Powered by Deep Web Technologies
Note: This page contains sample records for the topic "integrated algal biorefinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Algal Integrated Biorefineries  

Broader source: Energy.gov [DOE]

The Algae Program works closely with the Demonstration and Deployment Program on projects that can validate advancements toward commercialization at increasing scales. Integrated biorefineries...

2

Recovery Act: Beneficial CO{sub 2} Capture in an Integrated Algal Biorefinery for Renewable Generation and Transportation Fuels  

SciTech Connect (OSTI)

DOE DE-FE0001888 Award, Phase 2, funded research, development, and deployment (RD&D) of Phycal’s pilot-scale, algae to biofuels, bioproducts, and processing facility in Hawai’i. Phycal’s algal-biofuel and bioproducts production system integrates several novel and mature technologies into a system that captures and reuses industrially produced carbon dioxide emissions, which would otherwise go directly to the atmosphere, for the manufacture of renewable energy products and bioproducts from algae (note that these algae are not genetically engineered). At the end of Phase 2, the project as proposed was to encompass 34 acres in Central Oahu and provide large open ponds for algal mass culturing, heterotrophic reactors for the Heteroboost™ process, processing facilities, water recycling facilities, anaerobic digestion facilities, and other integrated processes. The Phase 2 award was divided into two modules, Modules 1 & 2, where the Module 1 effort addressed critical scaling issues, tested highest risk technologies, and set the overall infrastructure needed for a Module 2. Phycal terminated the project prior to executing construction of the first Module. This Final Report covers the development research, detailed design, and the proposed operating strategy for Module 1 of Phase 2.

Lane, Christopher; Hampel, Kristin; Rismani-Yazdi, Hamid; Kessler, Ben; Moats, Kenneth; Park, Jonathan; Schwenk, Jacob; White, Nicholas; Bakhit, Anis; Bargiel, Jeff; Allnutt, F.C.

2014-03-31T23:59:59.000Z

3

2011 Biomass Program Platform Peer Review: Integrated Biorefineries...  

Broader source: Energy.gov (indexed) [DOE]

Integrated Biorefineries 2011 Biomass Program Platform Peer Review: Integrated Biorefineries "This document summarizes the recommendations and evaluations provided by an...

4

Economy Through Product Diversity: Integrated Biorefineries ...  

Broader source: Energy.gov (indexed) [DOE]

integrated biorefineries capable of efficiently converting a broad range of biomass feedstocks into affordable biofuels, biopower, and other products. ibrfourpager.pdf More...

5

Sapphire Energy - Integrated Algal Biorefinery  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 RoadmapProgram 2013:Safety2PaulSanyo Electric:

6

2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review Plenary I:...

7

FOA for the Demonstration of an Integrated Biorefinery System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC FOA for the Demonstration of an Integrated Biorefinery System: Blue Fire Ethanol, Inc...

8

FOA for the Demonstration of an Integrated Biorefinery System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Blue Fire Ethanol, Inc. FOA for the Demonstration of an Integrated Biorefinery System: Blue Fire Ethanol, Inc. FOA for the Demonstration of an Integrated Biorefinery System: Blue...

9

Algenol Biofuels Inc., Integrated Pilot-Scale Biorefinery  

Broader source: Energy.gov (indexed) [DOE]

Integrated Pilot- Scale Biorefinery for Producing Ethanol from Hybrid Algae Algenol Biofuels Inc., together with its partners, will construct an integrated pilot-scale...

10

FOA for the Demonstration of an Integrated Biorefinery System...  

Office of Environmental Management (EM)

Abengoa Bioenergy Biomass of Kansas, LLC FOA for the Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC FOA for the Demonstration of an...

11

Integrated Biorefinery Research Facility: Advancing Biofuels Technology (Fact Sheet)  

SciTech Connect (OSTI)

The Integrated Biorefinery Research Facility (IBRF) at the National Renewable Energy Laboratory (NREL) expands NREL's cellulosic ethanol research and development and collaboration capabilities.

Not Available

2009-03-01T23:59:59.000Z

12

Red Shield Acquisition, LLC, Integrated Biorefinery  

Broader source: Energy.gov [DOE]

This demonstration-scale biorefinery will produce lignocellulosic sugars for biofuel feedstock from woody biomass.

13

Integrated Biorefineries:Biofuels, Biopower, and Bioproducts  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About32C:\Documents andINTEGRATED BIOREFINERIES INEOS

14

Integrated Biorefinery Process | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About32C:\Documents andINTEGRATED BIOREFINERIES

15

Technoeconomic analysis of biorefinery based on multistep kinetics and integration of geothermal energy.  

E-Print Network [OSTI]

??In this work, a technoeconomic study is conducted to assess the feasibility of integrating geothermal energy into a biorefinery for biofuel production. The biorefinery is… (more)

Banerjee, Sudhanya

2012-01-01T23:59:59.000Z

16

Analysis of Integrated Tropical Biorefineries  

E-Print Network [OSTI]

the integration of an anaerobic digester into each biochemical platform technology. The combustion of biogas not rely on biogas combustion to be thermally self- sufficient. However, their output of excess electricity

17

ClearFuels-Rentech Integrated Biorefinery Final Report  

SciTech Connect (OSTI)

The project Final Report describes the validation of the performance of the integration of two technologies that were proven individually on a pilot scale and were demonstrated as a pilot scale integrated biorefinery. The integrated technologies were a larger scale ClearFuels’ (CF) advanced flexible biomass to syngas thermochemical high efficiency hydrothermal reformer (HEHTR) technology with Rentech’s (RTK) existing synthetic gas to liquids (GTL) technology.

Pearson, Joshua [Project Director

2014-02-26T23:59:59.000Z

18

Partnering with Industry to Advance Biofuels, NREL's Integrated Biorefinery Research Facility (Fact Sheet)  

SciTech Connect (OSTI)

Fact sheet describing NREL's Integrated Biorefinery Research Facility and its availability to biofuels' industry partners who want to operate, test, and develop biorefining technology and equipment.

Not Available

2010-10-01T23:59:59.000Z

19

Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability  

Broader source: Energy.gov [DOE]

Breakout Session 3B—Integration of Supply Chains III: Algal Biofuels Strategy Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability Martin Sabarsky, Chief Executive Officer, Cellana

20

Amyris, Inc. Integrated Biorefinery Project Summary Final Report - Public Version  

SciTech Connect (OSTI)

The Amyris pilot-scale Integrated Biorefinery (IBR) leveraged Amyris synthetic biology and process technology experience to upgrade Amyris’s existing Emeryville, California pilot plant and fermentation labs to enable development of US-based production capabilities for renewable diesel fuel and alternative chemical products. These products were derived semi-synthetically from high-impact biomass feedstocks via microbial fermentation to the 15-carbon intermediate farnesene, with subsequent chemical finishing to farnesane. The Amyris IBR team tested and provided methods for production of diesel and alternative chemical products from sweet sorghum, and other high-impact lignocellulosic feedstocks, at pilot scale. This enabled robust techno-economic analysis (TEA), regulatory approvals, and a basis for full-scale manufacturing processes and facility design.

Gray, David; Sato, Suzanne; Garcia, Fernando; Eppler, Ross; Cherry, Joel

2014-03-12T23:59:59.000Z

Note: This page contains sample records for the topic "integrated algal biorefinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Demonstration and Deployment Successes: Sapphire Integrated Algal Biorefinery  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department1 Prepared1217 Release NotesFinal Report |DEMONSTRATION

22

Integration of Nutrient and Water Recycling for Sustainable Algal Biorefineries  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.IndianaofPilot

23

9003: Biorefinery Assistance Program  

Broader source: Energy.gov [DOE]

Breakout Session 1D—Building Market Confidence and Understanding I: Integrated Biorefinery (Lessons Learned and Best Practices) 9003: Biorefinery Assistance Program Chris Cassidy, National Business Renewable Energy Advisor, U.S. Department of Agriculture

24

Biorefinery and Hydrogen Fuel Cell Research  

SciTech Connect (OSTI)

In this project we focused on several aspects of technology development that advances the formation of an integrated biorefinery. These focus areas include: [1] establishment of pyrolysis processing systems and characterization of the product oils for fuel applications, including engine testing of a preferred product and its pro forma economic analysis; [2] extraction of sugars through a novel hotwater extaction process, and the development of levoglucosan (a pyrolysis BioOil intermediate); [3] identification and testing of the use of biochar, the coproduct from pyrolysis, for soil applications; [4] developments in methods of atomic layer epitaxy (for efficient development of coatings as in fuel cells); [5] advancement in fermentation of lignocellulosics, [6] development of algal biomass as a potential substrate for the biorefinery, and [7] development of catalysts from coproducts. These advancements are intended to provide a diverse set of product choices within the biorefinery, thus improving the cost effectiveness of the system. Technical effectiveness was demonstrated in the pyrolysis biooil based diesel fuel supplement, sugar extraction from lignocelluose, use of biochar, production of algal biomass in wastewaters, and the development of catalysts. Economic feasibility of algal biomass production systems seems attractive, relative to the other options. However, further optimization in all paths, and testing/demonstration at larger scales are required to fully understand the economic viabilities. The various coproducts provide a clear picture that multiple streams of value can be generated within an integrated biorefinery, and these include fuels and products.

K.C. Das; Thomas T. Adams; Mark A. Eiteman; John Stickney; Joy Doran Peterson; James R. Kastner; Sudhagar Mani; Ryan Adolphson

2012-06-12T23:59:59.000Z

25

Biorefinery and Carbon Cycling Research Project  

SciTech Connect (OSTI)

In this project we focused on several aspects of technology development that advances the formation of an integrated biorefinery. These focus areas include: [ 1] pretreatment of biomass to enhance quality of products from thermochemical conversion; [2] characterization of and development of coproduct uses; [3] advancement in fermentation of lignocellulosics and particularly C5 and C6 sugars simultaneously, and [ 4] development of algal biomass as a potential substrate for the biorefinery. These advancements are intended to provide a diverse set of product choices within the biorefinery, thus improving the cost effectiveness of the system. Technical effectiveness was demonstrated in the thermochemical product quality in the form of lower tar production, simultaneous of use of multiple sugars in fermentation, use ofbiochar in environmental (ammonia adsorption) and agricultural applications, and production of algal biomass in wastewaters. Economic feasibility of algal biomass production systems seems attractive, relative to the other options. However, further optimization in all paths, and testing/demonstration at larger scales are required to fully understand the economic viabilities. The coproducts provide a clear picture that multiple streams of value can be generated within an integrated biorefinery, and these include fuels and products.

Das, K. C., Adams; Thomas, T; Eiteman, Mark A; Kastner, James R; Mani, Sudhagar; Adolphson, Ryan

2012-06-08T23:59:59.000Z

26

Summative Mass Analysis of Algal Biomass ? Integration of Analytical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summative Mass Analysis of Algal Biomass - Integration of Analytical Procedures Laboratory Analytical Procedure (LAP) Issue Date: December 2, 2013 L. M. L. Laurens Technical Report...

27

Algenol Biofuels Inc., Integrated Pilot-Scale Biorefinery | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, T X S ummary oAlgalEnergy Algenol

28

Development of efficient, integrated cellulosic biorefineries : LDRD final report.  

SciTech Connect (OSTI)

Cellulosic ethanol, generated from lignocellulosic biomass sources such as grasses and trees, is a promising alternative to conventional starch- and sugar-based ethanol production in terms of potential production quantities, CO{sub 2} impact, and economic competitiveness. In addition, cellulosic ethanol can be generated (at least in principle) without competing with food production. However, approximately 1/3 of the lignocellulosic biomass material (including all of the lignin) cannot be converted to ethanol through biochemical means and must be extracted at some point in the biochemical process. In this project we gathered basic information on the prospects for utilizing this lignin residue material in thermochemical conversion processes to improve the overall energy efficiency or liquid fuel production capacity of cellulosic biorefineries. Two existing pretreatment approaches, soaking in aqueous ammonia (SAA) and the Arkenol (strong sulfuric acid) process, were implemented at Sandia and used to generated suitable quantities of residue material from corn stover and eucalyptus feedstocks for subsequent thermochemical research. A third, novel technique, using ionic liquids (IL) was investigated by Sandia researchers at the Joint Bioenergy Institute (JBEI), but was not successful in isolating sufficient lignin residue. Additional residue material for thermochemical research was supplied from the dilute-acid simultaneous saccharification/fermentation (SSF) pilot-scale process at the National Renewable Energy Laboratory (NREL). The high-temperature volatiles yields of the different residues were measured, as were the char combustion reactivities. The residue chars showed slightly lower reactivity than raw biomass char, except for the SSF residue, which had substantially lower reactivity. Exergy analysis was applied to the NREL standard process design model for thermochemical ethanol production and from a prototypical dedicated biochemical process, with process data supplied by a recent report from the National Research Council (NRC). The thermochemical system analysis revealed that most of the system inefficiency is associated with the gasification process and subsequent tar reforming step. For the biochemical process, the steam generation from residue combustion, providing the requisite heating for the conventional pretreatment and alcohol distillation processes, was shown to dominate the exergy loss. An overall energy balance with different potential distillation energy requirements shows that as much as 30% of the biomass energy content may be available in the future as a feedstock for thermochemical production of liquid fuels.

Teh, Kwee-Yan; Hecht, Ethan S.; Shaddix, Christopher R.; Buffleben, George M.; Dibble, Dean C.; Lutz, Andrew E.

2010-09-01T23:59:59.000Z

29

NREL: Biomass Research - Projects in Integrated Biorefinery Processes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

monitoring and operation control systems. NREL is focused on integrating all the biomass conversion unit operations. With extensive knowledge of the individual unit...

30

Elevance Pilot-Scale Biorefinery  

Broader source: Energy.gov (indexed) [DOE]

July 2011 Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post consumer waste Elevance Integrated Biorefinery This project uses Nobel...

31

Alpena Biorefinery  

Broader source: Energy.gov [DOE]

The Alpena Biorefinery will be constructed in Alpena, Michigan, at the Decorative Panels International hardboard manufacturing facility.

32

EA-1888: Old Town Fuel and Fiber Proposed Demonstration-Scale Integrated Biorefinery in Old Town, Maine  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal by Old Town Fuel and Fiber to install and operate a demonstration-scale integrated biorefinery at their existing pulp mill in Old Town, Maine, demonstrating the production of n-butanol from lignocellulosic (wood) extract.

33

Integrated Biorefinery Project: Cooperative Research and Development Final Report, CRADA Number CRD-10-390  

SciTech Connect (OSTI)

The Amyris-NREL CRADA is a sub-project of Amyris?s DOE-funded pilot-scale Integrated Biorefinery (IBR). The primary product of the Amyris IBR is Amyris Renewable Diesel. Secondary products will include lubricants, polymers and other petro-chemical substitutes. Amyris and its project partners will execute on a rapid project to integrate and leverage their collective expertise to enable the conversion of high-impact biomass feedstocks to these advanced, infrastructure-compatible products. The scope of the Amyris-NREL CRADA includes the laboratory development and pilot scale-up of bagasse pretreatment and enzymatic saccharification conditions by NREL for subsequent conversion of lignocellulosic sugar streams to Amyris Diesel and chemical products by Amyris. The CRADA scope also includes a techno-economic analysis of the overall production process of Amyris products from high-impact biomass feedstocks.

Chapeaux, A.; Schell, D.

2013-06-01T23:59:59.000Z

34

American Process—Alpena Biorefinery Lessons  

Broader source: Energy.gov [DOE]

Breakout Session 1D—Building Market Confidence and Understanding I: Integrated Biorefinery (Lessons Learned and Best Practices) American Process—Alpena Biorefinery Lessons Theodora Retsina, Chief Executive Officer, America Process Inc.

35

Summative Mass Analysis of Algal Biomass - Integration of Analytical Procedures: Laboratory Analytical Procedure (LAP)  

SciTech Connect (OSTI)

This procedure guides the integration of laboratory analytical procedures to measure algal biomass constituents in an unambiguous manner and ultimately achieve mass balance closure for algal biomass samples. Many of these methods build on years of research in algal biomass analysis.

Laurens, L. M. L.

2013-12-01T23:59:59.000Z

36

Integration of Biorefineries and Nuclear Cogeneration Power Plants - A Preliminary Analysis  

SciTech Connect (OSTI)

Biomass-based ethanol and nuclear power are two viable elements in the path to U.S. energy independence. Numerous studies suggest nuclear power could provide a practical carbon-free heat source alternative for the production of biomass-based ethanol. In order for this coupling to occur, it is necessary to examine the interfacial requirements of both nuclear power plants and bioethanol refineries. This report describes the proposed characteristics of a small cogeneration nuclear power plant, a biochemical process-based cellulosic bioethanol refinery, and a thermochemical process-based cellulosic biorefinery. Systemic and interfacial issues relating to the co-location of either type of bioethanol facility with a nuclear power plant are presented and discussed. Results indicate future co-location efforts will require a new optimized energy strategy focused on overcoming the interfacial challenges identified in the report.

Greene, Sherrell R [ORNL; Flanagan, George F [ORNL; Borole, Abhijeet P [ORNL

2009-03-01T23:59:59.000Z

37

Advancing Commercialization of Algal Biofuels Through Increased Biomass Productivity and Technology Integration  

SciTech Connect (OSTI)

Cellana is a leading developer of algae-based bioproducts, and its pre-commercial production of marine microalgae takes place at Cellana?s Kona Demonstration Facility (KDF) in Hawaii. KDF is housing more than 70 high-performing algal strains for different bioproducts, of which over 30 have been grown outside at scale. So far, Cellana has produced more than 10 metric tons of algal biomass for the development of biofuels, animal feed, and high-value nutraceuticals. Cellana?s ALDUO algal cultivation technology allows Cellana to grow non-extremophile algal strains at large scale with no contamination disruptions. Cellana?s research and production at KDF have addressed three major areas that are crucial for the commercialization of algal biofuels: yield improvement, cost reduction, and the overall economics. Commercially acceptable solutions have been developed and tested for major factors limiting areal productivity of algal biomass and lipids based on years of R&D work conducted at KDF. Improved biomass and lipid productivity were achieved through strain improvement, culture management strategies (e.g., alleviation of self-shading, de-oxygenation, and efficient CO2 delivery), and technical advancement in downstream harvesting technology. Cost reduction was achieved through optimized CO2 delivery system, flue gas utilization technology, and energy-efficient harvesting technology. Improved overall economics was achieved through a holistic approach by integration of high-value co-products in the process, in addition to yield improvements and cost reductions.

Bai, Xuemei [Cellana LLC; Sabarsky, Martin

2013-09-30T23:59:59.000Z

38

Fully Integrated Lignocellulosic Biorefinery with Onsite Production of Enzymes and Yeast  

SciTech Connect (OSTI)

Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

Manoj Kumar, PhD

2010-06-14T23:59:59.000Z

39

Integrated cellulosic enzymes hydrolysis and fermentative advanced yeast bioconversion solution ready for biomass biorefineries  

SciTech Connect (OSTI)

Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

Manoj Kumar, PhD

2011-05-04T23:59:59.000Z

40

Vertical Integration of Biomass Saccharification of Enzymes for Sustainable Cellulosic Biofuel Production in a Biorefinery  

SciTech Connect (OSTI)

Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

Manoj Kumar, PhD

2011-05-09T23:59:59.000Z

Note: This page contains sample records for the topic "integrated algal biorefinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis, Catalytic Hydroconversion and Co-processing with Vacuum Gas Oil Raymond G. Wissinger...

42

Renewable Diesel from Algal Lipis: An Integrated Baseline for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

digestion (AD) for energy and nutrient recycling. Energy recycling was accomplished by biogas combustion in a combined heat and power (CHP) system that was heat-integrated with the...

43

Mascoma: Frontier Biorefinery Project  

Broader source: Energy.gov [DOE]

This project involves the construction and operation of a biorefinery that produces ethanol and other co-products from cellulosic materials through advanced consolidated bioprocessing.

44

Elevance Pilot-Scale Biorefinery  

Broader source: Energy.gov [DOE]

The Elevance biorefinery uses catalyst technology to produce fuels and chemicals from renewable, natural oils.

45

Integrated Biorefinery Process  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.Indianaof Energy2-02DepartmentCONFERENCE

46

RAFT Regional Algal Feedstock Testbed  

Broader source: Energy.gov [DOE]

Breakout Session 3B—Integration of Supply Chains III: Algal Biofuels Strategy RAFT Regional Algal Feedstock Testbed Kimberly Ogden, Professor, University of Arizona, Engineering Technical Lead, National Alliance for Advanced Biofuels and Bioproducts

47

USDA- Repowering Assistance Biorefinery Program (Federal)  

Broader source: Energy.gov [DOE]

The Repowering Assistance Program provides payments to eligible biorefineries to replace fossil fuels used to produce heat or power to operate the biorefineries with renewable biomass....

48

Biorefinery Grey Water Analysis | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

options for grey water generated from a biorefinery with fast pyrolysis and hydrotreating Wastewater treatment options for grey water generated from a biorefinery...

49

Integrated Evaluation of Cost, Emissions, and Resource Potential for Algal Biofuels at the National Scale  

SciTech Connect (OSTI)

Costs, emissions, and resource availability were modeled for the production of 5 billion gallons yr-1 (5 BGY) of renewable diesel in the United States from Chlorella biomass by hydrothermal liquefaction (HTL). The HTL model utilized data from a continuous 1-L reactor including catalytic hydrothermal gasification of the aqueous phase, and catalytic hydrotreatment of the HTL oil. A biophysical algae growth model coupled with weather and pond simulations predicted biomass productivity from experimental growth parameters, allowing site-by-site and temporal prediction of biomass production. The 5 BGY scale required geographically and climatically distributed sites. Even though screening down to 5 BGY significantly reduced spatial and temporal variability, site-to-site, season-to-season, and inter-annual variations in productivity affected economic and environmental performance. Performance metrics based on annual average or peak productivity were inadequate; temporally and spatially explicit computations allowed more rigorous analysis of these dynamic systems. For example, 3-season operation with a winter shutdown was favored to avoid high greenhouse gas emissions, and economic performance was harmed by underutilized equipment during slow-growth periods. Thus, analysis of algal biofuel pathways must combine spatiotemporal resource assessment, economic analysis, and environmental analysis integrated over many sites when assessing national scale performance.

Davis, Ryan; Fishman, Daniel; Frank, Edward D.; Johnson, Michael C.; Jones, Susanne B.; Kinchin, Christopher; Skaggs, Richard; Venteris, Erik R.; Wigmosta, Mark S.

2014-04-21T23:59:59.000Z

50

Lignol Innovations, Inc. Demonstration-Scale Biorefinery  

Broader source: Energy.gov [DOE]

The Lignol Innovations, Inc., biorefinery will produce cellulosic ethanol, high purity lignin, and furfural from hardwoods.

51

Algal Biofuels Strategy: Report on Workshop Results and Recent...  

Energy Savers [EERE]

Algal Biofuels Strategy: Report on Workshop Results and Recent Work Algal Biofuels Strategy: Report on Workshop Results and Recent Work Breakout Session 3B-Integration of Supply...

52

EIS-0407: Abengoa Biorefinery Project Near Hugoton, Kansas  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy prepared an environmental impact statement to assess the potential environmental impacts associated with the proposed action of providing Federal financial assistance to Abengoa Bioenergy Biomass of Kansas, LLC (Abengoa Bioenergy) to support the design, construction, and startup of a commercial-scale integrated biorefinery to be located near the city of Hugoton in Stevens County, southwestern Kansas.

53

Range Fuels Commercial-Scale Biorefinery  

Broader source: Energy.gov [DOE]

The Range Fuels commercial-scale biorefinery will use a variety of feedstocks to create cellulosic ethanol, methanol, and power.

54

Integrated Corn-Based Biorefinery  

Broader source: Energy.gov [DOE]

This fact sheet summarizes a U.S. Department of Energy Biomass Program research and development project.

55

Integrated Biorefineries | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombined HeatInformation Resources Information

56

Integrated Biorefineries | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land Surface EmissivityInstrillmentDOE/CE-0180Research &

57

Integrated Biorefineries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment of Energy4thOnSuccess,Department of EnergyAs a

58

Engineering Cellulases for Biorefinery  

SciTech Connect (OSTI)

Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

Manoj Kumar, PhD

2010-06-27T23:59:59.000Z

59

Renewable Diesel from Algal Lipids: An Integrated Baseline for Cost, Emissions, and Resource Potential from a Harmonized Model  

SciTech Connect (OSTI)

The U.S. Department of Energy's Biomass Program has begun an initiative to obtain consistent quantitative metrics for algal biofuel production to establish an 'integrated baseline' by harmonizing and combining the Program's national resource assessment (RA), techno-economic analysis (TEA), and life-cycle analysis (LCA) models. The baseline attempts to represent a plausible near-term production scenario with freshwater microalgae growth, extraction of lipids, and conversion via hydroprocessing to produce a renewable diesel (RD) blendstock. Differences in the prior TEA and LCA models were reconciled (harmonized) and the RA model was used to prioritize and select the most favorable consortium of sites that supports production of 5 billion gallons per year of RD. Aligning the TEA and LCA models produced slightly higher costs and emissions compared to the pre-harmonized results. However, after then applying the productivities predicted by the RA model (13 g/m2/d on annual average vs. 25 g/m2/d in the original models), the integrated baseline resulted in markedly higher costs and emissions. The relationship between performance (cost and emissions) and either productivity or lipid fraction was found to be non-linear, and important implications on the TEA and LCA results were observed after introducing seasonal variability from the RA model. Increasing productivity and lipid fraction alone was insufficient to achieve cost and emission targets; however, combined with lower energy, less expensive alternative technology scenarios, emissions and costs were substantially reduced.

Davis, R.; Fishman, D.; Frank, E. D.; Wigmosta, M. S.; Aden, A.; Coleman, A. M.; Pienkos, P. T.; Skaggs, R. J.; Venteris, E. R.; Wang, M. Q.

2012-06-01T23:59:59.000Z

60

DOE Announces $160 Million for Biorefinery Construction and Highlights...  

Energy Savers [EERE]

for Biorefinery Construction and Highlights New Agricultural Program to Promote Biofuels DOE Announces 160 Million for Biorefinery Construction and Highlights New...

Note: This page contains sample records for the topic "integrated algal biorefinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Advanced and Cellulosic Biofuels and Biorefineries: State of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and...

62

A Biorefinery Goes 'Mod' and Small  

Broader source: Energy.gov [DOE]

Minnesota-based Easy Energy Systems sells small-scale, easy-to use biorefineries. The company expects to create 100 jobs because of new orders.

