Powered by Deep Web Technologies
Note: This page contains sample records for the topic "integrated assessment modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Integrated Assessment Modeling  

Science Conference Proceedings (OSTI)

This paper discusses the role of Integrated Assessment models (IAMs) in climate change research. IAMs are an interdisciplinary research platform, which constitutes a consistent scientific framework in which the large-scale interactions between human and natural Earth systems can be examined. In so doing, IAMs provide insights that would otherwise be unavailable from traditional single-discipline research. By providing a broader view of the issue, IAMs constitute an important tool for decision support. IAMs are also a home of human Earth system research and provide natural Earth system scientists information about the nature of human intervention in global biogeophysical and geochemical processes.

Edmonds, James A.; Calvin, Katherine V.; Clarke, Leon E.; Janetos, Anthony C.; Kim, Son H.; Wise, Marshall A.; McJeon, Haewon C.

2012-10-31T23:59:59.000Z

2

Space, time and nesting Integrated Assessment Models  

Science Conference Proceedings (OSTI)

Integrated Assessment Modelling in the field of air pollution has advanced greatly since the 1985 Helsinki Protocol on the reduction of Sulphur emissions and their transboundary fluxes. With subsequent protocols and increased understanding of the inter-relationships ... Keywords: CLRTAP, Integrated Assessment Modelling, Scale, Science-policy interaction, Space, Time

T. Oxley; H. M. ApSimon

2007-12-01T23:59:59.000Z

3

Defining assessment projects and scenarios for policy support: Use of ontology in Integrated Assessment and Modelling  

Science Conference Proceedings (OSTI)

Integrated Assessment and Modelling (IAM) provides an interdisciplinary approach to support ex-ante decision-making by combining quantitative models representing different systems and scales into a framework for integrated assessment. Scenarios in IAM ... Keywords: Collaborative approach, Integration, Knowledge management, Multi-disciplinary teams, Policy assessment

S. Janssen; F. Ewert; Hongtao Li; I. N. Athanasiadis; J. J. F. Wien; O. Thérond; M. J. R. Knapen; I. Bezlepkina; J. Alkan-Olsson; A. E. Rizzoli; H. Belhouchette; M. Svensson; M. K. van Ittersum

2009-12-01T23:59:59.000Z

4

Workshop on Carbon Sequestration Science - Modeling and Integrated Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling and Integrated Modeling and Integrated Assessment Howard Herzog MIT Energy Laboratory May 24, 2001 Economic Assessments * Engineering analysis of CO 2 separation and capture * Economic modeling/ integrated assessment of carbon capture and sequestration * Comparison on equal basis of the major sequestration options Economic Modeling Motivation * When might carbon capture and sequestration (CCS) become competitive? * What is its potential scale? * Which technologies look most promising? . . . . And when? * How to see the potential in a general market context? Detailed Reference *Sean Biggs Thesis: S Biggs, S. D., "Sequestering Carbon from Power Plants: The Jury is Still Out," M.I.T. Masters Thesis, (2000). S http://sequestration.mit.edu/pdf/SeanBiggs.pdf What Determines Competitiveness?

5

Development and illustrative outputs of the Community Integrated Assessment System (CIAS), a multi-institutional modular integrated assessment approach for modelling climate change  

Science Conference Proceedings (OSTI)

This paper describes the development and first results of the ''Community Integrated Assessment System'' (CIAS), a unique multi-institutional modular and flexible integrated assessment system for modelling climate change. Key to this development is the ... Keywords: Bespoke Framework Generator, Carbon tax, Climate change, Community Integrated Assessment System, Coupled modelling, Integrated assessment model, SoftIAM, Software engineering

R. Warren; S. de la Nava Santos; N. W. Arnell; M. Bane; T. Barker; C. Barton; R. Ford; H. -M. Füssel; Robin K. S. Hankin; Rupert Klein; C. Linstead; J. Kohler; T. D. Mitchell; T. J. Osborn; H. Pan; S. C. B. Raper; G. Riley; H. J. Schellnhüber; S. Winne; D. Anderson

2008-05-01T23:59:59.000Z

6

Integrated science model for assessment of climate change  

SciTech Connect

Integrated assessment models are intended to represent processes that govern physical, ecological, economic and social systems. This report describes a scientific model relating emissions to global temperature and sea level. This model is intended to be one component of an integrated assessment model which is, of course, much more comprehensive. The model is able to reproduce past changes in CO{sub 2} concentration, global temperature, and sea level. The model is used to estimate the emissions rates required to lead to stabilization of CO{sub 2} at various levels. The model is also used to estimate global temperature rise, the rate of temperature change, and sea level rise driven by IPCC emissions scenarios. The emission of fossil fuel CO{sub 2} is modeled to have the largest long term effect on climate. Results do show the importance of expected changes of trace greenhouse gases other than CO{sub 2} in the near future. Because of the importance of these other trace gases, further work is recommended to more accurately estimate their effects.

Jain, A.K.; Wuebbles, D.J. [Lawrence Livermore National Lab., CA (United States); Kheshgi, H.S. [Exxon Research and Engineering Co., Annandale, NJ (United States)

1994-04-01T23:59:59.000Z

7

An Integrated Assessment of Measured and Modeled Integrated Water Vapor in Switzerland for the Period 2001–03  

Science Conference Proceedings (OSTI)

In this paper an integrated assessment of the vertically integrated water vapor (IWV) measured by radiosonde, microwave radiometer (MWR), and GPS and modeled by the limited-area mesoscale model of MeteoSwiss is presented. The different IWV ...

G. Guerova; E. Brockmann; F. Schubiger; J. Morland; C. Mätzler

2005-07-01T23:59:59.000Z

8

Integrated Assessment | Open Energy Information  

Open Energy Info (EERE)

Integrated Assessment Integrated Assessment Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Integrated Assessment: Mainstreaming sustainability into policymaking--A guidance manual Agency/Company /Organization: United Nations Environment Programme Topics: Background analysis Website: www.unep.ch/etb/publications/AI%20guidance%202009/UNEP%20IA%20final.pd Equivalent URI: cleanenergysolutions.org/content/times-integrated-assessment-model-0,h Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance References: Integrated Assessment[1] The Times Integrated Assessment Model (TIAM) comprises several thousand technologies in all sectors of the energy system. It is characterized by several technical and economic parameters and by emission coefficients for

9

Position paper: Selecting among five common modelling approaches for integrated environmental assessment and management  

Science Conference Proceedings (OSTI)

The design and implementation of effective environmental policies need to be informed by a holistic understanding of the system processes (biophysical, social and economic), their complex interactions, and how they respond to various changes. Models, ... Keywords: Agent-based model, Bayesian network, Coupled component model, Integrated assessment, Knowledge-based model, System dynamics

Rebecca A. Kelly (Letcher), Anthony J. Jakeman, Olivier Barreteau, Mark E. Borsuk, Sondoss Elsawah, Serena H. Hamilton, Hans JøRgen Henriksen, Sakari Kuikka, Holger R. Maier, Andrea Emilio Rizzoli, Hedwig Van Delden, Alexey A. Voinov

2013-09-01T23:59:59.000Z

10

Integrated assessment briefs  

Science Conference Proceedings (OSTI)

Integrated assessment can be used to evaluate and clarify resource management policy options and outcomes for decision makers. The defining characteristics of integrated assessment are (1) focus on providing information and analysis that can be understood and used by decision makers rather than for merely advancing understanding and (2) its multidisciplinary approach, using methods, styles of study, and considerations from a broader variety of technical areas than would typically characterize studies produced from a single disciplinary standpoint. Integrated assessment may combine scientific, social, economic, health, and environmental data and models. Integrated assessment requires bridging the gap between science and policy considerations. Because not everything can be valued using a single metric, such as a dollar value, the integrated assessment process also involves evaluating trade-offs among dissimilar attributes. Scientists at Oak Ridge National Laboratory (ORNL) recognized the importance and value of multidisciplinary approaches to solving environmental problems early on and have pioneered the development of tools and methods for integrated assessment over the past three decades. Major examples of ORNL`s experience in the development of its capabilities for integrated assessment are given.

NONE

1995-04-01T23:59:59.000Z

11

Fuzzy integrated vulnerability assessment model for critical facilities in combating the terrorism  

Science Conference Proceedings (OSTI)

Critical facility vulnerability assessment is a highly complex strategic activity in combating the terrorism and necessitates a structured quantified methodology to support the decision-making process in defense planning. In the system perspective, the ... Keywords: Airport, Fuzzy Cognitive Maps (FCM), Fuzzy integrated vulnerability assessment model (FIVAM), Fuzzy set theory, Interdependency, Simple Multi-Attribute Rating Technique (SMART), Terrorism

Ilker Akgun; Ahmet Kandakoglu; Ahmet Fahri Ozok

2010-05-01T23:59:59.000Z

12

IMAGE: An integrated model to assess the greenhouse effect  

SciTech Connect

This book is the result of a research project entitled Reference Function for Global Air Pollution CO{sub 2}. It deals with the description of a computer simulation model of the greenhouse effect. This model, IMAGE, tries to capture the fundamentals of the complex problem of climate change in a simplified way. The model is a multidisciplinary product and is based on knowledge from disciplines as economics, atmospheric chemistry, marine and terrestrial biogeochemistry, ecology, climatology, and glaciology. This book might be of interest to any one working in the broad field of climate change. Furthermore, it can be useful for model builders, simulation experts, and mathematicians.

Rotmans, J.

1990-01-01T23:59:59.000Z

13

Integration of agricultural and energy system models for biofuel assessment  

Science Conference Proceedings (OSTI)

This paper presents a coupled modeling framework to capture the dynamic linkages between agricultural and energy markets that have been enhanced through the expansion of biofuel production, as well as the environmental impacts resulting from this expansion. ... Keywords: Agricultural markets, Biofuels, Energy systems, Environment, Modeling

A. Elobeid, S. Tokgoz, R. Dodder, T. Johnson, O. Kaplan, L. Kurkalova, S. Secchi

2013-10-01T23:59:59.000Z

14

Analyzing water supply in future energy systems using the TIMES Integrated Assessment Model (TIAM-FR)  

E-Print Network (OSTI)

Analyzing water supply in future energy systems using the TIMES Integrated Assessment Model (TIAM is required to maintain water supplies while water is essential to produce energy. However, the models and energy generally dealt with them separately, the two resources are highly interconnected. Energy

15

High-performance computing tools for the integrated assessment and modelling of social-ecological systems  

Science Conference Proceedings (OSTI)

Integrated spatio-temporal assessment and modelling of complex social-ecological systems is required to address global environmental challenges. However, the computational demands of this modelling are unlikely to be met by traditional Geographic Information ... Keywords: AML, CPU, Cluster, Concurrency, Environmental, GIS, GPU, Global challenges, Graphics processing unit (GPU), Grid, HPC, Multi-core, NPV, Parallel programming

Brett A. Bryan

2013-01-01T23:59:59.000Z

16

Climate Coalitions in an IntegratedAssessment Model  

Science Conference Proceedings (OSTI)

An analytically tractable approximation of a numerical model is used to investigate coalition formation between nine major world regions with regard to their policies for greenhouse gas emission reduction. Full cooperation is not individually rational. ... Keywords: LQ games, climate change, coalition formation, optimal emission control

Richard S. J. Tol

2001-10-01T23:59:59.000Z

17

Development of Standardized Probabilistic Risk Assessment Models for Shutdown Operations Integrated in SPAR Level 1 Model  

SciTech Connect

Nuclear plant operating experience and several studies show that the risk from shutdown operation during Modes 4, 5, and 6 at pressurized water reactors and Modes 4 and 5 at boiling water reactors can be significant. This paper describes using the U.S. Nuclear Regulatory Commission’s full-power Standardized Plant Analysis Risk (SPAR) model as the starting point for development of risk evaluation models for commercial nuclear power plants. The shutdown models are integrated with their respective internal event at-power SPAR model. This is accomplished by combining the modified system fault trees from the SPAR full-power model with shutdown event tree logic. Preliminary human reliability analysis results indicate that risk is dominated by the operator’s ability to correctly diagnose events and initiate systems.

S. T. Khericha; J. Mitman

2008-05-01T23:59:59.000Z

18

Repository Integration Program: RIP performance assessment and strategy evaluation model theory manual and user`s guide  

SciTech Connect

This report describes the theory and capabilities of RIP (Repository Integration Program). RIP is a powerful and flexible computational tool for carrying out probabilistic integrated total system performance assessments for geologic repositories. The primary purpose of RIP is to provide a management tool for guiding system design and site characterization. In addition, the performance assessment model (and the process of eliciting model input) can act as a mechanism for integrating the large amount of available information into a meaningful whole (in a sense, allowing one to keep the ``big picture`` and the ultimate aims of the project clearly in focus). Such an integration is useful both for project managers and project scientists. RIP is based on a `` top down`` approach to performance assessment that concentrates on the integration of the entire system, and utilizes relatively high-level descriptive models and parameters. The key point in the application of such a ``top down`` approach is that the simplified models and associated high-level parameters must incorporate an accurate representation of their uncertainty. RIP is designed in a very flexible manner such that details can be readily added to various components of the model without modifying the computer code. Uncertainty is also handled in a very flexible manner, and both parameter and model (process) uncertainty can be explicitly considered. Uncertainty is propagated through the integrated PA model using an enhanced Monte Carlo method. RIP must rely heavily on subjective assessment (expert opinion) for much of its input. The process of eliciting the high-level input parameters required for RIP is critical to its successful application. As a result, in order for any project to successfully apply a tool such as RIP, an enormous amount of communication and cooperation must exist between the data collectors, the process modelers, and the performance. assessment modelers.

NONE

1995-11-01T23:59:59.000Z

19

An integrated multi-model approach for air quality assessment: Development and evaluation of the OSCAR Air Quality Assessment System  

Science Conference Proceedings (OSTI)

This paper reports on the development and evaluation of a new modelling system for studying air quality on local scales. A multi-model approach has been adopted to develop the OSCAR Air Quality Modelling System to conduct assessments at different levels ... Keywords: Air quality, Model evaluation, Modelling system, Nitrogen oxides, OSCAR, Particulate matter

Ranjeet S. Sokhi; Hongjun Mao; Srinivas T. G. Srimath; Shiyuan Fan; Nutthida Kitwiroon; Lakhumal Luhana; Jaakko Kukkonen; Mervi Haakana; Ari Karppinen; K. Dick van den Hout; Paul Boulter; Ian S. McCrae; Steinar Larssen; Karl I. Gjerstad; Roberto San José; John Bartzis; Panagiotis Neofytou; Peter van den Breemer; Steve Neville; Anu Kousa; Blanca M. Cortes; Ingrid Myrtveit

2008-03-01T23:59:59.000Z

20

A generalized multistage optimization modeling framework for life cycle assessment-based integrated solid waste management  

Science Conference Proceedings (OSTI)

Solid waste management (SWM) is an integral component of civil infrastructure and the global economy, and is a growing concern due to increases in population, urbanization, and economic development. In 2011, 1.3 billion metric tons of municipal solid ... Keywords: Decision support, Life cycle assessment, Multi-stage, Optimization, Solid waste

James W. Levis, Morton A. Barlaz, Joseph F. Decarolis, S. Ranji Ranjithan

2013-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated assessment modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Developing an Integrated Model Framework for the Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems  

DOE Green Energy (OSTI)

Agricultural residues have significant potential as a feedstock for bioenergy production, but removing these residues can have negative impacts on soil health. Models and datasets that can support decisions about sustainable agricultural residue removal are available; however, no tools currently exist capable of simultaneously addressing all environmental factors that can limit availability of residue. The VE-Suite model integration framework has been used to couple a set of environmental process models to support agricultural residue removal decisions. The RUSLE2, WEPS, and Soil Conditioning Index models have been integrated. A disparate set of databases providing the soils, climate, and management practice data required to run these models have also been integrated. The integrated system has been demonstrated for two example cases. First, an assessment using high spatial fidelity crop yield data has been run for a single farm. This analysis shows the significant variance in sustainably accessible residue across a single farm and crop year. A second example is an aggregate assessment of agricultural residues available in the state of Iowa. This implementation of the integrated systems model demonstrates the capability to run a vast range of scenarios required to represent a large geographic region.

David Muth, Jr.; Jared Abodeely; Richard Nelson; Douglas McCorkle; Joshua Koch; Kenneth Bryden

2011-08-01T23:59:59.000Z

22

Development of Probabilistic Risk Assessment Model for BWR Shutdown Modes 4 and 5 Integrated in SPAR Model  

Science Conference Proceedings (OSTI)

Nuclear plant operating experience and several studies show that the risk from shutdown operation during modes 4, 5, and 6 can be significant This paper describes development of the standard template risk evaluation models for shutdown modes 4, and 5 for commercial boiling water nuclear power plants (BWR). The shutdown probabilistic risk assessment model uses full power Nuclear Regulatory Commission’s (NRC’s) Standardized Plant Analysis Risk (SPAR) model as the starting point for development. The shutdown PRA models are integrated with their respective internal events at-power SPAR model. This is accomplished by combining the modified system fault trees from SPAR full power model with shutdown event tree logic. For human reliability analysis (HRA), the SPAR HRA (SPAR-H) method is used which requires the analysts to complete relatively straight forward worksheet, including the performance shaping factors (PSFs). The results are then used to estimate HEP of interest. The preliminary results indicate the risk is dominated by the operator’s ability to diagnose the events and provide long term cooling.

S. T. Khericha; S. Sancakter; J. Mitman; J. Wood

2010-06-01T23:59:59.000Z

23

CliCrop: a Crop Water-Stress and Irrigation Demand Model for an Integrated Global Assessment Model Approach  

E-Print Network (OSTI)

This paper describes the use of the CliCrop model in the context of climate change general assessment

Fant, C.A.

24

Conceptual design of an integrated technology model for carbon policy assessment.  

SciTech Connect

This report describes the conceptual design of a technology choice model for understanding strategies to reduce carbon intensity in the electricity sector. The report considers the major modeling issues affecting technology policy assessment and defines an implementable model construct. Further, the report delineates the basis causal structure of such a model and attempts to establish the technical/algorithmic viability of pursuing model development along with the associated analyses.

Backus, George A.; Dimotakes, Paul E. (NASA Jet Propulsion Laboratory, Pasadena, CA)

2011-01-01T23:59:59.000Z

25

Final Report: Climate Variability, Stochasticity and Learning in Integrated Assessment Models, September 15, 1996 - September 14, 1999  

SciTech Connect

The focus of the work has been on climate variability and learning within computational climate-economy models (integrated assessment models--IAM's). The primary objective of the research is to improve the representation of learning in IAM's. This include's both endogenous and exogenous learning. A particular focus is on Bayesian learning about climate damage. A secondary objective is to improve the representation of climate variability within IAM's.

Kolstad, Charles D.

1999-09-14T23:59:59.000Z

26

An integrated model for assessment of sustainable agricultural residue removal limits for bioenergy systems  

Science Conference Proceedings (OSTI)

Agricultural residues have been identified as a significant potential resource for bioenergy production, but serious questions remain about the sustainability of harvesting residues. Agricultural residues play an important role in limiting soil erosion ... Keywords: Agricultural residues, Bioenergy, Model integration, Soil erosion, Soil organic carbon

D. J. Muth, Jr.; K. M. Bryden

2013-01-01T23:59:59.000Z

27

Web based integrated models for participatory planning  

Science Conference Proceedings (OSTI)

The present paper focuses on the development of an integrated assessment model that embeds the web dimension and aims at increasing awareness in society, especially on environmental issues. The model incorporates features that make it capable of promoting ... Keywords: greenhouse gas emissions, increasing awareness, integrated assessment models, web based participatory integrated assessment models

Grammatikogiannis Elias; Maria Giaoutzi

2011-06-01T23:59:59.000Z

28

Improving Demographic Components of Integrated Assessment Models: The Effect of Changes in Population Composition by Household Characteristics  

SciTech Connect

This report describes results of the research project on "Improving Demographic Components of Integrated Assessment Models: The Effect of Changes in Population Composition by Household Characteristics". The overall objective of this project was to improve projections of energy demand and associated greenhouse gas emissions by taking into account demographic factors currently not incorporated in Integrated Assessment Models (IAMs) of global climate change. We proposed to examine the potential magnitude of effects on energy demand of changes in the composition of populations by household characteristics for three countries: the U.S., China, and Indonesia. For each country, we planned to analyze household energy use survey data to estimate relationships between household characteristics and energy use; develop a new set of detailed household projections for each country; and combine these analyses to produce new projections of energy demand illustrating the potential importance of consideration of households.

Brian C. O'Neill

2006-08-09T23:59:59.000Z

29

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

Science Conference Proceedings (OSTI)

Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

Sathaye, J.; Xu, T.; Galitsky, C.

2010-08-15T23:59:59.000Z

30

Research priorities in land use and land-cover change for the Earth system and integrated assessment modelling  

SciTech Connect

This special issue has highlighted recent and innovative methods and results that integrate observations and AQ3 modelling analyses of regional to global aspect of biophysical and biogeochemical interactions of land-cover change with the climate system. Both the Earth System and the Integrated Assessment modeling communities recognize the importance of an accurate representation of land use and land-cover change to understand and quantify the interactions and feedbacks with the climate and socio-economic systems, respectively. To date, cooperation between these communities has been limited. Based on common interests, this work discusses research priorities in representing land use and land-cover change for improved collaboration across modelling, observing and measurement communities. Major research topics in land use and land-cover change are those that help us better understand (1) the interaction of land use and land cover with the climate system (e.g. carbon cycle feedbacks), (2) the provision of goods and ecosystem services by terrestrial (natural and anthropogenic) land-cover types (e.g. food production), (3) land use and management decisions and (4) opportunities and limitations for managing climate change (for both mitigation and adaptation strategies).

Hibbard, Kathleen A.; Janetos, Anthony C.; Van Vuuren, Detlef; Pongratz, Julia; Rose, Steven K.; Betts, Richard; Herold, Martin; Feddema, Johannes J.

2010-11-15T23:59:59.000Z

31

Assessment of Dissolved Oxygen Mitigation at Hydropower Dams Using an Integrated Hydrodynamic/Water Quality/Fish Growth Model  

DOE Green Energy (OSTI)

Dissolved oxygen (DO) in rivers is a common environmental problem associated with hydropower projects. Approximately 40% of all FERC-licensed projects have requirements to monitor and/or mitigate downstream DO conditions. Most forms of mitigation for increasing DO in dam tailwaters are fairly expensive. One area of research of the Department of Energy's Hydropower Program is the development of advanced turbines that improve downstream water quality and have other environmental benefits. There is great interest in being able to predict the benefits of these modifications prior to committing to the cost of new equipment. In the case of turbine replacement or modification, there is a need for methods that allow us to accurately extrapolate the benefits derived from one or two turbines with better design to the replacement or modification of all turbines at a site. The main objective of our study was to demonstrate a modeling approach that integrates the effects of flow and water quality dynamics with fish bioenergetics to predict DO mitigation effectiveness over long river segments downstream of hydropower dams. We were particularly interested in demonstrating the incremental value of including a fish growth model as a measure of biological response. The models applied are a suite of tools (RMS4 modeling system) originally developed by the Tennessee Valley Authority for simulating hydrodynamics (ADYN model), water quality (RQUAL model), and fish growth (FISH model) as influenced by DO, temperature, and available food base. We parameterized a model for a 26-mile reach of the Caney Fork River (Tennessee) below Center Hill Dam to assess how improvements in DO at the dam discharge would affect water quality and fish growth throughout the river. We simulated different types of mitigation (i.e., at the turbine and in the reservoir forebay) and different levels of improvement. The model application successfully demonstrates how a modeling approach like this one can be used to assess whether a prescribed mitigation is likely to meet intended objectives from both a water quality and a biological resource perspective. These techniques can be used to assess the tradeoffs between hydropower operations, power generation, and environmental quality.

Bevelhimer, Mark S [ORNL; Coutant, Charles C [ORNL

2006-07-01T23:59:59.000Z

32

Empirical support for global integrated assessment modeling: Productivity trends and technological change in developing countries' agriculture and electric power sectors  

Science Conference Proceedings (OSTI)

Integrated assessment (IA) modeling of climate policy is increasingly global in nature, with models incorporating regional disaggregation. The existing empirical basis for IA modeling, however, largely arises from research on industrialized economies. Given the growing importance of developing countries in determining long-term global energy and carbon emissions trends, filling this gap with improved statistical information on developing countries' energy and carbon-emissions characteristics is an important priority for enhancing IA modeling. Earlier research at LBNL on this topic has focused on assembling and analyzing statistical data on productivity trends and technological change in the energy-intensive manufacturing sectors of five developing countries, India, Brazil, Mexico, Indonesia, and South Korea. The proposed work will extend this analysis to the agriculture and electric power sectors in India, South Korea, and two other developing countries. They will also examine the impact of alternative model specifications on estimates of productivity growth and technological change for each of the three sectors, and estimate the contribution of various capital inputs--imported vs. indigenous, rigid vs. malleable-- in contributing to productivity growth and technological change. The project has already produced a data resource on the manufacturing sector which is being shared with IA modelers. This will be extended to the agriculture and electric power sectors, which would also be made accessible to IA modeling groups seeking to enhance the empirical descriptions of developing country characteristics. The project will entail basic statistical and econometric analysis of productivity and energy trends in these developing country sectors, with parameter estimates also made available to modeling groups. The parameter estimates will be developed using alternative model specifications that could be directly utilized by the existing IAMs for the manufacturing, agriculture, and electric power sectors.

Sathaye, Jayant A.

2000-04-01T23:59:59.000Z

33

Computer analysis of the sensitivity of the integrated assessment model MERGE-5I  

Science Conference Proceedings (OSTI)

This paper reports on an application of a large-scale non-linear optimization model to the analysis of environmental problems. The authors present first results of the initial stage of the study, a sensitivity analysis of the model's input parameters. ...

Vyacheslav Maksimov; Leo Schrattenholzer; Yaroslav Minullin

2005-09-01T23:59:59.000Z

34

Steam Generator Integrity Assessment Guidelines  

Science Conference Proceedings (OSTI)

This report provides guidance for evaluating the condition of steam generator (SG) tubes based on nondestructive examination (NDE) or in situ pressure testing. This integrity assessment is normally performed during a reactor refueling outage. Nuclear power plant licensees who follow this document's guidelines will have satisfied their requirements for condition monitoring and operational assessment as defined in the Nuclear Energy Institute (NEI) initiative, Steam Generator Program Guidelines, NEI 97-06.

2006-07-25T23:59:59.000Z

35

Assessment of erosion hotspots in a watershed: Integrating the WEPP model and GIS in a case study in the Peruvian Andes  

Science Conference Proceedings (OSTI)

This paper presents a case study in assessment of erosion hotspots in an Andean watershed. To do this, we made use of an interface called Geospatial Modelling of Soil Erosion (GEMSE): a tool that integrates Geographical Information Systems (GIS) with ... Keywords: Andes, GIS, Geospatial modeling, Runoff, Soil loss, WEPP

Guillermo A. Baigorria; Consuelo C. Romero

2007-08-01T23:59:59.000Z

36

Flexible Power System Operations Simulation Model for Assessing Wind Integration: Preprint  

SciTech Connect

In this paper a model was developed to mimic operator behavior using a combination of security-constrained unit commitment, security-constrained economic dispatch, and automatic generation control programs.

Ela, E.; Milligan, M.; O' Malley, M.

2011-03-01T23:59:59.000Z

37

Innovative approaches to integrated global change modelling  

Science Conference Proceedings (OSTI)

Integrated models are important tools to investigate the interactions between planetary processes and the growing impacts of human populations - in short: global change. Current models still have significant shortcomings, notably in their representation ... Keywords: Global change, Innovative approaches, Integrated assessment, Modelling, Research priorities

Carlo Giupponi, Mark E. Borsuk, Bert J. M. De Vries, Klaus Hasselmann

2013-06-01T23:59:59.000Z

38

Integrated Environmental Assessment Part III: Exposure Assessment  

E-Print Network (OSTI)

of an Official ISEA Glossary,” Journal of Exposure AnalysisGeneva. IPCS (2001) Glossary of Exposure Assessment-Related

McKone, Thomas E.; Small, Mitchell J.

2006-01-01T23:59:59.000Z

39

Integrated regional assessment: qualitative and quantitative issues  

Science Conference Proceedings (OSTI)

Qualitative and quantitative issues are particularly significant in integrated regional assessment. This chapter examines the terms “qualitative” and “quantitative” separately and in relation to one another, along with a discussion of the degree of interdependence or overlap between the two. Strategies for integrating the two general approaches often produce uneasy compromises. However, integrated regional assessment provides opportunities for strong collaborations in addressing specific problems in specific places.

Malone, Elizabeth L.

2009-11-19T23:59:59.000Z

40

Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC) : gap analysis for high fidelity and performance assessment code development.  

SciTech Connect

This report describes a gap analysis performed in the process of developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with rigorous verification, validation, and software quality requirements. The gap analyses documented in this report were are performed during an initial gap analysis to identify candidate codes and tools to support the development and integration of the Waste IPSC, and during follow-on activities that delved into more detailed assessments of the various codes that were acquired, studied, and tested. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. The gap analysis indicates that significant capabilities may already exist in the existing THC codes although there is no single code able to fully account for all physical and chemical processes involved in a waste disposal system. Large gaps exist in modeling chemical processes and their couplings with other processes. The coupling of chemical processes with flow transport and mechanical deformation remains challenging. The data for extreme environments (e.g., for elevated temperature and high ionic strength media) that are needed for repository modeling are severely lacking. In addition, most of existing reactive transport codes were developed for non-radioactive contaminants, and they need to be adapted to account for radionuclide decay and in-growth. The accessibility to the source codes is generally limited. Because the problems of interest for the Waste IPSC are likely to result in relatively large computational models, a compact memory-usage footprint and a fast/robust solution procedure will be needed. A robust massively parallel processing (MPP) capability will also be required to provide reasonable turnaround times on the analyses that will be performed with the code. A performance assessment (PA) calculation for a waste disposal system generally requires a large number (hundreds to thousands) of model simulations to quantify the effect of model parameter uncertainties on the predicted repository performance. A set of codes for a PA calculation must be sufficiently robust and fast in terms of code execution. A PA system as a whole must be able to provide multiple alternative models for a specific set of physical/chemical processes, so that the users can choose various levels of modeling complexity based on their modeling needs. This requires PA codes, preferably, to be highly modularized. Most of the existing codes have difficulties meeting these requirements. Based on the gap analysis results, we have made the following recommendations for the code selection and code development for the NEAMS waste IPSC: (1) build fully coupled high-fidelity THCMBR codes using the existing SIERRA codes (e.g., ARIA and ADAGIO) and platform, (2) use DAKOTA to build an enhanced performance assessment system (EPAS), and build a modular code architecture and key code modules for performance assessments. The key chemical calculation modules will be built by expanding the existing CANTERA capabilities as well as by extracting useful components from other existing codes.

Lee, Joon H.; Siegel, Malcolm Dean; Arguello, Jose Guadalupe, Jr.; Webb, Stephen Walter; Dewers, Thomas A.; Mariner, Paul E.; Edwards, Harold Carter; Fuller, Timothy J.; Freeze, Geoffrey A.; Jove-Colon, Carlos F.; Wang, Yifeng

2011-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated assessment modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fort Drum integrated resource assessment  

Science Conference Proceedings (OSTI)

The US Army Forces Command (FORSCOM) has tasked Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program's (FEMP) mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Drum. This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company (Niagara Mohawk). It will (1) identify and evaluate all electric and fossil fuel cost-effective energy projects; (2) develop a schedule at each installation for project acquisition considering project type, size, timing, capital requirements, as well as energy and dollar savings; and (3) secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at one of Niagara Mohawk's primary federal facilities, the FORSCOM Fort Drum facility located near Watertown, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 2, the Baseline Detail.

Dixon, D.R.; Armstrong, P.R.; Daellenbach, K.K.; Dagle, J.E.; Di Massa, F.V.; Elliott, D.B.; Keller, J.M.; Richman, E.E.; Shankle, S.A.; Sullivan, G.P.; Wahlstrom, R.R.

1992-12-01T23:59:59.000Z

42

Uncertainty in Integrated Assessment Scenarios  

SciTech Connect

The determination of climate policy is a decision under uncertainty. The uncertainty in future climate change impacts is large, as is the uncertainty in the costs of potential policies. Rational and economically efficient policy choices will therefore seek to balance the expected marginal costs with the expected marginal benefits. This approach requires that the risks of future climate change be assessed. The decision process need not be formal or quantitative for descriptions of the risks to be useful. Whatever the decision procedure, a useful starting point is to have as accurate a description of climate risks as possible. Given the goal of describing uncertainty in future climate change, we need to characterize the uncertainty in the main causes of uncertainty in climate impacts. One of the major drivers of uncertainty in future climate change is the uncertainty in future emissions, both of greenhouse gases and other radiatively important species such as sulfur dioxide. In turn, the drivers of uncertainty in emissions are uncertainties in the determinants of the rate of economic growth and in the technologies of production and how those technologies will change over time. This project uses historical experience and observations from a large number of countries to construct statistical descriptions of variability and correlation in labor productivity growth and in AEEI. The observed variability then provides a basis for constructing probability distributions for these drivers. The variance of uncertainty in growth rates can be further modified by expert judgment if it is believed that future variability will differ from the past. But often, expert judgment is more readily applied to projected median or expected paths through time. Analysis of past variance and covariance provides initial assumptions about future uncertainty for quantities that are less intuitive and difficult for experts to estimate, and these variances can be normalized and then applied to mean trends from a model for uncertainty projections. The probability distributions of these critical model drivers, and the resulting uncertainty in projections from a range of models, can provide the basis of future emission scenario set designs.

Mort Webster

2005-10-17T23:59:59.000Z

43

INTEGRATED FISCHER TROPSCH MODULAR PROCESS MODEL  

Science Conference Proceedings (OSTI)

With declining petroleum reserves, increased world demand, and unstable politics in some of the world’s richest oil producing regions, the capability for the U.S. to produce synthetic liquid fuels from domestic resources is critical to national security and economic stability. Coal, biomass and other carbonaceous materials can be converted to liquid fuels using several conversion processes. The leading candidate for large-scale conversion of coal to liquid fuels is the Fischer Tropsch (FT) process. Process configuration, component selection, and performance are interrelated and dependent on feed characteristics. This paper outlines a flexible modular approach to model an integrated FT process that utilizes a library of key component models, supporting kinetic data and materials and transport properties allowing rapid development of custom integrated plant models. The modular construction will permit rapid assessment of alternative designs and feed stocks. The modeling approach consists of three thrust areas, or “strands” – model/module development, integration of the model elements into an end to end integrated system model, and utilization of the model for plant design. Strand 1, model/module development, entails identifying, developing, and assembling a library of codes, user blocks, and data for FT process unit operations for a custom feedstock and plant description. Strand 2, integration development, provides the framework for linking these component and subsystem models to form an integrated FT plant simulation. Strand 3, plant design, includes testing and validation of the comprehensive model and performing design evaluation analyses.

Donna Post Guillen; Richard Boardman; Anastasia M. Gribik; Rick A. Wood; Robert A. Carrington

2007-12-01T23:59:59.000Z

44

Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector  

Science Conference Proceedings (OSTI)

Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. With the working of energy programs and policies on carbon regulation, how to effectively analyze and manage the costs associated with GHG reductions become extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions (e.g., carbon emission) for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models. In this report, we first conduct brief overview on different representations of end-use technologies (mitigation measures) in various energy-climate models, followed by problem statements, and a description of the basic concepts of quantifying the cost of conserved energy including integrating non-regrets options. A non-regrets option is defined as a GHG reduction option that is cost effective, without considering their additional benefits related to reducing GHG emissions. Based upon these, we develop information on costs of mitigation measures and technological change. These serve as the basis for collating the data on energy savings and costs for their future use in integrated assessment models. In addition to descriptions of the iron and steel making processes, and the mitigation measures identified in this study, the report includes tabulated databases on costs of measure implementation, energy savings, carbon-emission reduction, and lifetimes. The cost curve data on mitigation measures are available over time, which allows an estimation of technological change over a decade-long historical period. In particular, the report will describe new treatment of technological change in energy-climate modeling for this industry sector, i.e., assessing the changes in costs and energy-savings potentials via comparing 1994 and 2002 conservation supply curves. In this study, we compared the same set of mitigation measures for both 1994 and 2002 -- no additional mitigation measure for year 2002 was included due to unavailability of such data. Therefore, the estimated potentials in total energy savings and carbon reduction would most likely be more conservative for year 2002 in this study. Based upon the cost curves, the rate of change in the savings potential at a given cost can be evaluated and be used to estimate future rates of change that can be the input for energy-climate models. Through characterizing energy-efficiency technology costs and improvement potentials, we have developed and presented energy cost curves for energy efficiency measures applicable to the U.S. iron and steel industry for the years 1994 and 2002. The cost curves can change significantly under various scenarios: the baseline year, discount rate, energy intensity, production, industry structure (e.g., integrated versus secondary steel making and number of plants), efficiency (or mitigation) measures, share of iron and steel production to which the individual measures can be applied, and inclusion of other non-energy benefits. Inclusion of other non-energy benefits from implementing mitigation measures can reduce the costs of conserved energy significantly. In addition, costs of conserved energy (CCE) for individual mitigation measures increase with the increases in discount rates, resulting in a general increase in total cost of mitigation measures for implementation and operation with a higher discount rate. In 1994, integrated steel mills in the U.S. produced 55.

Xu, T.T.; Sathaye, J.; Galitsky, C.

2010-09-30T23:59:59.000Z

45

CFT, Integrable Models Liouville Gravity  

E-Print Network (OSTI)

CFT, Integrable Models And Liouville Gravity Chernogolovka 2009 Sunday June 28, 2009. Conference as one of components of their L, A pairs. #12;CFT, Integrable Models And Liouville Gravity Chernogolovka Gravity Chernogolovka, 2009 Tuesday June 30, 2009. CONFERENCE HALL 09:30­10:10 Herman Boos (Wuppertal

Fominov, Yakov

46

Model Transformations And Tool Integration  

E-Print Network (OSTI)

Model transformations are increasingly recognised as being of significant importance to many areas of software development and integration. Recent attention on model transformations has particularly focused on the OMG's Queries / Views / Transformations (QVT) Request for Proposals (RFP). In this paper I motivate the need for dedicated approaches to model transformations, particularly for the data involved in tool integration, outline the challenges involved, and then present a number of technologies and techniques which allow the construction of flexible, powerful and practical model transformations.

Laurence Tratt

2004-01-01T23:59:59.000Z

47

NREL: Wind Research - Utility Grid Integration Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility Grid Integration Assessment Utility Grid Integration Assessment Photo of large power transmission towers set against a sunset. The national need for transmission improvements will have a direct impact on the effective use of renewable energy sources such as wind. For wind energy to play a larger role in supplying the nation's energy needs, integrating wind energy into the power grid of the United States is an important challenge to address. NREL's transmission grid integration staff collaborates with utility industry partners and provides data, analysis, and techniques to increase utility understanding of integration issues and confidence in the reliability of new wind turbines. For more information, contact Brian Parsons at 303-384-6958. Printable Version Wind Research Home Capabilities

48

PRIVACY IMPACT ASSESSMENT: Integrated Safety Management Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Integrated Safety Management Workshop Registration PIA Template Version 3 - May, 2009 Department of Energy Privacy Impact Assessment (PIA) Guidance is provided in the template. See DOE Order 206.1, Department of Energy Privacy Program, Appendix A, Privacy Impact Assessments, for requirements and additional guidance for conducting a PIA: http://www.directives.doe.gov/pdfs/doe/doetextlneword/206/o2061.pdf Please complete electronically: no hand-written submissions will be accepted. This template may not be modified. MODULE 1- PRIVACY NEEDS ASSESSMENT Date Departmental Element&·Slte 16/Jun/09 Idaho National Laboratory Engineering Research Office Building (EROB) Name of-Information System or IT Project Integrated Safety Management Workshop Registration Exhibit Project UID 207765 NewPIA D Update 0 DOE PIA - ISMS Workshop Finallxw.doc N T "tl I

49

Bringing Water into an Integrated Assessment Framework  

Science Conference Proceedings (OSTI)

We developed a modeling capability to understand how water is allocated within a river basin and examined present and future water allocations among agriculture, energy production, other human requirements, and ecological needs. Water is an essential natural resource needed for food and fiber production, household and industrial uses, energy production, transportation, tourism and recreation, and the functioning of natural ecosystems. Anthropogenic climate change and population growth are anticipated to impose unprecedented pressure on water resources during this century. Pacific Northwest National Laboratory (PNNL) researchers have pioneered the development of integrated assessment (IA) models for the analysis of energy and economic systems under conditions of climate change. This Laboratory Directed Research and Development (LDRD) effort led to the development of a modeling capability to evaluate current and future water allocations between human requirements and ecosystem services. The Water Prototype Model (WPM) was built in STELLA®, a computer modeling package with a powerful interface that enables users to construct dynamic models to simulate and integrate many processes (biological, hydrological, economics, sociological). A 150,404-km2 basin in the United States (U.S.) Pacific Northwest region served as the platform for the development of the WPM. About 60% of the study basin is in the state of Washington with the rest in Oregon. The Columbia River runs through the basin for 874 km, starting at the international border with Canada and ending (for the purpose of the simulation) at The Dalles dam. Water enters the basin through precipitation and from streamflows originating from the Columbia River at the international border with Canada, the Spokane River, and the Snake River. Water leaves the basin through evapotranspiration, consumptive uses (irrigation, livestock, domestic, commercial, mining, industrial, and off-stream power generation), and streamflow through The Dalles dam. Water also enters the Columbia River via runoff from land. The model runs on a monthly timescale to account for the impact of seasonal variations of climate, streamflows, and water uses. Data for the model prototype were obtained from national databases and ecosystem model results. The WPM can be run from three sources: 1) directly from STELLA, 2) with the isee Player®, or 3) the web version of WPM constructed with NetSim® software. When running any of these three versions, the user is presented a screen with a series of buttons, graphs, and a table. Two of the buttons provide the user with background and instructions on how to run the model. Currently, there are five types of scenarios that can be manipulated alone or in combination using the Sliding Input Devices: 1) interannual variability (e.g., El Niño), 2) climate change, 3) salmon policy, 4) future population, and 5) biodiesel production. Overall, the WPM captured the effects of streamflow conditions on hydropower production. Under La Niña conditions, more hydropower is available during all months of the year, with a substantially higher availability during spring and summer. Under El Niño conditions, hydropower would be reduced, with a total decline of 15% from normal weather conditions over the year. A policy of flow augmentation to facilitate the spring migration of smolts to the ocean would also reduce hydropower supply. Modeled hydropower generation was 23% greater than the 81 TWh reported in the 1995 U.S. Geological Survey (USGS) database. The modeling capability presented here contains the essential features to conduct basin-scale analyses of water allocation under current and future climates. Due to its underlying data structure iv and conceptual foundation, the WPM should be appropriate to conduct IA modeling at national and global scales.

