National Library of Energy BETA

Sample records for integrated algal biorefinery

  1. Sapphire Energy - Integrated Algal Biorefinery

    Broader source: Energy.gov (indexed) [DOE]

    Algal Biorefinery EE0002884 March 24 2015 SAPPHIRE CONFIDENTIAL 1 Original project goals (2009) SAPPHIRE CONFIDENTIAL 2 Project objectives Demonstrate the technical and ...

  2. Algal Integrated Biorefineries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Algal Biofuels » Algal Integrated Biorefineries Algal Integrated Biorefineries The Algae Program works closely with the Demonstration and Deployment Program on projects that can validate advancements toward commercialization at increasing scales. Integrated biorefineries apply R&D to scale-up facilities to a degree relevant to commercial applications. U.S. Department of Energy funding of this work helps to advance the industry by minimizing the risk of these

  3. Demonstration and Deployment Successes: Sapphire Integrated Algal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Successes: Sapphire Integrated Algal Biorefinery Demonstration and Deployment Successes: Sapphire Integrated Algal Biorefinery Demonstration and Deployment Successes Jaime Moreno, ...

  4. Integrated Biorefineries: Biofuels, Bioproducts, and Biopower...

    Energy Savers [EERE]

    Biorefineries: Biofuels, Bioproducts, and Biopower Integrated Biorefineries: Biofuels, Bioproducts, and Biopower Achieving national energy and climate goals will require an ...

  5. Recovery Act: Beneficial CO{sub 2} Capture in an Integrated Algal Biorefinery for Renewable Generation and Transportation Fuels

    SciTech Connect (OSTI)

    Lane, Christopher; Hampel, Kristin; Rismani-Yazdi, Hamid; Kessler, Ben; Moats, Kenneth; Park, Jonathan; Schwenk, Jacob; White, Nicholas; Bakhit, Anis; Bargiel, Jeff; Allnutt, F. C.

    2014-03-31

    DOE DE-FE0001888 Award, Phase 2, funded research, development, and deployment (RD&D) of Phycal’s pilot-scale, algae to biofuels, bioproducts, and processing facility in Hawai’i. Phycal’s algal-biofuel and bioproducts production system integrates several novel and mature technologies into a system that captures and reuses industrially produced carbon dioxide emissions, which would otherwise go directly to the atmosphere, for the manufacture of renewable energy products and bioproducts from algae (note that these algae are not genetically engineered). At the end of Phase 2, the project as proposed was to encompass 34 acres in Central Oahu and provide large open ponds for algal mass culturing, heterotrophic reactors for the Heteroboost™ process, processing facilities, water recycling facilities, anaerobic digestion facilities, and other integrated processes. The Phase 2 award was divided into two modules, Modules 1 & 2, where the Module 1 effort addressed critical scaling issues, tested highest risk technologies, and set the overall infrastructure needed for a Module 2. Phycal terminated the project prior to executing construction of the first Module. This Final Report covers the development research, detailed design, and the proposed operating strategy for Module 1 of Phase 2.

  6. Economy Through Product Diversity: Integrated Biorefineries ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Through Product Diversity: Integrated Biorefineries Economy Through Product Diversity: Integrated Biorefineries Achieving national energy and climate goals will require an...

  7. Economy Through Product Diversity: Integrated Biorefineries

    SciTech Connect (OSTI)

    2010-03-01

    A general discussion of the integrated biorefinery concept, the Biomass Program's related activities and challenges and specific biorefinery projects being funded through the Program.

  8. Biomass Program 2007 Accomplishments - Integrated Biorefinery Platform

    SciTech Connect (OSTI)

    none,

    2008-06-01

    This document details the accomplishments of the Biomass Program Integrated Biorefinery Platform in 2007.

  9. Development of Integrated Biorefineries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Biorefineries » Development of Integrated Biorefineries Development of Integrated Biorefineries The development of the integrated biorefinery was identified as crucial part of achieving alternative fuel production goals. Throughout its stages of development, the integrated biorefinery will utilize input from all of the other platforms as well as the existing biofuels industry. The research and development of feedstocks and the biochemical and thermochemical conversion platforms will

  10. Biochemical Conversion - Biorefinery Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Conversion Technologies » Biochemical Conversion » Biochemical Conversion - Biorefinery Integration Biochemical Conversion - Biorefinery Integration One of the essential elements in the economical and efficient production of cellulosic biofuels is the development of biorefineries. Similar in concept to traditional petroleum refineries, biorefineries convert various types of biomass feedstock into marketable chemicals, fuels, and products. By taking advantage of

  11. Algenol Biofuels Inc., Integrated Pilot-Scale Biorefinery | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algenol Biofuels Inc., Integrated Pilot-Scale Biorefinery Algenol Biofuels Inc., Integrated Pilot-Scale Biorefinery Algenol Biofuels Inc., will create a pilot-scale biorefinery ...

  12. Abengoa Integrated Biorefineries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Biorefineries Abengoa Integrated Biorefineries Demonstration and Deployment Successes Gerson Santos, Executive Vice President, Abengoa b13_santos_ap-2.pdf (2.72 MB) More Documents & Publications 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review Biomass IBR Fact Sheet: Abengoa Bioenergy Abengoa IBR Successes

  13. 2011 Biomass Program Platform Peer Review: Integrated Biorefineries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Biorefineries 2011 Biomass Program Platform Peer Review: Integrated ... experts at the U.S. Department of Energy Biomass Programs Integrated Biorefinery ...

  14. 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review Plenary I: ...

  15. FOA for the Demonstration of an Integrated Biorefinery System...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications FOA for the Demonstration of an Integrated Biorefinery System: Range Fuels, Inc. FOA for the Demonstration of an Integrated Biorefinery System: ...

  16. FOA for the Demonstration of an Integrated Biorefinery System...

    Office of Environmental Management (EM)

    Blue Fire Ethanol, Inc. FOA for the Demonstration of an Integrated Biorefinery System: Blue Fire Ethanol, Inc. FOA for the Demonstration of an Integrated Biorefinery System: Blue ...

  17. FOA for the Demonstration of an Integrated Biorefinery System...

    Office of Environmental Management (EM)

    Range Fuels, Inc. FOA for the Demonstration of an Integrated Biorefinery System: Range Fuels, Inc. FOA for the Demonstration of an Integrated Biorefinery System: Range Fuels, Inc. ...

  18. Integrated Biorefineries: Biofuels, Biopower, and Bioproducts

    SciTech Connect (OSTI)

    2013-05-06

    This fact sheet describes integrated biorefineries and the Program's work with them. A crucial step in developing the U.S. bioindustry is to establish integrated biorefineries capable of efficiently converting a broad range of biomass feedstocks into affordable biofuels, biopower, and other bioproducts.

  19. Integrated Biorefineries | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Map Labels The interactive map above highlights biorefinery projects funded by the Bioenergy Technologies Office at pilot, demonstration, and pioneer scales. Adjust the map...

  20. Thermochemical Conversion - Biorefinery Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Biorefinery Integration Thermochemical Conversion - Biorefinery Integration Fuels Synthesis Fuels can be produced from bio-oils using processes similar to those found in a petroleum refinery, including hydrotreating and hydrocracking to create green gasoline, an alternative to alcohol-based ethanol fuels. Some types of bio-oils can even be fully integrated into petroleum refining stream and infrastructure. The conversion of biomass derived syngas to products is typically an exothermic process,

  1. Integrated Biorefinery Lessons Learned and Best Practices

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Biorefinery Lessons Learned and Best Practices - Breakout Session 1 Session Moderator: Glenn Doyle U.S. Department of Energy Bioenergy Technologies Office July 29 th , 2014 2 | Bioenergy Technologies Office Session Agenda Lessons Learned and Best Practices Presentations * BETO's Integrated Biorefineries - Glenn Doyle, Technology Manager, DOE * USDA Loan Guarantee Programs - Chris Cassidy, National Business Renewable Energy Advisor, USDA * American Process, Inc. pilot plant - Theodora

  2. Integrated Biorefinery Research Facility | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Biorefinery Research Facility NREL's Integrated Biorefinery Research Facility (IBRF) enables researchers and industry partners to develop, test, evaluate, and demonstrate processes and technologies for the production of bio-based products and fuels. Interior of industrial, two-story building with high-bay, piping, and large processing equipment. Three workers in hard hats. In addition to the facility itself, NREL's world-renowned expert staff works with IBRF partners at every stage of

  3. Integrated Biorefineries:Biofuels, Biopower, and Bioproducts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BIOREFINERIES INEOS New Planet Bioenergy began production at its Indian River Bioenergy Center in Vero Beach, FL, in July 2013. Cost-shared funding from the Bioenergy Technologies Office contributed to the construction of this pioneer-scale plant, which converts waste biomass materials into 8 million gallons of cellulosic ethanol and produces 6 MW of power annually. Photo: INEOS Bio Integrated Biorefineries: Reducing Investment Risk in Novel Technology Achieving national energy and climate goals

  4. Integrated Biorefinery Research Facility (IBRF I-II) (Post CD...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Biorefinery Research Facility (IBRF I-II) (Post CD-4), EERE, Aug 2011 Integrated Biorefinery Research Facility (IBRF I-II) (Post CD-4), EERE, Aug 2011 PDF icon 000521 & ...

  5. Integrated Biorefinery Lessons Learned and Best Practices | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Integrated Biorefinery Lessons Learned and Best Practices Integrated Biorefinery Lessons Learned and Best Practices Breakout Session 1D-Building Market Confidence and Understanding I: Integrated Biorefinery (Lessons Learned and Best Practices) Integrated Biorefinery Lessons Learned and Best Practices Glenn Doyle, Technology Manager, Bioenergy Technologies Office, U.S. Department of Energy doyle_biomass_2014.pdf (1.01 MB) More Documents & Publications Demonstration and Deployment

  6. Economy Through Product Diversity: Integrated Biorefineries

    Broader source: Energy.gov [DOE]

    Achieving national energy and climate goals will require an economically viable and environmentally sustainable U.S. bioindustry. A crucial step in developing this industry is to establish integrated biorefineries capable of efficiently converting a broad range of biomass feedstocks into affordable biofuels, biopower, and other products.

  7. 2009 Integrated Biorefinery Platform Review Report

    SciTech Connect (OSTI)

    Ferrell, John

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program‘s Integrated Biorefinery (IBR) platform review meeting, held on February 18–19, 2009, at the Westin National Harbor, National Harbor, Maryland.

  8. 2013 Peer Review Presentations—Integrated Biorefineries

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Bioenergy Technologies Office hosted its 2013 Project Peer Review on May 20–24, 2015, at the Hilton Mark Center in Alexandria, Virginia. The presentations from integrated biorefineries session are available to view and download below. For detailed session descriptions and presentation titles, view the 2013 Project Peer Review Program Booklet.

  9. Integration of Nutrient and Water Recycling for Sustainable Algal...

    Broader source: Energy.gov (indexed) [DOE]

    of Nutrient and Water Recycling for Sustainable Algal Biorefineries 03252015 ALGAE ... residues. o Minimizes inputs of water and synthetic fertilizers. o High ...

  10. Solazyme Pilot-Scale Biorefinery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solazyme Pilot-Scale Biorefinery Solazyme Pilot-Scale Biorefinery The Solazyme integrated biorefinery will use a heterotrophic algal oil biomanufacturing process to create biofuels. ibr_arra_solazyme.pdf (305.49 KB) More Documents & Publications CX-005693: Categorical Exclusion Determination Algae Biofuels Technology 2016 National Algal Biofuels Technology Review

  11. 2014 DOE Biomass Program Integrated Biorefinery Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review DOE Award No. DE-FC36-07GO17028 April 16, 2014 Principal Investigator - Gerson Santos-Leon Project Director - Joseph Bradford Abengoa Bioenergy Biomass of Kansas, LLC The following contains proprietary and confidential information that may not be released to persons outside the US Department of Energy 2 2 2014 ABBK Comprehensive Project Review Table of Contents Abengoa Bioenergy Background General Overview 1 Company

  12. 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Review | Department of Energy 4 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review Plenary I: Progress in Advanced Biofuels 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review Gerson Santos-Leon, Executive Vice President, Abengoa santos-leon_biomass_2014.pdf (4.68 MB) More Documents & Publications Abengoa IBR Successes Applicant

  13. Red Shield Acquisition, LLC, Integrated Biorefinery

    Broader source: Energy.gov [DOE]

    This demonstration-scale biorefinery will produce lignocellulosic sugars for biofuel feedstock from woody biomass.

  14. Integrated Biorefinery Research Facility: Advancing Biofuels Technology (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-03-01

    The Integrated Biorefinery Research Facility (IBRF) at the National Renewable Energy Laboratory (NREL) expands NREL's cellulosic ethanol research and development and collaboration capabilities.

  15. FOA for the Demonstration of an Integrated Biorefinery System...

    Office of Environmental Management (EM)

    Abengoa Bioenergy Biomass of Kansas, LLC FOA for the Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC FOA for the Demonstration of an ...

  16. Integrated Biorefineries | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research & Development Demonstration & Market Transformation Integrated ... funded by the Bioenergy Technologies Office at pilot, demonstration, and pioneer scales. ...