63

EA-1788: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sapphire Energy, Inc.'s Integrated Algal Biorefinery (IABR) Facility in Columbus, New Mexico Sapphire Energy Company proposes to construct and operated an Integrated Algal...

64

Process Synthesis and Optimization of Biorefinery Configurations  

E-Print Network [OSTI]

to sustainable development, the concept of biorefineries is gaining an increasing attention. A biorefinery is a processing facility that receives biomass feedstocks and produces one or more chemical products and/or biofuels through a system of physical... policy in every conversion step of the 3 pathways is performed. This preprocessing step reduces the size of the subsequent optimization calculations. 2.2 Problem description The problem can be described as follows: Given a set of biomass...

Pham, Viet

2012-10-19T23:59:59.000Z

65

Multitasking mesoporous nanomaterials for biorefinery applications  

SciTech Connect (OSTI)

Mesoporous silica nanoparticles (MSNs) have attracted great interest for last two decades due to their unique and advantageous structural properties, such as high surface area, pore volume, stable mesostructure, tunable pore size and controllable particle morphology. The robust silica framework provides sites for organic modifications, making MSNs ideal platforms for adsorbents and supported organocatalysts. In addition, the pores of MSNs provide cavities/ channels for incorporation of metal and metal oxide nanoparticle catalysts. These supported metal nanoparticle catalysts benefit from confined local environments to enhance their activity and selectivity for various reactions. Biomass is considered as a sustainable feedstock with potential to replace diminishing fossil fuels for the production of biofuels. Among several strategies, one of the promising methods of biofuel production from biomass is to reduce the oxygen content of the feedstock in order to improve the energy density. This can be achieved by creating C-C bonds between biomass derived intermediates to increase the molecular weight of the final hydrocarbon molecules. In this context, pore size and organic functionality of MSNs are varied to obtain the ideal catalyst for a C-C bond forming reaction: the aldol condensation. The mechanistic aspects of this reaction in supported heterogeneous catalysts are explored. The modification of supported organocatalyst and the effect of solvent on the reaction are rationalized. The significance of two functional surfaces of MSNs is exploited by enzyme immobilization on the external surface and organo catalyst functionalization on the internal surface. Using this bifunctional catalyst, the tandem conversion of small chain alcohols into longer chain hydrocarbon molecules is demonstrated. The ability to incorporate metal and metal oxide nanoparticles in the pores and subsequent functionalization led to develop organic modified magnetic MSNs (OM-MSNs) for applications in microalgae biorefinery. Two different integrated biorefinery systems are highlighted. (i) OM-MSNs are used to harvest microalgae and selectively sequester free fatty acids (FFAs). (ii) OM-MSNs are shown to selectively sequester FFAs and convert them into diesel-range liquid hydrocarbon fuels. A similar MSN supported metal nanoparticle catalyst is demonstrated to transform FFAs into green diesel with even greater activity and selectivity. The incorporation of a different organic functional group into MSN provides a selective adsorbent for separation and purification of ?-tocopherol from microalgae oil. The functional group with electron deficient aromatic rings demonstrated high sequestration capacity and selectivity of {alpha}-tocopherol.

Kandel, Kapil [Ames Laboratory

2013-05-02T23:59:59.000Z

66

Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing...  

Office of Environmental Management (EM)

Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean Energy Game Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean Energy Game February...

67

New Biorefinery Will Bring Jobs to Northeastern Oregon | Department...  

Broader source: Energy.gov (indexed) [DOE]

New Biorefinery Will Bring Jobs to Northeastern Oregon New Biorefinery Will Bring Jobs to Northeastern Oregon August 9, 2010 - 10:00am Addthis A computer-generate image shows the...

68

Biochemical Conversion - Biorefinery Integration | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment ofEnergyEnergyBetter

69

NREL: Biomass Research - Integrated Biorefinery Research Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover two yearsNPResults giveSimulatorandPhoto

70

Retrofitting analysis of integrated bio-refineries  

E-Print Network [OSTI]

for biomass for purpose use (U.S. Department of Energy 2004) 14 There are also other platforms such as biogas, carbon-rich chains, plant products and bio-oil which are beyond the scope of this work. Biogas platform is the decomposition... Thailand 74 Mexico 9 Germany 71 Nicaragua 8 Ukraine 66 Mauritius 6 Canada 61 Zimbabwe 6 Poland 53 Kenya 3 Indonesia 42 Swaziland 3 Argentina 42 Others 338 Total 10770 Many countries try to reduce petroleum imports...

Cormier, Benjamin R.

2007-04-25T23:59:59.000Z

71

Development of Integrated Biorefineries | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. Department of|ALDeterminationsDepartmentJon T.

72

Economy Through Product Diversity: Integrated Biorefineries  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatement Tuesday, SeptemberofEbony MeeksMuscleInc.

73

Thermochemical Conversion - Biorefinery Integration | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe Sun and Its Energy (11 activities)TheofThermal-

74

NREL: Sustainable NREL - Integrated Biorefinery Research Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and Resources NREL resourceEnergy Systems

75

ClearFuels-Rentech Pilot-Scale Biorefinery  

Broader source: Energy.gov [DOE]

The ClearFuels-Rentech pilot-scale biorefinery will use Fisher-Tropsch gas-to-liquids technology to create diesel and jet fuel.

76

New Neutrinos Algal Biofuels  

E-Print Network [OSTI]

New Neutrinos Algal Biofuels Charged-Particle Vision Primordial Soup LOS ALAMOS SCIENCE of Los Alamos and its top-secret laboratory was the mailing address--P. O. Box 1663, Santa Fe, New Mexico Seeing Green: Squeezing Power from Pond Scum OVERCOMING OBSTACLES TO IGNITE ALGAL FUELS THE (LIGHTWEIGHT

77

Albemarle Biorefinery Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 EndStatutes:Biorefinery Inc Jump to:

78

Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks  

SciTech Connect (OSTI)

Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

2009-06-01T23:59:59.000Z

79

FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act...  

Energy Savers [EERE]

FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act - Integrated Algal Biorefinery (IABR) FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act - Integrated...

80

Algal Biofuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Algal Biofuels Algal Biofuels Algae image The Bioenergy Technologies Office's (BETO's) Algae Program is carrying out a long-term applied research and development (R&D) strategy to...

Note: This page contains sample records for the topic "integrated algal biorefinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Algal Biomass Conversion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, T X S ummary oAlgal Biofuels AlgalBETO

82

Algal Biomass Valorization  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, T X S ummary oAlgal Biofuels AlgalBETO

83

National Algal Biofuels Technology Roadmap  

E-Print Network [OSTI]

National Algal Biofuels Technology Roadmap MAY 2010 BIOMASS PROGRAM #12;#12;U.S. DOE 2010. National Algal Biofuels Technology Roadmap. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program. Visit http://biomass.energy.gov for more information National Algal Biofuels

84

American Recovery and Reinvestment Act, Financial Assistance...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

- ARRAAttachment3.rtf FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act - Integrated Algal Biorefinery (IABR) Financial Assistance Funding Opportunity Announcement...

85

Conversion Technology and the San Jose Zero Waste Initiative...  

Broader source: Energy.gov (indexed) [DOE]

Documents & Publications Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell Integration at Biorefineries Biogas Production Technologies Pathways for Algal Biofuels...

86

Controlling Accumulation of Fermentation Inhibitors in Biorefinery Recycle Water Using Microbial Fuel Cells  

SciTech Connect (OSTI)

Background Microbial fuel cells (MFC) and microbial electrolysis cells are electrical devices that treat water using microorganisms and convert soluble organic matter into electricity and hydrogen, respectively. Emerging cellulosic biorefineries are expected to use large amounts of water during production of ethanol. Pretreatment of cellulosic biomass results in production of fermentation inhibitors which accumulate in process water and make the water recycle process difficult. Use of MFCs to remove the inhibitory sugar and lignin degradation products from recycle water is investigated in this study. Results Use of an MFC to reduce the levels of furfural, 5-hydroxymethylfurfural, vanillic acid, 4- hydroxybenzaldehyde and 4-hydroxyacetophenone while simultaneously producing electricity is demonstrated here. An integrated MFC design approach was used which resulted in high power densities for the MFC, reaching up to 3700mW/m2 (356W/m3 net anode volume) and a coulombic efficiency of 69%. The exoelectrogenic microbial consortium enriched in the anode was characterized using a 16S rRNA clone library method. A unique exoelectrogenic microbial consortium dominated by -Proteobacteria (50%), along with -Proteobacteria (28%), -Proteobacteria (14%), -Proteobacteria (6%) and others was identified. The consortium demonstrated broad substrate specificity, ability to handle high inhibitor concentrations (5 to 20mM) with near complete removal, while maintaining long-term stability with respect to power production. Conclusions Use of MFCs for removing fermentation inhibitors has implications for: 1) enabling higher ethanol yields at high biomass loading in cellulosic ethanol biorefineries, 2) improved water recycle and 3) electricity production up to 25% of total biorefinery power needs.

Borole, Abhijeet P [ORNL; Mielenz, Jonathan R [ORNL; Leak, David [Imperial College, London; Vishnivetskaya, Tatiana A [ORNL; Hamilton, Choo Yieng [ORNL; Andras, Calin [Imperial College, London

2009-01-01T23:59:59.000Z

87

Algal Biofuels Strategy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, T X S ummary o fBtuIdeasAlgal Biofuels

88

Webinar: Algal Biofuels Consortium Releases Groundbreaking Research...  

Broader source: Energy.gov (indexed) [DOE]

Algal Biofuels Consortium Releases Groundbreaking Research Results Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results Dr. Jose Olivares of Los Alamos...

89

Algal Biofuels Can Make a Difference (Presentation)  

SciTech Connect (OSTI)

Presentation given at the 2012 Department of Homeland Security Renewable Energy Roundtable on Algal Fuels.

Pienkos, P.

2012-03-01T23:59:59.000Z

90

Algal Polyculture Conversion & Analysis  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, T X S ummary oAlgal BiofuelsAlgalAlgal

91

National Algal Biofuels Technology Roadmap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a number of unique scale-up challenges. Algal Lipid: Precursor to Biofuels Bio-Crude * Biogas * Co-products (e.g., animal feed, fertilizers, industrial enzymes, bioplastics, and...

92

Fueling Future with Algal Genomics  

SciTech Connect (OSTI)

Algae constitute a major component of fundamental eukaryotic diversity, play profound roles in the carbon cycle, and are prominent candidates for biofuel production. The US Department of Energy Joint Genome Institute (JGI) is leading the world in algal genome sequencing (http://jgi.doe.gov/Algae) and contributes of the algal genome projects worldwide (GOLD database, 2012). The sequenced algal genomes offer catalogs of genes, networks, and pathways. The sequenced first of its kind genomes of a haptophyte E.huxleyii, chlorarachniophyte B.natans, and cryptophyte G.theta fill the gaps in the eukaryotic tree of life and carry unique genes and pathways as well as molecular fossils of secondary endosymbiosis. Natural adaptation to conditions critical for industrial production is encoded in algal genomes, for example, growth of A.anophagefferens at very high cell densities during the harmful algae blooms or a global distribution across diverse environments of E.huxleyii, able to live on sparse nutrients due to its expanded pan-genome. Communications and signaling pathways can be derived from simple symbiotic systems like lichens or complex marine algae metagenomes. Collectively these datasets derived from algal genomics contribute to building a comprehensive parts list essential for algal biofuel development.

Grigoriev, Igor

2012-07-05T23:59:59.000Z

93

Algal Biofuels Research Laboratory (Fact Sheet), NREL (National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Algal Biofuels Research Laboratory Enabling fundamental understanding of algal biology and composition of algal biomass to help develop superior bioenergy strains NREL is a...

94

Algal Biofuels Strategy Spring Workshop | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Algal Biofuels Strategy Spring Workshop Algal Biofuels Strategy Spring Workshop Algal Biofuels Strategy Spring Workshop Agenda algaeworkshopagenda.pdf More Documents &...

95

POET-DSM biorefinery in Iowa | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange VisitorsforDepartmentPOET-DSM biorefinery in Iowa

96

BETO Announces June Webinar: Algal Biofuels Consortium Releases...  

Broader source: Energy.gov (indexed) [DOE]

June Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results BETO Announces June Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results...

97

The new Integrated Biorefinery Research Facility (IBRF) offers an unprecedented  

E-Print Network [OSTI]

by the National Renewable Energy Laboratory Hawaiian hybrid initiative fueled by NREL NREL researchers to test of renew- able fuels by 2022. Stage II includes adding the second pretreatment and high solids enzymatic of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Energy

98

Financing Advanced Biofuels, Biochemicals And Biopower In Integrated Biorefineries  

Broader source: Energy.gov [DOE]

Afternoon Plenary Session: Current Trends in the Advanced Bioindustry Bioenergy Project Finance Mechanisms—Mark Riedy, Counsel, Kilpatrick, Townsend & Stockton LLP

99

Integrated Biorefinery Research Facility (IBRF I-II) (Post CD...  

Office of Environmental Management (EM)

Procurement Training A Design-Builder's Perspective: Anaerobic Digestion, Forest County Potawatomi Community - A Case Study Independent Oversight Activity Report,...

100

Integrated Biorefineries:Biofuels, Biopower, and Bioproducts | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusiness PlanPostingOctoberof Energy U.S. goal to

Note: This page contains sample records for the topic "integrated algal biorefinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Pilot Integrated Cellulosic Biorefinery Operations to Fuel Ethanol  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652GrowE-mail onThe2 DOE Hydrogen and Office(BETO) IBR

102

Pilot-Scale MixotrophicAlgae Integrated Biorefinery(IBR)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652GrowE-mail onThe2 DOE Hydrogen and Office(BETO)

103

2011 Biomass Program Platform Peer Review: Integrated Biorefineries  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement Awardflash2007-42attachment1.pdfmodule(EE) | DepartmentFeedstock 2011

104

2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-December 2013 issue ofOffice | Department

105

Economy Through Product Diversity: Integrated Biorefineries | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQ Contract ESPC IDIQ ContractConsumerofofDepartmentEcoCAR

106

2011 Biomass Program Platform Peer Review: Integrated Biorefineries |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste and Materials Disposition#EnergyFaceoff1 1Electricity2009Department of

107

FOA for the Demonstration of an Integrated Biorefinery System: Abengoa  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit|Department ofof Energy Offers TrainingFax Name Number NumberFOA

108

Integrated Biorefinery Lessons Learned and Best Practices | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.Indianaof Energy2-02DepartmentCONFERENCE ofEnergy

109

NREL: Biomass Research - Capabilities in Integrated Biorefinery Processes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of Women |hitsAwards andAnalyses Capabilities

110

Southern Pine Based on Biorefinery Center  

SciTech Connect (OSTI)

This program seeks to develop an integrated southern pine wood to biofuels/biomaterials processing facility on the Recipient’s campus, that will test advanced integrated wood processing technologies at the laboratory scale, including: • The generation of the bioethanol from pines residues and hemicelluloses extracted from pine woodchips; • The conversion of extracted woodchips to linerboard and bleach grade pulps; and • The efficient conversion of pine residues, bark and kraft cooking liquor into a useful pyrolysis oil.

Ragauskas, Arthur J; Singh, Preet

2014-01-10T23:59:59.000Z

111

Algal Biofuels Research Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides information about Algal Biofuels Research Laboratory capabilities and applications at NREL's National Bioenergy Center.

Not Available

2011-08-01T23:59:59.000Z

112

Top Value-Added Chemicals from Biomass - Volume II—Results of Screening for Potential Candidates from Biorefinery Lignin  

SciTech Connect (OSTI)

This report evaluates lignin’s role as a renewable raw material resource. Opportunities that arise from utilizing lignin fit into one of three categories: 1)power, fuel and syngas (generally near-term opportunities) 2) macromolecules (generally medium-term opportunities) 3) aromatics and miscellaneous monomers (long-term opportunities). Biorefineries will receive and process massive amounts of lignin. For this reason, how lignin can be best used to support the economic health of the biorefinery must be defined. An approach that only considers process heat would be shortsighted. Higher value products present economic opportunities and the potential to significantly increase the amount of liquid transportation fuel available from biomass. In this analysis a list of potential uses of lignin was compiled and sorted into “product types” which are broad classifications (listed above as power—fuel—syngas; macromolecules; and aromatics). In the first “product type” (power—fuel—gasification) lignin is used purely as a carbon source and aggressive means are employed to break down its polymeric structure. In the second “product type” (macromolecules) the opposite extreme is considered and advantage of the macromolecular structure imparted by nature is retained in high-molecular weight applications. The third “product type” (aromatics) lies somewhere between the two extremes and employs technologies that would break up lignin’s macromolecular structure but maintain the aromatic nature of the building block molecules. The individual opportunities were evaluated based on their technical difficulty, market, market risk, building block utility, and whether a pure material or a mixture would be produced. Unlike the “Sugars Top 10” report it was difficult to identify the ten best opportunities, however, the potential opportunities fell nicely into near-, medium- and long-term opportunities. Furthermore, the near-, medium- and long-term opportunities roughly align with the three “product types.” From this analysis a list of technical barriers was developed which can be used to identify research needs. Lignin presents many challenges for use in the biorefinery. Chemically it differs from sugars having a complex aromatic substructure. Unlike cellulose, which has a relatively simple substructure of glucose subunits, lignin has a high degree of variability in its structure which differs both from biomass source and from the recovery process used. In addition to its variability lignin is also reactive and to some degree less stable thermally and oxidatively to other biomass streams. What this means is that integrating a lignin process stream within the biorefinery will require identifying the best method to separate lignin from biomass cost-effectively.

Holladay, John E.; White, James F.; Bozell, Joseph J.; Johnson, David

2007-10-01T23:59:59.000Z

113

Demonstration and Deployment Successes: Sapphire Integrated Algal...  

Office of Environmental Management (EM)

Project The Promise and Challenge of Algae as Renewable Sources of Biofuels National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) Final Report...

114

Demonstration and Deployment Successes: Sapphire Integrated Algal  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit Services Audit Report Department ofDecouplingDemonstration Home

115

Institute for Critical Technology and Applied Science Seminar Series Biorefinery -A Sustainable Molecular  

E-Print Network [OSTI]

biocatalysis, with principles of green and supramolecular chemistry, we developed building blocksInstitute for Critical Technology and Applied Science Seminar Series Biorefinery - A Sustainable In future research, developing materials, fuels and energy devices from renewable resources would

Crawford, T. Daniel

116

EA-1705: Construction and Operation of a Proposed Cellulosic Biorefinery, Mascoma Corporation, Kinross Charter Township, Michigan  

Broader source: Energy.gov [DOE]

The frontier Project consists of the design, construction and operation of a biorefinery producing ethanol and other co-products from cellulosic materials utilizing a proprietary pretreatment and fermentation process.

117

Bioenergy Technologies Office R&D Pathways: Algal Lipid Upgrading...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Algal Biofuels Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction...

118

Algal Lipid Extraction and Upgrading to Hydrocarbons Technology...  

Energy Savers [EERE]

of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal...

119

Algal Biofuels Strategy Workshop - Fall Event | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Fall Event Algal Biofuels Strategy Workshop - Fall Event The U.S. Department of Energy's (DOE) Bioenergy Technologies Office's (BETO's) Algae Program hosted the Algal Biofuels...

120

Final Technical Report: Improvement of Zymomonas mobilis for Commercial Use in Corn-based Biorefineries  

SciTech Connect (OSTI)

Between 2007 and 2010 DuPont conducted a program under DOE award DE-FC36-07GO17056 to develop and improve Zymomonas mobilis as an ethanologen for commercial use in biorefineries to produce cellulosic ethanol. This program followed upon an earlier DOE funded program in which DuPont, in collaboration with the National Renewable Energy Laboratory (NREL) had developed a Zymomonas strain in conjunction with the development of an integrated cellulosic ethanol process. In the current project, we sought to maximize the utility of Zymomonas by adding the pathway to allow fermentation of the minor sugar arabinose, improve the utilization of xylose, improve tolerance to process hydrolysate and reduce the cost of producing the ethanologen. We undertook four major work streams to address these tasks, employing a range of approaches including genetic engineering, adaptation, metabolite and pathway analysis and fermentation process development. Through this project, we have developed a series of strains with improved characteristics versus the starting strain, and demonstrated robust scalability to at least the 200L scale. By a combination of improved ethanol fermentation yield and titer as well as reduced seed train costs, we have been able to reduce the capital investment and minimum ethanol selling price (MESP) by approximately 8.5% and 11% respectively vs. our starting point. Furthermore, the new strains we have developed, coupled with the learnings of this program, provide a platform for further strain improvements and advancement of cellulosic ethanol technology.

Hitz, William D.

2010-12-07T23:59:59.000Z

Note: This page contains sample records for the topic "integrated algal biorefinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Succinic Acid as a Byproduct in a Corn-based Ethanol Biorefinery  

SciTech Connect (OSTI)

MBI endeavored to develop a process for succinic acid production suitable for integration into a corn-based ethanol biorefinery. The project investigated the fermentative production of succinic acid using byproducts of corn mill operations. The fermentation process was attuned to include raw starch, endosperm, as the sugar source. A clean-not-sterile process was established to treat the endosperm and release the monomeric sugars. We developed the fermentation process to utilize a byproduct of corn ethanol fermentations, thin stillage, as the source of complex nitrogen and vitamin components needed to support succinic acid production in A. succinogenes. Further supplementations were eliminated without lowering titers and yields and a productivity above 0.6 g l-1 hr-1was achieved. Strain development was accomplished through generation of a recombinant strain that increased yields of succinic acid production. Isolation of additional strains with improved features was also pursued and frozen stocks were prepared from enriched, characterized cultures. Two recovery processes were evaluated at pilot scale and data obtained was incorporated into our economic analyses.

MBI International

2007-12-31T23:59:59.000Z

122

Proceedings of the Seventh Walnut Council Research Symposium 15GTR-NRS-P-115 BIOREFINERY OPPORTUNITIES FOR FOREST PRODUCTS INDUSTRIES  

E-Print Network [OSTI]

capabilities to succeed with biorefineries. Most forest products companies already have the first capability the acquisition of woody residues for making new products while minimizing competition for valuable timber companies to look at the overall biorefinery effort and acquire the expertise to move thermal

123

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry  

E-Print Network [OSTI]

of pulp mill-based integrated biorefinery with hemicellulosePilot stage Other Integrated Biorefinery Commercial statusintegrated forest biorefinery..

Kong, Lingbo

2014-01-01T23:59:59.000Z

124

EA-1850: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid Fuel Biorefinery, Park Falls, Wisconsin  

Broader source: Energy.gov [DOE]

NOTE: This EA has been cancelled. This EA will evaluate the environmental impacts of a proposal to provide federal funding to Flambeau River Biofuels (FRB) to construct and operate a biomass-to-liquid biorefinery in Park Falls, Wisconsin, on property currently used by Flambeau Rivers Paper, LLC (FRP) for a pulp and paper mill and Johnson Timber Corporation's (JTC) Summit Lake Yard for timber storage. This project would design a biorefinery which would produce up to 1,150 barrels per day (bpd) of clean syncrude. The biorefinery would also supply steam to the FRP mill, meeting the majority of the mill's steam demand and reducing or eliminating the need for the existing biomass/coal-fired boiler. The biorefinery would also include a steam turbine generator that will produce "green" electrical power for use by the biorefinery or for sale to the electric utility.

125

MBI Biorefinery: Corn to Biomass, Ethanol to Biochemicals and Biomaterials  

SciTech Connect (OSTI)

The project is a continuation of DOE-funded work (FY02 and FY03) that has focused on the development of the ammonia fiber explosion (AFEX) pretreatment technology, fermentation production of succinic acid and new processes and products to enhance dry mill profitability. The primary objective for work beginning in April 2004 and ending in November 2005 is focus on the key issues related to the: (1) design, costing and construction plan for a pilot AFEX pretreatment system, formation of a stakeholder development team to assist in the planning and design of a biorefinery pilot plant, continued evaluation of corn fractionation technologies, corn oil extraction, AFEX treatment of corn fiber/DDGs; (2) development of a process to fractionate AFEX-treated corn fiber and corn stover--cellulose and hemicellulose fractionation and sugar recovery; and (3) development of a scalable batch succinic acid production process at 500 L at or below $.42/lb, a laboratory scale fed-batch process for succinic acid production at or below $.40/lb, a recovery process for succinic acid that reduces the cost of succinic acid by $.02/lb and the development of an acid tolerant succinic acid production strain at lab scale (last objective not to be completed during this project time period).

None

2006-02-17T23:59:59.000Z

126

Webinar: Targeted Algal Biofuels and Bioproducts FOA  

Broader source: Energy.gov [DOE]

The Energy Department’s Bioenergy Technologies Office will present a live informational webcast on the Targeted Algal Biomass and Bioproducts Funding Opportunity (DE-FOA-0001162) on October 8, 2014...

127

Direct conversion of algal biomass to biofuel  

SciTech Connect (OSTI)

A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

2014-10-14T23:59:59.000Z

128

Development of an Algal Oil Separation Process  

E-Print Network [OSTI]

-Texas A&M University, personnel of Texas Agrilife Research and its Algal Research facility, Pecos, Texas, for providing us with algal cultures for these experiments. Finally I would like to thank the National Alliance of Advance Biofuels and Bioproducts... piston driven by pressurized hydraulic fluid was used to force the material through the nozzle creating a high velocity jet. This liquid jet was then forced through a homogenization cell where high intra-material shear forces were generated...

Samarasinghe, Nalin

2012-10-19T23:59:59.000Z

129

Biomass Biorefinery for the production of Polymers and Fuels  

SciTech Connect (OSTI)

The conversion of biomass crops to fuel is receiving considerable attention as a means to reduce our dependence on foreign oil imports and to meet future energy needs. Besides their use for fuel, biomass crops are an attractive vehicle for producing value added products such as biopolymers. Metabolix, Inc. of Cambridge proposes to develop methods for producing biodegradable polymers polyhydroxyalkanoates (PHAs) in green tissue plants as well as utilizating residual plant biomass after polymer extraction for fuel generation to offset the energy required for polymer extraction. The primary plant target is switchgrass, and backup targets are alfalfa and tobacco. The combined polymer and fuel production from the transgenic biomass crops establishes a biorefinery that has the potential to reduce the nation’s dependence on foreign oil imports for both the feedstocks and energy needed for plastic production. Concerns about the widespread use of transgenic crops and the grower’s ability to prevent the contamination of the surrounding environment with foreign genes will be addressed by incorporating and expanding on some of the latest plant biotechnology developed by the project partners of this proposal. This proposal also addresses extraction of PHAs from biomass, modification of PHAs so that they have suitable properties for large volume polymer applications, processing of the PHAs using conversion processes now practiced at large scale (e.g., to film, fiber, and molded parts), conversion of PHA polymers to chemical building blocks, and demonstration of the usefulness of PHAs in large volume applications. The biodegradability of PHAs can also help to reduce solid waste in our landfills. If successful, this program will reduce U.S. dependence on imported oil, as well as contribute jobs and revenue to the agricultural economy and reduce the overall emissions of carbon to the atmosphere.