Izaurralde, Roberto C.; Thomson, Allison M.; Sands, Ronald; Pitcher, Hugh M.

2010-11-30T23:59:59.000Z

50

Innovative approaches in integrated assessment modelling of European air pollution control strategies - Implications of dealing with multi-pollutant multi-effect problems  

Science Conference Proceedings (OSTI)

In this paper, crucial aspects of the implications and the complexity of interconnected multi-pollutant multi-effect assessments of both air pollution control strategies and the closely related reduction of greenhouse gas emissions will be discussed. ... Keywords: Emission control, Integrated assessment, Optimisation

Stefan Reis; Steffen Nitter; Rainer Friedrich

2005-12-01T23:59:59.000Z

51

The Integrated Environmental Control Model (IECM)  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovations for Existing Plants The Integrated Environmental Control Model (IECM) The Integrated Environmental Control Model (IECM) was developed for the National Energy Technology...

52

A reduced-form approach to characterizing sulfate aerosol effects on climate in integrated assessment models. Final report  

SciTech Connect

The objective of this study was to devise a methodology for estimating the spatial patterns of future climate change accounting for the effects of both greenhouse gases and sulfate aerosols under a wide range of emissions scenarios, using the results of General Circulation Models.

Wigley, T.M.L.

1996-04-01T23:59:59.000Z

53

Separations and safeguards model integration.  

Science Conference Proceedings (OSTI)

Research and development of advanced reprocessing plant designs can greatly benefit from the development of a reprocessing plant model capable of transient solvent extraction chemistry. This type of model can be used to optimize the operations of a plant as well as the designs for safeguards, security, and safety. Previous work has integrated a transient solvent extraction simulation module, based on the Solvent Extraction Process Having Interaction Solutes (SEPHIS) code developed at Oak Ridge National Laboratory, with the Separations and Safeguards Performance Model (SSPM) developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The goal of this work was to strengthen the integration by linking more variables between the two codes. The results from this integrated model show expected operational performance through plant transients. Additionally, ORIGEN source term files were integrated into the SSPM to provide concentrations, radioactivity, neutron emission rate, and thermal power data for various spent fuels. This data was used to generate measurement blocks that can determine the radioactivity, neutron emission rate, or thermal power of any stream or vessel in the plant model. This work examined how the code could be expanded to integrate other separation steps and benchmark the results to other data. Recommendations for future work will be presented.

Cipiti, Benjamin B.; Zinaman, Owen

2010-09-01T23:59:59.000Z

54

INTEGRATED HYDROGEN STORAGE SYSTEM MODEL  

DOE Green Energy (OSTI)

Hydrogen storage is recognized as a key technical hurdle that must be overcome for the realization of hydrogen powered vehicles. Metal hydrides and their doped variants have shown great promise as a storage material and significant advances have been made with this technology. In any practical storage system the rate of H2 uptake will be governed by all processes that affect the rate of mass transport through the bed and into the particles. These coupled processes include heat and mass transfer as well as chemical kinetics and equilibrium. However, with few exceptions, studies of metal hydrides have focused primarily on fundamental properties associated with hydrogen storage capacity and kinetics. A full understanding of the complex interplay of physical processes that occur during the charging and discharging of a practical storage system requires models that integrate the salient phenomena. For example, in the case of sodium alanate, the size of NaAlH4 crystals is on the order of 300nm and the size of polycrystalline particles may be approximately 10 times larger ({approx}3,000nm). For the bed volume to be as small as possible, it is necessary to densely pack the hydride particles. Even so, in packed beds composed of NaAlH{sub 4} particles alone, it has been observed that the void fraction is still approximately 50-60%. Because of the large void fraction and particle to particle thermal contact resistance, the thermal conductivity of the hydride is very low, on the order of 0.2 W/m-{sup o}C, Gross, Majzoub, Thomas and Sandrock [2002]. The chemical reaction for hydrogen loading is exothermic. Based on the data in Gross [2003], on the order of 10{sup 8}J of heat of is released for the uptake of 5 kg of H{sub 2}2 and complete conversion of NaH to NaAlH{sub 4}. Since the hydride reaction transitions from hydrogen loading to discharge at elevated temperatures, it is essential to control the temperature of the bed. However, the low thermal conductivity of the hydride makes it difficult to remove the heat of reaction, especially in the relatively short target refueling times, see Attachment 3. This document describes a detailed numerical model for general metal hydride beds that couples reaction kinetics with heat and mass transfer, for both hydriding and dehydriding of the bed. The detailed model is part of a comprehensive methodology for the design, evaluation and modification of hydrogen storage systems. In Hardy [2007], scoping models for reaction kinetics, bed geometry and heat removal parameters are discussed. The scoping models are used to perform a quick assessment of storage systems and identify those which have the potential to meet DOE performance targets. The operational characteristics of successful candidate systems are then evaluated with the more detailed models discussed in this document. The detailed analysis for hydrogen storage systems is modeled in either 2 or 3-dimensions, via the general purpose finite element solver COMSOL Multiphysics{reg_sign}. The two-dimensional model serves to provide rapid evaluation of bed configurations and physical processes, while the three-dimensional model, which requires a much longer run time, is used to investigate detailed effects that do not readily lend themselves to two-dimensional representations. The model is general and can be adapted to any geometry or storage media. In this document, the model is applied to a modified cylindrical shell and tube geometry with radial fins perpendicular to the axis, see Figures 4.1-1 and 4.1-2. Sodium alanate, NaAlH{sub 4}, is used as the hydrogen storage medium. The model can be run on any DOS, LINUX or Unix based system.

Hardy, B

2007-11-16T23:59:59.000Z

55

General support for integrated assessment research. Final report  

Science Conference Proceedings (OSTI)

The climate change problem spans an extraordinarily large number of disciplines from earth sciences to social and political sciences. The interaction of processes described by these different fields is why climate change is such a complex issue. Keeping track of these interactions and bringing coherence to the assumptions underlying each disciplinary insight on the climate problem is a massive undertaking. Integrated assessment is an interdisciplinary approach designed to provide systematic evaluations of technically complex problems such as the analysis of environmental change challenges facing humanity. Ph.D. theses stemming from this application are summarized. Then some aspects of Integrated Climate Assessment Models are described.

Dowlatabadi, Hadi

2001-03-01T23:59:59.000Z

56

An integrated assessment tool to define effective air quality policies at regional scale  

Science Conference Proceedings (OSTI)

In this paper, the Integrated Assessment of air quality is dealt with at regional scale. First the paper describes the main challenges to tackle current air pollution control, including economic aspects. Then it proposes a novel approach to manage the ... Keywords: Air quality modeling, Decision support, Integrated assessment modeling, Model reduction, Multi-objective optimization

Claudio Carnevale; Giovanna Finzi; Enrico Pisoni; Marialuisa Volta; Giorgio Guariso; Roberta Gianfreda; Giuseppe Maffeis; Philippe Thunis; Les White; Giuseppe Triacchini

2012-12-01T23:59:59.000Z

57

Coordination studies with PNNL's global change assessment model: integrated science modeling and applications to the human dimensions. Final technical report for period October 1996 - March 2000  

SciTech Connect

This report outlines the progress on the development and application of Integrated Science Assessment Model (ISAM) supported by the DOE Program on Health and Environmental Research: Environmental Sciences Program under Grant No. DOE DFGO2-96ER62284. As part of this research proposal, we designed the model that better represent spatial variations and treat the process relevant towards evaluating the biogeochemical cycles important to determining atmospheric composition and resulting climatic effects at the regional scale. The process level understanding of regional impacts into the Integrated Assessment (IA) model will help to improve the understanding of climate change impacts and extend the range of issues, which can be addressed in an IA framework. On the application front, the newly developed model has been applied to a selected set of studies to address policy related questions on climate change, in particular, the role of forestry, and land-use for historical greenhouse gas emissions; projections of future methane emissions; a research study related to energy implications of future stabilization of atmospheric CO{sub 2} content; and radiative forcing and estimation of a number of important greenhouse gases. In the following, the significant findings from the DOE supported study are outlined.

Wuebbles, Donald J.; Jain Atul

2000-05-30T23:59:59.000Z

58

An Assessment of Integrated Health Management Frameworks  

Science Conference Proceedings (OSTI)

In order to meet the ever increasing demand for energy, the United States nuclear industry is turning to life extension of existing nuclear power plants (NPPs). Economically ensuring the safe, secure, and reliable operation of aging NPPs presents many challenges. The 2009 Light Water Reactor Sustainability Workshop identified online monitoring of active and structural components as essential to better understanding and management of the challenges posed by aging NPPs. Additionally, there is increasing adoption of condition-based maintenance (CBM) for active components in NPPs. These techniques provide a foundation upon which a variety of advanced online surveillance, diagnostic, and prognostic techniques can be deployed to continuously monitor and assess the health of NPP systems and components. The next step in the development of advanced online monitoring is to move beyond CBM to estimating the remaining useful life of active components using prognostic tools. Deployment of prognostic health management (PHM) on the scale of an NPP requires the use of an integrated health management (IHM) framework - a software product (or suite of products) used to manage the necessary elements needed for a complete implementation of online monitoring and prognostics. This paper provides a thoughtful look at the desirable functions and features of IHM architectures. A full PHM system involves several modules, including data acquisition, system modeling, fault detection, fault diagnostics, system prognostics, and advisory generation (operations and maintenance planning). The standards applicable to PHM applications are indentified and summarized. A list of evaluation criteria for PHM software products, developed to ensure scalability of the toolset to an environment with the complexity of an NPP, is presented. Fourteen commercially available PHM software products are identified and classified into four groups: research tools, PHM system development tools, deployable architectures, and peripheral tools.

Lybeck, Nancy; Coble, Jamie B.; Tawfik, Magdy; Bond, Leonard J.

2012-05-18T23:59:59.000Z

59

NIST Modeled integrated scattering tool (MIST)  

Science Conference Proceedings (OSTI)

... been developed to provide users with a general application to model an integrated scattering system. The program performs an integration of the ...

2012-08-07T23:59:59.000Z

60

Integrated Assessment Systems for Chemical Warfare Material  

Science Conference Proceedings (OSTI)

The US Army must respond to a variety of situations involving suspect discovered, recovered, stored, and buried chemical warfare materiel (CWM). In some cases, the identity of the fill materiel and the status of the fusing and firing train cannot be visually determined due to aging of the container, or because the item is contained in an over-pack. In these cases, non-intrusive assessments are required to provide information to allow safe handling, storage, and disposal of the materiel. This paper will provide an overview of the integrated mobile and facility-based CWM assessment system prototypes that have been, and are being developed, at the Idaho National Engineering and Environmental Laboratory (INEEL) for the US Army Non-Stockpile Chemical Materiel Project. In addition, this paper will discuss advanced sensors being developed to enhance the capability of the existing and future assessment systems. The Phase I Mobile Munitions Assessment System (MMAS) is currently being used by the Army's Technical Escort Unit (TEU) at Dugway Proving Ground, Utah. This system includes equipment for non-intrusively identifying the munitions fill materiel and for assessing the condition and stability of the fuzes, firing trains, and other potential safety hazards. The system provides a self-contained, integrated command post including an on-board computer system, communications equipment, video and photographic equipment, weather monitoring equipment, and miscellaneous safety-related equipment. The Phase II MMAS is currently being tested and qualified for use by the INEEL and the US Army. The Phase II system contains several new assessment systems that significantly enhance the ability to assess CWM. A facility-based munitions assessment system prototype is being developed for the assessment of CWM stored in igloos at Pine Bluff Arsenal, Arkansas. This system is currently in the design and fabrication stages. Numerous CWM advanced sensors are being developed and tested, and pending successful test results, may be incorporated in the various munitions assessment systems in the future. These systems are intended to enhance CWM fill materiel identification, agent air monitoring, agent or agent degradation product detection by surface analysis, and real-time x-ray capabilities.

A. M. Snyder; D. A. Verrill; G. L. Thinnes; K. D. Watts; R. J. McMorland

1999-05-27T23:59:59.000Z

Note: This page contains sample records for the topic "integrated assessment modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Guide to Integrating Renewable Energy in Federal Construction: Assessing  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessing Renewable Energy Options to someone by E-mail Assessing Renewable Energy Options to someone by E-mail Share Guide to Integrating Renewable Energy in Federal Construction: Assessing Renewable Energy Options on Facebook Tweet about Guide to Integrating Renewable Energy in Federal Construction: Assessing Renewable Energy Options on Twitter Bookmark Guide to Integrating Renewable Energy in Federal Construction: Assessing Renewable Energy Options on Google Bookmark Guide to Integrating Renewable Energy in Federal Construction: Assessing Renewable Energy Options on Delicious Rank Guide to Integrating Renewable Energy in Federal Construction: Assessing Renewable Energy Options on Digg Find More places to share Guide to Integrating Renewable Energy in Federal Construction: Assessing Renewable Energy Options on AddThis.com...

62

An Integrated Computational Model for Additive Manufacturing ...  

Science Conference Proceedings (OSTI)

As part of this integrated model, this paper describes a macroscopic thermo- mechanical modeling approach to simulate the layer-by-layer AM process to build ...

63

Integrated Model to Access the Global Environment | Open Energy Information  

Open Energy Info (EERE)

Integrated Model to Access the Global Environment Integrated Model to Access the Global Environment Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Integrated Model to Access the Global Environment (IMAGE) Agency/Company /Organization: PBL Netherlands Environmental Assessment Agency Focus Area: Biomass Complexity/Ease of Use: Advanced Website: themasites.pbl.nl/en/themasites/image/index.html Cost: Paid Equivalent URI: cleanenergysolutions.org/content/integrated-model-access-global-enviro Related Tools ENV-Linkages-KEI Model World Induced Technical Change Hybrid (WITCH) Global Trade and Analysis Project (GTAP) Model ... further results IMAGE is an ecological-environmental framework that simulates the

64

Adaptive Urban Dispersion Integrated Model  

DOE Green Energy (OSTI)

Numerical simulations represent a unique predictive tool for understanding the three-dimensional flow fields and associated concentration distributions from contaminant releases in complex urban settings (Britter and Hanna 2003). Utilization of the most accurate urban models, based on fully three-dimensional computational fluid dynamics (CFD) that solve the Navier-Stokes equations with incorporated turbulence models, presents many challenges. We address two in this work; first, a fast but accurate way to incorporate the complex urban terrain, buildings, and other structures to enforce proper boundary conditions in the flow solution; second, ways to achieve a level of computational efficiency that allows the models to be run in an automated fashion such that they may be used for emergency response and event reconstruction applications. We have developed a new integrated urban dispersion modeling capability based on FEM3MP (Gresho and Chan 1998, Chan and Stevens 2000), a CFD model from Lawrence Livermore National Lab. The integrated capability incorporates fast embedded boundary mesh generation for geometrically complex problems and full three-dimensional Cartesian adaptive mesh refinement (AMR). Parallel AMR and embedded boundary gridding support are provided through the SAMRAI library (Wissink et al. 2001, Hornung and Kohn 2002). Embedded boundary mesh generation has been demonstrated to be an automatic, fast, and efficient approach for problem setup. It has been used for a variety of geometrically complex applications, including urban applications (Pullen et al. 2005). The key technology we introduce in this work is the application of AMR, which allows the application of high-resolution modeling to certain important features, such as individual buildings and high-resolution terrain (including important vegetative and land-use features). It also allows the urban scale model to be readily interfaced with coarser resolution meso or regional scale models. This talk will discuss details of the approach and present results for some example calculations performed in Manhattan in support of the DHS Urban Dispersion Program (UDP) using some of the tools developed as part of this new capability.

Wissink, A; Chand, K; Kosovic, B; Chan, S; Berger, M; Chow, F K

2005-11-03T23:59:59.000Z

65

Hydropower Resource Assessment Modeling Results  

DOE Green Energy (OSTI)

The Hydropower Evaluation Software uses the Federal Energy Regulatory Commission?s Hydroelectric Power Resource Assessment database to identify sites with undeveloped hydropower capacity and the estimated megawatts of undeveloped capacity at each site. The software integrates this information with environmental values from the National Park Service?s National Rivers Inventory database. Other constraints to development that are modeled include Federal and state legislative protection for river segments that have been identified as being wild and scenic river segments. River segments containing threatened and/or endangered wildlife and fish are also modeled for their influence on hydropower development. The amount that each attribute affects the likelihood of development is dependent on the prior development of a site.

A. M. Conner; J. E. Francfort

1999-07-06T23:59:59.000Z

66

Integrated Hydrogen Storage System Model  

NLE Websites -- All DOE Office Websites (Extended Search)

WSRC-TR-2007-00440, REVISION 0 WSRC-TR-2007-00440, REVISION 0 Keywords: Hydrogen Kinetics, Hydrogen Storage Vessel Metal Hydride Retention: Permanent Integrated Hydrogen Storage System Model Bruce J. Hardy November 16, 2007 Washington Savannah River Company Savannah River Site Aiken, SC 29808 Prepared for the U.S. Department of Energy Under Contract Number DEAC09-96-SR18500 DISCLAIMER This report was prepared for the United States Department of Energy under Contract No. DE-AC09-96SR18500 and is an account of work performed under that contract. Neither the United States Department of Energy, nor WSRC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for accuracy, completeness, or usefulness, of any information,

67

Asia-Pacific Integrated Model (AIM) | Open Energy Information  

Open Energy Info (EERE)

Asia-Pacific Integrated Model (AIM) Asia-Pacific Integrated Model (AIM) Jump to: navigation, search Tool Summary Name: Asia-Pacific Integrated Model (AIM) Agency/Company /Organization: National Institute of Environmental Studies (NIES) User Interface: Spreadsheet Complexity/Ease of Use: Advanced Website: www-iam.nies.go.jp/aim/index.htm Country: Asia Locality: Asia-Pacific Cost: Free UN Region: Eastern Asia Related Tools SimCLIM Poverty Social Impact Analysis Threshold 21 Model ... further results Find Another Tool FIND DEVELOPMENT IMPACTS ASSESSMENT TOOLS A large-scale computer simulation model for assessing policy options to stabilize the global climate through greenhouse gas emissions reduction, with an emphasis on the Asia-Pacific region. Approach AIM comprises three main models: a greenhouse gas emissions model

68

NREL: Technology Deployment - Integrated Deployment Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Deployment Model Integrated Deployment Model NREL's integrated deployment model provides a framework to focus on the national goal of accelerating market adoption of clean energy technologies through local efforts. With support from the U.S. Department of Energy (DOE), NREL developed and applies the integrated deployment model to select projects including disaster recovery, statewide activities, federal agency support, island activities, and community renewable energy deployment. How the Model Works To address the complex challenges of multi-technology, multi-stakeholder, and multi-fuel deployment, NREL created the integrated deployment model to support each technology area separately but also consider the integration points between the technologies. NREL also identifies the cross-cutting

69

Integrated Chemical, Thermal, Mechanical and Hydrological Modeling...  

Open Energy Info (EERE)

489,476 1,602,500 Retrieved from "http:en.openei.orgwindex.php?titleIntegratedChemical,Thermal,MechanicalandHydrologicalModeling&oldid313283" Category:...

70

Integrated Assessment of Global Climate Change | U.S. DOE Office of Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Assessment of Global Integrated Assessment of Global Climate Change Biological and Environmental Research (BER) BER Home About Research Research Abstracts Searchable Archive of BER Highlights External link Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate Modeling (RGCM) Program Subsurface Biogeochemical Research Terrestrial Carbon Sequestration External link Terrestrial Ecosystem Science Facilities Science Highlights Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC)

71

Waste Heat Integration Potential Assessment through Exergy ...  

Science Conference Proceedings (OSTI)

A Hydro-Mechanical Model and Analytical Solutions for Geomechanical Modeling of Carbon Dioxide Geological Sequestration · A Novel Method Combined ...

72

NREL: Vehicle Ancillary Loads Reduction - Integrated Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Modeling Integrated Modeling NREL's Vehicle Ancillary Loads Reduction (VALR) team predicts the impact of advanced vehicle cooling technologies before testing by using an integrated modeling process. Evaluating the heat load on a vehicle under real world conditions is a difficult task. An accepted method to evaluate passenger compartment airflow and heat transfer is computational fluid dynamics. (CFD). Combining analytical models with CFD provides a powerful tool to assist industry both on current vehicles and on future design studies. Flow chart showing the vehicle integrated modeling process which considers solar radiation, air conditioning, and vehicles with CAD, glazing, cabin thermal/fluid, and thermal comfort modeling tools. Results are provided for fuel economy, tailpipe emissions and occupant thermal comfort.

73

Legacy model integration with repast simphony.  

SciTech Connect

Repast is a widely used, free, and open-source, agent-based modeling and simulation toolkit. Three Repast version 3 platforms are currently available, each of which has the same core features but with differing environments for these features. Repast Simphony (Repast S) extends the Repast 3 portfolio by offering a new approach to simulation development and execution. Repast S's new simulation development capabilities include direct support for integrating existing (i.e., legacy) file-based models into agent-based simulations. This paper reviews related work on model integration and data exchange; introduces the Repast S's legacy model integration system; and discusses how the new system can be used to integrate existing file-based models, either agent-based or nonagent-based, into agent models.

North, M. J.; Sydelko, P. J.; Vos, J. R.; Howe, T. R.; Collier, N. T.; Decision and Information Sciences; Univ. of Chicago; Univ. of Illinois; PantaRei Corp.

2006-01-01T23:59:59.000Z

74

Conceptual Modeling for Data Integration  

Science Conference Proceedings (OSTI)

The goal of data integration is to provide a uniform access to a set of heterogeneous data sources, freeing the user from the knowledge about where the data are, how they are stored, and how they can be accessed. One of the outcomes of the research work ...

Diego Calvanese; Giuseppe Giacomo; Domenico Lembo; Maurizio Lenzerini; Riccardo Rosati

2009-07-01T23:59:59.000Z

75

Perspectives of Integrated Modeling at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

on Integrated Whole-Device Modeling on Integrated Whole-Device Modeling at NERSC Alexei Y. Pankin 1 , Arnold H. Kritz 2 , and Tariq Rafiq 2 1 Tech-X Corporation, Boulder, CO 2 Lehigh University, Bethlehem, PA Integrated Whole-Device Modeling of Tokamak Plasmas Studies in isolation of elements that describe plasma behavior (plasma heating, MHD equilibria, large scale instabilities, core and edge transport ...) * Do not capture interactive nature of physics described in whole-device integrated modeling simulations  It is important that we understand effects that result from interactions between various physical processes in tokamak plasmas Predictive whole-device modeling helps avoid costly design mistakes * Facilitates the optimization and control of experimental scenarios in order to make the most effective use of expensive experiments

76

Fort Stewart integrated resource assessment. Volume 3: Resource assessment  

SciTech Connect

The US Army Forces Command (FORSCOM) has tasked the US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory, to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Stewart. This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the FORSCOM Fort Stewart facility located approximately 25 miles southwest of Savannah, Georgia. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analyses of EROs are presented in 11 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative description of each ERO is provided, along with a table detailing information on the installed cost, energy and dollar savings; impacts on operations and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO. The tables also present the results of the life-cycle cost (LCC) analysis indicating the net present value (NPV) and savings to investment ratio (SIR) of each ERO.

Sullivan, G.P.; Keller, J.M.; Stucky, D.J.; Wahlstrom, R.R.; Larson, L.L.

1993-10-01T23:59:59.000Z

77

Fort Drum integrated resource assessment. Volume 3, Resource assessment  

Science Conference Proceedings (OSTI)

The US Army Forces Command (FORSCOM) has tasked Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program`s (FEMP) mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Drum. This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company (Niagara Mohawk). It will (1) identify and evaluate all electric and fossil fuel cost-effective energy projects; (2) develop a schedule at each installation for project acquisition considering project type, size, timing, capital requirements, as well as energy and dollar savings; and (3) secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at one of Niagara Mohawk`s primary federal facilities, the FORSCOM Fort Drum facility located near Watertown, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 2, the Baseline Detail.

Dixon, D.R.; Armstrong, P.R.; Daellenbach, K.K.; Dagle, J.E.; Di Massa, F.V.; Elliott, D.B.; Keller, J.M.; Richman, E.E.; Shankle, S.A.; Sullivan, G.P.; Wahlstrom, R.R.

1992-12-01T23:59:59.000Z

78

Assessment of the Integrated Facility Disposition Project at Oak Ridge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of the Integrated Facility Disposition Project at Oak Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM In December 2007, the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program Secretarial Offices (PSOs) of Nuclear Energy (NE), Science (SC), and the National Nuclear Security Administration (NNSA) to propose facilities and legacy waste for transfer to Environmental Management (EM) for final disposition or deactivation and decommissioning (D&D). Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM

79

Integrated Global System Modeling Framework | Open Energy Information  

Open Energy Info (EERE)

Integrated Global System Modeling Framework Integrated Global System Modeling Framework Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Integrated Global System Modeling Framework Agency/Company /Organization: MIT Joint Program on the Science and Policy of Global Change Sector: Climate, Energy Focus Area: Renewable Energy Phase: Determine Baseline, Evaluate Options Topics: - Macroeconomic Resource Type: Software/modeling tools User Interface: Desktop Application Complexity/Ease of Use: Not Available Website: globalchange.mit.edu/research/IGSM Cost: Free Related Tools Transport Co-benefits Calculator General Equilibrium Modeling Package (GEMPACK)

80

241-AN Double Shell Tanks (DST) Integrity Assessment Report  

Science Conference Proceedings (OSTI)

This report presents the results of the integrity assessment of the 241-AN double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks.

JENSEN, C.E.

1999-09-21T23:59:59.000Z

Note: This page contains sample records for the topic "integrated assessment modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

241-AY Double Shell Tanks (DST) Integrity Assessment Report  

Science Conference Proceedings (OSTI)

This report presents the results of the integrity assessment of the 241-AY double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations. are made to ensure the continued safe operation of the tanks.

JENSEN, C.E.

1999-09-21T23:59:59.000Z

82

Integrated Computational Modeling of Welding – Development to ...  

Science Conference Proceedings (OSTI)

Integrated computational modeling is considered as a viable pathway to ... lack of a standard verification and validation (V&V) documents to build a technical case. ... Evolution with the Impact of Anisotropic Grain Boundary Energy and Mobility.

83

Integration of EBS Models with Generic Disposal System Models | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integration of EBS Models with Generic Disposal System Models Integration of EBS Models with Generic Disposal System Models Integration of EBS Models with Generic Disposal System Models This report summarizes research activities on engineered barrier system (EBS) model integration with the generic disposal system model (GDSM), and used fuel degradation and radionuclide mobilization (RM) in support of the EBS evaluation and tool development within the Used Fuel Disposition campaign. This report addresses: predictive model capability for used nuclear fuel degradation based on electrochemical and thermodynamic principles, radiolysis model to evaluate the U(VI)-H2O-CO2 system, steps towards the evaluation of uranium alteration products, discussion of instant release fraction (IRF) of radionuclides from the nuclear fuel, and

84

Integration of EBS Models with Generic Disposal System Models | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integration of EBS Models with Generic Disposal System Models Integration of EBS Models with Generic Disposal System Models Integration of EBS Models with Generic Disposal System Models This report summarizes research activities on engineered barrier system (EBS) model integration with the generic disposal system model (GDSM), and used fuel degradation and radionuclide mobilization (RM) in support of the EBS evaluation and tool development within the Used Fuel Disposition campaign. This report addresses: predictive model capability for used nuclear fuel degradation based on electrochemical and thermodynamic principles, radiolysis model to evaluate the U(VI)-H2O-CO2 system, steps towards the evaluation of uranium alteration products, discussion of instant release fraction (IRF) of radionuclides from the nuclear fuel, and

85

Integrated Modeling of Microbial Ecology  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling of Microbial Ecology in Subsurface Environments Speaker: Dr. Krishna Mahadevan Department of Chemical Engineering and Applied Chemistry University of Toronto Date:...

86

Integrated Safeguards and Security Management Self-Assessment 2004  

Science Conference Proceedings (OSTI)

In 2002 Ernest Orlando Lawrence Berkeley National Laboratory deployed the first Integrated Safeguards and Security Management (ISSM) Self-Assessment process, designed to measure the effect of the Laboratory's ISSM efforts. This process was recognized by DOE as a best practice and model program for self-assessment and training. In 2004, the second Self-Assessment was launched. The cornerstone of this process was an employee survey that was designed to meet several objectives: (1) Ensure that Laboratory assets are protected. (2) Provide a measurement of the Laboratory's current security status that can be compared against the 2002 Self-Assessment baseline. (3) Educate all Laboratory staff about security responsibilities, tools, and practices. (4) Provide security staff with feedback on the effectiveness of security programs. (5) Provide line management with the information they need to make informed decisions about security. This 2004 Self Assessment process began in July 2004 with every employee receiving an information packet and instructions for completing the ISSM survey. The Laboratory-wide survey contained questions designed to measure awareness and conformance to policy and best practices. The survey response was excellent--90% of Berkeley Lab employees completed the questionnaire. ISSM liaisons from each division followed up on the initial survey results with individual employees to improve awareness and resolve ambiguities uncovered by the questionnaire. As with the 2002 survey, the Self-Assessment produced immediate positive results for the ISSM program and revealed opportunities for longer-term corrective actions. Results of the questionnaire provided information for organizational profiles and an institutional summary. The overall level of security protection and awareness was very high--often above 90%. Post-survey work by the ISSM liaisons and line management consistently led to improved awareness and metrics, as shown by a comparison of profiles at the end of phase one (August 6, 2004) and phase two (November 1, 2004). The Self-Assessment confirmed that classified information is not held or processed at Berkeley Lab. The survey results also identified areas where increased employee knowledge and awareness of Laboratory policy would be beneficial, the two most prominent being password usage and wireless network service. Line management will be able to determine additional corrective actions based on the results of the Self-Assessment. Future assessments will raise the ratings bar for some existing program elements and add new elements to stimulate further improvements in Laboratory security.

Lunford, Dan; Ramsey, Dwayne

2005-04-01T23:59:59.000Z

87

Fort Irwin Integrated Resource Assessment. Volume 2, Baseline detail  

SciTech Connect

This report documents the assessment of baseline energy use at Fort Irwin, a US Army Forces Command facility near Barstow, California. It is a companion report to Volume 1, Executive Summary, and Volume 3, Integrated Resource Assessment. The US Army Forces Command (FORSCOM) has tasked the US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory (PNL), to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Irwin. This is part of a model program that PNL has designed to support energy-use decisions in the federal sector. This program (1) identifies and evaluates all cost-effective energy projects; (2) develops a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and (3) targets 100% of the financing required to implement energy efficiency projects. PNL applied this model program to Fort Irwin. This analysis examines the characteristics of electric, propane gas, and vehicle fuel use for a typical operating year. It records energy-use intensities for the facilities at Fort Irwin by building type and energy end use. It also breaks down building energy consumption by fuel type, energy end use, and building type. A complete energy consumption reconciliation is presented that accounts for all energy use among buildings, utilities, and applicable losses.

Richman, E.E.; Keller, J.M.; Dittmer, A.L.; Hadley, D.L.

1994-01-01T23:59:59.000Z

88

Environmental Design Space model assessment  

E-Print Network (OSTI)

The Environmental Design Space (EDS) is a multi-disciplinary design tool used to explore trade-offs among aircraft fuel burn, emissions, and noise. This thesis uses multiple metrics to assess an EDS model of a Boeing 777 ...

Spindler, Phillip Michael

2007-01-01T23:59:59.000Z

89

Photovoltaic Systems Assessment: An Integrated Perspective  

Science Conference Proceedings (OSTI)

Information from recent photovoltaic (PV) research and technology assessments was synthesized into a review of key planning, hardware, institutional, and operational issues. Researchers reviewed PV cell and module technologies, results from ongoing field tests of intermediate-size systems, and balance-of-system (non-PV components) costs for residential, intermediate, and central station applications. Cost-performance targets for PV systems in various locations were developed.

1983-09-01T23:59:59.000Z

90

Integration of Facility Modeling Capabilities for Nuclear Nonproliferation Analysis  

Science Conference Proceedings (OSTI)

Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

Humberto E. Garcia

2012-01-01T23:59:59.000Z

91

INTEGRATION OF FACILITY MODELING CAPABILITIES FOR NUCLEAR NONPROLIFERATION ANALYSIS  

SciTech Connect

Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

Gorensek, M.; Hamm, L.; Garcia, H.; Burr, T.; Coles, G.; Edmunds, T.; Garrett, A.; Krebs, J.; Kress, R.; Lamberti, V.; Schoenwald, D.; Tzanos, C.; Ward, R.

2011-07-18T23:59:59.000Z

92

Integration of facility modeling capabilities for nuclear nonproliferation analysis  

SciTech Connect

Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

Garcia, Humberto [Idaho National Laboratory (INL); Burr, Tom [Los Alamos National Laboratory (LANL); Coles, Garill A [ORNL; Edmunds, Thomas A. [Lawrence Livermore National Laboratory (LLNL); Garrett, Alfred [Savannah River National Laboratory (SRNL); Gorensek, Maximilian [Savannah River National Laboratory (SRNL); Hamm, Luther [Savannah River National Laboratory (SRNL); Krebs, John [Argonne National Laboratory (ANL); Kress, Reid L [ORNL; Lamberti, Vincent [Y-12 National Security Complex; Schoenwald, David [ORNL; Tzanos, Constantine P [ORNL; Ward, Richard C [ORNL

2012-01-01T23:59:59.000Z

93

Steam Generator Management Program: Steam Generator Integrity Assessment Guidelines  

Science Conference Proceedings (OSTI)

This report provides guidance for evaluating the condition of steam generator (SG) tubes based on nondestructive examination (NDE) or in situ pressure testing. The integrity assessments are normally performed during a reactor refueling outage. Nuclear power plant licensees who follow the guidance in this report will have satisfied the requirements for degradation assessments, condition monitoring, and operational assessment as defined in the Nuclear Energy Institute (NEI) Steam Generator Program Guidelin...

2009-11-19T23:59:59.000Z

94

Integrated assessment of dispersed energy resources deployment  

SciTech Connect

The goal of this work is to create an integrated framework for forecasting the adoption of distributed energy resources (DER), both by electricity customers and by the various institutions within the industry itself, and for evaluating the effect of this adoption on the power system, particularly on the overall reliability and quality of electrical service to the end user. This effort and follow on contributions are intended to anticipate and explore possible patterns of DER deployment, thereby guiding technical work on microgrids towards the key technical problems. An early example of this process addressed is the question of possible DER adopting customer disconnection. A deployment scenario in which many customers disconnect from their distribution company (disco) entirely leads to a quite different set of technical problems than a scenario in which customers self generate a significant share or all of their on-site electricity requirements and additionally buy and sell energy and ancillary services (AS) locally and/or into wider markets. The exploratory work in this study suggests that the economics under which customers disconnect entirely are unlikely.

Marnay, Chris; Blanco, Raquel; Hamachi, Kristina S.; Kawaan, Cornelia P.; Osborn, Julie G.; Rubio, F. Javier

2000-06-01T23:59:59.000Z

95

Modeling for System Integration Studies (Presentation)  

SciTech Connect

This presentation describes some the data requirements needed for grid integration modeling and provides real-world examples of such data and its format. Renewable energy integration studies evaluate the operational impacts of variable generation. Transmission planning studies investigate where new transmission is needed to transfer energy from generation sources to load centers. Both use time-synchronized wind and solar energy production and load as inputs. Both examine high renewable energy penetration scenarios in the future.

Orwig, K. D.

2012-05-01T23:59:59.000Z

96

Assessment of Water Balance Models  

Science Conference Proceedings (OSTI)

Power generating plants perform water balance studies for a variety of reasons, and they use a range of different modeling approaches and tools to accomplish their specific objectives. This EPRI report presents the results of a project conducted with the objective of providing the industry and the interested public with an assessment of the value of water balance models to conserve and manage water. The report provides an overview of the state-of-the-art water balance models and identifies ...

2013-10-29T23:59:59.000Z

97

Assessment of the Integrated Facility Disposition Project at Oak Ridge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Integrated Facility Disposition Project at Oak the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM In December 2007, the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program Secretarial Offices (PSOs) of Nuclear Energy (NE), Science (SC), and the National Nuclear Security Administration (NNSA) to propose facilities and legacy waste for transfer to Environmental Management (EM) for final disposition or deactivation and decommissioning (D&D). Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM

98

Need for an Integrated Risk Model  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Need for An Integrated Risk Need for An Integrated Risk Model Michael Salmon, LANL Voice: 505-665-7244 Fax: 505-665-2897 salmon@lanl.gov 10/22/2008 p. 2, LA-UR 11-06023 Purpose * To highlight some observations on safety strategy when concerned with NPH * To encourage discussion and collaboration on the use of an integrated risk model at sites * To propose a test case for use of a sample case 10/22/2008 p. 3, LA-UR 11-06023 Observations * SAFER Comments of Peer Reviewers - There is a need to consider operator interaction - What about fire following earthquake? - What about flood following earthquake? - lessons from kashiwazake * Sites do not consider common cause initiating events * Investment decisions are not based on quantitative estimates of risk reduction 10/22/2008 p. 4, LA-UR 11-06023

99

Risk Impact Assessment of Extended Integrated Leak Rate Testing Intervals  

Science Conference Proceedings (OSTI)

This report presents a risk impact assessment for extending integrated leak rate test (ILRT) surveillance intervals to 15 years. The assessment demonstrates that on an industry-wide basis there is small risk associated with the extension, provided that the performance bases and defense-in-depth are maintained. There is an obvious benefit in not performing costly, critical-path, time-consuming tests that provide a limited benefit from a risk perspective.

2008-10-31T23:59:59.000Z

100

NREL: Transmission Grid Integration - FESTIV Model  

NLE Websites -- All DOE Office Websites (Extended Search)

FESTIV Model FESTIV Model The Flexible Energy Scheduling Tool for Integration of Variable Generation (FESTIV) is a model that simulates the behavior of the electric power system to help researchers understand the impacts of variability and uncertainty on operating reserves requirements. FESTIV includes security-constrained unit commitment, security-constrained economic dispatch, and automatic generation control sub-models. Electric power system operators use a variety of scheduling techniques to match electricity generation and demand. When the total supply of energy is different from the total demand, system operators must deploy operating reserves (including regulating, following, contingency, and ramping reserves) to correct the energy imbalance. The way they do this and,

Note: This page contains sample records for the topic "integrated assessment modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

An integrated monitoring/modeling framework for assessing human-nature interactions in urbanizing watersheds: Wappinger and Onondaga Creek watersheds, New York, USA  

Science Conference Proceedings (OSTI)

In much of the world, rapidly expanding areas of impervious surfaces due to urbanization threaten water resources. Although tools for modeling and projecting land use change and water quantity and quality exist independently, to date it is rare to find ... Keywords: Impervious surface, Remote sensing, Socio-economic factors, Uncertainty, Urbanization, Water resources

Bongghi Hong; Karin E. Limburg; Myrna H. Hall; Giorgos Mountrakis; Peter M. Groffman; Karla Hyde; Li Luo; Victoria R. Kelly; Seth J. Myers

2012-06-01T23:59:59.000Z

102

Integration of the DAYCENT Biogeochemical Model within a Multi-Model Framework  

DOE Green Energy (OSTI)

Agricultural residues are the largest near term source of cellulosic 13 biomass for bioenergy production, but removing agricultural residues sustainably 14 requires considering the critical roles that residues play in the agronomic system. 15 Determining sustainable removal rates for agricultural residues has received 16 significant attention and integrated modeling strategies have been built to evaluate 17 sustainable removal rates considering soil erosion and organic matter constraints. 18 However the current integrated model does not quantitatively assess soil carbon 19 and long term crop yields impacts of residue removal. Furthermore the current 20 integrated model does not evaluate the greenhouse gas impacts of residue 21 removal, specifically N2O and CO2 gas fluxes from the soil surface. The DAYCENT 22 model simulates several important processes for determining agroecosystem 23 performance. These processes include daily Nitrogen-gas flux, daily carbon dioxide 24 flux from soil respiration, soil organic carbon and nitrogen, net primary productivity, 25 and daily water and nitrate leaching. Each of these processes is an indicator of 26 sustainability when evaluating emerging cellulosic biomass production systems for 27 bioenergy. A potentially vulnerable cellulosic biomass resource is agricultural 28 residues. This paper presents the integration of the DAYCENT model with the 29 existing integration framework modeling tool to investigate additional environment 30 impacts of agricultural residue removal. The integrated model is extended to 31 facilitate two-way coupling between DAYCENT and the existing framework. The 32 extended integrated model is applied to investigate additional environmental 33 impacts from a recent sustainable agricultural residue removal dataset. The 34 integrated model with DAYCENT finds some differences in sustainable removal 35 rates compared to previous results for a case study county in Iowa. The extended 36 integrated model with DAYCENT also predicts that long term yields will decrease.