  17. 2011 Biomass Program Platform Peer Review: Integrated Biorefineries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Integrated Biorefineries 2011 Biomass Program Platform Peer Review: Integrated Biorefineries "This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Programs Integrated Biorefinery Platform Review meeting, held on February 1...3, 2011, at the U.S. Department of Energy, Washington, D.C." 2011_ibr_review.pdf (2.52 MB) More Documents & Publications 2011

  18. Integrated Biorefineries:Biofuels, Biopower, and Bioproducts | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Integrated Biorefineries:Biofuels, Biopower, and Bioproducts Integrated Biorefineries:Biofuels, Biopower, and Bioproducts The U.S. goal to produce 21 billion gallons of advanced biofuels by 2022 creates an urgent need to bridge the gap between promising research and commercial large-scale production of advanced biofuels. ibr_portfolio_overview.pdf (1.07 MB) More Documents & Publications Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis to Make Fuels and

  19. FOA for the Demonstration of an Integrated Biorefinery System: Blue Fire

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ethanol, Inc. | Department of Energy Blue Fire Ethanol, Inc. FOA for the Demonstration of an Integrated Biorefinery System: Blue Fire Ethanol, Inc. FOA for the Demonstration of an Integrated Biorefinery System: Blue Fire Ethanol, Inc. Award No. DE-FC36-07GO17025 (14.26 MB) More Documents & Publications FOA for the Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC FOA for the Demonstration of an Integrated Biorefinery System: POET Project Liberty,

  20. FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act - Integrated

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biorefinery (IABR) | Department of Energy Recovery Act - Integrated Algal Biorefinery (IABR) FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act - Integrated Algal Biorefinery (IABR) FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act - Integrated Algal Biorefinery (IABR). Sapphire Energy, Inc. (3.27 MB) More Documents & Publications Buy American Guidance Documents American Recovery and Reinvestment Act, Financial Assistance Award: 212 Degrees Consulting, LLC

  1. Pilot-Scale MixotrophicAlgae Integrated Biorefinery(IBR)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilot-Scale Mixotrophic Algae Integrated Biorefinery (IBR) March 23-27, 2015 Technology Area: Demonstration and Market Transformation Principal Investigator: Toby Ahrens Organization: BioProcess Algae This presentation does not contain any proprietary, confidential, or otherwise restricted information AGENDA * Project Overview * Project Approach * Technical Progress and Accomplishments * Project Relevance * Future Work 2 BIOPROCESS ALGAE BACKGROUND 3 Integrated production since 2009 Option to

  2. FOA for the Demonstration of an Integrated Biorefinery System: Abengoa

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Biomass of Kansas, LLC | Department of Energy Abengoa Bioenergy Biomass of Kansas, LLC FOA for the Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC FOA for the Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC. Award No. DE-FC36-07GO17028, Part 1 (1.38 MB) Award No. DE-FC36-07GO17028, Part 2 (1.66 MB) Abengoa, Mod No. M001 Contract No. DE-FC36-07GO17028 (1.57 MB) More Documents & Publications

  3. Biomass Program 2007 Peer Review - Integrated Biorefinery Platform Summary

    SciTech Connect (OSTI)

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Integrated Biorefinery Platform Review held on August 13-15, 2007 in Golden, Colorado.

  4. ClearFuels-Rentech Integrated Biorefinery Final Report

    SciTech Connect (OSTI)

    Pearson, Joshua

    2014-02-26

    The project Final Report describes the validation of the performance of the integration of two technologies that were proven individually on a pilot scale and were demonstrated as a pilot scale integrated biorefinery. The integrated technologies were a larger scale ClearFuels’ (CF) advanced flexible biomass to syngas thermochemical high efficiency hydrothermal reformer (HEHTR) technology with Rentech’s (RTK) existing synthetic gas to liquids (GTL) technology.

  5. 2011 Biomass Program Platform Peer Review: Integrated Biorefineries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INTEGRATED BIOREFINERIES 2011 Platform Review Report An Independent Evaluation of Platform Activities for FY 2010 and FY 2011 Review Date February 1-3, 2011 February 2012 Department of Energy Washington, D.C. 20585 Dear Colleague: This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program's Integrated Biorefnery Platform Review meeting, held on February 1-3, 2011, at the U.S. Department of

  6. Partnering with Industry to Advance Biofuels, NREL's Integrated Biorefinery Research Facility (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    Fact sheet describing NREL's Integrated Biorefinery Research Facility and its availability to biofuels' industry partners who want to operate, test, and develop biorefining technology and equipment.

  7. NREL: Biomass Research - Integrated Biorefinery Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The IBRF's 27,000-ft2, high-bay biochemical conversion pilot ... into end-to-end process integration and evaluation tests ... for staged feedstock pre-processing operations in one vessel ...

  8. Demonstration and Deployment Successes: Sapphire Integrated Algal Biorefinery

    Broader source: Energy.gov [DOE]

    Demonstration and Deployment Successes Jaime Moreno, Vice President of Projects, Sapphire Energy, Inc.

  9. Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability

    Broader source: Energy.gov [DOE]

    Breakout Session 3B—Integration of Supply Chains III: Algal Biofuels Strategy Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability Martin Sabarsky, Chief Executive Officer, Cellana

  10. NREL: Biomass Research - What Is a Biorefinery?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What Is a Biorefinery? A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and chemicals from biomass. The biorefinery...

  11. Pilot Integrated Cellulosic Biorefinery Operations to Fuel Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biorefinery Operations to Fuel Ethanol Award Number: DE-EE0002875 March 23, 2015 ... to refine cellulosic biomass into fuel ethanol and co-products Create an ...

  12. Integrated Biorefinery for conversion of Biomass to Ethanol,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biorefinery for conversion of Biomass to Ethanol, Synthesis Gas, and Heat March 25, 2015 ... Louis MO Subsidiary of Abengoa SA, Spain Ethanol facilities in Nebraska, Kansas, New ...

  13. Amyris, Inc. Integrated Biorefinery Project Summary Final Report - Public Version

    SciTech Connect (OSTI)

    Gray, David; Sato, Suzanne; Garcia, Fernando; Eppler, Ross; Cherry, Joel

    2014-03-12

    The Amyris pilot-scale Integrated Biorefinery (IBR) leveraged Amyris synthetic biology and process technology experience to upgrade Amyris’s existing Emeryville, California pilot plant and fermentation labs to enable development of US-based production capabilities for renewable diesel fuel and alternative chemical products. These products were derived semi-synthetically from high-impact biomass feedstocks via microbial fermentation to the 15-carbon intermediate farnesene, with subsequent chemical finishing to farnesane. The Amyris IBR team tested and provided methods for production of diesel and alternative chemical products from sweet sorghum, and other high-impact lignocellulosic feedstocks, at pilot scale. This enabled robust techno-economic analysis (TEA), regulatory approvals, and a basis for full-scale manufacturing processes and facility design.

  14. FOA for the Demonstration of an Integrated Biorefinery System: POET Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Liberty, LLC | Department of Energy POET Project Liberty, LLC FOA for the Demonstration of an Integrated Biorefinery System: POET Project Liberty, LLC FOA for the Demonstration of an Integrated Biorefinery System: POET Project Liberty, LLC. Award No. DE-FC36-07GO17026, Part 1 (8.63 MB) Award No. DE-FC36-07GO17026, Part 2 (8.26 MB) Technology Investment Agreement (TIA) Award No. DE-FO36-08GO18121 (7.39 MB) More Documents & Publications FOA for the Demonstration of an Integrated

  15. Acid-Catalyzed Algal Biomass Pretreatment for Integrated Lipid and Carbohydrate-Based Biofuels Production

    SciTech Connect (OSTI)

    Laurens, L. M. L.; Nagle, N.; Davis, R.; Sweeney, N.; Van Wychen, S.; Lowell, A.; Pienkos, P. T.

    2014-11-12

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. We studied the effect of harvest timing on the conversion yields, using two algal strains; Chlorella and Scenedesmus, generating biomass with distinctive compositional ratios of protein, carbohydrate, and lipids. We found that the late harvest Scenedesmus biomass had the maximum theoretical biofuel potential at 143 gasoline gallon equivalent (GGE) combined fuel yield per dry ton biomass, followed by late harvest Chlorella at 128 GGE per ton. Our experimental data show a clear difference between the two strains, as Scenedesmus was more successfully converted in this process with a demonstrated 97 GGE per ton. Our measurements indicated a release of >90% of the available glucose in the hydrolysate liquors and an extraction and recovery of up to 97% of the fatty acids from wet biomass. Techno-economic analysis for the combined product yields indicates that this process exhibits the potential to improve per-gallon fuel costs by up to 33% compared to a lipids-only process for one strain, Scenedesmus, grown to the mid-point harvest condition.

  16. Biorefinery and Carbon Cycling Research Project

    SciTech Connect (OSTI)

    Das, K. C., Adams; Thomas, T; Eiteman, Mark A; Kastner, James R; Mani, Sudhagar; Adolphson, Ryan

    2012-06-08

    In this project we focused on several aspects of technology development that advances the formation of an integrated biorefinery. These focus areas include: [ 1] pretreatment of biomass to enhance quality of products from thermochemical conversion; [2] characterization of and development of coproduct uses; [3] advancement in fermentation of lignocellulosics and particularly C5 and C6 sugars simultaneously, and [ 4] development of algal biomass as a potential substrate for the biorefinery. These advancements are intended to provide a diverse set of product choices within the biorefinery, thus improving the cost effectiveness of the system. Technical effectiveness was demonstrated in the thermochemical product quality in the form of lower tar production, simultaneous of use of multiple sugars in fermentation, use ofbiochar in environmental (ammonia adsorption) and agricultural applications, and production of algal biomass in wastewaters. Economic feasibility of algal biomass production systems seems attractive, relative to the other options. However, further optimization in all paths, and testing/demonstration at larger scales are required to fully understand the economic viabilities. The coproducts provide a clear picture that multiple streams of value can be generated within an integrated biorefinery, and these include fuels and products.

  17. Biorefinery and Hydrogen Fuel Cell Research

    SciTech Connect (OSTI)

    K.C. Das; Thomas T. Adams; Mark A. Eiteman; John Stickney; Joy Doran Peterson; James R. Kastner; Sudhagar Mani; Ryan Adolphson

    2012-06-12

    In this project we focused on several aspects of technology development that advances the formation of an integrated biorefinery. These focus areas include: [1] establishment of pyrolysis processing systems and characterization of the product oils for fuel applications, including engine testing of a preferred product and its pro forma economic analysis; [2] extraction of sugars through a novel hotwater extaction process, and the development of levoglucosan (a pyrolysis BioOil intermediate); [3] identification and testing of the use of biochar, the coproduct from pyrolysis, for soil applications; [4] developments in methods of atomic layer epitaxy (for efficient development of coatings as in fuel cells); [5] advancement in fermentation of lignocellulosics, [6] development of algal biomass as a potential substrate for the biorefinery, and [7] development of catalysts from coproducts. These advancements are intended to provide a diverse set of product choices within the biorefinery, thus improving the cost effectiveness of the system. Technical effectiveness was demonstrated in the pyrolysis biooil based diesel fuel supplement, sugar extraction from lignocelluose, use of biochar, production of algal biomass in wastewaters, and the development of catalysts. Economic feasibility of algal biomass production systems seems attractive, relative to the other options. However, further optimization in all paths, and testing/demonstration at larger scales are required to fully understand the economic viabilities. The various coproducts provide a clear picture that multiple streams of value can be generated within an integrated biorefinery, and these include fuels and products.

  18. Energy Department Requests Information on Understanding Scale-Up and Operational Challenges for Integrated Biorefinery Optimization

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy’s (EERE’s) Bioenergy Technologies Office (BETO) seeks feedback from industry, academia, research laboratories, government agencies, and other stakeholders that will help BETO better understand capabilities, as well as barriers and opportunities, for the operation of integrated biorefineries to produce biofuels, biochemicals, and bioproducts.

  19. Acid-Catalyzed Algal Biomass Pretreatment for Integrated Lipid and Carbohydrate-Based Biofuels Production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Laurens, L. M. L.; Nagle, N.; Davis, R.; Sweeney, N.; Van Wychen, S.; Lowell, A.; Pienkos, P. T.

    2014-11-12

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. We studied the effect of harvest timing on the conversion yields, using two algal strains; Chlorella and Scenedesmus, generating biomass with distinctive compositionalmore » ratios of protein, carbohydrate, and lipids. We found that the late harvest Scenedesmus biomass had the maximum theoretical biofuel potential at 143 gasoline gallon equivalent (GGE) combined fuel yield per dry ton biomass, followed by late harvest Chlorella at 128 GGE per ton. Our experimental data show a clear difference between the two strains, as Scenedesmus was more successfully converted in this process with a demonstrated 97 GGE per ton. Our measurements indicated a release of >90% of the available glucose in the hydrolysate liquors and an extraction and recovery of up to 97% of the fatty acids from wet biomass. Techno-economic analysis for the combined product yields indicates that this process exhibits the potential to improve per-gallon fuel costs by up to 33% compared to a lipids-only process for one strain, Scenedesmus, grown to the mid-point harvest condition.« less

  20. Demonstration and Deployment Successes: Sapphire Integrated Algal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and solvents to create refinable crude oil Sapphire Energy - IABR Accomplishments & ... has a fully integrated R&D asset pipeline, enabling creation and testing of ...

  1. Development of efficient, integrated cellulosic biorefineries : LDRD final report.

    SciTech Connect (OSTI)

    Teh, Kwee-Yan; Hecht, Ethan S.; Shaddix, Christopher R.; Buffleben, George M.; Dibble, Dean C.; Lutz, Andrew E.

    2010-09-01

    Cellulosic ethanol, generated from lignocellulosic biomass sources such as grasses and trees, is a promising alternative to conventional starch- and sugar-based ethanol production in terms of potential production quantities, CO{sub 2} impact, and economic competitiveness. In addition, cellulosic ethanol can be generated (at least in principle) without competing with food production. However, approximately 1/3 of the lignocellulosic biomass material (including all of the lignin) cannot be converted to ethanol through biochemical means and must be extracted at some point in the biochemical process. In this project we gathered basic information on the prospects for utilizing this lignin residue material in thermochemical conversion processes to improve the overall energy efficiency or liquid fuel production capacity of cellulosic biorefineries. Two existing pretreatment approaches, soaking in aqueous ammonia (SAA) and the Arkenol (strong sulfuric acid) process, were implemented at Sandia and used to generated suitable quantities of residue material from corn stover and eucalyptus feedstocks for subsequent thermochemical research. A third, novel technique, using ionic liquids (IL) was investigated by Sandia researchers at the Joint Bioenergy Institute (JBEI), but was not successful in isolating sufficient lignin residue. Additional residue material for thermochemical research was supplied from the dilute-acid simultaneous saccharification/fermentation (SSF) pilot-scale process at the National Renewable Energy Laboratory (NREL). The high-temperature volatiles yields of the different residues were measured, as were the char combustion reactivities. The residue chars showed slightly lower reactivity than raw biomass char, except for the SSF residue, which had substantially lower reactivity. Exergy analysis was applied to the NREL standard process design model for thermochemical ethanol production and from a prototypical dedicated biochemical process, with process data

  2. Summative Mass Analysis of Algal Biomass - Integration of Analytical Procedures: Laboratory Analytical Procedure (LAP)

    SciTech Connect (OSTI)

    Laurens, L. M. L.

