) for direct, anaerobic biomethanation of coals. Biomethanation potential of coals of different ranks (Anthracite, bitumious, sub-bitumious, and lignites of different types), by various microbial consortia, was investigated. Studies on biogasification of Texas Lignite (TxL) were conducted with a proprietary microbial consortium, Mic-1, isolated from hind guts of soil eating termites (Zootermopsis and Nasutitermes sp.) and further improved at ARCTECH. Various microbial populations of the Mic-1 consortium carry out the multi-step MicGAS Process. First, the primary coal degraders, or hydrolytic microbes, degrade the coal to high molecular weight (MW) compounds. Then acedogens ferment the high MW compounds to low MW volatile fatty acids. The volatile fatty acids are converted to acetate by acetogens, and the methanogens complete the biomethanation by converting acetate and CO{sub 2} to methane.

  9. EIS-0428: Department of Energy Loan Guarantee for Mississippi Integrated Gasification Combined Cycle, Moss Point, Mississippi

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a petroleum coke-to-substitute natural gas facility proposed to be built by Mississippi Gasification. The facility would be designed to produce 120 million standard cubic feet of gas per day. Other products would be marketable sulfuric acid, carbon dioxide, argon, and electric power.

  10. Gasification Product Improvement Facility (GPIF). Final report

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The gasifier selected for development under this contract is an innovative and patented hybrid technology which combines the best features of both fixed-bed and fluidized-bed types. PyGas{trademark}, meaning Pyrolysis Gasification, is well suited for integration into advanced power cycles such as IGCC. It is also well matched to hot gas clean-up technologies currently in development. Unlike other gasification technologies, PyGas can be designed into both large and small scale systems. It is expected that partial repowering with PyGas could be done at a cost of electricity of only 2.78 cents/kWh, more economical than natural gas repowering. It is extremely unfortunate that Government funding for such a noble cause is becoming reduced to the point where current contracts must be canceled. The Gasification Product Improvement Facility (GPIF) project was initiated to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology at a cost approaching $1,000 per kilowatt for electric power generation applications. The project was to include an innovative, advanced, air-blown, pressurized, fixed-bed, dry-bottom gasifier and a follow-on hot metal oxide gas desulfurization sub-system. To help defray the cost of testing materials, the facility was to be located at a nearby utility coal fired generating site. The patented PyGas{trademark} technology was selected via a competitive bidding process as the candidate which best fit overall DOE objectives. The paper describes the accomplishments to date.

  11. Self-scrubbing coal{sup TM}: An integrated approach to clean air. A proposed Clean Coal Technology Demonstration Project

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    This environmental assessment (EA) was prepared by the U.S.Department of Energy (DOE), with compliance with the National Environmental Policy Act (NEPA) of 1969, Council on Environmental Quality (CE) regulations for implementating NEPA (40 CFR 1500-1508) and DOE regulations for compliance with NEPA (10 CFR 1021), to evaluate the potential environmental impacts associated with a proposed demonstration project to be cost-shared by DOE and Custom Coals International (CCI) under the Clean Coal Technology (CCT) Demonstration Program of DOE`s Office of Fossil Energy. CCI is a Pennsylvania general partnership located in Pittsburgh, PA engaged in the commercialization of advanced coal cleaning technologies. The proposed federal action is for DOE to provide, through a cooperative agreement with CCI, cost-shared funding support for the land acquisition, design, construction and demonstration of an advanced coal cleaning technology project, {open_quotes}Self-Scrubbing Coal: An Integrated Approach to Clean Air.{close_quotes} The proposed demonstration project would take place on the site of the presently inactive Laurel Coal Preparation Plant in Shade Township, Somerset County, PA. A newly constructed, advanced design, coal preparation plant would replace the existing facility. The cleaned coal produced from this new facility would be fired in full-scale test burns at coal-fired electric utilities in Indiana, Ohio and PA as part of this project.

  12. Method of producing a colloidal fuel from coal and a heavy petroleum fraction. [partial liquefaction of coal in slurry, filtration and gasification of residue

    DOE Patents [OSTI]

    Longanbach, J.R.

    1981-11-13T23:59:59.000Z

    A method is provided for combining coal as a colloidal suspension within a heavy petroleum fraction. The coal is broken to a medium particle size and is formed into a slurry with a heavy petroleum fraction such as a decanted oil having a boiling point of about 300 to 550/sup 0/C. The slurry is heated to a temperature of 400 to 500/sup 0/C for a limited time of only about 1 to 5 minutes before cooling to a temperature of less than 300/sup 0/C. During this limited contact time at elevated temperature the slurry can be contacted with hydrogen gas to promote conversion. The liquid phase containing dispersed coal solids is filtered from the residual solids and recovered for use as a fuel or feed stock for other processes. The residual solids containing some carbonaceous material are further processed to provide hydrogen gas and heat for use as required in this process.

  13. Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas

    SciTech Connect (OSTI)

    Turk, Brian; Gupta, Raghubir; Sharma, Pradeepkumar; Albritton, Johnny; Jamal, Aqil

    2010-09-30T23:59:59.000Z

    One of the key obstacles for the introduction of commercial gasification technology for the production of power with Integrated Gasification Combined Cycle (IGCC) plants or the production of value added chemicals, transportation fuels, and hydrogen has been the cost of these systems. This situation is particularly challenging because the United States has ample coal resources available as raw materials and effective use of these raw materials could help us meet our energy and transportation fuel needs while significantly reducing our need to import oil. One component of the cost of these systems that faces strong challenges for continuous improvement is removing the undesirable components present in the syngas. The need to limit the increase in cost of electricity to < 35% for new coal-based power plants which include CO{sub 2} capture and sequestration addresses both the growing social concern for global climate change resulting from the emission of greenhouse gas and in particular CO{sub 2} and the need to control cost increases to power production necessary to meet this social objective. Similar improvements to technologies for trace contaminants are getting similar pressure to reduce environmental emissions and reduce production costs for the syngas to enable production of chemicals from coal that is cost competitive with oil and natural gas. RTI, with DOE/NETL support, has been developing sorbent technologies that enable capture of trace contaminants and CO{sub 2} at temperatures above 400 °F that achieve better capture performance, lower costs and higher thermal efficiency. This report describes the specific work of sorbent development for mercury (Hg), arsenic (As), selenium (Se), cadmium (Cd), and phosphorous (P) and CO{sub 2} removal. Because the typical concentrations of Hg, As, Se, Cd, and P are less than 10 ppmv, the focus has been on single-use sorbents with sufficient capacity to ensure replacement costs are cost effective. The research in this report describes the development efforts which expand this sorbent development effort to include Se, Cd, and P as well as Hg and As. Additional research has focused on improving removal performance with the goal of achieving effluent concentrations that are suitable for chemical production applications. By contrast, sorbent development for CO{sub 2} capture has focused on regenerable sorbents that capture the CO{sub 2} byproduct at higher CO{sub 2} pressures. Previous research on CO{sub 2} sorbents has demonstrated that the most challenging aspect of developing CO{sub 2} sorbents is regeneration. The research documented in this report investigates options to improve regeneration of the CO{sub 2} capture sorbents. This research includes effort on addressing existing regeneration limitations for sorbents previously developed and new approaches that focus initially on the regeneration performance of the sorbent.

  14. Gasification Plant Cost and Performance Optimization

    SciTech Connect (OSTI)

    Samuel Tam; Alan Nizamoff; Sheldon Kramer; Scott Olson; Francis Lau; Mike Roberts; David Stopek; Robert Zabransky; Jeffrey Hoffmann; Erik Shuster; Nelson Zhan