David Muth

2012-07-01T23:59:59.000Z

103

Integrable Models and the Toda Lattice Hierarchy  

E-Print Network (OSTI)

A pedagogical presentation of integrable models with special reference to the Toda lattice hierarchy has been attempted. The example of the KdV equation has been studied in detail, beginning with the infinite conserved quantities and going on to the Lax formalism for the same. We then go on to symplectic manifolds for which we construct the Lax operator. This formalism is applied to Toda Lattice systems. The Zakharov Shabat formalism aimed at encompassing all integrable models is also covered after which the zero curvature condition and its fallout are discussed. We then take up Toda Field Theories and their connection to W algebras via the Hamiltonian reduction of the WZNW model. Finally, we dwell on the connection between four dimensional Yang Mills theories and the KdV equation along with a generalization to supersymmetry.

Södermark, B M

2000-01-01T23:59:59.000Z

104

Integrable Models and the Toda Lattice Hierarchy  

E-Print Network (OSTI)

A pedagogical presentation of integrable models with special reference to the Toda lattice hierarchy has been attempted. The example of the KdV equation has been studied in detail, beginning with the infinite conserved quantities and going on to the Lax formalism for the same. We then go on to symplectic manifolds for which we construct the Lax operator. This formalism is applied to Toda Lattice systems. The Zakharov Shabat formalism aimed at encompassing all integrable models is also covered after which the zero curvature condition and its fallout are discussed. We then take up Toda Field Theories and their connection to W algebras via the Hamiltonian reduction of the WZNW model. Finally, we dwell on the connection between four dimensional Yang Mills theories and the KdV equation along with a generalization to supersymmetry.

Bani Mitra Sodermark

1999-06-21T23:59:59.000Z

105

Sensitivity of North American agriculture to ENSO-based climate scenarios and their socio-economic consequences: Modeling in an integrated assessment framework  

Science Conference Proceedings (OSTI)

A group of Canadian, US and Mexican natural resource specialists, organized by the Pacific Northwest National Laboratory (PNNL) under its North American Energy, Environment and Economy (NA3E) Program, has applied a simulation modeling approach to estimating the impact of ENSO-driven climatic variations on the productivity of major crops grown in the three countries. Methodological development is described and results of the simulations presented in this report. EPIC (the Erosion Productivity Impact Calculator) was the agro-ecosystem model selected-for this study. EPIC uses a daily time step to simulate crop growth and yield, water use, runoff and soil erosion among other variables. The model was applied to a set of so-called representative farms parameterized through a specially-assembled Geographic Information System (GIS) to reflect the soils, topography, crop management and weather typical of the regions represented. Fifty one representative farms were developed for Canada, 66 for the US and 23 for Mexico. El Nino-Southern Oscillation (ENSO) scenarios for the EPIC simulations were created using the historic record of sea-surface temperature (SST) prevailing in the eastern tropical Pacific for the period October 1--September 30. Each year between 1960 and 1989 was thus assigned to an ENSO category or state. The ENSO states were defined as El Nino (EN, SST warmer than the long-term mean), Strong El Nino (SEN, much warmer), El Viejo (EV, cooler) and Neutral (within {+-}0.5 C of the long-term mean). Monthly means of temperature and precipitation were then calculated at each farm for the period 1960--1989 and the differences (or anomalies) between the means in Neutral years and EN, SEN and EV years determined. The average monthly anomalies for each ENSO state were then used to create new monthly statistics for each farm and ENSO-state combination. The adjusted monthly statistics characteristic of each ENSO state were then used to drive a stochastic-weather simulator that provided 30 years of daily-weather data needed to run EPIC. Maps and tables of the climate anomalies by farm show climatic conditions that differ considerably by region, season and ENSO state.

Rosenberg, N.J.; Izaurralde, R.C.; Brown, R.A.; Sands, R.D. [Pacific Northwest National Lab., Richland, WA (United States); Legler, D. [Florida State Univ., Tallahassee, FL (United States). Center for Ocean Atmosphere Prediction Studies; Srinivasan, R. [Texas A and M Univ., College Station, TX (United States). Blacklands Research Center; Tiscareno-Lopez, M.

1997-09-01T23:59:59.000Z

106

Map algebra and model algebra for integrated model building  

Science Conference Proceedings (OSTI)

Computer models are important tools for the assessment of environmental systems. A seamless workflow of construction and coupling of model components is essential for environmental scientists. However, currently available software packages are often ... Keywords: Biomass-harvest model, Component-based modelling, PCRaster, Python, Spatio-temporal simulation

Oliver Schmitz, Derek Karssenberg, Kor De Jong, Jean-Luc De Kok, Steven M. De Jong

2013-10-01T23:59:59.000Z

107

An Integrated Modeling Framework for Carbon Capture and Storage Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Karen L. cohen Karen L. cohen Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-6667 karen.cohen@netl.doe.gov Edward s. Rubin Carnegie Mellon University 5000 Forbes Avenue 128A Baker Hall Pittsburgh, PA 15213 412-268-5897 rubin@cmu.edu An IntegrAted ModelIng FrAMework For CArbon CApture And StorAge teChnologIeS Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is developing safe, lower-cost methods of carbon dioxide (CO 2 ) capture and storage (CCS) as a potential option for climate change mitigation. In addition to technology development, there is a need for modeling and assessment tools to evaluate and compare the cost and effectiveness of CCS methods. Analytical

108

PROGRAM REVIEW Rubric for Assessing the Integration of Student Learning Assessment into Program Reviews  

E-Print Network (OSTI)

to improve their work. Well-qualified internal and external reviewers evaluate the program's learningPROGRAM REVIEW Rubric for Assessing the Integration of Student Learning Assessment into Program Reviews Criterion Initial Emerging Developed Highly Developed Required Elements of the Self-Study Program

109

Plant design: Integrating Plant and Equipment Models  

Science Conference Proceedings (OSTI)

Like power plant engineers, process plant engineers must design generating units to operate efficiently, cleanly, and profitably despite fluctuating costs for raw materials and fuels. To do so, they increasingly create virtual plants to enable evaluation of design concepts without the expense of building pilot-scale or demonstration facilities. Existing computational models describe an entire plant either as a network of simplified equipment models or as a single, very detailed equipment model. The Advanced Process Engineering Co-Simulator (APECS) project (Figure 5) sponsored by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) seeks to bridge the gap between models by integrating plant modeling and equipment modeling software. The goal of the effort is to provide greater insight into the performance of proposed plant designs. The software integration was done using the process-industry standard CAPE-OPEN (Computer Aided Process Engineering–Open), or CO interface. Several demonstration cases based on operating power plants confirm the viability of this co-simulation approach.

Sloan, David (Alstrom Power); Fiveland, Woody (Alstrom Power); Zitney, S.E.; Osawe, Maxwell (Ansys, Inc.)

2007-08-01T23:59:59.000Z

110

Modeling for Integrating Science and Management  

SciTech Connect

Modeling relationships between land-management practices and resulting changes in carbon, nitrogen, albedo, and other factors is complex. Even so, such modeling can be used to integrate scientific knowledge and provide a bridge between scientific understanding and policy. Yet, too often decision makers have a poor understanding of the underlying models and thus may misinterpret the implications. More often, decision makers diminish model results as fictitious, for they do not recognize the validity or extent of the underlying science. Decision makers should understand that the modeling process (1) involves formalizing hypotheses concerning relationships among components of human, biophysical, and ecological systems and (2) fosters exploration of implications of those hypotheses. To be most helpful for decision making, developing a model requires documentation of the model components and implications including all assumptions, input and output variables, and methods used to calibrate and validate the model as well as to identify sensitivities and uncertainties. There is no one modeling approach that meets the diverse needs of decision makers regarding land and carbon issues. As with all scientific explorations, new learning typically results in improved understanding, new questions, and revised hypotheses about the way the system works. Decision makers need to realize that models cannot provide specific predictions any more than models are to be believed. Instead, modeling enhances understanding of a system by requiring a formal statement of what is known and not known. The advantages and cautionary principles involved in using models for decision making are discussed. Because land change is a local or regional process and many questions about the effect of these changes are at the global scale, there are still gaps in modeling land change and its effects. The chapter concludes with opportunities to improve modeling of land change and the carbon cycle so that the scientific understanding and information on these issues is presented in a way that is more useful to decision makers.

Dale, Virginia H [ORNL; Kline, Keith L [ORNL

2013-01-01T23:59:59.000Z

111

Integrating the principles of strategic environmental assessment into local comprehensive land use plans in California  

E-Print Network (OSTI)

The lack of early integration with the planning and decision-making process has been a major problem in environmental assessment. Traditional project-based environmental impact assessment has inadequate incentives and capacities to incorporate critical environmental impacts at a broader temporal or spatial scale. While many applications have been geared towards implementing project-level environmental assessments, comparatively little research has been done to determine how to incorporate strategically critical environmental impacts into local planning. Although the principles of strategic environmental assessment (SEA) are not yet required in local planning in the United States, these principles create a theoretical framework for local environmental assessment. The objective of this study is to examine the ability of local plans to integrate and implement the key SEA principles. This study focuses on increasing the understanding of how and where to integrate environmental impacts into the local planning and decision-making process by converting the principles of SEA into specific planning tools, policies, and implementation strategies. This study develops a protocol with 112 indicators to measure the strengths and weaknesses of integrating strategic environmental assessment into local comprehensive land use plans. A random sample of 40 California local comprehensive land use plans and associated planning processes is evaluated based on this plan quality evaluation protocol. Statistical analysis and multiple regression models identify the factors affecting the quality of plans with respect to their ability to assess environmental impacts. The results identify the relative strengths and weaknesses of the ability of local jurisdictions to integrate the SEA principles. The results show that many strategically important environmental issues and tools are rarely adopted by current local plans. The regression analysis results further identify the effects of planning capacity, environmental assessment capacity, public participation and contextual variables on environmental assessment plan quality. The findings extend established planning theory and practice by incorporating strategic environmental considerations into the existing framework of what constitutes a high quality local land use comprehensive plan and suggest ways to improve plan quality.

Tang, Zhenghong

2007-05-01T23:59:59.000Z

112

An Integrated Safety Assessment Methodology for Generation IV Nuclear Systems  

SciTech Connect

The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Early work of the RSWG focused on defining a safety philosophy founded on lessons learned from current and prior generations of nuclear technologies, and on identifying technology characteristics that may help achieve Generation IV safety goals. More recent RSWG work has focused on the definition of an integrated safety assessment methodology for evaluating the safety of Generation IV systems. The methodology, tentatively called ISAM, is an integrated “toolkit” consisting of analytical techniques that are available and matched to appropriate stages of Generation IV system concept development. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time.

Timothy J. Leahy

2010-06-01T23:59:59.000Z

113

An Assessment of Integrated Health Management (IHM) Frameworks  

Science Conference Proceedings (OSTI)

In order to meet the ever increasing demand for energy, the United States nuclear industry is turning to life extension of existing nuclear power plants (NPPs). Economically ensuring the safe, secure, and reliable operation of aging nuclear power plants presents many challenges. The 2009 Light Water Reactor Sustainability Workshop identified online monitoring of active and structural components as essential to the better understanding and management of the challenges posed by aging nuclear power plants. Additionally, there is increasing adoption of condition-based maintenance (CBM) for active components in NPPs. These techniques provide a foundation upon which a variety of advanced online surveillance, diagnostic, and prognostic techniques can be deployed to continuously monitor and assess the health of NPP systems and components. The next step in the development of advanced online monitoring is to move beyond CBM to estimating the remaining useful life of active components using prognostic tools. Deployment of prognostic health management (PHM) on the scale of a NPP requires the use of an integrated health management (IHM) framework - a software product (or suite of products) used to manage the necessary elements needed for a complete implementation of online monitoring and prognostics. This paper provides a thoughtful look at the desirable functions and features of IHM architectures. A full PHM system involves several modules, including data acquisition, system modeling, fault detection, fault diagnostics, system prognostics, and advisory generation (operations and maintenance planning). The standards applicable to PHM applications are indentified and summarized. A list of evaluation criteria for PHM software products, developed to ensure scalability of the toolset to an environment with the complexity of a NPP, is presented. Fourteen commercially available PHM software products are identified and classified into four groups: research tools, PHM system development tools, deployable architectures, and peripheral tools.

N. Lybeck; M. Tawfik; L. Bond; J. Coble

2012-05-01T23:59:59.000Z

114

Integration of facility modeling capabilities for nuclear nonproliferation analysis  

Science Conference Proceedings (OSTI)

Developing automated methods for data collection and analysis that can facilitate nuclearnonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facilitymodeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facilitymodeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facilitymodelingcapabilities and illustrates how they could be integrated and utilized for nonproliferationanalysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facilitymodeling tools. After considering a representative sampling of key facilitymodelingcapabilities, the proposed integration framework is illustrated with several examples.

Burr, Tom [Los Alamos National Laboratory (LANL); Gorensek, M. B. [Savannah River National Laboratory (SRNL); Krebs, John [Argonne National Laboratory (ANL); Kress, Reid L [ORNL; Lamberti, Vincent [Y-12 National Security Complex; Schoenwald, David [ORNL; Ward, Richard C [ORNL

2012-01-01T23:59:59.000Z

115

An integrated evolutionary model approach to small satellite engineering  

E-Print Network (OSTI)

A deficiency exists in the use of detailed integrated modeling in the design, fabrication, and operations of small satellites (<180kg). This need led to the design of the Integrated Evolutionary Model (IEM) approach to ...

Robinson, Joseph B. (Joseph Brian)

2010-01-01T23:59:59.000Z

116

TEPP Planning Products Model Needs Assessment Self Assessment Document  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Planning Products Planning Products Model Needs Assessment Self Assessment Document Prepared for the Department of Energy Office of Transportation and Emergency Management 02B00215-13.p65 1 Model Needs Assessment R E V 8 - 0 7 / 2 0 1 2 T r a n s p o r t a t i o n E m e r g e n c y P r e p a r e d n e s s P r o g r a m PURPOSE The purpose of this Model Needs Assessment is to assist state, tribal, or local officials in determining emergency responder readiness for response to a transportation accident involving radioactive material. 1.0 INTRODUCTION This Model Needs Assessment was developed by the Department of Energy's Transportation Emergency Preparedness Program (TEPP) as a planning and assessment tool for state, tribal, or local government officials. To implement this Model Needs Assessment, a designated official

117

DOD/NREL Model Integrates Vehicles, Renewables & Microgrid (Fact Sheet)  

DOE Green Energy (OSTI)

Fact sheet on microgrid model created by the Electric Vehicle Grid Integration program at the Fort Carson Army facility.

Not Available

2011-02-01T23:59:59.000Z

118

Integrated assessment and the relation between land-use change and climate change  

SciTech Connect

Integrated assessment is an approach that is useful in evaluating the consequences of global climate change. Understanding the consequences requires knowledge of the relationship between land-use change and climate change. Methodologies for assessing the contribution of land-use change to atmospheric CO{sub 2} concentrations are considered with reference to a particular case study area: south and southeast Asia. The use of models to evaluate the consequences of climate change on forests must also consider an assessment approach. Each of these points is discussed in the following four sections.

Dale, V.H.

1994-10-07T23:59:59.000Z

119

Integrated environmental modeling: A vision and roadmap for the future  

Science Conference Proceedings (OSTI)

Integrated environmental modeling (IEM) is inspired by modern environmental problems, decisions, and policies and enabled by transdisciplinary science and computer capabilities that allow the environment to be considered in a holistic way. The problems ... Keywords: Community of practice, Integrated environmental modeling, Model integration, Roadmap

Gerard F. Laniak; Gabriel Olchin; Jonathan Goodall; Alexey Voinov; Mary Hill; Pierre Glynn; Gene Whelan; Gary Geller; Nigel Quinn; Michiel Blind; Scott Peckham; Sim Reaney; Noha Gaber; Robert Kennedy; Andrew Hughes

2013-01-01T23:59:59.000Z

120

Utility of Social Modeling for Proliferation Assessment - Preliminary Assessment  

Science Conference Proceedings (OSTI)

This Preliminary Assessment draft report will present the results of a literature search and preliminary assessment of the body of research, analysis methods, models and data deemed to be relevant to the Utility of Social Modeling for Proliferation Assessment research. This report will provide: 1) a description of the problem space and the kinds of information pertinent to the problem space, 2) a discussion of key relevant or representative literature, 3) a discussion of models and modeling approaches judged to be potentially useful to the research, and 4) the next steps of this research that will be pursued based on this preliminary assessment. This draft report represents a technical deliverable for the NA-22 Simulations, Algorithms, and Modeling (SAM) program. Specifically this draft report is the Task 1 deliverable for project PL09-UtilSocial-PD06, Utility of Social Modeling for Proliferation Assessment. This project investigates non-traditional use of social and cultural information to improve nuclear proliferation assessment, including nonproliferation assessment, proliferation resistance assessments, safeguards assessments and other related studies. These assessments often use and create technical information about the State’s posture towards proliferation, the vulnerability of a nuclear energy system to an undesired event, and the effectiveness of safeguards. This project will find and fuse social and technical information by explicitly considering the role of cultural, social and behavioral factors relevant to proliferation. The aim of this research is to describe and demonstrate if and how social science modeling has utility in proliferation assessment.

Coles, Garill A.; Gastelum, Zoe N.; Brothers, Alan J.; Thompson, Sandra E.

2009-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated assessment modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Advances in NLTE Modeling for Integrated Simulations  

Science Conference Proceedings (OSTI)

The last few years have seen significant progress in constructing the atomic models required for non-local thermodynamic equilibrium (NLTE) simulations. Along with this has come an increased understanding of the requirements for accurately modeling the ionization balance, energy content and radiative properties of different elements for a wide range of densities and temperatures. Much of this progress is the result of a series of workshops dedicated to comparing the results from different codes and computational approaches applied to a series of test problems. The results of these workshops emphasized the importance of atomic model completeness, especially in doubly excited states and autoionization transitions, to calculating ionization balance, and the importance of accurate, detailed atomic data to producing reliable spectra. We describe a simple screened-hydrogenic model that calculates NLTE ionization balance with surprising accuracy, at a low enough computational cost for routine use in radiation-hydrodynamics codes. The model incorporates term splitting, {Delta}n = 0 transitions, and approximate UTA widths for spectral calculations, with results comparable to those of much more detailed codes. Simulations done with this model have been increasingly successful at matching experimental data for laser-driven systems and hohlraums. Accurate and efficient atomic models are just one requirement for integrated NLTE simulations. Coupling the atomic kinetics to hydrodynamics and radiation transport constrains both discretizations and algorithms to retain energy conservation, accuracy and stability. In particular, the strong coupling between radiation and populations can require either very short timesteps or significantly modified radiation transport algorithms to account for NLTE material response. Considerations such as these continue to provide challenges for NLTE simulations.

Scott, H A; Hansen, S B

2009-07-08T23:59:59.000Z

122

GIS-technologies for integrated assessment of the productive mining areas  

Science Conference Proceedings (OSTI)

The paper describes the bases of a new application of GIS-technologies for integrated assessment and comparison of the productive mining areas, involving a wide range of mining and technological factors, considering mineral properties, mineral occurrence conditions and geographical advantages of a mineral deposit location. The model capabilities are exemplified by a comparison of technological characteristics of coals, transportation and power supply infrastructure of the productive mining areas at the Kuznetsk Coal Basin.

Zamaraev, R.Y.; Oparin, V.N.; Popov, S.E.; Potapov, V.P.; Pyastunovich,O.L. [Russian Academy of Sciences, Kemerovo (Russian Federation)

2008-05-15T23:59:59.000Z

123

Solid waste integrated cost analysis model: 1991 project year report  

SciTech Connect

The purpose of the City of Houston's 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA's Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

Not Available

1991-01-01T23:59:59.000Z

124

Modelling integrated waste management system of the Czech Republic  

Science Conference Proceedings (OSTI)

The paper is devoted to environmental modelling, particularly modelling of Integrated Municipal Solid Waste Management Systems at the Czech Republic (IMSWMS). There are considered input macroeconomic variables (landfills fees, price of electricity, tax ... Keywords: environmental modelling, integrated waste management system, municipal solid waste, waste management modelling

Jiri Hrebicek; Jana Soukopova

2010-07-01T23:59:59.000Z

125

Metrics for Assessment of Smart Grid Data Integrity Attacks  

Science Conference Proceedings (OSTI)

There is an emerging consensus that the nation’s electricity grid is vulnerable to cyber attacks. This vulnerability arises from the increasing reliance on using remote measurements, transmitting them over legacy data networks to system operators who make critical decisions based on available data. Data integrity attacks are a class of cyber attacks that involve a compromise of information that is processed by the grid operator. This information can include meter readings of injected power at remote generators, power flows on transmission lines, and relay states. These data integrity attacks have consequences only when the system operator responds to compromised data by redispatching generation under normal or contingency protocols. These consequences include (a) financial losses from sub-optimal economic dispatch to service loads, (b) robustness/resiliency losses from placing the grid at operating points that are at greater risk from contingencies, and (c) systemic losses resulting from cascading failures induced by poor operational choices. This paper is focused on understanding the connections between grid operational procedures and cyber attacks. We first offer two examples to illustrate how data integrity attacks can cause economic and physical damage by misleading operators into taking inappropriate decisions. We then focus on unobservable data integrity attacks involving power meter data. These are coordinated attacks where the compromised data are consistent with the physics of power flow, and are therefore passed by any bad data detection algorithm. We develop metrics to assess the economic impact of these attacks under re-dispatch decisions using optimal power flow methods. These metrics can be use to prioritize the adoption of appropriate countermeasures including PMU placement, encryption, hardware upgrades, and advance attack detection algorithms.

Annarita Giani; Miles McQueen; Russell Bent; Kameshwar Poolla; Mark Hinrichs

2012-07-01T23:59:59.000Z

126

An integrated media, integrated processes watershed model Gour-Tsyh Yeh a,  

E-Print Network (OSTI)

An integrated media, integrated processes watershed model Gour-Tsyh Yeh a, , Don-Sin Shih b , Jing modelling Groundwater and surface water coupling High performance parallel computing River hydraulics of a numerical model simulating fluid flow in WAterSHed Systems of 1D Stream-River Networks, 2D Overland Regime

Central Florida, University of

127

Integrated Energy Systems (IES) for Buildings: A Market Assessment  

DOE Green Energy (OSTI)

Integrated Energy Systems (IES) combine on-site power or distributed generation technologies with thermally activated technologies to provide cooling, heating, humidity control, energy storage and/or other process functions using thermal energy normally wasted in the production of electricity/power. IES produce electricity and byproduct thermal energy onsite, with the potential of converting 80 percent or more of the fuel into useable energy. IES have the potential to offer the nation the benefits of unprecedented energy efficiency gains, consumer choice and energy security. It may also dramatically reduce industrial and commercial building sector carbon and air pollutant emissions and increase source energy efficiency. Applications of distributed energy and Combined heat and power (CHP) in ''Commercial and Institutional Buildings'' have, however, been historically limited due to insufficient use of byproduct thermal energy, particularly during summer months when heating is at a minimum. In recent years, custom engineered systems have evolved incorporating potentially high-value services from Thermally Activated Technologies (TAT) like cooling and humidity control. Such TAT equipment can be integrated into a CHP system to utilize the byproduct heat output effectively to provide absorption cooling or desiccant humidity control for the building during these summer months. IES can therefore expand the potential thermal energy services and thereby extend the conventional CHP market into building sector applications that could not be economically served by CHP alone. Now more than ever, these combined cooling, heating and humidity control systems (IES) can potentially decrease carbon and air pollutant emissions, while improving source energy efficiency in the buildings sector. Even with these improvements over conventional CHP systems, IES face significant technological and economic hurdles. Of crucial importance to the success of IES is the ability to treat the heating, ventilation, air conditioning, water heating, lighting, and power systems loads as parts of an integrated system, serving the majority of these loads either directly or indirectly from the CHP output. The CHP Technology Roadmaps (Buildings and Industry) have focused research and development on a comprehensive integration approach: component integration, equipment integration, packaged and modular system development, system integration with the grid, and system integration with building and process loads. This marked change in technology research and development has led to the creation of a new acronym to better reflect the nature of development in this important area of energy efficiency: Integrated Energy Systems (IES). Throughout this report, the terms ''CHP'' and ''IES'' will sometimes be used interchangeably, with CHP generally reserved for the electricity and heat generating technology subsystem portion of an IES. The focus of this study is to examine the potential for IES in buildings when the system perspective is taken, and the IES is employed as a dynamic system, not just as conventional CHP. This effort is designed to determine market potential by analyzing IES performance on an hour-by-hour basis, examining the full range of building types, their loads and timing, and assessing how these loads can be technically and economically met by IES.

LeMar, P.

2002-10-29T23:59:59.000Z

128

An integrated model for optimizing weld quality  

SciTech Connect

Welding has evolved in the last few decades from almost an empirical art to an activity embodying the most advanced tools of, various basic and applied sciences. Significant progress has been made in understanding the welding process and welded materials. The improved knowledge base has been useful in automation and process control. In view of the large number of variables involved, creating an adequately large database to understand and control the welding process is expensive and time consuming, if not impractical. A recourse is to simulate welding processes through a set of mathematical equations representing the essential physical processes of welding. Results obtained from the phenomenological models depend crucially on the quality of the physical relations in the models and the trustworthiness of input data. In this paper, recent advances in the mathematical modeling of fundamental phenomena in welds are summarized. State of the art mathematical models, advances in computational techniques, emerging high performance computers, and experimental validation techniques have provided significant insight into the fundamental factors that control the development of the weldment. Current status and scientific issues in heat and fluid flow in welds, heat source metal interaction, and solidification microstructure are assessed. Future research areas of major importance for understanding the fundamental phenomena in weld behavior are identified.

Zacharia, T.; Radhakrishnan, B. [Oak Ridge National Lab., TN (United States); Paul, A.J.; Cheng, C. [Concurrent Technologies Corp., Johnstown, PA (United States)

1995-06-01T23:59:59.000Z

129

Rule-based programming for integrative biological modeling  

Science Conference Proceedings (OSTI)

Systems biology aims at integrating processes at various time and spatial scales into a single and coherent formal description to allow computer modeling. In this context, we focus on rule-based modeling and its integration in the domain-specific language ... Keywords: Domain-specific languages, Rule-based modeling, Spatial systems biology

Olivier Michel; Antoine Spicher; Jean-Louis Giavitto

2009-12-01T23:59:59.000Z

130

An Integrated Model For The Temporal Evolution Of Andesites And...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon An Integrated Model For The Temporal Evolution Of Andesites And Rhyolites And Crustal Development...

131

An Integrated CALPHAD Tool for Modeling Precipitation Kinetics ...  

Science Conference Proceedings (OSTI)

Presentation Title, An Integrated CALPHAD Tool for Modeling Precipitation Kinetics and Accelerating Materials Design. Author(s), Qing Chen, Herng-Jeng Jou, ...

132

ME EET Seminar: MODELING, SIMULATION AND ANALYSIS OF INTEGRATED...  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Media Contacts ME EET Seminar: MODELING, SIMULATION AND ANALYSIS OF INTEGRATED BUILDING ENERGY AND CONTROL SYSTEMS Speaker(s): Michael Wetter Date: October 21, 2009 -...

133

Modeling, Simulation and Analysis of Integrated Building Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Us Department Contacts Media Contacts Modeling, Simulation and Analysis of Integrated Building Energy and Control Systems Speaker(s): Michael Wetter Date: August 10, 2009 -...

134

An Integrated Life Cycle Engineering Model: Energy and Greenhouse...  

NLE Websites -- All DOE Office Websites (Extended Search)

An Integrated Life Cycle Engineering Model: Energy and Greenhouse Gas Performance of Residential Heritage Buildings, and the Influence of Retrofit Strategies and Appliance...

135

Utility of Social Modeling for Proliferation Assessment - Preliminary Findings  

Science Conference Proceedings (OSTI)

Often the methodologies for assessing proliferation risk are focused around the inherent vulnerability of nuclear energy systems and associated safeguards. For example an accepted approach involves ways to measure the intrinsic and extrinsic barriers to potential proliferation. This paper describes preliminary investigation into non-traditional use of social and cultural information to improve proliferation assessment and advance the approach to assessing nuclear material diversion. Proliferation resistance assessment, safeguard assessments and related studies typically create technical information about the vulnerability of a nuclear energy system to diversion of nuclear material. The purpose of this research project is to find ways to integrate social information with technical information by explicitly considering the role of culture, groups and/or individuals to factors that impact the possibility of proliferation. When final, this work is expected to describe and demonstrate the utility of social science modeling in proliferation and proliferation risk assessments.

Coles, Garill A.; Gastelum, Zoe N.; Brothers, Alan J.; Thompson, Sandra E.

2009-07-16T23:59:59.000Z

136

Coupling of Integrated Biosphere Simulator to Regional Climate Model version 3  

E-Print Network (OSTI)

Presented in this thesis is a description of the coupling of Integrated Biosphere Simulator (IBIS) to Regional Climate Model version 3 (RegCM3), and an assessment of the coupled model (RegCM3-IBIS). RegCM3 is a 3-dimensional, ...

Winter, Jonathan (Jonathan Mark)

2006-01-01T23:59:59.000Z

137

Fort Stewart integrated resource assessment. Volume 1, Executive summary  

SciTech Connect

The US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory (PNL), has developed a model program that provides a systematic approach to evaluating energy opportunities that (1) identifies the building groups and end uses that use the most energy (not just have the greatest energy-use intensity), and (2) evaluates the numerous options for retrofit or installation of new technology that will result in the selection of the most cost-effective technologies. In essence, this model program provides the federal energy manager with a roadmap to significantly reduce energy use in a planned, rational, cost-effective fashion that is not biased by the constraints of the typical funding sources available to federal sites. The results from this assessment process can easily be turned into a five- to ten-year energy management plan that identifies where to start and how to proceed in order to reach the mandated energy consumption targets. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the US Army US Forces Command (FORSCOM) Fort Stewart facility located approximately 25 miles southwest of Savannah, Georgia. It is a companion report to Volume 2, Baseline Detail, and Volume 3, Resource Assessment.

Larson, L.L.; Keller, J.M.

1993-10-01T23:59:59.000Z

138

Externalities and electric power: an integrated assessment approach  

Science Conference Proceedings (OSTI)

This paper describes an integrated assessment approach for considering the options that electric utilities have to meet the anticipated demand for their power. The objective that this paper considers is one of meeting the demand for power, with an acceptable degree of reliability, at minimum cost. The total cost is the sum of the private cost of producing the electric power plus the external costs that result from its production. These external costs, or externalities, are effects on the well-being of third parties that producers and consumers of electric power do not take into account in their decisions. The external costs include many different types of effects such as illness, ecosystem damage, and road damage. The solution to the problem of minimizing total cost is addressed in two steps. The first step uses damage function methods to establish a common metric for the weights of the different objectives (i.e., external costs). The damage function analysis also reduces the dimensionality of the analysis in the second step, and identifies criteria to include in that analysis. The second step uses multi-criteria decision methods. This analysis includes the most important externalities that the damage function analysis identifies and, in addition, potentially important factors that can not be quantified reliably using damage function methods. An example of the latter are the damages from global climate change. The two-step method that this paper describes addresses many of the limitations of the damage function method and multi-criteria methods, that arise when they are used separately. This linked method can be used by electric utilities for their integrated resource planning. It can also be adapted to other applications.

Lee, R.

1995-12-31T23:59:59.000Z

139

Integrating Module of the National Energy Modeling System  

Reports and Publications (EIA)

Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

Dan Skelly

2010-06-01T23:59:59.000Z

140

Formal Model Merging Applied to Class Diagram Integration  

Science Conference Proceedings (OSTI)

The integration of software artifacts is present in many scenarios of the Software Engineering field: object-oriented modeling, relational databases, XML schemas, ontologies, aspect-oriented programming, etc. In Model Management, software artifacts are ... Keywords: Model Management, Model-Driven Engineering, QVT Relations, conflict resolution, model merging

Artur Boronat; José Á. Carsí; Isidro Ramos; Patricio Letelier

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated assessment modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

AN INTEGRATED MODELING FRAMEWORK FOR CARBON MANAGEMENT TECHNOLOGIES  

Science Conference Proceedings (OSTI)

CO{sub 2} capture and storage (CCS) is gaining widespread interest as a potential method to control greenhouse gas emissions from fossil fuel sources, especially electric power plants. Commercial applications of CO{sub 2} separation and capture technologies are found in a number of industrial process operations worldwide. Many of these capture technologies also are applicable to fossil fuel power plants, although applications to large-scale power generation remain to be demonstrated. This report describes the development of a generalized modeling framework to assess alternative CO{sub 2} capture and storage options in the context of multi-pollutant control requirements for fossil fuel power plants. The focus of the report is on post-combustion CO{sub 2} capture using amine-based absorption systems at pulverized coal-fired plants, which are the most prevalent technology used for power generation today. The modeling framework builds on the previously developed Integrated Environmental Control Model (IECM). The expanded version with carbon sequestration is designated as IECM-cs. The expanded modeling capability also includes natural gas combined cycle (NGCC) power plants and integrated coal gasification combined cycle (IGCC) systems as well as pulverized coal (PC) plants. This report presents details of the performance and cost models developed for an amine-based CO{sub 2} capture system, representing the baseline of current commercial technology. The key uncertainties and variability in process design, performance and cost parameters which influence the overall cost of carbon mitigation also are characterized. The new performance and cost models for CO{sub 2} capture systems have been integrated into the IECM-cs, along with models to estimate CO{sub 2} transport and storage costs. The CO{sub 2} control system also interacts with other emission control technologies such as flue gas desulfurization (FGD) systems for SO{sub 2} control. The integrated model is applied to study the feasibility and cost of carbon capture and sequestration at both new and existing PC plants as well as new NGCC plants. The cost of CO{sub 2} avoidance using amine-based CO{sub 2} capture technology is found to be sensitive to assumptions about the reference plant design and operation, as well as assumptions about the CO{sub 2} capture system design. The case studies also reveal multi-pollutant interactions and potential tradeoffs in the capture of CO{sub 2}, SO{sub 2}, NO{sub 2} and NH{sub 3}. The potential for targeted R&D to reduce the cost of CO{sub 2} capture also is explored using the IECM-cs in conjunction with expert elicitations regarding potential improvements in key performance and cost parameters of amine-based systems. The results indicate that the performance of amine-based CO{sub 2} capture systems can be improved significantly, and the cost of CO{sub 2} capture reduced substantially over the next decade or two, via innovations such as new or improved sorbents with lower regeneration heat requirements, and improvements in power plant heat integration to reduce the (currently large) energy penalty of CO{sub 2} capture. Future work will explore in more detail a broader set of advanced technology options to lower the costs of CO{sub 2} capture and storage. Volume 2 of this report presents a detailed User's Manual for the IECM-cs computer model as a companion to the technical documentation in Volume 1.

Anand B. Rao; Edward S. Rubin; Michael B. Berkenpas

2004-03-01T23:59:59.000Z

142

Integrated decision support model for global sourcing  

E-Print Network (OSTI)

Over the last decade, the U.S. aircraft industry has experienced increasing levels of international integration as companies seek to access global talent and resources, cut production costs, spread financial risk, and ...

Mroczkowski, Victor A. (Victor Adam)

2008-01-01T23:59:59.000Z

143

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (IPSC) : FY10 development and integration.  

SciTech Connect

This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.

Criscenti, Louise Jacqueline; Sassani, David Carl; Arguello, Jose Guadalupe, Jr.; Dewers, Thomas A.; Bouchard, Julie F.; Edwards, Harold Carter; Freeze, Geoffrey A.; Wang, Yifeng; Schultz, Peter Andrew

2011-02-01T23:59:59.000Z

144

Assessment of Molecular Modeling & Simulation  

Science Conference Proceedings (OSTI)

This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.

None

2002-01-03T23:59:59.000Z

145

ORISE: Dose modeling and assessments  

NLE Websites -- All DOE Office Websites (Extended Search)

or state regulatory compliance requirements are being met during the decontamination and decommissioning of nuclear facilities. Dose modeling is an important step in the...

146

Ames Laboratory integrated safety management self-assessment report  

SciTech Connect

The implementation of Integrated Safety Management (ISM) at Ames Laboratory began with the signing of the ISM Implementation Charter on February 24, 1997 (see Appendix A). The first step toward implementation of ISM at Ames Laboratory is the performance of a Self-Assessment (SA). In preparation for the SA, a workshop on ISM was provided to the Laboratory`s Environment, Safety, and Health (ES&H) Coordinators, Safety Review Committee members, and the Environment, Safety, Health and Assurance (ESH&A) staff. In addition, a briefing was given to the Laboratory`s Executive Council and Program Directors. Next, an SA Team was organized. The Team was composed of four Ames Laboratory and four Department of Energy-Chicago Operations Office (DOE-CH) staff members. The purpose of this SA was to determine the current status of ES&H management within Ames Laboratory, as well as to identify areas which need to be improved during ISM implementation. The SA was conducted by reviewing documents, interviewing Ames Laboratory management and staff, and performing walkthroughs of Laboratory areas. At the conclusion of this SA, Ames Laboratory management was briefed on the strengths, weaknesses, and the areas of improvement which will assist in the implementation of ISM.

NONE

1997-10-01T23:59:59.000Z

147

Integrating Human Indoor Air Pollutant Exposure within Life Cycle Impact Assessment  

SciTech Connect

Neglecting health effects from indoor pollutant emissions and exposure, as currently done in Life Cycle Assessment (LCA), may result in product or process optimizations at the expense of workers? or consumers? health. To close this gap, methods for considering indoor exposure to chemicals are needed to complement the methods for outdoor human exposure assessment already in use. This paper summarizes the work of an international expert group on the integration of human indoor and outdoor exposure in LCA, within the UNEP/SETAC Life Cycle Initiative. A new methodological framework is proposed for a general procedure to include human-health effects from indoor exposure in LCA. Exposure models from occupational hygiene and household indoor air quality studies and practices are critically reviewed and recommendations are provided on the appropriateness of various model alternatives in the context of LCA. A single-compartment box model is recommended for use as a default in LCA, enabling one to screen occupational and household exposures consistent with the existing models to assess outdoor emission in a multimedia environment. An initial set of model parameter values was collected. The comparison between indoor and outdoor human exposure per unit of emission shows that for many pollutants, intake per unit of indoor emission may be several orders of magnitude higher than for outdoor emissions. It is concluded that indoor exposure should be routinely addressed within LCA.

Hellweg, Stefanie; Demou, Evangelia; Bruzzi, Raffaella; Meijer, Arjen; Rosenbaum, Ralph K.; Huijbregts, Mark A.J.; McKone, Thomas E.

2008-12-21T23:59:59.000Z

148

Towards Integrated Verification of Timed Transition Models  

Science Conference Proceedings (OSTI)

This paper describes an attempt to combine theorem proving and model-checking to formally verify real-time systems in a discrete time setting. The Timed Automata Modeling Environment (TAME) has been modified to provide a formal model for Time Transition ... Keywords: PVS, Real-time, SAL, equivalence verification, model reduction, model-checking, theorem proving

Mark Lawford; Vera Pantelic; Hong Zhang

2006-04-01T23:59:59.000Z

149

Model Dependencies, Fine-Grained Relations, and Integrator Tools  

Science Conference Proceedings (OSTI)

The models developed within subprojects A2 and B2 together form one of the vertical columns of the process/product model. The application domain models of A2 are refined to tool models of B2 such that integrator tools can be realized. The process of ...

S. Becker; W. Marquardt; J. Morbach; M. Nagl

2008-04-01T23:59:59.000Z

150

Model Predictive Control of Integrated Gasification Combined Cycle Power Plants  

SciTech Connect

The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

B. Wayne Bequette; Priyadarshi Mahapatra

2010-08-31T23:59:59.000Z

151

Integrated Energy Systems (IES) for Buildings: A Market Assessment...  

Open Energy Info (EERE)

topics related to ESI Prospects for Nuclear Power(Davis 2012) A Framework for the Optimization of Integrated Energy Systems(Jain and Alleyne 2012) Energy System...

152

A Stochastic Unit Commitment Model for Integrating Renewable Supply  

E-Print Network (OSTI)

A Stochastic Unit Commitment Model for Integrating Renewable Supply and Demand Response Anthony from the large-scale integration of renewable energy sources and deferrable demand in power systems. We- sorbing the uncertainty and variability associated with renewable supply: centralized co

Oren, Shmuel S.

153

NREL: Transmission Grid Integration - Generator Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Generator Modeling Generator Modeling NREL works with the solar and wind industries to provide utilities and grid operators with generator models to help them analyze the impact of variable generation on power system performance and reliability. As the amount of variable generation increases, the need for such models increases. Ensuring the models are as generic as possible allows for ease of use, model validation, data exchange, and analysis. To address this need, NREL researchers are developing generic dynamic models of wind and solar power plants. NREL's dynamic modeling efforts include: Collecting wind plant output data with corresponding wind resource data (speed, direction, and air density) from meteorological towers and performing multivariate analysis of the data to develop an equivalent wind

154

Automated inter-model parameter connection synthesis for simulation model integration  

E-Print Network (OSTI)

New simulation modeling environments have been developed such that multiple models can be integrated into a single model. This conglomeration of model data allows designers to better understand the physical phenomenon being ...

Ligon, Thomas (Thomas Crumrine)

2007-01-01T23:59:59.000Z

155

Scalable computational architecture for integrating biological pathway models  

E-Print Network (OSTI)

A grand challenge of systems biology is to model the cell. The cell is an integrated network of cellular functions. Each cellular function, such as immune response, cell division, metabolism or apoptosis, is defined by an ...

Shiva, V. A

2007-01-01T23:59:59.000Z

156

Integration of engineering models in computer-aided preliminary design  

E-Print Network (OSTI)

The problems of the integration of engineering models in computer-aided preliminary design are reviewed. This paper details the research, development, and testing of modifications to Paper Airplane, a LISP-based computer ...

Lajoie, Ronnie M.