    2013-12-01

    This procedure guides the integration of laboratory analytical procedures to measure algal biomass constituents in an unambiguous manner and ultimately achieve mass balance closure for algal biomass samples. Many of these methods build on years of research in algal biomass analysis.

  3. EA-1888: Old Town Fuel and Fiber Proposed Demonstration-Scale Integrated Biorefinery in Old Town, Maine

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal by Old Town Fuel and Fiber to install and operate a demonstration-scale integrated biorefinery at their existing pulp mill in Old Town, Maine, demonstrating the production of n-butanol from lignocellulosic (wood) extract.

  4. Integrated Biorefinery Project: Cooperative Research and Development Final Report, CRADA Number CRD-10-390

    SciTech Connect (OSTI)

    Chapeaux, A.; Schell, D.

    2013-06-01

    The Amyris-NREL CRADA is a sub-project of Amyris?s DOE-funded pilot-scale Integrated Biorefinery (IBR). The primary product of the Amyris IBR is Amyris Renewable Diesel. Secondary products will include lubricants, polymers and other petro-chemical substitutes. Amyris and its project partners will execute on a rapid project to integrate and leverage their collective expertise to enable the conversion of high-impact biomass feedstocks to these advanced, infrastructure-compatible products. The scope of the Amyris-NREL CRADA includes the laboratory development and pilot scale-up of bagasse pretreatment and enzymatic saccharification conditions by NREL for subsequent conversion of lignocellulosic sugar streams to Amyris Diesel and chemical products by Amyris. The CRADA scope also includes a techno-economic analysis of the overall production process of Amyris products from high-impact biomass feedstocks.

  5. American Process—Alpena Biorefinery Lessons

    Broader source: Energy.gov [DOE]

    Breakout Session 1D—Building Market Confidence and Understanding I: Integrated Biorefinery (Lessons Learned and Best Practices) American Process—Alpena Biorefinery Lessons Theodora Retsina, Chief Executive Officer, America Process Inc.

  6. 9003: Biorefinery Assistance Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9003: Biorefinery Assistance Program 9003: Biorefinery Assistance Program Breakout Session 1D-Building Market Confidence and Understanding I: Integrated Biorefinery (Lessons Learned and Best Practices) 9003: Biorefinery Assistance Program Chris Cassidy, National Business Renewable Energy Advisor, U.S. Department of Agriculture cassidy_biomass_2014.pdf (418.43 KB) More Documents & Publications Project Finance and Investments Demonstration and Deployment Workshop - Day 1 American

  7. Recovery Act. Demonstration of a Pilot Integrated Biorefinery for the Efficient, Direct Conversion of Biomass to Diesel Fuel

    SciTech Connect (OSTI)

    Schuetzle, Dennis; Tamblyn, Greg; Caldwell, Matt; Hanbury, Orion; Schuetzle, Robert; Rodriguez, Ramer; Johnson, Alex; Deichert, Fred; Jorgensen, Roger; Struble, Doug

    2015-05-12

    The Renewable Energy Institute International, in collaboration with Greyrock Energy and Red Lion Bio-Energy (RLB) has successfully demonstrated operation of a 25 ton per day (tpd) nameplate capacity, pilot, pre-commercial-scale integrated biorefinery (IBR) plant for the direct production of premium, “drop-in”, synthetic fuels from agriculture and forest waste feedstocks using next-generation thermochemical and catalytic conversion technologies. The IBR plant was built and tested at the Energy Center, which is located in the University of Toledo Medical Campus in Toledo, Ohio.

  8. United Biorefineries Corp UBC | Open Energy Information

    Open Energy Info (EERE)

    physical & biological research. Involved in the project development of an Integrated Biorefinery Complex utilizing algae and cellulosic-based second generation biofuels technology....

  9. Advancing Commercialization of Algal Biofuels Through Increased Biomass Productivity and Technology Integration

    SciTech Connect (OSTI)

    Bai, Xuemei; Sabarsky, Martin

    2013-09-30

    Cellana is a leading developer of algae-based bioproducts, and its pre-commercial production of marine microalgae takes place at Cellana?s Kona Demonstration Facility (KDF) in Hawaii. KDF is housing more than 70 high-performing algal strains for different bioproducts, of which over 30 have been grown outside at scale. So far, Cellana has produced more than 10 metric tons of algal biomass for the development of biofuels, animal feed, and high-value nutraceuticals. Cellana?s ALDUO algal cultivation technology allows Cellana to grow non-extremophile algal strains at large scale with no contamination disruptions. Cellana?s research and production at KDF have addressed three major areas that are crucial for the commercialization of algal biofuels: yield improvement, cost reduction, and the overall economics. Commercially acceptable solutions have been developed and tested for major factors limiting areal productivity of algal biomass and lipids based on years of R&D work conducted at KDF. Improved biomass and lipid productivity were achieved through strain improvement, culture management strategies (e.g., alleviation of self-shading, de-oxygenation, and efficient CO2 delivery), and technical advancement in downstream harvesting technology. Cost reduction was achieved through optimized CO2 delivery system, flue gas utilization technology, and energy-efficient harvesting technology. Improved overall economics was achieved through a holistic approach by integration of high-value co-products in the process, in addition to yield improvements and cost reductions.

  10. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated ... renewable biomass feedstocks to sustainable and fungible transportation fuels * ...

  11. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis and Catalytic Hydroconversion - Wastewater Cleanup by Catalytic Hydrothermal Gasification

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Olarte, Mariefel V.; Hart, Todd R.

    2015-06-19

    DOE-EE Bioenergy Technologies Office has set forth several goals to increase the use of bioenergy and bioproducts derived from renewable resources. One of these goals is to facilitate the implementation of the biorefinery. The biorefinery will include the production of liquid fuels, power and, in some cases, products. The integrated biorefinery should stand-alone from an economic perspective with fuels and power driving the economy of scale while the economics/profitability of the facility will be dependent on existing market conditions. UOP LLC proposed to demonstrate a fast pyrolysis based integrated biorefinery. Pacific Northwest National Laboratory (PNNL) has expertise in an important technology area of interest to UOP for use in their pyrolysis-based biorefinery. This CRADA project provides the supporting technology development and demonstration to allow incorporation of this technology into the biorefinery. PNNL developed catalytic hydrothermal gasification (CHG) for use with aqueous streams within the pyrolysis biorefinery. These aqueous streams included the aqueous phase separated from the fast pyrolysis bio-oil and the aqueous byproduct streams formed in the hydroprocessing of the bio-oil to finished products. The purpose of this project was to demonstrate a technically and economically viable technology for converting renewable biomass feedstocks to sustainable and fungible transportation fuels. To demonstrate the technology, UOP constructed and operated a pilot-scale biorefinery that processed one dry ton per day of biomass using fast pyrolysis. Specific objectives of the project were to: The anticipated outcomes of the project were a validated process technology, a range of validated feedstocks, product property and Life Cycle data, and technical and operating data upon which to base the design of a full-scale biorefinery. The anticipated long-term outcomes from successful commercialization of the technology were: (1) the replacement of a significant

  12. Demonstration of Integrated Biorefinery Operations for Producing Biofuels and Chemical / Material Products

    SciTech Connect (OSTI)

    Rushton, Michael

    2011-09-01

    Lignol’s project involved the design, construction and operation of a 10% demonstration scale cellulosic ethanol biorefinery in Grand Junction Colorado in partnership with Suncor Energy. The preconstruction phase of the project was well underway when the collapse in energy prices coupled with a significant global economic downturn hit in the end 2008. Citing economic uncertainty, the project was suspended by Suncor. Lignol, with the support of the DOE continued to develop the project by considering relocating the biorefinery to sites that were more favorable in term of feedstock availability, existing infrastructure and potential partners Extended project development activities were conducted at three lead sites which offered certain key benefits to the overall biorefinery project. This work included feedstock availability studies, technical site assessment, engineering, plant design and pilot scale biorefining of feedstocks of interest. The project generated significant operational data on the bioconversion of woody feedstocks into cellulosic ethanol and lignin-based biochemicals. The project also highlighted the challenges faced by technology developers in attracting capital investment in first of kind renewable fuels solutions. The project was concluded on August 29 2011.

  13. Integration of Biorefineries and Nuclear Cogeneration Power Plants - A Preliminary Analysis

    SciTech Connect (OSTI)

    Greene, Sherrell R; Flanagan, George F; Borole, Abhijeet P

    2009-03-01

    Biomass-based ethanol and nuclear power are two viable elements in the path to U.S. energy independence. Numerous studies suggest nuclear power could provide a practical carbon-free heat source alternative for the production of biomass-based ethanol. In order for this coupling to occur, it is necessary to examine the interfacial requirements of both nuclear power plants and bioethanol refineries. This report describes the proposed characteristics of a small cogeneration nuclear power plant, a biochemical process-based cellulosic bioethanol refinery, and a thermochemical process-based cellulosic biorefinery. Systemic and interfacial issues relating to the co-location of either type of bioethanol facility with a nuclear power plant are presented and discussed. Results indicate future co-location efforts will require a new optimized energy strategy focused on overcoming the interfacial challenges identified in the report.

  14. Alpena Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alpena Biorefinery March 25, 2015 Demonstration and Market Transformation Technology Area Review Theodora Retsina American Process, Inc. This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement The goal of the AB was to demonstrate a modular, technically successful, and financially viable process of making cellulosic ethanol from woody biomass extract at wood processing facilities. The project objectives and the value proposition of the

  15. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis, Catalytic Hydroconversion and Co-processing with Vacuum Gas Oil

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis, Catalytic Hydroconversion and Co-processing with Vacuum Gas Oil Raymond G. Wissinger Manager, Renewable Energy & Chemicals Development UOP, LLC This presentation does not contain any proprietary, confidential, or otherwise restricted information © Copyright 2015 UOP LLC, a Honeywell Company 2 File Number Goal Statement * Demonstrate a technically and economically viable approach for converting

  16. Financing Advanced Biofuels, Biochemicals And Biopower In Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financing Advanced Biofuels, Biochemicals And Biopower In Integrated Biorefineries Financing Advanced Biofuels, Biochemicals And Biopower In Integrated Biorefineries Afternoon ...

  17. Fully Integrated Lignocellulosic Biorefinery with Onsite Production of Enzymes and Yeast

    SciTech Connect (OSTI)

    Manoj Kumar, PhD

    2010-06-14

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  18. Vertical Integration of Biomass Saccharification of Enzymes for Sustainable Cellulosic Biofuel Production in a Biorefinery

    SciTech Connect (OSTI)

    Manoj Kumar, PhD

    2011-05-09

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  19. Integrated cellulosic enzymes hydrolysis and fermentative advanced yeast bioconversion solution ready for biomass biorefineries

    SciTech Connect (OSTI)

    Manoj Kumar, PhD

    2011-05-04

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  20. Summative Mass Analysis of Algal Biomass … Integration of Analytical Procedures; Laboratory Analytical Procedure (LAP) (Revised)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contract No. DE-AC36-08GO28308 Summative Mass Analysis of Algal Biomass - Integration of Analytical Procedures Laboratory Analytical Procedure (LAP) Issue Date: December 2, 2013 Revision Date: December 29, 2015 Lieve M.L. Laurens Technical Report NREL/TP-5100-60943 Revised December 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the

  1. Nationwide: The Nation's First Commercial-Scale Biorefineries...

    Broader source: Energy.gov (indexed) [DOE]

    EERE supports 25 integrated biorefineries that are specifically focused on producing cellulosic ethanol, drop-in hydrocarbon biofuel, and bioproducts. As of July 2013, INEOS opened ...

  2. Algal Biofuels Strategy: Report on Workshop Results and Recent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuels Strategy: Report on Workshop Results and Recent Work Breakout Session 3B-Integration of Supply Chains III: Algal Biofuels Strategy Algal Biofuels Strategy: Report on ...

  3. Algal Pretreatment Improves Biofuels Yield and Value; Highlights in Science, NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-05-15

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. This research has been highlighted in the Green Chemistry journal article mentioned above and a milestone report, and is based on the work the researchers are doing for the AOP projects Algal Biomass Conversion and Algal Biofuels Techno-economic Analysis. That work has demonstrated an advanced process for algal biofuel production that captures the value of both the algal lipids and carbohydrates for conversion to biofuels.  With this process, as much as 150 GGE/ton of biomass can be produced, 2-3X more than can be produced by terrestrial feedstocks.  This can also reduce the cost of biofuel production by as much as 40%. This also represents the first ever design case for the algal lipid upgrading pathway.

  4. Mascoma: Frontier Biorefinery Project

    Broader source: Energy.gov [DOE]

    This project involves the construction and operation of a biorefinery that produces ethanol and other co-products from cellulosic materials through advanced consolidated bioprocessing.

  5. Integrated Biorefinery Process

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Concept Development Commercial Viability Technical Viability Concept Proof Commercial Sustainability Information Resources Office of Biomass Program, Web Site: http:...

  6. RAFT Regional Algal Feedstock Testbed

    Broader source: Energy.gov [DOE]

    Breakout Session 3B—Integration of Supply Chains III: Algal Biofuels Strategy RAFT Regional Algal Feedstock Testbed Kimberly Ogden, Professor, University of Arizona, Engineering Technical Lead, National Alliance for Advanced Biofuels and Bioproducts

  7. Elevance Pilot-Scale Biorefinery

    Broader source: Energy.gov [DOE]

    The Elevance biorefinery uses catalyst technology to produce fuels and chemicals from renewable, natural oils.