    2005-05-01T23:59:59.000Z

    As part of an ongoing effort of the U.S. Department of Energy (DOE) to investigate the feasibility of gasification on a broader level, Nexant, Inc. was contracted to perform a comprehensive study to provide a set of gasification alternatives for consideration by the DOE. Nexant completed the first two tasks (Tasks 1 and 2) of the ''Gasification Plant Cost and Performance Optimization Study'' for the DOE's National Energy Technology Laboratory (NETL) in 2003. These tasks evaluated the use of the E-GAS{trademark} gasification technology (now owned by ConocoPhillips) for the production of power either alone or with polygeneration of industrial grade steam, fuel gas, hydrocarbon liquids, or hydrogen. NETL expanded this effort in Task 3 to evaluate Gas Technology Institute's (GTI) fluidized bed U-GAS{reg_sign} gasifier. The Task 3 study had three main objectives. The first was to examine the application of the gasifier at an industrial application in upstate New York using a Southeastern Ohio coal. The second was to investigate the GTI gasifier in a stand-alone lignite-fueled IGCC power plant application, sited in North Dakota. The final goal was to train NETL personnel in the methods of process design and systems analysis. These objectives were divided into five subtasks. Subtasks 3.2 through 3.4 covered the technical analyses for the different design cases. Subtask 3.1 covered management activities, and Subtask 3.5 covered reporting. Conceptual designs were developed for several coal gasification facilities based on the fluidized bed U-GAS{reg_sign} gasifier. Subtask 3.2 developed two base case designs for industrial combined heat and power facilities using Southeastern Ohio coal that will be located at an upstate New York location. One base case design used an air-blown gasifier, and the other used an oxygen-blown gasifier in order to evaluate their relative economics. Subtask 3.3 developed an advanced design for an air-blown gasification combined heat and power facility based on the Subtask 3.2 design. The air-blown case was chosen since it was less costly and had a better return on investment than the oxygen-blown gasifier case. Under appropriate conditions, this study showed a combined heat and power air-blown gasification facility could be an attractive option for upgrading or expanding the utilities area of industrial facilities. Subtask 3.4 developed a base case design for a large lignite-fueled IGCC power plant that uses the advanced GE 7FB combustion turbine to be located at a generic North Dakota site. This plant uses low-level waste heat to dry the lignite that otherwise would be rejected to the atmosphere. Although this base case plant design is economically attractive, further enhancements should be investigated. Furthermore, since this is an oxygen-blown facility, it has the potential for capture and sequestration of CO{sub 2}. The third objective for Task 3 was accomplished by having NETL personnel working closely with Nexant and Gas Technology Institute personnel during execution of this project. Technology development will be the key to the long-term commercialization of gasification technologies. This will be important to the integration of this environmentally superior solid fuel technology into the existing mix of power plants and industrial facilities. As a result of this study, several areas have been identified in which research and development will further advance gasification technology. Such areas include improved system availability, development of warm-gas clean up technologies, and improved subsystem designs.

  15. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D.; Dumesic, James A.

    2013-04-02T23:59:59.000Z

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  16. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

    2011-01-18T23:59:59.000Z

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  17. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

    2012-04-10T23:59:59.000Z

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  18. Evaluation of gasification and gas cleanup processes for use in molten carbonate fuel cell power plants. Final report. [Contains lists and evaluations of coal gasification and fuel gas desulfurization processes

    SciTech Connect (OSTI)

    Jablonski, G.; Hamm, J.R.; Alvin, M.A.; Wenglarz, R.A.; Patel, P.

    1982-01-01T23:59:59.000Z

    This report satisfies the requirements for DOE Contract AC21-81MC16220 to: List coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants; extensively characterize those coal gas cleanup systems rejected by DOE's MCFC contractors for their power plant systems by virtue of the resources required for those systems to be commercially developed; develop an analytical model to predict MCFC tolerance for particulates on the anode (fuel gas) side of the MCFC; develop an analytical model to predict MCFC anode side tolerance for chemical species, including sulfides, halogens, and trace heavy metals; choose from the candidate gasifier/cleanup systems those most suitable for MCFC-based power plants; choose a reference wet cleanup system; provide parametric analyses of the coal gasifiers and gas cleanup systems when integrated into a power plant incorporating MCFC units with suitable gas expansion turbines, steam turbines, heat exchangers, and heat recovery steam generators, using the Westinghouse proprietary AHEAD computer model; provide efficiency, investment, cost of electricity, operability, and environmental effect rankings of the system; and provide a final report incorporating the results of all of the above tasks. Section 7 of this final report provides general conclusions.

  19. Development of a Segregated Municipal Solid Waste Gasification System for Electrical Power Generation 

    E-Print Network [OSTI]

    Maglinao, Amado Latayan

    2013-04-11T23:59:59.000Z

    index for coals. ............................................................ 110 Table 21. Utimate analysis of different biomass ............................................................ 114 Table 22. Analysis of the ash from MSW, DM and CGT... impact on the design, performance, maintenance and cost of gasification (Consonni and Vigan?, 2012). [3] 9 Biomass gasification has trailed coal gasification due to technical differences in the characteristics of the feedstock and the typical...

  20. EIS-0318: Kentucky Pioneer Integrated Gasification Combined Cycle (IGCC) Demonstration Project, Trapp, Kentucky (Clark County)

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to provide cost-shared financial support for The Kentucky Pioneer IGCC Demonstration Project, an electrical power station demonstrating use of a Clean Coal Technology in Clark County, Kentucky.

  1. Simulation and optimization of hot syngas separation processes in integrated gasification combined cycle

    E-Print Network [OSTI]

    Prakash, Kshitij

    2009-01-01T23:59:59.000Z

    IGCC with CO2 capture offers an exciting approach for cleanly using abundant coal reserves of the world to generate electricity. The present state-of-the-art synthesis gas (syngas) cleanup technologies in IGCC involve ...

  2. Performance of solid oxide fuel cells operated with coal syngas...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance of solid oxide fuel cells operated with coal syngas provided directly from a gasification process. Performance of solid oxide fuel cells operated with coal syngas...

  3. Comparative Life-Cycle Air Emissions of Coal, Domestic Natural

    E-Print Network [OSTI]

    Jaramillo, Paulina

    come domestically from the production of synthetic natural gas (SNG) via coal gasification- methanation gasification technologies that use coal to produce SNG. This National Gasification Strategy callsComparative Life-Cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity

  4. Polygeneration Integration of Gasoline Synthesis and IGCC Power Production Using

    E-Print Network [OSTI]

    of chemical plants are being built using coal and petcoke as feedstock. Power production is another efficiencies higher than what can be obtained in conventional coal fired power plants. However, the IGCC production. In an Integrated Gasification Combined Cycle (IGCC) plant, power is produced by burning synthesis

  5. Dynamic simulation and load-following control of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture

    SciTech Connect (OSTI)

    Bhattacharyya, D,; Turton, R.; Zitney, S.

    2012-01-01T23:59:59.000Z

    Load-following control of future integrated gasification combined cycle (IGCC) plants with pre-combustion CO{sub 2} capture is expected to be far more challenging as electricity produced by renewable energy is connected to the grid and strict environmental limits become mandatory requirements. To study control performance during load following, a plant-wide dynamic simulation of a coal-fed IGCC plant with CO{sub 2} capture has been developed. The slurry-fed gasifier is a single-stage, downward-fired, oxygen-blown, entrained-flow type with a radiant syngas cooler (RSC). The syngas from the outlet of the RSC goes to a scrubber followed by a two-stage sour shift process with inter-stage cooling. The acid gas removal (AGR) process is a dual-stage physical solvent-based process for selective removal of H{sub 2}S in the first stage and CO{sub 2} in the second stage. Sulfur is recovered using a Claus unit with tail gas recycle to the AGR. The recovered CO{sub 2} is compressed by a split-shaft multistage compressor and sent for sequestration after being treated in an absorber with triethylene glycol for dehydration. The clean syngas is sent to two advanced “F”-class gas turbines (GTs) partially integrated with an elevated-pressure air separation unit. A subcritical steam cycle is used for heat recovery steam generation. A treatment unit for the sour water strips off the acid gases for utilization in the Claus unit. The steady-state model developed in Aspen Plus® is converted to an Aspen Plus Dynamics® simulation and integrated with MATLAB® for control studies. The results from the plant-wide dynamic model are compared qualitatively with the data from a commercial plant having different configuration, operating condition, and feed quality than what has been considered in this work. For load-following control, the GT-lead with gasifier-follow control strategy is considered. A modified proportional–integral–derivative (PID) control is considered for the syngas pressure control. For maintaining the desired CO{sub 2} capture rate while load-following, a linear model predictive controller (LMPC) is implemented in MATLAB®. A combined process and disturbance model is identified by considering a number of model forms and choosing the final model based on an information-theoretic criterion. The performance of the LMPC is found to be superior to the conventional PID control for maintaining CO{sub 2} capture rates in an IGCC power plant while load following.

  6. Identification and separation of the organic compounds in coal-gasification condensate waters. [5,5 dimethyl hydantoin, dihydroxy benzenes, acetonitrile

    SciTech Connect (OSTI)

    Mohr, D.H. Jr.; King, C.J.

    1983-08-01T23:59:59.000Z

    A substantial fraction of the organic solutes in condensate waters from low-temperature coal-gasification processes are not identified by commonly employed analytical techniques, have low distriution coefficients (K/sub C/) into diisopropyl ether (DIPE) or methyl isobutyl ketone (MIBK), and are resistant to biological oxidation. These compounds represent an important wastewater-treatment problem. Analytical techniques were developed to detect these polar compounds, and the liquid-liquid phase equilibria were measured with several solvents. A high-performance liquid - chromatography (HPLC) technique was employed to analyze four condensate-water samples from a slagging fixed-bed gasifier. A novel sample-preparation technique, consisting of an azeotropic distillation with isopropanol, allowed identification of compounds in the HPLC eluant by combined gas chromatography and mass spectrometry. 5,5-dimethyl hydantoin and related compounds were identified in condensate waters for the first time, and they account for 1 to 6% of the chemical oxygen demand (COD). Dimethyl hydatoin has a K/sub D/ of 2.6 into tributyl phosphate (TBP) and much lower K/sub D/ values into six other solvents. It is also resistant to biological oxidation. Phenols (59 to 76% of the COD), dihydroxy benzenes (0.02 to 9.5% of the COD), and methanol, acetonitrile, and acetone (15% of the COD in one sample) were also detected. Extraction with MIBK removed about 90% of the COD. MIBK has much higher K/sub D/ values than DIPE for dihydroxy benzenes. Chemical reactions occurred during storage of condensate-water samples. The reaction products had low K/sub D/ values into MIBK. About 10% of the COD had a K/sub D/ of nearly zero into MIBK. These compounds were not extracted by MIBK over a wide range of pH. 73 references, 6 figures, 35 tables.