157

The Tracking and Analysis Framework (TAF): A tool for the integrated assessment of acid deposition  

SciTech Connect

A major challenge that has faced policy makers concerned with acid deposition is obtaining an integrated view of the underlying science related to acid deposition. In response to this challenge, the US Department of Energy is sponsoring the development of an integrated Tracking and Analysis Framework (TAF) which links together the key acid deposition components of emissions, air transport, atmospheric deposition, and aquatic effects in a single modeling structure. The goal of TAF is to integrate credible models of the scientific and technical issues into an assessment framework that can directly address key policy issues, and in doing so act as a bridge between science and policy. Key objectives of TAF are to support coordination and communication among scientific researchers; to support communications with policy makers, and to provide rapid response for analyzing newly emerging policy issues; and to provide guidance for prioritizing research programs. This paper briefly describes how TAF was formulated to meet those objectives and the underlying principals which form the basis for its development.

Bloyd, C.N. [Argonne National Lab., IL (United States); Henrion, M. [Lumina Decision Systems, Los Altos, CA (United States); Marnicio, R.J. [Foster Wheeler Environmental Corp., Columbus, Ohio (United States)

1995-06-01T23:59:59.000Z

158

An integrated modelling framework for regulated river systems  

Science Conference Proceedings (OSTI)

Management of regulated water systems has become increasingly complex due to rapid socio-economic growth and environmental changes in river basins over recent decades. This paper introduces the Source Integrated Modelling System (IMS), and describes ... Keywords: Murray-Darling Basin, Rainfall-runoff modelling, River management and operations, River system modelling, Source IMS

Wendy D. Welsh; Jai Vaze; Dushmanta Dutta; David Rassam; Joel M. Rahman; Ian D. Jolly; Peter Wallbrink; Geoffrey M. Podger; Matthew Bethune; Matthew J. Hardy; Jin Teng; Julien Lerat

2013-01-01T23:59:59.000Z

159

Buried Waste Integrated Demonstration stakeholder involvement model  

Science Conference Proceedings (OSTI)

The Buried Waste Integrated Demonstration (BWID) is a program funded by the US Department of Energy (DOE) Office of Technology Development. BWID supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. Stakeholder participation in the DOE Environmental Management decision-making process is critical to remediation efforts. Appropriate mechanisms for communication with the public, private sector, regulators, elected officials, and others are being aggressively pursued by BWID to permit informed participation. This document summarizes public outreach efforts during FY-93 and presents a strategy for expanded stakeholder involvement during FY-94.

Kaupanger, R.M.; Kostelnik, K.M.; Milam, L.M.

1994-04-01T23:59:59.000Z

160

Assessment of Vertically Integrated Liquid (VIL) Water Content Radar Measurement  

Science Conference Proceedings (OSTI)

Vertically integrated liquid (VIL) water content is a parameter obtained from a radar performing voluminal scanning. This parameter has proven useful in the detection of severe storms and may be a worthwhile indicator for very short-term rainfall ...

Brice Boudevillain; Hervé Andrieu

2003-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated assessment modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Strategies for integrated modeling: The community surface dynamics modeling system example  

Science Conference Proceedings (OSTI)

The Community Surface Dynamics Modeling System (CSDMS) is a community of earth scientists promoting the modeling of earth surface processes by developing and disseminating integrated software modules that predict the movement of fluids, and the flux ... Keywords: Community modeling, Earth surface dynamics, Governance, Model integration

Irina Overeem; Maureen M. Berlin; James P. M. Syvitski

2013-01-01T23:59:59.000Z

162

Wind Power Integration Technology Assessment and Case Studies  

Science Conference Proceedings (OSTI)

Application of power electronics, energy storage, and other wind integration technologies can mitigate the impacts of adding large blocks of wind generation and raise the amount of wind capacity that can be connected to the grid without adversely affecting grid reliability, reserve and regulation requirements, and ancillary service costs. The engineering and economic data and case studies presented in this report can be used to address the available wind integration technology options.

2004-03-30T23:59:59.000Z

163

Analyzing flow patterns in unsaturated fractured rock of YuccaMountain using an integrated modeling approach  

SciTech Connect

This paper presents a series of modeling investigations to characterize percolation patterns in the unsaturated zone of Yucca Mountain, Nevada, a proposed underground repository site for storing high-level radioactive waste. The investigations are conducted using a modeling approach that integrates a wide variety of moisture, pneumatic, thermal, and isotopic geochemical field data into a comprehensive three-dimensional numerical model through model calibration. This integrated modeling approach, based on a dual-continuum formulation, takes into account the coupled processes of fluid and heat flow and chemical isotopic transport in Yucca Mountain's highly heterogeneous, unsaturated fractured tuffs. In particular, the model results are examined against different types of field-measured data and used to evaluate different hydrogeological conceptual models and their effects on flow patterns in the unsaturated zone. The objective of this work to provide understanding of percolation patterns and flow behavior through the unsaturated zone, which is a crucial issue in assessing repository performance.

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson,Gudmundur S.

2003-11-03T23:59:59.000Z

164

Model choice considerations and information integration using analytical hierarchy process  

SciTech Connect

Using the theory of information-gap for decision-making under severe uncertainty, it has been shown that model output compared to experimental data contains irrevocable trade-offs between fidelity-to-data, robustness-to-uncertainty and confidence-in-prediction. We illustrate a strategy for information integration by gathering and aggregating all available data, knowledge, theory, experience, similar applications. Such integration of information becomes important when the physics is difficult to model, when observational data are sparse or difficult to measure, or both. To aggregate the available information, we take an inference perspective. Models are not rejected, nor wasted, but can be integrated into a final result. We show an example of information integration using Saaty's Analytic Hierarchy Process (AHP), integrating theory, simulation output and experimental data. We used expert elicitation to determine weights for two models and two experimental data sets, by forming pair-wise comparisons between model output and experimental data. In this way we transform epistemic and/or statistical strength from one field of study into another branch of physical application. The price to pay for utilizing all available knowledge is that inferences drawn for the integrated information must be accounted for and the costs can be considerable. Focusing on inferences and inference uncertainty (IU) is one way to understand complex information.

Langenbrunner, James R [Los Alamos National Laboratory; Hemez, Francois M [Los Alamos National Laboratory; Booker, Jane M [BOOKER SCIENTIFIC; Ross, Timothy J. [UNM

2010-10-15T23:59:59.000Z

165

Integrate Experiments and Models to Estimate Exposure - (1) Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrate Experiments and Models to Estimate Exposure - (1) Building Integrate Experiments and Models to Estimate Exposure - (1) Building Fumigation and (2) Elemental Mercury Spill Speaker(s): Wanyu Chan Date: February 22, 2010 - 12:00pm Location: 90-3075 Seminar Host/Point of Contact: Michael Sohn Models that predict exposure concentrations in the indoor and outdoor air can be improved by experiments designed to validate or calibrate the models. This presentation will showcase two examples where experiments and models are integrated to estimate exposure concentrations. One example is the use of methyl bromide as fumigant at food processing facilities. Field studies were conducted at three mill sites that are representative of typical industry practices in terms of size, operation, and fumigation protocol. Concentrations of methyl bromide inside the mills and outdoors

166

Development of an Integrated Global Energy Model  

Science Conference Proceedings (OSTI)

The primary objective of this research was to develop a forefront analysis tool for application to enhance understanding of long-term, global, nuclear-energy and nuclear-material futures. To this end, an existing economics-energy-environmental (E{sup 3}) model was adopted, modified, and elaborated to examine this problem in a multi-regional (13), long-term ({approximately}2,100) context. The E{sup 3} model so developed was applied to create a Los Alamos presence in this E{sup 3} area through ''niche analyses'' that provide input to the formulation of policies dealing with and shaping of nuclear-energy and nuclear-materials futures. Results from analyses using the E{sup 3} model have been presented at a variety of national and international conferences and workshops. Through use of the E{sup 3} model Los Alamos was afforded the opportunity to participate in a multi-national E{sup 3} study team that is examining a range of global, long-term nuclear issues under the auspices of the IAEA during the 1998-99 period . Finally, the E{sup 3} model developed under this LDRD project is being used as an important component in more recent Nuclear Material Management Systems (NMMS) project.

Krakowski, R.A.

1999-07-08T23:59:59.000Z

167

1ESHCuCVD.CEBSMTeleSeminar.100401 Integrated ESH Assessment  

E-Print Network (OSTI)

ESH impact metrics to upper levels Multilevel modeling & simulation incorporating dynamics & stochasticsMultilevel modeling & simulation incorporating dynamics & stochastics Subfactory or process fluctuations Incorporate capability in models for dynamics & stochastics Process & tool Fundamental science Si

Rubloff, Gary W.

168

Experiences with early life-cycle performance modeling for architecture assessment  

Science Conference Proceedings (OSTI)

In this paper we describe our preliminary experiences of a performance modeling "Blending" approach for early life-cycle architecture assessment and risk mitigation in a large enterprise integration project. The goal was to use performance modeling to ... Keywords: blended performance modeling, early life-cycle risk mitigation

Paul C. Brebner

2012-06-01T23:59:59.000Z

169

Integrated Modeling, Mapping, and Simulation (IMMS) framework for planning exercises.  

SciTech Connect

The Integrated Modeling, Mapping, and Simulation (IMMS) program is designing and prototyping a simulation and collaboration environment for linking together existing and future modeling and simulation tools to enable analysts, emergency planners, and incident managers to more effectively, economically, and rapidly prepare, analyze, train, and respond to real or potential incidents. When complete, the IMMS program will demonstrate an integrated modeling and simulation capability that supports emergency managers and responders with (1) conducting 'what-if' analyses and exercises to address preparedness, analysis, training, operations, and lessons learned, and (2) effectively, economically, and rapidly verifying response tactics, plans and procedures.

Friedman-Hill, Ernest J.; Plantenga, Todd D.

2010-06-01T23:59:59.000Z

170

Core Information Model: A Practical Solution to Costly Integration Problems  

E-Print Network (OSTI)

as a whole. Thus, an enterprise information model is critical to CIM. A missing element in many CIM, CIM-OSA [3]), which are recommended by international standards communities as an economical way is then fully engineered to integrate with a generic, basic CIM data model developed from industrial scenarios

Hsu, Cheng

171

Key computational modeling issues in Integrated Computational Materials Engineering  

Science Conference Proceedings (OSTI)

Designing materials for targeted performance requirements as required in Integrated Computational Materials Engineering (ICME) demands a combined strategy of bottom-up and top-down modeling and simulation which treats various levels of hierarchical material ... Keywords: Databases, ICME, Materials design, Multiscale modeling, Uncertainty

Jitesh H. Panchal; Surya R. Kalidindi; David L. Mcdowell

2013-01-01T23:59:59.000Z

172

ADVANCED INTEGRATION OF MULTI-SCALE MECHANICS AND WELDING PROCESS SIMULATION IN WELD INTEGRITY ASSESSMENT  

Science Conference Proceedings (OSTI)

The potential to save trillions of BTU’s in energy usage and billions of dollars in cost on an annual basis based on use of higher strength steel in major oil and gas transmission pipeline construction is a compelling opportunity recognized by both the US Department of Energy (DOE). The use of high-strength steels (X100) is expected to result in energy savings across the spectrum, from manufacturing the pipe to transportation and fabrication, including welding of line pipe. Elementary examples of energy savings include more the 25 trillion BTUs saved annually based on lower energy costs to produce the thinner-walled high-strength steel pipe, with the potential for the US part of the Alaskan pipeline alone saving more than 7 trillion BTU in production and much more in transportation and assembling. Annual production, maintenance and installation of just US domestic transmission pipeline is likely to save 5 to 10 times this amount based on current planned and anticipated expansions of oil and gas lines in North America. Among the most important conclusions from these studies were: • While computational weld models to predict residual stress and distortions are well-established and accurate, related microstructure models need improvement. • Fracture Initiation Transition Temperature (FITT) Master Curve properly predicts surface-cracked pipe brittle-to-ductile initiation temperature. It has value in developing Codes and Standards to better correlate full-scale behavior from either CTOD or Charpy test results with the proper temperature shifts from the FITT master curve method. • For stress-based flaw evaluation criteria, the new circumferentially cracked pipe limit-load solution in the 2007 API 1104 Appendix A approach is overly conservative by a factor of 4/?, which has additional implications. . • For strain-based design of girth weld defects, the hoop stress effect is the most significant parameter impacting CTOD-driving force and can increase the crack-driving force by a factor of 2 depending on strain-hardening, pressure level as a % of SMYS, and flaw size. • From years of experience in circumferential fracture analyses and experimentation, there has not been sufficient integration of work performed for other industries into analogous problems facing the oil and gas pipeline markets. Some very basic concepts and problems solved previously in these fields could have circumvented inconsistencies seen in the stress-based and strain-based analysis efforts. For example, in nuclear utility piping work, more detailed elastic-plastic fracture analyses were always validated in their ability to predict loads and displacements (stresses and strains). The eventual implementation of these methodologies will result in acceleration of the industry adoption of higher-strength line-pipe steels.

Wilkowski, Gery M.; Rudland, David L.; Shim, Do-Jun; Brust, Frederick W.; Babu, Sundarsanam

2008-06-30T23:59:59.000Z

173

Integrated Dry NOx/SO2 Emissions Control System, A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Integrated Dry NO X SO 2 Emissions Control System A DOE Assessment October 2001 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry...

174

Integrated Economic and Climate Projections for Impact Assessment  

E-Print Network (OSTI)

We designed scenarios for impact assessment that explicitly address policy choices and uncertainty in climate response. Economic projections and the resulting greenhouse gas emissions for the “no climate policy” scenario ...

Paltsev, Sergey

175

Enhancing terrestrial ecosystem sciences by integrating empirical-modeling approaches  

SciTech Connect

Field and laboratory experiments and observations, along with models, are foundational approaches to scientific inquiry. Integration of these approaches, however, can be an exceedingly difficult challenge because empiricists and modelers often work in communities separated by cultural differences and communication barriers, reflecting a largely independent evolution of these disciplines. To address this challenge, more than 40 participants gathered for a 3-day workshop to discuss how models can best inform empirical experiments, how data can most effectively inform models, and what strategies can be employed to integrate these two approaches. The workshop was convened with the understanding that such a priori exchange between the empirical and modeling communities can maximize intellectual investments and result in high-quality predictive models and more scientific discovery.

Lee, Hanna [National Center for Atmospheric Research (NCAR); Wullschleger, Stan D [ORNL; Luo, Yiqi [University of Oklahoma

2012-01-01T23:59:59.000Z

176

INTEGRATING THE DESIGN AND RELIABILITY ASSESSMENT OF A HYBRID PV-THERMAL MICROCONCENTRATOR SYSTEM  

E-Print Network (OSTI)

INTEGRATING THE DESIGN AND RELIABILITY ASSESSMENT OF A HYBRID PV-THERMAL MICROCONCENTRATOR SYSTEM M that the materials from the power electronics industry are also reliable when used in a concentrator PV module and reliability testing have been integrated as concurrent processes, enabling the early optimisation

177

Performance Assessment of an Integrated Cooling/Dehumidification System  

Science Conference Proceedings (OSTI)

This report reviews dehumidification technologies appropriate for residential and commercial building applications with a focus on technologies and system configurations that allow dedicated dehumidification to complement other air conditioning systems, such as direct expansion. One such new technology was tested and is reported on here, the Munters DryCool HD, a small to medium central dehumidifier designed for integration into a ducted air conditioning system. This unit uses both Direct Expansion (DX) ...

2010-11-16T23:59:59.000Z

178

Transportation and Site Location Analysis for Regional Integrated Biomass Assessment (RIBA)  

DOE Green Energy (OSTI)

The farmgate cost and available supply of biomass often exhibit considerable variation within a State. This variation, combined with the relatively high cost of transporting bulky biomass material, produces a wide range of expected delivered feedstock costs across a State. As a consequence, both production and transportation costs must be well-modeled when analyzing potential locations for conversion facilities. The Regional Integrated Biomass Assessment system consists of two phases. The descriptive phase characterizes a farmgate cost and supply surface for switchgrass production over a given State. These results are passed to the analytical phase, where a transportation model is used to compute the marginal cost of supplying an ethanol plant at a prescribed level of demand. The model generates a marginal cost surface that illustrates the most promising areas for locating an ethanol plant. Next, a sequential location model simulates the commercial development of ethanol production facilities. This model considers every road network node as a potential site and generates a sequence of likely plant locations. Results from the RIBA analysis demonstrate that the cost of switchgrass can increase dramatically from one location to another. This variation will seriously effect the economics of conversion in the proper sizing and locating of ethanol plant facilities.

Noon, C.E.; Daly, M.J.; Graham, R.L.; Zahn, F.B.

1996-09-15T23:59:59.000Z

179

Urban scale integrated assessment for London: Which emission reduction strategies are more effective in attaining prescribed PM10 air quality standards by 2005?  

Science Conference Proceedings (OSTI)

Tightening of air quality standards for populated urban areas has led to increasing attention to assessment of air quality management areas (AQMAs) where exceedance occurs, and development of control strategies to eliminate such exceedance. Software ... Keywords: Air quality management, Dispersion modelling, Emission reduction strategies, Integrated assessment, Particulate matter, Urban air pollution

A. Mediavilla-Sahagún; H. M. ApSimon

2006-04-01T23:59:59.000Z

180

The integration of climatic data sets for wind resource assessment  

DOE Green Energy (OSTI)

One barrier to wind energy development, in many regions of the world, is the lack of reliable information about the spacial distribution of the wind energy resource. The goal of the U.S. Department of Energy (DOE) Wind Energy Program`s wind resource assessment group is to improve the characterization of the wind resource in many of these regions in support of U.S. wind energy industry. NREL provides wind resource assessments for our clients in the form of reports, atlases, and wind resource maps. The assessments estimate the level of the wind resource, at wind turbine hub heights (typically 30m to 50m above ground level), for locations exposed to the prevailing winds.

Schwartz, M.N.; Elliott, D.L.

1997-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated assessment modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Performance Modeling for Exascale Autotuning: An Integrated Approach |  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Modeling for Exascale Autotuning: An Integrated Approach Performance Modeling for Exascale Autotuning: An Integrated Approach Title Performance Modeling for Exascale Autotuning: An Integrated Approach Publication Type Miscellaneous Year of Publication 2013 Authors Balaprakash, P, Wild, SM, Hovland, PD Other Numbers ANL/MCS-P5000-0813 Abstract The usual suspects - shrinking integrated circuit feature sizes, heterogeneous nodes with many-core processors, deep memory hierarchies, an ever-present power wall, energy efficiency demands, and resiliency concerns - make exascale application and system co-design a daunting, complex task. Providing effective model-driven prediction and optimization capabilities at runtime and a software stack that includes model-informed autotuning are key to mitigating this complexity. We define autotuning for application-system co-design as a systematic process of navigating the space defined by other software and hardware parameters that affect the performance metrics of the application and the system. Autotuning should orchestrate hardware and software-provided knobs to reduce execution time, power draw, energy consumption, and other constituent features, such as memory footprints. Current autotuning approaches, however, are unlikely to be successful for application-system co-design at exascale: the number of parameters exposed at the hardware and software levels will be large, drastically increasing the decision space; rigorous approaches to optimizing multiple conflicting objectives simultaneously are absent; and there is a lack of multiple-metric performance models. Significant research is required to develop an integrated modeling, machine learning, and search approach in order to provide model-driven prediction and optimization capabilities at runtime.

182

An Integrated Modeling Analysis of Unsaturated Flow Patterns inFractured Rock  

Science Conference Proceedings (OSTI)

Characterizing percolation patterns in unsaturated zones hasposed a greater challenge to numerical modeling investigations thancomparable saturated zone studies, because of the heterogeneous nature ofunsaturated media as well as the great number of variables impactingunsaturated zone flow. This paper presents an integrated modelingmethodology for quantitatively characterizing percolation patterns in theunsaturated zone of Yucca Mountain, Nevada, a proposed undergroundrepository site for storing high-level radioactive waste. It takes intoaccount the multiple coupled processes of air, water, heat flow andchemical isotopic transport in Yucca Mountain s highly heterogeneous,unsaturated fractured tuffs. The modeling approach integrates a widevariety of moisture, pneumatic, thermal, and isotopic geochemical fielddata into a comprehensive three-dimensional numerical model for modelinganalyses. Modeling results are examined against different types offield-measured data and then used to evaluate different hydrogeologicalconceptual models and their results of flow patterns in the unsaturatedzone. In particular, this integration model provides a much clearerunderstanding of percolation patterns and flow behavior through theunsaturated zone, both crucial issues in assessing repositoryperformance. The integrated approach for quantifying Yucca Mountain sflow system is also demonstrated to provide a comprehensive modeling toolfor characterizing flow and transport processes in complex subsurfacesystems.

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson,Gudmundur S.

2005-03-21T23:59:59.000Z

183

Integrated Assessment of Climatic Change Mitigation Options under...  

NLE Websites -- All DOE Office Websites (Extended Search)

and include model parameter uncertainty in our optimization procedure. We utilize the Bayesian scheme of combining subjective and objective knowledge, but go beyond the Bayesian...

184

Robins Air Force Base Integrated Resource Assessment. Volume 2, Baseline Detail  

Science Conference Proceedings (OSTI)

This report documents the assessment of baseline energy use at Robins Air Force Base (AFB), a US Air Force Materiel Command facility located near Macon, Georgia. This is a companion report to Volume 1, Executive Summary, and Volume 3, Integrated Resource Assessment. The US Air Force Materiel Command (AFMC) has tasked the US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory (PNL), to identify, evaluate, and assist in acquiring all cost-effective energy projects at Robins AFB. This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This program (1) identifies and evaluates all cost-effective energy projects; (2) develops a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and (3) targets 100% of the financing required to implement energy efficiency projects. PNL applied this model program to Robins AFB. The analysis examines the characteristics of electric, natural gas, oil, propane, and wood chip use for fiscal year 1991. The results include energy-use intensities for the facilities at Robins AFB by building type, fuel type, and energy end use. A complete energy consumption reconciliation is presented that accounts for the distribution of all major energy uses and losses among buildings, utilities, and central systems.

Keller, J.M.; Sullivan, G.P.; Wahlstrom, R.R.; Larson, L.L.

1993-08-01T23:59:59.000Z

185

210 King Street: a dataset for integrated performance assessment  

Science Conference Proceedings (OSTI)

This paper presents a Building Information Modeling (BIM) re-creation of a designated heritage building located in Toronto, Canada. By taking advantage of BIM as a centralized database, which describes both geometric and semantic aspects of a building, ... Keywords: building information modeling, dataset, performance analysis, point cloud

Ramtin Attar; Venk Prabhu; Michael Glueck; Azam Khan

2010-04-01T23:59:59.000Z

186

Integrating health impact assessment into the triple bottom line concept  

SciTech Connect

This theoretical study explores the links between the Triple Bottom Line (TBL) concept and the principles of HIA and considers the potential role of HIA to provide a mechanism for integrating health concerns within a broader agenda of government and business. TBL is a framework linked to the broader sustainability agenda that underpins and reviews environmental, economic and social performance of organizations. In its simplest form, TBL acts as a tool for reporting to stakeholders/shareholders organizational performance and the nature of the impacts on the community. The links to HIA are clear as both seek to determine the impact (potential and actual) on the health and well-being of the population. The study found that TBL can operate at four levels within organizations ranging from reporting through to full integration with the organization's goals and practices. Health is narrowly defined and there are tensions about how to undertake the social accountability functions. The study shows the potential role for HIA within the broader policy and accountability agenda. As health is one of the main outcomes of an organization's activities it needs to be taken into account at all levels of activity.

Mahoney, Mary; Potter, Jenny-Lynn

2004-02-01T23:59:59.000Z

187

Modeling Air–Land–Sea Interactions Using the Integrated Regional Model System in Monterey Bay, California  

Science Conference Proceedings (OSTI)

The air–land–sea interaction in the vicinity of Monterey Bay, California, is simulated and investigated using a new Integrated Regional Model System (I-RMS). This new model realistically resolves coastal processes and submesoscale features that ...

Yu-Heng Tseng; Shou-Hung Chien; Jiming Jin; Norman L. Miller

2012-04-01T23:59:59.000Z

188

The Data Integration for Model Evaluation Web Site: A One-Stop Shop for Model Evaluation  

Science Conference Proceedings (OSTI)

This paper introduces the contents of the Global Energy and Water Experiment (GEWEX) Cloud System Study (GCSS) Data Integration for Model Evaluation (DIME) Web site. The Web site is a resource created for atmospheric modelers who want to run and ...

George Tselioudis; William B. Rossow; Anastasia N. Gentilcore; Jack Katzfey

2004-06-01T23:59:59.000Z

189

Integrating Module of the National Energy Modeling System 2007, Model Documentation  

Reports and Publications (EIA)

Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

Dan Skelly

2007-05-23T23:59:59.000Z

190

Integrating Module of the National Energy Modeling System 1995, Model Documentation  

Reports and Publications (EIA)

Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

Dan Skelly

1995-05-01T23:59:59.000Z

191

Integrating Module of the National Energy Modeling System 1997, Model Documentation  

Reports and Publications (EIA)

Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

Dan Skelly

1997-05-01T23:59:59.000Z

192

Integrating Module of the National Energy Modeling System 2004, Model Documentation  

Reports and Publications (EIA)

Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

Dan Skelly

2004-02-01T23:59:59.000Z

193

Integrating Module of the National Energy Modeling System 2001, Model Documentation  

Reports and Publications (EIA)

Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

Dan Skelly

2000-12-01T23:59:59.000Z

194

Integrating Module of the National Energy Modeling System 2009, Model Documentation  

Reports and Publications (EIA)

Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

Dan Skelly

2009-05-01T23:59:59.000Z

195

Integrating Module of the National Energy Modeling System 1999, Model Documentation  

Reports and Publications (EIA)

Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

Dan Skelly

1998-12-01T23:59:59.000Z

196

Integrating Module of the National Energy Modeling System 2000, Model Documentation  

Reports and Publications (EIA)

Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

Dan Skelly

1999-12-01T23:59:59.000Z

197

Integrating Module of the National Energy Modeling System 2008, Model Documentation  

Reports and Publications (EIA)

Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

Dan Skelly

2008-08-29T23:59:59.000Z

198

Integrating Module of the National Energy Modeling System 2002, Model Documentation  

Reports and Publications (EIA)

Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

Dan Skelly

2001-12-01T23:59:59.000Z

199

Integrating Module of the National Energy Modeling System 2005, Model Documentation  

Reports and Publications (EIA)

Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

Dan Skelly

2005-05-01T23:59:59.000Z

200

Integrating Module of the National Energy Modeling System 1996 Model Documentation - NOT PUBLISHED  

Reports and Publications (EIA)

Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

Note: This page contains sample records for the topic "integrated assessment modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Integrating Module of the National Energy Modeling System 2006, Model Documentation  

Reports and Publications (EIA)

Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

Dan Skelly

2006-06-01T23:59:59.000Z

202

Integrating Module of the National Energy Modeling System 1998 Model Documentation - NOT PUBLISHED  

Reports and Publications (EIA)

Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

John Maples

2013-09-05T23:59:59.000Z

203

Environmental Assessment for the Center for Integrated Nanotechnologies at Sandia National Laboratories/New Mexico  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 7 Environmental Assessment for the Center for Integrated Nanotechnologies at Sandia National Laboratories/New Mexico D E P A R T M E N T O F E N E R G Y U N I T E D S T A T E S O F A M E R I C A Final Environmental Assessment March 2003 Department of Energy, Sandia Site Office Kirtland Air Force Base, Albuquerque New Mexico Center for Integrated Nanotechnologies Environmental Assessment March 2003 i TABLE OF CONTENTS 1.0 Purpose and Need for Agency Action.......................................................................................1 2.0 No Action and Proposed Action Alternatives............................................................................3 2.1 No Action Alternative .................................................................................................3

204

An Integrated Framework for Parametric Design Using Building Energy Models  

NLE Websites -- All DOE Office Websites (Extended Search)

An Integrated Framework for Parametric Design Using Building Energy Models An Integrated Framework for Parametric Design Using Building Energy Models Speaker(s): Bryan Eisenhower Date: September 22, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Michael Wetter In this talk we will present a framework for analyses of building energy models including uncertainty and sensitivity analysis, optimization, calibration, and failure mode effect analysis. The methodology begins with efficient uniformly ergodic numerical sampling and regression analysis based on machine learning to derive an analytic representation of the full energy model (e.g. EnergyPlus, TRNSYS, etc). Once these steps are taken, and an analytical representation of the dynamics is obtained, multiple avenues for analysis are opened that were previously impeded by the

205

Integrating trust into grid economic model scheduling algorithm  

Science Conference Proceedings (OSTI)

Computational Grids provide computing power by sharing resources across administrative domains This sharing, coupled with the need to execute distrusted task from arbitrary users, introduces security hazards This study mainly examines the integration ... Keywords: differential equation, grid economic model, scheduling algorithm

Chunling Zhu; Xiaoyong Tang; Kenli Li; Xiao Han; Xilu Zhu; Xuesheng Qi

2006-10-01T23:59:59.000Z

206

Dynamic predication model for integrated series and application  

Science Conference Proceedings (OSTI)

In the paper a predication model for integrated series is proposed. Granger causality analysis is deployed first for finding out the cointegrated series for the interested series. Then granger causality information is used for the identification of the ... Keywords: cointegration series, dynamic prediction, electricity demand, granger causality

Yuan Jia-hai; Zhao Zhi; Xiong Min-peng

2006-11-01T23:59:59.000Z

207

innovati nNREL Computer Models Integrate Wind Turbines with  

E-Print Network (OSTI)

innovati nNREL Computer Models Integrate Wind Turbines with Floating Platforms Far off the shores for today's seabed-mounted offshore wind turbines. For the United States to tap into these vast offshore wind energy resources, wind turbines must be mounted on floating platforms to be cost effective

208

Integrated Modeling of Building Energy Requirements Incorporating Solar  

E-Print Network (OSTI)

and Renewable Energy, Distributed Energy Program of the U.S. Department of Energy under Contract No. DE-AC02 report LBNL-52753. February 2003. Site information and characteristics EIA (U.S. Energy InformationLBNL-58783 Integrated Modeling of Building Energy Requirements Incorporating Solar Assisted Cooling

209

Access and Delivery of Integrated Weld Process Models  

Science Conference Proceedings (OSTI)

Table 1   Software tools for integrated weld modeling...http://www.aws.org/wj/2008/05/wj200805/wj0508-36.pdf Desktop SORPAS http://www.swantec.com/sorpas.htm Desktop E-WeldPredictor http://calculations.ewi.org/VJP/ Internet...

210

Introduction to Simplified Generation Risk Assessment Modeling  

Science Conference Proceedings (OSTI)

Life cycle management (LCM) and risk-informed asset management of nuclear power plants can benefit from improved prediction of the effect of equipment failures or degradation on plant productivity. The Generation Risk Assessment (GRA) model described in this report provides a systematic approach to estimating how equipment reliability relates to the risk of future lost generation from trips and derates and to prioritizing components and systems based on their importance to productivity.

2004-01-26T23:59:59.000Z

211

Searching for simplified farmers' crop choice models for integrated watershed management in Thailand: A data mining approach  

Science Conference Proceedings (OSTI)

This study used the C4.5 data mining algorithm to model farmers' crop choice in two watersheds in Thailand. Previous attempts in the Integrated Water Resource Assessment and Management Project to model farmers' crop choice produced large sets of decision ... Keywords: Data mining, Decision support system, Decision trees, Farmers' crop choice

Benchaphun Ekasingh; Kamol Ngamsomsuke

2009-12-01T23:59:59.000Z

212

Analyzing Unsatirated Flow Patterns in Fractured Rock Using an Integrated Modeling Approach  

Science Conference Proceedings (OSTI)

Characterizing percolation patterns in unsaturated fractured rock has posed a greater challenge to modeling investigations than comparable saturated zone studies, because of the heterogeneous nature of unsaturated media and the great number of variables impacting unsaturated flow. This paper presents an integrated modeling methodology for quantitatively characterizing percolation patterns in the unsaturated zone of Yucca Mountain, Nevada, a proposed underground repository site for storing high-level radioactive waste. The modeling approach integrates a wide variety of moisture, pneumatic, thermal, and isotopic geochemical field data into a comprehensive three-dimensional numerical model for modeling analyses. It takes into account the coupled processes of fluid and heat flow and chemical isotopic transport in Yucca Mountain's highly heterogeneous, unsaturated fractured tuffs. Modeling results are examined against different types of field-measured data and then used to evaluate different hydrogeological conceptualizations and their results of flow patterns in the unsaturated zone. In particular, this model provides a much clearer understanding of percolation patterns and flow behavior through the unsaturated zone, both crucial issues in assessing repository performance. The integrated approach for quantifying Yucca Mountain's flow system is demonstrated to provide a practical modeling tool for characterizing flow and transport processes in complex subsurface systems.

Y.S. Wu; G. Lu; K. Zhang; L. Pan; G.S. Bodvarsson

2006-08-03T23:59:59.000Z

213

Integrity-directed sequential state estimation: Assessing high reliability requirements via safe confidence intervals  

Science Conference Proceedings (OSTI)

This study deals with the problem of dynamic state estimation of continuous-time systems from discrete-time measurements in the context of high-integrity applications. The objective of integrity-directed estimation is to provide confidence intervals ... Keywords: Bayesian framework, Dynamic estimation, Dynamic multiple-model estimator, Fault detection, Gaussian mixture, Integrity, Kalman filter, Kullback-Leibler distance, Markov chains, Odometry, Overbounding, Rail navigation, Robust estimation, Safe navigation systems

Olivier Bilenne

2007-01-01T23:59:59.000Z

214

Studio Education for Integrated Practice Using Building Information Modeling  

E-Print Network (OSTI)

This research study posits that an altered educational approach to design studio can produce future professionals who apply Building Information Modeling (BIM) in the context of Integrated Project Delivery (IPD) to execute designs faster and produce designs that have demonstrably higher performance. The combination of new technologies and social/contractual constructs represents an alternative to the established order for how to design and how to teach designers. BIM emerges as the key technology for facilitating IPD by providing consistent, computable and interoperable information essential to all AEC teams. The increasing trend of BIM adoption is an opportunity for the profession to dramatically change its processes and may potentially impact patterns of responsibility and the paradigms of design. This study showcases a repeatable framework and a theoretical model for the integrated studio using BIM and provides answers to the pedagogical questions raised by BIM, integration, and performance-based design. Using a formative and exploratory action research design, the study proposes a comprehensive pedagogical framework using the established theories of design studio education, building integration, and BIM. The framework was refined and triangulated in a set of focus group studies that include academics, design firms and AEC industry representatives, as well as students. Instrumental case studies implementing the pedagogical framework were conducted as courses in a graduate architecture program. Students' design processes and collaboration schemes were observed using systematic methods that included a broad range of data in conformance with a multi-method research approach. Content analysis of the data provides qualitative evidence for the effectiveness and encountered challenges of BIM methods that is related to proposed studio framework. These findings are corroborated by descriptive statistics and numerical data from the surveys, simulations, reports, and BIM models. Findings of the study illustrate that a carefully designed set of course exercises that incorporate BIM can enhance design processes, increase the depth and the number of alternatives studied, catalyze an interoperable and integrated educational environment, and expand the scope of design learning. Case studies presented here suggest common patterns of collaboration between designers and consultants during the integrated design process using shared BIM models. The findings from the study are synthesized in two theoretical models for the BIM enabled integrated studio and collaborative processes.

O?zener, Ozan O?zener

2009-12-01T23:59:59.000Z

215

Computable General Equilibrium Models for Sustainability Impact Assessment:  

Open Energy Info (EERE)

Computable General Equilibrium Models for Sustainability Impact Assessment: Computable General Equilibrium Models for Sustainability Impact Assessment: Status quo and prospects Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Computable General Equilibrium Models for Sustainability Impact Assessment: Status quo and prospects Agency/Company /Organization: DG Joint Research Centre, European Commission, University of Heidelberg Topics: Co-benefits assessment Resource Type: Guide/manual, Publications, Software/modeling tools User Interface: Other Website: iatools.jrc.ec.europa.eu/docs/ecol_econ_2006.pdf Computable General Equilibrium Models for Sustainability Impact Assessment: Status quo and prospects Screenshot References: Computable general equilibrium models[1] Abstract "Sustainability Impact Assessment (SIA) of economic, environmental, and

216

Integrated Energy Systems (IES) for Buildings: A Market Assessment(LeMar  

Open Energy Info (EERE)

Integrated Energy Systems (IES) for Buildings: A Market Assessment(LeMar Integrated Energy Systems (IES) for Buildings: A Market Assessment(LeMar 2002) Home > Groups > Energy Systems Integration Qinsun's picture Submitted by Qinsun(35) Member 15 November, 2012 - 13:05 Literature Review The author analyzed the market of combine heat and power in commercial buildings. The paper provided the market size of CHP. It analyzed the reduction of emission, energy and cost by 2020. It discussed barrier, market power and impact. It is a good market analysis proach. However, it only considered existing CHP techniques in Commercial buildings. Groups: Energy Systems Integration Login to post comments Latest documents Qinsun Research topics related to ESI Posted: 15 Nov 2012 - 13:55 by Qinsun Qinsun Prospects for Nuclear Power(Davis 2012) Posted: 15 Nov 2012 - 13:36 by Qinsun

217

Towards an Integrated Model of the NIC Layered Implosions  

SciTech Connect

A detailed simulation-based model of the June 2011 National Ignition Campaign (NIC) cryogenic DT experiments is presented. The model is based on integrated hohlraum-capsule simulations that utilize the best available models for the hohlraum wall, ablator, and DT equations of state and opacities. The calculated radiation drive was adjusted by changing the input laser power to match the experimentally measured shock speeds, shock merger times, peak implosion velocity, and bangtime. The crossbeam energy transfer model was tuned to match the measured time-dependent symmetry. Mid-mode mix was included by directly modeling the ablator and ice surface perturbations up to mode 60. Simulated experimental values were extracted from the simulation and compared against the experiment. The model adjustments brought much of the simulated data into closer agreement with the experiment, with the notable exception of the measured yields, which were 15-45% of the calculated yields.

Jones, O S; Callahan, D A; Cerjan, C J; Clark, D S; Edwards, M J; Glenzer, S H; Marinak, M M; Meezan, N B; Milovich, J L; Olson, R E; Patel, M V; Robey, H F; Sepke, S M; Spears, B K; Springer, P T; Weber, S V; Wilson, D C

2011-10-31T23:59:59.000Z

218

Robins Air Force Base integrated resource assessment. Volume 3, Resource assessment  

SciTech Connect

The US Air Force Materiel Command (AFMC) has tasked the US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory (PNL), to identify, evaluate, and assist in acquiring all cost-effective energy projects at Robins Air Force Base (AFB). This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the AFMC Robins AFB facility located approximately 15 miles south of Macon, Georgia. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analyses of EROs are presented in 13 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative-description of each ERO is provided, including information on the installed cost, energy and dollar savings; impacts on operation and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost (LCC) analysis indicating the net present value (NPV) and savings to investment ratio (SIR) of each ERO.

Sullivan, G.P.; Keller, J.M.; Stucky, D.J.; Wahlstrom, R.R.; Larson, L.L.

1993-10-01T23:59:59.000Z

219

A Global Land System Framework for Integrated Climate-Change Assessments  

E-Print Network (OSTI)

Land ecosystems play a major role in the global cycles of energy, water, carbon and nutrients. A Global Land System (GLS) framework has been developed for the Integrated Global Systems Model Version 2 (IGSM2) to simulate ...

Schlosser, C. Adam

220

An integrated model of the lithium/thionyl chloride battery  

DOE Green Energy (OSTI)

The desire to reduce the time and cost of design engineering on new components or to validate existing designs in new applications is stimulating the development of modeling and simulation tools. The authors are applying a model-based design approach to low and moderate rate versions of the Li/SOCl{sub 2} D-size cell with success. Three types of models are being constructed and integrated to achieve maximum capability and flexibility in the final simulation tool. A phenomenology based electrochemical model links performance and the cell design, chemical processes, and material properties. An artificial neural network model improves computational efficiency and fills gaps in the simulation capability when fundamental cell parameters are too difficult to measure or the forms of the physical relationships are not understood. Finally, a PSpice-based model provides a simple way to test the cell under realistic electrical circuit conditions. Integration of these three parts allows a complete link to be made between fundamental battery design characteristics and the performance of the rest of the electrical subsystem.

Jungst, R.G.; Nagasubramanian, G.; Ingersoll, D.; O`Gorman, C.C.; Paez, T.L. [Sandia National Labs., Albuquerque, NM (United States); Jain, M.; Weidner, J.W. [Univ. of South Carolina, Columbia, SC (United States)

1998-06-08T23:59:59.000Z

Note: This page contains sample records for the topic "integrated assessment modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Vandenberg Air Force Base integrated resource assessment. Volume 3, Resource assessment  

SciTech Connect

The US Air Force Space Command (SPACECOM) has tasked the Pacific Northwest Laboratory (PNL), as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program (FEMP), to identify, evaluate, and assist in acquiring all cost-effective energy projects at Vandenberg Air Force Base (VAFB). This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the SPACECOM VAFB facility located approximately 50 miles northwest of Santa Barbara, California. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analysis of EROs are presented in ten common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). In addition, a case study of process loads at Space Launch Complex-4 (SLC-4) is included. A narrative description of each ERO is provided, including information on the installed cost, energy and dollar savings; impacts on operation and maintenance (O and M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost (LCC) analysis indicating the net present value (NPV) and value index (VI) of each ERO. Finally, an appendix includes a summary of an economic analysis case study of the South Vandenberg Power Plant (SVPP) operating scenarios.

Daellenbach, K.K.; Dagle, J.E.; Dittmer, A.L.; Elliott, D.B.; Halverson, M.A.; Hickman, B.J.; Parker, G.B.; Richman, E.E.; Shankle, S.A.