  8. Alpena Biorefinery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alpena Biorefinery Alpena Biorefinery The Alpena Biorefinery will be constructed in Alpena, Michigan, at the Decorative Panels International hardboard manufacturing facility. ibr_arra_api.pdf (352.76 KB) More Documents & Publications EA-1789: Final Environmental Assessment EA-1789: Finding of No Significant Impact American Process-Alpena Biorefinery Lessons

  9. Integrated Evaluation of Cost, Emissions, and Resource Potential for Algal Biofuels at the National Scale

    SciTech Connect (OSTI)

    Davis, Ryan; Fishman, Daniel; Frank, Edward D.; Johnson, Michael C.; Jones, Susanne B.; Kinchin, Christopher; Skaggs, Richard; Venteris, Erik R.; Wigmosta, Mark S.

    2014-04-21

    Costs, emissions, and resource availability were modeled for the production of 5 billion gallons yr-1 (5 BGY) of renewable diesel in the United States from Chlorella biomass by hydrothermal liquefaction (HTL). The HTL model utilized data from a continuous 1-L reactor including catalytic hydrothermal gasification of the aqueous phase, and catalytic hydrotreatment of the HTL oil. A biophysical algae growth model coupled with weather and pond simulations predicted biomass productivity from experimental growth parameters, allowing site-by-site and temporal prediction of biomass production. The 5 BGY scale required geographically and climatically distributed sites. Even though screening down to 5 BGY significantly reduced spatial and temporal variability, site-to-site, season-to-season, and inter-annual variations in productivity affected economic and environmental performance. Performance metrics based on annual average or peak productivity were inadequate; temporally and spatially explicit computations allowed more rigorous analysis of these dynamic systems. For example, 3-season operation with a winter shutdown was favored to avoid high greenhouse gas emissions, and economic performance was harmed by underutilized equipment during slow-growth periods. Thus, analysis of algal biofuel pathways must combine spatiotemporal resource assessment, economic analysis, and environmental analysis integrated over many sites when assessing national scale performance.

  10. Algal Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuels Algal Biofuels Algae image The Bioenergy Technologies Office's (BETO's) Algae Program is carrying out a long-term applied research and development (R&D) strategy to increase the yields and lower the costs of algal biofuels by working with partners to develop new technologies, to integrate technologies at commercially-relevant scales, and conduct crosscutting analyses to understand the potential and challenges of an algal biofuel industry that is capable of annually producing

  11. Bioenergy Impacts: Biorefineries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POET-DSM's Project LIBERTY and Abengoa's Bioenergy Biomass of Kansas are biorefineries that convert corn stover-non-edible corn stalks, stems, and leaves-into cellulosic ethanol, a ...

  12. American Process - Alpena Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sugar is the New Crude® 1 American Process - Alpena Biorefinery Lessons Learned: Theodora Retsina CEO American Process Company History * Conducted over 400 projects, in USA, Canada, Brazil, Europe, Australia * In more than 150 forest industry plants * Performed O&M services 1995 - 2010 * Designed EPC and operated power cogeneration facilities "across the fence" * Designed projects for mill shutdown installations 1999 - 2010 * Invested in biorefinery R&D - Over 48 patents

  13. New Biorefinery Will Bring Jobs to Northeastern Oregon

    Broader source: Energy.gov [DOE]

    In northeastern Oregon, ZeaChem, a Colorado-based biofuel company, recently broke ground on a 250,000 gallon integrated cellulosic biorefinery. The technology development project is expected to be operating in 2011.

  14. FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act...

    Office of Environmental Management (EM)

    84 Recovery Act - Integrated Algal Biorefinery (IABR) FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act - Integrated Algal Biorefinery (IABR) FOIA Frequently Requested...

  15. Albemarle Biorefinery Inc | Open Energy Information

    Open Energy Info (EERE)

    Biorefinery Inc Jump to: navigation, search Name: Albemarle Biorefinery Inc Place: Raleigh, North Carolina Zip: 27612 Product: A subsidiary of DFI Group that focusses on the...

  16. Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production September 3, 2014 - 12:05pm Addthis News Media ...

  17. Recovery Act : Heterogeneous Feed Biorefinery Project

    SciTech Connect (OSTI)

    Schofield, Richard

    2015-03-15

    To overcome the hurdles associated with introducing a new technology, Enerkem applied to the US DOE for grant assistance with its Pontotoc, Mississippi, biorefinery under the DOE’s Demonstration of Integrated Biorefinery Operations FOA. Consistent with Enerkem’s strategic approach, the project proposed uses post sorted municipal solid waste blended with other forest residue. The proposed biorefinery is to be located within the boundaries of a working landfill, thus simplifying many aspects of environmental permitting while also reducing feedstock acquisition and transportation costs. An economic impact analysis was conducted using an adaptation of the US Department of Energy’s JEDI (Jobs and Economic Development Impact) model for an ethanol-producing biorefinery. The JEDI model, which does not have a thermochemical processing option, had to be configured to reflect a biomass feedstock and was thus adapted by Enerkem to account for the unique feedstock requirements and operations of the Project. According to this model, development, construction, and 2 years of operation of the biorefinery require an investment of approximately $140 million. Also, a construction period of 18 months will create significant direct and indirect employment. Indirect employment includes steel manufacturers, construction materials manufacturers, material shipping, equipment manufacturers and fabrication, etc. During the construction phase of the Project, 210 total jobs are expected to be created, including 145 direct jobs and 72 indirect or induced jobs. During the operating period, 131 jobs would be created, 95 of which are direct. It is anticipated that the project will create at least 10 new jobs (included in the above figures and in addition to the JEDI data) in the sorting and recycling sector, since the project will require operations in sorting MSW since valuable ferrous, nonferrous and recyclable plastic materials will be sorted from MSW as part of the process that isolates

  18. Alpena Biorefinery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The American Process Inc. (API) Alpena Biorefinery converts the industrial waste stream ... recovery of wood sugars from the mill's liquid waste stream (about 23 dry tons per day). ...

  19. Lignol Innovations, Inc. Demonstration-Scale Biorefinery

    Broader source: Energy.gov [DOE]

    The Lignol Innovations, Inc., biorefinery will produce cellulosic ethanol, high purity lignin, and furfural from hardwoods.

  20. Flambeau River Biofuels Demonstration-Scale Biorefinery | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flambeau River Biofuels Demonstration-Scale Biorefinery Flambeau River Biofuels Demonstration-Scale Biorefinery The Flambeau River biorefinery will be added to an existing pulp and ...

  1. Renewable Diesel from Algal Lipids: An Integrated Baseline for Cost, Emissions, and Resource Potential from a Harmonized Model

    SciTech Connect (OSTI)

    Davis, R.; Fishman, D.; Frank, E. D.; Wigmosta, M. S.; Aden, A.; Coleman, A. M.; Pienkos, P. T.; Skaggs, R. J.; Venteris, E. R.; Wang, M. Q.

    2012-06-01

    The U.S. Department of Energy's Biomass Program has begun an initiative to obtain consistent quantitative metrics for algal biofuel production to establish an 'integrated baseline' by harmonizing and combining the Program's national resource assessment (RA), techno-economic analysis (TEA), and life-cycle analysis (LCA) models. The baseline attempts to represent a plausible near-term production scenario with freshwater microalgae growth, extraction of lipids, and conversion via hydroprocessing to produce a renewable diesel (RD) blendstock. Differences in the prior TEA and LCA models were reconciled (harmonized) and the RA model was used to prioritize and select the most favorable consortium of sites that supports production of 5 billion gallons per year of RD. Aligning the TEA and LCA models produced slightly higher costs and emissions compared to the pre-harmonized results. However, after then applying the productivities predicted by the RA model (13 g/m2/d on annual average vs. 25 g/m2/d in the original models), the integrated baseline resulted in markedly higher costs and emissions. The relationship between performance (cost and emissions) and either productivity or lipid fraction was found to be non-linear, and important implications on the TEA and LCA results were observed after introducing seasonal variability from the RA model. Increasing productivity and lipid fraction alone was insufficient to achieve cost and emission targets; however, combined with lower energy, less expensive alternative technology scenarios, emissions and costs were substantially reduced.

  2. Integrated Corn-Based Biorefinery

    Broader source: Energy.gov [DOE]

    This fact sheet summarizes a U.S. Department of Energy Biomass Program research and development project.

  3. EIS-0407: Abengoa Biorefinery Project Near Hugoton, Kansas

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared an environmental impact statement to assess the potential environmental impacts associated with the proposed action of providing Federal financial assistance to Abengoa Bioenergy Biomass of Kansas, LLC (Abengoa Bioenergy) to support the design, construction, and startup of a commercial-scale integrated biorefinery to be located near the city of Hugoton in Stevens County, southwestern Kansas.

  4. Algal functional annotation tool

    SciTech Connect (OSTI)

    2012-07-12

    Abstract BACKGROUND: Progress in genome sequencing is proceeding at an exponential pace, and several new algal genomes are becoming available every year. One of the challenges facing the community is the association of protein sequences encoded in the genomes with biological function. While most genome assembly projects generate annotations for predicted protein sequences, they are usually limited and integrate functional terms from a limited number of databases. Another challenge is the use of annotations to interpret large lists of 'interesting' genes generated by genome-scale datasets. Previously, these gene lists had to be analyzed across several independent biological databases, often on a gene-by-gene basis. In contrast, several annotation databases, such as DAVID, integrate data from multiple functional databases and reveal underlying biological themes of large gene lists. While several such databases have been constructed for animals, none is currently available for the study of algae. Due to renewed interest in algae as potential sources of biofuels and the emergence of multiple algal genome sequences, a significant need has arisen for such a database to process the growing compendiums of algal genomic data. DESCRIPTION: The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on KEGG

  5. Algal functional annotation tool

    Energy Science and Technology Software Center (OSTI)

    2012-07-12

    Abstract BACKGROUND: Progress in genome sequencing is proceeding at an exponential pace, and several new algal genomes are becoming available every year. One of the challenges facing the community is the association of protein sequences encoded in the genomes with biological function. While most genome assembly projects generate annotations for predicted protein sequences, they are usually limited and integrate functional terms from a limited number of databases. Another challenge is the use of annotations tomore » interpret large lists of 'interesting' genes generated by genome-scale datasets. Previously, these gene lists had to be analyzed across several independent biological databases, often on a gene-by-gene basis. In contrast, several annotation databases, such as DAVID, integrate data from multiple functional databases and reveal underlying biological themes of large gene lists. While several such databases have been constructed for animals, none is currently available for the study of algae. Due to renewed interest in algae as potential sources of biofuels and the emergence of multiple algal genome sequences, a significant need has arisen for such a database to process the growing compendiums of algal genomic data. DESCRIPTION: The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on

  6. Range Fuels Commercial-Scale Biorefinery

    Broader source: Energy.gov [DOE]

    The Range Fuels commercial-scale biorefinery will use a variety of feedstocks to create cellulosic ethanol, methanol, and power.

  7. Engineering Cellulases for Biorefinery

    SciTech Connect (OSTI)

    Manoj Kumar, PhD

    2010-06-27

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  8. Algal Biofuels Strategy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuels Strategy Report on Workshop Results and Recent Work Roxanne Dempsey Technology Manager 2 Algal Biofuels Strategy Session Agenda-Report on Workshop Results and Recent ...

  9. Algal Biofuels Strategy: Report on Workshop Results and Recent Work

    Broader source: Energy.gov [DOE]

    Breakout Session 3B—Integration of Supply Chains III: Algal Biofuels Strategy Algal Biofuels Strategy: Report on Workshop Results and Recent Work Roxanne Dempsey, Technology Manager, Bioenergy Technologies Office, U.S. Department of Energy

  10. Exploring the Utilization of Complex Algal Communities to Address Algal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pond Crash and Increase Annual Biomass Production for Algal Biofuels | Department of Energy Exploring the Utilization of Complex Algal Communities to Address Algal Pond Crash and Increase Annual Biomass Production for Algal Biofuels Exploring the Utilization of Complex Algal Communities to Address Algal Pond Crash and Increase Annual Biomass Production for Algal Biofuels white paper exploring complex algal communities as a means of increasing algal biomass production

  11. NewPage Demonstration-Scale Biorefinery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NewPage Demonstration-Scale Biorefinery NewPage Demonstration-Scale Biorefinery The NewPage biorefinery will be added to an existing pulp and paper mill to create renewable ...

  12. POET-DSM biorefinery in Iowa | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POET-DSM biorefinery in Iowa POET-DSM biorefinery in Iowa Addthis Cellulosic ethanol biorefinery 1 of 10 Cellulosic ethanol biorefinery The mechanical building (front), solid/liquid separation building (left), and anaerobic digestion building (back) at POET-DSM's Project LIBERTY biorefinery in Emmetsburg, Iowa. Image: Courtesy of POET-DSM Stacking up biomass 2 of 10 Stacking up biomass The biomass stackyard, where corn waste is stored at POET-DSM's Project LIBERTY biorefinery. Image: Courtesy of

  13. Advanced and Cellulosic Biofuels and Biorefineries: State of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics ...

  14. EERE Energy Impacts: Biorefineries Give Local Farmers Opportunities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    stock piled outside of POET-DSMs Project LIBERTY cellulosic ethanol biorefinery. ... stover stock piled outside of POET-DSM's Project LIBERTY cellulosic ethanol biorefinery. ...

  15. Verenium Pilot- and Demonstration-Scale Biorefinery | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Verenium Pilot- and Demonstration-Scale Biorefinery Verenium Pilot- and Demonstration-Scale Biorefinery The Verenium facility will produce ethanol from lignocellulosic agricultural ...