  7. Slag characterization and removal using pulse detonation for coal gasification. Quarterly research report, October--December, 1995

    SciTech Connect (OSTI)

    Huque, Z.; Zhou, J.; Mei, D.; Biney, P.O.

    1995-12-25T23:59:59.000Z

    Experiments will mainly focus on breaking the bonds within the slag itself using detonation wave. For the experiments, initial suggestion was to build up slag deposit around a representative tube by placing it inside the convection pass of an actual boiler at the Northern States Power Company. But it was later concluded that once the tube is cooled to room condition, the thermal stress will greatly reduce the bonding between the heat transfer surface and the slag. It was concluded that the slag will be attached to the tube using high density epoxy resin. High density epoxy will be used so that they do not diffuse into the slag and strengthen the bonding within the slag. Suggestions on candidate epoxy are provided by MTI lab. MTI also provided PVAMU with different kinds of slags for testing. The deposits for characterization were from a subbituminous coal fired utility boiler.

  8. Utilization of Illinois coal gasification slags for production of ultra-lightweight aggregates. Final technical report, September 1, 1992--August 31, 1993

    SciTech Connect (OSTI)

    Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States); Zimmerle, T. [Silbrico Corp. (United States)

    1993-12-31T23:59:59.000Z

    This research was aimed at testing and developing the expansion potential of solid residues (slag) from gasification of Illinois coals to manufacture ultra-lightweight aggregates (ULWA). Conventional ULWAs are manufactured by pyroprocessing perlite or vermiculite ores and have unit weights in the 5--12 lb/ ft{sup 3} range. These materials sell for approximately $200/ton ($1.00/ft{sup 3}) and have numerous applications. The incentive for this effort was based on previous experimental results in which lightweight aggregates (LWA) with unit weights of 25--55 lb/ft{sup 3} were produced from Illinois slag using a direct-fired furnace. In this program, bench-scale expansion tests conducted with two Illinois coal slags resulted in product unit weights of 12 and 18.5 lb/ ft{sup 3}, thus confirming the feasibility of producing ULWA from Illinois slags. During initial pilot vertical shaft furnace test runs, two Illinois slags were expanded to generate products with unit weights of 12.5--26.5 and 20--52 lb/ ft{sup 3}. Further attempts to lower the product unit weights resulted in fusion of the slag. This problem could be overcome by methods including surface treatment of the slag, blending the slag with other materials, or utilization of indirect firing methods. To lower the product unit weights, an indirect-fired horizontal shaft furnace was used and products with unit weights of 12.4--52.0 lb/ft{sup 3} were generated, thus indicating that this method can be used to produce a wide range of expanded products. A large batch of expanded slag was produced using an 18-in. diameter x 12-ft long indirect-fired pilot furnace. A sample from this batch was characterized. Specimens of insulating concrete made from expanded slag had a unit weight 43.3 lb/ft{sup 3} and thermal conductivity of 1.34 Btu-in./h/ft{sup 2}/{degrees}F. This compares well with a value of 1. 2 Btu-in./h/ft{sup 2}/{degrees}F for insulating concrete of a similar weight made from perlite, as per ASTM C 332-82.

  9. Low-rank coal research

    SciTech Connect (OSTI)

    Weber, G. F.; Laudal, D. L.

    1989-01-01T23:59:59.000Z

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  10. Hybrid Combustion-Gasification Chemical Looping

    SciTech Connect (OSTI)

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07T23:59:59.000Z

    For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2} separation, and also syngas production from coal with the calcium sulfide (CaS)/calcium sulfate (CaSO{sub 4}) loop utilizing the PDU facility. The results of Phase I were reported in Reference 1, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase I Report' The objective for Phase II was to develop the carbonate loop--lime (CaO)/calcium carbonate (CaCO{sub 3}) loop, integrate it with the gasification loop from Phase I, and ultimately demonstrate the feasibility of hydrogen production from the combined loops. The results of this program were reported in Reference 3, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase II Report'. The objective of Phase III is to operate the pilot plant to obtain enough engineering information to design a prototype of the commercial Chemical Looping concept. The activities include modifications to the Phase II Chemical Looping PDU, solids transportation studies, control and instrumentation studies and additional cold flow modeling. The deliverable is a report making recommendations for preliminary design guidelines for the prototype plant, results from the pilot plant testing and an update of the commercial plant economic estimates.

  11. EIS-0431: Hydrogen Energy California's Integrated Gasification Combined Cycle and Carbon Capture and Sequestration Project, California

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of a proposal to provide financial assistance for the construction and operation of Hydrogen Energy California's LLC project, which would produce and sell electricity, carbon dioxide and fertilizer. DOE selected this project for an award of financial assistance through a competitive process under the Clean Coal Power Initiative program.

  12. INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION

    SciTech Connect (OSTI)

    Peet M. Soot; Dale R. Jesse; Michael E. Smith

    2005-08-01T23:59:59.000Z

    An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogen from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM streams containing high levels of nitrogen, as is now the case at the Federal No.2 Mine. Even lacking the CPSA pipeline delivery demonstration, the project was successful in laying the groundwork for future commercial applications of the integrated system. This operation can still provide a guide for other coal mines which need options for utilization of their methane resources. The designed system can be used as a complete template, or individual components of the system can be segregated and utilized separately at other mines. The use of the CMM not only provides an energy fuel from an otherwise wasted resource, but it also yields an environmental benefit by reducing greenhouse gas emissions. The methane has twenty times the greenhouse effect as compared to carbon dioxide, which the combustion of the methane generates. The net greenhouse gas emission mitigation is substantial.

  13. HTGR-INTEGRATED COAL TO LIQUIDS PRODUCTION ANALYSIS

    SciTech Connect (OSTI)

    Anastasia M Gandrik; Rick A Wood

    2010-10-01T23:59:59.000Z

    As part of the DOE’s Idaho National Laboratory (INL) nuclear energy development mission, the INL is leading a program to develop and design a high temperature gas-cooled reactor (HTGR), which has been selected as the base design for the Next Generation Nuclear Plant. Because an HTGR operates at a higher temperature, it can provide higher temperature process heat, more closely matched to chemical process temperatures, than a conventional light water reactor. Integrating HTGRs into conventional industrial processes would increase U.S. energy security and potentially reduce greenhouse gas emissions (GHG), particularly CO2. This paper focuses on the integration of HTGRs into a coal to liquids (CTL) process, for the production of synthetic diesel fuel, naphtha, and liquefied petroleum gas (LPG). The plant models for the CTL processes were developed using Aspen Plus. The models were constructed with plant production capacity set at 50,000 barrels per day of liquid products. Analysis of the conventional CTL case indicated a potential need for hydrogen supplementation from high temperature steam electrolysis (HTSE), with heat and power supplied by the HTGR. By supplementing the process with an external hydrogen source, the need to “shift” the syngas using conventional water-gas shift reactors was eliminated. HTGR electrical power generation efficiency was set at 40%, a reactor size of 600 MWth was specified, and it was assumed that heat in the form of hot helium could be delivered at a maximum temperature of 700°C to the processes. Results from the Aspen Plus model were used to perform a preliminary economic analysis and a life cycle emissions assessment. The following conclusions were drawn when evaluating the nuclear assisted CTL process against the conventional process: • 11 HTGRs (600 MWth each) are required to support production of a 50,000 barrel per day CTL facility. When compared to conventional CTL production, nuclear integration decreases coal consumption by 66% using electrolysis and nuclear power as the hydrogen source. In addition, nuclear integration decreases CO2 emissions by 84% if sequestration is assumed and 96% without sequestration, when compared to conventional CTL. • The preliminary economic assessment indicates that the incorporation of 11 HTGRs and the associated HTSEs impacts the expected return on investment, when compared to conventional CTL with or without sequestration. However, in a carbon constrained scenario, where CO2 emissions are taxed and sequestration is not an option, a reasonable CO2 tax would equate the economics of the nuclear assisted CTL case with the conventional CTL case. The economic results are preliminary, as they do not include economies of scale for multiple HTGRs and are based on an uncertain reactor cost estimate. Refinement of the HTGR cost estimate is currently underway. • To reduce well to wheel (WTW) GHG emissions below baseline (U.S. crude mix) or imported crude derived diesel, integration of an HTGR is necessary. WTW GHG emissions decrease 8% below baseline crude with nuclear assisted CTL. Even with CO2 sequestration, conventional CTL WTW GHG emissions are 24% higher than baseline crude emissions. • Current efforts are underway to investigate the incorporation of nuclear integrated steam methane reforming for the production of hydrogen, in place of HTSE. This will likely reduce the number of HTGRs required for the process.