Dr. Oliver P. Peoples

2008-05-05T23:59:59.000Z

130

Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism  

E-Print Network [OSTI]

to develop algal biofuels. Integrating biological and optical data, we reconstructed a genome-scale metabolic interest in recent years for their potential commercial applications in biofuels (Hu et al, 2008; Hemschemeier et al, 2009) and nutritional supplements (Spolaore et al, 2006). Among eukaryotic microalgae

131

Assessment of Algal Farm Designs using a Dynamic Modular Approach  

SciTech Connect (OSTI)

The notion of renewable energy provides an importantmechanism for diversifying an energy portfolio,which ultimately would have numerous benefits including increased energy resilience, reduced reliance on foreign energysupplies, reduced GHG emissions, development of a green energy sector that contributes to economic growth,and providing a sustainable energy supply. The conversion of autotrophic algae to liquid transportation fuels is the basis of several decades of research to competitively bring energy-scale production into reality; however, many challenges still remain for making algal biofuels economically viable. Addressing current challenges associatedwith algal production systems, in part, requires the ability to assess spatial and temporal variability, rapidly evaluate alternative algal production system designs, and perform large-scale assessments considering multiple scenarios for thousands of potential sites. We introduce the development and application of the Algae Logistics Model (ALM) which is tailored to help address these challenges. The flexible nature of the ALM architecture allows the model to: 1) interface with external biomass production and resource assessment models, as well as other relevant datasets including those with spatiotemporal granularity; 2) interchange design processes to enable operational and economic assessments ofmultiple design configurations, including the integration of current and new innovative technologies; and 3) conduct trade-off analysis to help understand the site-specific techno-economic trade-offs and inform technology decisions. This study uses the ALM to investigate a baseline open-pond production system determined by model harmonization efforts conducted by the U.S. Department of Energy. Six sites in the U.S. southern-tierwere sub-selected and assessed using daily site-specific algaebiomass productivity data to determine the economic viability of large-scale open-pond systems. Results show that costs can vary significantly depending on location and biomass productivity and that integration of novel dewatering equipment, order of operations, and equipment scaling can also have significant impacts on economics.

Jared M. Abodeely; Daniel M. Stevens; Allison E. Ray; Deborah T. Newby; Andre M. Coleman; Kara G. Cafferty

2014-07-01T23:59:59.000Z

132

Assessment of Algal Farm Designs Using a Dynamic Modular Approach  

SciTech Connect (OSTI)

The notion of renewable energy provides an important mechanism for diversifying an energy portfolio, which ultimately would have numerous benefits including increased energy resilience, reduction of foreign energy supplies, reduced GHG emissions, development of a green energy sector that contributes to economic growth, and providing a sustainable energy supply. The conversion of autotrophic algae to liquid transportation fuels is the basis of several decades of research to competitively bring energy-scale production into reality; however, many challenges still remain for making algal biofuels economically viable. Addressing current challenges associated with algal production systems, in part, requires the ability to assess spatial and temporal variability, rapidly evaluate alternative algal production system designs, and perform large-scale assessments considering multiple scenarios for thousands of potential sites. We introduce the Algae Logistics Model (ALM) which helps to address these challenges. The flexible nature of the ALM architecture allows the model to: 1) interface with external biomass production and resource assessment models, as well as other relevant datasets including those with spatiotemporal granularity; 2) interchange design processes to enable operational and economic assessments of multiple design configurations, including the integration of current and new innovative technologies; and 3) conduct trade-off analysis to help understand the site-specific techno-economic trade-offs and inform technology decisions. This study uses the ALM to investigate a baseline open-pond production system determined by model harmonization efforts conducted by the U.S. Department of Energy. Six sites in the U.S. southern-tier were sub-selected and assessed using daily site-specific algae biomass productivity data to determine the economic viability of large-scale open-pond systems. Results show that costs can vary significantly depending on location and biomass productivity and that integration of novel dewatering equipment, order of operations, and equipment scaling can also have significant impacts on economics.

Abodeely, Jared; Coleman, Andre M.; Stevens, Daniel M.; Ray, Allison E.; Cafferty, Kara G.; Newby, Deborah T.

2014-05-03T23:59:59.000Z

133

Algal Supply System Design - Harmonized Version  

SciTech Connect (OSTI)

The objective of this design report is to provide an assessment of current technologies used for production, dewatering, and converting microalgae cultivated in open-pond systems to biofuel. The original draft design was created in 2011 and has subsequently been brought into agreement with the DOE harmonized model. The design report extends beyond this harmonized model to discuss some of the challenges with assessing algal production systems, including the ability to (1) quickly assess alternative algal production system designs, (2) assess spatial and temporal variability, and (3) perform large-scale assessments considering multiple scenarios for thousands of potential sites. The Algae Logistics Model (ALM) was developed to address each of these limitations of current modeling efforts to enable assessment of the economic feasibility of algal production systems across the United States. The (ALM) enables (1) dynamic assessments using spatiotemporal conditions, (2) exploration of algal production system design configurations, (3) investigation of algal production system operating assumptions, and (4) trade-off assessments with technology decisions and operating assumptions. The report discusses results from the ALM, which is used to assess the baseline design determined by harmonization efforts between U.S. DOE national laboratories. Productivity and resource assessment data is provided by coupling the ALM with the Biomass Assessment Tool developed at PNNL. This high-fidelity data is dynamically passed to the ALM and used to help better understand the impacts of spatial and temporal constraints on algal production systems by providing a cost for producing extracted algal lipids annually for each potential site.

Abodeely, Jared; Stevens, Daniel; Ray, Allison; Newby, Deborah; Schaller, Kastli

2013-03-01T23:59:59.000Z

134

Algal Biofuels Strategy Workshop | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, T X S ummary o fBtuIdeasAlgalAlgal

135

The Health Risks: Seafood Contamination, Harmful Algal  

E-Print Network [OSTI]

health products from the sea. What is the central issue? Why should I care? How will OHH researchThe Health Risks: Seafood Contamination, Harmful Algal Blooms and Polluted Beaches Seafood associated public health costs. Announcing a New Interagency Report on Oceans and Human Health Research

136

Identification and genetic characterization of maize cell wall variation for improved biorefinery feedstock characteristics  

SciTech Connect (OSTI)

The objectives of this program are to 1) characterize novel maize mutants with altered cell walls for enhanced biorefinery characteristics and 2) find quantitative trait loci (QTLs) related to biorefinery characteristics by taking advantage of the genetic diversity of maize. As a result a novel non-transgenic maize plant (cal1) has been identified, whose stover (leaves and stalk) contain more glucan in their walls leading to a higher saccharification yield, when subjected to a standard enzymatic digestion cocktail. Stacking this trait with altered lignin mutants yielded evene higher saccharification yields. Cal-1 mutants do not show a loss of kernel and or biomass yield when grown in the field . Hence, cal1 biomass provides an excellent feedstock for the biofuel industry.

Pauly, Markus [UC Berkeley] [UC Berkeley; Hake, Sarah [USDA Albany] [USDA Albany

2013-10-31T23:59:59.000Z

137

Simulating Pelletization Strategies to Reduce the Biomass Supply Risk at America’s Biorefineries  

SciTech Connect (OSTI)

Demand for cellulosic ethanol and other advanced biofuels has been on the rise, due in part to federal targets enacted in 2005 and extended in 2007. The industry faces major challenges in meeting these worthwhile and ambitious targets. The challenges are especially severe in the logistics of timely feedstock delivery to biorefineries. Logistical difficulties arise from seasonal production that forces the biomass to be stored in uncontrolled field-side environments. In this storage format physical difficulties arise; transportation is hindered by the low bulk density of baled biomass and the unprotected material can decay leading to unpredictable losses. Additionally, uncertain yields and contractual difficulties can exacerbate these challenges making biorefineries a high-risk venture. Investors’ risk could limit business entry and prevent America from reaching the targets. This paper explores pelletizer strategies to convert the lignocellulosic biomass into a denser form more suitable for storage. The densification of biomass would reduce supply risks, and the new system would outperform conventional biorefinery supply systems. Pelletizer strategies exhibit somewhat higher costs, but the reduction in risk is well worth the extra cost if America is to grow the advanced biofuels industry in a sustainable manner.

Jacob J. Jacobson; Shane Carnohan; Andrew Ford; Allyson Beall

2014-07-01T23:59:59.000Z

138

Determination of Total Carbohydrates in Algal Biomass: Laboratory...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbohydrates in Algal Biomass Laboratory Analytical Procedure (LAP) Issue Date: December 2, 2013 S. Van Wychen and L. M. L. Laurens Technical Report NRELTP-5100-60957 December...

139

algal neurotoxin domoic: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

r and the carrying capacity K. b. Apply Vraciu, Adela 77 Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with Environmental...

140

NREL Algal Biofuels Projects and Partnerships (Brochure), NREL...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

techno-economic analysis, and analytical method harmonization. Optimization of Biogas Production from Algal Residues via Anaerobic Digestion NREL, together with Washington...

Note: This page contains sample records for the topic "integrated algal biorefinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)  

SciTech Connect (OSTI)

This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuels processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels are being applied to algal biofuels processes. Analysts are also testing algal fuel properties to measure energy content and ensure compatibility with existing fueling infrastructure. (5) Cross-Cutting Analysis - NREL scientists and engineers are conducting rigorous techno-economic analyses of algal biofuels processes. In addition, they are performing a full life cycle assessment of the entire algae-to-biofuels process.

Not Available

2011-10-01T23:59:59.000Z

142

Algal Feedstocks R&D Plenary  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, T X S ummary oAlgal Biofuels

143

Catalytic Hydrothermal Gasification of Lignin-Rich Biorefinery Residues and Algae Final Report  

SciTech Connect (OSTI)

This report describes the results of the work performed by PNNL using feedstock materials provided by the National Renewable Energy Laboratory, KL Energy and Lignol lignocellulosic ethanol pilot plants. Test results with algae feedstocks provided by Genifuel, which provided in-kind cost share to the project, are also included. The work conducted during this project involved developing and demonstrating on the bench-scale process technology at PNNL for catalytic hydrothermal gasification of lignin-rich biorefinery residues and algae. A technoeconomic assessment evaluated the use of the technology for energy recovery in a lignocellulosic ethanol plant.

Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.; Rotness, Leslie J.; Zacher, Alan H.; Santosa, Daniel M.; Valkenburt, Corinne; Jones, Susanne B.; Tjokro Rahardjo, Sandra A.

2009-11-03T23:59:59.000Z

144

E-Print Network 3.0 - algal toxins origins Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

as a harmful algal... a toxin that poses human health risks. The development of the Lake Erie Experiment Harmful Algal Bloom... quality, beach closures, and the occurrence of...

145

Investigating fatty acid biosynthesis within the algal chloroplast using Chlamydomonas reinhardtii as a model  

E-Print Network [OSTI]

microalgae for sustainable biodiesel. (2012) Blatti, J.L. ,energy within pond scum: Biodiesel from algal lipids. J.energy within pond scum: biodiesel from algal lipids. ”

Blatti, Jillian L.

2012-01-01T23:59:59.000Z

146

E-Print Network 3.0 - algal growth rate Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

growth rate was limited by organic C or inorganic P. The algal density... growth rate was energy limited. However, above that light intensity. algal density increased... of...

147

E-Print Network 3.0 - algal growth inhibition Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

inhibit algal growth (Vasseur and Pandard, 1988... : Fresh Water Algal Growth Inhibition Test with Scenedesmus subspitacus and Selenestrum capricornutum... because AP ... Source:...

148

Method and system of culturing an algal mat  

DOE Patents [OSTI]

A system and method for culturing algae are presented. The system and method utilize a fog of growth medium that is delivered to an algal mat generator along with a stream of CO.sub.2 to promote growth of algal cells contained in the generator.

Das, Keshav C; Cannon, Benjamin R; Bhatnagar, Ashish; Chinnasamy, Senthil

2014-05-13T23:59:59.000Z

149

Co-Solvent Enhanced Production of Platform Fuel Precursors From Lignocellulosic Biomass  

E-Print Network [OSTI]

flow diagram for an integrated biorefinery to produce fuelflow diagram for an integrated biorefinery to produce fuelaffordable integrated turn-key biorefinery would be hugely

Cai, Charles Miao-Zi

2014-01-01T23:59:59.000Z

150

Investigating fatty acid biosynthesis within the algal chloroplast using Chlamydomonas reinhardtii as a model  

E-Print Network [OSTI]

secretion system that alleviates costs associated with harvesting, dewatering, and extracting algal lipids [

Blatti, Jillian L.

2012-01-01T23:59:59.000Z

151

Production of biofuel using molluscan pseudofeces derived from algal cells  

DOE Patents [OSTI]

Embodiments of the present disclosure provide for novel strategies to harvest algal lipids using mollusks which after feeding algae from the growth medium can convert algal lipids into their biomass or excrete lipids in their pseudofeces which makes algae harvesting energy efficient and cost effective. The bioconverter, filter-feeding mollusks and their pseudofeces can be harvested and converted to biocrude using an advanced thermochemical liquefaction technology. Methods, systems, and materials are disclosed for the harvest and isolation of algal lipids from the mollusks, molluscan feces and molluscan pseudofeces.

Das, Keshav C.; Chinnasamy, Senthil; Shelton, James; Wilde, Susan B.; Haynie, Rebecca S.; Herrin, James A.

2012-08-28T23:59:59.000Z

152

A Process Integration Approach to the Strategic Design and Scheduling of Biorefineries  

E-Print Network [OSTI]

) Analogous to the refining of oil into its constituent components, biomass feedstocks are refined into what are referred to as building block components for direct use or conversion into subsequent products. (Kamm & Kamm, 2004, Kamm et al., 2006) Biomass... feedstocks include trees, grasses, agricultural crops, agricultural residues, animal wastes, and municipal solid waste. The building blocks components of these feedstocks are carbohydrates, lignin, proteins, fats, and in smaller quantities, special...

Elms, Rene ?Davina

2011-02-22T23:59:59.000Z

153

The Integrated Biorefinery: Conversion of Corn Fiber to Value-added Chemicals  

SciTech Connect (OSTI)

This presentation provides a summary of Michigan Biotechnology Institute's efforts to employ the corn fiber fraction of a dry grind ethanol plant as a feedstock to produce succinic acid which has potential as a building block intermediate for a wide range of commodity chemicals.

Susanne Kleff

2007-03-24T23:59:59.000Z

154

R&D Needs for Integrated Biorefineries: The 30x30 Vision (Presentation)  

SciTech Connect (OSTI)

Presentation on progress and possible scenarios towards meeting the 30x30 initiative proposed by President Bush

Dayton, D. C.

2007-03-27T23:59:59.000Z

155

Integrated Biorefinery Research Facility (IBRF I-II) (Post CD-4), EERE, Aug  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiatives Initiatives Through a variety ofthe Supportingand2011 |

156

Follow-up Audit of the Department of Energy's Financial Assistance for Integrated Biorefinery Projects  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf6.pdf5.pdfFluorescent LightingFormerDate:

157

FOA for the Demonstration of an Integrated Biorefinery System: Blue Fire  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit|Department ofof Energy Offers TrainingFax Name Number NumberFOAEthanol,

158

FOA for the Demonstration of an Integrated Biorefinery System: POET Project  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit|Department ofof Energy Offers TrainingFax Name Number

159

FOA for the Demonstration of an Integrated Biorefinery System: Range Fuels,  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit|Department ofof Energy Offers TrainingFax Name NumberInc. | Department

160

Integrated Biorefinery for conversion of Biomass to Ethanol, Synthesis Gas, and Heat  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.Indianaof Energy2-02DepartmentCONFERENCEOffice(BETO)

Note: This page contains sample records for the topic "integrated algal biorefinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell Integration at Biorefineries  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 (BETO)and Fuel09Biomass Program

162

Preliminary Economics for the Production of Pyrolysis Oil from Lignin in a Cellulosic Ethanol Biorefinery  

SciTech Connect (OSTI)

Cellulosic ethanol biorefinery economics can be potentially improved by converting by-product lignin into high valued products. Cellulosic biomass is composed mainly of cellulose, hemicellulose and lignin. In a cellulosic ethanol biorefinery, cellulose and hemicellullose are converted to ethanol via fermentation. The raw lignin portion is the partially dewatered stream that is separated from the product ethanol and contains lignin, unconverted feed and other by-products. It can be burned as fuel for the plant or can be diverted into higher-value products. One such higher-valued product is pyrolysis oil, a fuel that can be further upgraded into motor gasoline fuels. While pyrolysis of pure lignin is not a good source of pyrolysis liquids, raw lignin containing unconverted feed and by-products may have potential as a feedstock. This report considers only the production of the pyrolysis oil and does not estimate the cost of upgrading that oil into synthetic crude oil or finished gasoline and diesel. A techno-economic analysis for the production of pyrolysis oil from raw lignin was conducted. comparing two cellulosic ethanol fermentation based biorefineries. The base case is the NREL 2002 cellulosic ethanol design report case where 2000 MTPD of corn stover is fermented to ethanol (NREL 2002). In the base case, lignin is separated from the ethanol product, dewatered, and burned to produce steam and power. The alternate case considered in this report dries the lignin, and then uses fast pyrolysis to generate a bio-oil product. Steam and power are generated in this alternate case by burning some of the corn stover feed, rather than fermenting it. This reduces the annual ethanol production rate from 69 to 54 million gallons/year. Assuming a pyrolysis oil value similar to Btu-adjusted residual oil, the estimated ethanol selling price ranges from $1.40 to $1.48 (2007 $) depending upon the yield of pyrolysis oil. This is considerably above the target minimum ethanol selling price of $1.33 for the 2012 goal case process as reported in the 2007 State of Technology Model (NREL 2008). Hence, pyrolysis oil does not appear to be an economically attractive product in this scenario. Further research regarding fast pyrolysis of raw lignin from a cellulosic plant as an end product is not recommended. Other processes, such as high-pressure liquefaction or wet gasification, and higher value products, such as gasoline and diesel from fast pyrolysis oil should be considered in future studies.

Jones, Susanne B.; Zhu, Yunhua

2009-04-01T23:59:59.000Z

163

IMPROVED BIOREFINERY FOR THE PRODUCTION OF ETHANOL, CHEMICALS, ANIMAL FEED AND BIOMATERIALS FROM SUGAR CANE  

SciTech Connect (OSTI)

The Audubon Sugar Institute (ASI) of Louisiana State University’s Agricultural Center (LSU AgCenter) and MBI International (MBI) sought to develop technologies that will lead to the development of a sugar-cane biorefinery, capable of supplying fuel ethanol from bagasse. Technology development focused on the conversion of bagasse, cane-leaf matter (CLM) and molasses into high value-added products that included ethanol, specialty chemicals, biomaterials and animal feed; i.e. a sugar cane-based biorefinery. The key to lignocellulosic biomass utilization is an economically feasible method (pretreatment) for separating the cellulose and the hemicellulose from the physical protection provided by lignin. An effective pretreatment disrupts physical barriers, cellulose crystallinity, and the association of lignin and hemicellulose with cellulose so that hydrolytic enzymes can access the biomass macrostructure (Teymouri et al. 2004, Laureano-Perez, 2005). We chose to focus on alkaline pretreatment methods for, and in particular, the Ammonia Fiber Expansion (AFEX) process owned by MBI. During the first two years of this program a laboratory process was established for the pretreatment of bagasse and CLM using the AFEX process. There was significant improvement of both rate and yield of glucose and xylose upon enzymatic hydrolysis of AFEX-treated bagasse and CLM compared with untreated material. Because of reactor size limitation, several other alkaline pretreatment methods were also co-investigated. They included, dilute ammonia, lime and hydroxy-hypochlorite treatments. Scale-up focused on using a dilute ammonia process as a substitute for AFEX, allowing development at a larger scale. The pretreatment of bagasse by an ammonia process, followed by saccharification and fermentation produced ethanol from bagasse. Simultaneous saccharification and fermentation (SSF) allowed two operations in the same vessel. The addition of sugarcane molasses to the hydrolysate/fermentation process yielded improvements beyond what was expected solely from the addition of sugar. In order to expand the economic potential for building a biorefinery, the conversion of enzyme hydrolysates of AFEX-treated bagasse to succinic acid was also investigated. This program established a solid basis for pre-treatment of bagasse in a manner that is feasible for producing ethanol at raw sugar mills.

Dr. Donal F. Day

2009-01-29T23:59:59.000Z

164

Determination of Total Solids and Ash in Algal Biomass: Laboratory...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solids and Ash in Algal Biomass Laboratory Analytical Procedure (LAP) Issue Date: December 2, 2013 S. Van Wychen and L. M. L. Laurens Technical Report NRELTP-5100-60956 December...

165

BETO Live Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results  

Office of Energy Efficiency and Renewable Energy (EERE)

Dr. Jose Olivares of Los Alamos National Laboratory will present the results of algal biofuels research conducted by the National Alliance for Advanced Biofuels and Bioproducts (NAABB). NAABB is...

166

algal hosts cystoseira: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of both models represents 1,463.45 km2 on the island that can be developed for algaebased bioenergy Gilbes, Fernando 62 Behavioural Response in Plants: Adjustment in Algal...

167

algal symbiont dinoroseobacter: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of both models represents 1,463.45 km2 on the island that can be developed for algaebased bioenergy Gilbes, Fernando 106 Behavioural Response in Plants: Adjustment in Algal...

168

axenically cultured algal: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of both models represents 1,463.45 km2 on the island that can be developed for algaebased bioenergy Gilbes, Fernando 64 Behavioural Response in Plants: Adjustment in Algal...

169

algal control agent: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of both models represents 1,463.45 km2 on the island that can be developed for algaebased bioenergy Gilbes, Fernando 271 Behavioural Response in Plants: Adjustment in Algal...

170

Algal Biofuels R&D at NREL (Brochure)  

SciTech Connect (OSTI)

An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

Not Available

2012-09-01T23:59:59.000Z

171

algal enteromorpha zoospores: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of a river food chain changed from year to year, shifting Power, Mary Eleanor 74 Small-scale spatial variation of benthic algal assemblages in a peat bog Katerina Cerna n Biology...

172

Alpena Biorefinery  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, T X S9-0s) All27, 2013 Dr.AlpacaAlpena

173

HABITAT AND BIODIVERSITY MAPPING, FOR THE DETERMINATION OF ALGAL BIOMASS AQUACULTURE SITES IN THE COSTAL AREAS OF PUERTO RICO  

E-Print Network [OSTI]

HABITAT AND BIODIVERSITY MAPPING, FOR THE DETERMINATION OF ALGAL BIOMASS AQUACULTURE SITES production of algal biomass for the production of biofuels in Puerto Rico. The study evaluates

Gilbes, Fernando

174

Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research...  

Broader source: Energy.gov (indexed) [DOE]

Biofuels: Long-Term Energy Benefits Drive U.S. Research Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research...

175

E-Print Network 3.0 - algal lipid bodies Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

number of unique scale-up challenges. Algal Lipid: Precursor to Biofuels Bio-Crude Biogas... National Algal Biofuels Technology Roadmap MAY 2010 BIOMASS PROGRAM 12;12;U.S....

176

Factors influencing algal biomass in hydrologically dynamic salt ponds in a subtropical salt marsh  

E-Print Network [OSTI]

realized, underscoring the importance of understanding algal dynamics in such systems. Benthic and planktonic chlorophyll-a (surrogate for total algal biomass), sediment AFDW, total suspended solids, salinity, and nutrients were examined in marsh ponds...

Miller, Carrie J.

2009-05-15T23:59:59.000Z

177

Algal Biodiesel via Innovative Harvesting and Aquaculture Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, T X S ummary o fBtuIdeas AlgalAlgal

178

Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, T X S ummary oAlgal BiofuelsAlgal

179

Eutrophication and harmful algal blooms: A scientific consensus J. Heisler a,3  

E-Print Network [OSTI]

Eutrophication and harmful algal blooms: A scientific consensus J. Heisler a,3 , P.M. Glibert b between water quality and eutrophication and the occurrence of harmful algal blooms (HABs). This meeting in revised form 21 January 2008 Accepted 1 August 2008 Keywords: Eutrophication Harmful algal blooms HABs

Cochlan, William P.

180

Update on Genomic Studies of Algae Paths toward Algal Genomics  

E-Print Network [OSTI]

Update on Genomic Studies of Algae Paths toward Algal Genomics Arthur R. Grossman* The Carnegie of genomic information that is being used to help researchers understand the gene content of organisms, how the expression of genes. In this introductory manuscript, I discuss select algae and how genomics is impacting

Note: This page contains sample records for the topic "integrated algal biorefinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Special Seminar Realizing the Full Potential of Algal Biofuels  

E-Print Network [OSTI]

of Algal Biofuels Dr. Ronald R. Chance Senior Scientific Advisor, Physical Sciences Algenol Biofuels Fort: Although biofuels have great potential as lower-carbon-footprint, drop-in fuels for existing transportation, economic viability, and achievable reduction in carbon footprint. A cyanobacteria-based biofuels system

Garfunkel, Eric

182

Recycling Water: one step to making algal biofuels a reality  

E-Print Network [OSTI]

Recycling Water: one step to making algal biofuels a reality Manuel Vasquez, Juan Sandoval acquisition of solar power, nuclear power, and biofuels to diversify the country's domestic energy profile, the chemical make-up of biofuels allows them to be readily converted into their petroleum counterparts making

Fay, Noah

183

Toxic Algal Blooms in a Changing Coastal Ocean  

E-Print Network [OSTI]

warming Royal Society, 2005 How will global change affect harmful algal blooms and toxin production? #12 2011, Mendocino county, CA Gonyaulax spinifera #12;Ocean acidification Global;Warming favors dinoflagellate blooms Cloern et al. 2005, GRL 32 #12;Dinoflagellate range extensions

Rohs, Remo

184

Making Algal Biofuel Production More Efficient, Less Expensive  

Office of Energy Efficiency and Renewable Energy (EERE)

Tiny algae can play a big role in tackling America's energy challenges. Recent scientific breakthroughs and projects, funded by the Energy Department’s Bioenergy Technologies Office, have resulted in a number of advancements that are helping make algal biofuel more cost competitive and widely available.