  16. Algal Pretreatment Improves Biofuels Yield and Value (Fact Sheet), NREL Highlights, Science, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced process for algal biofuel production captures the value of both the lipids and carbohydrates for conversion to biofuels. The major challenges associated with algal biofuels production in a biorefinery-type setting include improving biomass uti- lization, increasing the process energetic yields, reducing waste and greenhouse gas emissions, and providing economically viable and scalable coproduct concepts. Researchers from the National Renewable Energy Laboratory (NREL) have dem-

  17. Investigation of thermochemical biorefinery sizing and environmental...

    Office of Scientific and Technical Information (OSTI)

    Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed pre-processing supply system designs...

  18. A Biorefinery Goes 'Mod' and Small

    Broader source: Energy.gov [DOE]

    Minnesota-based Easy Energy Systems sells small-scale, easy-to use biorefineries. The company expects to create 100 jobs because of new orders.

  19. Demonstration of Pyrolysis Biorefinery Concept for Biopower,...

    Broader source: Energy.gov (indexed) [DOE]

    Office (BETO) Project Peer Review Demonstration of Pyrolysis Biorefinery Concept for ... plants * Product development and demonstration *4 Biomass Prep and Handling Pyrolysis ...

  20. Advanced Algal Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Systems Research and development (R&D) on advanced algal biofuels and bio- products presents an opportunity to sustainably expand biomass resource potential in the United States. The Bio- energy Technologies Office's (BETO's) Advanced Algal Systems Program is carrying out a long-term, applied R&D strategy to lower the costs of algal biofuel production by working with partners to develop revolutionary technologies and conduct crosscut- ting analyses to better understand the

  1. EA-1788: Finding of No Significant Impact | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sapphire Energy Inc.'s Integrated Algal Biorefinery (IABR) Facility in Columbus, New Mexico Sapphire Energy Company proposes to construct and operated an Integrated Algal...

  2. EA-1788: Final Environmental Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sapphire Energy, Inc.'s Integrated Algal Biorefinery (IABR) Facility in Columbus, New Mexico Sapphire Energy Company proposes to construct and operated an Integrated Algal...

  3. Algal functional annotation tool

    SciTech Connect (OSTI)

    Lopez, D.; Casero, D.; Cokus, S. J.; Merchant, S. S.; Pellegrini, M.

    2012-07-01

    The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on KEGG pathway maps and batch gene identifier conversion.

  4. Algal Biomass Conversion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory March 24 th , 2015 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Goal Statement Reduce algal biofuel ...

  5. Algal Biomass Valorization

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Energy Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Goal Statement 1. Reduce cost of algal ...

  6. Algal Polyculture Conversion & Analysis

    Broader source: Energy.gov (indexed) [DOE]

    ... + HTL processing; * Preliminary GIS land and impaired water source screening ... of LCA and refinement of TEA and GIS feasibility. - Algal Polyculture Conversion ...

  7. Algal Biofuel Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuel Technologies States Biomass Clean Cities Web Conference November 6, 2008 Al Darzins, Ph.D. Principal Group Manager National Bioenergy Center NREL is a national ...

  8. Biorefinery Grant Announcement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biorefinery Grant Announcement Biorefinery Grant Announcement February 28, 2007 - 10:28am Addthis Prepared Remarks for Energy Secretary Bodman Thank you all for coming. In his State of the Union address last month, President Bush set forth an aggressive plan to reduce America's consumption of gasoline over the next ten years. The President's "20 in 10" initiative would increase the amount of renewable and alternative fuels used in the transportation sector to 35 billion gallons a year

  9. Myriant Succinic Acid BioRefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or otherwise restricted information Myriant Succinic Acid BioRefinery DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Mark Shmorhun, Principal Investigator March 25, 2015 2 Goal Statement * Renewable Succinic Acid Production * A high value bio based chemical derived from renewable feedstocks * Validate proposed technology at a demonstration plant located in Lake Providence, LA. * Nameplate Capacity: 30 million lbs/year 3 Myriant's Succinic Acid BioRefinery (MySAB) Lake

  10. Myriant Succinic Acid Biorefinery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Myriant Succinic Acid Biorefinery Myriant Succinic Acid Biorefinery This American Recovery and Reinvestment Act project will focus on the production of bio-succinic acid from a variety of feedstocks. ibr_arra_myriant.pdf (364.64 KB) More Documents & Publications Commercialization of Bio-Based Chemicals: A Successful Public-Private Partnership EA-1787: Final Environmental Assessment EA-1787: Finding of No Significant Impact

  11. The Impact of Biomass Feedstock Supply Variability on the Delivered Price to a Biorefinery in the Peace River Region of Alberta, Canada

    SciTech Connect (OSTI)

    Stephen, Jamie; Sokhansanj, Shahabaddine; Bi, X.T.; Sowlati, T.; Kloeck, T.; Townley-Smith, Lawrence; Stumborg, Mark

    2010-01-01

    Agricultural residue feedstock availability in a given region can vary significantly over the 20 25 year lifetime of a biorefinery. Since delivered price of biomass feedstock to a biorefinery is related to the distance travelled and equipment optimization, and transportation distance increases as productivity decreases, productivity is a primary determinant of feedstock price. Using the Integrated Biomass Supply Analysis and Logistics (IBSAL) modeling environment and a standard round bale harvest and delivery scenario, harvest and delivery price were modelled for minimum, average, and maximum yields at four potential biorefinery sites in the Peace River region of Alberta, Canada. Biorefinery capacities ranged from 50,000 to 500,000 tonnes per year. Delivery cost is a linear function of transportation distance and can be combined with a polynomial harvest function to create a generalized delivered cost function for agricultural residues. The range in delivered cost is substantial and is an important consideration for the operating costs of a biorefinery.

  12. Multitasking mesoporous nanomaterials for biorefinery applications

    SciTech Connect (OSTI)

    Kandel, Kapil

    2013-01-01

    in microalgae biorefinery. Two different integrated biorefinery systems are highlighted. (i) OM-MSNs are used to harvest microalgae and selectively sequester free fatty acids (FFAs). (ii) OM-MSNs are shown to selectively sequester FFAs and convert them into diesel-range liquid hydrocarbon fuels. A similar MSN supported metal nanoparticle catalyst is demonstrated to transform FFAs into green diesel with even greater activity and selectivity. The incorporation of a different organic functional group into MSN provides a selective adsorbent for separation and purification of α-tocopherol from microalgae oil. The functional group with electron deficient aromatic rings demonstrated high sequestration capacity and selectivity of {alpha}-tocopherol.

  13. Algal Biology Program at Los Alamos gets a star

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Algal Biofuels Algae image The Bioenergy Technologies Office's (BETO's) Algae Program is carrying out a long-term applied research and development (R&D) strategy to increase the yields and lower the costs of algal biofuels by working with partners to develop new technologies, to integrate technologies at commercially-relevant scales, and conduct crosscutting analyses to understand the potential and challenges of an algal biofuel industry that is capable of annually producing

  14. Nationwide: The Nations First Commercial-Scale Biorefineries

    Broader source: Energy.gov [DOE]

    EERE's investment aids in the creation of the first commercial-scale biorefineries in the United States.

  15. Sustainable Algal Biofuels Consortium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuels Consortium Thursday May 21, 2013 9.5.1.5, 9.5.1.7, 9.5.1.8 Dr. Gary Dirks (SABC Principal Investigator) Dr. John McGowen (SABC Project Manager) Arizona State University Dr. Philip Pienkos (SABC Director) NREL Cultivating Energy Solutions The primary goals were to evaluate biochemical conversion as a potentially viable strategy for converting all the components of algal biomass into biofuels and evaluate the fit-for-use properties of those algal derived fuels and fuel

  16. Economy Through Product Diversity: Integrated Biorefineries ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Achieving national energy and climate goals will require an economically viable and environmentally sustainable U.S. bioindustry. A crucial step in developing this industry is to ...

  17. Economy Through Product Diversity: Integrated Biorefineries

    Energy Savers [EERE]

    broad range of biomass feedstocks into affordable biofuels, biopower, and other products. ... produce 21 billion gallons of advanced biofuels in 2022. This target creates an urgent ...

  18. Integrated Biorefineries: Biofuels, Bioproducts, and Biopower | Department

    Energy Savers [EERE]

    | Department of Energy Solar Panel Maker Scales Up, Lowering Costs while Creating Jobs Innovative Solar Panel Maker Scales Up, Lowering Costs while Creating Jobs May 16, 2011 - 12:41pm Addthis The end of Abound Solar’s PV manufacturing line | Photo Courtesy of Abound Solar The end of Abound Solar's PV manufacturing line | Photo Courtesy of Abound Solar Minh Le Minh Le Deputy Director, Solar Energy Technologies Office It's one thing to call solar energy a "growth industry,"

  19. NREL: Biomass Research - Capabilities in Integrated Biorefinery...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Department of Energy. A yellow ladder is connected to the side of the right tank. A man at the far end of the room examines the pipes that lead to the tanks. In the...

  20. NREL: Sustainable NREL - Integrated Biorefinery Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency Features Natural ventilation through operable windows Daylighting Open air cubicles LED lights with lighting control system Sustainability Features Composting and ...

  1. Integrated Biorefineries:Biofuels, Biopower, and Bioproducts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solazyme, Inc. Peoria, IL Pilot Algae UOP, LLC Kapolei, HI Pilot Thermo - Pyrolysis ZeaChem, Inc. Boardman, OR Pilot Thermo - Pyrolysis Elevance* Boilingbrook, IL...

  2. Integrated Biorefinery Process | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    At the February 12, 2009 quarterly joint Web conference of DOE's Biomass and Clean Cities ... Quarterly Biomass ProgramClean Cities States Web Conference: January 21, 2010 The Current ...

  3. Algal Biofuels Strategy Workshops

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) hosted the Algal Biology Toolbox Workshop on May 24–25, 2016, in San Diego, California. Because biological productivity is a key...

  4. Regional Algal Feedstock Testbed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contact: Kimberly Ogden Department of Chemical and Environmental Engineering University of Arizona Tucson, Arizona USA ogden@email.arizona.edu Project Goals * Obtain long term algal cultivation data in outdoor pond systems * Work with industrial, government, and academic partners to advance the algal biofuels and bio-products industry * Optimize biomass and lipid content for production of biofuel using impaired waters * Develop real time sensors and control strategies for efficient cultivation *

  5. Algal Biofuels | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels NREL is developing technologies and helping prepare a new generation workforce to enable the commercialization of algal biofuels. Photo of bright green algae in flasks in fluid inside a lit, metallic grow chamber. We are focused on understanding the current cost for algal biofuels production and using that information to identify and develop cost reduction strategies. Our work is distributed across the entire value chain from production strain identification to biofuel and bioproducts

  6. Pathways for Algal Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DEPARTMENT OF ENERGY BIOMASS PROGRAM Pathways for Algal Biofuels November 27, 2012 Daniel B. Fishman Lead Technology Development Manager 2 | Biomass Program eere.energy.gov Adds value to unproductive or marginal lands of a range of biofuel feedstocks suitable for diesel and aviation fuels Activities include R&D on algal feedstocks and issues related to the sustainable production of algae-derived biofuels. Algae Feedstocks Courtesy Sapphire Courtesy Sapphire Courtesy University of Arizona 3

  7. Advancing Commercialization of Algal Biofuels through Increased...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advancing Commercialization of Algal Biofuels through Increased Biomass Productivity ... including: NAABB, Cornell's Marine Algal Biofuels Consortium, ATP3. * Participation in ...

  8. UOP Pilot-Scale Biorefinery

    Broader source: Energy.gov [DOE]

    This project by UOP will leverage two commercially proven core technologies, pyrolysis and hydroconversion, into an integrated platform.

  9. To the Biorefinery: Delievered Forestland and Agricultural Resources Factsheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Biorefinery: Delivered Forestland and Agricultural Resources It can be challenging and costly to trans- port biomass feedstock supplies from the roadside, or farmgate, to a biorefinery. Given the geographic dispersion and low- bulk density of cellulosic feedstocks, cost- effective scaling of commercial biorefinery operations requires overcoming many challenges. The Biomass Research and Development Board's Feedstock Logistics Interagency Working Group identified four primary barriers related

  10. Algal Biofuels Fact Sheet

    SciTech Connect (OSTI)

    2009-10-27

    This fact sheet provides information on algal biofuels, which are generating considerable interest around the world. They may represent a sustainable pathway for helping to meet the U.S. biofuel production targets set by the Energy Independence and Security Act of 2007.

  11. Five Things to Know about Biorefinery Investments | Department...

    Office of Environmental Management (EM)

    Also, three new companies were awarded contracts to construct biorefineries to produce "drop-in" biofuels for the military and private sector last month. Energy Department-funded ...

  12. ClearFuels-Rentech Pilot-Scale Biorefinery

    Broader source: Energy.gov [DOE]

    The ClearFuels-Rentech pilot-scale biorefinery will use Fisher-Tropsch gas-to-liquids technology to create diesel and jet fuel.

  13. Second-Generation Biofuels from Multi-Product Biorefineries Combine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cellana Inc. 2014 Second-Generation Biofuels from Multi-Product Biorefineries Combine ... commercial-scale quantities of advanced biofuels. 4. To the extent that the prices of ...

  14. Second-Generation Biofuels from Multi-Product Biorefineries Combine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability Second-Generation Biofuels from Multi-Product ...

  15. Grand Opening of Abengoa's Biorefinery: Nation's Third Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The nation's third commercial-scale cellulosic ethanol biorefinery celebrates its grand ... The plant will produce cellulosic ethanol from non-edible corn stalks, stems, and leaves ...

  16. Succinic acid production on xylose-enriched biorefinery streams by Actinobacillus succinogenes in batch fermentation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Salvachua, Davinia; Mohagheghi, Ali; Smith, Holly; Bradfield, Michael F. A.; Nicol, Willie; Black, Brenna A.; Biddy, Mary J.; Dowe, Nancy; Beckham, Gregg T.