  14. Gasoline from Wood via Integrated Gasification, Synthesis, and Methanol-to-Gasoline Technologies

    SciTech Connect (OSTI)

    Phillips, S. D.; Tarud, J. K.; Biddy, M. J.; Dutta, A.

    2011-01-01T23:59:59.000Z

    This report documents the National Renewable Energy Laboratory's (NREL's) assessment of the feasibility of making gasoline via the methanol-to-gasoline route using syngas from a 2,000 dry metric tonne/day (2,205 U.S. ton/day) biomass-fed facility. A new technoeconomic model was developed in Aspen Plus for this study, based on the model developed for NREL's thermochemical ethanol design report (Phillips et al. 2007). The necessary process changes were incorporated into a biomass-to-gasoline model using a methanol synthesis operation followed by conversion, upgrading, and finishing to gasoline. Using a methodology similar to that used in previous NREL design reports and a feedstock cost of $50.70/dry ton ($55.89/dry metric tonne), the estimated plant gate price is $16.60/MMBtu ($15.73/GJ) (U.S. $2007) for gasoline and liquefied petroleum gas (LPG) produced from biomass via gasification of wood, methanol synthesis, and the methanol-to-gasoline process. The corresponding unit prices for gasoline and LPG are $1.95/gallon ($0.52/liter) and $1.53/gallon ($0.40/liter) with yields of 55.1 and 9.3 gallons per U.S. ton of dry biomass (229.9 and 38.8 liters per metric tonne of dry biomass), respectively.

  15. EIS-0280: Proposed Clean Power from Integrated Coal/Ore Reduction Project (CPICOR) at Vineyard, Utah

    Broader source: Energy.gov [DOE]

    This EIS assesses the potential environmental and human health impacts of a proposed project under the Clean Coal Technology Program that would integrate the production of molten iron for steelmaking with the production of electricity.

  16. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect (OSTI)

    Michael J. Bockelie

    2000-10-31T23:59:59.000Z

    This report summarizes the research that has been performed by Reaction Engineering International (REI) during the last three months on demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The focus of our efforts during the last six months have been on: (1) Field Tests for RRI at the Conectiv BL England Station Unit No.1, a 130 MW cyclone fired boiler; (2) Extending our Computational Fluid Dynamics (CFD) based NOx model to accommodate the chemistry for Rich Reagent Injection (RRI) in cyclone fired boilers; (3) Applying the NOx model to evaluate RRI systems integrated into a boiler with Over Fired Air (OFA) and Selective Non-Catalytic Reduction (SNCR); (4) Field Tests of the REI Corrosion Probe at the Conectiv BL England Station Unit No.1; (5) Commence engineering study of ammonia adsorption mechanisms for Fly Ash; (6) Presentation of current program accomplishments and plans for future work to DoE staff members at NETL-FE (Pittsburgh); and (7) Presentation of preliminary field test results for RRI to EPRI CNCIG.

  17. Development of Highly Durable and Reactive Regenerable Magnesium-Based Sorbents for CO2 Separation in Coal Gasification Process

    SciTech Connect (OSTI)

    Javad Abbasian; Armin Hassanzadeh Khayyat; Rachid B. Slimane

    2005-06-01T23:59:59.000Z

    The specific objective of this project was to develop physically durable and chemically regenerable MgO-based sorbents that can remove carbon dioxide from raw coal gas at operating condition prevailing in IGCC processes. A total of sixty two (62) different sorbents were prepared in this project. The sorbents were prepared either by various sol-gel techniques (22 formulations) or modification of dolomite (40 formulations). The sorbents were prepared in the form of pellets and in granular forms. The solgel based sorbents had very high physical strength, relatively high surface area, and very low average pore diameter. The magnesium content of the sorbents was estimated to be 4-6 % w/w. To improve the reactivity of the sorbents toward CO{sub 2}, The sorbents were impregnated with potassium salts. The potassium content of the sorbents was about 5%. The dolomite-based sorbents were prepared by calcination of dolomite at various temperature and calcination environment (CO{sub 2} partial pressure and moisture). Potassium carbonate was added to the half-calcined dolomite through wet impregnation method. The estimated potassium content of the impregnated sorbents was in the range of 1-6% w/w. In general, the modified dolomite sorbents have significantly higher magnesium content, larger pore diameter and lower surface area, resulting in significantly higher reactivity compared to the sol-gel sorbents. The reactivities of a number of sorbents toward CO{sub 2} were determined in a Thermogravimetric Analyzer (TGA) unit. The results indicated that at the low CO{sub 2} partial pressures (i.e., 1 atm), the reactivities of the sorbents toward CO{sub 2} are very low. At elevated pressures (i.e., CO{sub 2} partial pressure of 10 bar) the maximum conversion of MgO obtained with the sol-gel based sorbents was about 5%, which corresponds to a maximum CO{sub 2} absorption capacity of less than 1%. The overall capacity of modified dolomite sorbents were at least one order of magnitude higher than those of the sol-gel based sorbents. The results of the tests conducted with various dolomite-based sorbent indicate that the reactivity of the modified dolomite sorbent increases with increasing potassium concentration, while higher calcination temperature adversely affects the sorbent reactivity. Furthermore, the results indicate that as long as the absorption temperature is well below the equilibrium temperature, the reactivity of the sorbent improves with increasing temperature (350-425 C). As the temperature approaches the equilibrium temperature, because of the significant increase in the rate of reverse (i.e., regeneration) reaction, the rate of CO{sub 2} absorption decreases. The results of cyclic tests show that the reactivity of the sorbent gradually decreases in the cyclic process. To improve long-term durability (i.e., reactivity and capacity) of the sorbent, the sorbent was periodically re-impregnated with potassium additive and calcined. The results indicate that, in general, re-treatment improves the performance of the sorbent, and that, the extent of improvement gradually decreases in the cyclic process. The presence of steam significantly enhances the sorbent reactivity and significantly decreases the rate of decline in sorbent deactivation in the cyclic process.

  18. Fossil fuel gasification technical evaluation services. Topical report 1978-80

    SciTech Connect (OSTI)

    Detman, R.F.

    1982-12-30T23:59:59.000Z

    The Exxon, Mountain Fuel, Cities Service/Rockwell, Westinghouse, BGC slagging Lurgi and Peatgas processes for fossil fuel gasification were evaluated. The Lurgi and HYGAS processes had been evaluated in earlier studies. For producing SNG from coal, only the Westinghouse conceptual design appeared competitive with HYGAS on eastern coal. All coal gasification processes were competitive with or better than Lurgi on eastern coal. The Mountain Fuel process was more costly than Lurgi or HYGAS on a western coal.

  19. Proceedings, twenty-five annual international Pittsburgh coal conference

    SciTech Connect (OSTI)

    NONE

    2008-07-01T23:59:59.000Z

    The conference theme was 'coal - energy, environment and sustainable development'. The topics covered energy and environmental issues, and technologies related to coal and its byproducts. These included: gasification, hydrogen from coal, combustion technologies, coal production and preparation, synthesis of liquid fuels, gas turbines and fuel cells for synthesis gas and hydrogen applications, coal chemistry and geosciences, global climate change, underground coal gasification, environmental control technologies, and coal utilization byproducts.

  20. Comprehensive Report to Congress Clean Coal Technology Program: Clean power from integrated coal/ore reduction

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This report describes a clean coal program in which an iron making technology is paired with combined cycle power generation to produce 3300 tons per day of hot metal and 195 MWe of electricity. The COREX technology consists of a metal-pyrolyzer connected to a reduction shaft, in which the reducing gas comes directly from coal pyrolysis. The offgas is utilized to fuel a combined cycle power plant.

  1. Steam gasification of carbon: Catalyst properties

    SciTech Connect (OSTI)

    Falconer, J.L.