185

Sugar-Based Ethanol Biorefinery: Ethanol, Succinic Acid and By-Product Production  

SciTech Connect (OSTI)

The work conducted in this project is an extension of the developments itemized in DE-FG-36-04GO14236. This program is designed to help the development of a biorefinery based around a raw sugar mill, which in Louisiana is an underutilized asset. Some technical questions were answered regarding the addition of a biomass to ethanol facility to existing sugar mills. The focus of this work is on developing technology to produce ethanol and valuable by-products from bagasse. Three major areas are addressed, feedstock storage, potential by-products and the technology for producing ethanol from dilute ammonia pre-treated bagasse. Sugar mills normally store bagasse in a simple pile. During the off season there is a natural degradation of the bagasse, due to the composting action of microorganisms in the pile. This has serious implications if bagasse must be stored to operate a bagasse/biorefinery for a 300+ day operating cycle. Deterioration of the fermentables in bagasse was found to be 6.5% per month, on pile storage. This indicates that long term storage of adequate amounts of bagasse for year-round operation is probably not feasible. Lignin from pretreatment seemed to offer a potential source of valuable by-products. Although a wide range of phenolic compounds were present in the effluent from dilute ammonia pretreatment, the concentrations of each (except for benzoic acid) were too low to consider for extraction. The cellulosic hydrolysis system was modified to produce commercially recoverable quantities of cellobiose, which has a small but growing market in the food process industries. A spin-off of this led to the production of a specific oligosaccharide which appears to have both medical and commercial implications as a fungal growth inhibitor. An alternate use of sugars produced from biomass hydrolysis would be to produce succinic acid as a chemical feedstock for other conversions. An organism was developed which can do this bioconversion, but the economics of succinic acid production were such that it could not compete with current commercial practice. To allow recovery of commercial amounts of ethanol from bagasse fermentation, research was conducted on high solids loading fermentations (using S. cerevisiae) with commercial cellulase on pretreated material. A combination of SHF/SSF treatment with fed-batch operation allowed fermentation at 30% solids loading. Supplementation of the fermentation with a small amount of black-strap molasses had results beyond expectation. There was an enhancement of conversion as well as production of ethanol levels above 6.0% w/w, which is required both for efficient distillation as well as contaminant repression. The focus of fermentation development was only on converting the cellulose to ethanol, as this yeast is not capable of fermenting both glucose and xylose (from hemicellulose). In anticipation of the future development of such an organism, we screened the commercially available xylanases to find the optimum mix for conversion of both cellulose and hemicellulose. A different mixture than the spezyme/novozyme mix used in our fermentation research was found to be more efficient at converting both cellulose and hemicellulose. Efforts were made to select a mutant of Pichia stipitis for ability to co-ferment glucose and xylose to ethanol. New mutation technology was developed, but an appropriate mutant has not yet been isolated. The ability to convert to stillage from biomass fermentations were determined to be suitable for anaerobic degradation and methane production. An economic model of a current sugar factory was developed in order to provide a baseline for the cost/benefit analysis of adding cellulosic ethanol production.

Donal F. Day

2009-03-31T23:59:59.000Z

186

Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway  

SciTech Connect (OSTI)

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.

Davis, Ryan; Biddy, Mary J.; Jones, Susanne B.

2013-03-31T23:59:59.000Z

187

A Taste of Algal Genomes from the Joint Genome Institute  

SciTech Connect (OSTI)

Algae play profound roles in aquatic food chains and the carbon cycle, can impose health and economic costs through toxic blooms, provide models for the study of symbiosis, photosynthesis, and eukaryotic evolution, and are candidate sources for bio-fuels; all of these research areas are part of the mission of DOE's Joint Genome Institute (JGI). To date JGI has sequenced, assembled, annotated, and released to the public the genomes of 18 species and strains of algae, sampling almost all of the major clades of photosynthetic eukaryotes. With more algal genomes currently undergoing analysis, JGI continues its commitment to driving forward basic and applied algal science. Among these ongoing projects are the pan-genome of the dominant coccolithophore Emiliania huxleyi, the interrelationships between the 4 genomes in the nucleomorph-containing Bigelowiella natans and Guillardia theta, and the search for symbiosis genes of lichens.

Kuo, Alan; Grigoriev, Igor

2012-06-17T23:59:59.000Z

188

Investigating fatty acid biosynthesis within the algal chloroplast using Chlamydomonas reinhardtii as a model  

E-Print Network [OSTI]

offering a continuous algal production-secretion system thatalgal lipids [124]. As such, there are many research groups interested in engineering fatty acid production and secretion

Blatti, Jillian L.

2012-01-01T23:59:59.000Z

189

E-Print Network 3.0 - algal biofuels ponds Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computer Technologies and Information Sciences 3 Introduction slide 2 Biofuels and Algae Markets, Systems, Summary: of Algal Biofuels and Products Phase 1: 2010 For High Value...

190

E-Print Network 3.0 - algal blooms connecting Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is Lake St. Clair. The Zebra Mussel Connection: Harmful Algal Blooms... Bay and Lake Erie. Saginaw Bay has experienced blooms most summers since 1992. Lake Erie has......

191

E-Print Network 3.0 - algal population dynamics Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

dominated by pelagic phytoplankton production Source: Toledo, University of - Lake Erie Center Collection: Geosciences ; Environmental Sciences and Ecology 87 5. ALGAL...

192

E-Print Network 3.0 - alginate immobilized algal Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biology and Medicine 6 Contribution of Sulfonate Groups and Alginate to Heavy Metal Summary: and Algal Biomass. Partial esterification of S. fluitans biomass and alginic...

193

National Bioenergy Center, Biochemical Platform Integration Project: Quarterly Update, Winter 2011-2012 (Newsletter)  

SciTech Connect (OSTI)

Winter 2011-2012 issue of the National Bioenergy Center Biochemical Platform Integration Project quarterly update. Issue topics: 34th Symposium on Biotechnology for Fuels and Chemicals; feasibility of NIR spectroscopy-based rapid feedstock reactive screening; demonstrating integrated pilot-scale biomass conversion. The Biochemical Process Integration Task focuses on integrating the processing steps in enzyme-based lignocellulose conversion technology. This project supports the U.S. Department of Energy's efforts to foster development, demonstration, and deployment of 'biochemical platform' biorefineries that economically produce ethanol or other fuels, as well as commodity sugars and a variety of other chemical products, from renewable lignocellulosic biomass.

Not Available

2012-04-01T23:59:59.000Z

194

A Collection of Algal Genomes from the JGI  

SciTech Connect (OSTI)

Algae, defined as photosynthetic eukaryotes other than plants, constitute a major component of fundamental eukaryotic diversity. Acquisition of the ability to conduct oxygenic photosynthesis through endosymbiotic events has been a principal driver of eukaryotic evolution, and today algae continue to underpin aquatic food chains as primary producers. Algae play profound roles in the carbon cycle, can impose health and economic costs through toxic blooms, and are candidate sources for bio-fuels; all of these research areas are part of the mission of DOE?s Joint Genome Institute (JGI). A collection of algal projects ongoing at JGI contributes to each of these areas and illustrates analyses employed in their genome exploration.

Kuo, Alan; Grigoriev, Igor

2012-03-19T23:59:59.000Z

195

Lower Permian algal stromatolites from Kansas and Oklahoma  

E-Print Network [OSTI]

be attributed in part to effects of leaching. TABLE 1—Phosphate Content of Various Well- ington Formation Algae from Kansas and Oklahoma [Data by J. M. LAstmoNs] CALCAREOUS ALGAL SAMPLES PERCENT OF PO4 (by weight) Loc. I, bed 4 0.358 Loc. 1, bed 8 0.218 Loc... or absent. The basic data from 15 slides condensed in Table 3 should give a good idea of the micro- structure. Actually, in most stromatolites pre- viously studied by me, the slides show very little except the laminae. This Wellington collection shows more...

Tasch, P.; Kidson, E.; Johnson, J. Harlan

1969-10-01T23:59:59.000Z

196

A study of algal biomass potential in selected Canadian regions.  

SciTech Connect (OSTI)

A dynamic assessment model has been developed for evaluating the potential algal biomass and extracted biocrude productivity and costs, using nutrient and water resources available from waste streams in four regions of Canada (western British Columbia, Alberta oil fields, southern Ontario, and Nova Scotia). The purpose of this model is to help identify optimal locations in Canada for algae cultivation and biofuel production. The model uses spatially referenced data across the four regions for nitrogen and phosphorous loads in municipal wastewaters, and CO{sub 2} in exhaust streams from a variety of large industrial sources. Other data inputs include land cover, and solar insolation. Model users can develop estimates of resource potential by manipulating model assumptions in a graphic user interface, and updated results are viewed in real time. Resource potential by location can be viewed in terms of biomass production potential, potential CO{sub 2} fixed, biocrude production potential, and area required. The cost of producing algal biomass can be estimated using an approximation of the distance to move CO{sub 2} and water to the desired land parcel and an estimation of capital and operating costs for a theoretical open pond facility. Preliminary results suggest that in most cases, the CO{sub 2} resource is plentiful compared to other necessary nutrients (especially nitrogen), and that siting and prospects for successful large-scale algae cultivation efforts in Canada will be driven by availability of those other nutrients and the efficiency with which they can be used and re-used. Cost curves based on optimal possible siting of an open pond system are shown. The cost of energy for maintaining optimal growth temperatures is not considered in this effort, and additional research in this area, which has not been well studied at these latitudes, will be important in refining the costs of algal biomass production. The model will be used by NRC-IMB Canada to identify promising locations for both demonstration and pilot-scale algal cultivation projects, including the production potential of using wastewater, and potential land use considerations.

Passell, Howard David; Roach, Jesse Dillon; Klise, Geoffrey T.

2011-11-01T23:59:59.000Z

197

Algal Biofuels Strategy Workshop - Spring Event | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, T X S ummary o fBtuIdeasAlgal

198

National Algal Biofuels Technology Roadmap | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugust 2012NEVADA SPARKSNV Energy RFPNat i o N a l PaAlgal

199

Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid- and Carbohydrate-Derived Fuel Products  

SciTech Connect (OSTI)

Beginning in 2013, NREL began transitioning from the singular focus on ethanol to a broad slate of products and conversion pathways, ultimately to establish similar benchmarking and targeting efforts. One of these pathways is the conversion of algal biomass to fuels via extraction of lipids (and potentially other components), termed the 'algal lipid upgrading' or ALU pathway. This report describes in detail one potential ALU approach based on a biochemical processing strategy to selectively recover and convert select algal biomass components to fuels, namely carbohydrates to ethanol and lipids to a renewable diesel blendstock (RDB) product. The overarching process design converts algal biomass delivered from upstream cultivation and dewatering (outside the present scope) to ethanol, RDB, and minor coproducts, using dilute-acid pretreatment, fermentation, lipid extraction, and hydrotreating.

Davis, R.; Kinchin, C.; Markham, J.; Tan, E.; Laurens, L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

2014-09-01T23:59:59.000Z

200

0 20 4010 Miles NOAA Harmful Algal Bloom Operational Forecast System  

E-Print Network [OSTI]

0 20 4010 Miles NOAA Harmful Algal Bloom Operational Forecast System Texas Forecast Region Maps to Sargent BCH NOAA Harmful Algal Bloom Operational Forecast System Texas Forecast Region Maps 0 5 102 Bloom Operational Forecast System Texas Forecast Region Maps 0 5 102.5 Miles West Bay #12;Aransas Bay

Note: This page contains sample records for the topic "integrated algal biorefinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Process Design and Economics for the Conversion of Algal Biomass to  

E-Print Network [OSTI]

PNNL-23227 Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons: Whole and Economics for the Conversion of Algal Biomass to Hydrocarbons: Whole Algae Hydrothermal Liquefaction (BETO) is to enable the development of biomass technologies to: Reduce dependence on foreign oil

202

Evolution of Red Algal Plastid Genomes: Ancient Architectures, Introns, Horizontal Gene Transfer, and  

E-Print Network [OSTI]

Evolution of Red Algal Plastid Genomes: Ancient Architectures, Introns, Horizontal Gene Transfer, Station Biologique, Roscoff, France Abstract Red algae have the most gene-rich plastid genomes known across all available red algal plastid genomes we show they all share a highly compact and slowly

Martone, Patrick T.

203

Development of Hyperspectral remote sensing capability for the early detection and monitoring of Harmful Algal Blooms  

E-Print Network [OSTI]

Blooms (HABs) in the western basin of Lake Erie and Saginaw Bay in Lake Huron. The HABs can be very of Harmful Algal Blooms (HABs) in the Great Lakes John Lekki1 , Robert Anderson2 , Quang-Viet Nguyen3 Lakes is to detect and monitor the development of potentially Harmful Algal Blooms (HABs). Two

204

Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with  

E-Print Network [OSTI]

Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent) In 2011, Lake Erie experienced the largest harmful algal bloom in its recorded history, with a peak blooms in Lake Erie. extreme precipitation events | climate change | aquatic ecology | Microcystis sp

205

Short Communication Algal cell disruption using microbubbles to localize ultrasonic energy  

E-Print Network [OSTI]

-pressure homogenizers (HPH) (Lee et al., 2012). Unfortunately, the heat of combustion of algal biomass is only 2:7 Ã? 107: energy requirements for such a process were estimated to be one-fourth of the available heat of combustion of algal biomass and one-fifth of currently used cell disruption methods. This increase in energy

Freund, Jonathan B.

206

Algal flora of subalpine peat bog pools in the Krkonose Mts asy tn krkonosskch subalpnskch raselinis  

E-Print Network [OSTI]

Algal flora of subalpine peat bog pools in the Krkonose Mts asy tní krkonosských subalpínských, Czech Repub- lic, e-mail: sylnova@natur.cuni.cz Nováková S. (2002): Algal flora of subalpine peat bog raselinist peat bog and the Pancavské raselinist peat bog in the Krkonose Mts (Czech Republic) about 228 taxa

207

Recycling produced water for algal cultivation for biofuels  

SciTech Connect (OSTI)

Algal growth demands a continuous source of water of appropriate salinity and nutritional content. Fresh water sources are scarce in the deserts of the Southwestern United States, hence, salt water algae species are being investigated as a renewable biofuel source. The use of produced water from oil wells (PW) could offset the demand for fresh water in cultivation. Produced water can contain various concentrations of dissolved solids, metals and organic contaminants and often requires treatment beyond oil/water separation to make it suitable for algae cultivation. The produced water used in this study was taken from an oil well in Jal, New Mexico. An F/2-Si (minus silica) growth media commonly used to cultivate Nannochloropsis salina 1776 (NS 1776) was prepared using the produced water (F/2-Si PW) taking into account the metals and salts already present in the water. NS 1776 was seeded into a bioreactor containing 5L of the (F/2-Si PW) media. After eleven days the optical density at 750 nm (an indicator of algal growth) increased from 0 to 2.52. These results indicate algae are able to grow, though inhibited when compared with non-PW media, in the complex chemical conditions found in produced water. Savings from using nutrients present in the PW, such as P, K, and HCO{sub 3}{sup -}, results in a 44.38% cost savings over fresh water to mix the F/2-Si media.

Neal, Justin N. [Los Alamos National Laboratory; Sullivan, Enid J. [Los Alamos National Laboratory; Dean, Cynthia A. [Los Alamos National Laboratory; Steichen, Seth A. [Los Alamos National Laboratory

2012-08-09T23:59:59.000Z

208

Algal biomass and sea surface temperature in the Mediterranean Basin Intercomparison of data from various satellite sensors, and implications for  

E-Print Network [OSTI]

Algal biomass and sea surface temperature in the Mediterranean Basin Intercomparison of data from and to increasing anthropogenic inputs, is an appropriate test site for observing the evolution of algal biomass progress in the knowledge of spatial and temporal variations in algal biomass in various regions

Bricaud, Annick

209

E-Print Network 3.0 - algal biomass biosorbents Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: algal biomass biosorbents Page: << < 1 2 3 4 5 > >> 1 ADVANCES IN BIOSORPTION OF HEAVY METALS David...

210

E-Print Network 3.0 - algal biomass production Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: algal biomass production Page: << < 1 2 3 4 5 > >> 1 DOEEERE OBP December 29, 2010 Page | 1 Algae...

211

Determination of Total Carbohydrates in Algal Biomass: Laboratory Analytical Procedure (LAP)  

SciTech Connect (OSTI)

This procedure uses two-step sulfuric acid hydrolysis to hydrolyze the polymeric forms of carbohydrates in algal biomass into monomeric subunits. The monomers are then quantified by either HPLC or a suitable spectrophotometric method.

Van Wychen, S.; Laurens, L. M. L.

2013-12-01T23:59:59.000Z

212

Investigating fatty acid biosynthesis within the algal chloroplast using Chlamydomonas reinhardtii as a model  

E-Print Network [OSTI]

biodiesel at two times the cost of petroleum with current technology [Biodiesel production by direct methanolysis of oleaginous microbial biomass. Journal of Chemical Technologytechnology, we describe the extraction of algal lipids and explore their transesterification into biodiesel.

Blatti, Jillian L.

2012-01-01T23:59:59.000Z

213

Post-Extraction Algal Residue as a Protein Source for Cattle Consuming Forage  

E-Print Network [OSTI]

-product value. Overall, our results indicate PEAR can be incorporated as a protein source in the beef cattle industry, thus increasing economic viability of biofuel production from algal biomass....

Drewery, Merritt Leanne 1989-

2012-11-13T23:59:59.000Z

214

Deep Water Mixing Prevents Harmful Algal Bloom Formation: Implications for Managed Fisheries Refugia  

E-Print Network [OSTI]

bloom initiation and development, they are benign to other aspects of the lower food web and environment. The results from using deep lake water to suppress harmful algal blooms indicate this may be a promising management approach and further studies...

Hayden, Natanya Jeanne

2012-10-19T23:59:59.000Z

215

Understanding Substrate Features Influenced by Pretreatments that Limit Biomass Deconstruction by Enzymes  

E-Print Network [OSTI]

Figure 1.1 An integrated biorefinery for producing fuels,3 Figure 2.1 An integrated biorefinery producing fuel,Figure 1.1 An integrated biorefinery for producing fuels,

Gao, Xiadi

2013-01-01T23:59:59.000Z

216

Formation, growth, structure, and distribution of calcareous algal nodules on the flower garden banks  

E-Print Network [OSTI]

of Texas Chairman of Advisory Comm1 ttee: Dr. Thomas J . Bright Algal nodules of the Flower Garden Banks are calcareous structures formed primarily by the approximately concentric layering of crustose calcareous algae. Algae of the genus Lithothamnium... layering of crustose coralline algae. Many organisms live on or in the nodules and affect their growth. The algal nodules examined in this study were collected from the East and West Flower Garden Banks. These two banks are topographic highs located...

Hogg, Dorothy Mae

1975-01-01T23:59:59.000Z

217

Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed pre-processing supply system designs  

SciTech Connect (OSTI)

The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advances in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to the conversion facility.

David J. Muth, Jr.; Matthew H. Langholtz; Eric C. D. Tan; Jacob J. Jacobson; Amy Schwab; May M. Wu; Andrew Argo; Craig C. Brandt; Kara G. Cafferty; Yi-Wen Chiu; Abhijit Dutta; Laurence M. Eaton; Erin M. Searcy

2014-08-01T23:59:59.000Z

218

Environmental indicators for sustainable production of algal biofuels  

SciTech Connect (OSTI)

For analyzing sustainability of algal biofuels, we identify 16 environmental indicators that fall into six categories: soil quality, water quality and quantity, air quality, greenhouse gas emissions, biodiversity, and productivity. Indicators are selected to be practical, widely applicable, predictable in response, anticipatory of future changes, independent of scale, and responsive to management. Major differences between algae and terrestrial plant feedstocks, as well as their supply chains for biofuel, are highlighted, for they influence the choice of appropriate sustainability indicators. Algae strain selection characteristics do not generally affect which indicators are selected. The use of water instead of soil as the growth medium for algae determines the higher priority of water- over soil-related indicators. The proposed set of environmental indicators provides an initial checklist for measures of biofuel sustainability but may need to be modified for particular contexts depending on data availability, goals of the stakeholders, and financial constraints. Use of these indicators entails defining sustainability goals and targets in relation to stakeholder values in a particular context and can lead to improved management practices.

Efroymson, Rebecca Ann [ORNL; Dale, Virginia H [ORNL

2014-01-01T23:59:59.000Z

219

Strategic Biorefinery Analysis: Analysis of Biorefineries  

SciTech Connect (OSTI)

Subcontract report prepared by Dartmouth College that identifies and discusses the advantages of producing ethanol in a biomass refinery as compared to a single-product facility.

Lynd, L. R.; Wyman, C.; Laser, M.; Johnson, D.; Landucci, R.

2005-10-01T23:59:59.000Z

220

Process for selection of Oxygen-tolerant algal mutants that produce H.sub.2  

DOE Patents [OSTI]

A process for selection of oxygen-tolerant, H.sub.2 -producing algal mutant cells comprising: (a) growing algal cells photoautotrophically under fluorescent light to mid log phase; (b) inducing algal cells grown photoautrophically under fluorescent light to mid log phase in step (a) anaerobically by (1) resuspending the cells in a buffer solution and making said suspension anaerobic with an inert gas; (2) incubating the suspension in the absence of light at ambient temperature; (c) treating the cells from step (b) with metronidazole, sodium azide, and added oxygen to controlled concentrations in the presence of white light. (d) washing off metronidazole and sodium azide to obtain final cell suspension; (e) plating said final cell suspension on a minimal medium and incubating in light at a temperature sufficient to enable colonies to appear; (f) counting the number of colonies to determine the percent of mutant survivors; and (g) testing survivors to identify oxygen-tolerant H.sub.2 -producing mutants.

Ghirardi, Maria L. (Lakewood, CO); Seibert, Michael (Lakewood, CO)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated algal biorefinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Seasonal and interannual variability in algal biomass and primary production in the Mediterranean Sea, as derived from 4 years of  

E-Print Network [OSTI]

Seasonal and interannual variability in algal biomass and primary production in the Mediterranean biomass and primary production on a long- term basis is required to detect possible modificationsWiFS observations. Seasonal variations of algal biomass (estimated using a previously developed regional algorithm

Bricaud, Annick

222

Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, T X S ummary oAlgal Biofuels Algal

223

Advancing Commercialization of Algal Biofuels through Increased Biomass Productivity and Technical Integration  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2|Department of Energy DieselCivilClean

224

Biomass productivitiy technology advacement towards a commercially viable, integrated algal biomass production unit  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 (BETO)and Fuel09BiomassActthe Way |BETO

225

EXPERIMENTAL STUDIES OF ALGAL CANOPY INTERACTIONS IN A SEA OTTER-DOMINATED KELP COMMUNITY AT  

E-Print Network [OSTI]

EXPERIMENTAL STUDIES OF ALGAL CANOPY INTERACTIONS IN A SEA OTTER-DOMINATED KELP COMMUNITY three kelp canopy guilds were conducted in a community in which herbivorous invertebrates have been in the haptera of kelps all disappeared following the canopy removal, suggesting that the canopy itself offers

226

NOAA Harmful Algal Bloom Operational Forecast System Southwest Florida Forecast Region Maps  

E-Print Network [OSTI]

Forecast System Southwest Florida Forecast Region Maps 0 20 4010 Miles #12;Bay-S Pinellas Bay-UPR Bay Bloom Operational Forecast System Southwest Florida Forecast Region Maps 0 5 102.5 Miles #12;Bay Harmful Algal Bloom Operational Forecast System Southwest Florida Forecast Region Maps 0 5 102.5 Miles #12

227

Determination of Total Solids and Ash in Algal Biomass: Laboratory Analytical Procedure (LAP)  

SciTech Connect (OSTI)

This procedure describes the methods used to determine the amount of moisture or total solids present in a freeze-dried algal biomass sample, as well as the ash content. A traditional convection oven drying procedure is covered for total solids content, and a dry oxidation method at 575?C is covered for ash content.

Van Wychen, S.; Laurens, L. M. L.

2013-12-01T23:59:59.000Z

228

Cement-based biocide coatings for controlling algal growth in water distribution canals  

E-Print Network [OSTI]

to potable or waste water. There is however a lack of understanding in the correlation between the natureCement-based biocide coatings for controlling algal growth in water distribution canals A. Alum Foundation, Water Quality Center, Arizona State University, Tempe, AZ, United States a r t i c l e i n f o

Mobasher, Barzin

229

Electrochromism: a useful probe to study algal photosynthesis Benjamin Bailleul Pierre Cardol Cecile Breyton  

E-Print Network [OSTI]

REVIEW Electrochromism: a useful probe to study algal photosynthesis Benjamin Bailleul · Pierre of some photosynthetic pigments, resulting in the so-called ElectroChromic Shift (ECS). In this review, we of photosynthetic processes in vivo. Keywords Spectroscopy Á Electrochromism Á Photosynthesis Á Electrochemical

230

SYNTHESIS Industrial-strength ecology: trade-offs and opportunities in algal biofuel production  

E-Print Network [OSTI]

REVIEW AND SYNTHESIS Industrial-strength ecology: trade-offs and opportunities in algal biofuel biofuel technologies approaches these problems from a cellular or genetic perspective, attempting either for biofuel productivity and resilience. We argue that a community engineering approach that manages

231

Role of algal aggregation in vertical carbon export during SOIREE and in other low biomass environments  

E-Print Network [OSTI]

Role of algal aggregation in vertical carbon export during SOIREE and in other low biomass induced an increase in phytoplankton biomass, but do not necessarily trigger increases in carbon export particles via coagulation. We demonstrate that in low biomass regions, where concentrations do not reach

Jackson, George

232

Harmful algal blooms and eutrophication: Examining linkages from selected coastal regions of the United States  

E-Print Network [OSTI]

Harmful algal blooms and eutrophication: Examining linkages from selected coastal regions of cultural eutrophication linked to the pressures of increasing human population including animal and plant on some aspects of the relationship between eutrophication and HABs (Heisler et al., 2008), recognizing

Townsend, David W.