    2016-02-02

    Co-production of chemicals from lignocellulosic biomass alongside fuels holds promise for improving the economic outlook of integrated biorefineries. In current biochemical conversion processes that use thermochemical pretreatment and enzymatic hydrolysis, fractionation of hemicellulose-derived and cellulose-derived sugar streams is possible using hydrothermal or dilute acid pretreatment (DAP), which then offers a route to parallel trains for fuel and chemical production from xylose- and glucose-enriched streams. Succinic acid (SA) is a co-product of particular interest in biorefineries because it could potentially displace petroleum-derived chemicals and polymer precursors for myriad applications. Furthermore, SA production from biomass-derived hydrolysates has not yet been fully exploredmore » or developed.« less

  17. National Algal Biofuels Technology Roadmap

    SciTech Connect (OSTI)

    Ferrell, John; Sarisky-Reed, Valerie

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  18. U.S. Department of Energy Small-Scale Biorefineries Project Overview |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Small-Scale Biorefineries Project Overview U.S. Department of Energy Small-Scale Biorefineries Project Overview A chart indicating round one and round two selections for the U.S. Department of Energy Small-Scale Biorefineries Project Overview. U.S. Department of Energy Small-Scale Biorefineries Project Overview (31.45 KB) More Documents & Publications U.S. Department of Energy Small-Scale Biorefineries: Project Overview

  19. U.S. Department of Energy Small-Scale Biorefineries: Project Overview |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Small-Scale Biorefineries: Project Overview U.S. Department of Energy Small-Scale Biorefineries: Project Overview Chart that shows which small-scale biorefineries were approved to receive DOE funding in 2008, a summary of their fields of focus, their cost share, and how much DOE is investing in them. small_scale_biorefinery_overview.pdf (37.32 KB) More Documents & Publications U.S. Department of Energy Small-Scale Biorefineries Project Overview

  20. Algal Biofuels Strategy Workshop - Fall Event

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE received significant feedback from Algal Biofuels Strategy Workshop participants. ... There will be a second Algal Biofuels Strategy Workshop in the spring of 2014 to build on ...

  1. Algal Biofuels Strategy Workshop - Fall Event

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE-funded report 7 outlining environmental sustainability indicators for algal biofuels. ... If algal biofuels are going to succeed, there needs to be a critical mass of companies ...

  2. Algal Biofuels Strategy Workshop - Fall Event

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... database for genetic sequences is critical to advancing a commercial algal biofuels field. ... not funded. * Base of the (biology algal biofuels) + critically needed 3. Provide funding ...

  3. Algal Biofuels Techno-Economic Analysis

    Broader source: Energy.gov (indexed) [DOE]

    Algal Biofuels Techno-Economic Analysis Algae Platform Review March 24, 2015 Alexandria, ... viability, eventual adoption of algal biofuelsproducts into U.S. market 2 NATIONAL ...

  4. Webinar: Algal Biofuels Consortium Releases Groundbreaking Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuels Consortium Releases Groundbreaking Research Results Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results Dr. Jose Olivares of Los Alamos ...

  5. Algal Biofuels Strategy Workshop - Fall Event

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Algal Biofuels Strategy Proceedings from the November 19-20, 2013, Workshop Mesa, ... (BETO's) Algae Program hosted the Algal Biofuels Strategy Workshop at Arizona State ...

  6. Advanced Algal Systems Fact Sheet

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office’s Advanced Algal Systems Program is carrying out a long-term, applied R&D strategy to lower the costs of algal biofuel production by working with partners to develop revolutionary technologies and conduct crosscutting analyses to better understand the potential and challenges of the algae industry.

  7. Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks

    SciTech Connect (OSTI)

    Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

    2009-06-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

  8. Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy and Politics | Department of Energy and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics Afternoon Plenary Introduction Brent Erickson, Executive Vice President, BIO b13_erickson_day2-apintro.pdf (2.18 MB) More Documents & Publications Biomass 2013 Agenda Biomass 2012 Agenda U.S. Biofuels Industry: Mind the Gap

  9. DOE Announces $160 Million for Biorefinery Construction and Highlights New

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agricultural Program to Promote Biofuels | Department of Energy 60 Million for Biorefinery Construction and Highlights New Agricultural Program to Promote Biofuels DOE Announces $160 Million for Biorefinery Construction and Highlights New Agricultural Program to Promote Biofuels February 22, 2006 - 12:11pm Addthis Funding Paves the Way for Diversifying America's Energy Mix DECATUR, IL - Energy Secretary Samuel W. Bodman, today announced $160 million in cost-shared funding over three years to

  10. Algal Biofuels; Algal Biofuels R&D at NREL (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  11. Algal Biofuels Can Make a Difference (Presentation)

    SciTech Connect (OSTI)

    Pienkos, P.

    2012-03-01

    Presentation given at the 2012 Department of Homeland Security Renewable Energy Roundtable on Algal Fuels.

  12. Algal Biology Toolbox Workshop Summary Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Algal Biology Toolbox Workshop Summary Report summarizes an event hosted by the U.S. Department of Energy’s Bioenergy Technologies Office’s Advanced Algal Systems Program in May 2016. The purpose of the Algal Biology Toolbox Workshop was to collect input from experts in the field of algal biology regarding (1) the current state of algal biological tools, including our understanding of algal biology and biochemistry, available molecular toolboxes, omics databases, and other resources; (2) challenges to developing and applying a full suite of biological tools to improve algae performance and system robustness; and (3) strategies to advance progress toward commercial algal biofuels.

  13. POET-DSM's Integrated Model | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POET-DSM's Integrated Model POET-DSM's Integrated Model Breakout Session 1-C: Bringing Biorefineries into the Mainstream POET-DSM's Integrated Model Doug Berven, Vice President of ...

  14. SPECIAL_TERMS_AND_CONDITIONS_FOR_USE_IN_MOST_GRANTS_AND_COOPERATIVE...

    Office of Environmental Management (EM)

    Publications Financial Assistance Funding Opportunity Announcement DISCLAIMER: FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act - Integrated Algal Biorefinery (IABR)...

  15. BETO Announces June Webinar: Algal Biofuels Consortium Releases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results BETO Announces June Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results ...

  16. Controlling Accumulation of Fermentation Inhibitors in Biorefinery Recycle Water Using Microbial Fuel Cells

    SciTech Connect (OSTI)

    Borole, Abhijeet P; Mielenz, Jonathan R; Leak, David; Vishnivetskaya, Tatiana A; Hamilton, Choo Yieng; Andras, Calin

    2009-01-01

    Background Microbial fuel cells (MFC) and microbial electrolysis cells are electrical devices that treat water using microorganisms and convert soluble organic matter into electricity and hydrogen, respectively. Emerging cellulosic biorefineries are expected to use large amounts of water during production of ethanol. Pretreatment of cellulosic biomass results in production of fermentation inhibitors which accumulate in process water and make the water recycle process difficult. Use of MFCs to remove the inhibitory sugar and lignin degradation products from recycle water is investigated in this study. Results Use of an MFC to reduce the levels of furfural, 5-hydroxymethylfurfural, vanillic acid, 4- hydroxybenzaldehyde and 4-hydroxyacetophenone while simultaneously producing electricity is demonstrated here. An integrated MFC design approach was used which resulted in high power densities for the MFC, reaching up to 3700mW/m2 (356W/m3 net anode volume) and a coulombic efficiency of 69%. The exoelectrogenic microbial consortium enriched in the anode was characterized using a 16S rRNA clone library method. A unique exoelectrogenic microbial consortium dominated by -Proteobacteria (50%), along with -Proteobacteria (28%), -Proteobacteria (14%), -Proteobacteria (6%) and others was identified. The consortium demonstrated broad substrate specificity, ability to handle high inhibitor concentrations (5 to 20mM) with near complete removal, while maintaining long-term stability with respect to power production. Conclusions Use of MFCs for removing fermentation inhibitors has implications for: 1) enabling higher ethanol yields at high biomass loading in cellulosic ethanol biorefineries, 2) improved water recycle and 3) electricity production up to 25% of total biorefinery power needs.

  17. Algal Biofuels Research Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    This fact sheet provides information about Algal Biofuels Research Laboratory capabilities and applications at NREL's National Bioenergy Center.

  18. Algal Biofuels Strategy Workshops | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuels Strategy Workshops Algal Biofuels Strategy Workshops Sharpening Our Tools: Algal Biology Toolbox Workshop The U.S. Department of Energy's Bioenergy Technologies Office (BETO) will host the Algal Biology Toolbox Workshop on May 24-25, 2016, in San Diego, California. Because biological productivity is a key driver for the economic viability of algae-based biofuels, improving on the performance of native strains is a critical element of the research efforts funded by BETO's Advanced

  19. Membranes Key to Biorefinery Success | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Miming living organisms processes for biorefineries Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Miming living organisms processes for biorefineries Jimmy Lopez 2015.09.10 Membranes play a key role in the human body, filtering out bacteria and viruses and also ensuring cells absorb essential nutrients. They are

  20. Sustainable and efficient pathways for bioenergy recovery from low-value process streams via bioelectrochemical systems in biorefineries

    SciTech Connect (OSTI)

    Borole, Abhijeet P.

    2015-08-25

    Conversion of biomass into bioenergy is possible via multiple pathways resulting in production of biofuels, bioproducts and biopower. Efficient and sustainable conversion of biomass, however, requires consideration of many environmental and societal parameters in order to minimize negative impacts. Integration of multiple conversion technologies and inclusion of upcoming alternatives such as bioelectrochemical systems can minimize these impacts and improve conservation of resources such as hydrogen, water and nutrients via recycle and reuse. This report outlines alternate pathways integrating microbial electrolysis in biorefinery schemes to improve energy efficiency while evaluating environmental sustainability parameters.

  1. Sustainable and efficient pathways for bioenergy recovery from low-value process streams via bioelectrochemical systems in biorefineries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borole, Abhijeet P.

    2015-01-01

    Conversion of biomass into bioenergy is possible via multiple pathways resulting in production of biofuels, bioproducts and biopower. Efficient and sustainable conversion of biomass, however, requires consideration of many environmental and societal parameters in order to minimize negative impacts. Integration of multiple conversion technologies and inclusion of upcoming alternatives such as bioelectrochemical systems can minimize these impacts and improve conservation of resources such as hydrogen, water and nutrients via recycle and reuse. This report outlines alternate pathways integrating microbial electrolysis in biorefinery schemes to improve energy efficiency while evaluating environmental sustainability parameters.

  2. Algorithms for Filtering Insect Echoes from Cloud Radar Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels » Algal Integrated Biorefineries Algal Integrated Biorefineries The Algae Program works closely with the Demonstration and Deployment Program on projects that can validate advancements toward commercialization at increasing scales. Integrated biorefineries apply R&D to scale-up facilities to a degree relevant to commercial applications. U.S. Department of Energy funding of this work helps to advance the industry by minimizing the risk of these technologies for investors. View a map

  3. 2011 Biomass Program Platform Peer Review. Integrated Biorefineries

    SciTech Connect (OSTI)

    Rossmeissl, Neil

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s IBR Platform Review meeting.

  4. Financing Advanced Biofuels, Biochemicals And Biopower In Integrated Biorefineries

    Broader source: Energy.gov [DOE]

    Afternoon Plenary Session: Current Trends in the Advanced Bioindustry Bioenergy Project Finance Mechanisms—Mark Riedy, Counsel, Kilpatrick, Townsend & Stockton LLP

  5. Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Game | Department of Energy Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean Energy Game Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean Energy Game February 9, 2011 - 1:40pm Addthis Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean Energy Game Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy How does it work? Vegetative and agricultural waste reacts with oxygen to produce synthesis

  6. Secretaries Chu and Vilsack Announce More Than $600 Million Investment in Advanced Biorefinery Projects

    Broader source: Energy.gov [DOE]

    Private company investment brings total to nearly $1.3 billion for 19 biorefinery projects to create jobs and new markets for rural America

  7. Algal Biofuels Strategy Workshop - Fall Event

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and therefore, could hinder the algal biofuels commercial viability. 2. Has this topic ... Regulatory barriers to advanced biofuels are difficult for stakeholders to overcome; how ...

  8. Major Nutrient Recycling for Sustained Algal Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... ability to remineralize biological N to ammonia * The ... 1776) cultivated with phosphorus replacement (% of ... into the algal oil removal process * Optimize growth ...

  9. Algal Biofuel Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuel Technologies Algal Biofuel Technologies At the November 6, 2008 joint Web conference of DOE's Biomass and Clean Cities programs, Al Darzins (National Renewable Energy ...

  10. NREL Report Provides Documentation of the Advanced Biorefinery Landscape

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory (NREL) released a report in January 2015 on the status of the non-starch ethanol and renewable hydrocarbon biofuels industry in the United States. The report, “2013 Survey of Non-Starch Ethanol and Renewable Hydrocarbon Biofuels Producers,” is the first of its kind to provide publically available, open source documentation on the state of the advanced biorefinery landscape.

  11. New algal research journal has LANL scientists at the helm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Algal Research journal has scientists at the helm New algal research journal has LANL scientists at the helm Algal Research will cover all areas of emerging technologies in ...

  12. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Pathway More Documents & Publications Pathways for Algal Biofuels Bioenergy Technologies Office R&D Pathways: Algal Lipid Upgrading 2013 Peer Review Presentations-Algae

  13. Exploring the Utilization of Complex Algal Communities to Address...

    Broader source: Energy.gov (indexed) [DOE]

    (562.64 KB) More Documents & Publications Algal Biofuels Strategy Workshop - Fall Event Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research 2013 Peer ...

  14. Exploring the Utilization of Complex Algal Communities to Address...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Biomass Production for Algal Biofuels March 2014 ii Table of Contents ... iii A. Topic Summary: Fostering Algal Biofuels Production through Research & ...

  15. Release of the 2016 National Algal Biofuels Technology Review...

    Broader source: Energy.gov (indexed) [DOE]

    The just-released 2016 National Algal Biofuels Technology Review captures the exciting achievements of the field of algal biofuels, as well as articulates new challenges, lessons ...