    1993-01-10T23:59:59.000Z

    Coal gasification by steam is of critical importance in converting coal to gaseous products (CO, H[sub 2], CO[sub 2], CH[sub 4]) that can then be further converted to synthetic natural gas and higher hydrocarbon fuels. Alkali and alkaline earth metals (present as oxides) catalyze coal gasification reactions and cause them to occur at significantly lower temperatures. A more fundamental understanding of the mechanism of the steam gasification reaction and catalyst utilization may well lead to better production techniques, increased gasification rates, greater yields, and less waste. We are studying the gasification of carbon by steam in the presence of alkali and alkaline earth oxides, using carbonates as the starting materials. Carbon dioxide gasification (CO[sub 2] + C --> 2CO) has been studied in some detail recently, but much less has been done on the actual steam gasification reaction, which is the main thrust of our work. In particular, the form of the active catalyst compound during reaction is still questioned and the dependence of the concentration of active sites on reaction parameters is not known. Until recently, no measurements of active site concentrations during reaction had been made. We have recently used transient isotope tracing to determine active site concentration during CO[sub 2] gasification. We are investigating the mechanism and the concentration of active sites for steam gasification with transient isotopic tracing. For this technique, the reactant feed is switched from H[sub 2]0 to isotopically-labeled water at the same concentration and tow rate. We can then directly measure, at reaction the concentration of active catalytic sites, their kinetic rate constants, and the presence of more than one rate constant. This procedure allows us to obtain transient kinetic data without perturbing the steady-state surface reactions.

  2. Evaluation of air toxic emissions from advanced and conventional coal-fired power plants

    SciTech Connect (OSTI)

    Chu, P.; Epstein, M. [Electric Power Research Institute, Palo Alto, CA (United States); Gould, L. [Department of Energy, Pittsburgh, PA (United States); Botros, P. [Department of Energy, Morgantown, WV (United States)

    1995-12-31T23:59:59.000Z

    This paper evaluates the air toxics measurements at three advanced power systems and a base case conventional fossil fuel power plant. The four plants tested include a pressurized fluidized bed combustor, integrated gasification combined cycle, circulating fluidized bed combustor, and a conventional coal-fired plant.

  3. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    renewables Integrated coal gasification combined cycle withmethane reforming or coal gasification are well established,central plant) Coal Coal gasification with Carbon Capture

  4. Engineering support services for the DOE/GRI coal-gasification research program. Quarterly technical progress report, October-December 1981

    SciTech Connect (OSTI)

    Bostwick, L.E.; Ethridge, T.R.; Starr, D.W.; Shah, K.V.; Hubbard, D.A.; Koneru, P.B.; Smith, M.R.; Ward, W.E.; Wong, E.W.; Zeis, L.A.

    1982-02-01T23:59:59.000Z

    Kellogg continued to actively monitor operations at BI-GAS Westinghouse and IGT (for peat gasification). Pilot plant/PDU testing which was monitored and reported includes Westinghouse PDU tests TP-030-3 and TP-031-3 and CFSF test TP-M003-1; Peatgas Pilot Plant test No. 4; and single-stage peat gasification PDU tests BF-22 and BF-23. Kellogg personnel briefed the GRI Project Advisors on current tasks and a DOE representative on peat-related work. The report on the Hygas Data Base Evaluation was approved for issue. Progress was made toward finalizing the report on the Peatgas Data Base Evaluation and the Descriptive Brochure for the DOE/GRI Joint Program. Work on the evaluation of the data base for single-stage peat gasification continued. Review of the Hygas final report was completed.

  5. AN INSTRUMENTALIST APPROACH TO VALIDATION: A QUANTITATIVE ASSESSMENT OF A NOVEL COAL

    E-Print Network [OSTI]

    Utah, University of

    AN INSTRUMENTALIST APPROACH TO VALIDATION: A QUANTITATIVE ASSESSMENT OF A NOVEL COAL GASIFICATION at the mathematical model. The novel coal gasification model, which utilizes the direct quadrature method of moments in the larger context of validation and uncertainty quantification, and applied to the Arches coal gasification

  6. Clean and Secure Energy from Coal

    SciTech Connect (OSTI)

    Smith, Philip; Davies, Lincoln; Kelly, Kerry; Lighty, JoAnn; Reitze, Arnold; Silcox, Geoffrey; Uchitel, Kirsten; Wendt, Jost; Whitty, Kevin

    2014-08-31T23:59:59.000Z

    The University of Utah, through their Institute for Clean and Secure Energy (ICSE), performed research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research was organized around the theme of validation and uncertainty quantification (V/UQ) through tightly coupled simulation and experimental designs and through the integration of legal, environment, economics and policy issues. The project included the following tasks: • Oxy-Coal Combustion – To ultimately produce predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. • High-Pressure, Entrained-Flow Coal Gasification – To ultimately provide a simulation tool for industrial entrained-flow integrated gasification combined cycle (IGCC) gasifier with quantified uncertainty. • Chemical Looping Combustion (CLC) – To develop a new carbon-capture technology for coal through CLC and to transfer this technology to industry through a numerical simulation tool with quantified uncertainty bounds. • Underground Coal Thermal Treatment – To explore the potential for creating new in-situ technologies for production of synthetic natural gas (SNG) from deep coal deposits and to demonstrate this in a new laboratory-scale reactor. • Mercury Control – To understand the effect of oxy-firing on the fate of mercury. • Environmental, Legal, and Policy Issues – To address the legal and policy issues associated with carbon management strategies in order to assess the appropriate role of these technologies in our evolving national energy portfolio. • Validation/Uncertainty Quantification for Large Eddy Simulations of the Heat Flux in the Tangentially Fired Oxy-Coal Alstom Boiler Simulation Facility – To produce predictive capability with quantified uncertainty bounds for the heat flux in commercial-scale, tangentially fired, oxy-coal boilers.

  7. Coal Gasification | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    concentrated CO2 stream can subsequently be captured and sequestered. Learn more about carbon capture and sequestration. Why Is This Technology Being Considered? The United...

  8. ENCOAL Mild Coal Gasification project

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    Construction of the project dominated the activities of both the ENCOAL and KCI field groups during this reporting period. Emphasis.was placed on expediting late vendor information and upon completing the construction phase of the project. Field progress was estimated to be 94 complete as of the end of March. As a result of the construction progress, demobilization of KCI and their subcontractors was initiated. The Operations team concentrated on the operator. training classes which began on February 24. The classes were well received and many precommissioning activities were accomplished during the afternoon hands-on'' sessions. Commissioning and testing plans were also a priority as the project continued to make the transition from construction to operation. Several meetings were held during the quarter discussing the commissioning and testing procedures. The purpose of these meetings was to develop a sequential work schedule to coordinate all commissioning activities. A resulting time-line of both testing and commissioning plans was developed, and will be continuously updated to ensure the most efficient management of manpower.

  9. Gasoline from coal in the state of Illinois: feasibility study. Volume I. Design. [KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Volume 1 describes the proposed plant: KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process, and also with ancillary processes, such as oxygen plant, shift process, RECTISOL purification process, sulfur recovery equipment and pollution control equipment. Numerous engineering diagrams are included. (LTN)

  10. Biomass characterization and reduced order modeling of mixed-feedstock gasification

    E-Print Network [OSTI]

    Chapman, Alex J. (Alex Jacob)

    2011-01-01T23:59:59.000Z

    There has been much effort to characterize and model coal for use in combustion and gasification. This work seeks to delineate the differences and similarities between biomass and coal, with emphasis on the state of the ...

  11. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    SciTech Connect (OSTI)

    Burton Davis; Gary Jacobs; Wenping Ma; Dennis Sparks; Khalid Azzam; Janet Chakkamadathil Mohandas; Wilson Shafer; Venkat Ramana Rao Pendyala

    2011-09-30T23:59:59.000Z

    There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased. Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations. In the second and third years, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H{sub 2}S and NH{sub 3}. Cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts were also subjected to a number of the same compounds in order to evaluate their sensitivities at different concentration levels of added contaminant.

  12. Gasification Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SYSTEMS Gasi cation Systems Advanced Combustion Systems Advanced Turbines Solid Oxide Fuel Cells Plant Optimization Coal Utilization Sciences University Training and Research...

  13. Clean Coal Program Research Activities

    SciTech Connect (OSTI)

    Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

    2009-03-31T23:59:59.000Z

    Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

  14. Damage monitoring of refractory wall in a generic entrained-bed slagging gasification system

    E-Print Network [OSTI]

    Ray, Asok

    INTRODUCTION Modern day gasification plants offer a versatile and clean way to convert coal and other that gasification will be a major source of clean-fuel technology (e.g. US Department of Energy's Future- Gen.Forexample,a carbon-based feedstock (e.g. coal) is typically exposed to hot steam and carefully controlled amounts

  15. Coal: the new black

    SciTech Connect (OSTI)

    Tullo, A.H.; Tremblay, J.-F.

    2008-03-15T23:59:59.000Z

    Long eclipsed by oil and natural gas as a raw material for high-volume chemicals, coal is making a comeback, with oil priced at more than $100 per barrel. It is relatively cheap feedstock for chemicals such as methanol and China is building plants to convert coal to polyolefins on a large scale and interest is spreading worldwide. Over the years several companies in the US and China have made fertilizers via the gasification of coal. Eastman in Tennessee gasifies coal to make methanol which is then converted to acetic acid, acetic anhydride and acetate fiber. The future vision is to convert methanol to olefins. UOP and Lurgi are the major vendors of this technology. These companies are the respective chemical engineering arms of Honeywell and Air Liquide. The article reports developments in China, USA and India on coal-to-chemicals via coal gasification or coal liquefaction. 2 figs., 2 photo.