233

Small-scale spatial variation of benthic algal assemblages in a peat bog Katerina Cerna n  

E-Print Network [OSTI]

Small-scale spatial variation of benthic algal assemblages in a peat bog Katerina Cerna´ n test Peat bog a b s t r a c t Spatial patterns on a very small scale (10 cm), and the effect microhabitat types were investigated. Samples were taken in a peat bog along linear transects on a scale of 10

234

Czech Phycology, Olomouc, 6: 99-110, 2006 99 Benthic algal communities and their ecology in  

E-Print Network [OSTI]

Czech Phycology, Olomouc, 6: 99-110, 2006 99 Benthic algal communities and their ecology and mountain streams, oligotrophic and electrolyt poor waters, aero-terrestric habitats and sandstone or silica Park Bohemian Switzerland (NPBS) is geologically composed of nutrient poor silica sandstones with acid

235

ORNL/TM-2008/102 ORNL/GNEP/LTR-2008-047  

E-Print Network [OSTI]

ORNL/TM-2008/102 ORNL/GNEP/LTR-2008-047 Integration of Biorefineries and Nuclear Cogeneration...................................................................................................................16 2.BiorefineryPlantCharacterizat

Pennycook, Steve

236

Integration of Feedstock Assembly System and Cellulosic Ethanol Conversion Models to Analyze Bioenergy System Performance  

SciTech Connect (OSTI)

Research barriers continue to exist in all phases of the emerging cellulosic ethanol biorefining industry. These barriers include the identification and development of a sustainable and abundant biomass feedstock, the assembly of viable assembly systems formatting the feedstock and moving it from the field (e.g., the forest) to the biorefinery, and improving conversion technologies. Each of these phases of cellulosic ethanol production are fundamentally connected, but computational tools used to support and inform analysis within each phase remain largely disparate. This paper discusses the integration of a feedstock assembly system modeling toolkit and an Aspen Plus® conversion process model. Many important biomass feedstock characteristics, such as composition, moisture, particle size and distribution, ash content, etc. are impacted and most effectively managed within the assembly system, but generally come at an economic cost. This integration of the assembly system and the conversion process modeling tools will facilitate a seamless investigation of the assembly system conversion process interface. Through the integrated framework, the user can design the assembly system for a particular biorefinery by specifying location, feedstock, equipment, and unit operation specifications. The assembly system modeling toolkit then provides economic valuation, and detailed biomass feedstock composition and formatting information. This data is seamlessly and dynamically used to run the Aspen Plus® conversion process model. The model can then be used to investigate the design of systems for cellulosic ethanol production from field to final product.

Jared M. Abodeely; Douglas S. McCorkle; Kenneth M. Bryden; David J. Muth; Daniel Wendt; Kevin Kenney

2010-09-01T23:59:59.000Z

237

Biomass Indirect Liquefaction Workshop Presentation  

Broader source: Energy.gov [DOE]

Integrated Biorefinery for the Direct Production of Synthetic Fuel from Waste Carbonaceous Feedstocks

238

FACULTY MEETING MINUTES Date: 5/26/11  

E-Print Network [OSTI]

. Initially integrated as a pilot scale level, and later as a commercial biorefinery at Highlands Envirofuels

Watson, Craig A.

239

Carbohydrate Polymers 97 (2013) 226234 Contents lists available at SciVerse ScienceDirect  

E-Print Network [OSTI]

of an integrated biorefinery approach. Published by Elsevier Ltd. 1. Introduction Because of its abundance

Fried, Jeremy S.

2013-01-01T23:59:59.000Z

240

First-principles flocculation as the key to low energy algal biofuels processing.  

SciTech Connect (OSTI)

This document summarizes a three year Laboratory Directed Research and Development (LDRD) program effort to improve our understanding of algal flocculation with a key to overcoming harvesting as a techno-economic barrier to algal biofuels. Flocculation is limited by the concentrations of deprotonated functional groups on the algal cell surface. Favorable charged groups on the surfaces of precipitates that form in solution and the interaction of both with ions in the water can favor flocculation. Measurements of algae cell-surface functional groups are reported and related to the quantity of flocculant required. Deprotonation of surface groups and complexation of surface groups with ions from the growth media are predicted in the context of PHREEQC. The understanding of surface chemistry is linked to boundaries of effective flocculation. We show that the phase-space of effective flocculation can be expanded by more frequent alga-alga or floc-floc collisions. The collision frequency is dependent on the floc structure, described in the fractal sense. The fractal floc structure is shown to depend on the rate of shear mixing. We present both experimental measurements of the floc structure variation and simulations using LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). Both show a densification of the flocs with increasing shear. The LAMMPS results show a combined change in the fractal dimension and a change in the coordination number leading to stronger flocs.

Hewson, John C.; Wyatt, Nicholas B.; Pierce, Flint; Brady, Patrick Vane; Dwyer, Brian P.; Grillet, Anne Mary; Hankins, Matthew G; Hughes, Lindsey Gloe; Lechman, Jeremy B.; Mondy, Lisa Ann; Murton, Jaclyn K.; O'Hern, Timothy J; Parchert, Kylea Joy; Pohl, Phillip Isabio; Williams, Cecelia Victoria; Zhang, Xuezhi [Arizona State University, Mesa, AZ; Hu, Qiang [Arizona State University, Mesa, AZ; Amendola, Pasquale [Arizona State University, Mesa, AZ; Reynoso, Monica [Arizona State University, Mesa, AZ; Sommerfeld, Milton [Arizona State University, Mesa, AZ

2012-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated algal biorefinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Algal Biomass Constituent Analysis: Method Uncertainties and Investigation of the Underlying Measuring Chemistries  

SciTech Connect (OSTI)

Algal biomass compositional analysis data form the basis of a large number of techno-economic process analysis models that are used to investigate and compare different processes in algal biofuels production. However, the analytical methods used to generate these data are far from standardized. This work investigated the applicability of common methods for rapid chemical analysis of biomass samples with respect to accuracy and precision. This study measured lipids, protein, carbohydrates, ash, and moisture of a single algal biomass sample at 3 institutions by 8 independent researchers over 12 separate workdays. Results show statistically significant differences in the results from a given analytical method among laboratories but not between analysts at individual laboratories, suggesting consistent training is a critical issue for empirical analytical methods. Significantly different results from multiple lipid and protein measurements were found to be due to different measurement chemistries. We identified a set of compositional analysis procedures that are in best agreement with data obtained by more advanced analytical procedures. The methods described here and used for the round robin experiment do not require specialized instrumentation, and with detailed analytical documentation, the differences between laboratories can be markedly reduced.

Laurens, L. M. L.; Dempster, T. A.; Jones, H. D. T.; Wolfrum, E. J.; Van Wychen, S.; McAllister, J. S. P.; Rencenberger, M.; Parchert, K. J.; Gloe, L. M.

2012-02-21T23:59:59.000Z

242

Process for selection of oxygen-tolerant algal mutants that produce H{sub 2}  

DOE Patents [OSTI]

A process for selection of oxygen-tolerant, H{sub 2}-producing algal mutant cells comprises: (a) growing algal cells photoautotrophically under fluorescent light to mid log phase; (b) inducing algal cells grown photoautotrophically under fluorescent light to mid log phase in step (a) anaerobically by (1) resuspending the cells in a buffer solution and making said suspension anaerobic with an inert gas and (2) incubating the suspension in the absence of light at ambient temperature; (c) treating the cells from step (b) with metronidazole, sodium azide, and added oxygen to controlled concentrations in the presence of white light; (d) washing off metronidazole and sodium azide to obtain final cell suspension; (e) plating said final cell suspension on a minimal medium and incubating in light at a temperature sufficient to enable colonies to appear; (f) counting the number of colonies to determine the percent of mutant survivors; and (g) testing survivors to identify oxygen-tolerant H{sub 2}-producing mutants. 5 figs.

Ghirardi, M.L.; Seibert, M.

1999-02-16T23:59:59.000Z

243

Pilot Scale Integrated Biorefinery for Producing Ethanol from Hybrid Algae: Cooperative Research and Development Final Report, CRADA Number CRD-10-389  

SciTech Connect (OSTI)

This collaboration between Algenol Biofuels Inc. and NREL will provide valuable information regarding Direct to Ethanol technology. Specifically, the cooperative R&D will analyze the use of flue gas from industrial sources in the Direct to Ethanol process, which may demonstrate the potential to significantly reduce greenhouse gas emissions while simultaneously producing a valuable product, i.e., ethanol. Additionally, Algenol Biofuels Inc. and NREL will develop both a techno-economic model with full material and energy balances and an updated life-cycle analysis to identify greenhouse gas emissions relative to gasoline, each of which will provide a better understanding of the Direct to Ethanol process and further demonstrate that it is a breakthrough technology with varied and significant benefits.

Pienkos, P. T.

2013-11-01T23:59:59.000Z

244

Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis, Catalytic Hydroconversion and Co-processing with Vacuum Gas Oil  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652GrowE-mail onThe2 DOE Hydrogen and Office(BETO) IBR

245

National Geo-Database for Biofuel Simulations and Regional Analysis of Biorefinery Siting Based on Cellulosic Feedstock Grown on Marginal Lands  

SciTech Connect (OSTI)

The goal of this project undertaken by GLBRC (Great Lakes Bioenergy Research Center) Area 4 (Sustainability) modelers is to develop a national capability to model feedstock supply, ethanol production, and biogeochemical impacts of cellulosic biofuels. The results of this project contribute to sustainability goals of the GLBRC; i.e. to contribute to developing a sustainable bioenergy economy: one that is profitable to farmers and refiners, acceptable to society, and environmentally sound. A sustainable bioenergy economy will also contribute, in a fundamental way, to meeting national objectives on energy security and climate mitigation. The specific objectives of this study are to: (1) develop a spatially explicit national geodatabase for conducting biofuel simulation studies and (4) locate possible sites for the establishment of cellulosic ethanol biorefineries. To address the first objective, we developed SENGBEM (Spatially Explicit National Geodatabase for Biofuel and Environmental Modeling), a 60-m resolution geodatabase of the conterminous USA containing data on: (1) climate, (2) soils, (3) topography, (4) hydrography, (5) land cover/ land use (LCLU), and (6) ancillary data (e.g., road networks, federal and state lands, national and state parks, etc.). A unique feature of SENGBEM is its 2008-2010 crop rotation data, a crucially important component for simulating productivity and biogeochemical cycles as well as land-use changes associated with biofuel cropping. ARRA support for this project and to the PNNL Joint Global Change Research Institute enabled us to create an advanced computing infrastructure to execute millions of simulations, conduct post-processing calculations, store input and output data, and visualize results. These computing resources included two components installed at the Research Data Center of the University of Maryland. The first resource was 'deltac': an 8-core Linux server, dedicated to county-level and state-level simulations and PostgreSQL database hosting. The second resource was the DOE-JGCRI 'Evergreen' cluster, capable of executing millions of simulations in relatively short periods. ARRA funding also supported a PhD student from UMD who worked on creating the geodatabases and executing some of the simulations in this study. Using a physically based classification of marginal lands, we simulated production of cellulosic feedstocks from perennial mixtures grown on these lands in the US Midwest. Marginal lands in the western states of the US Midwest appear to have significant potential to supply feedstocks to a cellulosic biofuel industry. Similar results were obtained with simulations of N-fertilized perennial mixtures. A detailed spatial analysis allowed for the identification of possible locations for the establishment of 34 cellulosic ethanol biorefineries with an annual production capacity of 5.6 billion gallons. In summary, we have reported on the development of a spatially explicit national geodatabase to conduct biofuel simulation studies and provided simulation results on the potential of perennial cropping systems to serve as feedstocks for the production of cellulosic ethanol. To accomplish this, we have employed sophisticated spatial analysis methods in combination with the process-based biogeochemical model EPIC. The results of this study will be submitted to the USDOE Bioenergy Knowledge Discovery Framework as a way to contribute to the development of a sustainable bioenergy industry. This work provided the opportunity to test the hypothesis that marginal lands can serve as sources of cellulosic feedstocks and thus contribute to avoid potential conflicts between bioenergy and food production systems. This work, we believe, opens the door for further analysis on the characteristics of cellulosic feedstocks as major contributors to the development of a sustainable bioenergy economy.

Izaurralde, Roberto C.; Zhang, Xuesong; Sahajpal, Ritvik; Manowitz, David H.

2012-04-01T23:59:59.000Z

246

Dreissenid Mussels as Homeostatic Filter Feeders and Nutrient Excreters: Implications for Harmful Algal Blooms (HABs) and Nutrient  

E-Print Network [OSTI]

at different sites in Saginaw Bay, Lake Erie, and experimental mesocosms in Gull Lake, a Zebra mussel infested Algal Blooms (HABs) and Nutrient Cycling Across Trophic Gradients Primary Investigator(s): Hank of homeostatic filtering and nutrient excretion in dreissenids in promoting toxic Microcystis blooms

247

Factors Determining the Location of the Chlorophyll Maximum and the Fate of Algal Production within the Tidal  

E-Print Network [OSTI]

irradiance within the water column and suggest that release from light limitation was the principal factor to poor food quality due to high concentrations of non-algal particulate matter and potential presence. 1992; Vincent et al. 1996; Muylaert et al. 2005). As food quality for consumers is enhanced where phyto

Bukaveckas, Paul A.

248

www.sciencemag.org SCIENCE VOL 302 14 NOVEMBER 2003 1111 Algal Clues to Antarctic Ice Shelf Ages  

E-Print Network [OSTI]

the Perspective by Wolff) present an ice core record of methanesulfonic acid, a species produced by algae livingwww.sciencemag.org SCIENCE VOL 302 14 NOVEMBER 2003 1111 Algal Clues to Antarctic Ice Shelf Ages The naturally high variability of sea ice extent in Antarctica and the short duration of instrumental records

Nori, Franco

249

"Real-Time Coastal Observing Systems for Ecosystem Dynamics and Harmful Algal Blooms" Resubmitted 4 March 2005  

E-Print Network [OSTI]

Initiation and Prediction in Large European Marine Ecosystems (HABILE) in the North Sea, Fisheries & Oceans"Real-Time Coastal Observing Systems for Ecosystem Dynamics and Harmful Algal Blooms" Resubmitted 4 ________________________________________________________________________ X.1 Introduction X X.2 Processes in the coastal ocean X X.2.1 Physical processes X X.2.2 Biological

Fabrikant, Sara Irina

250

Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons: Whole Algae Hydrothermal Liquefaction and Upgrading  

SciTech Connect (OSTI)

This report provides a preliminary analysis of the costs associated with converting whole wet algal biomass into primarily diesel fuel. Hydrothermal liquefaction converts the whole algae into an oil that is then hydrotreated and distilled. The secondary aqueous product containing significant organic material is converted to a medium btu gas via catalytic hydrothermal gasification.

Jones, Susanne B.; Zhu, Yunhua; Anderson, Daniel B.; Hallen, Richard T.; Elliott, Douglas C.; Schmidt, Andrew J.; Albrecht, Karl O.; Hart, Todd R.; Butcher, Mark G.; Drennan, Corinne; Snowden-Swan, Lesley J.; Davis, Ryan; Kinchin, Christopher

2014-03-20T23:59:59.000Z

251

Algal Functional Annotation Tool from the DOE-UCLA Institute for Genomics and Proteomics  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Algal Functional Annotation Tool is a bioinformatics resource to visualize pathway maps, identify enriched biological terms, or convert gene identifiers to elucidate biological function in silico. These types of analysis have been catered to support lists of gene identifiers, such as those coming from transcriptome gene expression analysis. By analyzing the functional annotation of an interesting set of genes, common biological motifs may be elucidated and a first-pass analysis can point further research in the right direction. Currently, the following databases have been parsed, processed, and added to the tool: 1( Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways Database, 2) MetaCyc Encyclopedia of Metabolic Pathways, 3) Panther Pathways Database, 4) Reactome Pathways Database, 5) Gene Ontology, 6) MapMan Ontology, 7) KOG (Eukaryotic Clusters of Orthologous Groups), 5)Pfam, 6) InterPro.

Lopez, David

252

Development of the Integrated Biomass Supply Analysis and Logistics Model (IBSAL)  

SciTech Connect (OSTI)

The Integrated Biomass Supply & Logistics (IBSAL) model is a dynamic (time dependent) model of operations that involve collection, harvest, storage, preprocessing, and transportation of feedstock for use at a biorefinery. The model uses mathematical equations to represent individual unit operations. These unit operations can be assembled by the user to represent the working rate of equipment and queues to represent storage at facilities. The model calculates itemized costs, energy input, and carbon emissions. It estimates resource requirements and operational characteristics of the entire supply infrastructure. Weather plays an important role in biomass management and thus in IBSAL, dictating the moisture content of biomass and whether or not it can be harvested on a given day. The model calculates net biomass yield based on a soil conservation allowance (for crop residue) and dry matter losses during harvest and storage. This publication outlines the development of the model and provides examples of corn stover harvest and logistics.

Sokhansanj, Shahabaddine [ORNL; Webb, Erin [ORNL; Turhollow Jr, Anthony F [ORNL

2008-06-01T23:59:59.000Z

253

University of Maine Integrated Forest Product Refinery (IFPR) Technology Research  

SciTech Connect (OSTI)

This project supported research on science and technology that forms a basis for integrated forest product refinery for co-production of chemicals, fuels and materials using existing forest products industry infrastructure. Clear systems view of an Integrated Forest Product Refinery (IFPR) allowed development of a compelling business case for a small scale technology demonstration in Old Town ME for co-production of biofuels using cellulosic sugars along with pulp for the new owners of the facility resulting in an active project on Integrated Bio-Refinery (IBR) at the Old Town Fuel & Fiber. Work on production of advanced materials from woody biomass has led to active projects in bioplastics and carbon nanofibers. A lease for 40,000 sq. ft. high-bay space has been obtained to establish a Technology Research Center for IFPR technology validation on industrially relevant scale. UMaine forest bioproducts research initiative that began in April 2006 has led to establishment of a formal research institute beginning in March 2010.

Pendse, Hemant P.

2010-11-23T23:59:59.000Z

254

Commercializing Biorefineries The Path Forward  

E-Print Network [OSTI]

of Plant Existing Wet & Dry Mill ImprovementsExisting Wet & Dry Mill Improvements Agricultural Residue-based industry with cellulosic- feedstocks to stand alone facilities. Help industry build first-of-a-kind plants Cost-share industrial-scale validation of technology & economics Feedstock development focus on pulp

255

Herbert Sixta Professor of Biorefineries  

E-Print Network [OSTI]

of 2000. The consumption of natural fibers, consisting of cotton (78-83%), wool (4%), flax, hemp, jute-made cellulosics (viscose, Lyocell, Acetate filaments and staple fibers), natural fibers (cotton, wool, flax, hemp

Kaski, Samuel

256

Alpena Biorefinery | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012) 1 Documentation and Approval Inspection Report27,Alpena

257

Solazyme Pilot-Scale Biorefinery  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping Study |4 SolarPVSolar Viewed asat the costfor11

258

Response to IG Recommendation to Create a Formal Lessons Learned...  

Broader source: Energy.gov (indexed) [DOE]

digrecommendations.pdf lessonslearnedigcompilation.pdf More Documents & Publications Integrated Biorefinery Lessons Learned and Best Practices Demonstration and Deployment...

259

Floor Plans The hall has a seating capacity of 350 people (in movable seats), with a ceiling height of seven meters. Facilities such as simultaneous  

E-Print Network [OSTI]

Education Project on Computational Science and Engineering Integrated Bio-Refinery Research Project Research Unit Life Innovation Research Unit Green Innovation Research Unit Integrated Bio-Refinery Research and Technology Integrated Bio-Refinery Research Project Research Project for Membrane Technology Center

Banbara, Mutsunori

260

DOEGO85004_1: Final Non-proprietary Technical Report, Generating Process and Economic Data for Preliminary Design of PureVision Biorefineries DOEGO85004_2: One Original Final Proprietary Technical Report to be mailed to DOE Golden.  

SciTech Connect (OSTI)

The overall objective of the project was to define a two-stage reactive fractionation process for converting corn stover into a solid cellulose stream and two liquid streams containing mostly hemicellulosic sugars and lignin, respectively. Toward this goal, biomass fractionation was conducted using a small continuous pilot unit with a nominal capacity of 100 pounds per day of dry biomass to generate performance data using primarily corn stover as feedstock. In the course of the program, the PureVision process was optimized for efficient hemicellulose hydrolysis in the first stage employing autohydrolysis and delignification in the second stage using sodium hydroxide as a catalyst. The remaining cellulose was deemed to be an excellent substrate for producing fermentation sugars, requiring 40% less enzymes for hydrolysis than conventional pretreatment systems using dilute acid. The fractionated cellulose was also determined to have potential higher-value applications as a pulp product. The lignin coproduct was determined to be substantially lower in molecular weight (MW) compared to lignins produced in the kraft or sulfite pulping processes. This low-MW lignin can be used as a feed and concrete binder and as an intermediate for producing a range of high-value products including phenolic resins. This research adds to the understanding of the biomass conversion area in that a new process was developed in the true spirit of biorefineries. The work completed successfully demonstrated the technical effectiveness of the process at the pilot level indicating the technology is ready to advance to a 2–3 ton per day scale. No technical showstoppers are anticipated in scaling up the PureVision fractionation process to commercial scale. Also, economic feasibility of using the PureVision process in a commercial-scale biorefinery was investigated and the minimum ethanol selling price for the PureVision process was calculated to be $0.94/gal ethanol vs. $1.07/gal ethanol for the NREL process. Thus, the PureVision process is economically attractive. Given its technical and economic feasibility, the project is of benefit to the public in the following ways: 1) it demonstrated a novel biomass fractionation process that can provide domestic supply of renewable transportation fuel from all three biomass components (cellulose, hemicellulose and lignin), 2) the lignin stream from the process has many higher-value applications beyond simply burning the lignin for energy as proposed by competing technologies, 3) it can be deployed in rural areas and create jobs in these areas, and 3) it can add to the nation’s economy and security.

Kadam, Kiran L., Ph.D; Lehrburger, Ed

2008-01-17T23:59:59.000Z

Note: This page contains sample records for the topic "integrated algal biorefinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

HARMFUL ALGAL BLOOMS IN THE GREAT LAKES NOAA Center of Excellence for Great Lakes and Human Health 4840 S. State Rd. Ann Arbor, MI 48108 734-741-2235  

E-Print Network [OSTI]

-celled organisms living in the Great Lakes, including algae. When certain conditions are present, such as high. Blue-green algal bloom in Lake Erie on the shore of Catawaba Island, Ohio in summer 2009 (top). Are all-aquae Aphanizomenon flos-aquae Cylindrospermopsis raciborskii Blue-green algal bloom in Lake Erie as seen from

262

Palatability of post-extraction algal residue as a protein supplement for cattle.  

SciTech Connect (OSTI)

Market value of post-extraction algal residue (PEAR) is driven by its ability to compete with commonly fed protein sources; for example cottonseed meal (CSM) and dried distillers’ grains (DDG). An initial step in evaluating PEAR (20% CP, 59% OM) is to determine palatability when fed as a protein supplement. Accordingly, we evaluated the palatability of PEAR-containing supplements in cattle consuming a basal diet of Bermudagrass (13% CP, 76% NDF). Twelve steers were used in a 12 × 12 Latin square experiment consisting of 12 4-d periods. Each period included 3-d where steers were fed a test supplement and a 1-d washout where steers were fed DDG. Supplements were formulated with different carrier ingredients (DDG, CSM, or liquid supplement, LS) and different levels of PEAR inclusion (0, 20, 40, and 60% for DDG and CSM and 0, 33, 66, and 100% for LS). Intake and time required for consumption were recorded daily. A significant (P < 0.05) treatment × day interaction for g consumed per min (GPM) was observed. This interaction resulted from changing rates of consumption as cattle adapted to supplements. Supplements containing DDG had the greatest rates of consumption (177 – 187 GPM), followed by CSM supplements (148 – 166 GPM). Blends including PEAR and LS had slower rates of consumption (58 – 93 GPM). Supplement formulation significantly (P < 0.05) affected the amount of supplement consumed and time required for complete consumption. Supplements which contained DDG or CSM were consumed in less than 11 min; complete consumption was observed 92 – 100% of the time. Treatments containing LS required more time for complete consumption (21 – 33 min) and were finished 77 – 96% of the time. Our results suggest PEAR can be blended (up to 60%) with existing ingredients utilized in beef rations to create suitable protein supplements. However, PEAR is not palatable when offered alone (complete consumption of 100% PEAR occurred 77.5% of the time and required 31.5 min) or incorporated into LS. Additional research is necessary to determine the impact of PEAR on nutrient utilization in cattle.

Drewery, M. L. [Texas A& M University; Sawyer, J. E. [Texas A& M University; Wickersham, T. A. [Texas A& M University

2012-12-01T23:59:59.000Z

263

LETTER doi:10.1038/nature12771 Efficient ethanol production from brown macroalgae  

E-Print Network [OSTI]

Asteromyces cruciatus4 . The genomic integration and overexpression of the gene encodingthis transporter not contain lignin, simple biorefinery processes such as milling, leaching and extraction can separate sustainable food production13 (see Supplementary Discussion for a brown macroalgae biorefinery description

Cai, Long

264

Integrated Forest Products Refinery (IFPR)  

SciTech Connect (OSTI)

Pre-extraction–kraft studies of hardwoods showed that when extracting about 10% of the wood, the final kraft pulp yield and physical properties could only be maintained at a level similar to that of regular kraft pulp when the final extract pH was close to neutral. This so-called “near neutral” pre-extraction condition at a level of 10% wood dissolution was achieved by contacting the wood chips with green liquor (GL) at a charge of about 3% (as Na2O on wood) at 160 °C for almost 2 hours (or an H-factor of about 800 hrs.). During subsequent kraft cooking of the pre-extracted hardwood chips the effective alkali charge could be reduced by about 3% (as Na2O on wood) and the cooking time shortened relative to that during regular kraft cooking, while still producing the same bleachable grade kappa number as the kraft control pulp. For softwood, no extraction conditions were discovered in the present investigation whereby both the final kraft pulp yield and physical properties could be maintained at a level similar to that of regular softwood kraft pulp. Therefore for hardwoods the “near- neutral green liquor pre-extraction conditions do meet the requirements of the IFPR concept, while for softwood, no extraction conditions were discovered which do meet these requirements. Application of simulated industrial GL at an extraction H-factor of about 800 hrs and 3% GL charge in a recirculating digester produced an hardwood extract containing about 4% (on wood) of total anhydro-sugars, 2% of acetic acid, and 1.3% of lignin. Xylan comprised of 80% of the sugars of which about 85% is oligomeric. Since only polymeric hemicelluloses and lignin may be adsorbed on pulp (produced at a yield of about 50% from the original wood), the maximum theoretical yield increase due to adsorption may be estimated as 10% on pulp (or 5% on wood). However, direct application of raw GL hardwood extract for hemicelluloses adsorption onto hardwood kraft pulp led to a yield increase of only about 1% (on pulp). By using the wet-end retention aid guar gum during the adsorption process at a charge of 0.5% on pulp the yield gain may be increased to about 5%. Unfortunately, most of this yield increase is lost during subsequent alkaline treatments in the pulp bleach plant. It was found that by performing the adsorption at alkaline conditions the adsorption loss during alkaline treatment in the bleach plant is mostly avoided. Thus a permanent adsorption yield of about 3 and 1.5% (on pulp) was obtained with addition of guar gum at a charge of 0.5 and 0.1% respectively during adsorption of GL hardwood extract on pre-extracted kraft pulp at optimal conditions of pH 11.5, 90 C for 60 minutes at 5% consistency. The beatability of the adsorbed kraft pulps was improved. Also, significant physical strength improvements were achieved. Further study is needed to determine whether the improvements in pulp yield and paper properties make this an economic IFPR concept. Application of the wood solids of a hot water extract of Acer rubrum wood strands as a substitute for polystyrene used for production of SMC maintained the water adsorption properties of the final product. Further work on the physical properties of the hemicellulose containing SMCs need to be completed to determine the potential of wood extracts for the production of partially renewable SMCs. The discovery of the “near-neutral” green liquor extraction process for hardwood was formed the basis for a commercial Integrated Biorefinery that will extract hemicelluloses from wood chips to make biofuels and other specialty chemicals. The pulp production process will be maintained as is proposed in the present researched IFBR concept. This Integrated Biorefinery will be constructed by Red Shield Acquisition LLC (RSA) at the Old Town kraft pulp mill in Maine. RSA in collaboration with the University of Maine will develop and commercialize the hemicellulose extraction process, the conversion of the hemicellulose sugars into butanol by fermentation, and the separation of specialty chemicals such as acetic acid fr

van Heiningen, Adriaan R. P.