  16. Five Energy Department Accomplishments in Algal Biofuels | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Office (BETO) to overcome the barriers to creating cost-effective algal biofuels. ... its first customer, which is big step towards commercialization for its algal biofuels. ...

  17. Algal Biology Toolbox Workshop Brings Lead Experts to Inform...

    Office of Environmental Management (EM)

    needed to achieve affordable, scalable, and sustainable algae-based biofuels. It is the first algal biofuels strategy workshop to focus specifically on improvements in algal ...

  18. DOE Announces Webinars on Algal Biofuels Consortium Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuels Consortium Research Results, Solar Energy Maps, and More DOE Announces Webinars on Algal Biofuels Consortium Research Results, Solar Energy Maps, and More June 10, ...

  19. Bioenergy Technologies Office R&D Pathways: Algal Lipid Upgrading...

    Office of Environmental Management (EM)

    Algal Lipid Upgrading Bioenergy Technologies Office R&D Pathways: Algal Lipid Upgrading ... chosen to convert biomass into hydrocarbon fuels by the Bioenergy Technologies Office. ...

  20. NREL Algal Biofuels Projects and Partnerships (Brochure), NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL is engaged in several algal biofuels research and development projects focused on improving the economics of the algal biofuels production process Novel Microalgal Production ...

  1. Sharpening Our Tools: Algal Biology Toolbox Workshop

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office (BETO) will host the Algal Biology Toolbox Workshop on May 24-25, 2016, in San Diego, California. Because biological productivity is a key driver for the economic viability of algae-based biofuels, improving on the performance of native strains is a critical element of the research efforts funded by the Advanced Algal Systems program at BETO.

  2. Southern Pine Based on Biorefinery Center

    SciTech Connect (OSTI)

    Ragauskas, Arthur J; Singh, Preet

    2014-01-10

    This program seeks to develop an integrated southern pine wood to biofuels/biomaterials processing facility on the Recipient’s campus, that will test advanced integrated wood processing technologies at the laboratory scale, including: • The generation of the bioethanol from pines residues and hemicelluloses extracted from pine woodchips; • The conversion of extracted woodchips to linerboard and bleach grade pulps; and • The efficient conversion of pine residues, bark and kraft cooking liquor into a useful pyrolysis oil.

  3. Jobs and Economic Development Impact (JEDI) User Reference Guide: Fast Pyrolysis Biorefinery Model

    SciTech Connect (OSTI)

    Zhang, Y.; Goldberg, M.

    2015-02-01

    This guide -- the JEDI Fast Pyrolysis Biorefinery Model User Reference Guide -- was developed to assist users in operating and understanding the JEDI Fast Pyrolysis Biorefinery Model. The guide provides information on the model's underlying methodology, as well as the parameters and data sources used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features and a discussion of how the results should be interpreted. Based on project-specific inputs from the user, the JEDI Fast Pyrolysis Biorefinery Model estimates local (e.g., county- or state-level) job creation, earnings, and output from total economic activity for a given fast pyrolysis biorefinery. These estimates include the direct, indirect and induced economic impacts to the local economy associated with the construction and operation phases of biorefinery projects.Local revenue and supply chain impacts as well as induced impacts are estimated using economic multipliers derived from the IMPLAN software program. By determining the local economic impacts and job creation for a proposed biorefinery, the JEDI Fast Pyrolysis Biorefinery Model can be used to field questions about the added value biorefineries might bring to a local community.

  4. 2016 National Algal Biofuels Technology Review Fact Sheet | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Review Fact Sheet 2016 National Algal Biofuels Technology Review Fact Sheet 2016 National Algal Biofuels Technology Review Fact Sheet algae_review_factsheet.pdf (412.59 KB) More Documents & Publications Advanced Algal Systems Fact Sheet Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) Final Report

  5. Exploring the Utilization of Complex Algal Communities to Address Algal Pond Crash and Increase Annual Biomass Production for Algal Biofuels

    SciTech Connect (OSTI)

    Hamilton, Cyd E.

    2014-03-25

    This white paper briefly reviews the research literature exploring complex algal communities as a means of increasing algal biomass production via increased tolerance, resilience, and resistance to a variety of abiotic and biotic perturbations occurring within harvesting timescales. This paper identifies what data are available and whether more research utilizing complex communities is needed to explore the potential of complex algal community stability (CACS) approach as a plausible means to increase biomass yields regardless of ecological context and resulting in decreased algal-based fuel prices by reducing operations costs. By reviewing the literature for what we do and do not know, in terms of CACS methodologies, this report will provide guidance for future research addressing pond crash phenomena.

  6. Integrated Evaluation of Cost, Emissions, and Resource Potential...

    Office of Scientific and Technical Information (OSTI)

    Integrated Evaluation of Cost, Emissions, and Resource Potential for Algal Biofuels at the National Scale Citation Details In-Document Search Title: Integrated Evaluation of Cost, ...

  7. Top Value-Added Chemicals from Biomass - Volume IIResults of Screening for Potential Candidates from Biorefinery Lignin

    SciTech Connect (OSTI)

    Holladay, John E.; White, James F.; Bozell, Joseph J.; Johnson, David

    2007-10-01

    product types. From this analysis a list of technical barriers was developed which can be used to identify research needs. Lignin presents many challenges for use in the biorefinery. Chemically it differs from sugars having a complex aromatic substructure. Unlike cellulose, which has a relatively simple substructure of glucose subunits, lignin has a high degree of variability in its structure which differs both from biomass source and from the recovery process used. In addition to its variability lignin is also reactive and to some degree less stable thermally and oxidatively to other biomass streams. What this means is that integrating a lignin process stream within the biorefinery will require identifying the best method to separate lignin from biomass cost-effectively.

  8. Webinar: Targeted Algal Biofuels and Bioproducts FOA

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department’s Bioenergy Technologies Office will present a live informational webcast on the Targeted Algal Biomass and Bioproducts Funding Opportunity (DE-FOA-0001162) on October 8, 2014...

  9. Algal Biology Program at Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algal Biology Program at Los Alamos gets a star October 11, 2011 LOS ALAMOS, New Mexico, October 11, 2011-Richard Sayre, one of the nation's top specialists in algae and...

  10. Algal Feedstocks R&D Plenary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Algae Total Directed Funding (Excluding Taxes and Programmatic Funding) 23.3 29.5 25.5 ... R&D 2022 targets: 1. Algal lipid extraction and upgrading 2. Whole algae ...

  11. Pathways for Algal Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pathways for Algal Biofuels Pathways for Algal Biofuels This is a presentation from the November 27, 2012, Sustainable Alternative Fuels Cost Workshop given by Daniel B. Fishman, of the Biomass Program. fishman_caafi_workshop.pdf (1.3 MB) More Documents & Publications Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction Technology Pathway Selection Effort Whole Algae Hydrothermal Liquefaction

  12. Direct conversion of algal biomass to biofuel

    DOE Patents [OSTI]

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  13. Algal Biofuels Strategy Workshop – Spring Event

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy’s Bioenergy Technologies Office’s (BETO’s) Algae Program hosted an algal biofuel strategy workshop on March 26–27, 2014, in Charleston, South Carolina. The workshop objective was to convene stakeholders to engage in discussion on strategies over the next 5 to 10 years to achieve affordable, scalable, and sustainable algal biofuels.

  14. U.S. Department of Energy Selects First Round of Small-Scale Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects for Up to $114 Million in Federal Funding | Department of Energy First Round of Small-Scale Biorefinery Projects for Up to $114 Million in Federal Funding U.S. Department of Energy Selects First Round of Small-Scale Biorefinery Projects for Up to $114 Million in Federal Funding January 29, 2008 - 10:53am Addthis Ten percent commercial-scale biorefineries will help the nation meet new Renewable Fuels Standard WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman

  15. DOE Announces up to $200 Million in Funding for Biorefineries | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy up to $200 Million in Funding for Biorefineries DOE Announces up to $200 Million in Funding for Biorefineries May 1, 2007 - 12:45pm Addthis Small- and full-scale projects total up to $585 million to advance President Bush's Twenty in Ten Initiative WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced that DOE will provide up to $200 million, over five years (FY'07-'11) to support the development of small-scale cellulosic biorefineries in the

  16. Algal Supply System Design - Harmonized Version

    SciTech Connect (OSTI)

    Abodeely, Jared; Stevens, Daniel; Ray, Allison; Newby, Deborah; Schaller, Kastli

    2013-03-01

    The objective of this design report is to provide an assessment of current technologies used for production, dewatering, and converting microalgae cultivated in open-pond systems to biofuel. The original draft design was created in 2011 and has subsequently been brought into agreement with the DOE harmonized model. The design report extends beyond this harmonized model to discuss some of the challenges with assessing algal production systems, including the ability to (1) quickly assess alternative algal production system designs, (2) assess spatial and temporal variability, and (3) perform large-scale assessments considering multiple scenarios for thousands of potential sites. The Algae Logistics Model (ALM) was developed to address each of these limitations of current modeling efforts to enable assessment of the economic feasibility of algal production systems across the United States. The (ALM) enables (1) dynamic assessments using spatiotemporal conditions, (2) exploration of algal production system design configurations, (3) investigation of algal production system operating assumptions, and (4) trade-off assessments with technology decisions and operating assumptions. The report discusses results from the ALM, which is used to assess the baseline design determined by harmonization efforts between U.S. DOE national laboratories. Productivity and resource assessment data is provided by coupling the ALM with the Biomass Assessment Tool developed at PNNL. This high-fidelity data is dynamically passed to the ALM and used to help better understand the impacts of spatial and temporal constraints on algal production systems by providing a cost for producing extracted algal lipids annually for each potential site.

  17. Assessment of Algal Farm Designs using a Dynamic Modular Approach

    SciTech Connect (OSTI)

    Abodeely, Jared M.; Stevens, Daniel M.; Ray, Allison E.; Newby, Deborah T.; Coleman, Andre M.; Cafferty, Kara G.

    2014-07-01

    The notion of renewable energy provides an importantmechanism for diversifying an energy portfolio,which ultimately would have numerous benefits including increased energy resilience, reduced reliance on foreign energysupplies, reduced GHG emissions, development of a green energy sector that contributes to economic growth,and providing a sustainable energy supply. The conversion of autotrophic algae to liquid transportation fuels is the basis of several decades of research to competitively bring energy-scale production into reality; however, many challenges still remain for making algal biofuels economically viable. Addressing current challenges associatedwith algal production systems, in part, requires the ability to assess spatial and temporal variability, rapidly evaluate alternative algal production system designs, and perform large-scale assessments considering multiple scenarios for thousands of potential sites. We introduce the development and application of the Algae Logistics Model (ALM) which is tailored to help address these challenges. The flexible nature of the ALM architecture allows the model to: 1) interface with external biomass production and resource assessment models, as well as other relevant datasets including those with spatiotemporal granularity; 2) interchange design processes to enable operational and economic assessments ofmultiple design configurations, including the integration of current and new innovative technologies; and 3) conduct trade-off analysis to help understand the site-specific techno-economic trade-offs and inform technology decisions. This study uses the ALM to investigate a baseline open-pond production system determined by model harmonization efforts conducted by the U.S. Department of Energy. Six sites in the U.S. southern-tierwere sub-selected and assessed using daily site-specific algaebiomass productivity data to determine the economic viability of large-scale open-pond systems. Results show that costs can vary

  18. Assessment of Algal Farm Designs Using a Dynamic Modular Approach

    SciTech Connect (OSTI)

    Abodeely, Jared; Coleman, Andre M.; Stevens, Daniel M.; Ray, Allison E.; Cafferty, Kara G.; Newby, Deborah T.

    2014-07-01

    The notion of renewable energy provides an important mechanism for diversifying an energy portfolio, which ultimately would have numerous benefits including increased energy resilience, reduction of foreign energy supplies, reduced GHG emissions, development of a green energy sector that contributes to economic growth, and providing a sustainable energy supply. The conversion of autotrophic algae to liquid transportation fuels is the basis of several decades of research to competitively bring energy-scale production into reality; however, many challenges still remain for making algal biofuels economically viable. Addressing current challenges associated with algal production systems, in part, requires the ability to assess spatial and temporal variability, rapidly evaluate alternative algal production system designs, and perform large-scale assessments considering multiple scenarios for thousands of potential sites. We introduce the Algae Logistics Model (ALM) which helps to address these challenges. The flexible nature of the ALM architecture allows the model to: 1) interface with external biomass production and resource assessment models, as well as other relevant datasets including those with spatiotemporal granularity; 2) interchange design processes to enable operational and economic assessments of multiple design configurations, including the integration of current and new innovative technologies; and 3) conduct trade-off analysis to help understand the site-specific techno-economic trade-offs and inform technology decisions. This study uses the ALM to investigate a baseline open-pond production system determined by model harmonization efforts conducted by the U.S. Department of Energy. Six sites in the U.S. southern-tier were sub-selected and assessed using daily site-specific algae biomass productivity data to determine the economic viability of large-scale open-pond systems. Results show that costs can vary significantly depending on location and biomass

  19. EA-1705: Construction and Operation of a Proposed Cellulosic Biorefinery, Mascoma Corporation, Kinross Charter Township, Michigan

    Broader source: Energy.gov [DOE]

    The frontier Project consists of the design, construction and operation of a biorefinery producing ethanol and other co-products from cellulosic materials utilizing a proprietary pretreatment and fermentation process.

  20. BETO Seeks Stakeholder Input on Achieving High Yields from Algal Feedstocks

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy’s Bioenergy Technologies Office (BETO) has released a Request for Information (RFI) titled “High Yields through Productivity and Integration Research.” BETO is seeking input from industry, academia, and other stakeholders regarding supply systems and services for the cultivation, logistics, and preprocessing of algal feedstocks.