1993-06-01T23:59:59.000Z

222

Cape Canaveral Air Force Station integrated resource assessment. Volume 3, Resource assessment  

Science Conference Proceedings (OSTI)

The U.S. Air Force (USAF) has tasked the Pacific Northwest Laboratory (PNL) in support of the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP), to identify, evaluate, and assist in acquiring all cost-effective energy projects at Cape Canaveral Air Force Station (AFS). Projects considered can be either in the form of energy management or energy conservation. The overall efforts of this task are based on a model program PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at Cape Canaveral AFS, which is located approximately 10 miles north of Cocoa Beach, Florida. It is a companion report to Volume 1: Executive Summary and Volume 2: Baseline Detail. The results of the analyses of EROs are presented in 11 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative description of each ERO is provided, including information on the installed cost, energy and dollar savings, impacts on operations and maintenance (O&M), and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. Descriptions of the evaluation methodologies and technical and cost assumptions are also provided for each ERO. Summary tables present the cost- effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost (LCC) analysis, indicating the net present value (NPV) and savings-to-investment ratio (SIR) of each ERO.

Sandusky, W.F.; Eichman, C.J.; King, D.A.; McMordie, K.L.; Parker, S.A.; Shankle, S.A.; Wahlstrom, R.R.

1994-03-01T23:59:59.000Z

223

Griffiss Air Force Base integrated resource assessment. Volume 3, Electric resource assessment  

Science Conference Proceedings (OSTI)

The US Air Force Air Combat Command (ACC) has tasked the US Department of Energy (DOE) Federal Energy Management Program (FEMP) to identify, evaluate, and assist in acquiring all cost-effective energy projects at Griffiss Air Force Base (AFB). FEMP, with support from the Pacific Northwest Laboratory (PNL), is designing this model program for federal customers served by the Niagara Mohawk Power Company. The program with Griffiss AFB will (1) identify and evaluate all cost-effective electric energy projects; (2) develop a schedule for project acquisition considering project type, size, timing, capital requirements, as well as energy and dollar savings; and (3) secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have them procure the necessary contractors to perform detailed audits and install the technologies. This report provides the results of the electric energy resource opportunity (ERO) assessments performed by PNL at one of Niagara Mohawk`s primary federal facilities, the ACC Griffiss AFB facility located near Rome, New York. The results of the analyses of EROs are presented in seven common energy end-use categories. A narrative description of each ERO provides information on the initial cost, energy and dollar savings; impacts on operations and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. The evaluation methodology and technical and cost assumptions are also described for each ERO. Summary tables present the operational performance of energy end-use equipment before and after the implementation of each ERO and the results of the life-cycle cost analysis indicating the net present value (NPV) and savings-to-investment ratio (SIR) of each ERO.

Armstrong, P.R.; Shankle, S.A.; Elliott, D.B.; Stucky, D.J.; Keller, J.M.; Wahlstrom, R.R.; Dagle, J.E.; Gu, A.Y.

1993-09-01T23:59:59.000Z

224

Integrated Assessment Plan Template and Operational Demonstration for SPIDERS Phase 2: Fort Carson  

Science Conference Proceedings (OSTI)

This document contains the Integrated Assessment Plan (IAP) for the Phase 2 Operational Demonstration (OD) of the Smart Power Infrastructure Demonstration for Energy Reliability (SPIDERS) Joint Capability Technology Demonstration (JCTD) project. SPIDERS will be conducted over a three year period with Phase 2 being conducted at Fort Carson, Colorado. This document includes the Operational Demonstration Execution Plan (ODEP) and the Operational Assessment Execution Plan (OAEP), as approved by the Operational Manager (OM) and the Integrated Management Team (IMT). The ODEP describes the process by which the OD is conducted and the OAEP describes the process by which the data collected from the OD is processed. The execution of the OD, in accordance with the ODEP and the subsequent execution of the OAEP, will generate the necessary data for the Quick Look Report (QLR) and the Utility Assessment Report (UAR). These reports will assess the ability of the SPIDERS JCTD to meet the four critical requirements listed in the Implementation Directive (ID).

Barr, Jonathan L.; Tuffner, Francis K.; Hadley, Mark D.; Kreyling, Sean J.; Schneider, Kevin P.

2013-09-01T23:59:59.000Z

225

Advancements in Wind Integration Study Data Modeling: The Wind Integration National Dataset (WIND) Toolkit; Preprint  

DOE Green Energy (OSTI)

Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather prediction model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.

Draxl, C.; Hodge, B. M.; Orwig, K.; Jones, W.; Searight, K.; Getman, D.; Harrold, S.; McCaa, J.; Cline, J.; Clark, C.

2013-10-01T23:59:59.000Z

226

MIT Integrated Global System Model (IGSM) Version 2: Model Description and Baseline Evaluation  

E-Print Network (OSTI)

The MIT Integrated Global System Model (IGSM) is designed for analyzing the global environmental changes that may result from anthropogenic causes, quantifying the uncertainties associated with the projected changes, and ...

Sokolov, Andrei P.

227

Integrating fuzzy multicriteria analysis and uncertainty evaluation in life cycle assessment  

Science Conference Proceedings (OSTI)

The interpretation phase of Life Cycle Assessment (LCA) studies is often hampered by the number and the heterogeneity of impact assessment results as well as by the uncertainties arising from data, models and practitioner's choices. While decision-aiding ... Keywords: Electricity, Fuzzy sets, LCA, Life cycle assessment, Multicriteria analysis, NAIADE, Noise

Enrico Benetto; Christiane Dujet; Patrick Rousseaux

2008-12-01T23:59:59.000Z

228

TEPP Model Needs Assessment Document | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Model Needs Assessment Document Model Needs Assessment Document TEPP Model Needs Assessment Document The purpose of this Model Needs Assessment is to assist state, tribal, or local officials in determining emergency responder readiness for response to a transportation accident involving radioactive material. This Model Needs Assessment was developed by the Department of Energy's Transportation Emergency Preparedness Program (TEPP) as a planning and assessment tool for state, tribal, or local government officials. To implement this Model Needs Assessment, a designated official from the jurisdiction will conduct a self-assessment by answering various questions. By doing so, the official will determine strengths and identify improvement areas. To support the assessment process, and any proposed recommendations for improvement, this document includes

229

Business information modeling for process integration in the mold making industry  

Science Conference Proceedings (OSTI)

Driven by industrial needs and enabled by the latest information technology, enterprise integration has rapidly shifted from information integration to process integration for performance excellence in the entire business process. This paper reports ... Keywords: Business object modeling, Enterprise integration, Process integration

Qianfu Ni; Wen Feng Lu; Prasad K. D. V. Yarlagadda; Xinguo Ming

2007-04-01T23:59:59.000Z

230

Integration of fuzzy AHP and FPP with TOPSIS methodology for aeroengine health assessment  

Science Conference Proceedings (OSTI)

This paper models the aeroengine health assessment problem as a multi-criteria decision-making (MCDM) problem and proposes a three-step evaluation model, which combines the techniques of fuzzy analytic hierarchy process (fuzzy AHP), fuzzy preference ... Keywords: Aeroengine health assessment, FPP, Fuzzy AHP, MCDM, TOPSIS

Jianrong Wang; Kai Fan; Wanshan Wang

2010-12-01T23:59:59.000Z

231

J-Integral modeling and validation for GTS reservoirs.  

DOE Green Energy (OSTI)

Non-destructive detection methods can reliably certify that gas transfer system (GTS) reservoirs do not have cracks larger than 5%-10% of the wall thickness. To determine the acceptability of a reservoir design, analysis must show that short cracks will not adversely affect the reservoir behavior. This is commonly done via calculation of the J-Integral, which represents the energetic driving force acting to propagate an existing crack in a continuous medium. J is then compared against a material's fracture toughness (J{sub c}) to determine whether crack propagation will occur. While the quantification of the J-Integral is well established for long cracks, its validity for short cracks is uncertain. This report presents the results from a Sandia National Laboratories project to evaluate a methodology for performing J-Integral evaluations in conjunction with its finite element analysis capabilities. Simulations were performed to verify the operation of a post-processing code (J3D) and to assess the accuracy of this code and our analysis tools against companion fracture experiments for 2- and 3-dimensional geometry specimens. Evaluation is done for specimens composed of 21-6-9 stainless steel, some of which were exposed to a hydrogen environment, for both long and short cracks.

Martinez-Canales, Monica L.; Nibur, Kevin A.; Lindblad, Alex J.; Brown, Arthur A.; Ohashi, Yuki; Zimmerman, Jonathan A.; Huestis, Edwin; Hong, Soonsung; Connelly, Kevin; Margolis, Stephen B.; Somerday, Brian P.; Antoun, Bonnie R.

2009-01-01T23:59:59.000Z

232

Data Integration for the Generation of High Resolution Reservoir Models  

SciTech Connect

The goal of this three-year project was to develop a theoretical basis and practical technology for the integration of geologic, production and time-lapse seismic data in a way that makes best use of the information for reservoir description and reservoir performance predictions. The methodology and practical tools for data integration that were developed in this research project have been incorporated into computational algorithms that are feasible for large scale reservoir simulation models. As the integration of production and seismic data require calibrating geological/geostatistical models to these data sets, the main computational tool is an automatic history matching algorithm. The following specific goals were accomplished during this research. (1) We developed algorithms for calibrating the location of the boundaries of geologic facies and the distribution of rock properties so that production and time-lapse seismic data are honored. (2) We developed and implemented specific procedures for conditioning reservoir models to time-lapse seismic data. (3) We developed and implemented algorithms for the characterization of measurement errors which are needed to determine the relative weights of data when conditioning reservoir models to production and time-lapse seismic data by automatic history matching. (4) We developed and implemented algorithms for the adjustment of relative permeability curves during the history matching process. (5) We developed algorithms for production optimization which accounts for geological uncertainty within the context of closed-loop reservoir management. (6) To ensure the research results will lead to practical public tools for independent oil companies, as part of the project we built a graphical user interface for the reservoir simulator and history matching software using Visual Basic.

Albert Reynolds; Dean Oliver; Gaoming Li; Yong Zhao; Chaohui Che; Kai Zhang; Yannong Dong; Chinedu Abgalaka; Mei Han

2009-01-07T23:59:59.000Z

233

Hybrid Kansei-SOM model using risk management and company assessment for stock trading  

Science Conference Proceedings (OSTI)

Risk management and stock assessment are key methods for stock trading decisions. In this paper, we present a new stock trading method using Kansei evaluation integrated with a Self-Organizing Map model for improvement of a stock trading system. The ... Keywords: Hybrid intelligent trading system, Investment risk, Kansei evaluation, Risk management, Self-Organizing Map, Stock trading system

Hai V. Pham, Eric W. Cooper, Thang Cao, Katsuari Kamei

2014-01-01T23:59:59.000Z

234

Designing of integrated system-dynamics models for an oil company  

Science Conference Proceedings (OSTI)

This paper presents a new approach to designing integrated simulation models for large corporations. This approach is based on the use of system-dynamics methods for implementing models of segments of the vertically integrated company taking into account ...

Andranik S. Akopov

2012-12-01T23:59:59.000Z

235

MANAGEMENT ASSESSMENT AN INTEGRATED ENVIRONMENT SAFETY & HEALTH MANAGEMENT SYSTEM (ISMS) CORE FUNCTION FOR FEEDBACK & CONTINUOUS IMPROVEMENT  

Science Conference Proceedings (OSTI)

Management assessment is required of US Department of Energy contractors by 10 CFR 830.122 and DOE Order 414.1. The management assessment process is a rigorous, preplanned, forward-looking review. It is required to be performed by owners of the processes that are being assessed. Written from the perspective of the Assessment Program Director and an Assessment Specialist, this paper describes the evolution of the process used by CH2MHILL to implement its management assessment program over the past two years including: roles, responsibilities, and details about our program improvement project designed to produce a clear picture of management processes and to identify opportunities for improvement. The management assessment program is essential to successful implementation, maintenance, and improvement of the CH2MHILL Integrated Environment, Safety, and Health Management System (ISMS). The management assessment program implements, in part, ISMS Core Function No. 5. ''Feedback and Continuous Improvement''. Organizations use the management assessment process to assess ISMS implementation and effectiveness. Management assessments evaluate the total picture of how well management processes are meeting organizational objectives and the customer's requirements and expectations. The emphasis is on management issues affecting performance, systems, and processes such as: strategic planning, qualification, training, staffing, organizational interfaces, communication, cost and schedule control and mission objectives. Management assessments should identify any weaknesses in the management aspects of performance and make process improvements. All managers from first line supervisors to the president and general manager are involved in the management assessment process. More senior managers, in conducting their assessment, will use data from lower levels of management. This approach will facilitate the objective of having managers closer to the work under review focusing on more compliance- and process-oriented aspects of work performance, while senior managers will concentrate on more strategic issues, having more access to information generated from assessments by their subordinates.

VON WEBER, M.

2005-07-26T23:59:59.000Z

236

Development and application of an integrated ecological modelling framework to analyze the impact of wastewater discharges on the ecological water quality of rivers  

Science Conference Proceedings (OSTI)

Modelling is an effective tool to investigate the ecological state of water resources. In developing countries, the impact of sanitation infrastructures (e.g. wastewater treatment plants) is typically assessed considering the achievement of legal physicochemical ... Keywords: Habitat suitability models, Information-theoretic approach, Integrated ecological modelling, MIKE 11, Multi-model inference

Javier E. Holguin-Gonzalez, Gert Everaert, Pieter Boets, Alberto Galvis, Peter L. M. Goethals

2013-10-01T23:59:59.000Z

237

Integrated assessment of the spatial variability of ozone impacts from emissions of nitrogen oxides  

Science Conference Proceedings (OSTI)

This paper examines the ozone (O{sub 3}) damages caused by nitrogen oxides (NOx) emissions in different locations around the Atlanta metropolitan area during a summer month. Ozone impacts are calculated using a new integrated assessment model that links pollution emissions to their chemical transformation, transport, population exposures, and effects on human health. It was found that increased NOx emissions in rural areas around Atlanta increase human exposure to ambient O{sub 3} twice as much as suburban emissions. However, increased NOx emissions in central city Atlanta actually reduce O{sub 3} exposures. For downtown emissions, the reduction in human exposures to O{sub 3} from titration by NO in the central city outweighs the effects from increased downwind O{sub 3}. The results indicate that the marginal damage from NOx emissions varies greatly across a metropolitan area. The results raise concerns if cap and trade regulations cause emissions to migrate toward higher marginal damage locations. 22 refs., 4 figs., 2 tabs.

Daniel Q. Tong; Nicholas Z. Muller; Denise L. Mauzerall; Robert O. Mendelsohn [Princeton University, Princeton, NJ (United States). Science, Technology and Environmental Policy Program, Woodrow Wilson School of Public and International Affairs

2006-03-01T23:59:59.000Z

238

Short-Termed Integrated Forecasting System: 1993 Model documentation report  

Science Conference Proceedings (OSTI)

The purpose of this report is to define the Short-Term Integrated Forecasting System (STIFS) and describe its basic properties. The Energy Information Administration (EIA) of the US Energy Department (DOE) developed the STIFS model to generate short-term (up to 8 quarters), monthly forecasts of US supplies, demands, imports exports, stocks, and prices of various forms of energy. The models that constitute STIFS generate forecasts for a wide range of possible scenarios, including the following ones done routinely on a quarterly basis: A base (mid) world oil price and medium economic growth. A low world oil price and high economic growth. A high world oil price and low economic growth. This report is written for persons who want to know how short-term energy markets forecasts are produced by EIA. The report is intended as a reference document for model analysts, users, and the public.

Not Available

1993-05-01T23:59:59.000Z

239

Performance model assessment for multi-junction concentrating photovoltaic systems.  

DOE Green Energy (OSTI)

Four approaches to modeling multi-junction concentrating photovoltaic system performance are assessed by comparing modeled performance to measured performance. Measured weather, irradiance, and system performance data were collected on two systems over a one month period. Residual analysis is used to assess the models and to identify opportunities for model improvement.

Riley, Daniel M.; McConnell, Robert. (Amonix, Inc., Seal Beach, CA); Sahm, Aaron (University of Nevada, Las Vegas, NV); Crawford, Clark (Amonix, Inc., Seal Beach, CA); King, David L.; Cameron, Christopher P.; Foresi, James S. (Emcore, Inc., Albuquerque, NM)

2010-03-01T23:59:59.000Z

240

Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).  

Science Conference Proceedings (OSTI)

The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

Schultz, Peter Andrew

2011-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated assessment modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Financial and Cost Assessment Model (FICAM) | Open Energy Information  

Open Energy Info (EERE)

Financial and Cost Assessment Model (FICAM) Financial and Cost Assessment Model (FICAM) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Financial and Cost Assessment Model (FICAM) Agency/Company /Organization: UNEP-Risoe Centre Sector: Climate Focus Area: Greenhouse Gas Topics: Finance, Baseline projection, GHG inventory Resource Type: Software/modeling tools User Interface: Spreadsheet Website: tech-action.org/models.htm Cost: Free Financial and Cost Assessment Model (FICAM) Screenshot References: FICAM[1] "The Financial and Cost Assessment Model (FICAM) evaluates the contribution of technologies and practices towards mitigation of greenhouse gases, and carries a comprehensive financial analysis." References ↑ "FICAM" Retrieved from "http://en.openei.org/w/index.php?title=Financial_and_Cost_Assessment_Model_(FICAM)&oldid=383091"

242

Hawaii Energy Strategy: Program guide. [Contains special sections on analytical energy forecasting, renewable energy resource assessment, demand-side energy management, energy vulnerability assessment, and energy strategy integration  

SciTech Connect

The Hawaii Energy Strategy program, or HES, is a set of seven projects which will produce an integrated energy strategy for the State of Hawaii. It will include a comprehensive energy vulnerability assessment with recommended courses of action to decrease Hawaii's energy vulnerability and to better prepare for an effective response to any energy emergency or supply disruption. The seven projects are designed to increase understanding of Hawaii's energy situation and to produce recommendations to achieve the State energy objectives of: Dependable, efficient, and economical state-wide energy systems capable of supporting the needs of the people, and increased energy self-sufficiency. The seven projects under the Hawaii Energy Strategy program include: Project 1: Develop Analytical Energy Forecasting Model for the State of Hawaii. Project 2: Fossil Energy Review and Analysis. Project 3: Renewable Energy Resource Assessment and Development Program. Project 4: Demand-Side Management Program. Project 5: Transportation Energy Strategy. Project 6: Energy Vulnerability Assessment Report and Contingency Planning. Project 7: Energy Strategy Integration and Evaluation System.

1992-09-01T23:59:59.000Z

243

National Acid Precipitation Assessment Program Report to Congress: An Integrated Assessment  

SciTech Connect

Under Title IX of the 1990 Clean Air Act Amendments, Congress reauthorized the National Acid Precipitation Assessment Program (NAPAP) to continue coordinating acid rain research and monitoring, as it had done during the previous decade, and to provide Congress with periodic reports. In particular, Congress asked NAPAP to assess all available data and information to answer two questions: (1) What are the costs, benefits, and effectiveness of Title IV? This question addresses the costs and economic impacts of complying with the Acid Rain Program as well as benefit analyses associated with the various human health and welfare effects, including reduced visibility, damages to materials and cultural resources, and effects on ecosystems. (2) What reductions in deposition rates are needed to prevent adverse ecological effects? This complex questions addresses ecological systems and the deposition levels at which they experience harmful effects. The results of the assessment of the effects of Title IV and of the relationship between acid deposition rates and ecological effects were to be reported to Congress quadrennially, beginning with the 1996 report to Congress. The objective of this Report is to address the two main questions posed by Congress and fully communicate the results of the assessment to decision-makers. Given the primary audience, most of this report is not written as a technical document, although information supporting the conclusions is provided along with references.

Uhart, M.; et al.

2005-08-01T23:59:59.000Z

244

$N=2$ Supersymmetric Integrable Models and Topological Field Theories  

E-Print Network (OSTI)

These lectures review some of the basic properties of $N=2$ superconformal field theories and the corresponding topological field theories. One of my basic aims is to show how the techniques of topological field theory can be used to compute effective \\LG potentials for perturbed $N=2$ superconformal field theories. In particular, I will briefly discuss the application of these ideas to $N=2$ supersymmetric quantum integrable models. (Lectures given at the Summer School on High Energy Physics and Cosmology, Trieste, Italy, June 15th -- July 3rd, 1992. To appear in the proceedings.)

Warner, Nicholas P

1993-01-01T23:59:59.000Z

245

Review of the Independent Integrated Safety Management/Integrated Work Management Assessment of Research and Develoopment and Programmatic Work at the Los Alamos National Laboratory, December 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Integrated Safety Independent Integrated Safety Management/Integrated Work Management Assessment of Research and Development and Programmatic Work at the Los Alamos National Laboratory December 2011 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Scope ...................................................................................................................................................... 1

246

Spatial process and data models : toward integration of agent-based models and GIS.  

Science Conference Proceedings (OSTI)

The use of object-orientation for both spatial data and spatial process models facilitates their integration, which can allow exploration and explanation of spatial-temporal phenomena. In order to better understand how tight coupling might proceed and to evaluate the possible functional and efficiency gains from such a tight coupling, we identify four key relationships affecting how geographic data (fields and objects) and agent-based process models can interact: identity, causal, temporal and topological. We discuss approaches to implementing tight integration, focusing on a middleware approach that links existing GIS and ABM development platforms, and illustrate the need and approaches with example agent-based models.

Brown, D. G.; North, M. J.; Robinson, D. T.; Riolo, R.; Rand, W.; Decision and Information Sciences; Univ. of Michigan

2007-10-01T23:59:59.000Z

247

An Assessment Model on Green Degree of Biodegradable Packaging Materials  

Science Conference Proceedings (OSTI)

An assessment model of green degree of biodegradable packaging materials is built. The first-order assessment indexes are composed of environmental properties, energy properties, resource properties and economy and the second order assessment index are ... Keywords: packaging materials, analytic hierarchy process, life cycle assessment

Xiaoming Zuo; Zhaomei Xu

2010-03-01T23:59:59.000Z

248

Integrated Modeling of Electric Power System Operations and Electricity Market Risks with Applications .  

E-Print Network (OSTI)

??Through integrated modeling of power system operations and market risks, this thesis addresses a variety of important issues on market signals modeling, generation capacity scheduling,… (more)

Sun, Haibin

2006-01-01T23:59:59.000Z

249

Assessment of the Regional Climate Model Version 3 over the Maritime Continent Using Different Cumulus Parameterization and Land Surface Schemes  

Science Conference Proceedings (OSTI)

This paper describes an assessment of the Regional Climate Model, version 3 (RegCM3), coupled to two land surface schemes: the Biosphere–Atmosphere Transfer System, version 1e (BATS1e), and the Integrated Biosphere Simulator (IBIS). The model’s ...

Rebecca L. Gianotti; Dongfeng Zhang; Elfatih A. B. Eltahir

2012-01-01T23:59:59.000Z

250

Modeling renewable energy resources in integrated resource planning  

SciTech Connect

Including renewable energy resources in integrated resource planning (IRP) requires that utility planning models properly consider the relevant attributes of the different renewable resources in addition to conventional supply-side and demand-side options. Otherwise, a utility`s resource plan is unlikely to have an appropriate balance of the various resource options. The current trend toward regulatory set-asides for renewable resources is motivated in part by the perception that the capabilities of current utility planning models are inadequate with regard to renewable resources. Adequate modeling capabilities and utility planning practices are a necessary prerequisite to the long-term penetration of renewable resources into the electric utility industry`s resource mix. This report presents a review of utility planning models conducted for the National Renewable Energy Laboratory (NREL). The review examines the capabilities of utility planning models to address key issues in the choice between renewable resources and other options. The purpose of this review is to provide a basis for identifying high priority areas for advancing the state of the art.

Logan, D.; Neil, C.; Taylor, A. [RCG/Hagler, Bailly, Inc., Boulder, CO (United States)

1994-06-01T23:59:59.000Z

251

Limitations of integrated assessment models of climate change  

E-Print Network (OSTI)

of individual utilities and discount rates. Though a socialequity discount rate and the marginal utility of consumptionat the interest rate r (in contrast to utility, which is

Ackerman, Frank; DeCanio, Stephen J.; Howarth, Richard B.; Sheeran, Kristen

2009-01-01T23:59:59.000Z

252

Incorporating carbon capture and storage technologies in integrated assessment models  

E-Print Network (OSTI)

and storage of CO2 from electric power plants. The electric power sector accounts for a substant of realistic technology adoption rates. The specification of input substitution, relative costs, and plant change has accounted for a significant portion of economic growth and is, in part, responsible

253

Incorporating Carbon Capture and Storage Technologies in Integrated Assessment Models  

E-Print Network (OSTI)

carbon capture and storage, 2) a natural gas combined cycle technology with carbon capture and storage 1 power generation technologies are: 1) a natural gas combined cycle technology (advanced gas) without eight of technologies in the electric power sector: conventional fossil fuel, natural gas combined cycle

254

In Situ Remediation Integrated Program, Evaluation and assessment of containment technology  

SciTech Connect

The In Situ Remediation Integrated Program (ISRIP) was established by the US Department of Energy (DOE) to advance the state-of-the art of innovative in situ remediation technologies to the point of demonstration and to broaden the applicability of these technologies to the widely varying site remediation requirements throughout the DOE complex. This program complements similar ongoing integrated demonstration programs being conducted at several DOE sites. The ISRIP has been conducting baseline assessments on in situ technologies to support program planning. Pacific Northwest Laboratory conducted an assessment and evaluation of subsurface containment barrier technology in support of ISRIP`s Containment Technology Subprogram. This report summarizes the results of that activity and provides a recommendation for priortizing areas in which additional research and development is needed to advance the technology to the point of demonstration in support of DOE`s site restoration activities.

Gerber, M.A.; Fayer, M.J.

1994-04-01T23:59:59.000Z

255

Mixed Waste Integrated Program: A technology assessment for mercury-containing mixed wastes  

SciTech Connect

The treatment of mixed wastes must meet US Environmental Protection Agency (EPA) standards for chemically hazardous species and also must provide adequate control of the radioactive species. The US Department of Energy (DOE) Office of Technology Development established the Mixed Waste Integrated Program (MWIP) to develop mixed-waste treatment technology in support of the Mixed Low-Level Waste Program. Many DOE mixed-waste streams contain mercury. This report is an assessment of current state-of-the-art technologies for mercury separations from solids, liquids, and gases. A total of 19 technologies were assessed. This project is funded through the Chemical-Physical Technology Support Group of the MWIP.

Perona, J.J.; Brown, C.H.

1993-03-01T23:59:59.000Z

256

Petri net modeling of fault analysis for probabilistic risk assessment.  

E-Print Network (OSTI)

??Fault trees and event trees have been widely accepted as the modeling strategy to perform Probabilistic Risk Assessment (PRA). However, there are several limitations associated… (more)

Lee, Andrew

2013-01-01T23:59:59.000Z

257

An integrated assessment of global and regional water demands for electricity generation to 2095  

SciTech Connect

Electric power plants currently account for approximately one-half of the global industrial water withdrawal. While continued expansion of the electric sector seems likely into the future, the consequent water demands are quite uncertain, and will depend on highly variable water intensities by electricity technologies, at present and in the future. Using GCAM, an integrated assessment model of energy, agriculture, and climate change, we first establish lower-bound, median, and upper-bound estimates for present-day electric sector water withdrawals and consumption by individual electric generation technologies in each of 14 geopolitical regions, and compare them with available estimates of regional industrial or electric sector water use. We then explore the evolution of global and regional electric sector water use over the next century, focusing on uncertainties related to withdrawal and consumption intensities for a variety of electric generation technologies, rates of change of power plant cooling system types, and rates of adoption of a suite of water-saving technologies. Results reveal that the water withdrawal intensity of electricity generation is likely to decrease in the near term with capital stock turnover, as wet towers replace once-through flow cooling systems and advanced electricity generation technologies replace conventional ones. An increase in consumptive use accompanies the decrease in water withdrawal rates; however, a suite of water conservation technologies currently under development could compensate for this increase in consumption. Finally, at a regional scale, water use characteristics vary significantly based on characteristics of the existing capital stock and the selection of electricity generation technologies into the future.

Davies, Evan; Kyle, G. Page; Edmonds, James A.

2013-02-01T23:59:59.000Z

258

Solid waste integrated cost analysis model: 1991 project year report. Part 2  

SciTech Connect

The purpose of the City of Houston`s 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA`s Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

Not Available

1991-12-31T23:59:59.000Z

259

Integrated dynamic landscape analysis and modeling system (IDLAMS) : installation manual.  

SciTech Connect

The Integrated Dynamic Landscape Analysis and Modeling System (IDLAMS) is a prototype, integrated land management technology developed through a joint effort between Argonne National Laboratory (ANL) and the US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL). Dr. Ronald C. Sundell, Ms. Pamela J. Sydelko, and Ms. Kimberly A. Majerus were the principal investigators (PIs) for this project. Dr. Zhian Li was the primary software developer. Dr. Jeffrey M. Keisler, Mr. Christopher M. Klaus, and Mr. Michael C. Vogt developed the decision analysis component of this project. It was developed with funding support from the Strategic Environmental Research and Development Program (SERDP), a land/environmental stewardship research program with participation from the US Department of Defense (DoD), the US Department of Energy (DOE), and the US Environmental Protection Agency (EPA). IDLAMS predicts land conditions (e.g., vegetation, wildlife habitats, and erosion status) by simulating changes in military land ecosystems for given training intensities and land management practices. It can be used by military land managers to help predict the future ecological condition for a given land use based on land management scenarios of various levels of training intensity. It also can be used as a tool to help land managers compare different land management practices and further determine a set of land management activities and prescriptions that best suit the needs of a specific military installation.

Li, Z.; Majerus, K. A.; Sundell, R. C.; Sydelko, P. J.; Vogt, M. C.

1999-02-24T23:59:59.000Z

260

Integrated dynamic landscape analysis and modeling system (IDLAMS) : programmer's manual.  

SciTech Connect

The Integrated Dynamic Landscape Analysis and Modeling System (IDLAMS) is a prototype, integrated land management technology developed through a joint effort between Argonne National Laboratory (ANL) and the US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL). Dr. Ronald C. Sundell, Ms. Pamela J. Sydelko, and Ms. Kimberly A. Majerus were the principal investigators (PIs) for this project. Dr. Zhian Li was the primary software developer. Dr. Jeffrey M. Keisler, Mr. Christopher M. Klaus, and Mr. Michael C. Vogt developed the decision analysis component of this project. It was developed with funding support from the Strategic Environmental Research and Development Program (SERDP), a land/environmental stewardship research program with participation from the US Department of Defense (DoD), the US Department of Energy (DOE), and the US Environmental Protection Agency (EPA). IDLAMS predicts land conditions (e.g., vegetation, wildlife habitats, and erosion status) by simulating changes in military land ecosystems for given training intensities and land management practices. It can be used by military land managers to help predict the future ecological condition for a given land use based on land management scenarios of various levels of training intensity. It also can be used as a tool to help land managers compare different land management practices and further determine a set of land management activities and prescriptions that best suit the needs of a specific military installation.

Klaus, C. M.; Li, Z.; Majerus, K. A.; Sundell, R. C.; Sydelko, P. J.; Vogt, M. C.

1999-02-24T23:59:59.000Z

Note: This page contains sample records for the topic "integrated assessment modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Numerical simulation of a lattice polymer model at its integrable point  

E-Print Network (OSTI)

We revisit an integrable lattice model of polymer collapse using numerical simulations. This model was first studied by Bl\\"ote and Nienhuis in J. Phys. A. {\\bf 22}, 1415 (1989) and it describes polymers with some attraction, providing thus a model for the polymer collapse transition. At a particular set of Boltzmann weights the model is integrable and the exponents $\

A. Bedini; A. L. Owczarek; T. Prellberg

2012-11-01T23:59:59.000Z

262

Integrated Numerical Modeling Process for Evaluating Automobile Climate Control Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

FCC-70 FCC-70 Integrated Numerical Modeling Process for Evaluating Automobile Climate Control Systems John Rugh National Renewable Energy Laboratory Copyright © 2002 Society of Automotive Engineers, Inc. ABSTRACT The air-conditioning (A/C) system compressor load can significantly impact the fuel economy and tailpipe emissions of conventional and hybrid electric automobiles. With the increasing emphasis on fuel economy, it is clear that the A/C compressor load needs to be reduced. In order to accomplish this goal, more efficient climate control delivery systems and reduced peak soak temperatures will be necessary to reduce the impact of vehicle A/C systems on fuel economy and tailpipe emissions. Good analytical techniques are important in identifying promising concepts. The goal at

263

Assessing Consumer Values and the Supply-Chain Market for the Integrated Water Heater/Dehumidifier  

SciTech Connect

This paper presents a case study of the potential market for the dual-service residential integrated water heater/dehumidifier (WHD). Its principal purpose is to evaluate the extent to which this integrated appliance might penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to assess market readiness as well as factor preferred product attributes into the design to drive consumer demand for this product. This study also supports analysis for prototype design. A full market analysis for potential commercialization should be conducted after prototype development. The integrated WHD is essentially a heat-pump water heater (HPWH) with components and controls that allow dedicated dehumidification. Adequate residential humidity control is a growing issue for newly constructed residential homes, which are insulated so well that mechanical ventilation may be necessary to meet fresh air requirements. Leveraging its successful experience with the energy-efficient design improvement for the residential HPWH, the Oak Ridge National Laboratory's (ORNL's) Engineering Science and Technology Division's (ESTD's) Building Equipment Group designed a water-heating appliance that combines HPWH efficiency with dedicated dehumidification. This integrated appliance could be a low-cost solution for dehumidification and efficient electric water heating. ORNL is partnering with Western Carolina University, Asheville-Buncombe Technical Community College, American Carolina Stamping Company, and Clemson University to develop this appliance and assess its market potential. For practical purposes, consumers are indifferent to how water is heated but are very interested in product attributes such as initial first cost, operating cost, performance, serviceability, product size, and installation costs. The principal drivers for penetrating markets are demonstrating reliability, leveraging the dehumidification attributes of the integrated WHD, and creating programs that embrace first-cost and life-cycle cost principles.

Ashdown, BG

2005-01-11T23:59:59.000Z

264

Integrated and Spectral Energetics Studies of the GLAS General Circulation Model  

Science Conference Proceedings (OSTI)

Integrated and spectral energetics of the Goddard Laboratory for Atmospheric Sciences (GLAS) general circulation model are compared with observations and examined when subdivided beyond hemispheric integrals. In the monthly mean zonal averages, ...

J. Tenenbaum

1982-08-01T23:59:59.000Z

265

Assessing the reliability of linear dynamic transformer thermal modelling  

E-Print Network (OSTI)

Assessing the reliability of linear dynamic transformer thermal modelling X. Mao, D.J. Tylavsky and G.A. McCulla Abstract: Improving the utilisation of transformers requires that the hot-spot and top. An alternative method for assessing transformer model reliability is provided. 1 Introduction The maximally

266

Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli  

Science Conference Proceedings (OSTI)

Motivation: The effort to build a whole-cell model requires the development of new modeling approaches, and in particular, the integration of models for different types of processes, each of which may be best described using different representation. ...

Markus W. Covert; Nan Xiao; Tiffany J. Chen; Jonathan R. Karr

2008-09-01T23:59:59.000Z

267

Route Selection and Pedestrian Traffic: Applying an Integrated Modeling Approach to Understanding Movement  

E-Print Network (OSTI)

J. Ozik . 2007. Visual agent-based model development withToward integration of agent-based models and GIS. Journal ofspatial events: Agent-based models of mobility in carnivals

Altaweel, Mark R; Wu, Yanwei

2010-01-01T23:59:59.000Z

268

Boundary diffraction wave integrals for diffraction modeling of external occulters  

E-Print Network (OSTI)

An occulter is a large diffracting screen which may be flown in conjunction with a telescope to image extrasolar planets. The edge is shaped to minimize the diffracted light in a region beyond the occulter, and a telescope may be placed in this dark shadow to view an extrasolar system with the starlight removed. Errors in position, orientation, and shape of the occulter will diffract additional light into this region, and a challenge of modeling an occulter system is to accurately and quickly model these effects. We present a fast method for the calculation of electric fields following an occulter, based on the concept of the boundary diffraction wave: the 2D structure of the occulter is reduced to a 1D edge integral which directly incorporates the occulter shape, and which can be easily adjusted to include changes in occulter position and shape, as well as the effects of sources---such as exoplanets---which arrive off-axis to the occulter. The structure of a typical implementation of the algorithm is include...

Cady, E

2012-01-01T23:59:59.000Z

269

Environmental Assessment for the Center for Integrated Nanotechnologies at Sandia National Laboratories/New Mexico  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINDING OF NO SIGNIFICANT IMPACT FINDING OF NO SIGNIFICANT IMPACT CENTER FOR INTEGRATED NANOTECHNOLOGIES AT SANDIA NATIONAL LABORATORIES/NEW MEXICO The United States Department of Energy (DOE), National Nuclear Security Administration, Sandia Site Office, has prepared an environmental assessment (EA) for the Center for Integrated Nanotechnologies (CINT) at Sandia National Laboratories, New Mexico (SNL/NM). The EA analyzes the potential effects of a proposal to construct and operate a CINT Core Facility and establish a Gateway to Sandia Facility. The CINT Core Facility would be constructed on a 20-acre DOE-owned parcel of land on the west side of Eubank Boulevard, north of the entrance to Kirtland Air Force Base. The Gateway to Sandia Facility would be established in existing space within the existing

270

Design and evaluation of the ReKon : an integrated detection and assessment perimeter system.  

Science Conference Proceedings (OSTI)

Kontek Industries (Kannapolis, NC) and their subsidiary, Stonewater Control Systems (Kannapolis, NC), have entered into a cooperative research and development agreement with Sandia to jointly develop and evaluate an integrated perimeter security system solution, one that couples access delay with detection and assessment. This novel perimeter solution was designed to be configurable for use at facilities ranging from high-security military sites to commercial power plants, to petro/chemical facilities of various kinds. A prototype section of the perimeter has been produced and installed at the Sandia Test and Evaluation Center in Albuquerque, NM. This prototype system integrated fiber optic break sensors, active infrared sensors, fence disturbance sensors, video motion detection, and ground sensors. This report documents the design, testing, and performance evaluation of the developed ReKon system. The ability of the system to properly detect pedestrian or vehicle attempts to bypass, breach, or otherwise defeat the system is characterized, as well as the Nuisance Alarm Rate.

Dabling, Jeffrey Glenn; Andersen, Jason Jann; McLaughlin, James O. [Stonewater Control Systems, Inc., Kannapolis, NC

2013-02-01T23:59:59.000Z

271

Integrated observations and modelling of greenhouse gas budgets at the ecosystem  

E-Print Network (OSTI)

Mitigation KvR 055/12 Integrated observations and modelling of greenhouse gas budgets Nol | Christy van Beek #12;Integrated observations and modelling of greenhouse gas budgets and modelling of greenhouse gas budgets at the ecosystem level in The Netherlands) was carried out

Stoffelen, Ad

272

Fiscal Year 2005 Integrated Monitoring Plan for the Hanford Groundwater Performance Assessment Project  

Science Conference Proceedings (OSTI)

Groundwater is monitored in hundreds of wells at the Hanford Site to fulfill a variety of requirements. Separate monitoring plans are prepared for various purposes, but sampling is coordinated and data are shared among users. DOE manages these activities through the Hanford Groundwater Performance Assessment Project, which is the responsibility of Pacific Northwest National Laboratory. The groundwater project integrates monitoring for various objectives into a single sampling schedule to avoid redundancy of effort and to improve efficiency of sample collection.This report documents the purposes and objectives of groundwater monitoring at the DOE Hanford Site in southeastern Washington State.

Rieger, JoAnne T.; Hartman, Mary J.

2005-06-16T23:59:59.000Z

273

Real-time highway traffic condition assessment framework using vehicle-infrastructure integration (VII) with artificial intelligence (AI)  

Science Conference Proceedings (OSTI)

This paper presents a framework for real-time highway traffic condition assessment using vehicle kinetic information, which is likely to be made available from vehicle-infrastructure integration (VII) systems, in which vehicle and infrastructure agents ... Keywords: artificial intelligence (AI), incident detection, vehicle kinetics, vehicle-infrastructure integration (VII)

Yongchang Ma; Mashrur Chowdhury; Adel Sadek; Mansoureh Jeihani

2009-12-01T23:59:59.000Z

274

Simulation-based assessment of the energy savings benefits of integrated control in office buildings  

SciTech Connect

The purpose of this study is to use existing simulation tools to quantify the energy savings benefits of integrated control in office buildings. An EnergyPlus medium office benchmark simulation model (V1.0_3.0) developed by the Department of Energy (DOE) was used as a baseline model for this study. The baseline model was modified to examine the energy savings benefits of three possible control strategies compared to a benchmark case across 16 DOE climate zones. Two controllable subsystems were examined: (1) dimming of electric lighting, and (2) controllable window transmission. Simulation cases were run in EnergyPlus V3.0.0 for building window-to-wall ratios (WWR) of 33percent and 66percent. All three strategies employed electric lighting dimming resulting in lighting energy savings in building perimeter zones ranging from 64percent to 84percent. Integrated control of electric lighting and window transmission resulted in heating, ventilation, and air conditioning (HVAC) energy savings ranging from ?1percent to 40percent. Control of electric lighting and window transmission with HVAC integration (seasonal schedule of window transmission control) resulted in HVAC energy savings ranging from 3percent to 43percent. HVAC energy savings decreased moving from warm climates to cold climates and increased when moving from humid, to dry, to marine climates.

Hong, T.; Shen, E.

2009-11-01T23:59:59.000Z

275

An Integrated Model For The Geothermal Field Of Milos From Geophysical...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon An Integrated Model For The Geothermal Field Of Milos From Geophysical Experiments Jump to:...

276

Integrated Deployment Model: A Comprehensive Approach to Transforming the Energy Economy  

SciTech Connect

This paper describes the Integrated Deployment model to accelerate market adoption of alternative energy solutions to power homes, businesses, and vehicles through a comprehensive and aggressive approach.