2010-05-29T23:59:59.000Z

265

Grid Integration  

SciTech Connect (OSTI)

Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its grid integration subprogram.

Not Available

2008-09-01T23:59:59.000Z

266

Developing Dedicated Methods and Tools for Safe Use and Processing of Key Chemicals in Biorefining  

E-Print Network [OSTI]

. In addition, the integration of green chemistry is showing great expectancy in the biorefineries of the future of the agro-industries are the publication in 2006 of the first edition of a book dedicated to biorefineries performed, as the collaboration initiative on biorefineries called Star- Colibry that ended to two major

Boyer, Edmond

267

Insolation integrator  

DOE Patents [OSTI]

An electric signal representative of the rate of insolation is integrated to determine if it is adequate for operation of a solar energy collection system.

Dougherty, John J. (Norristown, PA); Rudge, George T. (Lansdale, PA)

1980-01-01T23:59:59.000Z

268

Opportunities for CHP at Wastewater Treatment Facilities: Market...  

Broader source: Energy.gov (indexed) [DOE]

2008 EPA CHP Partnership Update Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell Integration at Biorefineries Biogas Technologies and Integration with Fuel Cells...

269

An Integrated Assessment of Location-Dependent Scaling for Microalgae Biofuel Production Facilities  

SciTech Connect (OSTI)

Successful development of a large-scale microalgae-based biofuels industry requires comprehensive analysis and understanding of the feedstock supply chain—from facility siting/design through processing/upgrading of the feedstock to a fuel product. The evolution from pilot-scale production facilities to energy-scale operations presents many multi-disciplinary challenges, including a sustainable supply of water and nutrients, operational and infrastructure logistics, and economic competitiveness with petroleum-based fuels. These challenges are addressed in part by applying the Integrated Assessment Framework (IAF)—an integrated multi-scale modeling, analysis, and data management suite—to address key issues in developing and operating an open-pond facility by analyzing how variability and uncertainty in space and time affect algal feedstock production rates, and determining the site-specific “optimum” facility scale to minimize capital and operational expenses. This approach explicitly and systematically assesses the interdependence of biofuel production potential, associated resource requirements, and production system design trade-offs. The IAF was applied to a set of sites previously identified as having the potential to cumulatively produce 5 billion-gallons/year in the southeastern U.S. and results indicate costs can be reduced by selecting the most effective processing technology pathway and scaling downstream processing capabilities to fit site-specific growing conditions, available resources, and algal strains.

Coleman, Andre M.; Abodeely, Jared; Skaggs, Richard; Moeglein, William AM; Newby, Deborah T.; Venteris, Erik R.; Wigmosta, Mark S.

2014-06-19T23:59:59.000Z

270

Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production...  

Office of Environmental Management (EM)

our transportation fueling options," said Secretary Ernest Moniz. "Home-grown biofuels have the potential to further increase our energy security, stimulate rural economic...

271

Production of levulinic acid in urban biorefineries  

E-Print Network [OSTI]

The energy security of the United States depends, most experts agree, on the development of substitute sources of energy for the transportation sector, which accounts for over 93% of the nation's petroleum consumption. ...

Sheldon-Coulson, Garth Alexander

2011-01-01T23:59:59.000Z

272

Systematic synthesis of sustainable biorefineries: A review  

E-Print Network [OSTI]

of biomass including first, second and third generation of biofuels such as bioethanol, biodiesel, hydrogen sector due to their compatibility with the supply chain of the crude based fuels as well the forest industry, cooking oil, lignocelluslosic raw materials or algae. However, there are also concerns

Grossmann, Ignacio E.

273

On the systematic synthesis of sustainable biorefineries  

E-Print Network [OSTI]

of biomass including first, second and third generation of biofuels such as bioethanol, biodiesel, hydrogen to their compatibility with the supply chain of the crude based fuels as well as with the current automobiles, which can in the second generation of biofuels, which use waste from the forest industry, cooking oil, lignocelluslosic

Grossmann, Ignacio E.

274

A Second-Generation Dry Mill Biorefinery  

Broader source: Energy.gov [DOE]

This fact sheet summarizes a U.S. Department of Energy Biomass Program research and development project.

275

Biorefinery Grant Announcement | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014Biogas andManaged byThe Preface

276

Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | Department ofThatGrid3 Program

277

Range Fuels Biorefinery Groundbreaking | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | DepartmentLoansDepartment of EnergyEvent

278

United Biorefineries Corp UBC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 et seq.NorthUniopolis, Ohio: EnergyIncJump

279

Platform Chemicals from an Oilseed Biorefinery  

SciTech Connect (OSTI)

The US chemical industry is $460 billion in size where a $150 billion segment of which is non-oxygenated chemicals that is sourced today via petroleum but is addressable by a renewable feedstock if one considers a more chemically reduced feedstock such as vegetable oils. Vegetable oil, due to its chemical functionality, provides a largely untapped opportunity as a renewable chemical source to replace petroleum-derived chemicals and produce platform chemicals unavailable today. This project examined the fertile intersection between the rich building blocks provided by vegetable oils and the enhanced chemical modification capability provided by metathesis chemistry. The technology advanced in this study is the process of ethylene cross-metathesis (referred to as ethenolysis) with vegetable oil and vegetable oil derivatives to manufacture the platform-chemical 9-decenoic acid (or 9DA) and olefin co-products. The project team meet its goals of demonstrating improved catalyst efficiencies of several multiples, deepening the mechanistic understanding of metathesis, synthesis and screening of dozens of new catalysts, designing and modeling commercial processes, and estimating production costs. One demonstrable result of the study was a step change improvement in catalyst turnover number in the ethenolysis of methyl oleate as reported here. We met our key measurable of producing 100 lbs of 9DA at the pilot-scale, which demonstrated ability to scale-up ethenolysis. DOE Project funding had significant positive impact on development of metathetically modified vegetable oils more broadly as the Cargill/Materia partnership, that was able to initiate primarily due to DOE funding, has succeeded in commercializing products, validating metathesis as a platform technology, and expanding a diverse products portfolio in high value and in large volume markets. Opportunities have expanded and business development has gained considerable momentum and enabled further expansion of the Materia/Cargill relationship. This project exceeded expectations and is having immediate impact on DOE success by replacing petroleum products with renewables in a large volume application today.

Tupy, Mike; Schrodi Yann

2006-11-06T23:59:59.000Z

280

Sandia National Laboratories: future lignocellulosic biorefineries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia,evaluatingfull module characterization HelioVoltphysics offuture

Note: This page contains sample records for the topic "integrated algal biorefinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NREL: Biomass Research - What Is a Biorefinery?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of Women |hitsAwardsPublicationsConversionPilotWhat Is

282

Myriant Succinic Acid BioRefinery  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward a PeacefulDriving Demand What's Working inMyriant

283

Myriant Succinic Acid Biorefinery | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward a PeacefulDriving Demand What's Working

284

A GIS COST MODEL TO ASSESS THE AVAILABILITY OF FRESHWATER, SEAWATER, AND SALINE GROUNDWATER FOR ALGAL BIOFUEL PRODUCTION IN THE UNITED STATES  

SciTech Connect (OSTI)

A key advantage of using microalgae for biofuel production is the ability of some algal strains to thrive in waters unsuitable for conventional crop irrigation such as saline groundwater or seawater. Nonetheless, the availability of sustainable water supplies will provide significant challenges for scale-up and development of algal biofuels. We conduct a limited techno-economic assessment based on the availability of freshwater, saline groundwater, and seawater for use in open pond algae cultivation systems. We explore water issues through GIS-based models of algae biofuel production, freshwater supply, and cost models for supplying seawater and saline groundwater. We estimate that combined, within the coterminous US these resources can support production on the order of 9.46E+7 m3 yr-1 (25 billion gallons yr-1) of renewable biodiesel. Achievement of larger targets requires the utilization of less water efficient sites and relatively expensive saline waters. Geographically, water availability is most favorable for the coast of the Gulf of Mexico and Florida peninsula, where evaporation relative to precipitation is moderate and various saline waters are economically available. As a whole, barren and scrub lands of the southwestern US have limited freshwater supplies so accurate assessment of alternative waters is critical.

Venteris, Erik R.; Skaggs, Richard; Coleman, Andre M.; Wigmosta, Mark S.

2013-03-15T23:59:59.000Z

285

Science and Technology Facility  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

IBRF Project Lessons Learned Report Integrated Biorefinery Research Facility Lessons Learned - Stage I Acquisition through Stage II Construction Completion August 2011 This...

286

CX-001736: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

operate a pilot-scale integrated biorefinery that would process one dry ton per day of biomass using pyrolysis and subsequent upgrading to transportation fuels. DOCUMENT(S)...

287

CX-003202: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass and Algae Residues via Integrated Pyrolysis and Catalytic Hydroconversion CX(s)...

288

GO MANAGERS OFFICE  

Broader source: Energy.gov (indexed) [DOE]

the above referenced cooperative agreement entitled "Launch of an Integrated Bio-Refinery with Eco-Sustainable and Renewable Technologies in Y2009." Novozymes is a subawardee...

289

On the One-Year Anniversary of EPAct and Release of National...  

Office of Environmental Management (EM)

cost-effective renewable energy to market, whether it's through integrated bio-refinery demonstration projects authorized under EPACT, or renewable energy production tax...

290

FY 2015 Budget Request Webinar  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

based on actual integrated biorefinery project plant performance data. eere.energy.gov 19 Bioenergy Technologies - FY 2015 Budget Request (Dollars in Thousands) FY 2013 Current FY...

291

Quarterly Biomass Program/Clean Cities States Web Conference...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ARRA Selection Briefing Demonstration of Integrated Biorefinery Operations DE-FOA-0000096 January 21, 2009 Melissa Klembara Office of the Biomass Program Office of Energy...

292

EIS-0407: EPA Notice of Availability of the Draft Environmental...  

Broader source: Energy.gov (indexed) [DOE]

County, Kansas To Support the Design, Construction, and Startup of a Commercial-Scale Integrated Biorefinery, Federal Funding, Located near the City Hugoton, Stevens County, KS...

293

No Research Theme Leader 1 Computational Approach to Mathematical Sciences TAKAYAMA Nobuki  

E-Print Network [OSTI]

Leader 13 Consolidated Biorefinery KONDO Akihiko 14 Innovation of Computational Sciences by Advanced High Haruya 18 Breeding and Genetics of Bioresources ISHII Takashige 19 Integrated Management of Pests

Banbara, Mutsunori

294

A Correlation of Diesel Engine Performance with Measured NIR...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Radiation Exposure | 1998 Report Annual DOE Occupational Radiation Exposure | 1999 Report 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review...

295

ZeaChem Pilot Project: High-Yield Hybrid Cellulosic Ethanol Process...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ethanol Process Using High-Impact Feedstock for Commercialization This pilot-scale integrated biorefinery will produce 250,000 gallons per year of cellulosic ethanol when...

296

Mass algal culture system  

DOE Patents [OSTI]

An apparatus and process for the culture of algae in a liquid medium is disclosed. The medium circulates through an open trough and is exposed to an atmosphere which is temperature regulated. The nutrient content of the liquid medium is regulated to control the chemical composition growth and reproduction characteristics of the cultured algae. Before it is allowed to strike the medium, sunlight is passed through a filter to remove wavelengths which are not photosynthetically active. Heat energy can be recovered from the filter.

Raymond, Lawrence P. (Richland, WA)

1982-01-01T23:59:59.000Z

297

Mass algal culture system  

DOE Patents [OSTI]

An apparatus and process for the culture of algae in a liquid medium is disclosed. The medium circulates through an open trough and is exposed to an atmosphere which is temperature regulated. The nutrient content of the liquid medium is regulated to control the chemical composition growth and reproduction characteristics of the cultured algae. Before it is allowed to strike the medium, sunlight is passed through a filter to remove wavelengths which are not photosynthetically active. Heat energy can be recovered from the filter.

Raymond, Lawrence P. (Richland, WA)

1981-01-01T23:59:59.000Z

298

ALGAL HYDROGEN PHOTOPRODUCTION  

E-Print Network [OSTI]

.) · fermentation products (acetate, formate) This represents a major break-through! #12;Effects of Research

299

Pathways for Algal Biofuels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652Grow Your EnergyTechnology to Market »PathPathways

300

Algal Biofuel Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, T X S ummary o fBtuIdeas

Note: This page contains sample records for the topic "integrated algal biorefinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Regional Algal Feedstock Testbed  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes OfficeTexas |4 U.S.1:for WBS: 1.3.5.111 March

302

Thermal Control & System Integration  

Broader source: Energy.gov [DOE]

The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

303

Distribution Grid Integration  

Broader source: Energy.gov [DOE]

The DOE Systems Integration team funds distribution grid integration research and development (R&D) activities to address the technical issues that surround distribution grid planning,...

304

STATE OF CALIFORNIA NATURAL RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network [OSTI]

) · Energy Efficiency and Renewable Energy Research ­ Integrated Biorefinery Operations, DE-FOA-0000096 ­ Energy (ARPA-E) DE-FOA-0000065 5/19/09 ­ 6/16/091 6/5/09 ­ 7/15/09 2 3 EERE ­ Integrated Biorefinery

305

MULTICOMPONENT SEISMIC ANALYSIS AND CALIBRATION TO IMPROVE RECOVERY FROM ALGAL MOUNDS: APPLICATION TO THE ROADRUNNER/TOWAOC AREA OF THE PARADOX BASIN, UTE MOUNTAIN UTE RESERVATION, COLORADO  

SciTech Connect (OSTI)

This report describes the results made in fulfillment of contract DE-FG26-02NT15451, ''Multicomponent Seismic Analysis and Calibration to Improve Recovery from Algal Mounds: Application to the Roadrunner/Towaoc Area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado''. Optimizing development of highly heterogeneous reservoirs where porosity and permeability vary in unpredictable ways due to facies variations can be challenging. An important example of this is in the algal mounds of the Lower and Upper Ismay reservoirs of the Paradox Basin in Utah and Colorado. It is nearly impossible to develop a forward predictive model to delineate regions of better reservoir development, and so enhanced recovery processes must be selected and designed based upon data that can quantitatively or qualitatively distinguish regions of good or bad reservoir permeability and porosity between existing well control. Recent advances in seismic acquisition and processing offer new ways to see smaller features with more confidence, and to characterize the internal structure of reservoirs such as algal mounds. However, these methods have not been tested. This project will acquire cutting edge, three-dimensional, nine-component (3D9C) seismic data and utilize recently-developed processing algorithms, including the mapping of azimuthal velocity changes in amplitude variation with offset, to extract attributes that relate to variations in reservoir permeability and porosity. In order to apply advanced seismic methods a detailed reservoir study is needed to calibrate the seismic data to reservoir permeability, porosity and lithofacies. This will be done by developing a petrological and geological characterization of the mounds from well data; acquiring and processing the 3D9C data; and comparing the two using advanced pattern recognition tools such as neural nets. In addition, should the correlation prove successful, the resulting data will be evaluated from the perspective of selecting alternative enhanced recovery processes, and their possible implementation. The work is being carried out on the Roadrunner/Towaoc Fields of the Ute Mountain Ute Tribe, located in the southwestern corner of Colorado. Although this project is focused on development of existing resources, the calibration established between the reservoir properties and the 3D9C seismic data can also enhance exploration success. During the time period covered by this report, the majority of the project effort has gone into the permitting, planning and design of the 3D seismic survey, and to select a well for the VSP acquisition. The business decision in October, 2002 by WesternGeco, the projects' seismic acquisition contractor, to leave North America, has delayed the acquisition until late summer, 2003. The project has contracted Solid State, a division of Grant Geophysical, to carry out the acquisition. Moreover, the survey has been upgraded to a 3D9C from the originally planned 3D3C survey, which should provide even greater resolution of mounds and internal mound structure.

Paul La Pointe; Claudia Rebne; Steve Dobbs

2003-07-10T23:59:59.000Z

306

Wind Integration Study Methods (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of common elements, differences, integration costs, and errors in integration analysis.

Milligan, M.; Kirby, B.

2011-04-01T23:59:59.000Z

307

Multicomponent Seismic Analysis and Calibration to Improve Recovery from Algal Mounds: Application to the Roadrunner/Towaoc area of the Paradox Basin, UTE Mountain UTE Reservation, Colorado  

SciTech Connect (OSTI)

The goals of this project were: (1) To enhance recovery of oil contained within algal mounds on the Ute Mountain Ute tribal lands. (2) To promote the use of advanced technology and expand the technical capability of the Native American Oil production corporations by direct assistance in the current project and dissemination of technology to other Tribes. (3) To develop an understanding of multicomponent seismic data as it relates to the variations in permeability and porosity of algal mounds, as well as lateral facies variations, for use in both reservoir development and exploration. (4) To identify any undiscovered algal mounds for field-extension within the area of seismic coverage. (5) To evaluate the potential for applying CO{sub 2} floods, steam floods, water floods or other secondary or tertiary recovery processes to increase production. The technical work scope was carried out by: (1) Acquiring multicomponent seismic data over the project area; (2) Processing and reprocessing the multicomponent data to extract as much geological and engineering data as possible within the budget and time-frame of the project; (3) Preparing maps and data volumes of geological and engineering data based on the multicomponent seismic and well data; (4) Selecting drilling targets if warranted by the seismic interpretation; (5) Constructing a static reservoir model of the project area; and (6) Constructing a dynamic history-matched simulation model from the static model. The original project scope covered a 6 mi{sup 2} (15.6 km{sup 2}) area encompassing two algal mound fields (Towaoc and Roadrunner). 3D3C seismic data was to acquired over this area to delineate mound complexes and image internal reservoir properties such as porosity and fluid saturations. After the project began, the Red Willow Production Company, a project partner and fully-owned company of the Southern Ute Tribe, contributed additional money to upgrade the survey to a nine-component (3D9C) survey. The purpose of this upgrade to nine components was to provide additional shear wave component data that might prove useful in delineating internal mound reservoir attributes. Also, Red Willow extended the P-wave portion of the survey to the northwest of the original 6 mi{sup 2} (15.6 km{sup 2}) 3D9C area in order to extend coverage further to the northwest to the Marble Wash area. In order to accomplish this scope of work, 3D9C seismic data set covering two known reservoirs was acquired and processed. Three-dimensional, zero-offset vertical seismic profile (VSP) data was acquired to determine the shear wave velocities for processing the sh3Dseismic data. Anisotropic velocity, and azimuthal AVO processing was carried out in addition to the conventional 3D P-wave data processing. All P-, PS- and S-wave volumes of the seismic data were interpreted to map the seismic response. The interpretation consisted of conventional cross-plots of seismic attributes vs. geological and reservoir engineering data, as well as multivariate and neural net analyses to assess whether additional resolution on exploration and engineering parameters could be achieved through the combined use of several seismic variables. Engineering data in the two reservoirs was used to develop a combined lithology, structure and permeability map. On the basis of the seismic data, a well was drilled into the northern mound trend in the project area. This well, Roadrunner No.9-2, was brought into production in late April 2006 and continues to produce modest amounts of oil and gas. As of the end of August 2007, the well has produced approximately 12,000 barrels of oil and 32,000 mcf of gas. A static reservoir model was created from the seismic data interpretations and well data. The seismic data was tied to various markers identified in the well logs, which in turn were related to lithostratigraphy. The tops and thicknesses of the various units were extrapolated from well control based upon the seismic data that was calibrated to the well picks. The reservoir engineering properties were available from a number of wel

Joe Hachey

2007-09-30T23:59:59.000Z

308

Buried waste integrated demonstration technology integration process  

SciTech Connect (OSTI)

A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD).

Ferguson, J.S.; Ferguson, J.E.

1992-04-01T23:59:59.000Z

309

Buried waste integrated demonstration technology integration process  

SciTech Connect (OSTI)

A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE`s Office of Technology Development (OTD).

Ferguson, J.S.; Ferguson, J.E.

1992-04-01T23:59:59.000Z

310

INTEGRATING PHOTOVOLTAIC SYSTEMS  

E-Print Network [OSTI]

INTEGRATING PHOTOVOLTAIC SYSTEMS INTO PUBLIC SECTOR PERFORMANCE CONTRACTS IN DELAWARE FINAL for Energy and Environmental Policy University of Delaware February 2006 #12;INTEGRATING PHOTOVOLTAIC..................................................................................................... 1 1.2 Photovoltaics in Performance Contracts: An Overview

Delaware, University of

311

Transmission Commercial Project Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improvement (CBPI) Customer Forum Energy Imbalance Market Generator Interconnection Reform Implementation Network Integration Transmission Service (NT Service) Network Open...

312

Advanced Integrated Systems Technology Development  

E-Print Network [OSTI]

conditioning in buildings featuring integrated design withconditioning in buildings featuring integrated design withof a building with advanced integrated design involving one

2013-01-01T23:59:59.000Z

313

REVIEW ARTICLE Legumes for mitigation of climate change  

E-Print Network [OSTI]

and biorefineries. A review Erik Steen Jensen & Mark B. Peoples & Robert M. Boddey & Peter M. Gresshoff & Henrik source of biomass for the generation of biofuels and other materials in future biorefinery concepts. We for Integrative Legume Research, University of Queensland, St Lucia, QLD 4072, Australia H. Hauggaard

Paris-Sud XI, Université de

314

EA-1811: NewPage Corporation Wood Biomass to Liquid Fuel, Wisconsin Rapids, Wisconsin  

Broader source: Energy.gov [DOE]

This EA will evaluate the environmental impacts of a proposal to provide federal funding to NewPage for final design, construction and operation of a demonstration scale biorefinery. The NewPage biorefinery facility would be integrated with the existing paper mill and produce up to 555 barrels per day (bpd) of clean hydrocarbon biofuel. This EA is has been cancelled.

315

Technology Integration Overview  

Broader source: Energy.gov (indexed) [DOE]

Technology Integration Overview Dennis A. Smith - Clean Cities Deployment Connie Bezanson - Vehicle Education June 17, 2014 VEHICLE TECHNOLOGIES OFFICE This presentation does not...

316

Technology Integration Overview  

Broader source: Energy.gov (indexed) [DOE]

-Technology Integration Overview - Dennis A. Smith Connie Bezanson U. S. Department of Energy Headquarters Office - Washington, D.C. May 2013 Project ID: TI000 2013 Department of...

317

Integrated Technology Deployment  

Office of Energy Efficiency and Renewable Energy (EERE)

Integrated technology deployment is a comprehensive approach to implementing solutions that increase the use of energy efficiency and renewable energy technologies. Federal, state, and local...

318

University of Geneva, Energy Group At the Institute for Environmental Sciences there is a vacancy for the position of a  

E-Print Network [OSTI]

) and for integrated biorefineries. Apart from detailed assessment methods, also short-cut and approximative approaches need to be developed and tested. Integrated assessment of competing pathways and the development

Laemmli, Ulrich

319

Mini-review Received: 8 April 2013 Revised: 1 July 2013 Accepted article published: 13 July 2013 Published online in Wiley Online Library: 9 August 2013  

E-Print Network [OSTI]

Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass Charles of developing integrated production strategies to co-produce furfural with other valuable chemicals. Furfural precursor; lignocellulosic biomass; biorefinery; biofuels; biochemicals INTRODUCTION Environmental awareness

California at Riverside, University of

320

Systems Integration (Fact Sheet)  

SciTech Connect (OSTI)

The Systems Integration (SI) subprogram works closely with industry, universities, and the national laboratories to overcome technical barriers to the large-scale deployment of solar technologies. To support these goals, the subprogram invests primarily in four areas: grid integration, technology validation, solar resource assessment, and balance of system development.

Not Available

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated algal biorefinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Water Waves and Integrability  

E-Print Network [OSTI]

The Euler's equations describe the motion of inviscid fluid. In the case of shallow water, when a perturbative asymtotic expansion of the Euler's equations is taken (to a certain order of smallness of the scale parameters), relations to certain integrable equations emerge. Some recent results concerning the use of integrable equation in modeling the motion of shallow water waves are reviewed in this contribution.

Rossen I. Ivanov

2007-07-12T23:59:59.000Z

322

Modular Integrated Energy Systems  

E-Print Network [OSTI]

Honeywell #12;Modular Integrated Energy Systems Task 5 Prototype Development Reference Design DocumentationModular Integrated Energy Systems Prepared for: Oak Ridge National Laboratory P.O. Box 2008 Building 3147 Oak Ridge, TN 37831 April 27, 2006 Prepared by: Honeywell Laboratories 3660 Technology Drive

Oak Ridge National Laboratory

323

PEV Integration with Renewables (Presentation)  

SciTech Connect (OSTI)

This presentation discusses current research at NREL on integrating plug-in electric vehicles with the grid and using renewable energy to charge the grid. The Electric Vehicle Grid Integration (EVGI) and Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) are addressing the opportunities and technical requirements for vehicle grid integration that will increase marketability and lead to greater petroleum reduction.

Markel, T.