  1. DOE Selects 3 Small-Scale Biorefinery Projects for up to $86 Million of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Funding in Maine, Tennessee and Kentucky | Department of Energy 3 Small-Scale Biorefinery Projects for up to $86 Million of Federal Funding in Maine, Tennessee and Kentucky DOE Selects 3 Small-Scale Biorefinery Projects for up to $86 Million of Federal Funding in Maine, Tennessee and Kentucky April 18, 2008 - 10:49am Addthis Projects Demonstrate Continued Commitment to Advancing Development of Sustainable, Cost-Competitive Cellulosic Ethanol ALEXANDRIA, VA. - U.S. Department of

  2. Critical evaluation and modeling of algal harvesting using dissolved air flotation. DAF Algal Harvesting Modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Xuezhi; Hewson, John C.; Amendola, Pasquale; Reynoso, Monica; Sommerfeld, Milton; Chen, Yongsheng; Hu, Qiang

    2014-07-14

    In our study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al3+, Fe3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g-1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. In evaluating the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, we found that itmore » is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. Moreover, the model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified.« less

  3. Critical evaluation and modeling of algal harvesting using dissolved air flotation. DAF Algal Harvesting Modeling

    SciTech Connect (OSTI)

    Zhang, Xuezhi; Hewson, John C.; Amendola, Pasquale; Reynoso, Monica; Sommerfeld, Milton; Chen, Yongsheng; Hu, Qiang

    2014-07-14

    In our study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al3+, Fe3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g-1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. In evaluating the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, we found that it is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. Moreover, the model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified.

  4. National Algal Biofuels Technology Roadmap Update Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy Bioenergy Technologies Office (BETO) Advanced Algal Systems Program is in the process of updating the National Algal Biofuels Technology Roadmap published in 2010. It is the Program’s intention that this update include a thorough review of the scientific research and breakthroughs, novel and emerging technologies, as well as remaining barriers and challenges in the field through assistance from experts in the field. The purpose of this webinar is to provide expert reviewers information on why the Office is completing the update and how to provide input to the Roadmap Update.

  5. National Algal Biofuels Technology Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuels Technology Roadmap National Algal Biofuels Technology Roadmap The U.S. Department of Energy (DOE) Biomass Program's National Algal Biofuels Technology Roadmap was prepared with the input of more than 200 scientists, engineers, industry representatives, research managers, and other stakeholders, this document represents the synthesis of the Biomass Program's National Algal Biofuels Technology Roadmap Workshop, comments gathered during a public comment period, and supporting

  6. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology...

    Office of Scientific and Technical Information (OSTI)

    MICROALGAE; ALGAL BIOMASS; HYDROCARBON BIOFUELS; BIOMASS TECHNOLOGIES OFFICE; NATIONAL RENEWABLE ENERGY LABORATORY; PACIFIC NORTHWEST NATIONAL LABORATORY; Bioenergy BIOMASS...

  7. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway Citation Details In-Document Search Title: Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading

  8. Final Technical Report: Improvement of Zymomonas mobilis for Commercial Use in Corn-based Biorefineries

    SciTech Connect (OSTI)

    Hitz, William D.

    2010-12-07

    Between 2007 and 2010 DuPont conducted a program under DOE award DE-FC36-07GO17056 to develop and improve Zymomonas mobilis as an ethanologen for commercial use in biorefineries to produce cellulosic ethanol. This program followed upon an earlier DOE funded program in which DuPont, in collaboration with the National Renewable Energy Laboratory (NREL) had developed a Zymomonas strain in conjunction with the development of an integrated cellulosic ethanol process. In the current project, we sought to maximize the utility of Zymomonas by adding the pathway to allow fermentation of the minor sugar arabinose, improve the utilization of xylose, improve tolerance to process hydrolysate and reduce the cost of producing the ethanologen. We undertook four major work streams to address these tasks, employing a range of approaches including genetic engineering, adaptation, metabolite and pathway analysis and fermentation process development. Through this project, we have developed a series of strains with improved characteristics versus the starting strain, and demonstrated robust scalability to at least the 200L scale. By a combination of improved ethanol fermentation yield and titer as well as reduced seed train costs, we have been able to reduce the capital investment and minimum ethanol selling price (MESP) by approximately 8.5% and 11% respectively vs. our starting point. Furthermore, the new strains we have developed, coupled with the learnings of this program, provide a platform for further strain improvements and advancement of cellulosic ethanol technology.

  9. MBI Biorefinery: Corn to Biomass, Ethanol to Biochemicals and Biomaterials

    SciTech Connect (OSTI)

    2006-02-17

    The project is a continuation of DOE-funded work (FY02 and FY03) that has focused on the development of the ammonia fiber explosion (AFEX) pretreatment technology, fermentation production of succinic acid and new processes and products to enhance dry mill profitability. The primary objective for work beginning in April 2004 and ending in November 2005 is focus on the key issues related to the: (1) design, costing and construction plan for a pilot AFEX pretreatment system, formation of a stakeholder development team to assist in the planning and design of a biorefinery pilot plant, continued evaluation of corn fractionation technologies, corn oil extraction, AFEX treatment of corn fiber/DDGs; (2) development of a process to fractionate AFEX-treated corn fiber and corn stover--cellulose and hemicellulose fractionation and sugar recovery; and (3) development of a scalable batch succinic acid production process at 500 L at or below $.42/lb, a laboratory scale fed-batch process for succinic acid production at or below $.40/lb, a recovery process for succinic acid that reduces the cost of succinic acid by $.02/lb and the development of an acid tolerant succinic acid production strain at lab scale (last objective not to be completed during this project time period).

  10. EA-1850: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid Fuel Biorefinery, Park Falls, Wisconsin

    Broader source: Energy.gov [DOE]

    NOTE: This EA has been cancelled. This EA will evaluate the environmental impacts of a proposal to provide federal funding to Flambeau River Biofuels (FRB) to construct and operate a biomass-to-liquid biorefinery in Park Falls, Wisconsin, on property currently used by Flambeau Rivers Paper, LLC (FRP) for a pulp and paper mill and Johnson Timber Corporation's (JTC) Summit Lake Yard for timber storage. This project would design a biorefinery which would produce up to 1,150 barrels per day (bpd) of clean syncrude. The biorefinery would also supply steam to the FRP mill, meeting the majority of the mill's steam demand and reducing or eliminating the need for the existing biomass/coal-fired boiler. The biorefinery would also include a steam turbine generator that will produce "green" electrical power for use by the biorefinery or for sale to the electric utility.

  11. Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research algal_biofuels_factsheet.pdf (96.06 KB) More Documents & Publications Advanced Algal Systems Fact Sheet 2016 National Algal Biofuels Technology Review 2015 Peer Review Presentations-Algal Feedstocks

  12. Algal Culture Management and Strain Selection Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    ATP3 (Algae Testbed Public-Private Partnership) will be hosting the Microalgal Culture Management and Strain Selection Workshop August 24–28, 2015, at The University of Texas at Austin. Topics will include isolating and identifying microalgae, handling and managing microalgal cultures, screening for desirable characteristics, genetically improving strains, and analyzing lipids and higher-value products. Workshop modules will include hands-on bioprospecting, performing sample measurements, monitoring cultures for contaminants, and analyzing algal biomass composition.

  13. Biomass Biorefinery for the production of Polymers and Fuels

    SciTech Connect (OSTI)

    Dr. Oliver P. Peoples

    2008-05-05

    The conversion of biomass crops to fuel is receiving considerable attention as a means to reduce our dependence on foreign oil imports and to meet future energy needs. Besides their use for fuel, biomass crops are an attractive vehicle for producing value added products such as biopolymers. Metabolix, Inc. of Cambridge proposes to develop methods for producing biodegradable polymers polyhydroxyalkanoates (PHAs) in green tissue plants as well as utilizating residual plant biomass after polymer extraction for fuel generation to offset the energy required for polymer extraction. The primary plant target is switchgrass, and backup targets are alfalfa and tobacco. The combined polymer and fuel production from the transgenic biomass crops establishes a biorefinery that has the potential to reduce the nation’s dependence on foreign oil imports for both the feedstocks and energy needed for plastic production. Concerns about the widespread use of transgenic crops and the grower’s ability to prevent the contamination of the surrounding environment with foreign genes will be addressed by incorporating and expanding on some of the latest plant biotechnology developed by the project partners of this proposal. This proposal also addresses extraction of PHAs from biomass, modification of PHAs so that they have suitable properties for large volume polymer applications, processing of the PHAs using conversion processes now practiced at large scale (e.g., to film, fiber, and molded parts), conversion of PHA polymers to chemical building blocks, and demonstration of the usefulness of PHAs in large volume applications. The biodegradability of PHAs can also help to reduce solid waste in our landfills. If successful, this program will reduce U.S. dependence on imported oil, as well as contribute jobs and revenue to the agricultural economy and reduce the overall emissions of carbon to the atmosphere.

  14. BETO Announces June Webinar: Algal Biofuels Consortium Releases

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Groundbreaking Research Results | Department of Energy June Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results BETO Announces June Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results June 9, 2014 - 9:39am Addthis BETO will host a live webinar titled "Algal Biofuels Consortium Releases Groundbreaking Research Results" on Wednesday, June 11, 2014, from 2:00 p.m. to 3:00 p.m. Eastern Standard Time. Dr. Jose Olivares of Los Alamos

  15. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline-, diesel-,

  16. Hydrocyclone Separation of Targeted Algal Intermediates and Products

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Feedstocks Research and Development Richard Brotzman Argonne National Laboratory 1.3.3.100: Hydrocyclone Separation of Targeted Algal Intermediates and Products This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Project Goals  Evaluate an energy-efficient, separation process - Technology: Hydrocyclone separation of components in a fluid mixture - Main application: Dewatering of algal cultures  Program tasks - Establish baseline

  17. Process for Converting Algal Oil to Alternative Aviation Fuel - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Process for Converting Algal Oil to Alternative Aviation Fuel Los Alamos National Laboratory Contact LANL About This Technology The conversion process uses a Kolbe-based method of converting the fatty acids from the algal lipid triglycerides to fuel. The conversion process uses a Kolbe-based method of converting the fatty acids from the algal lipid triglycerides to fuel. Technology Marketing Summary Conversion of triglyceride oils extracted from algae-derived lipids into

  18. Live webcast on groundbreaking results of Algal Biofuels Consortium, June

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11 Live webcast on Algal Biofuels Consortium Live webcast on groundbreaking results of Algal Biofuels Consortium, June 11 Jose A. Olivares will present an overview of the technologies and processes that are needed to widely produce algae-based liquid transportation fuels. June 10, 2014 Jose A. Olivares Jose A. Olivares Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email The Energy Department will present a live webcast titled "Algal Biofuels Consortium Releases

  19. Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Algal Biofuels Consortium Releases Groundbreaking Research Results Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results Dr. Jose Olivares of Los Alamos National Laboratory (LANL) presented the results of algal biofuels research conducted by the National Alliance for Advanced Biofuels and Bioproducts (NAABB) on June 11, 2014. june_2014_naabb_webinar (41.19 MB) More Documents & Publications Technical Standards Newsletter - September 2001

  20. 2015 Peer Review Presentations-Algal Feedstocks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Feedstocks 2015 Peer Review Presentations-Algal Feedstocks The Bioenergy Technologies Office hosted its 2015 Project Peer Review on March 23-27, 2015, at the Hilton Mark Center in Alexandria, Virginia. The presentations from the algal feedstocks sessions are available to view and download below. For detailed session descriptions and presentation titles, view the 2015 Project Peer Review Program Booklet. algae_olivares_9511.pdf (6.43 MB) algae_huntley_135120.pdf (1.58 MB)

  1. Degradation of Algal Cell Walls by Enzymes and Dyes - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Degradation of Algal Cell Walls by Enzymes and Dyes National Renewable Energy Laboratory ... for extracting the oils from the cells by first weakening the cell walls using enzymes. ...

  2. Bioenergy Technologies Office R&D Pathways: Algal Lipid Upgrading

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    settling, 60 grams per liter (6%) after DAF using an organic polymer focculant (chitosan), and 200 grams per liter (20%) after centrifugation. * The algal material is next ...

  3. Fueling Future with Algal Genomics (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    carbon cycle, and are prominent candidates for biofuel production. The US Department of Energy Joint Genome Institute (JGI) is leading the world in algal genome sequencing...

  4. Algal Biodiesel via Innovative Harvesting and Aquaculture Systems

    Broader source: Energy.gov (indexed) [DOE]

    Algal Energy, LLC (RAE) This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement * Goal 1: Demonstrate a ...

  5. BETO Seeks Stakeholder Input on Achieving High Yields from Algal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BETO is seeking input from industry, academia, and other stakeholders regarding supply systems and services for the cultivation, logistics, and preprocessing of algal feedstocks. ...

  6. Energy Department Announces $15 Million for Advancements in Algal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in producing 3,700 gallons of algal biofuel intermediate (or equivalent dry weight ... In general, "biofuel intermediates" are biomass-based feedstocks that can replace ...

  7. 5th International Conference on Algal Biomass, Biofuels and Bioproducts

    Broader source: Energy.gov [DOE]

    The 5th International Conference on Algal Biomass, Biofuels and Bioproducts provides direct interaction for attending delegates with scientific and technical leaders in this field.

  8. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology...

    Office of Scientific and Technical Information (OSTI)

    This technology pathway case investigates the cultivation of algal biomass followed by ... Sponsoring Org: USDOE Office of Energy Efficiency and Renewable Energy Biomass Program ...

  9. 6th International Conference on Algal Biomass, Biofuels and Bioproduct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The conference will cover all areas of emerging technologies in the algal biomass field-from biology, biomass production, cultivation, harvesting, and extraction to feedstock ...

  10. Recycling of Nutrients and Water in Algal Biofuels Production

    Broader source: Energy.gov (indexed) [DOE]

    Peer Review Recycling of Nutrients and Water in Algal Biofuels Production Civil and ... and demonstrating efficient recycling of water, nutrients, & some carbon. * Without ...