Werner, M.

2010-11-01T23:59:59.000Z

277

An integral model for turbulent flame radial lengths under a ceiling.  

E-Print Network (OSTI)

?? An analytical study using an integral model for turbulent flame radial lengths under a ceiling is presented. Dimensionless equations give results in terms of… (more)

Ding, Haiwen

2010-01-01T23:59:59.000Z

278

Copyright 2012 IEEE. Reprinted, with permission from: Integration of Geomagnetic Disturbance Modeling into the Power  

E-Print Network (OSTI)

Copyright © 2012 IEEE. Reprinted, with permission from: Integration of Geomagnetic Disturbance America Power Symposium (NAPS), September 2012, Champaign, IL Integration of Geomagnetic Disturbance for integrated power flow modeling of the impact of geomagnetic disturbances (GMDs) on the power system voltage

279

Status of integrated performance assessment of the waste packages and engineered barrier system  

SciTech Connect

Performance assessment of the engineered barrier system for a nuclear waste repository combines information from relevant disciplines and predicts the net long-term performance of the EBS in unites of regulatory goals for performance. The performance assessment models are specific to the proposed Yucca Mountain, Nevada site. Early assessments are used for project planning and feedback. The EBS scenarios activity develops the scenarios and the consequent event sequences. Initial model development for single waste packages indicates that the radionuclide release rate performance is sensitive to the water flux, element solubilities, and/or the mode of water contact with the waste. The latter in turn depends on local scale hydrology and the modes of corrosion for the container material. For the release rate summed over waste packages, variations among waste packages and their near-field environments are anticipated. These variations place demands on data acquisition and modeling, as well as modulate the impact of localized changes of conditions. Sampling in uncertainty assessment is a subsequent step in examining the reliability of predictions made in the performance assessments. Advances made in sampling methods are referenced. 14 refs., 6 figs.

O`Connell, W.J.

1990-01-01T23:59:59.000Z

280

A Fuzzy Logic Framework for Integrating Multiple Learned Models  

SciTech Connect

The Artificial Intelligence field of Integrating Multiple Learned Models (IMLM) explores ways to combine results from sets of trained programs. Aroclor Interpretation is an ill-conditioned problem in which trained programs must operate in scenarios outside their training ranges because it is intractable to train them completely. Consequently, they fail in ways related to the scenarios. We developed a general-purpose IMLM solution, the Combiner, and applied it to Aroclor Interpretation. The Combiner's first step, Scenario Identification (M), learns rules from very sparse, synthetic training data consisting of results from a suite of trained programs called Methods. S1 produces fuzzy belief weights for each scenario by approximately matching the rules. The Combiner's second step, Aroclor Presence Detection (AP), classifies each of three Aroclors as present or absent in a sample. The third step, Aroclor Quantification (AQ), produces quantitative values for the concentration of each Aroclor in a sample. AP and AQ use automatically learned empirical biases for each of the Methods in each scenario. Through fuzzy logic, AP and AQ combine scenario weights, automatically learned biases for each of the Methods in each scenario, and Methods' results to determine results for a sample.

Bobi Kai Den Hartog

1999-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated assessment modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

DOD/NREL Model Integrates Vehicles, Renewables & Microgrid (Fact...  

NLE Websites -- All DOE Office Websites (Extended Search)

locations for systems connecting electric vehicles with solar energy sources and microgrids. A microgrid that integrates renewable generation and vehicle energy storage offers...

282

Analysis of Mesoscale Model Data for Wind Integration (Poster)  

DOE Green Energy (OSTI)

Supports examination of implications of national 20% wind vision, and provides input to integration and transmission studies for operational impact of large penetrations of wind on the grid.

Schwartz, M.; Elliott, D.; Lew, D.; Corbus, D.; Scott, G.; Haymes, S.; Wan, Y. H.

2009-05-01T23:59:59.000Z

283

Integration of the reliability of passive system in probabilistic safety assessment  

SciTech Connect

Probability Safety Assessment (PSA) of nuclear power plants has demonstrated its efficiency in decision-making process. But the treatment in PSA of safety passive systems, specially those implementing moving working fluid, is a difficult task because in addition to the mechanical failures of components, the failure of the physical process (e.g. natural circulation) has to be considered. The difficulty in the evaluation of the failure risk of the physical phenomenon lies in the great number of parameters that must be taken into account, in their associated uncertainties and in the limitations of physical modelling. We can note that in the existing PSA of future reactors equipped with passive systems, this risk of the physical process failure due to the uncertainties, is not at all taken into account. In this paper, we present a methodology to evaluate this risk of failure and to include it in a PSA. This evaluation is obtained by uncertainty analyses on thermalhydraulic calculations. As an example, a simplified PSA was carried out on a fictive reactor with two types of safety passive systems both in the primary circuit: Residual Passive heat Removal system (RP2) and a safety injection system consisting in accumulators and discharge lines equipped with check valves. An accidental scenario has been analysed, starting with loss of electrical supply when the reactor is at full power. The failure analyses performed on this reactor have allowed the characterisation of the technical failures (on RP2 valves, tubes in RP2 exchanger and safety injection check valves) and the ranges of variation of uncertain parameters which influence the physical process. The resulting accidental scenario is presented in the form of a simplified event tree. The majority of the sequences of this event tree have been analysed by deterministic evaluations with envelope values of the uncertain parameters. For some sequences where the definition of envelope cases was impossible, basic events corresponding to the failure of the physical process have been added and uncertainty analyses have been performed to evaluate the corresponding probability of failure. For this purpose the thermal-hydraulic CATHARE code has been coupled to a Monte-Carlo simulation modulus. The failure probabilities obtained by these reliability analyses have been integrated in the corresponding sequences. This methodology allows the probabilistic evaluation of the influence of the passive system on an accidental scenario and could be used to test the interest to replace an active system by a passive system on specific situations. (authors)

Marques, M. [Commissariat a l'Energie Atomique (CEA), Building 212, Centre de Cadarache, 13108 Saint-Paul-Les-Durance Cedex (France); Pignatel, J.F.; Saignes, P.; Devictor, N.; La Lumia, V.; Mercier, S

2004-07-01T23:59:59.000Z

284

Model documentation report: Short-term Integrated Forecasting System demand model 1985. [(STIFS)  

DOE Green Energy (OSTI)

The Short-Term Integrated Forecasting System (STIFS) Demand Model consists of a set of energy demand and price models that are used to forecast monthly demand and prices of various energy products up to eight quarters in the future. The STIFS demand model is based on monthly data (unless otherwise noted), but the forecast is published on a quarterly basis. All of the forecasts are presented at the national level, and no regional detail is available. The model discussed in this report is the April 1985 version of the STIFS demand model. The relationships described by this model include: the specification of retail energy prices as a function of input prices, seasonal factors, and other significant variables; and the specification of energy demand by product as a function of price, a measure of economic activity, and other appropriate variables. The STIFS demand model is actually a collection of 18 individual models representing the demand for each type of fuel. The individual fuel models are listed below: motor gasoline; nonutility distillate fuel oil, (a) diesel, (b) nondiesel; nonutility residual fuel oil; jet fuel, kerosene-type and naphtha-type; liquefied petroleum gases; petrochemical feedstocks and ethane; kerosene; road oil and asphalt; still gas; petroleum coke; miscellaneous products; coking coal; electric utility coal; retail and general industry coal; electricity generation; nonutility natural gas; and utility petroleum. The demand estimates produced by these models are used in the STIFS integrating model to produce a full energy balance of energy supply, demand, and stock change. These forecasts are published quarterly in the Outlook. Details of the major changes in the forecasting methodology and an evaluation of previous forecast errors are presented once a year in Volume 2 of the Outlook, the Methodology publication.

Not Available

1985-07-01T23:59:59.000Z

285

Pacific Northwest National Laboratory FY96 evaluation of Integrated Assessment Program  

SciTech Connect

The Pacific Northwest National Laboratory`s Integrated Assessment Program (IAP) is the primary system to assess and monitor overall performance and to drive continuous improvement in the Laboratory. The approach used is a significant departure from the Laboratory`s traditional reliance on auditing methods. It is a move toward the contemporary concepts of measuring organizational performance by encouraging scientific, operational, and business excellence, through self-assessment and strengthening line management accountability for results in product and service quality, safety, and cost. This report describes the approach used (methods and processes), the deployment of that approach in the six Laboratory organizations selected to pilot the approach, and a summary of how the pilot organizations used the results they obtained. Section 3.0 of this report summarizes the top strengths and weaknesses in performance as identified by Division/Directorate self-assessments, Independent Oversight, Internal Audit and peer reviews, and includes the actions that have been, or will be taken, to improve performance in areas that are weak.

NONE

1996-10-01T23:59:59.000Z

286

Current Activities Assessing Butt Fusion Joint Integrity in High Density Polyethylene Piping  

SciTech Connect

The Pacific Northwest National Laboratory (PNNL) in Richland, Washington, conducted initial studies to evaluate the effectiveness of nondestructive examinations (NDE) coupled with mechanical testing for assessing butt fusion joint integrity in high density polyethylene (HDPE) pipe. The work provided insightful information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques for detecting lack of fusion (LOF) conditions in the fusion joints. HDPE has been installed on a limited basis in American Society of Mechanical Engineers (ASME) Class 3, buried piping systems at several operating U.S. nuclear power plants and has been proposed for use in new construction. A comparison was made between the results from ultrasonic and microwave nondestructive examinations and the results from mechanical destructive evaluations, specifically the high-speed tensile test and the side-bend test, for determining joint integrity. The data comparison revealed that none of the NDE techniques detected all of the lack-of-fusion conditions that were revealed by the destructive tests. Follow-on work has recently been initiated at PNNL to accurately characterize the NDE responses from machined flaws of varying size and location in PE 4710 materials as well as the LOF condition. This effort is directed at quantifying the ability of volumetric NDE techniques to detect flaws in relation to the critical flaw size associated with joint integrity. A status of these latest investigations is presented.

Crawford, Susan L.; Cinson, Anthony D.; Doctor, Steven R.; Denslow, Kayte M.

2012-09-01T23:59:59.000Z

287

Thermal Integrity Assessment of Building Envelopes of Experimental Houses Using Infrared Thermography  

Science Conference Proceedings (OSTI)

Zero Energy Building Research Alliance, or ZEBRAlliance, is a joint DOE-ORNL-construction industry initiative to develop and demonstrate new energy efficiency technologies for residential buildings, as well as fine-tune and integrate existing technologies, to lower energy costs. Construction of residential envelopes, the diaphragms that separate the inside from outdoors, can have enormous impact on whole-building energy usage. Consequently, post-construction thermal integrity assessment of the building envelopes in the experimental ZEBRAlliance homes is an integral part of the research and development cycle. Nondestructive infrared (IR) thermography provides a relatively easy and quick means of inspecting the experimental homes for thermal bridging, insulation imperfections, moisture penetration, air leakage, etc. Two experimental homes located in Oak Ridge, TN were inspected using IR thermography. The homes are designed with two different envelope systems: (i) Structural Insulated Panels (SIP home) consisting of an insulating foam core sandwiched between oriented strand boards, and (ii) Optimal Value Framing (OVF home) using innovatively spaced wood studs, which are designed to minimize the amount of wood framing, reduce thermal bridging, and lower material costs. IR thermal imaging was performed from both outside and inside of the homes. In this paper, IR images of roof and wall sections of the homes are presented and discussed with respect to identification of areas of thermal bridging and any insulation deficiencies.

Biswas, Kaushik [ORNL; Kosny, Jan [ORNL; Miller, William A [ORNL

2010-01-01T23:59:59.000Z

288

Conceptual design and techno-economic assessment of integrated solar combined cycle system with DSG technology  

SciTech Connect

Direct steam generation (DSG) in parabolic trough collectors causes an increase to competitiveness of solar thermal power plants (STPP) by substitution of oil with direct steam generation that results in lower investment and operating costs. In this study the integrated solar combined cycle system with DSG technology is introduced and techno-economic assessment of this plant is reported compared with two conventional cases. Three considered cases are: an integrated solar combined cycle system with DSG technology (ISCCS-DSG), a solar electric generating system (SEGS), and an integrated solar combined cycle system with HTF (heat transfer fluid) technology (ISCCS-HTF). This study shows that levelized energy cost (LEC) for the ISCCS-DSG is lower than the two other cases due to reducing O and M costs and also due to increasing the heat to electricity net efficiency of the power plant. Among the three STPPs, SEGS has the lowest CO{sub 2} emissions, but it will operate during daytime only. (author)

Nezammahalleh, H.; Farhadi, F.; Tanhaemami, M. [Chemical and Petroleum Engineering Department, Sharif University of Technology, No 593 Azadi Ave., Tehran (Iran)

2010-09-15T23:59:59.000Z

289

Assessing Consumer Values and the Supply-Chain Market for the Integrated Water Heater/Dehumidifier  

SciTech Connect

This paper presents a case study of the potential market for the dual-service residential integrated water heater/dehumidifier (WHD). Its principal purpose is to evaluate the extent to which this integrated appliance might penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to assess market readiness as well as factor preferred product attributes into the design to drive consumer demand for this product. This study also supports analysis for prototype design. A full market analysis for potential commercialization should be conducted after prototype development. The integrated WHD is essentially a heat-pump water heater (HPWH) with components and controls that allow dedicated dehumidification. Adequate residential humidity control is a growing issue for newly constructed residential homes, which are insulated so well that mechanical ventilation may be necessary to meet fresh air requirements. Leveraging its successful experience with the energy-efficient design improvement for the residential HPWH, the Oak Ridge National Laboratory's (ORNL's) Engineering Science and Technology Division's (ESTD's) Building Equipment Group designed a water-heating appliance that combines HPWH efficiency with dedicated dehumidification. This integrated appliance could be a low-cost solution for dehumidification and efficient electric water heating. ORNL is partnering with Western Carolina University, Asheville-Buncombe Technical Community College, American Carolina Stamping Company, and Clemson University to develop this appliance and assess its market potential. For practical purposes, consumers are indifferent to how water is heated but are very interested in product attributes such as initial first cost, operating cost, performance, serviceability, product size, and installation costs. The principal drivers for penetrating markets are demonstrating reliability, leveraging the dehumidification attributes of the integrated WHD, and creating programs that embrace first-cost and life-cycle cost principles.

Ashdown, BG

2005-01-11T23:59:59.000Z

290

Integrated safety assessment of an oxygen reduction project at Connecticut Yankee Atomic Power's Haddam Neck plant  

SciTech Connect

Connecticut Yankee Atomic Power Company (CYAPCo) has implemented an Integrated Safety Assessment Program (ISAP) for the integrated evaluation and prioritization of plant-specific licensing issues, regulatory policy issues, and plant improvement projects. As part of the ISAP process, probabilistic risk assessment (PRA) is utilized to evaluate the net safety impact of plant modification projects. On a few occasions, implementation of this approach has resulted in the identification of projects with negative safety impacts that could not be quantified via the normal design review and 10CFR50.59 safety evaluation process. An example is a plant modification that was proposed to reduce the oxygen in the Haddam Neck plant's demineralized water storage tank (DWST). The project involved the design and installation of a nitrogen blanketing system on the DWST. The purpose of the project was to reduce the oxygen content on the secondary side, consistent with recommendations from the Electric Power Research Institute Steam Generator Owners Group. Oxygen is one of the contributors to the corrosion process in systems in contact with the feedwater and can cause damage to associated components if not controlled.

Aubrey, J.E.

1987-01-01T23:59:59.000Z

291

Performance model assessment for multi-junction concentrating photovoltaic systems.  

DOE Green Energy (OSTI)

Four approaches to modeling multi-junction concentrating photovoltaic system performance are assessed by comparing modeled performance to measured performance. Measured weather, irradiance, and system performance data were collected on two systems over a one month period. Residual analysis is used to assess the models and to identify opportunities for model improvement. Large photovoltaic systems are typically developed as projects which supply electricity to a utility and are owned by independent power producers. Obtaining financing at favorable rates and attracting investors requires confidence in the projected energy yield from the plant. In this paper, various performance models for projecting annual energy yield from Concentrating Photovoltaic (CPV) systems are assessed by comparing measured system output to model predictions based on measured weather and irradiance data. The results are statistically analyzed to identify systematic error sources.

Stein, Joshua S.; Riley, Daniel M.; McConnell, Robert. (Amonix, Inc., Seal Beach, CA); Sahm, Aaron (University of Nevada, Las Vegas, NV); Crawford, Clark (Amonix, Inc., Seal Beach, CA); King, David L.; Cameron, Christopher P.; Foresi, James S. (Emcore, Inc., Albuquerque, NM)

2010-03-01T23:59:59.000Z

292

Integrated process modeling for the laser inertial fusion Energy (LIFE) generation system  

Science Conference Proceedings (OSTI)

A concept for a new fusion-fission hybrid technology is being developed at Lawrence Livermore National Laboratory. The primary application of this technology is base-load electrical power generation. However, variants of the baseline technology can be used to 'burn' spent nuclear fuel from light water reactors or to perform selective transmutation of problematic fission products. The use of a fusion driver allows very high burn-up of the fission fuel, limited only by the radiation resistance of the fuel form and system structures. As a part of this process, integrated process models have been developed to aid in concept definition. Several models have been developed. A cost scaling model allows quick assessment of design changes or technology improvements on cost of electricity. System design models are being used to better understand system interactions and to do design trade-off and optimization studies. Here we describe the different systems models and present systems analysis results. Different market entry strategies are discussed along with potential benefits to US energy security and nuclear waste disposal. Advanced technology options are evaluated and potential benefits from additional R&D targeted at the different options is quantified.

Meier, W R; Anklam, T M; Erlandson, A C; Miles, R R; Simon, A J; Sawicki, R; Storm, E

2009-10-22T23:59:59.000Z

293

A new analytic-adaptive model for EGS assessment, development and  

Open Energy Info (EERE)

new analytic-adaptive model for EGS assessment, development and new analytic-adaptive model for EGS assessment, development and management support Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title A new analytic-adaptive model for EGS assessment, development and management support Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Integrated Chemical, Thermal, Mechanical and Hydrological Modeling Project Description The University of Nevada - Reno (UNR), proposes to develop a new, integrated solution technique for simulating the Thermal, Hydrological, Mechanical, and Chemical (THMC) processes relevant to thermal energy extraction from an Enhanced Geothermal System (EGS). UNR defines the great challenges in numerical modeling as to (1) dealing with flows and transport in the stimulated fractures of the EGS of largely unknown geometry and characteristics; and (2) discovering the best possible cooling fluid circulation solution in the EGS by trial-and-error numerical simulations. The new THMC will have an adaptive, Computational Fluid Dynamics (CFD) component, integrated with the THMC rockmass model in order to match field test signatures, or desired outcomes in design hypothesis test. The project's main hypothesis is that there are new solutions to heat extraction from an as-created, enhanced fracture system of EGS. The project will develop a new THMC simulation model with new capabilities and prove the main hypothesis by and applying it to various EGS designs including emerging concepts, two-phase (steam-gas-liquid) coolant flows in the fracture network, and dynamic, huff-puff operations.

294

Co-benefits Risk Assessment (COBRA) Screening Model | Open Energy  

Open Energy Info (EERE)

Co-benefits Risk Assessment (COBRA) Screening Model Co-benefits Risk Assessment (COBRA) Screening Model Jump to: navigation, search Tool Summary Name: Co-benefits Risk Assessment (COBRA) Screening Model Agency/Company /Organization: United States Environmental Protection Agency Sector: Climate Complexity/Ease of Use: Moderate Website: www.epa.gov/statelocalclimate/resources/cobra.html Cost: Free Related Tools Tool for Selecting CDM Methods & Technologies Modular Applied General Equilibrium Tool (MAGNET) COMMUTER Model ... further results Find Another Tool FIND DEVELOPMENT IMPACTS ASSESSMENT TOOLS Automated tool that can be downloaded from the website. Converts emissions reductions into air quality improvements, estimates annual adverse health impacts avoided, and monetizes the value of these. Approach COBRA converts emissions reductions into air quality improvements, and

295

Modeling of Molten Salt Mixtures: Thermodynamic Assessment of ...  

Science Conference Proceedings (OSTI)

Presentation Title, Modeling of Molten Salt Mixtures: Thermodynamic Assessment of CeBr3 and MBr-CeBr3 Systems (M=Li, Na, K, Rb). Author(s), Yue Wu, ...

296

Response of the NMC MRF Model to Systematic-Error Correction within Integration  

Science Conference Proceedings (OSTI)

We describe an extensive nudging (within-integration correction) experiment with a large and sophisticated atmospheric model. The model is an R30 version of the National Meteorological Center (NMC) T80 operational global medium-range forecast ...

Suranjana Saha

1992-02-01T23:59:59.000Z

297

Wind resource assessment with a mesoscale non-hydrostatic model  

E-Print Network (OSTI)

Wind resource assessment with a mesoscale non- hydrostatic model Vincent Guénard, Center for Energy is developed for assessing the wind resource and its uncertainty. The work focuses on an existing wind farm mast measurements. The wind speed and turbulence fields are discussed. It is shown that the k

Paris-Sud XI, Université de

298

Software reliability assessment via fuzzy logic model  

Science Conference Proceedings (OSTI)

Recently in software engineering it became of great importance to be able to reason about non functional characteristics of software. This holds for a large variety of application areas like embedded and safety-critical software systems as well as service-oriented ... Keywords: fuzzy logic, fuzzy models, service oriented software systems, software reliability

Olga Georgieva; Aleksandar Dimov

2011-06-01T23:59:59.000Z

299

Simulink models are also software: modularity assessment  

Science Conference Proceedings (OSTI)

In automotive industry, more and more complex electronics and software systems are being developed to enable the innovation and to decrease costs. Besides the complex multimedia, comfort, and safety systems of conventional vehicles, automotive companies ... Keywords: automotive architectural quality, modularity, quality metrics, simulink model

Yanja Dajsuren; Mark G.J. van den Brand; Alexander Serebrenik; Serguei Roubtsov

2013-06-01T23:59:59.000Z

300

The FIT Model - Fuel-cycle Integration and Tradeoffs  

Science Conference Proceedings (OSTI)

All mass streams from fuel separation and fabrication are products that must meet some set of product criteria – fuel feedstock impurity limits, waste acceptance criteria (WAC), material storage (if any), or recycle material purity requirements such as zirconium for cladding or lanthanides for industrial use. These must be considered in a systematic and comprehensive way. The FIT model and the “system losses study” team that developed it [Shropshire2009, Piet2010] are an initial step by the FCR&D program toward a global analysis that accounts for the requirements and capabilities of each component, as well as major material flows within an integrated fuel cycle. This will help the program identify near-term R&D needs and set longer-term goals. The question originally posed to the “system losses study” was the cost of separation, fuel fabrication, waste management, etc. versus the separation efficiency. In other words, are the costs associated with marginal reductions in separations losses (or improvements in product recovery) justified by the gains in the performance of other systems? We have learned that that is the wrong question. The right question is: how does one adjust the compositions and quantities of all mass streams, given uncertain product criteria, to balance competing objectives including cost? FIT is a method to analyze different fuel cycles using common bases to determine how chemical performance changes in one part of a fuel cycle (say used fuel cooling times or separation efficiencies) affect other parts of the fuel cycle. FIT estimates impurities in fuel and waste via a rough estimate of physics and mass balance for a set of technologies. If feasibility is an issue for a set, as it is for “minimum fuel treatment” approaches such as melt refining and AIROX, it can help to make an estimate of how performances would have to change to achieve feasibility.

Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Candido Pereira; Layne F. Pincock; Eric L. Shaber; Meliisa C Teague; Gregory M Teske; Kurt G Vedros

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated assessment modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Use case and task models: An integrated development methodology and its formal foundation  

Science Conference Proceedings (OSTI)

User Interface (UI) development methods are poorly integrated with standard software engineering practice. The differences in terms of artifacts involved, development philosophies, and lifecycles can often result in inconsistent system and UI specifications ... Keywords: Use case models, conformance, integrated development methodology, task models, verification

Daniel Sinnig; Patrice Chalin; Ferhat Khendek

2013-07-01T23:59:59.000Z

302

A physical model for characteristics of an optical amplifier-switch integrated device  

Science Conference Proceedings (OSTI)

A physical model is develpoed for operation of a functional quantum well optoelectronic integrated device (QW-OEID). Based on the model, static and dynamic characteristics of the device is analyzed numerically considering the effects of parameters such ... Keywords: integrated device, optoelectronic, quantum well

M. H. Sheikhi; V. Ahmadi; M. K. Moravvej-Farshi

2002-12-01T23:59:59.000Z

303

Integrated modeling within a Hydrologic Information System: An OpenMI based approach  

Science Conference Proceedings (OSTI)

This paper presents a prototype software system for integrated environmental modeling that provides interoperability between the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) Hydrologic Information System (HIS) and ... Keywords: Data management, Environmental management, Integrated modeling, Systems analysis

Anthony M. Castronova; Jonathan L. Goodall; Mehmet B. Ercan

2013-01-01T23:59:59.000Z

304

Integrated modelling of water availability and water use in the semi-arid Northeast of Brazil  

E-Print Network (OSTI)

Integrated modelling of water availability and water use in the semi-arid Northeast of Brazil A: Bronstert 1 Integrated modelling of water availability and water use in the semi-arid Northeast of Brazil A con- straint for development in the semi-arid Northeast of Brazil. Quanti cation of natural water

Bronstert, Axel

305

COINS: an integrative modelling shell for carbon accounting and general ecological analysis  

Science Conference Proceedings (OSTI)

It is common for a range of models to be developed to investigate broadly similar ecological and environmental phenomena. This inevitably results in collections of models that, although individually possessing unique characteristics, also share a number ... Keywords: Carbon modelling, Model integration, Simulation modelling

S. H. Roxburgh; I. D. Davies

2006-03-01T23:59:59.000Z

306

Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment  

Science Conference Proceedings (OSTI)

This paper reports the environmental results, integrated with those arising from mass and energy balances, of a research project on the comparative analysis of strategies for material and energy recovery from waste, funded by the Italian Ministry of Education, University and Research. The project, involving the cooperation of five University research groups, was devoted to the optimisation of material and energy recovery activities within integrated municipal solid waste (MSW) management systems. Four scenarios of separate collection (overall value of 35%, 50% without the collection of food waste, 50% including the collection of food waste, 65%) were defined for the implementation of energetic, environmental and economic balances. Two sizes of integrated MSW management system (IWMS) were considered: a metropolitan area, with a gross MSW production of 750,000 t/year and an average province, with a gross MSW production of 150,000 t/year. The environmental analysis was conducted using Life Cycle Assessment methodology (LCA), for both material and energy recovery activities. In order to avoid allocation we have used the technique of the expansion of the system boundaries. This means taking into consideration the impact on the environment related to the waste management activities in comparison with the avoided impacts related to the saving of raw materials and primary energy. Under the hypotheses of the study, both for the large and for the small IWMS, the energetic and environmental benefits are higher than the energetic and environmental impacts for all the scenarios analysed in terms of all the indicators considered: the scenario with 50% separate collection in a drop-off scheme excluding food waste shows the most promising perspectives, mainly arising from the highest collection (and recycling) of all the packaging materials, which is the activity giving the biggest energetic and environmental benefits. Main conclusions of the study in the general field of the assessment of the environmental performance of any integrated waste management scheme address the importance of properly defining, beyond the design value assumed for the separate collection as a whole, also the yields of each material recovered; particular significance is finally related to the amount of residues deriving from material recovery activities, resulting on average in the order of 20% of the collected materials.

Giugliano, Michele; Cernuschi, Stefano [Politecnico di Milano - DIIAR, Environmental Section, P.zza Leonardo da Vinci, 32, 20133 Milano (Italy); Grosso, Mario, E-mail: mario.grosso@polimi.it [Politecnico di Milano - DIIAR, Environmental Section, P.zza Leonardo da Vinci, 32, 20133 Milano (Italy); Rigamonti, Lucia [Politecnico di Milano - DIIAR, Environmental Section, P.zza Leonardo da Vinci, 32, 20133 Milano (Italy)

2011-09-15T23:59:59.000Z

307

Integrated Quantum/Classical Modeling of Hydrogenic Materials  

DOE Green Energy (OSTI)

Path integral Monte Carlo simulations and calculations were performed on molecular hydrogen liquids. The equation-of-state, internal energies, and vapor liquid phase diagrams from simulation were found to be in quantitative agreement with experiments. Analytical calculations were performed on,H2 liquids using integral equation methods to study the degree of localization of the hydrogen molecules. Very little self-trapping or localization was found as a function of temperature and density. Good qualitative agreement was found between the integral equation calculations and the quantum Monte Carlo simulations for the radius of gyration of the hydrogen molecules. Path integral simulations were also performed on molecular hydrogen on graphite surfaces, slit pores, and in carbon nanotubes. Significant quantum effects on the adsorption of hydrogen were observed.

CURRO,JOHN G.; VAN SWOL,FRANK B.; FYE,RICHARD M.; WANG,Q.; JOHNSON,J.K.; PATRA,C.; YETHIRAJ,A.

1999-11-01T23:59:59.000Z

308

Conceptual adsorption models and open issues pertaining to performance assessment  

SciTech Connect

Recently several articles have been published that question the appropriateness of the distribution coefficient, Rd, concept to quantify radionuclide migration. Several distinct issues are raised by various critics. In this paper I provide some perspective on issues surrounding the modeling of nuclide retardation. The first section defines adsorption terminology and discusses various adsorption processes. The next section describes five commonly used adsorption conceptual models, specifically emphasizing what attributes that affect adsorption are explicitly accommodated in each model. I also review efforts to incorporate each adsorption model into performance assessment transport computer codes. The five adsorption conceptual models are (1) the constant Rd model, (2) the parametric Rd model, (3) isotherm adsorption models, (4) mass-action adsorption models, and (5) surface-complexation with electrostatics models. The final section discusses the adequacy of the distribution ratio concept, the adequacy of transport calculations that rely on constant retardation factors and the status of incorporating sophisticated adsorption models into transport codes.

Serne, R.J.

1991-10-01T23:59:59.000Z

309

Assessing Habitat for Avian Species in Assessing Habitat for Avian Species in an Integrated Forage/Biofuels an Integrated Forage/Biofuels  

E-Print Network (OSTI)

in an Integrated Forage/Biofuels an Integrated Forage/Biofuels Management System Management System in the Midin NWSG mixes beneficial to forage, biofuels production, and wildlife habitatp , 3. identify wildlife habitat benefits associated with varying forage and biofuels management strategies 4. identify optimum

Gray, Matthew

310

An Integrative Modeling Framework to Evaluate the Productivity and Sustainability of Biofuel Crop Production Systems  

Science Conference Proceedings (OSTI)

The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially-explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: 1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, 2) the biophysical and biogeochemical model EPIC (Environmental Policy Integrated Climate) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and 3) an evolutionary multi-objective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a 9-county Regional Intensive Modeling Area (RIMA) in SW Michigan to 1) simulate biofuel crop production, 2) compare impacts of management practices and local ecosystem settings, and 3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.

Zhang, Xuesong; Izaurralde, Roberto C.; Manowitz, David H.; West, T. O.; Post, W. M.; Thomson, Allison M.; Bandaru, V. P.; Nichols, J.; Williams, J.R.

2010-09-08T23:59:59.000Z

311

An integrative modeling framework to evaluate the productivity and sustainability of biofuel crop production systems  

Science Conference Proceedings (OSTI)

The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: (1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, (2) the biophysical and biogeochemical model Environmental Policy Integrated Climate (EPIC) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and (3) an evolutionary multiobjective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a nine-county Regional Intensive Modeling Area (RIMA) in SW Michigan to (1) simulate biofuel crop production, (2) compare impacts of management practices and local ecosystem settings, and (3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.

Zhang, X [University of Maryland; Izaurralde, R. C. [University of Maryland; Manowitz, D. [University of Maryland; West, T. O. [University of Maryland; Thomson, A. M. [University of Maryland; Post, Wilfred M [ORNL; Bandaru, Vara Prasad [ORNL; Nichols, Jeff [ORNL; Williams, J. [AgriLIFE, Temple, TX

2010-10-01T23:59:59.000Z

312

Suboptimal Assessment of Interunit Task Interdependence: Modes of Integration and Information Processing for Coordination Performance  

Science Conference Proceedings (OSTI)

This investigation extends previous research on cross-functional integration. Building on earlier theoretical development, a graduated sequence of modes of integration is tested in relation to interunit task interdependence in a global logistics support ... Keywords: coordination, integration, interdependence, uncertainty

J. Daniel Sherman; Robert T. Keller

2011-01-01T23:59:59.000Z

313

Beyond integrated safeguards: performance-based assessments for future nuclear controls.  

Science Conference Proceedings (OSTI)

In the future, iE the nuclear nonproliferation and arms control agendas are to advance, they will likely become increasingly seen as parallel undertakings with the objective of comprehensive cradle-to-grave controls over nuclear materials and possibly even warheads removed from defense programs along with materials in civilian use. This 'back to the future' prospect was envisioned in the Acheson-Lillienthal Report and the Baruch Plan, and more modestly in the Atoms-for-Peace Proposal. Unlike the grand plans of the early nuclear years, today's and tomorrow's undertakings will more likely consist of a series of incremental steps with the goal of expanding nuclear controls. These steps will be undertaken at a time of fundamental change in the IAEA safeguards system, and they will be influenced by those changes in profound ways. This prospective influence needs to be taken into account as the IAEA develops and implements integrated safeguards, including its efforts to establish new safeguards criteria, undertake technological and administrative improvements in safeguards, implement credible capabilities for the detection of undeclared nuclear facilities and activities and, perhaps, provide for a more intensive involvement in applying safeguards in new roles such as the verification of a fissile materials cutoff treaty. Performance-based criteria offer one promising way to address the effectiveness of integrated safeguards and to provide a common means of assessing the other key areas of a comprehensive approach to nuclear controls as these develop independently and to the extent that they are coordinated in the future.

Pilat, Joseph F.; Budlong-Sylvester, K. W. (Kory W.)

2001-01-01T23:59:59.000Z

314

A Roadmap for Integrated Modeling and Simulation of ...  

Science Conference Proceedings (OSTI)

... Internal Object Data Model User Interface System ... continuous, agent-based •Ease of Use ... Speed of executing the models •Interactive analysis ...

315

ISATEM: an integration of socioeconomic and spatial models for mineral resources exploitation  

Science Conference Proceedings (OSTI)

In the spatial-integrated socioeconomic model field, a multi-agent approach is appropriate for supporting applications modelled at a detailed territory scale, but it is less used than other approaches when supporting applications modelled at a larger ... Keywords: agent, component, mineral resources exploitation, simulation, socioeconomic model, spatial shape data

Fenintsoa Andriamasinoro; Daniel Cassard; Bruno Martel-Jantin

2010-03-01T23:59:59.000Z

316

Annual Cycle Integration of the NMC Medium-Range Forecasting (MRF) Model  

Science Conference Proceedings (OSTI)

The NMC Global Spectral Model was integrated for one year. The model used is the same as the 1989 operational medium range forecast model except that the horizontal resolution was reduced from T80 to T40. Overall, the model was very successful in ...

M. Kanamitsu; K. C. Mo; E. Kalnay

1990-12-01T23:59:59.000Z

317

Simulation-based automatic generation of signomial and posynomial performance models for analog integrated circuit sizing  

Science Conference Proceedings (OSTI)

This paper presents a method to automatically generate posynomial response surface models for the performance parameters of analog integrated circuits. The posynomial models enable the use of efficient geometric programming techniques for circuit sizing ... Keywords: analog circuit modeling, design of experiments, geometric programming, posynomial and signomial response surface modeling

Walter Daems; Georges Gielen; Willy Sansen

2001-11-01T23:59:59.000Z

318

Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project, Clean Coal Technology Program. Environmental Assessment  

Science Conference Proceedings (OSTI)

The DOE entered into a cooperative agreement with Combustion Engineering, Inc. (C-E) under which DOE proposes to provide cost-shared funding to design, construct, and operate an Integrated Coal Gasification Combined Cycle (IGCC) project to repower an existing steam turbine generator set at the Springfield (Illinois) City Water, Light and Power (CWL&P) Lakeside Generating Station, while capturing 90% of the coal`s sulfur and producing elemental sulfur as a salable by-product. The proposed demonstration would help determine the technical and economic feasibility of the proposed IGCC technology on a scale that would allow the utility industry to assess its applicability for repowering other coal-burning power plants. This Environmental Assessment (EA) has been prepared by DOE in compliance with the requirements of National Environmental Policy Act (NEPA). The sources of information for this EA include the following: C-E`s technical proposal for the project submitted to DOE in response to the Innovative Clean Coal Technology (ICCT) Program Opportunity Notice (PON); discussions with C-E and CWL&P staff; the volume of environmental information for the project and its supplements provided by C-E; and a site visit to the proposed project site.

Not Available

1992-03-01T23:59:59.000Z

319

Fire models for assessment of nuclear power plant fires  

SciTech Connect

This paper reviews the state-of-the-art in available fire models for the assessment of nuclear power plants fires. The advantages and disadvantages of three basic types of fire models (zone, field, and control volume) and Sandia's experience with these models will be discussed. It is shown that the type of fire model selected to solve a particular problem should be based on the information that is required. Areas of concern which relate to all nuclear power plant fire models are identified. 17 refs., 6 figs.

Nicolette, V.F.; Nowlen, S.P.

1989-01-01T23:59:59.000Z

320

Towards Integrated Design and Modeling of High Field Accelerator Magnets  

SciTech Connect

The next generation of superconducting accelerator magnets will most likely use a brittle conductor (such as Nb{sub 3}Sn), generate fields around 18 T, handle forces that are 3-4 times higher than in the present LHC dipoles, and store energy that starts to make accelerator magnets look like fusion magnets. To meet the challenge and reduce the complexity, magnet design will have to be more innovative and better integrated. The recent design of several high field superconducting magnets have now benefited from the integration between CAD (e.g. ProE), magnetic analysis tools (e.g. TOSCA) and structural analysis tools (e.g. ANSYS). Not only it is now possible to address complex issues such as stress in magnet ends, but the analysis can be better detailed an extended into new areas previously too difficult to address. Integrated thermal, electrical and structural analysis can be followed from assembly and cool-down through excitation and quench propagation. In this paper we report on the integrated design approach, discuss analysis results and point out areas of future interest.

Caspi, S.; Ferracin, P.

2006-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated assessment modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Model and Analytic Processes for Export License Assessments  

SciTech Connect

This paper represents the Department of Energy Office of Nonproliferation Research and Development (NA-22) Simulations, Algorithms and Modeling (SAM) Program's first effort to identify and frame analytical methods and tools to aid export control professionals in effectively predicting proliferation intent; a complex, multi-step and multi-agency process. The report focuses on analytical modeling methodologies that alone, or combined, may improve the proliferation export control license approval process. It is a follow-up to an earlier paper describing information sources and environments related to international nuclear technology transfer. This report describes the decision criteria used to evaluate modeling techniques and tools to determine which approaches will be investigated during the final 2 years of the project. The report also details the motivation for why new modeling techniques and tools are needed. The analytical modeling methodologies will enable analysts to evaluate the information environment for relevance to detecting proliferation intent, with specific focus on assessing risks associated with transferring dual-use technologies. Dual-use technologies can be used in both weapons and commercial enterprises. A decision-framework was developed to evaluate which of the different analytical modeling methodologies would be most appropriate conditional on the uniqueness of the approach, data availability, laboratory capabilities, relevance to NA-22 and Office of Arms Control and Nonproliferation (NA-24) research needs and the impact if successful. Modeling methodologies were divided into whether they could help micro-level assessments (e.g., help improve individual license assessments) or macro-level assessment. Macro-level assessment focuses on suppliers, technology, consumers, economies, and proliferation context. Macro-level assessment technologies scored higher in the area of uniqueness because less work has been done at the macro level. An approach to developing testable hypotheses for the macro-level assessment methodologies is provided. The outcome of this works suggests that we should develop a Bayes Net for micro-level analysis and continue to focus on Bayes Net, System Dynamics and Economic Input/Output models for assessing macro-level problems. Simultaneously, we need to develop metrics for assessing intent in export control, including the risks and consequences associated with all aspects of export control.

Thompson, Sandra E.; Whitney, Paul D.; Weimar, Mark R.; Wood, Thomas W.; Daly, Don S.; Brothers, Alan J.; Sanfilippo, Antonio P.; Cook, Diane; Holder, Larry

2011-09-29T23:59:59.000Z

322

A Survey on Methods for Modeling and Analyzing Integrated Biological Networks  

Science Conference Proceedings (OSTI)

Understanding how cellular systems build up integrated responses to their dynamically changing environment is one of the open questions in Systems Biology. Despite their intertwinement, signaling networks, gene regulation and metabolism have been frequently ... Keywords: Systems biology, survey, modeling methodologies, integrated biological networks.

Nuno Tenazinha; Susana Vinga

2011-07-01T23:59:59.000Z

323

An Integral Closure Model for the Vertical Turbulent Flux of a Scalar in a Mixed Layer  

Science Conference Proceedings (OSTI)

An integral closure model is proposed for the vertical turbulent transport of a scalar in a mixed layer. The flux divergences at a given level is related to a vertical integral of a weighting function multiplied by the difference between the ...

Brian H. Fiedler

1984-02-01T23:59:59.000Z

324

Wave Tank Testing and Model Validation Â… An Integrated Approach  

NLE Websites -- All DOE Office Websites (Extended Search)

Wave Tank Testing and Model Validation - Lessons Learned Wave Tank Testing and Model Validation - Lessons Learned Mirko Previsic 7-7-12 2 Representing the Full-Scale System P, V qv q T u q Generator Guide vanes Turbine Blades Configuration 3 Appropriate Modeling of Physics Run-time is important to make a model useful as an engineering and/or optimization tool. * Have to be selective about how the physics is represented in the model * Different physical phenomena are important to different WEC devices Subscale modeling allows to help us understand and validate the models physics. * Ideally we can isolate physical phenomena to properly debug theoretical model * Focus is on validating fluid-structure interaction * Scaling of mechanical systems needs to represent the physics of the full- scale system (i.e. mooring, power-take-off, control system).