  16. Current status of design and construction of ENCOAL Mild Gasification Plant

    SciTech Connect (OSTI)

    Frederick, J.P.; Siddoway, M.A.; Coolidge, D.W.

    1992-01-01T23:59:59.000Z

    The ENCOAL project is demonstrating for the first time the integrated operation of several process steps: a. Coal drying on a rotary grate using convective heatin; b. Coal devolatilization on a rotary grate using convective heating; c. Hot particulate removal with cyclones integral solids cooling; and deactivation-passivation; e. Combustors operating on low-Btu gas from internal streams; f. Solids stabilization for storage and shipment; g. Computer control and optimization of a mild coal gasification process. The product fuels are expected to be used economically in commercial boilers and furnaces and to significantly reduce sulfur emissions at industrial and utility facilities currently burning high sulfur bituminous fuels or fuel oils thereby reducing acid rain-causing pollutants. The design and construction of the ENCOAL demonstration plan was done on a fast track basis, that is, these activities were extensively overlapped.

  17. Current status of design and construction of ENCOAL Mild Gasification Plant

    SciTech Connect (OSTI)

    Frederick, J.P.; Siddoway, M.A.; Coolidge, D.W.

    1992-11-01T23:59:59.000Z

    The ENCOAL project is demonstrating for the first time the integrated operation of several process steps: a. Coal drying on a rotary grate using convective heatin; b. Coal devolatilization on a rotary grate using convective heating; c. Hot particulate removal with cyclones integral solids cooling; and deactivation-passivation; e. Combustors operating on low-Btu gas from internal streams; f. Solids stabilization for storage and shipment; g. Computer control and optimization of a mild coal gasification process. The product fuels are expected to be used economically in commercial boilers and furnaces and to significantly reduce sulfur emissions at industrial and utility facilities currently burning high sulfur bituminous fuels or fuel oils thereby reducing acid rain-causing pollutants. The design and construction of the ENCOAL demonstration plan was done on a fast track basis, that is, these activities were extensively overlapped.

  18. Engineering support services for the DOE/GRI coal-gasification research program. Evaluation of the data base for single-stage gasification of peat. [IGT 6 inch, single stage, fluidized bed (not PEATGAS)

    SciTech Connect (OSTI)

    Bostwick, L.E.; Hubbard, D.A.; Shah, K.V.; Do, L.T.

    1982-03-01T23:59:59.000Z

    Kellogg has reviewed the data base generated by IGT in the 6 inch PDU for the single stage fluidized bed gasification of peat. Kellogg's central finding is that the existing data base should be expanded by further testing in the PDU, after necessary modifications, to investigate further the effects of operating parameters within the ranges of interest. The existing data base consists of 20 PDU runs. Kellogg has concentrated on the Minnesota peat data base, since an insufficient number of runs exist for Maine and North Carolina peats to establish any valid trends. Consequently, the evaluation presented concerns only the Minnesota peat data base with respect to ranges of operating parameters studied, the criteria for good fluidized-bed operation and the effects of the key operating parameters on the performance. In Kellogg's opinion the existing data base demonstrates that: gasification of peat at 90+% carbon conversion is possible in a single stage fluidized bed reactor; the most significant operating parameters have been identified; the single stage fluidized bed peat gasifier has merit because of simplicity of operation, near-zero production of liquids and potential of operation without steam and at low pressure. However, Kellogg notes the following shortcomings:relatively small number of experimental runs and lack of data at certain levels of operating parameters studied; sintering occurred in 35% of the runs; in all the 20 test runs, fines losses exceeded in 5% of the feed and for the Minnesota peat data base, fines losses averaged 12.8%; use of large amounts of fluidizing gas (in this case N/sub 2/), which does not reflect commercial operation; and lack of data with higher peat feed moisture content. Thus, in Kellogg's opinion, considerable advantage is to be gained by expanding the existing data base and lists its specific recommendations.

  19. Engineering-support services for the DOE/GRI coal-gasification research program. Quarterly technical progress report, July-September 1981

    SciTech Connect (OSTI)

    Bostwick, L.E.; Ethridge, T.R.; Gilwood, W.C.; Glasgow, P.E.; Hubbard, D.A.; Shah, K.V.; Singer, D.L.; Smith, M.R.; Ward, W.E.

    1981-01-01T23:59:59.000Z

    During July-September 1981 Kellogg continued to actively monitor operations at BI-GAS, Westinghouse and IGT (for peat gasification). Pilot plant/PDU tests which were monitored and reported included BI-GAS Tests G-17D, G-17E, and G-17F; Westinghouse PDU test runs TP-0282 and TP-028-3 and CFSF Tests TP-M002-2 and TP-M006-1; Peatgas pilot plant Tests number 2 and number 3; and single-stage peat gasification PDU Test BF-21. Work on several task orders was completed with the issue of final reports on technical/economic assessments of Exxon, Westinghouse and Peatgas, the technical/economic comparison of Westinghouse and U-Gas, safety audits, safety assurance, peat harvesting and dewatering, gasifier vessel design and carbonyl formation. Kellogg continued its efforts toward completion of the descriptive brochure for the DOE/GRI Joint program and of the reports on the Hygas and Peatgas data bases. A new subtask, to evaluate the data base for single-stage peat gasification, was undertaken, and Kellogg participated in reviews of the Hygas final report. Normal MPC activities continued.

  20. Engineering-support services for the DOE/GRI coal-gasification research program. Quarterly technical progress report, April-June 1981

    SciTech Connect (OSTI)

    Bernard, D.M.; Bostwick, L.E.; Ethridge, T.R.; Gilwood, W.C.; Hubbard, D.A.; Montgomery, R.L.; Senules, E.A.; Singer, D.L.; Smith, M.R.; Ward, W.E.

    1981-01-01T23:59:59.000Z

    Kellog activities during April to June 1981 included continued monitoring of activities at Bi-Gas, Westinghouse, Exxon and IGT (for peat gasification). Pilot plant/PDU tests which were monitored and reported include Bi-Gas tests G-16B, G-17, G-17A, G-17B, and G-17C; Westinghouse PDU test runs TP-029-1/030-1, TP-030-2 and TP-028-1 and CFSF tests TP-M002-1 and TP-M002-2; Exxon run period number 28; Peatgas pilot plant Test RF-1 and gasification Test number 1; and IGT single-stage peat gasification PDU Tests BF-13 through BF-20. Significant milestones were reached with the issue of draft reports for several tasks, including carbonyl formation, peat harvesting/dewatering, technical/economic assessments of Exxon, Westinghouse and PeatGas, technical/economic comparison of Westinghouse and U-Gas, gasifier design, safety audits, Hygas data base evaluation and the safety assurance study. In addition, final reports were issued for the Westinghouse oxygen blown gasifier risk analysis and for the PDU screening evaluations of Exxon, Westinghouse and Rockwell. Work on the Peatgas PDU data base evaluation continued, and a review of the Hygas final report was begun.

  1. Techniques for Mercury Control and Measurement in Gasification Systems

    SciTech Connect (OSTI)

    Granite, E.J.; King, W.P.; Pennline, H.W.

    2002-09-20T23:59:59.000Z

    A major concern for power systems that use coal as an energy source is the air emissions from the plant. Although certain air emissions are currently regulated, the emergence of new regulations for other pollutants are on the horizon. Gasification is an important strategy for increasing the utilization of abundant domestic coal reserves. The Department of Energy envisions increased use of gasification in the United States during the next twenty years. As such, the DOE Gasification Technologies Program will strive to approach a near-zero emissions goal with respect to pollutants. The mercury research detailed in this proposal addresses the Gas Cleaning and Conditioning program technology area.