2014-06-18T23:59:59.000Z

324

Sandia National Laboratories: algal polyculture  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Release Wave EnergyLinksZpartsmicrogrid systemalgal

325

National Algal Biofuels Technology Roadmap  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward aInnovationHydrogenNRGA CNathan Dexter About

326

Integrated Energy Efficiency  

E-Print Network [OSTI]

10 Off The Grid Sensor Integration Natural Daylight Base and Peak Energy Reduction 11 Lowest Cost Renewable Solar Integrated Lighting $1.0 million/MW $6 – 9 million/MW Wind $1.3 - 1.9 million/MW Biomass $1.5 – 2.5 million/MW Geothermal $1.6 million...Integrated Energy Efficiency Steve Heins VP Communications and Government Affairs Orion Energy Systems, Inc. 2 MegaTrend Convergence We need companies to commercialize technologies that use less energy without compromise to operations. Energy...

Heins, S.

327

Wellbore Integrity Network  

SciTech Connect (OSTI)

In this presentation, we review the current state of knowledge on wellbore integrity as developed in the IEA Greenhouse Gas Programme's Wellbore Integrity Network. Wells are one of the primary risks to the successful implementation of CO{sub 2} storage programs. Experimental studies show that wellbore materials react with CO{sub 2} (carbonation of cement and corrosion of steel) but the impact on zonal isolation is unclear. Field studies of wells in CO{sub 2}-bearing fields show that CO{sub 2} does migrate external to casing. However, rates and amounts of CO{sub 2} have not been quantified. At the decade time scale, wellbore integrity is driven by construction quality and geomechanical processes. Over longer time-scales (> 100 years), chemical processes (cement degradation and corrosion) become more important, but competing geomechanical processes may preserve wellbore integrity.

Carey, James W. [Los Alamos National Laboratory; Bachu, Stefan [Alberta Innovates

2012-06-21T23:59:59.000Z

328

SOLAR PROGRAM: SYSTEMS INTEGRATION  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2010 2. Current Request for Information (RFI) 3. Questions 4 | Systems Integration eere.energy.gov Summary of 1W Workshop Date: August 11th and 12th, 2010 Attendees: 86 total;...

329

IDC Integrated Master Plan.  

SciTech Connect (OSTI)

This is the IDC Re-Engineering Phase 2 project Integrated Master Plan (IMP). The IMP presents the major accomplishments planned over time to re-engineer the IDC system. The IMP and the associate Integrated Master Schedule (IMS) are used for planning, scheduling, executing, and tracking the project technical work efforts. REVISIONS Version Date Author/Team Revision Description Authorized by V1.0 12/2014 IDC Re- engineering Project Team Initial delivery M. Harris

Clifford, David J.; Harris, James M.

2014-12-01T23:59:59.000Z

330

Integrating farming and wastewater management.  

E-Print Network [OSTI]

??Source separating wastewater systems are often motivated by their integration with farming. It is thus important to scrutinise the critical factors associated with such integration.… (more)

Tidåker, Pernilla

2007-01-01T23:59:59.000Z

331

Systems Integration | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Integration Systems Integration Through the SunShot Initiative, the U.S. Department of Energy (DOE) supports the development of innovative, cost-effective solutions that...

332

Systems Integration | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Integration SHARE Systems Integration The Distributed Energy Communications and Controls (DECC) Laboratory offers a unique test bed for testing distributed energy...

333

Transportation and Stationary Power Integration: Workshop Proceedings...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Integration: Workshop Proceedings Transportation and Stationary Power Integration: Workshop Proceedings Proceedings for the Transportation and Stationary Power Integration Workshop...

334

Integrating the Integrators - A Roadmap to Success  

SciTech Connect (OSTI)

The U.S. Department of Energy Environmental Management's (DOE-EM) investments in science and technology, as well as science and technology investments associated with other parts of the DOE are aimed at meeting the Departments cleanup goals. These investments, primarily focused on EM's cleanup mission, comprise the Environmental Quality Research and Development (R&D) portfolios. Synchronizing EM's Cleanup Project Managers (operations facility and process owners throughout the DOE complex) operational needs with EM R&D including the extensive work of the six Focus Areas (major thrust areas within DOE-EM) has been a continuing challenge. This recent initiative to better integrate the R&D program is in response to evolving needs within the Department to apply proven system engineering methods to clarify requirements and define EM's process to effectively orchestrate their R&D Program. To optimize this partnership, DOE-EM's Integration Program is successfully unifying the operational needs with the R&D as described in this paper.

Olson, Craig Stott; Conner, Craig C

1999-03-01T23:59:59.000Z

335

Integrating the Integrators - A Roadmap to Success  

SciTech Connect (OSTI)

The U.S. Department of Energy Environmental Management's (DOE-EM) investments in science and technology, as well as science and technology investments associated with other parts of the DOE are aimed at meeting the Departments cleanup goals. These investments, primarily focused on EM's cleanup mission, comprise the Environmental Quality Research and Development (R&D) portfolios. Synchronizing EM's Cleanup Project Managers (operations facility and process owners throughout the DOE complex) operational needs with EM R&D including the extensive work of the six Focus Areas (major thrust areas within DOE-EM) has been a continuing challenge. This recent initiative to better integrate the R&D program is in response to evolving needs within the Department to apply proven systems engineering methods to clarify requirements and define EM's process to effectively orchestrate their R&D Program. To optimize this partnership, DOE-EM's Integration Program is successfully unifying the operational needs with the R&D as described in this paper.

C. Conner; C. Olson

1999-02-01T23:59:59.000Z

336

Integrated Micro Nano Systems Integrated Micro Nano Systems  

E-Print Network [OSTI]

#12;Integrated Micro Nano Systems 2 #12;Integrated Micro Nano Systems 3 Val Jones (Ed.) Symposium on Integrated Micro Nano Systems: Convergence of bio and nanotechnologies, Enschede, The Netherlands, June 2006 Micro Nano Systems 4 #12;Integrated Micro Nano Systems 5 Preface In order to explore the convergence

Al Hanbali, Ahmad

337

Twisted symmetries and integrable systems  

E-Print Network [OSTI]

Symmetry properties are at the basis of integrability. In recent years, it appeared that so called "twisted symmetries" are as effective as standard symmetries in many respects (integrating ODEs, finding special solutions to PDEs). Here we discuss how twisted symmetries can be used to detect integrability of Lagrangian systems which are not integrable via standard symmetries.

G. Cicogna; G. Gaeta

2010-02-07T23:59:59.000Z

338

Integrated heterodyne terahertz transceiver  

DOE Patents [OSTI]

A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. A terahertz signal can be received by an antenna connected to the mixer, an end facet or sidewall of the laser, or through a separate active section that can amplify the incident signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

Wanke, Michael C. (Albuquerque, NM); Lee, Mark (Albuquerque, NM); Nordquist, Christopher D. (Albuquerque, NM); Cich, Michael J. (Albuquerque, NM)

2012-09-25T23:59:59.000Z

339

Integrated heterodyne terahertz transceiver  

DOE Patents [OSTI]

A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. An antenna connected to the Schottky diode receives a terahertz signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

Lee, Mark (Albuquerque, NM); Wanke, Michael C. (Albuquerque, NM)

2009-06-23T23:59:59.000Z

340

Explicit global integrators  

E-Print Network [OSTI]

be advantageous. For this purpose, forward interpolation utilizing Radau Quadrature will be employed. An explicit method of global integration has been developed to estimate a solution to a differential equation. A set of functions P (x), P (x), , P (x) and a... set of points n+1 x , x , , x can be found such that n+1 r x n+1 f(u)du = g P. (x)i'(x. ) 0 i=1 for all x when f(u) is a polynomial of degree n or less. The above process is described by Axelsson as global integration. In . th the cases...

Merriam, Robert Stevens

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "integrated algal biorefinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Smart Grid Integration Laboratory  

SciTech Connect (OSTI)

The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation â?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSUâ??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratoryâ??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

Wade Troxell

2011-09-30T23:59:59.000Z

342

Integrative Genomics Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land SurfaceVirus-Infected MacaquesIntegration ofIntegrative Genomics

343

Integrated Management Requirements mapping  

SciTech Connect (OSTI)

This document contains five appendices documenting how Sandia implemented the DOE Conduct of Operations (5480.19) and DOE Quality Assurance (5700.6C) orders. It provides a mapping of the Sandia integrated requirements to the specific requirements of each Order and a mapping to Sandia`s approved program for implementing the Conduct of Operations Order.

Holmes, J.T.; Andrews, N.S.

1992-06-01T23:59:59.000Z

344

Integrated Management Requirements mapping  

SciTech Connect (OSTI)

This document contains five appendices documenting how Sandia implemented the DOE Conduct of Operations (5480.19) and DOE Quality Assurance (5700.6C) orders. It provides a mapping of the Sandia integrated requirements to the specific requirements of each Order and a mapping to Sandia's approved program for implementing the Conduct of Operations Order.

Holmes, J.T.; Andrews, N.S.

1992-06-01T23:59:59.000Z

345

Integrated Safety Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order ensures that DOE/NNSA, systematically integrates safety into management and work practices at all levels, so that missions are accomplished efficiently while protecting the workers, the public, and the environment. Cancels DOE M 450.4-1 and DOE M 411.1-1C

2011-04-25T23:59:59.000Z

346

Bioluminescent bioreporter integrated circuit  

DOE Patents [OSTI]

Disclosed are monolithic bioelectronic devices comprising a bioreporter and an OASIC. These bioluminescent bioreporter integrated circuit are useful in detecting substances such as pollutants, explosives, and heavy-metals residing in inhospitable areas such as groundwater, industrial process vessels, and battlefields. Also disclosed are methods and apparatus for environmental pollutant detection, oil exploration, drug discovery, industrial process control, and hazardous chemical monitoring.

Simpson, Michael L. (Knoxville, TN); Sayler, Gary S. (Blaine, TN); Paulus, Michael J. (Knoxville, TN)

2000-01-01T23:59:59.000Z

347

Integrated Safety Management Policy  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The policy establishes DOE's expectation for safety, including integrated safety management that will enable the Department’s mission goals to be accomplished efficiently while ensuring safe operations at all departmental facilities and activities. Cancels DOE P 411.1, DOE P 441.1, DOE P 450.2A, DOE P 450.4, and DOE P 450.7

2011-04-25T23:59:59.000Z

348

INTEGRATED COLLABORATIVE INFORMATION SYSTEMS  

E-Print Network [OSTI]

of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy, Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy the risk for user. This model is motivated by the above concerns to provide flexible mechanism to integrate

349

INTEGRATED ENERGY SYSTEMS: PRODUCTIVITY & BUILDING SCIENCE  

E-Print Network [OSTI]

Integrated Design of Commercial Building Ceiling Systems Integrated Design of Residential Ducting & Air FlowINTEGRATED ENERGY SYSTEMS: PRODUCTIVITY & BUILDING SCIENCE Productivity and Interior Environments Integrated Design of Large Commercial HVAC Systems Integrated Design of Small Commercial HVAC Systems

350

Nationwide: The Nation's First Commercial-Scale Biorefineries...  

Broader source: Energy.gov (indexed) [DOE]

that are specifically focused on producing cellulosic ethanol, drop-in hydrocarbon biofuel, and bioproducts. As of July 2013, INEOS opened the nation's first...

351

Grand Opening of Abengoa's Biorefinery: Nation's Third Commercial...  

Office of Environmental Management (EM)

its grand opening on October 17, 2014, in Hugoton, Kansas. The Abengoa Bioenergy Biomass of Kansas (ABBK) facility is the first of its kind to use a proprietary enzymatic...

352

Sustainable bioethanol production combining biorefinery principles and intercropping  

E-Print Network [OSTI]

on starch (from grain) fermentation, but in the present study that is regarded as a too important food. Nitrogen fertilization is responsible for more than 85 % of the greenhouse gas emissions from wheat grain-wheat intercropping, conversion yields obtained in laboratory experiments show that wet oxidation is an efficient

353

Swedish University of Agricultural Sciences Biorefinery research at SBT  

E-Print Network [OSTI]

. Lestander ) Bioenergy combine and sustainable forest management SLU and UmU, LTU, SP, SFA (S. Xiong, H) Mare Purum Sweden-Finland Chemical, biological, and spectroscopic studies of flows in biologic-Reyes) ·Bioenergy 2020+ GmbH, Austria ·DBFZ ­ Deutsches BiomasseForschungsZentrum, Germany ·SLU ­ Sveriges

354

The Wood-Based Biorefinery in a Petroleum Depleted World  

E-Print Network [OSTI]

3 Year Old Willow #12;14 14 Woody Biomass Feedstocks Sustainably harvested low value wood from, Sustainable Bioproducts: Fuels, Chemicals, Materials Renewable Resources to "Green" Bio-Products Woody Biomass Feedstock #12;5 5 Spindletop at Beaumont, TX Circa late 1890's Birth of the Petroleum Industry in Texas

Chatterjee, Avik P.

355

Modeling Tomorrow's Biorefinery--the NREL Biochemical Pilot Plant  

SciTech Connect (OSTI)

Brochure describing the capabilities of NREL's Biochemical Pilot Plant. In this facility, researchers test ideas for creating high-value products from cellulosic biomass.

Not Available

2008-03-01T23:59:59.000Z

356

Lignin Valorization: Improving Lignin Processing in the Biorefinery  

SciTech Connect (OSTI)

Research and development activities directed toward commercial production of cellulosic ethanol have created the opportunity to dramatically increase the transformation of lignin to value-added products. Here we highlight recent advances in this lignin valorization effort. Discovery of genetic variants in native populations of bioenergy crops and direct manipulation of biosynthesis pathways have produced lignin feedstocks with favorable properties for recovery and downstream conversion. Advances in analytical chemistry and computational modeling detail the structure of the modified lignin and direct bioengineering strategies for future targeted properties. Refinement of biomass pretreatment technologies has further facilitated lignin recovery, and this coupled with genetic engineering will enable new uses for this biopolymer, including low-cost carbon fibers, engineered plastics and thermoplastic elastomers, polymeric foams, fungible fuels, and commodity chemicals.

Ragauskas, Arthur [Georgia Institute of Technology, Atlanta; Beckham, Gregg [National Renewable Energy Laboratory (NREL); Biddy, Mary J [National Renewable Energy Laboratory (NREL); Chandra, Richard [University of British Columbia, Vancouver; Chen, Fang [University of North Texas; Davis, Dr. Mark F. [National Renewable Energy Laboratory (NREL); Davison, Brian H [ORNL; Dixon, Richard [University of North Texas; Gilna, Paul [ORNL; Keller, Martin [ORNL; Langan, Paul [ORNL; Naskar, Amit K [ORNL; Saddler, Jack N [University of British Columbia, Vancouver; Tschaplinski, Timothy J [ORNL; Tuskan, Gerald A [ORNL; Wyman, Charles E, [University of California, Riverside; Harber, Karen S [ORNL

2014-01-01T23:59:59.000Z

357

NREL Report Provides Documentation of the Advanced Biorefinery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in January 2015 on the status of the non-starch ethanol and renewable hydrocarbon biofuels industry in the United States. The report, 2013 Survey of Non-Starch Ethanol and...

358

Five Things to Know about Biorefinery Investments | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES ANDIndustrialEnergyFinal FY8 of 864 1.0 EXECUTIVECharging |Things to

359

Flambeau River Biofuels Demonstration-Scale Biorefinery | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal Registry CommentsOverviewEnergy Flambeau River Biofuels

360

Nanoparticle Technology for Biorefinery of Non-Food Source Feedstocks  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergy Auditor

Note: This page contains sample records for the topic "integrated algal biorefinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Nationwide: The Nation's First Commercial-Scale Biorefineries |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergyHydrogenRegistration is

362

Grand Opening of Abengoa's Biorefinery: Nation's Third Commercial-Scale  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of EnergyGeothermalGoing Off theUpdate Workshop |Facility |

363

DOE Announces $160 Million for Biorefinery Construction and Highlights New  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThird QuarterintoCurrent JuneEfficiency |

364

Wiki-based Techno Economic Analysis of a Lignocellulosic Biorefinery -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISP SignInWho do IWhyWhy:

365

NREL Biorefinery Analysis Process Models | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus Area EnergyMohawkaccrediationNASA-SurfaceNEPA

366

Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry,  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2| DepartmentEnergyPolicy and Politics |

367

NREL Report Provides Documentation of the Advanced Biorefinery Landscape |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment, SafetyWaterMary LandrieuNEET Mission NEET MissionReports) | Department

368

Solazyme Pilot-Scale Biorefinery | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSite Management GuideReliabilityDepartment ofSolarReserve,Solazyme

369

Nanoparticle Technology for Biorefinery of Non-Food Source Feedstocks |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUALNASCAR Green Gets FirstNafeesa Hunt Owens About

370

Sandia National Laboratories: simulate critical factors in the biorefinery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-active perovskiteremovingsensors andsilicon

371

NewPage Demonstration-Scale Biorefinery | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S iPartnership Program |Million DOEYellow

372

UOP Pilot-Scale Biorefinery | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energyof Energy8, UNITED DEPARTMENTUOP Pilot-Scale

373

Verenium Pilot- and Demonstration-Scale Biorefinery | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department of Energy Ventilation System to Improve SavannahFleets

374

CX-002962: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Elevance Integrated Biorefinery CX(s) Applied: B3.6, A9 Date: 07082010 Location(s): Illinois Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The...

375

Sequencing the fungal tree Terrestrial ecosystems host a complex array of interacting  

E-Print Network [OSTI]

with heterotrophic and autotrophic organisms alike, and play an integral and growing role in the development in three areas: plant health, biorefinery and fungal diversity. Plant health depends on interactions

Hibbett, David S.

376

Sapphire Energy Out to Prove That Crud Can Take On Crude | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Can Take On Crude December 16, 2011 - 2:48pm Addthis An aerial view of Sapphire Energy's integrated biorefinery in Luna County, New Mexico. | Photo courtesy of Sapphire Energy. An...

377

Special Topics in Organic Chemistry Biorenewable Polymers 8833  

E-Print Network [OSTI]

, conformation, synthesis/ derivatization, reaction mechanisms and application of biomass to: a. Integrated Biorefinery b. Pretreatment Chemistry Lignocellulosics c. SSF/CBP Conversion of Biomass to BioEthanol d. Third

Sherrill, David

378

Biomass Supply for a Bioenergy  

E-Print Network [OSTI]

Resource assessment – do we have enough biomass? Techno-economic analysis – can biofuels be produced at competitive prices? • Integrated biorefineries – what is being funded at DOE and what are future plans?

Hydrocarbon-based Biofuels; Zia Haq

2012-01-01T23:59:59.000Z

379

NREL: News Feature - NREL Uses Industry Best Practices to Add...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL Uses Industry Best Practices to Add Partners July 28, 2014 Photo of a man and woman in hard hats inside NREL's Integrated Biorefinery Research Facility. Enlarge image Thanks...

380

CX-006230: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

a small-scale, 0.1 megawatt, combined heat and power integrated biorefinery that uses lignin intermediatesresidues for fuels. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-006230.pdf...

Note: This page contains sample records for the topic "integrated algal biorefinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Integrated turbomachine oxygen plant  

SciTech Connect (OSTI)

An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

2014-06-17T23:59:59.000Z

382

Nonlinear integrable ion traps  

SciTech Connect (OSTI)

Quadrupole ion traps can be transformed into nonlinear traps with integrable motion by adding special electrostatic potentials. This can be done with both stationary potentials (electrostatic plus a uniform magnetic field) and with time-dependent electric potentials. These potentials are chosen such that the single particle Hamilton-Jacobi equations of motion are separable in some coordinate systems. The electrostatic potentials have several free adjustable parameters allowing for a quadrupole trap to be transformed into, for example, a double-well or a toroidal-well system. The particle motion remains regular, non-chaotic, integrable in quadratures, and stable for a wide range of parameters. We present two examples of how to realize such a system in case of a time-independent (the Penning trap) as well as a time-dependent (the Paul trap) configuration.

Nagaitsev, S.; /Fermilab; Danilov, V.; /SNS Project, Oak Ridge

2011-10-01T23:59:59.000Z

383

Integrated Deployment and the Energy Systems Integration Facility: Workshop Proceedings  

SciTech Connect (OSTI)

This report summarizes the workshop entitled: Integrated Deployment and the Energy Systems Integration Facility. In anticipation of the opening of the ESIF, NREL held the workshop August 21-23, 2012 and invited participants from utilities, government, industry, and academia to discuss renewable integration challenges and discover new ways to meet them by taking advantage of the ESIF's capabilities.

Kroposki, B.; Werner, M.; Spikes, A.; Komomua, C.

2013-01-01T23:59:59.000Z

384

Integrable viscous conservation laws  

E-Print Network [OSTI]

We propose an extension of the Dubrovin-Zhang perturbative approach to the study of normal forms for non-Hamiltonian integrable scalar conservation laws. The explicit computation of the first few corrections leads to the conjecture that such normal forms are parameterized by one single functional parameter, named viscous central invariant. A constant valued viscous central invariant corresponds to the well-known Burgers hierarchy. The case of a linear viscous central invariant provides a viscous analog of the Camassa-Holm equation, that formerly appeared as a reduction of a two-component Hamiltonian integrable systems. We write explicitly the negative and positive hierarchy associated with this equation and prove the integrability showing that they can be mapped respectively into the heat hierarchy and its negative counterpart, named the Klein-Gordon hierarchy. A local well-posedness theorem for periodic initial data is also proven. We show how transport equations can be used to effectively construct asymptotic solutions via an extension of the quasi-Miura map that preserves the initial datum. The method is alternative to the method of the string equation for Hamiltonian conservation laws and naturally extends to the viscous case. Using these tools we derive the viscous analog of the Painlev\\'e I2 equation that describes the universal behaviour of the solution at the critical point of gradient catastrophe.

Alessandro Arsie; Paolo Lorenzoni; Antonio Moro

2014-06-25T23:59:59.000Z

385

Integrative Bioengineering Institute  

SciTech Connect (OSTI)

Microfabrication enables many exciting experimental possibilities for medicine and biology that are not attainable through traditional methods. However, in order for microfabricated devices to have an impact they must not only provide a robust solution to a current unmet need, but also be simple enough to seamlessly integrate into standard protocols. Broad dissemination of bioMEMS has been stymied by the common aim of replacing established and well accepted protocols with equally or more complex devices, methods, or materials. The marriage of a complex, difficult to fabricate bioMEMS device with a highly variable biological system is rarely successful. Instead, the design philosophy of my lab aims to leverage a beneficial microscale phenomena (e.g. fast diffusion at the microscale) within a bioMEMS device and adapt to established methods (e.g. multiwell plate cell culture) and demonstrate a new paradigm for the field (adapt instead of replace). In order for the field of bioMEMS to mature beyond novel proof-of-concept demonstrations, researchers must focus on developing systems leveraging these phenomena and integrating into standard labs, which have largely been ignored. Towards this aim, the Integrative Bioengineering Institute has been established.

Eddington, David; Magin,L,Richard; Hetling, John; Cho, Michael

2009-01-09T23:59:59.000Z

386

High Efficiency Integrated Package  

SciTech Connect (OSTI)

Solid-state lighting based on LEDs has emerged as a superior alternative to inefficient conventional lighting, particularly incandescent. LED lighting can lead to 80 percent energy savings; can last 50,000 hours – 2-50 times longer than most bulbs; and contains no toxic lead or mercury. However, to enable mass adoption, particularly at the consumer level, the cost of LED luminaires must be reduced by an order of magnitude while achieving superior efficiency, light quality and lifetime. To become viable, energy-efficient replacement solutions must deliver system efficacies of ? 100 lumens per watt (LPW) with excellent color rendering (CRI > 85) at a cost that enables payback cycles of two years or less for commercial applications. This development will enable significant site energy savings as it targets commercial and retail lighting applications that are most sensitive to the lifetime operating costs with their extended operating hours per day. If costs are reduced substantially, dramatic energy savings can be realized by replacing incandescent lighting in the residential market as well. In light of these challenges, Cree proposed to develop a multi-chip integrated LED package with an output of > 1000 lumens of warm white light operating at an efficacy of at least 128 LPW with a CRI > 85. This product will serve as the light engine for replacement lamps and luminaires. At the end of the proposed program, this integrated package was to be used in a proof-of-concept lamp prototype to demonstrate the component’s viability in a common form factor. During this project Cree SBTC developed an efficient, compact warm-white LED package with an integrated remote color down-converter. Via a combination of intensive optical, electrical, and thermal optimization, a package design was obtained that met nearly all project goals. This package emitted 1295 lm under instant-on, room-temperature testing conditions, with an efficacy of 128.4 lm/W at a color temperature of ~2873K and 83 CRI. As such, the package’s performance exceeds DOE’s warm-white phosphor LED efficacy target for 2013. At the end of the program, we assembled an A19 sized demonstration bulb housing the integrated package which met Energy Star intensity variation requirements. With further development to reduce overall component cost, we anticipate that an integrated remote converter package such as developed during this program will find application in compact, high-efficacy LED-based lamps, particularly those requiring omnidirectional emission.

Ibbetson, James

2013-09-15T23:59:59.000Z

387

Lectures on integrable Hamiltonian systems  

E-Print Network [OSTI]

We consider integrable Hamiltonian systems in a general setting of invariant submanifolds which need not be compact. For instance, this is the case a global Kepler system, non-autonomous integrable Hamiltonian systems and integrable systems with time-dependent parameters.

G. Sardanashvily

2013-03-21T23:59:59.000Z

388

Integrated test schedule for buried waste integrated demonstration  

SciTech Connect (OSTI)

The Integrated Test Schedule incorporates the various schedules the Buried Waste Integrated Demonstration (BWID) supports into one document. This document contains the Federal Facilities Agreement and Consent Order schedules for the Idaho National Engineering Laboratory, Hanford Reservation, Oak Ridge Reservation, and Fernald Environmental Materials Center. Included in the Integrated Test Schedule is the Buried Waste Integrated Demonstration ``windows of opportunity`` schedule. The ``windows of opportunity`` schedule shows periods of time in which Buried Waste Integrated Demonstration Program-sponsored technology demonstrations could support key decisions in the Federal Facilities Agreement and Consent Order. Schedules for the Buried Waste Integrated Demonstration-sponsored technology task plans are categorized by technology area and divided by current fiscal year and out-year. Total estimated costs for Buried Waste Integrated Demonstration-sponsored Technology Task Plans for FY-92 through FY-97 are $74.756M.

Brown, J.T.; McDonald, J.K.