325

An Integrated Modeling and Experimental Study of Static Strain ...  

Science Conference Proceedings (OSTI)

First Principles Modeling of Shape Memory Alloy Magnetic Refrigeration Materials ... of Lithium Battery Materials LiMPO4 (M = Mn, Fe, Co, and Ni): A Comparative ... Forming-Crush Simulation Optimization Using Internal State Variable Model.

326

Integrated Modeling of Tundish and Continuous Caster to Meet ...  

Science Conference Proceedings (OSTI)

First Principles Modeling of Shape Memory Alloy Magnetic Refrigeration Materials ... Different Generations of Gamma Prime Precipitates in a Commercial Nickel ...

327

Message passing for integrating and assessing renewable generation in a redundant power grid  

SciTech Connect

A simplified model of a redundant power grid is used to study integration of fluctuating renewable generation. The grid consists of large number of generator and consumer nodes. The net power consumption is determined by the difference between the gross consumption and the level of renewable generation. The gross consumption is drawn from a narrow distribution representing the predictability of aggregated loads, and we consider two different distributions representing wind and solar resources. Each generator is connected to D consumers, and redundancy is built in by connecting R {le} D of these consumers to other generators. The lines are switchable so that at any instance each consumer is connected to a single generator. We explore the capacity of the renewable generation by determining the level of 'firm' generation capacity that can be displaced for different levels of redundancy R. We also develop message-passing control algorithm for finding switch sellings where no generator is overloaded.

Zdeborova, Lenka [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory; Chertkov, Michael [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

328

Message Passing for Integrating and Assessing Renewable Generation in a Redundant Power Grid  

E-Print Network (OSTI)

A simplified model of a redundant power grid is used to study integration of fluctuating renewable generation. The grid consists of large number of generator and consumer nodes. The net power consumption is determined by the difference between the gross consumption and the level of renewable generation. The gross consumption is drawn from a narrow distribution representing the predictability of aggregated loads, and we consider two different distributions representing wind and solar resources. Each generator is connected to D consumers, and redundancy is built in by connecting R of these consumers to other generators. The lines are switchable so that at any instance each consumer is connected to a single generator. We explore the capacity of the renewable generation by determining the level of "firm" generation capacity that can be displaced for different levels of redundancy R. We also develop message-passing control algorithm for finding switch settings where no generator is overloaded.

Zdeborová, Lenka; Chertkov, Michael

2009-01-01T23:59:59.000Z

329

Assessing the RELAPS-3D Heat Conduction Enclosure Model  

SciTech Connect

Three heat conduction problems that have exact solutions are modeled with RELAP5-3D using the conduction enclosure model. These comparisons are designed to be used in the RELAP5-3D development assessment scheduled to be completed in 2009. It is shown that with proper input choices and adequate model detail the exact solutions can be matched. In addition, this analysis identified an error and the required correction in the cylindrical and spherical heat conductor models in RELAP5-3D which will be corrected in a future version of RELAP5-3D.

McCann, Larry D.

2008-09-30T23:59:59.000Z

330

Assessing Impacts of Climate Change on Forests: The State of Biological Modeling  

DOE R&D Accomplishments (OSTI)

Models that address the impacts to forests of climate change are reviewed by four levels of biological organization: global, regional or landscape, community, and tree. The models are compared as to their ability to assess changes in greenhouse gas flux, land use, maps of forest type or species composition, forest resource productivity, forest health, biodiversity, and wildlife habitat. No one model can address all of these impacts, but landscape transition models and regional vegetation and land-use models consider the largest number of impacts. Developing landscape vegetation dynamics models of functional groups is suggested as a means to integrate the theory of both landscape ecology and individual tree responses to climate change. Risk assessment methodologies can be adapted to deal with the impacts of climate change at various spatial and temporal scales. Four areas of research development are identified: (1) linking socioeconomic and ecologic models, (2) interfacing forest models at different scales, (3) obtaining data on susceptibility of trees and forest to changes in climate and disturbance regimes, and (4) relating information from different scales.

Dale, V. H.; Rauscher, H. M.

1993-04-06T23:59:59.000Z

331

Assessing impacts of climate change on forests: The state of biological modeling  

Science Conference Proceedings (OSTI)

Models that address the impacts to forests of climate change are reviewed by four levels of biological organization: global, regional or landscape, community, and tree. The models are compared as to their ability to assess changes in greenhouse gas flux, land use, maps of forest type or species composition, forest resource productivity, forest health, biodiversity, and wildlife habitat. No one model can address all of these impacts, but landscape transition models and regional vegetation and land-use models consider the largest number of impacts. Developing landscape vegetation dynamics models of functional groups is suggested as a means to integrate the theory of both landscape ecology and individual tree responses to climate change. Risk assessment methodologies can be adapted to deal with the impacts of climate change at various spatial and temporal scales. Four areas of research development are identified: (1) linking socioeconomic and ecologic models, (2) interfacing forest models at different scales, (3) obtaining data on susceptibility of trees and forest to changes in climate and disturbance regimes, and (4) relating information from different scales.

Dale, V.H. [Oak Ridge National Lab., TN (United States); Rauscher, H.M. [Forest Service, Grand Rapids, MI (United States). North Central Forest Experiment Station

1993-04-06T23:59:59.000Z

332

Final technical report for DOE Computational Nanoscience Project: Integrated Multiscale Modeling of Molecular Computing Devices  

Science Conference Proceedings (OSTI)

This document reports the outcomes of the Computational Nanoscience Project, "Integrated Multiscale Modeling of Molecular Computing Devices". It includes a list of participants and publications arising from the research supported.

Cummings, P. T.

2010-02-08T23:59:59.000Z

333

Depth-Integrated Vorticity Budget of the Southern Ocean from a General Circulation Model  

Science Conference Proceedings (OSTI)

An analysis of the depth-integrated vorticity budget of the U.K. Fine Resolution Antarctic Model is used to investigate the mechanisms that maintain and dissipate vorticity in the Antarctic Circumpolar Current (ACC) and adjacent circulations of ...

N. C. Wells; B. A. De Cuevas

1995-11-01T23:59:59.000Z

334

Coupling of Integrated Biosphere Simulator to Regional Climate Model Version 3  

Science Conference Proceedings (OSTI)

A description of the coupling of Integrated Biosphere Simulator (IBIS) to Regional Climate Model version 3 (RegCM3) is presented. IBIS introduces several key advantages to RegCM3, most notably vegetation dynamics, the coexistence of multiple ...

Jonathan M. Winter; Jeremy S. Pal; Elfatih A. B. Eltahir

2009-05-01T23:59:59.000Z

335

Operational simulation model of the raw material handling in an integrated steel making plant  

Science Conference Proceedings (OSTI)

This article is focused on the design and implementation of an operational simulation model (OSM) of the handling of raw material in an integrated steel making plant, considering operations of receiving, unloading, stocking, handling and supplying the ...

Robson Jacinto Coelho; Paula Fernandes Lana; Adriano César Silva; Takeo Fugiwara Santos; ArcelorMittal Tubarão; Marcelo Moretti Fioroni; Luiz Augusto G. Franzese; Daniel de Oliveira Mota; Paragon Tecnologia; Luiz Bueno da Silva

2009-12-01T23:59:59.000Z

336

Coupling of Integrated Biosphere Simulator to Regional Climate Model Version 3  

E-Print Network (OSTI)

A description of the coupling of Integrated Biosphere Simulator (IBIS) to Regional Climate Model version 3 (RegCM3) is presented. IBIS introduces several key advantages to RegCM3, most notably vegetation dynamics, the ...

Winter, Jonathan (Jonathan Mark)

337

Climate Forcings and Climate Sensitivities Diagnosed from Coupled Climate Model Integrations  

Science Conference Proceedings (OSTI)

A simple technique is proposed for calculating global mean climate forcing from transient integrations of coupled atmosphere–ocean general circulation models (AOGCMs). This “climate forcing” differs from the conventionally defined radiative ...

Piers Mde F. Forster; Karl E. Taylor

2006-12-01T23:59:59.000Z

338

Renewable Diesel from Algal Lipids: An Integrated Baseline for Cost, Emissions, and Resource Potential from a Harmonized Model  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Biomass Program has begun an initiative to obtain consistent quantitative metrics for algal biofuel production to establish an 'integrated baseline' by harmonizing and combining the Program's national resource assessment (RA), techno-economic analysis (TEA), and life-cycle analysis (LCA) models. The baseline attempts to represent a plausible near-term production scenario with freshwater microalgae growth, extraction of lipids, and conversion via hydroprocessing to produce a renewable diesel (RD) blendstock. Differences in the prior TEA and LCA models were reconciled (harmonized) and the RA model was used to prioritize and select the most favorable consortium of sites that supports production of 5 billion gallons per year of RD. Aligning the TEA and LCA models produced slightly higher costs and emissions compared to the pre-harmonized results. However, after then applying the productivities predicted by the RA model (13 g/m2/d on annual average vs. 25 g/m2/d in the original models), the integrated baseline resulted in markedly higher costs and emissions. The relationship between performance (cost and emissions) and either productivity or lipid fraction was found to be non-linear, and important implications on the TEA and LCA results were observed after introducing seasonal variability from the RA model. Increasing productivity and lipid fraction alone was insufficient to achieve cost and emission targets; however, combined with lower energy, less expensive alternative technology scenarios, emissions and costs were substantially reduced.

Davis, R.; Fishman, D.; Frank, E. D.; Wigmosta, M. S.; Aden, A.; Coleman, A. M.; Pienkos, P. T.; Skaggs, R. J.; Venteris, E. R.; Wang, M. Q.

2012-06-01T23:59:59.000Z

339

Models used to assess the performance of photovoltaic systems.  

DOE Green Energy (OSTI)

This report documents the various photovoltaic (PV) performance models and software developed and utilized by researchers at Sandia National Laboratories (SNL) in support of the Photovoltaics and Grid Integration Department. In addition to PV performance models, hybrid system and battery storage models are discussed. A hybrid system using other distributed sources and energy storage can help reduce the variability inherent in PV generation, and due to the complexity of combining multiple generation sources and system loads, these models are invaluable for system design and optimization. Energy storage plays an important role in reducing PV intermittency and battery storage models are used to understand the best configurations and technologies to store PV generated electricity. Other researcher's models used by SNL are discussed including some widely known models that incorporate algorithms developed at SNL. There are other models included in the discussion that are not used by or were not adopted from SNL research but may provide some benefit to researchers working on PV array performance, hybrid system models and energy storage. The paper is organized into three sections to describe the different software models as applied to photovoltaic performance, hybrid systems, and battery storage. For each model, there is a description which includes where to find the model, whether it is currently maintained and any references that may be available. Modeling improvements underway at SNL include quantifying the uncertainty of individual system components, the overall uncertainty in modeled vs. measured results and modeling large PV systems. SNL is also conducting research into the overall reliability of PV systems.

Stein, Joshua S.; Klise, Geoffrey T.

2009-12-01T23:59:59.000Z

340

Integrated model-based control and diagnostic monitoring for automotive catalyst systems  

Science Conference Proceedings (OSTI)

An integrated model-based automotive catalyst control and diagnostic monitoring system is presented. This system incorporates a simplified dynamic catalyst model that describes oxygen storage and release in the catalyst and predicts the post-catalyst ... Keywords: automotive catalyst, model predictive control, on-board diagnostic monitoring

Kenneth R. Muske; James C. Peyton Jones

2007-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated assessment modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Climate Drift in a Multicentury Integration of the NCAR Climate System Model  

Science Conference Proceedings (OSTI)

The National Center for Atmospheric Research’s Climate System Model is a comprehensive model of the physical climate system. A 300-yr integration of the model has been carried out without flux correction. The solution shows very little drift in ...

Frank O. Bryan

1998-06-01T23:59:59.000Z

342

Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes - Business Case Assessment  

SciTech Connect

The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, 'HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment', ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. Table 1 summarizes the energy savings potential of the highest scoring options from the 2005 study for all five locations. All system options were scored by the ORNL building equipment research team and by William Goetzler of Navigant Consulting. These scores were reviewed by DOE/BT's Residential Integration program leaders and Building America team members. Based on these results, the two centrally ducted integrated heat pump (IHP) systems (air source and ground source versions) were selected for advancement to Stage 2 (Exploratory Development) business case assessments in FY06. This report describes results of these business case assessments. It is a compilation of three separate reports describing the initial business case study (Baxter 2006a), an update to evaluate the impact of an economizer cooling option (Baxter 2006b), and a second update to evaluate the impact of a winter humidification option (Baxter 2007). In addition it reports some corrections made subsequent to release of the first two reports to correct so

Baxter, Van D [ORNL

2007-05-01T23:59:59.000Z

343

Probabilistic Risk Assessment Compendium of Candidate Consensus Models  

Science Conference Proceedings (OSTI)

This report provides a compendium of candidate consensus models in use in current probabilistic risk assessments (PRAs). The ASME PRA Standard, as modified and endorsed by Regulatory Guide 1.200, establishes that the identification, sensitivity analysis, and documentation of key sources of uncertainties and key assumptions may be reduced in scope if the PRA makes use of consensus models to implement the supporting requirements. As part of the process of treating the uncertainties associated with a risk-...

2006-08-16T23:59:59.000Z

344

Biosphere Modeling and Dose Assessment for Yucca Mountain  

Science Conference Proceedings (OSTI)

This report develops a biosphere model appropriate for use in calculating doses to hypothetical individuals living in the far future in the vicinity of Yucca Mountain, Nevada. Doses are assumed to arise from potential releases from a spent fuel and high-level radioactive waste (HLW) disposal facility located beneath Yucca Mountain. The model provides guidance on approaches to dealing with the biosphere appropriate for site suitability and licensing assessments.

1996-12-31T23:59:59.000Z

345

Integrating Numerical Computation into the Modeling Instruction Curriculum  

E-Print Network (OSTI)

We describe a way to introduce physics high school students with no background in programming to computational problem-solving experiences. Our approach builds on the great strides made by the Modeling Instruction reform curriculum. This approach emphasizes the practices of "Developing and using models" and "Computational thinking" highlighted by the NRC K-12 science standards framework. We taught 9th-grade students in a Modeling-Instruction-based physics course to construct computational models using the VPython programming environment. Numerical computation within the Modeling Instruction curriculum provides coherence among the curriculum's different force and motion models, links the various representations which the curriculum employs, and extends the curriculum to include real-world problems that are inaccessible to a purely analytic approach.

Caballero, Marcos D; Aiken, John M; Douglas, Scott S; Scanlon, Erin M; Thoms, Brian; Schatz, Michael F

2012-01-01T23:59:59.000Z

346

Final Report for Integrated Multiscale Modeling of Molecular Computing Devices  

SciTech Connect

In collaboration with researchers at Vanderbilt University, North Carolina State University, Princeton and Oakridge National Laboratory we developed multiscale modeling and simulation methods capable of modeling the synthesis, assembly, and operation of molecular electronics devices. Our role in this project included the development of coarse-grained molecular and mesoscale models and simulation methods capable of simulating the assembly of millions of organic conducting molecules and other molecular components into nanowires, crossbars, and other organized patterns.

Glotzer, Sharon C.

2013-08-28T23:59:59.000Z

347

Integrated Market Modeling of Hydrogen Transition Scenarios with HyTrans  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Market Modeling of Integrated Market Modeling of Hydrogen Transition Scenarios with HyTrans Paul N. Leiby, David L. Greene and David Bowman Oak Ridge National Laboratory A presentation to the Hydrogen Delivery Analysis Meeting FreedomCAR and Fuels Partnership Delivery, Storage and Hydrogen Pathways Tech Teams May 8-9, 2007 Columbia, MD 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Drawing from several other DOE models, HyTrans integrates supply and demand in a dynamic non-linear market model to 2050. * H2A - Hydrogen Production - Hydrogen Delivery * PSAT & ASCM - Fuel economy - 2010/2015 cost & performance goals * ORNL Vehicle Choice Model - Fuel availability - Make & model diversity - Price, fuel economy, etc. * Vehicle Manufacturing Cost Estimates (assisted by OEMs)

348

The integrated economic production quantity model for inventory and quality.  

E-Print Network (OSTI)

??Determining the optimal production lot sizing has been widely used by the classical economic production quantity (EPQ) model. However, the analysis for finding an EPQ… (more)

Ittharat, Tharat

2004-01-01T23:59:59.000Z

349

Integrating Module of the National Energy Modeling System (INT)  

U.S. Energy Information Administration (EIA)

The National Energy Modeling System (NEMS) represents a general equilibrium solution of the interactions between the U.S. energy markets and the economy.

350

Pullback of the volume form, integrable models in higher dimensions and exotic textures  

Science Conference Proceedings (OSTI)

A procedure allowing for the construction of Lorentz invariant integrable models living in d+1 dimensional space time and with an n dimensional target space is provided. Here, integrability is understood as the existence of the generalized zero curvature formulation and infinitely many conserved quantities. A close relation between the Lagrange density of the integrable models and the pullback of the pertinent volume form on target space is established. Moreover, we show that the conserved currents are Noether currents generated by the volume-preserving diffeomorphisms. Further, we show how such models may emerge via Abelian projection of some gauge theories. Then we apply this framework to the construction of integrable models with exotic textures. Particularly, we consider integrable models providing exact suspended Hopf maps, i.e., solitons with a nontrivial topological charge of {pi}{sub 4}(S{sup 3}) congruent with Z{sub 2}. Finally, some families of integrable models with solitons of {pi}{sub n}(S{sup n}) type are constructed. Infinitely many exact solutions with arbitrary value of the topological index are found. In addition, we demonstrate that they saturate a Bogomolny bound.

Adam, C.; Klimas, P.; Sanchez-Guillen, J. [Departamento de Fisica de Particulas, Universidad de Santiago, E-15782 Santiago de Compostela (Spain) and Instituto Galego de Fisica de Altas Enerxias (IGFAE), E-15782 Santiago de Compostela (Spain); Wereszczynski, A. [Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland); Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen O (Denmark)

2009-02-15T23:59:59.000Z

351

Simulation-based assessment of the energy savings benefits of integrated control in office buildings  

E-Print Network (OSTI)

building energy analysis using EnergyPlus. The benchmarkenergy savings benefits of integrated control using the medium office building benchmark

Hong, T.

2011-01-01T23:59:59.000Z

352

Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment  

SciTech Connect

This data package documents the experimentally derived input data on the representative waste glasses; LAWA44, LAWB45, and LAWC22. This data will be used for Subsurface Transport Over Reactive Multi-phases (STORM) simulations of the Integrated Disposal Facility (IDF) for immobilized low-activity waste (ILAW). The STORM code will be used to provide the near-field radionuclide release source term for a performance assessment to be issued in July 2005. Documented in this data package are data related to 1) kinetic rate law parameters for glass dissolution, 2) alkali (Na+)-hydrogen (H+) ion exchange rate, 3) chemical reaction network of secondary phases that form in accelerated weathering tests, and 4) thermodynamic equilibrium constants assigned to these secondary phases. The kinetic rate law and Na+-H+ ion exchange rate were determined from single-pass flow-through experiments. Pressurized unsaturated flow (PUF) and product consistency (PCT) tests where used for accelerated weathering or aging of the glasses in order to determine a chemical reaction network of secondary phases that form. The majority of the thermodynamic data used in this data package were extracted from the thermody-namic database package shipped with the geochemical code EQ3/6, version 8.0. Because of the expected importance of 129I release from secondary waste streams being sent to IDF from various thermal treatment processes, parameter estimates for diffusional release and solubility-controlled release from cementitious waste forms were estimated from the available literature.

Pierce, Eric M.; McGrail, B. Peter; Rodriguez, Elsa A.; Schaef, Herbert T.; Saripalli, Prasad; Serne, R. Jeffrey; Krupka, Kenneth M.; Martin, P. F.; Baum, Steven R.; Geiszler, Keith N.; Reed, Lunde R.; Shaw, Wendy J.

2004-09-01T23:59:59.000Z

353

Bootstrapping to Assess and Improve Atmospheric Prediction Models  

Science Conference Proceedings (OSTI)

Bootstrapping is a simple technique typically used to assess accuracy of estimates of model parameters by using simple plug-in principles and replacing sometimes unwieldy theory by computer simulation. Common uses include variance estimation and confidence ... Keywords: CART, bootstrap, classification, hurricanes, instability, supervised learning, weather data

J. Sunil Rao

2000-04-01T23:59:59.000Z

354

Groundwater Impacts of Radioactive Wastes and Associated Environmental Modeling Assessment  

Science Conference Proceedings (OSTI)

This article provides a review of the major sources of radioactive wastes and their impacts on groundwater contamination. The review discusses the major biogeochemical processes that control the transport and fate of radionuclide contaminants in groundwater, and describe the evolution of mathematical models designed to simulate and assess the transport and transformation of radionuclides in groundwater.

Ma, Rui; Zheng, Chunmiao; Liu, Chongxuan

2012-11-01T23:59:59.000Z

355

Improving Rangeland Monitoring and Assessment: Integrating Remote Sensing, GIS, and Unmanned Aerial Vehicle Systems  

SciTech Connect

Creeping environmental changes are impacting some of the largest remaining intact parcels of sagebrush steppe ecosystems in the western United States, creating major problems for land managers. The Idaho National Laboratory (INL), located in southeastern Idaho, is part of the sagebrush steppe ecosystem, one of the largest ecosystems on the continent. Scientists at the INL and the University of Idaho have integrated existing field and remotely sensed data with geographic information systems technology to analyze how recent fires on the INL have influenced the current distribution of terrestrial vegetation. Three vegetation mapping and classification systems were used to evaluate the changes in vegetation caused by fires between 1994 and 2003. Approximately 24% of the sagebrush steppe community on the INL was altered by fire, mostly over a 5-year period. There were notable differences between methods, especially for juniper woodland and grasslands. The Anderson system (Anderson et al. 1996) was superior for representing the landscape because it includes playa/bare ground/disturbed area and sagebrush steppe on lava as vegetation categories. This study found that assessing existing data sets is useful for quantifying fire impacts and should be helpful in future fire and land use planning. The evaluation identified that data from remote sensing technologies is not currently of sufficient quality to assess the percentage of cover. To fill this need, an approach was designed using both helicopter and fixed wing unmanned aerial vehicles (UAVs) and image processing software to evaluate six cover types on field plots located on the INL. The helicopter UAV provided the best system compared against field sampling, but is more dangerous and has spatial coverage limitations. It was reasonably accurate for dead shrubs and was very good in assessing percentage of bare ground, litter and grasses; accuracy for litter and shrubs is questionable. The fixed wing system proved to be feasible and can collect imagery for very large areas in a short period of time. It was accurate for bare ground and grasses. Both UAV systems have limitations, but these will be reduced as the technology advances. In both cases, the UAV systems collected data at a much faster rate than possible on the ground. The study concluded that improvements in automating the image processing efforts would greatly improve use of the technology. In the near future, UAV technology may revolutionize rangeland monitoring in the same way Global Positioning Systems have affected navigation while conducting field activities.

Robert Paul Breckenridge

2007-05-01T23:59:59.000Z

356

Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System  

SciTech Connect

Indoor air quality effects on human health are of increasing concern to public health agencies and building owners. The prevention and treatment of 'sick building' syndrome and the spread of air-borne diseases in hospitals, for example, are well known priorities. However, increasing attention is being directed to the vulnerability of our public buildings/places, public security and national defense facilities to terrorist attack or the accidental release of air-borne biological pathogens, harmful chemicals, or radioactive contaminants. The Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System (IA-NBC-HMAS) was developed to serve as a health impact analysis tool for use in addressing these concerns. The overall goal was to develop a user-friendly fully functional prototype Health Modeling and Assessment system, which will operate under the PNNL FRAMES system for ease of use and to maximize its integration with other modeling and assessment capabilities accessible within the FRAMES system (e.g., ambient air fate and transport models, water borne fate and transport models, Physiologically Based Pharmacokinetic models, etc.). The prototype IA-NBC-HMAS is designed to serve as a functional Health Modeling and Assessment system that can be easily tailored to meet specific building analysis needs of a customer. The prototype system was developed and tested using an actual building (i.e., the Churchville Building located at the Aberdeen Proving Ground) and release scenario (i.e., the release and measurement of tracer materials within the building) to ensure realism and practicality in the design and development of the prototype system. A user-friendly "demo" accompanies this report to allow the reader the opportunity for a "hands on" review of the prototype system's capability.

Stenner, Robert D.; Hadley, Donald L.; Armstrong, Peter R.; Buck, John W.; Hoopes, Bonnie L.; Janus, Michael C.

2001-03-01T23:59:59.000Z

357

Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System  

SciTech Connect

Indoor air quality effects on human health are of increasing concern to public health agencies and building owners. The prevention and treatment of 'sick building' syndrome and the spread of air-borne diseases in hospitals, for example, are well known priorities. However, increasing attention is being directed to the vulnerability of our public buildings/places, public security and national defense facilities to terrorist attack or the accidental release of air-borne biological pathogens, harmful chemicals, or radioactive contaminants. The Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System (IA-NBC-HMAS) was developed to serve as a health impact analysis tool for use in addressing these concerns. The overall goal was to develop a user-friendly fully functional prototype Health Modeling and Assessment system, which will operate under the PNNL FRAMES system for ease of use and to maximize its integration with other modeling and assessment capabilities accessible within the FRAMES system (e.g., ambient air fate and transport models, water borne fate and transport models, Physiologically Based Pharmacokinetic models, etc.). The prototype IA-NBC-HMAS is designed to serve as a functional Health Modeling and Assessment system that can be easily tailored to meet specific building analysis needs of a customer. The prototype system was developed and tested using an actual building (i.e., the Churchville Building located at the Aberdeen Proving Ground) and release scenario (i.e., the release and measurement of tracer materials within the building) to ensure realism and practicality in the design and development of the prototype system. A user-friendly "demo" accompanies this report to allow the reader the opportunity for a "hands on" review of the prototype system's capability.

Stenner, Robert D.; Hadley, Donald L.; Armstrong, Peter R.; Buck, John W.; Hoopes, Bonnie L.; Janus, Michael C.

2001-03-01T23:59:59.000Z

358

The Effect of Government Actions on Environmental Technology Innovation: Applications to the Integrated Assessment of Carbon Sequestration Technologies  

SciTech Connect

This project seeks to improve the ability of integrated assessment models (IA) to incorporate changes in technology, especially environmental technologies, cost and performance over time. In this report, we present results of research that examines past experience in controlling other major power plant emissions that might serve as a reasonable guide to future rates of technological progress in carbon capture and sequestration (CCS) systems. In particular, we focus on U.S. and worldwide experience with sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) control technologies over the past 30 years, and derive empirical learning rates for these technologies. The patterns of technology innovation are captured by our analysis of patent activities and trends of cost reduction over time. Overall, we found learning rates of 11% for the capital costs of flue gas desulfurization (FGD) system for SO{sub 2} control, and 13% for selective catalytic reduction (SCR) systems for NO{sub x} control. We explore the key factors responsible for the observed trends, especially the development of regulatory policies for SO{sub 2} and NO{sub x} control, and their implications for environmental control technology innovation.

Rubin, E. S.; Hounshell, D. A.; Yeh, S.; Taylor, M.; Schrattenholzer, L.; Riahi, K.; Barreto, L.; Rao, S.

2004-01-15T23:59:59.000Z

359

An Integrated Model for Microstructure Development in the Heat ...  

Science Conference Proceedings (OSTI)

This work is focused on a critical aspect of the pipeline, i.e. the heat affected .... Validating ICME Models Across the Length Scales using 4D Synchrotron Imaging

360

Nondestructive Evaluation Modeling as an Integrated Component of ...  

Science Conference Proceedings (OSTI)

... porosity, microstructure size distributions, and foam infiltration fill-factor. ... FiPy: Modeling Phase Transformations in Python ... Phase-Field Simulation of Columnar and Equiaxed Growth of Dendrites during Multiphase Solidification of Alloys.

Note: This page contains sample records for the topic "integrated assessment modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Integrated Computational Modeling of Materials for Nuclear Energy  

Science Conference Proceedings (OSTI)

Nuclear fuel and primary cooling system structural components are exposed to elevated ... models for safety and performance evaluation of nuclear reactors but also for the ... Continuum Theory of Defects and Materials Response to Irradiation

362

HyPEP FY-07 Report: System Integration Model Development  

DOE Green Energy (OSTI)

The integrated system of a Very High Temperature Gas-Cooled Reactor (VHTR) and a High Temperature Steam Electrolysis (HTSE) process is one of systems being investigated by the U.S. Department of Energy and Idaho National Laboratory. This system will produce hydrogen by utilizing a highly efficient VHTR with an outlet temperature of 900 °C and supplying necessary energy and electricity to the HTSE process for electrolysis of high temperature steam. This report includes a description of five configurations including an indirect parallel cycle, an indirect serial cycle, a direct serial cycle, a steam combined cycle, and a reheat cycle. HYSYS simulations were performed for each of these configurations coupled to a HTSE process. Final results are presented along with parametric studies and process optimization.

C. H. Oh; E. S. Kim; S. R. Sherman; R. Vilim

2007-04-01T23:59:59.000Z

363

An Integrated Approach to Modeling and Mitigating SOFC Failure  

DOE Green Energy (OSTI)

The specific objectives of this project were: (1) To develop and demonstrate the feasibility of an integrated predictive computer-based tool for fuel cell design and reliability/durability analysis, (2) To generate new scientific and engineering knowledge to better enable SECA Industry Teams to develop reliable, low-cost solid-oxide fuel cell power generation systems, (3) To create technology breakthroughs to address technical risks and barriers that currently limit achievement of the SECA performance and cost goals for solidoxide fuel cell systems, and (4) To transfer new science and technology developed in the project to the SECA Industry Teams. Through this three-year project, the Georgia Tech's team has demonstrated the feasibility of the solution proposed and the merits of the scientific path of inquiry, and has developed the technology to a sufficient level such that it can be utilized by the SECA Industry Teams. This report summarizes the project's results and achievements.

Jianmin Qu; Andrei Fedorov; Comas Haynes

2006-05-15T23:59:59.000Z

364

Integrating window pyranometer for beam daylighting measurements in scale-model buildings  

SciTech Connect

An experimental device has been developed to measure the total amount of solar radiation transmitted through glazed apertures in scale-model buildings. The device, an integrating window pyranometer (IWP), has two distinguishing characteristics: (1) it provides a measure of transmitted solar radiation integrated over a representative portion of the model glazing, accounting for nonuniform radiation distributions; and (2) it is spectrally independent. In applications to scale-model daylighting experiments, the IWP, together with photometric sensors mounted in the model, allows the direct measurement of the fraction of transmitted solar gains reaching the work plane as useful illumination, a convenient measure of the daylighting system performance. The IWP has been developed as part of an outdoor experimental facility to perform beam daylighting measurements in scale-model buildings. In this paper, the integrating window pyranometer is described; the results of calibration tests are presented and evaluated; the advantages and limitations of the device are discussed.

Bauman, F.; Place, W.; Thornton, J.; Howard, T.C.

1985-12-01T23:59:59.000Z

365

Integrated models of distribution transformers and their loads for three-phase power flow analyses  

Science Conference Proceedings (OSTI)

This paper introduces integrated models of distribution transformers and their loads for three-phase power flow analyses. All transformer connections can be easily included, such as single-phase, open wye, open delta and three-phase. For an existing three-phase power flow program without rigorous transformer models, only a slight modification of this program is needed to analyze distribution systems in more detail by using these proposed models. For those with rigorous transformer models, the rigorous transformer models usually make the program converge with difficulty, or even diverge. The convergence characteristics of these program can be dramatically improved if proposed integrated models are used instead of the rigorous transformer models. Moreover, these models can be easily applied by some functions of advanced distribution management systems or automatic mapping and facility management systems, such as transformer load management and feeder load management, to evaluate the individual phase loads along a feeder.

Chen, T.H.; Chang, Y.L. [National Taiwan Inst. of Tech., Taipei (Taiwan, Province of China). Dept. of Electrical Engineering

1996-01-01T23:59:59.000Z

366

An integrated model of traffic, geography and economy in the Internet  

E-Print Network (OSTI)

Modeling Internet growth is important both for understanding the current network and to predict and improve its future. To date, Internet models have typically attempted to explain a subset of the following characteristics: network structure, traffic flow, geography, and economy. In this paper we present a discrete, agent-based model, that integrates all of them. We show that the model generates networks with topologies, dynamics, and (more speculatively) spatial distributions that are similar to the Internet.

Holme, Petter; Forrest, Stephanie

2008-01-01T23:59:59.000Z

367

Basic Integrative Models for Offshore Wind Turbine Systems  

E-Print Network (OSTI)

This research study developed basic dynamic models that can be used to accurately predict the response behavior of a near-shore wind turbine structure with monopile, suction caisson, or gravity-based foundation systems. The marine soil conditions were modeled using apparent fixity level, Randolph elastic continuum, and modified cone models. The offshore wind turbine structures were developed using a finite element formulation. A two-bladed 3.0 megawatt (MW) and a three-bladed 1.5 MW capacity wind turbine were studied using a variety of design load, and soil conditions scenarios. Aerodynamic thrust loads were estimated using the FAST Software developed by the U.S Department of Energy’s National Renewable Energy Laboratory (NREL). Hydrodynamic loads were estimated using Morison’s equation and the more recent Faltinsen Newman Vinje (FNV) theory. This research study addressed two of the important design constraints, specifically, the angle of the support structure at seafloor and the horizontal displacement at the hub elevation during dynamic loading. The simulation results show that the modified cone model is stiffer than the apparent fixity level and Randolph elastic continuum models. The effect of the blade pitch failure on the offshore wind turbine structure decreases with increasing water depth, but increases with increasing hub height of the offshore wind turbine structure.

Aljeeran, Fares

2011-05-01T23:59:59.000Z

368

Fuel cycle assessment: A compendium of models, methodologies, and approaches  

SciTech Connect

The purpose of this document is to profile analytical tools and methods which could be used in a total fuel cycle analysis. The information in this document provides a significant step towards: (1) Characterizing the stages of the fuel cycle. (2) Identifying relevant impacts which can feasibly be evaluated quantitatively or qualitatively. (3) Identifying and reviewing other activities that have been conducted to perform a fuel cycle assessment or some component thereof. (4) Reviewing the successes/deficiencies and opportunities/constraints of previous activities. (5) Identifying methods and modeling techniques/tools that are available, tested and could be used for a fuel cycle assessment.

Not Available

1994-07-01T23:59:59.000Z

369

Geochemical Data Package for the 2005 Hanford Integrated Disposal Facility Performance Assessment  

Science Conference Proceedings (OSTI)

CH2M HILL Hanford Group, Inc. (CH2M HILL) is designing and assessing the performance of an integrated disposal facility (IDF) to receive low-level waste (LLW), mixed low-level waste (MLLW), immobilized low-activity waste (ILAW), and failed or decommissioned melters. The CH2M HILL project to assess the performance of this disposal facility is the Hanford IDF Performance Assessment (PA) activity. The goal of the Hanford IDF PA activity is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities, and the consequent transport of dissolved contaminants in the vadose zone to groundwater where contaminants may be re-introduced to receptors via drinking water wells or mixing in the Columbia River. Pacific Northwest National Laboratory (PNNL) assists CH2M HILL in their performance assessment activities. One of the PNNL tasks is to provide estimates of the geochemical properties of the materials comprising the IDF, the disturbed region around the facility, and the physically undisturbed sediments below the facility (including the vadose zone sediments and the aquifer sediments in the upper unconfined aquifer). The geochemical properties are expressed as parameters that quantify the adsorption of contaminants and the solubility constraints that might apply for those contaminants that may exceed solubility constraints. The common parameters used to quantify adsorption and solubility are the distribution coefficient (Kd) and the thermodynamic solubility product (Ksp), respectively. In this data package, we approximate the solubility of contaminants using a more simplified construct, called the solution concentration limit, a constant value. The Kd values and solution concentration limits for each contaminant are direct inputs to subsurface flow and transport codes used to predict the performance of the IDF system. In addition to the best-estimate Kd values, a reasonable conservative value and a range are provided. The data package does not list estimates for the range in solubility limits or their uncertainty. However, the data package does provide different values for both the Kd values and solution concentration limits for different spatial zones in the IDF system and does supply time-varying Kd values for the cement solidified waste. The Kd values and solution concentration limits presented for each contaminant were previously presented in a report prepared by Kaplan and Serne (2000) for the 2001 ILAW PA, and have been updated to include applicable data from investigations completed since the issuance of that report and improvements in our understanding of the geochemistry specific to Hanford. A discussion is also included of the evolution of the Kd values recommended from the original 1999 ILAW PA through the 2001 ILAW and 2003 Supplement PAs to the current values to be used for the 2005 IDF PA for the key contaminants of concern: Cr(VI), nitrate, 129I, 79Se, 99Tc, and U(VI). This discussion provides the rationale for why certain Kd have changed with time.

Krupka, Kenneth M.; Serne, R JEFFREY.; Kaplan, D I.

2004-09-30T23:59:59.000Z

370

Integrating Chemical Hazard Assessment into the Design of Inherently Safer Processes  

E-Print Network (OSTI)

Reactive hazard associated with chemicals is a major safety issue in process industries. This kind of hazard has caused the occurrence of many accidents, leading to fatalities, injuries, property damage and environment pollution. Reactive hazards can be eliminated or minimized by applying Inherently Safer Design (ISD) principles such as "substitute" or "moderate" strategies. However, ISD would not be a feasible option for industry without an efficient methodology for chemical hazard assessment, which provides the technical basis for applying ISD during process design. In this research, a systematic chemical hazard assessment methodology was developed for assisting the implementation of ISD in the design of inherently safer process. This methodology incorporates the selection of safer chemicals and determination of safer process conditions, which correspond to "substitute" and "moderate" strategies in ISD. The application of this methodology in conjunction with ISD technique can effectively save the time and investment spent on the process design. As part of selecting safer chemicals, prediction models were developed for predicting hazardous properties of reactive chemicals. Also, a hazard index was adopted to rate chemicals according to reactive hazards. By combining the prediction models with the hazard index, this research can provide important information on how to select safer chemicals for the processes, which makes the process chemistry inherently safer. As part of determining safer process conditions, the incompatibility of Methyl Ethyl Ketone Peroxide (MEKPO) with iron oxide was investigated. It was found that iron oxide at low levels has no impact on the reactive hazards of MEKPO as well as the operational safety. However, when iron oxide is beyond 0.3 wt%, it starts to change the kinetics of MEKPO runaway reaction and even the reaction mechanism. As a result, with the presence of a certain level of iron oxide (> 0.3 wt%), iron oxide can intensify the reactive hazards of MEKPO and impose higher risk to process operations. The investigation results can help to determine appropriate materials for fabricating process equipment and safer process conditions.

Lu, Yuan

2011-12-01T23:59:59.000Z

371

An Approach to Integrate a Space-Time GIS Data Model with High Performance Computers  

Science Conference Proceedings (OSTI)

In this paper, we describe an approach to integrate a Space-Time GIS data model on a high performance computing platform. The Space-Time GIS data model has been developed on a desktop computing environment. We use the Space-Time GIS data model to generate GIS module, which organizes a series of remote sensing data. We are in the process of porting the GIS module into an HPC environment, in which the GIS modules handle large dataset directly via parallel file system. Although it is an ongoing project, authors hope this effort can inspire further discussions on the integration of GIS on high performance computing platforms.

Wang, Dali [ORNL; Zhao, Ziliang [University of Tennessee, Knoxville (UTK); Shaw, Shih-Lung [ORNL

2011-01-01T23:59:59.000Z

372

Accepted Manuscript Integrated models to study the impact of ELMs and disruptions on lithium in  

E-Print Network (OSTI)

Accepted Manuscript Integrated models to study the impact of ELMs and disruptions on lithium the impact of ELMs and disruptions on lithium in the NSTX divertor, Journal of Nuclear Materials (2010), doi models to study the impact of ELMs and disruptions on lithium in the NSTX divertor Valeryi Sizyuk

Harilal, S. S.

373

A Generalized Depth-Integrated Model of the Oceanic Mixed Layer  

Science Conference Proceedings (OSTI)

A generalized depth-integrated model of the oceanic mixed layer is developed by considering the heat and energy budgets of the upper ocean. Unlike the Kraus–Turner-type bulk models, the assumptions of an a priori well mixed layer and a positive ...

P. Ravindran; Daniel G. Wright; Trevor Platt; Shubha Sathyendranath

1999-04-01T23:59:59.000Z

374

Integrating object-oriented data modelling with a rule-based programming paradigm  

Science Conference Proceedings (OSTI)

LOGRES is a new project for the development of extended database systems which is based on the integration of the object-oriented data modelling paradigm and of the rule-based approach for the specification of queries and updates. The data model supports ...

F. Cacace; S. Ceri; S. Crespi-Reghizzi; L. Tanca; R. Zicari

1990-05-01T23:59:59.000Z

375

An integrated methodology for quantitative assessment of proliferation resistance of advanced nuclear systems using probabilistic methods  

E-Print Network (OSTI)

Proliferation is the results of a competition between the proliferating country (proliferation) and the party to resist the proliferation efforts (safeguarder). An integrated evaluation methodology to evaluate proliferation ...