  2. 2007 gasification technologies conference papers

    SciTech Connect (OSTI)

    NONE

    2007-07-01T23:59:59.000Z

    Sessions covered: gasification industry roundtable; the gasification market in China; gasification for power generation; the gasification challenge: carbon capture and use storage; industrial and polygeneration applications; gasification advantage in refinery applications; addressing plant performance; reliability and availability; gasification's contribution to supplementing gaseous and liquid fuels supplies; biomass gasification for fuel and power markets; and advances in technology-research and development

  3. Measurement and modeling of advanced coal conversion processes

    SciTech Connect (OSTI)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. (Advanced Fuel Research, Inc., East Hartford, CT (United States)); Smoot, L.D.; Brewster, B.S. (Brigham Young Univ., Provo, UT (United States))

    1992-01-01T23:59:59.000Z

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This technology is important to reduce the technical and economic risks inherent in utilizing coal, a feedstock whose variable and often unexpected behavior presents a significant challenge. This program will merge significant advances made at Advanced Fuel Research, Inc. (AFR) in measuring and quantitatively describing the mechanisms in coal conversion behavior, with technology being developed at Brigham Young University (BYU) in comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors. The foundation to describe coal-specific conversion behavior is AFR's Functional Group (FG) and Devolatilization, Vaporization and Crosslinking (DVC) models, developed under previous and on-going METC sponsored programs. These models have demonstrated the capability to describe the time dependent evolution of individual gas species, and the amount and characteristics of tar and char. The combined FG-DVC model will be integrated with BYU's comprehensive two-dimensional reactor model, PCGC-2, which is currently the most widely used reactor simulation for combustion or gasification. The program includes: (i) validation of the submodels by comparison with laboratory data obtained in this program, (ii) extensive validation of the modified comprehensive code by comparison of predicted results with data from bench-scale and process scale investigations of gasification, mild gasification and combustion of coal or coal-derived products in heat engines, and (iii) development of well documented user friendly software applicable to a workstation'' environment.

  4. Measurement and modeling of advanced coal conversion processes

    SciTech Connect (OSTI)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. (Advanced Fuel Research, Inc., East Hartford, CT (United States)) [Advanced Fuel Research, Inc., East Hartford, CT (United States); Smoot, L.D.; Brewster, B.S. (Brigham Young Univ., Provo, UT (United States)) [Brigham Young Univ., Provo, UT (United States)

    1990-01-01T23:59:59.000Z

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This technology is important to reduce the technical and economic risks inherent in utilizing coal, a feedstock whose variable and often unexpected behavior presents a significant challenge. This program will merge significant advances made at Advanced Fuel Research, Inc. (AFR) in measuring and quantitatively describing the mechanisms in coal conversion behavior, with technology being developed at Brigham Young University (BYU) in comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors. The foundation to describe coal-specified conversion behavior is ARF's Functional Group (FG) and Devolatilization, Vaporization, and Crosslinking (DVC) models, developed under previous and on-going METC sponsored programs. These models have demonstrated the capability to describe the time dependent evolution of individual gas species, and the amount and characteristics of tar and char. The combined FG-DVC model will be integrated with BYU's comprehensive two-dimensional reactor model, PCGC-2, which is currently the most widely used reactor simulation for combustion or gasification. The program includes: (1) validation of the submodels by comparison with laboratory data obtained in this program, (2) extensive validation of the modified comprehensive code by comparison of predicted results with data from bench-scale and process scale investigations of gasification, mild gasification and combustion of coal or coal-derived products in heat engines, and (3) development of well documented user friendly software applicable to a workstation'' environment.

  5. Desulfurization of hot fuel gas produced from high-chlorine Illinois coals. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect (OSTI)

    O`Brien, W.S. [Southern Illinois Univ., Carbondale, IL (United States); Gupta, R.P. [Research Triangle Inst., Durham, NC (United States)

    1992-09-01T23:59:59.000Z

    There is a primary need to increase the utilization of Illinois coal resources by developing new methods of converting the coal into electricity by highly efficient and environmentally acceptable systems. New coal gasification processes are now being developed that can generate electricity with high thermal efficiency in either an integrated gasification combined cycle (IGCC) system or a molten carbonate fuel cell (MCFC). Both of-these new coal-to-electricity pathways require that the coal-derived fuel gas be at a high temperature and be free of potential pollutants, such as-sulfur compounds. Unfortunately, some high-sulfur Illinois coals also contain significant chlorine which converts into hydrogen chloride (HCI) in the coal gas. This project investigates the effect of HCI, in concentrations typical of a gasifier fed by high-chlorine Illinois coals, on zinc-titanate sorbents that are currently being developed for H{sub 2}S and COS removal from hot coal gas. This study is designed to identify any deleterious changes in the sorbent caused by HCI, both in adsorptive operation and in the regeneration cycle, and will pave the way to modify the sorbent formulation or the process operating procedure to remove HCl along with the H{sub 2}S and COS from hot coal gas. This will negate any harmful consequences Of utilizing high-chlorine Illinois coal in these processes.

  6. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect (OSTI)

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Suuberg; Eric Eddings; Larry Baxter

    2002-01-31T23:59:59.000Z

    This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. Preliminary results from laboratory and field tests of a corrosion probe to predict waterwall wastage indicate good agreement between the electrochemical noise corrosion rates predicted by the probe and corrosion rates measured by a surface profilometer. Four commercial manufacturers agreed to provide catalyst samples to the program. BYU has prepared two V/Ti oxide catalysts (custom, powder form) containing commercially relevant concentrations of V oxide and one containing a W oxide promoter. Two pieces of experimental apparatus being built at BYU to carry out laboratory-scale investigations of SCR catalyst deactivation are nearly completed. A decision was made to carry out the testing at full-scale power plants using a slipstream of gas instead of at the University of Utah pilot-scale coal combustor as originally planned. Design of the multi-catalyst slipstream reactor was completed during this quarter. One utility has expressed interest in hosting a long-term test at one of their plants that co-fire wood with coal. Tests to study ammonia adsorption onto fly ash have clearly established that the only routes that can play a role in binding significant amounts of ammonia to the ash surface, under practical ammonia slip conditions, are those that must involve co-adsorbates.

  7. Sixth clean coal technology conference: Proceedings. Volume 1: Policy papers

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    The Sixth Clean Coal Technology Conference focused on the ability of clean coal technologies (CCTs) to meet increasingly demanding environmental requirements while simultaneously remaining competitive in both international and domestic markets. Conference speakers assessed environmental, economic, and technical issues and identified approaches that will help enable CCTs to be deployed in an era of competing, interrelated demands for energy, economic growth, and environmental protection. Recognition was given to the dynamic changes that will result from increasing competition in electricity and fuel markets and industry restructuring, both domestically and internationally. Volume 1 contains 38 papers arranged under the following topical sections: International business forum branch; Keynote session; Identification of the issues; CCTs--Providing for unprecedented environmental concerns; Domestic competitive pressures for CCTs; Financing challenges for CCTs; New markets for CCTs; Clean coal for the 21st century: What will it take? Conclusions and recommendations. The clean coal technologies discussed include advanced pulverized coal-fired boilers, atmospheric fluidized-bed combustion (FBC), pressurized FBC, integrated gasification combined-cycle systems, pressurized pulverized coal combustion, integrated gasification fuel cell systems, and magnetohydrodynamic power generation.

  8. Biomass Gasification Combined Cycle

    SciTech Connect (OSTI)

    Judith A. Kieffer

    2000-07-01T23:59:59.000Z

    Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

  9. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    SciTech Connect (OSTI)

    Michael Swanson; Daniel Laudal

    2008-03-31T23:59:59.000Z

    The U.S. Department of Energy (DOE) National Energy Technology Laboratory Office of Coal and Environmental Systems has as its mission to develop advanced gasification-based technologies for affordable, efficient, zero-emission power generation. These advanced power systems, which are expected to produce near-zero pollutants, are an integral part of DOE's Vision 21 Program. DOE has also been developing advanced gasification systems that lower the capital and operating costs of producing syngas for chemical production. A transport reactor has shown potential to be a low-cost syngas producer compared to other gasification systems since its high-throughput-per-unit cross-sectional area reduces capital costs. This work directly supports the Power Systems Development Facility utilizing the KBR transport reactor located at the Southern Company Services Wilsonville, Alabama, site. Over 2800 hours of operation on 11 different coals ranging from bituminous to lignite along with a petroleum coke has been completed to date in the pilot-scale transport reactor development unit (TRDU) at the Energy & Environmental Research Center (EERC). The EERC has established an extensive database on the operation of these various fuels in both air-blown and oxygen-blown modes utilizing a pilot-scale transport reactor gasifier. This database has been useful in determining the effectiveness of design changes on an advanced transport reactor gasifier and for determining the performance of various feedstocks in a transport reactor. The effects of different fuel types on both gasifier performance and the operation of the hot-gas filter system have been determined. It has been demonstrated that corrected fuel gas heating values ranging from 90 to 130 Btu/scf have been achieved in air-blown mode, while heating values up to 230 Btu/scf on a dry basis have been achieved in oxygen-blown mode. Carbon conversions up to 95% have also been obtained and are highly dependent on the oxygen-coal ratio. Higher-reactivity (low-rank) coals appear to perform better in a transport reactor than the less reactive bituminous coals. Factors that affect TRDU product gas quality appear to be coal type, temperature, and air/coal ratios. Testing with a higher-ash, high-moisture, low-rank coal from the Red Hills Mine of the Mississippi Lignite Mining Company has recently been completed. Testing with the lignite coal generated a fuel gas with acceptable heating value and a high carbon conversion, although some drying of the high-moisture lignite was required before coal-feeding problems were resolved. No ash deposition or bed material agglomeration issues were encountered with this fuel. In order to better understand the coal devolatilization and cracking chemistry occurring in the riser of the transport reactor, gas and solid sampling directly from the riser and the filter outlet has been accomplished. This was done using a baseline Powder River Basin subbituminous coal from the Peabody Energy North Antelope Rochelle Mine near Gillette, Wyoming.