Ham, Hyeongpil

2005-01-01T23:59:59.000Z

376

Quasi-explicit time-integration schemes for dynamic fracture with set-valued cohesive zone models  

Science Conference Proceedings (OSTI)

We investigate quasi-explicit time-integration schemes for solving dynamic fracture problems with set-valued cohesive zone models. These schemes combine a central difference time-integration scheme and a partially implicit and lumped treatment of the ... Keywords: Cohesive zone model, Finite elements, Time-integration scheme

D. Doyen; A. Ern; S. Piperno

2013-08-01T23:59:59.000Z

377

Model Spectra of Rotation Powered Pulsars in the INTEGRAL Range  

E-Print Network (OSTI)

The energy range of IBIS is a promising ground for testing mutual relations of distinct components expected in the spectra of high-energy radiation from rotation powered pulsars. According to some polar-cap models two such components - due to curvature and synchrotron emission - may contribute comparable amounts of power between 15 keV and 10 MeV (Rudak & Dyks 1999). Zhang & Harding (2000) argued recently for the inclusion of a third possible component, due to inverse Compton scattering (ICS) of soft thermal photons on secondary $\\epm$-pairs. Here we present the results of Monte Carlo calculations of all three spectral components within a polar-cap model which allows for interactions of relativistic particles with the soft photons coming from the pulsar surface. For teragauss pulsars with the surface temperature of a few times 10^5 K the ICS component dominates the spectrum in the energy range below 10 MeV, and thus its presence increases the ratio of X-ray to gamma-ray luminosity (in comparison to the models ignoring the ICS on secondary $\\epm$-pairs) to a level observed in the Vela pulsar.

J. Dyks; B. Rudak; T. Bulik

2000-10-16T23:59:59.000Z

378

Modeling threat assessments of water supply systems using markov latent effects methodology.  

SciTech Connect

Recent amendments to the Safe Drinking Water Act emphasize efforts toward safeguarding our nation's water supplies against attack and contamination. Specifically, the Public Health Security and Bioterrorism Preparedness and Response Act of 2002 established requirements for each community water system serving more than 3300 people to conduct an assessment of the vulnerability of its system to a terrorist attack or other intentional acts. Integral to evaluating system vulnerability is the threat assessment, which is the process by which the credibility of a threat is quantified. Unfortunately, full probabilistic assessment is generally not feasible, as there is insufficient experience and/or data to quantify the associated probabilities. For this reason, an alternative approach is proposed based on Markov Latent Effects (MLE) modeling, which provides a framework for quantifying imprecise subjective metrics through possibilistic or fuzzy mathematics. Here, an MLE model for water systems is developed and demonstrated to determine threat assessments for different scenarios identified by the assailant, asset, and means. Scenario assailants include terrorists, insiders, and vandals. Assets include a water treatment plant, water storage tank, node, pipeline, well, and a pump station. Means used in attacks include contamination (onsite chemicals, biological and chemical), explosives and vandalism. Results demonstrated highest threats are vandalism events and least likely events are those performed by a terrorist.

Silva, Consuelo Juanita

2006-12-01T23:59:59.000Z

379

Developing a Modeling Framework for Assessing Population Impacts of  

NLE Websites -- All DOE Office Websites (Extended Search)

Developing a Modeling Framework for Assessing Population Impacts of Developing a Modeling Framework for Assessing Population Impacts of Residential Air Quality Policies Speaker(s): Jennifer Logue Date: November 13, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Brett Singer People spend the majority of their time in residences and the health burden of indoor air is significant. However, the definitions of "acceptable" and "good" indoor air quality (IAQ), and the most effective, energy efficient methods for achieving various levels of IAQ are still matters of research and debate. Current ventilation standards focus on minimum requirements for overall and mechanically provided ventilation rates, and vented combustion equipment, and require only the installation of kitchen and bath exhaust fans for source control. These standards generally are

380

Program on Technology Innovation: Modeling of SMES and Its Integration to the Power Grid  

Science Conference Proceedings (OSTI)

EPRI has long followed the development of superconducting magnet energy storage (SMES) and its application in electric power systems. Previous studies have primarily investigated both the benefits of using SMES and the power-system-level control issues that arise when SMES is integrated with the power system. More specific details of modeling for system integration, particularly with larger SMES units, have not been addressed in detail in the past. Because the Center for Advanced Power Systems (CAPS) at ...

2005-10-31T23:59:59.000Z

Note: This page contains sample records for the topic "integrated assessment modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Modeling issues associated with production reactor safety assessment  

SciTech Connect

This paper describes several Probabilistic Safety Assessment (PSA) modeling issues that are related to the unique design and operation of the production reactors. The identification of initiating events and determination of a set of success criteria for the production reactors is of concern because of their unique design. The modeling of accident recovery must take into account the unique operation of these reactors. Finally, a more thorough search and evaluation of common-cause events is required to account for combinations of unique design features and operation that might otherwise not be included in the PSA. It is expected that most of these modeling issues also would be encountered when modeling some of the other more unique reactor and nonreactor facilities that are part of the DOE nuclear materials production complex. 9 refs., 2 figs.

Stack, D.W. (Los Alamos National Lab., NM (USA)); Thomas, W.R. (Science and Engineering Associates, Inc., Albuquerque, NM (USA))

1990-01-01T23:59:59.000Z

382

PORFLOW Modeling Supporting The H-Tank Farm Performance Assessment  

Science Conference Proceedings (OSTI)

Numerical simulations of groundwater flow and contaminant transport in the vadose and saturated zones have been conducted using the PORFLOW code in support of an overall Performance Assessment (PA) of the H-Tank Farm. This report provides technical detail on selected aspects of PORFLOW model development and describes the structure of the associated electronic files. The PORFLOW models for the H-Tank Farm PA, Rev. 1 were updated with grout, solubility, and inventory changes. The aquifer model was refined. In addition, a set of flow sensitivity runs were performed to allow flow to be varied in the related probabilistic GoldSim models. The final PORFLOW concentration values are used as input into a GoldSim dose calculator.

Jordan, J. M.; Flach, G. P.; Westbrook, M. L.

2012-08-31T23:59:59.000Z

383

Integrated assessment of a new Waste-to-Energy facility in Central Greece in the context of regional perspectives  

Science Conference Proceedings (OSTI)

The main aim of this study is the integrated assessment of a proposed Waste-to-Energy facility that could contribute in the Municipal Solid Waste Management system of the Region of Central Greece. In the context of this paper alternative transfer schemes for supplying the candidate facility were assessed considering local conditions and economical criteria. A mixed-integer linear programming model was applied for the determination of optimum locations of Transfer Stations for an efficient supplying chain between the waste producers and the Waste-to-Energy facility. Moreover different Regional Waste Management Scenarios were assessed against multiple criteria, via the Multi Criteria Decision Making method ELECTRE III. The chosen criteria were total cost, Biodegradable Municipal Waste diversion from landfill, energy recovery and Greenhouse Gas emissions and the analysis demonstrated that a Waste Management Scenario based on a Waste-to-Energy plant with an adjacent landfill for disposal of the residues would be the best performing option for the Region, depending however on the priorities of the decision makers. In addition the study demonstrated that efficient planning is necessary and the case of three sanitary landfills operating in parallel with the WtE plant in the study area should be avoided. Moreover alternative cases of energy recovery of the candidate Waste-to-Energy facility were evaluated against the requirements of the new European Commission Directive on waste in order for the facility to be recognized as recovery operation. The latter issue is of high significance and the decision makers in European Union countries should take it into account from now on, in order to plan and implement facilities that recover energy efficiently. Finally a sensitivity check was performed in order to evaluate the effects of increased recycling rate, on the calorific value of treated Municipal Solid Waste and the gate fee of the candidate plant and found that increased recycling efforts would not diminish the potential for incineration with energy recovery from waste and neither would have adverse impacts on the gate fee of the Waste-to-Energy plant. In general, the study highlighted the need for efficient planning in solid waste management, by taking into account multiple criteria and parameters and utilizing relevant tools and methodologies into this context.

Perkoulidis, G. [Laboratory of Heat Transfer and Environmental Engineering, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Box 483, GR-54124 Thessaloniki (Greece); Papageorgiou, A., E-mail: giou6@yahoo.g [Laboratory of Heat Transfer and Environmental Engineering, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Box 483, GR-54124 Thessaloniki (Greece); Karagiannidis, A. [Laboratory of Heat Transfer and Environmental Engineering, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Box 483, GR-54124 Thessaloniki (Greece); Kalogirou, S. [Waste to Energy Research and Technology Council (Greece)

2010-07-15T23:59:59.000Z

384

Development of Simplified Probabilistic Risk Assessment Model for Seismic Initiating Event  

Science Conference Proceedings (OSTI)

ABSTRACT This paper discusses a simplified method to evaluate seismic risk using a methodology built on dividing the seismic intensity spectrum into multiple discrete bins. The seismic probabilistic risk assessment model uses Nuclear Regulatory Commission’s (NRC’s) full power Standardized Plant Analysis Risk (SPAR) model as the starting point for development. The seismic PRA models are integrated with their respective internal events at-power SPAR model. This is accomplished by combining the modified system fault trees from the full power SPAR model with seismic event tree logic. The peak ground acceleration is divided into five bins. The g-value for each bin is estimated using the geometric mean of lower and upper values of that particular bin and the associated frequency for each bin is estimated by taking the difference between upper and lower values of that bin. The component’s fragilities are calculated for each bin using the plant data, if available, or generic values of median peak ground acceleration and uncertainty values for the components. For human reliability analysis (HRA), the SPAR HRA (SPAR-H) method is used which requires the analysts to complete relatively straight forward worksheets that include the performance shaping factors (PSFs). The results are then used to estimate human error probabilities (HEPs) of interest. This work is expected to improve the NRC’s ability to include seismic hazards in risk assessments for operational events in support of the reactor oversight program (e.g., significance determination process).

S. Khericha; R. Buell; S. Sancaktar; M. Gonzalez; F. Ferrante

2012-06-01T23:59:59.000Z

385

GIS and plume dispersion modeling for population exposure assessment  

E-Print Network (OSTI)

The use of Pollutant Plume Dispersion Models is widespread in the evaluation of point sources of air pollution. These models provide valuable insight into the concentration and dispersion of hazardous materials throughout the atmosphere. Traditional methods of dispersion modeling for the permitting of new sources and the monitoring of existing sources have allowed much room for error in terms of the effect of the pollutants on nearby populations (Hardikar, 1995). The capabilities of GIS technology offer an improved method of conducting air quality modeling for permitting, remediation studies, and environmental monitoring. GIS has the ability to develop and manage a comprehensive database of model output, map layers, and demographic data that can prove extremely valuable in the modeling process. This data can serve to extend the capabilities of air pollution dispersion modeling from mere estimation of concentrations to comprehensive exposure assessment of neighboring populations (Lowry, et al. 1995, Maslia, et al. 1994). A study of the Monticello power plant in northeast Texas was conducted using the SCREEN3 mathematical plume dispersion model, US Census Bureau demographic data, and a GIS to examine the effects of the plant output on the people living in the seven county area surrounding the plant.

Archer, Jeffrey Keith

1998-01-01T23:59:59.000Z

386

Fukushima Radiological Assessment Tool: Benchmarking Radiological Assessment and Dose Models using Fukushima Dataset  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) is developing the Fukushima Radiological Assessment Tool (FRAT), a comprehensive database and software application for accessing, analyzing, and interpreting data related to radiological releases from the Fukushima Daiichi Nuclear Power Plant (NPP). This report documents the development of the FRAT to support the benchmarking of emergency response and dose modeling codes used by nuclear power plants, using radiological data from the Fukushima ...

2013-07-31T23:59:59.000Z

387

Literature Review and Assessment of Plant and Animal Transfer Factors Used in Performance Assessment Modeling  

Science Conference Proceedings (OSTI)

A literature review and assessment was conducted by Pacific Northwest National Laboratory (PNNL) to update information on plant and animal radionuclide transfer factors used in performance-assessment modeling. A group of 15 radionuclides was included in this review and assessment. The review is composed of four main sections, not including the Introduction. Section 2.0 provides a review of the critically important issue of physicochemical speciation and geochemistry of the radionuclides in natural soil-water systems as it relates to the bioavailability of the radionuclides. Section 3.0 provides an updated review of the parameters of importance in the uptake of radionuclides by plants, including root uptake via the soil-groundwater system and foliar uptake due to overhead irrigation. Section 3.0 also provides a compilation of concentration ratios (CRs) for soil-to-plant uptake for the 15 selected radionuclides. Section 4.0 provides an updated review on radionuclide uptake data for animal products related to absorption, homeostatic control, approach to equilibration, chemical and physical form, diet, and age. Compiled transfer coefficients are provided for cow’s milk, sheep’s milk, goat’s milk, beef, goat meat, pork, poultry, and eggs. Section 5.0 discusses the use of transfer coefficients in soil, plant, and animal modeling using regulatory models for evaluating radioactive waste disposal or decommissioned sites. Each section makes specific suggestions for future research in its area.

Robertson, David E.; Cataldo, Dominic A.; Napier, Bruce A.; Krupka, Kenneth M.; Sasser, Lyle B.

2003-07-20T23:59:59.000Z

388

Vandenberg Air Force Base integrated resource assessment. Volume 2, Baseline detail  

SciTech Connect

The US Air Force Space Command has tasked the Pacific Northwest Laboratory, as the lead laboratory supporting the US Department of Energy Federal Energy Management Program, to identify, evaluate, and assist in acquiring all cost-effective energy projects at Vandenberg Air Force Base (VAFB). This is a model program PNL is designing for federal customers served by the Pacific Gas and Electric Company (PG and E). The primary goal of the VAFB project is to identify all electric energy efficiency opportunities, and to negotiate with PG and E to acquire those resources through a customized demand-side management program for its federal clients. That customized program should have three major characteristics: (1) 100% up-front financing; (2) substantial utility cost-sharing; and (3) utility implementation through energy service companies under contract to the utility. A similar arrangement will be pursued with Southern California Gas for non-electric resource opportunities if that is deemed desirable by the site and if the gas utility seems open to such an approach. This report documents the assessment of baseline energy use at VAFB located near Lompoc, California. It is a companion report to Volume 1, Executive Summary, and Volume 3, Resource Assessment. This analysis examines the characteristics of electric, natural gas, fuel oil, and propane use for fiscal year 1991. It records energy-use intensities for the facilities at VAFB by building type and energy end use. It also breaks down building energy consumption by fuel type, energy end use, and building type. A more complete energy consumption reconciliation is presented that includes the accounting of all energy use among buildings, utilities, and applicable losses.

Halverson, M.A.; Richman, E.E.; Dagle, J.E.; Hickman, B.J.; Daellenbach, K.K.; Sullivan, G.P.

1993-06-01T23:59:59.000Z

389

New classical r-matrices from integrable non-linear sigma models  

E-Print Network (OSTI)

Non linear sigma models on Riemannian symmetric spaces constitute the most general class of classical non-linear sigma models which are known to be integrable. Using the current algebra structure of these models their canonical structure is analysed and it is shown that their non ultralocal fundamental Poisson bracket relation is governed by a field dependent non antisymmetric r-matrix obeying a dynamical Yang Baxter equation. Contribution presented at the XIX ICGTMP Salamanca June 92

Laartz, J; Forger, M; Schäper, U

1992-01-01T23:59:59.000Z

390

Integrated Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration  

Science Conference Proceedings (OSTI)

The US DOE/NETL CCS MVA program funded a project with Fusion Petroleum Technologies Inc. (now SIGMA) to model the proof of concept of using sparse seismic data in the monitoring of CO{sub 2} injected into saline aquifers. The goal of the project was to develop and demonstrate an active source reflection seismic imaging strategy based on deployment of spatially sparse surface seismic arrays. The primary objective was to test the feasibility of sparse seismic array systems to monitor the CO{sub 2} plume migration injected into deep saline aquifers. The USDOE/RMOTC Teapot Dome (Wyoming) 3D seismic and reservoir data targeting the Crow Mountain formation was used as a realistic proxy to evaluate the feasibility of the proposed methodology. Though the RMOTC field has been well studied, the Crow Mountain as a saline aquifer has not been studied previously as a CO{sub 2} sequestration (storage) candidate reservoir. A full reprocessing of the seismic data from field tapes that included prestack time migration (PSTM) followed by prestack depth migration (PSDM) was performed. A baseline reservoir model was generated from the new imaging results that characterized the faults and horizon surfaces of the Crow Mountain reservoir. The 3D interpretation was integrated with the petrophysical data from available wells and incorporated into a geocellular model. The reservoir structure used in the geocellular model was developed using advanced inversion technologies including Fusion's ThinMAN{trademark} broadband spectral inversion. Seal failure risk was assessed using Fusion's proprietary GEOPRESS{trademark} pore pressure and fracture pressure prediction technology. CO{sub 2} injection was simulated into the Crow Mountain with a commercial reservoir simulator. Approximately 1.2MM tons of CO{sub 2} was simulated to be injected into the Crow Mountain reservoir over 30 years and subsequently let 'soak' in the reservoir for 970 years. The relatively small plume developed from this injection was observed migrating due to gravity to the apexes of the double anticline in the Crow Mountain reservoir of the Teapot dome. Four models were generated from the reservoir simulation task of the project which included three saturation models representing snapshots at different times during and after simulated CO{sub 2} injection and a fully saturated CO{sub 2} fluid substitution model. The saturation models were used along with a Gassmann fluid substitution model for CO{sub 2} to perform fluid volumetric substitution in the Crow Mountain formation. The fluid substitution resulted in a velocity and density model for the 3D volume at each saturation condition that was used to generate a synthetic seismic survey. FPTI's (Fusion Petroleum Technologies Inc.) proprietary SeisModelPRO{trademark} full acoustic wave equation software was used to simulate acquisition of a 3D seismic survey on the four models over a subset of the field area. The simulated acquisition area included the injection wells and the majority of the simulated plume area.

John Rogers

2011-12-31T23:59:59.000Z

391

Technical Requirements and Vision for Development of an Integrated Framework for Substation Equipment Performance and Risk Assessment  

Science Conference Proceedings (OSTI)

The principal motivation for building an integrated assessment framework is to provide support for decisions that influence substation equipment performance. However, because equipment performance can in turn affect substation and system performance, the framework scope should reach beyond the traditional equipment boundaries. The decisions that revolve around maintenance and replacement most directly affect installed substation equipment performance and are therefore the primary focus of this work. Comp...

2008-12-18T23:59:59.000Z

392

Integrated Deployment Model: A Comprehensive Approach to Transforming the Energy Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Deployment Model: Integrated Deployment Model: A Comprehensive Approach to Transforming the Energy Economy Mary Werner Technical Report NREL/TP-7A20-49230 November 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Integrated Deployment Model: A Comprehensive Approach to Transforming the Energy Economy Mary Werner Prepared under Task No. IDPS.9010 Technical Report NREL/TP-7A20-49230 November 2010 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

393

The Distributive Impact Assessment Model (DIAM): Technology share component  

DOE Green Energy (OSTI)

The models described in this report are used to allocate total energy consumption in an energy end-use service area by fuel type (including electricity) within the Distributive Impact Assessment Model (DIAM) framework. The primary objective of the DIAM is to provide energy consumption and expenditure forecasts for different population categories that are consistent with the US Department of Energy (DOE) Energy Information Administration`s (EIA`s) National Energy Modeling System (NEMS) forecast, which is produced annually in the Annual Energy Outlook and periodically in support of DOE policy formulation and analysis. The models are multinominal logit models that have been estimated using EIA`s 1990 Residential Energy Consumption Survey. Three models were estimated: space heating share, water heating share, and cooking share. These models are used to allocate total end-use service consumption over different technologies defined by fuel type characteristics. For each of the end-use service categories, consumption shares are estimated for a subset of six fuel types: natural gas, electricity, liquid petroleum gas, fuel oil/kerosene, wood, and other fuel.

Poyer, D.A.; Earl, E.; Bonner, B.

1995-03-01T23:59:59.000Z

394

Solar Resource Assessment: Databases, Measurements, Models, and Information Sources (Fact Sheet)  

DOE Green Energy (OSTI)

Fact sheet for Solar Resource Assessment Workshop, Denver CO, Oct 29, 2008: ?Solar Resource Assessment Databases, Measurements, Models, and Information Sources

Not Available

2008-10-01T23:59:59.000Z

395

Arentze, Rasouli and Timmermans 1 Integrating a Multi-Agent Model of Land Development and an Activity-Based Model of  

E-Print Network (OSTI)

on Integrated Travel Demand and Network Supply Modeling, Tampa, USA. Theo Arentze, Soora Rasouli and Harry and an Activity-Based Model of Transport Demand: Progress and Developments1 Theo Arentze, Soora Rasouli and Harry aimed at integrating activity-based models of transport demand and models of land development

Kemner, Ken

396

Robins Air Force Base integrated resource assessment. Volume 1: Executive summary  

SciTech Connect

Some of the most difficult problems that a federal site has in reducing its energy consumption in a cost-effective manner revolve around understanding where the energy is being used, and what technologies could be employed to decrease the energy use. Many large federal sites have one or two meters to track electric energy use for several thousand buildings and numerous industrial processes. Even where meters are available on individual buildings or family housing units, the meters are not consistently read. When the federal energy manager has been able to identify high energy users, he or she may not have the background, training, or resources to determine the most cost-effective options for reducing this energy use. This can lead to selection of suboptimal projects that prevent the site from achieving the full life-cycle cost savings. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory (PNL), has developed a model program that provides a systematic approach to evaluating energy opportunities that (1) identifies the building groups and end uses that use the most energy (not just have the greatest energy-use intensity), and (2) evaluates the numerous options for retrofit or installation of new technology that will result in the selection of the most cost-effective technologies. In essence, this model program provides the federal energy manager with a roadmap to significantly reduce energy use in a planned, rational, cost-effective fashion that is not biased by the constraints of the typical funding sources available to federal sites. The results from this assessment process can easily be turned into a five- to ten-year energy management plan that identifies where to start and how to proceed in order to reach the mandated energy consumption targets.

Larson, L.L.; Keller, J.M.

1994-03-01T23:59:59.000Z

397

Modeling toxic endpoints for improving human health risk assessment  

E-Print Network (OSTI)

Risk assessment procedures for mixtures of polycyclic aromatic hydrocarbons (PAHs) present a problem due to the lack of available potency and toxicity data on mixtures and individual compounds. This study examines the toxicity of parent compound PAHs and binary mixtures of PAHs in order to bridge the gap between component assessment and mixture assessment. Seven pure parent compound PAHs and four binary mixtures of PAHs were examined in the Salmonella/Microsome Mutagenicity Assay, a Gap Junction Intercellular Communication (GJIC) assay and the 7-ethoxyresorufin-O-deethylase assay (EROD). These assays were chosen for their ability to measure specific toxic endpoints related to the carcinogenic process (i.e. initiation, promotion, progression). Data from these assays was used in further studies to build Quantitative Structure-Activity Relationships (QSARs) to estimate toxic endpoints and to test the additive assumption in PAH mixtures. These QSAR models will allow for the development of bioassay based potential potencies (PPB) or toxic equivalency factors (TEFs) that are derived not only from bioassay data, but also from structure, activity, and physical/chemical properties. These models can be extended to any environmental media to evaluate risk to human health from exposures to PAHs.

Bruce, Erica Dawn

2007-05-01T23:59:59.000Z

398

Fort Irwin integrated resource assessment. Volume 3: Sitewide Energy Project identification for buildings and facilities  

SciTech Connect

The U.S. Army Forces Command (FORSCOM) has tasked the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory, to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Irwin. This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the FORSCOM Fort Irwin facility located near Barstow, California. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analyses of EROs are presented in 16 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative description of each ERO is provided, along with a table detailing information on the installed cost, energy and dollar savings; impacts on operations and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost (LCC) analysis indicating the net present valve (NPV) and savings-to-investment ratio (SIR) of each ERO.

Keller, J.M.; Dittmer, A.L.; Elliott, D.B.; McMordie, K.L.; Richman, E.E.; Stucky, D.J.; Wahlstrom, R.R.; Hadley, D.L.

1995-02-01T23:59:59.000Z

399

USING COPULAS TO MODEL DEPENDENCE IN SIMULATION RISK ASSESSMENT  

SciTech Connect

Typical engineering systems in applications with high failure consequences such as nuclear reactor plants often employ redundancy and diversity of equipment in an effort to lower the probability of failure and therefore risk. However, it has long been recognized that dependencies exist in these redundant and diverse systems. Some dependencies, such as common sources of electrical power, are typically captured in the logic structure of the risk model. Others, usually referred to as intercomponent dependencies, are treated implicitly by introducing one or more statistical parameters into the model. Such common-cause failure models have limitations in a simulation environment. In addition, substantial subjectivity is associated with parameter estimation for these models. This paper describes an approach in which system performance is simulated by drawing samples from the joint distributions of dependent variables. The approach relies on the notion of a copula distribution, a notion which has been employed by the actuarial community for ten years or more, but which has seen only limited application in technological risk assessment. The paper also illustrates how equipment failure data can be used in a Bayesian framework to estimate the parameter values in the copula model. This approach avoids much of the subjectivity required to estimate parameters in traditional common-cause failure models. Simulation examples are presented for failures in time. The open-source software package R is used to perform the simulations. The open-source software package WinBUGS is used to perform the Bayesian inference via Markov chain Monte Carlo sampling.

Dana L. Kelly

2007-11-01T23:59:59.000Z

400

Integrated Substation Equipment Risk and Performance Assessment Tool for Asset Management and Smart Grid Implementation  

Science Conference Proceedings (OSTI)

Risk assessment and risk management are key elements in any well-developed asset management plan, and an increasing number of utility managers are devoting resources to improving their ability to understand and make risk-based decisions. Consequently, there is growing interest in the tools and methodologies required to better assess equipment performance and risk and provide quantitative information to drive asset management decision processes. In addition, risk and performance assessment tools can be in...

2009-12-23T23:59:59.000Z

Note: This page contains sample records for the topic "integrated assessment modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Simulations of cirrus clouds using an explicit cloud model: integrating ARM  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulations of cirrus clouds using an explicit cloud model: integrating ARM Simulations of cirrus clouds using an explicit cloud model: integrating ARM water vapor and forcing data for analysis of cirrus formation and evolution Comstock, Jennifer Pacific Northwest National Laboratory Lin, Ruei-Fong NASA/Goddard Space Flight Center Starr, David NASA/Goddard Space Flight Center Yang, Ping Texas A&M Category: Modeling Understanding the atmospheric conditions required to initiate cirrus formation and produce observed microphysical properties is crucial to improving the representation of cirrus clouds in climate models. Ice formation in cirrus generally occurs at cold temperatures (below -30 ï‚°C) and can take the form of either homogeneous or heterogeneous nucleation. The ice supersaturation required for ice formation is smaller for

402

An Integrated Computer Modeling Environment For Regional Land Use, Air Quality, And Transportation Planning  

E-Print Network (OSTI)

The Land Use, Air Quality, and Transportation Integrated Modeling Environment (LATIME) represents an integrated approach to computer modeling and simulation of land use allocation, travel demand, and mobile source emissions for the Albuquerque, New Mexico, area. This environment provides predictive capability combined with a graphical and geographical interface. The graphical interface shows the causal relationships between data and policy scenarios and supports alternative model formulations. Scenarios are launched from within a Geographic Information System (GIS), and data produced by each model component at each time step within a simulation is stored in the GIS. A menudriven query system is utilized to review link-based results and regional and areawide results. These results can also be compared across time or between alternative land use scenarios. Using this environment, policies can be developed and implemented based on comparative analysis, rather than on single-step future pr...

Charles Hanley Renewable; Norman L. Marshall; Charles J. Hanley; Charles J. Hanley

1997-01-01T23:59:59.000Z

403

Dynamic thermal modelling of a power integrated circuit with the application of structure functions  

Science Conference Proceedings (OSTI)

This paper presents dynamic thermal analyses of a power integrated circuit with a cooling assembly. The investigations are based on the examination of the cumulative and differential structure functions obtained from the circuit cooling curves recorded ... Keywords: Contact thermal resistance, Heat transfer coefficient, Structure function, Thermal modelling and simulation

Marcin Janicki; Jedrzej Banaszczyk; Gilbert De Mey; Marek Kaminski; Bjorn Vermeersch; Andrzej Napieralski

2009-07-01T23:59:59.000Z

404

Model Integrating Fleet Design and Ship Routing Problems for Coal Shipping  

Science Conference Proceedings (OSTI)

In this paper, an integrated optimization model is developed to improve the efficiency of coal shipping. The objective is (1) to determine the types of ships and the number of each type, (2) to optimize the ship routing, therefore, to minimize the total ... Keywords: coal shipping, fleet design, ship routing, tabu search

Qingcheng Zeng; Zhongzhen Yang

2007-05-01T23:59:59.000Z

405

A long-term investment planning model for mixed energy infrastructure integrated with renewable  

E-Print Network (OSTI)

A long-term investment planning model for mixed energy infrastructure integrated with renewable- mental friendly. Compared with fossil energy, it is expensive to transport renewable energy for a long distance. Another problem of renewable energy is fluctuation and it is not so stable as fossil energy

406

Symplectic integration of space debris motion considering several Earth's shadowing models  

E-Print Network (OSTI)

In this work, we present a symplectic integration scheme to numerically compute space debris motion. Such an integrator is particularly suitable to obtain reliable trajectories of objects lying on high orbits, especially geostationary ones. Indeed, it has already been demonstrated that such objects could stay there for hundreds of years. Our model takes into account the Earth's gravitational potential, luni-solar and planetary gravitational perturbations and direct solar radiation pressure. Based on the analysis of the energy conservation and on a comparison with a high order non-symplectic integrator, we show that our algorithm allows us to use large time steps and keep accurate results. We also propose an innovative method to model Earth's shadow crossings by means of a smooth shadow function. In the particular framework of symplectic integration, such a function needs to be included analytically in the equations of motion in order to prevent numerical drifts of the energy. For the sake of completeness, both cylindrical shadows and penumbra transitions models are considered. We show that both models are not equivalent and that big discrepancies actually appear between associated orbits, especially for high area-to-mass ratios.

Ch. Hubaux; A. Lemaître; N. Delsate; T. Carletti

2012-01-25T23:59:59.000Z

407

Fire emergency evacuation simulation based on integrated fire-evacuation model with discrete design method  

Science Conference Proceedings (OSTI)

Emergency evacuation under fire condition in a mass transit station is a great concern especially in developing countries. The interaction between fire and human is very important in the analysis of emergency evacuation under fire condition. An integrated ... Keywords: Discrete design method, Emergency evacuation, FDS+Evac, Fire-evacuation model, Total evacuation time, Waiting time

Peizhong Yang, Chao Li, Dehu Chen

2013-11-01T23:59:59.000Z

408

Tendering Process Model (TPM) Implementation for B2B Integration in a Web Services Environment  

Science Conference Proceedings (OSTI)

Improvements can be made for tendering processes to solve B2B interoperability and integration problem by means of Web services technology. In this paper, we detail our tendering process model (TPM) based on Web services with SOAP messages exchange in ...

Lick Lun Nick Ng; Dickson K. W. Chiu; Patrick C. K. Hung

2007-01-01T23:59:59.000Z

409

Integrated modelling of risk and uncertainty underlying the cost and effectiveness of water quality measures  

Science Conference Proceedings (OSTI)

In this paper we present an overview of the most important sources of uncertainty when analysing the least cost way to improve water quality. The estimation of the cost-effectiveness of water quality measures is surrounded by environmental, economic ... Keywords: Cost-effectiveness, Integrated modelling, Risk, Uncertainty, Water quality

Roy Brouwer; Chris De Blois

2008-07-01T23:59:59.000Z

410

A model-based approach for data integration to improve maintenance management by mixed reality  

Science Conference Proceedings (OSTI)

Facilitating interaction with maintenance systems through intuitive interfaces is a competitive advantage in terms of time and costs for industry. This work presents the CARMMI approach, which aims to integrate information coming from CAx tools, mixed/augmented ... Keywords: Data modeling/visualization, Industrial maintenance, Mixed reality, Product data management

DanúBia Bueno EspíNdola; Luca Fumagalli; Marco Garetti; Carlos E. Pereira; Silvia S. C. Botelho; Renato Ventura Henriques

2013-05-01T23:59:59.000Z

411

Original paper: An integrated model for simulation of border-check irrigated dairy pasture production systems  

Science Conference Proceedings (OSTI)

Border-check irrigation is the predominant method of applying water to dairy pastures in Australia. Dairy pastures consume 40% of total irrigation water in Australia and, with irrigation water security in Australia under threat from climate variability/change ... Keywords: Dairy pasture systems, Integrated modeling tools, Surface irrigation hydraulics

P. Douglas; K. B. Dassanayake; D. F. Chapman; I. R. Johnson; M. Khanna; H. Malano

2010-10-01T23:59:59.000Z

412

Groups of services delivered by Brazilian branchless banking and respective network integration models  

Science Conference Proceedings (OSTI)

Over the last decade, Brazil has pioneered an innovative model of branchless banking, known as correspondent banking, involving distribution partnership between banks, several kinds of retailers and a variety of other participants, which have allowed ... Keywords: Branchless banking, Brazilian banking, Correspondent banking, Network integration

Martin Jayo; Eduardo H. Diniz; Felipe Zambaldi; Tania P. Christopoulos

2012-09-01T23:59:59.000Z

413

Development of the integrated environmental control model. Quarterly progress report, April 1995--June 1995  

SciTech Connect

The purpose of this contract is to develop and refine the Integrated Environmental Control Model (IECM). In its current configuration, the IECM provides a capability to model various conventional and advanced processes for controlling air pollutant emissions from coal-fired power plants before, during, or after combustion. The principal purpose of the model is to calculate the performance, emissions, and cost of power plant configurations employing alternative environmental control methods. The model consists of various control technology modules, which may be integrated into a complete utility plant in any desired combination. In contrast to conventional deterministic models, the IECM offers the unique capability to assign probabilistic values to all model input parameters, and to obtain probabilistic outputs in the form of cumulative distribution functions indicating the likelihood of different costs and performance results. The work in this contract is divided into two phases. Phase I deals with further developing the existing version of the IECM and training PETC personnel on the effective use of the model. Phase H deals with creating new technology modules, linking the IECM with PETC databases, and training PETC personnel on the effective use of the updated model. The present report summarizes recent progress on the Phase I effort during the period April 1, 1995 through June 30, 1995. This report presents additional revisions to the new cost models of flue gas desulfurization (FGD) technology initially reported in our fourth quarterly report. For convenience, the complete description of the revised FGD models are presented here.

Kalagnanam, J.R.; Rubin, E.S.

1995-06-01T23:59:59.000Z

414

Program on Technology Innovation: Development of an Integrated Gasification Combined Cycle Performance and Cost Modeling Tool  

Science Conference Proceedings (OSTI)

This report describes the development of an integrated performance and cost model for advanced coal power plant undertaken to enable users to screen technologies prior to engaging in more extensive studies of their preferred choice. Such screening activities generally require utilities to contract with outside engineering firms with access to sophisticated engineering modeling software and experienced staff to perform the studies, thus costing significant time and investment.

2010-12-31T23:59:59.000Z

415

An Assessment of Models which use Satellite Data to Estimate Solar Irradiance at the Earth's Surface  

Science Conference Proceedings (OSTI)

The performances of three models which use satellite data to estimate solar irradiance at the Earth's surface are assessed using measured radiation data from a midlatitude location. Assessment of the models is made possible through the accurate ...

Clifford Raphael; John E. Hay

1984-05-01T23:59:59.000Z

416

Modeling the Global Water Resource System in an Integrated Assessment Modeling Framework: IGSM-WRS  

E-Print Network (OSTI)

The availability of water resources affects energy, agricultural and environmental systems, which are linked together as well as to climate via the water cycle. As such, watersheds and river basins are directly impacted ...

Strzepek, Kenneth M.

417

Integration of Feedstock Assembly System and Cellulosic Ethanol Conversion Models to Analyze Bioenergy System Performance  

DOE Green Energy (OSTI)

Research barriers continue to exist in all phases of the emerging cellulosic ethanol biorefining industry. These barriers include the identification and development of a sustainable and abundant biomass feedstock, the assembly of viable assembly systems formatting the feedstock and moving it from the field (e.g., the forest) to the biorefinery, and improving conversion technologies. Each of these phases of cellulosic ethanol production are fundamentally connected, but computational tools used to support and inform analysis within each phase remain largely disparate. This paper discusses the integration of a feedstock assembly system modeling toolkit and an Aspen Plus® conversion process model. Many important biomass feedstock characteristics, such as composition, moisture, particle size and distribution, ash content, etc. are impacted and most effectively managed within the assembly system, but generally come at an economic cost. This integration of the assembly system and the conversion process modeling tools will facilitate a seamless investigation of the assembly system conversion process interface. Through the integrated framework, the user can design the assembly system for a particular biorefinery by specifying location, feedstock, equipment, and unit operation specifications. The assembly system modeling toolkit then provides economic valuation, and detailed biomass feedstock composition and formatting information. This data is seamlessly and dynamically used to run the Aspen Plus® conversion process model. The model can then be used to investigate the design of systems for cellulosic ethanol production from field to final product.

Jared M. Abodeely; Douglas S. McCorkle; Kenneth M. Bryden; David J. Muth; Daniel Wendt; Kevin Kenney

2010-09-01T23:59:59.000Z

418

Analysis of molecular expression patterns and integration with other knowledge bases using probabilistic Bayesian network models  

Science Conference Proceedings (OSTI)

How can molecular expression experiments be interpreted with greater than ten to the fourth measurements per chip? How can one get the most quantitative information possible from the experimental data with good confidence? These are important questions whose solutions require an interdisciplinary combination of molecular and cellular biology, computer science, statistics, and complex systems analysis. The explosion of data from microarray techniques present the problem of interpreting the experiments. The availability of large-scale knowledge bases provide the opportunity to maximize the information extracted from these experiments. We have developed new methods of discovering biological function, metabolic pathways, and regulatory networks from these data and knowledge bases. These techniques are applicable to analyses for biomedical engineering, clinical, and fundamental cell and molecular biology studies. Our approach uses probabilistic, computational methods that give quantitative interpretations of data in a biological context. We have selected Bayesian statistical models with graphical network representations as a framework for our methods. As a first step, we use a nave Bayesian classifier to identify statistically significant patterns in gene expression data. We have developed methods which allow us to (a) characterize which genes or experiments distinguish each class from the others, (b) cross-index the resulting classes with other databases to assess biological meaning of the classes, and (c) display a gross overview of cellular dynamics. We have developed a number of visualization tools to convey the results. We report here our methods of classification and our first attempts at integrating the data and other knowledge bases together with new visualization tools. We demonstrate the utility of these methods and tools by analysis of a series of yeast cDNA microarray data and to a set of cancerous/normal sample data from colon cancer patients. We discuss extending our methods to inferring biological pathways and networks using more complex dynamic Bayesian networks.

Moler, Edward J.; Mian, I.S.

2000-03-01T23:59:59.000Z

419

HVAC Modeling for Cost of Ownership Assessment in Biotechnology & Drugs Manufacturing  

E-Print Network (OSTI)

2000 Broomes, Peter. , “HVAC Modeling for Cost of Ownership2000 Broomes, Peter. , “HVAC Results Comparison”, April,HVAC Modeling for Cost of Ownership Assessment in

Broomes, Peter; Dornfeld, David A

2003-01-01T23:59:59.000Z

420

An Inspector's Assessment of the New Model Safeguards Approach for Enrichment Plants  

SciTech Connect

This conference paper assesses the changes that are being made to the Model Safeguards Approach for Gas Centrifuge Enrichment Plants.

Curtis, Michael M.

2007-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "integrated assessment modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

THE PENA BLANCA NATURAL ANALOGUE PERFORMANCE ASSESSMENT MODEL  

SciTech Connect

The Nopal I uranium mine in the Sierra Pena Blanca, Chihuahua, Mexico serves as a natural analogue to the Yucca Mountain repository. The Pena Blanca Natural Analogue Performance Assessment Model simulates the mobilization and transport of radionuclides that are released from the mine and transported to the saturated zone. The Pena Blanca Natural Analogue Performance Assessment Model uses probabilistic simulations of hydrogeologic processes that are analogous to the processes that occur at the Yucca Mountain site. The Nopal I uranium deposit lies in fractured, welded, and altered rhyolitic ash-flow tuffs that overlie carbonate rocks, a setting analogous to the geologic formations at the Yucca Mountain site. The Nopal I mine site has the following analogous characteristics as compared to the Yucca Mountain repository site: (1) Analogous source--UO{sub 2} uranium ore deposit = spent nuclear fuel in the repository; (2) Analogous geology--(i.e. fractured, welded, and altered rhyolitic ash-flow tuffs); (3) Analogous climate--Semiarid to arid; (4) Analogous setting--Volcanic tuffs overlie carbonate rocks; and (5) Analogous geochemistry--Oxidizing conditions Analogous hydrogeology: The ore deposit lies in the unsaturated zone above the water table.

G. Saulnier and W. Statham

2006-04-16T23:59:59.000Z

422

Developing a Modeling Framework for Assessing Population Impacts...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Energy Systems Group Energy Storage and Distributed Resources Combustion Technologies Group Electrochemical Technologies Group Grid Integration Group Laser...

423

Integrative framework for assessing firms' potential to undertake Green IT initiatives via virtualization - A theoretical perspective  

Science Conference Proceedings (OSTI)

Green IT (information technology) has recently emerged into an active research area in the information systems (IS) discipline. A major gap that exists in the Green IT research literature today is the absence of a theoretical framework that can be used ... Keywords: Green information technology implementation, Green information technology practice, Integrative theoretical framework, Process virtualization

Ranjit Bose; Xin Luo

2011-03-01T23:59:59.000Z

424

Spatially Informed Plant PRA Models for Security Assessment  

SciTech Connect

Traditional risk models can be adapted to evaluate plant response for situations where plant systems and structures are intentionally damaged, such as from sabotage or terrorism. This paper describes a process by which traditional risk models can be spatially informed to analyze the effects of compound and widespread harsh environments through the use of 'damage footprints'. A 'damage footprint' is a spatial map of regions of the plant (zones) where equipment could be physically destroyed or disabled as a direct consequence of an intentional act. The use of 'damage footprints' requires that the basic events from the traditional probabilistic risk assessment (PRA) be spatially transformed so that the failure of individual components can be linked to the destruction of or damage to specific spatial zones within the plant. Given the nature of intentional acts, extensive modifications must be made to the risk models to account for the special nature