  10. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect (OSTI)

    Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

    2006-06-30T23:59:59.000Z

    This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected in a pilot scale furnace and soot behavior predicted by the CFD model showed good agreement. Field and laboratory tests were performed for SCR catalysts used for coal and biomass co-firing applications. Fundamental laboratory studies were performed to better understand mechanisms involved with catalyst deactivation. Field tests with a slip stream reactor were used to create catalyst exposed to boiler flue gas for firing coal and for co-firing coal and biomass. The field data suggests the mechanisms leading to catalyst deactivation are, in order of importance, channel plugging, surface fouling, pore plugging and poisoning. Investigations were performed to better understand the mechanisms involved with catalyst regeneration through mechanical or chemical methods. A computer model was developed to predict NOx reduction across the catalyst in a SCR. Experiments were performed to investigate the fundamentals of ammonia/fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. Measurements were performed for ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes. This work resulted in the first fundamental ammonia isotherms on carbon-containing fly ash samples. This work confirms industrial reports that aqueous solution chemistry takes place upon the introduction of even very small amounts of water, while the ash remains in a semi-dry state.

  11. Effective Renewable Energy Policy: Leave It to the States?

    E-Print Network [OSTI]

    Weissman, Steven

    2011-01-01T23:59:59.000Z

    gas, fuel produced by coal gasification or liquefaction,solid waste, or coal integrated gasification combined cycle.gasification combined cycle technologies, waste coal, and

  12. REGULATION AND SYSTEM INTERDEPENDENCE: EFFECTS ON THE SITING OF CALIFORNIA ELECTRICAL ENERGY FACILITIES

    E-Print Network [OSTI]

    Kooser, J.C.

    2013-01-01T23:59:59.000Z

    Strategies for Siting Coal Gasification Facilities in theStrategies for Siting Coal Gasification Facilities in thea 100 MW integrated coal gasification/ combined cycle

  13. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect (OSTI)

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

    2001-10-10T23:59:59.000Z

    This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. Field tests for NOx reduction in a cyclone fired utility boiler due to using Rich Reagent Injection (RRI) have been started. CFD modeling studies have been started to evaluate the use of RRI for NOx reduction in a corner fired utility boiler using pulverized coal. Field tests of a corrosion monitor to measure waterwall wastage in a utility boiler have been completed. Computational studies to evaluate a soot model within a boiler simulation program are continuing. Research to evaluate SCR catalyst performance has started. A literature survey was completed. Experiments have been outlined and two flow reactor systems have been designed and are under construction. Commercial catalyst vendors have been contacted about supplying catalyst samples. Several sets of new experiments have been performed to investigate ammonia removal processes and mechanisms for fly ash. Work has focused on a promising class of processes in which ammonia is destroyed by strong oxidizing agents at ambient temperature during semi-dry processing (the use of moisture amounts less than 5 wt-%). Both ozone and an ozone/peroxide combination have been used to treat both basic and acidic ammonia-laden ashes.

  14. african coal industry: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plains region, U.S. Geological Survey 274 The Public Perceptions of Underground Coal Gasification (UCG) Environmental Sciences and Ecology Websites Summary: The Public...

  15. abandoned surface coal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage, Conversion and Utilization Websites Summary: is oxygen-blown (O2-blown) gasification to generate synthesis gas from coal. This technology is used is a strong...

  16. african coal sources: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage, Conversion and Utilization Websites Summary: is oxygen-blown (O2-blown) gasification to generate synthesis gas from coal. This technology is used is a strong...

  17. Utilization of Lightweight Materials Made from Coal Gasificaiton Slags

    SciTech Connect (OSTI)

    Choudhry, V.; Hadley, S. [Praxis Engineers, Inc., Milpitas, CA (United States)

    1996-12-31T23:59:59.000Z

    The integrated gasification combined-cycle (IGCC) coal conversion process has been demonstrated to be a clean, efficient, and environmentally acceptable method of generating power; however, it generates solid waste materials in relatively large quantities. For example, a 400-MW power plant using 4000 tons of 10% ash coal per day may generate over 440 tons/day of solid waste of slag, consisting of vitrified mineral matter and unburned carbon. The disposal of the wastes represents significant costs. Regulatory trends with respect to solid wastes disposal, landfill development costs and public concern make utilization of solid wastes a high-priority issue. As coal gasification technologies find increasing commercial applications for power generation or production of chemical feed stocks, it becomes imperative that slag utilization methods be developed, tested and commercialized in order to offset disposal costs. Praxis is working on a DOE/METC funded project to demonstrate the technical and economic feasibility of making lightweight and ultra-lightweight aggregates from slags left as solid by-products from the coal gasification process. The project objectives are to develop and demonstrate the technology for producing slag-based lightweight aggregates (SLA), to produce 10 tons of SLA products with different unit weights from two slags, to collect operational and emissions data from pilot-scale operations, and to conduct laboratory and commercial scale evaluations of SLA with conventional lightweight and ultra-lightweight aggregates.

  18. Engineering-support services for the DOE/GRI coal-gasification research program. Quarterly technical progress report, October-December 1980

    SciTech Connect (OSTI)

    Bostwick, L.E.; Brancheau, R.J.; Chen, R.G.

    1980-01-01T23:59:59.000Z

    Kellogg activities included continued monitoring of test operations at BI-GAS, Westinghouse, Exxon and IGT (for peak gasification). Pilot plant/PDU test runs which were monitored and reported included: BI-GAS tests G-14, G-14A, G-15 and G-15A; Westinghouse PDU tests TP-027-5 and TP-031-1 and CFSF tests TP-M001-1, 2, 3 and 4; Exxon run periods No. 23 and No. 24; and IGT single-stage peat gasification tests BF-1 through BF-6. Draft reports were submitted regarding Hygas data base evaluation, gasifier vessel design and scaleup risks of the Westinghouse oxygen-blown gasifier. Evaluation of the Hygas data base continued, and a similar study of the Peatgas PDU data base was initiated. Work was begun on preparation of a descriptive brochure for the DOE/GRI joint program. Kellogg personnel participated in investigations of welding materials with the MPC. Significant progress was made in the technical/economic assessments of Westinghouse, Exxon and Peatgas and in the technical/economic comparison of Westinghouse and U-gas, with technical definitions being essentially finished and cost estimation begun. Technical definition and preliminary capital cost estimates were completed for the peat harvesting/dewatering study. Work continued in the study of carbonyl formation. Following reviews by the developers, Kellogg began finalization of the report on screening evaluations of Westinghouse, Exxon and Rockwell. Work on the safety assurance study continued, with the commencement of safety audit visits.

  19. Engineering support services for the DOE/GRI coal gasification research program. Quarterly technical progress report for the period January-March 1981

    SciTech Connect (OSTI)

    Bostwick, L.E.; Chen, R.G.; Ethridge, T.R.; Hare, R.M.; Hubbard, D.A.; Senules, E.A.; Singer, D.L.; Smith, M.R.; Shah, K.V.

    1982-01-01T23:59:59.000Z

    Kellogg activities during January to March 1981 included continued monitoring of the test operations at the BI-GAS, Westinghouse and Exxon plant sites. Peat gasification laboratory tests were monitored along with modification of Hygas pilot plant for testing of the Peatgas process. Testing at Rockwell ended during June 1980 and testing at Bell was suspended by DOE during July 1980. Pilot plant/PDU test runs monitored and reported were: BI-GAS Tests G-16 and G-16A, Westinghouse test runs TP-M001-1, 2, 3 and 4, Exxon test runs 25, 26 and 27, and single-stage fluidized bed peat gasification tests BF-7 through BF-12. Kellogg continued their participation in Metals Properties Council activities. The final report on the Westinghouse Risk Analysis (Kellogg Task 08) was approved by DOE and is ready for publication. Substantial progress was made on other listed Kellogg tasks. Work continued on subtasks involving Hygas and Peatgas data base evaluations, to incorporate in the draft reports the additional information and comments obtained from IGT.

  20. EIS-0357- Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA

    Broader source: Energy.gov [DOE]

    This Environmental Impact Statement (EIS) assesses the potential environmental impacts that would result from a proposed Department of Energy (DOE) action to provide cost-shared funding for construction and operation of facilities near Gilberton, Pennsylvania, which have been proposed by WMPI PTY, LLC, for producing electricity, steam, and liquid fuels from anthracite coal waste (culm). The project was selected by DOE under the Clean Coal Power Initiative (CCPI) to demonstrate the integration of coal waste gasification and Fischer-Tropsch (F-T) synthesis of liquid hydrocarbon fuels at commercial scale.