1992-05-01T23:59:59.000Z

389

Integrated test schedule for buried waste integrated demonstration  

SciTech Connect (OSTI)

The Integrated Test Schedule incorporates the various schedules the Buried Waste Integrated Demonstration (BWID) supports into one document. This document contains the Federal Facilities Agreement and Consent Order schedules for the Idaho National Engineering Laboratory, Hanford Reservation, Oak Ridge Reservation, and Fernald Environmental Materials Center. Included in the Integrated Test Schedule is the Buried Waste Integrated Demonstration windows of opportunity'' schedule. The windows of opportunity'' schedule shows periods of time in which Buried Waste Integrated Demonstration Program-sponsored technology demonstrations could support key decisions in the Federal Facilities Agreement and Consent Order. Schedules for the Buried Waste Integrated Demonstration-sponsored technology task plans are categorized by technology area and divided by current fiscal year and out-year. Total estimated costs for Buried Waste Integrated Demonstration-sponsored Technology Task Plans for FY-92 through FY-97 are $74.756M.

Brown, J.T.; McDonald, J.K.

1992-05-01T23:59:59.000Z

390

Integrated Photo-Bioelectrochemical System for Contaminants Removal and Bioenergy Production  

E-Print Network [OSTI]

cycling. INTRODUCTION Municipal wastewater treatment plants play a critical role in environmental represents an important, electricity-demanding step in most municipal wastewater treatment facilities fuel cells (MFCs)3 with algal bioreactors4 for wastewater treatment and bioenergy production. MFCs

Berges, John A.

391

Commercial Buildings Integration Program Overview - 2013 BTO...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Commercial Buildings Integration Program Overview - 2013 BTO Peer Review Commercial Buildings Integration Program Overview - 2013 BTO Peer Review Commercial Buildings Integration...

392

Integrated Assessment Modeling  

SciTech Connect (OSTI)

This paper discusses the role of Integrated Assessment models (IAMs) in climate change research. IAMs are an interdisciplinary research platform, which constitutes a consistent scientific framework in which the large-scale interactions between human and natural Earth systems can be examined. In so doing, IAMs provide insights that would otherwise be unavailable from traditional single-discipline research. By providing a broader view of the issue, IAMs constitute an important tool for decision support. IAMs are also a home of human Earth system research and provide natural Earth system scientists information about the nature of human intervention in global biogeophysical and geochemical processes.

Edmonds, James A.; Calvin, Katherine V.; Clarke, Leon E.; Janetos, Anthony C.; Kim, Son H.; Wise, Marshall A.; McJeon, Haewon C.

2012-10-31T23:59:59.000Z

393

Integrity in Depth  

E-Print Network [OSTI]

to the common problem of colluding with the attitude that shame is something to be ashamed of. He agrees with Andrew Morrison that for any in dividual with major deficits of the self, shame, not rage, is the principal affect. Beebe advocates "a psychology... is "Working on Integrity." In its opening section, "Fidelity to Process," Beebe shares a poi gnant therapeutic interchange in which he makes a mistake that leads to the patient's being angry at him. This rage facilitates the patient's discovery of her own...

Beebe, John

1992-01-01T23:59:59.000Z

394

Integrating preconcentrator heat controller  

DOE Patents [OSTI]

A method and apparatus for controlling the electric resistance heating of a metallic chemical preconcentrator screen, for example, used in portable trace explosives detectors. The length of the heating time-period is automatically adjusted to compensate for any changes in the voltage driving the heating current across the screen, for example, due to gradual discharge or aging of a battery. The total deposited energy in the screen is proportional to the integral over time of the square of the voltage drop across the screen. Since the net temperature rise, .DELTA.T.sub.s, of the screen, from beginning to end of the heating pulse, is proportional to the total amount of heat energy deposited in the screen during the heating pulse, then this integral can be calculated in real-time and used to terminate the heating current when a pre-set target value has been reached; thereby providing a consistent and reliable screen temperature rise, .DELTA.T.sub.s, from pulse-to-pulse.

Bouchier, Francis A. (Albuquerque, NM); Arakaki, Lester H. (Edgewood, NM); Varley, Eric S. (Albuquerque, NM)

2007-10-16T23:59:59.000Z

395

National Renewable Energy Laboratory's Energy Systems Integration...  

Broader source: Energy.gov (indexed) [DOE]

National Renewable Energy Laboratory's Energy Systems Integration Facility Overview National Renewable Energy Laboratory's Energy Systems Integration Facility Overview This...

396

Integrated Vehicle Thermal Management Systems (VTMS) Analysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Integrated Vehicle Thermal Management Power Electronic Thermal System Performance and Integration Characterization and Development of Advanced Heat Transfer Technologies...

397

Integrated Chemical Geothermometry System for Geothermal Exploration...  

Broader source: Energy.gov (indexed) [DOE]

geothermal reservoir temperatures from integrated chemical analyses of spring and well fluids. tracersspycherintegratedchemical.pdf More Documents & Publications Integrated...

398

Integrated optical sensor  

DOE Patents [OSTI]

An integrated optical sensor for arc welding having multifunction feedback control is described. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties. 6 figures.

Watkins, A.D.; Smartt, H.B.; Taylor, P.L.

1994-01-04T23:59:59.000Z

399

Integrated optical sensor  

DOE Patents [OSTI]

An integrated optical sensor for arc welding having multifunction feedback control. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties.

Watkins, Arthur D. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); Taylor, Paul L. (Idaho Falls, ID)

1994-01-01T23:59:59.000Z

400

Thermoalgebras and path integral  

SciTech Connect (OSTI)

Using a representation for Lie groups closely associated with thermal problems, we derive the algebraic rules of the real-time formalism for thermal quantum field theories, the so-called thermo-field dynamics (TFD), including the tilde conjugation rules for interacting fields. These thermo-group representations provide a unified view of different approaches for finite-temperature quantum fields in terms of a symmetry group. On these grounds, a path integral formalism is constructed, using Bogoliubov transformations, for bosons, fermions and non-abelian gauge fields. The generalization of the results for quantum fields in (S{sup 1}){sup d}xR{sup D-d} topology is addressed.

Khanna, F.C. [Theoretical Physics Institute, University of Alberta, Edmonton, AB T6G 2J1 (Canada); TRIUMF, Vancouver, BC, V6T 2A3 (Canada)], E-mail: khanna@phys.ualberta.ca; Malbouisson, A.P.C. [Centro Brasileiro de Pesquisas Fisicas/MCT, 22290-180 Rio de Janeiro, RJ (Brazil)], E-mail: adolfo@cbpf.br; Malbouisson, J.M.C. [Instituto de Fisicas, Universidade Federal da Bahia, 40210-340 Salvador, BA (Brazil)], E-mail: jmalboui@ufba.br; Santana, A.E. [Instituto de Fisicas, Universidade de Brasilia, 70910-900 Brasilia, DF (Brazil)], E-mail: asantana@fis.unb.br

2009-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "integrated algal biorefinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

EA-1789: Final Environmental Assessment  

Broader source: Energy.gov [DOE]

Construction and Operation of a Proposed Cellulosic Biorefinery, Alpena Prototype Biorefinery, Alpena, Michigan

402

Data Integration using Web Services  

E-Print Network [OSTI]

In this paper we examine the opportunities for data integration in the context of the emerging Web Services systems development paradigm. The paper introduces the ...

Hansen, Mark

2003-02-10T23:59:59.000Z

403

Arnold Schwarzenegger INTEGRATED FORECAST AND  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN Manager Joseph O' Hagan Project Manager Kelly Birkinshaw Program Area Manager ENERGY-RELATED ENVIRONMENTAL

404

Advancing Energy Systems through Integration  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and reliability Community Scale Heating and Cooling 4 ever-greenenergy.com Ever-Green Energy Integrated Energy System flexible & renewable fuel sources reliable and...

405

Advanced Integrated Traction System  

SciTech Connect (OSTI)

The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step towards enabling a smart-grid application. GM under this work assessed 29 technologies; investigated 36 configurations/types power electronics and electric machines, filed 41 invention disclosures; and ensured technology compatibility with vehicle production. Besides the development of a high temperature ETS the development of industrial suppliers took place because of this project. Suppliers of industrial power electronic components are numerous, but there are few that have traction drive knowledge. This makes it difficult to achieve component reliability, durability, and cost requirements necessary of high volume automotive production. The commercialization of electric traction systems for automotive industry requires a strong diverse supplier base. Developing this supplier base is dependent on a close working relationship between the OEM and supplier so that appropriate component requirements can be developed. GM has worked closely with suppliers to develop components for electric traction systems. Components that have been the focus of this project are power modules, capacitors, heavy copper boards, current sensors, and gate drive and controller chip sets. Working with suppliers, detailed component specifications have been developed. Current, voltage, and operation environment during the vehicle drive cycle were evaluated to develop higher resolution/accurate component specifications.

Greg Smith; Charles Gough

2011-08-31T23:59:59.000Z

406

Integrated system checkout report  

SciTech Connect (OSTI)

The planning and preparation phase of the Integrated Systems Checkout Program (ISCP) was conducted from October 1989 to July 1991. A copy of the ISCP, DOE-WIPP 90--002, is included in this report as an appendix. The final phase of the Checkout was conducted from July 10, 1991, to July 23, 1991. This phase exercised all the procedures and equipment required to receive, emplace, and retrieve contact handled transuranium (CH TRU) waste filled dry bins. In addition, abnormal events were introduced to simulate various equipment failures, loose surface radioactive contamination events, and personnel injury. This report provides a detailed summary of each days activities during this period. Qualification of personnel to safely conduct the tasks identified in the procedures and the abnormal events were verified by observers familiar with the Bin-Scale CH TRU Waste Test requirements. These observers were members of the staffs of Westinghouse WID Engineering, QA, Training, Health Physics, Safety, and SNL. Observers representing a number of DOE departments, the state of new Mexico, and the Defense Nuclear Facilities Safety Board observed those Checkout activities conducted during the period from July 17, 1991, to July 23, 1991. Observer comments described in this report are those obtained from the staff member observers. 1 figs., 1 tab.

Not Available

1991-08-14T23:59:59.000Z

407

Integrated Transportation System Design Optimization  

E-Print Network [OSTI]

Integrated Transportation System Design Optimization by Christine Taylor B.S. Cornell University by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Professor Jaime Peraire Chairman, Department Graduate Committee #12;2 #12;Integrated Transportation System Abstract Traditionally, the design of a transportation system has focused on either the vehicle design

408

Communication Needs and Integration Options  

E-Print Network [OSTI]

" links that carry data from smart meters to the control center. The consensus on HAN technologiesCommunication Needs and Integration Options for AMI in the Smart Grid Future Grid Initiative White System #12;Communication Needs and Integration Options for AMI in the Smart Grid Prepared for the Project

409

Communication Needs and Integration Options  

E-Print Network [OSTI]

home area networks (HANs) than "backhaul" links that carry data from smart meters to the control centerCommunication Needs and Integration Options for AMI in the Smart Grid Future Grid Initiative White System #12;Communication Needs and Integration Options for AMI in the Smart Grid Prepared for the Project

410

CFT, Integrable Models Liouville Gravity  

E-Print Network [OSTI]

CFT, Integrable Models And Liouville Gravity Chernogolovka 2009 Sunday June 28, 2009. Conference as one of components of their L, A pairs. #12;CFT, Integrable Models And Liouville Gravity Chernogolovka Gravity Chernogolovka, 2009 Tuesday June 30, 2009. CONFERENCE HALL 09:30­10:10 Herman Boos (Wuppertal

Fominov, Yakov

411

Energy Systems Integration Facility Overview  

ScienceCinema (OSTI)

The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

2014-06-10T23:59:59.000Z

412

Integral transformation and Darboux transformation  

E-Print Network [OSTI]

We review Darboux-Crum transformation of Heun's differential equation. By rewriting an integral transformation of Heun's differential equation into a form of elliptic functions, we see that the integral representation is a generalization of Darboux-Crum transformation. We also consider conservation of monodromy with respect to the transformations.

Kouichi Takemura

2009-11-11T23:59:59.000Z

413

MSc Integrated Petroleum Geoscience Programme Handbook  

E-Print Network [OSTI]

MSc Integrated Petroleum Geoscience Programme Handbook 2013-14 edition #12;Page 2 Contents Preface 3 1.MSc Integrated Petroleum Geoscience ­ FAQ 4 1.1 Why should I do this programme? 4 1.2 What Integrated Petroleum Geoscience: 57F610B1 PgDip Integrated Petroleum Geoscience: 61F610VX PgCert Integrated

Levi, Ran

414

Grand Challenges of Enterprise Integration  

SciTech Connect (OSTI)

Enterprise Integration connects and combines people, processes, systems, and technologies to ensure that the right people and the right processes have the right information and the right resources at the right time. A consensus roadmap for Technologies for Enterprise Integration was created as part of an industry/government/academia partnership in the Integrated Manufacturing Technology Initiative (IMTI). Two of the grand challenges identified by the roadmapping effort will be addressed here--Customer Responsive Enterprises and Totally Connected Enterprises. Each of these challenges is briefly discussed as to the current state of industry and the future vision as developed in the roadmap.

Brosey, W.D; Neal, R.E.; Marks, D.

2001-04-01T23:59:59.000Z

415

Superconductive tunnel junction integrated circuit  

SciTech Connect (OSTI)

Josephson Junction integrated circuits of the current injection type and magnetically controlled type utilize a superconductive layer that forms both Josephson Junction electrode for the Josephson Junction devices on the integrated circuit as well as a ground plane for the integrated circuit. Large area Josephson Junctions are utilized for effecting contact to lower superconductive layers and islands are formed in superconductive layers to provide isolation between the groundplane function and the Josephson Junction electrode function as well as to effect crossovers. A superconductor-barrier-superconductor trilayer patterned by local anodization is also utilized with additional layers formed thereover. Methods of manufacturing the embodiments of the invention are disclosed.

Jillie, D.W. Jr.; Smith, L.N.

1984-02-07T23:59:59.000Z

416

"DOE O 450.2 INTEGRATED SAFETY MANAGEMENT AND DOE P 450.4A INTEGRATED...  

Energy Savers [EERE]

"DOE O 450.2 INTEGRATED SAFETY MANAGEMENT AND DOE P 450.4A INTEGRATED SAFETY MANAGEMENT POLICY FAMILIAR LEVEL "DOE O 450.2 INTEGRATED SAFETY MANAGEMENT AND DOE P 450.4A INTEGRATED...

417

Signal Integrity Analysis of a 2-D and 3-D Integrated Potentiostat for Neurotransmitter Sensing  

E-Print Network [OSTI]

for the substrate, power network, and through silicon vias (TSVs). These models are combined integrated implantable systems. I. INTRODUCTION A multichannel potentiostat, integrated with micro and power dissipation. Signal integrity characteristics of a 2- D and 3-D integrated potentiostat

Stanacevic, Milutin

418

Numerical integration of variational equations  

E-Print Network [OSTI]

We present and compare different numerical schemes for the integration of the variational equations of autonomous Hamiltonian systems whose kinetic energy is quadratic in the generalized momenta and whose potential is a function of the generalized positions. We apply these techniques to Hamiltonian systems of various degrees of freedom, and investigate their efficiency in accurately reproducing well-known properties of chaos indicators like the Lyapunov Characteristic Exponents (LCEs) and the Generalized Alignment Indices (GALIs). We find that the best numerical performance is exhibited by the \\textit{`tangent map (TM) method'}, a scheme based on symplectic integration techniques which proves to be optimal in speed and accuracy. According to this method, a symplectic integrator is used to approximate the solution of the Hamilton's equations of motion by the repeated action of a symplectic map $S$, while the corresponding tangent map $TS$, is used for the integration of the variational equations. A simple and systematic technique to construct $TS$ is also presented.

Ch. Skokos; E. Gerlach

2010-09-29T23:59:59.000Z

419

Bryan, Hannegan, Energy Systems Integration  

Broader source: Energy.gov (indexed) [DOE]

cross m ul*ple p athways a nd s cales New A pproach E nergy Systems Integra.on 5 * Sensors and controls * Design and integration * Modeling and simulation * System...

420

Uniform asymptotic approximations of integrals   

E-Print Network [OSTI]

In this thesis uniform asymptotic approximations of integrals are discussed. In order to derive these approximations, two well-known methods are used i.e., the saddle point method and the Bleistein method. To start with ...

Khwaja, Sarah Farid

2014-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "integrated algal biorefinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Arnold Schwarzenegger INTEGRATED FORECAST AND  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN with primary contributions in the area of decision support for reservoir planning and management Commission Energy-Related Environmental Research Joseph O' Hagan Contract Manager Joseph O' Hagan Project

422

Arnold Schwarzenegger INTEGRATED FORECAST AND  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN: California Energy Commission Energy-Related Environmental Research Joseph O' Hagan Contract Manager Joseph O' Hagan Project Manager Kelly Birkinshaw Program Area Manager ENERGY-RELATED ENVIRONMENTAL RESEARCH Martha

423

Integrated Mechanical & Electrical Engineering (IMEE)  

E-Print Network [OSTI]

Integrated Mechanical & Electrical Engineering (IMEE) Department of Electronic & Electrical Engineering and Department of Mechanical Engineering #12;Graduates able to work in both mechanical of Mechanical Engineers (IMechE) n Develop essential engineering skills through extensive project work n Enhance

Burton, Geoffrey R.

424

Integrated Safety Management System Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This manual provides requirements and guidance for DOE and contractors to ensure development and implementation of an effective Integrated Safety Management system that is periodically reviewed and continuously improved. Canceled by DOE O 450.2.

2006-11-01T23:59:59.000Z

425

Optical waveguides for microfluidic integration  

E-Print Network [OSTI]

A scalable polymer backplane for dense integration of photonics with lab-on-a-chip systems is presented. A high-throughput cell culture chip employing waveguides for monitoring and control of culture conditions is used to ...

Ram, Rajeev J.

426

Demonstration of integrated optimization software  

SciTech Connect (OSTI)

NeuCO has designed and demonstrated the integration of five system control modules using its proprietary ProcessLink{reg_sign} technology of neural networks, advanced algorithms and fuzzy logic to maximize performance of coal-fired plants. The separate modules control cyclone combustion, sootblowing, SCR operations, performance and equipment maintenance. ProcessLink{reg_sign} provides overall plant-level integration of controls responsive to plant operator and corporate criteria. Benefits of an integrated approach include NOx reduction improvement in heat rate, availability, efficiency and reliability; extension of SCR catalyst life; and reduced consumption of ammonia. All translate into cost savings. As plant complexity increases through retrofit, repowering or other plant modifications, this integrated process optimization approach will be an important tool for plant operators. 1 fig., 1 photo.

NONE

2008-01-01T23:59:59.000Z

427

Integration of Renewable Resources November 2007  

E-Print Network [OSTI]

Integration of Renewable Resources November 2007 Transmission and operating issues and recommendations for integrating renewable resources on the California ISO-controlled Grid California Independent System Operator #12;CAISO Integration of Renewable Resources Members of the Renewables Workgroup

428

HANDBOOK OF THE CELLULAR & INTEGRATIVE PHYSIOLOGY  

E-Print Network [OSTI]

HANDBOOK OF THE CELLULAR & INTEGRATIVE PHYSIOLOGY GRADUATE AND INTEGRATIVE PHYSIOLOGY A. GENERAL INFORMATION In addition to the general and Integrative Physiology Graduate Program has adopted specific requirements for its Doctor

Mohaghegh, Shahab

429

Spent fuel integrity during transportation  

SciTech Connect (OSTI)

The conditions of recent shipments of light water reactor spent fuel were surveyed. The radioactivity level of cask coolant was examined in an attempt to find the effects of transportation on LWR fuel assemblies. Discussion included potential cladding integrity loss mechanisms, canning requirements, changes of radioactivity levels, and comparison of transportation in wet or dry media. Although integrity loss or degradation has not been identified, radioactivity levels usually increase during transportation, especially for leaking assemblies.

Funk, C.W.; Jacobson, L.D.

1980-01-01T23:59:59.000Z

430

Transportation and Stationary Power Integration Workshop Session...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Integration Workshop Session II: State and Industry Perspectives Transportation and Stationary Power Integration Workshop Session II: State and Industry Perspectives Opportunities...

431

Transportation and Stationary Power Integration Workshop Attendees...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Attendees List Transportation and Stationary Power Integration Workshop Attendees List List of attendees for the Transportation and Stationary Power Integration Workshop...

432

Sandia National Laboratories: Integrated Research and Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateEnergy InfrastructureAdvanced Electric SystemsIntegrated Research and Development Integrated Research and Development Sandia's Renewable Systems and Energy Infrastructure...

433

Opening Remarks, Grid Integration Initiative Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Loads Power Systems Integration Lab PV and Grid Simulators Energy Systems Integration Lab Fuel Cells, Electrolyzers Outdoor Test Area EVs, MV equipment Rooftop PV & Wind Energy...

434

Integrating Information, Science, and Technology for Prediction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrating Information, Science, and Technology for Prediction Integrating Information, Science, and Technology for Prediction (IS&T) The Lab's four Science Pillars harness...

435

Sandia National Laboratories: Distribution Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Supply Transformation Needed On February 20, 2013, in DETL, Distribution Grid Integration, Energy, Energy Assurance, Energy Surety, Grid Integration, Infrastructure...

436

Advancing Energy Systems through Integration | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advancing Energy Systems through Integration Advancing Energy Systems through Integration This presentation was given by Ever-Green Energy's Ken Smith as part of the November 20,...

437

Distributed Energy Systems Integration Group (Fact Sheet)  

SciTech Connect (OSTI)

Factsheet developed to describe the activites of the Distributed Energy Systems Integration Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

Not Available

2009-10-01T23:59:59.000Z

438

Sandia National Laboratories: Distribution Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Symposium On April 15, 2014, in Concentrating Solar Power, Distribution Grid Integration, Energy, Facilities, Grid Integration, News, News & Events, Photovoltaic,...

439

Sandia National Laboratories: Distribution Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Distribution Grid Integration Recent Sandia Secure, Scalable Microgrid Advanced Controls Research Accomplishments On March 3, 2015, in Capabilities, Distribution Grid Integration,...

440

Building Technologies Research and Integration Center | ornl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Integration Center October 02, 2014 Today, through the Building Technologies Research and Integration Center (BTRIC) and associated Centers of Excellence, ORNL applies...

Note: This page contains sample records for the topic "integrated algal biorefinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Power Electronic Thermal System Performance and Integration ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

-- Washington D.C. ape13bennion.pdf More Documents & Publications Power Electronic Thermal System Performance and Integration Integrated Power Module Cooling Vehicle...

442

Separations and safeguards model integration.  

SciTech Connect (OSTI)

Research and development of advanced reprocessing plant designs can greatly benefit from the development of a reprocessing plant model capable of transient solvent extraction chemistry. This type of model can be used to optimize the operations of a plant as well as the designs for safeguards, security, and safety. Previous work has integrated a transient solvent extraction simulation module, based on the Solvent Extraction Process Having Interaction Solutes (SEPHIS) code developed at Oak Ridge National Laboratory, with the Separations and Safeguards Performance Model (SSPM) developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The goal of this work was to strengthen the integration by linking more variables between the two codes. The results from this integrated model show expected operational performance through plant transients. Additionally, ORIGEN source term files were integrated into the SSPM to provide concentrations, radioactivity, neutron emission rate, and thermal power data for various spent fuels. This data was used to generate measurement blocks that can determine the radioactivity, neutron emission rate, or thermal power of any stream or vessel in the plant model. This work examined how the code could be expanded to integrate other separation steps and benchmark the results to other data. Recommendations for future work will be presented.

Cipiti, Benjamin B.; Zinaman, Owen

2010-09-01T23:59:59.000Z

443

MHD Integrated Topping Cycle Project  

SciTech Connect (OSTI)

The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

Not Available

1992-03-01T23:59:59.000Z

444

Integrated Building Management System (IBMS)  

SciTech Connect (OSTI)

This project provides a combination of software and services that more easily and cost-effectively help to achieve optimized building performance and energy efficiency. Featuring an open-platform, cloud- hosted application suite and an intuitive user experience, this solution simplifies a traditionally very complex process by collecting data from disparate building systems and creating a single, integrated view of building and system performance. The Fault Detection and Diagnostics algorithms developed within the IBMS have been designed and tested as an integrated component of the control algorithms running the equipment being monitored. The algorithms identify the normal control behaviors of the equipment without interfering with the equipment control sequences. The algorithms also work without interfering with any cooperative control sequences operating between different pieces of equipment or building systems. In this manner the FDD algorithms create an integrated building management system.

Anita Lewis

2012-07-01T23:59:59.000Z

445

Symplectic numerical integration of Hamiltonian systems  

SciTech Connect (OSTI)

This paper describes some general techniques available for symplectic or Lie-Poisson integration and illustrate the results with some numerical computations. In this spirit, I also discuss reversible integration, equivariant integration, integration of volume preserving flows, and symplectic cellular automata. My intention is not to be exhaustive but to give a representative review. 76 refs., 5 figs.

Scovel, C.

1989-09-11T23:59:59.000Z

446

INSTRUCTIONS INTEGRATED OCEAN DRILLING PROGRAM (IODP)  

E-Print Network [OSTI]

INSTRUCTIONS FOR THE INTEGRATED OCEAN DRILLING PROGRAM (IODP) MANUSCRIPT AND PHOTOGRAPH COPYRIGHT, Integrated Ocean Drilling Program, 1000 Discovery Drive, College Station, Texas 77845, USA A signed copyright of the Integrated Ocean Drilling Program or any other publications of the Integrated Ocean Drilling Program. Author

447

ACADEMIC INTEGRITY CODE 1 GENERAL PROVISIONS  

E-Print Network [OSTI]

approve the Council's procedures as well as bylaws and membership requirements. The Integrity CouncilACADEMIC INTEGRITY CODE 1 GENERAL PROVISIONS 1.1 Basic Principle of Academic Integrity Academic integrity means honesty and responsibility in scholarship. Academic assignments exist to help students learn

Droegemeier, Kelvin K.

448

Energy Storage Management for VG Integration (Presentation)  

SciTech Connect (OSTI)

This presentation describes how you economically manage integration costs of storage and variable generation.

Kirby, B.

2011-10-01T23:59:59.000Z

449

National Bioenergy Center Biochemical Platform Integration Project  

SciTech Connect (OSTI)

April through June 2008 update on activities of the National Bioenergy Center's Biochemical Platform Integration Project.

Not Available

2008-07-01T23:59:59.000Z

450

Operation of orifice meter chart integrators  

SciTech Connect (OSTI)

When properly maintained and operated, the chart integrator can provide reliable chart integration for many years. The overall accuracy of the integration process win be determined by the proficiency of the operator as well as the upkeep and calibration of the chart integrator.

Gray, C. [EMC Services Co., Inc., Arlington, TX (United States)

1995-12-01T23:59:59.000Z

451

ESIF 2014 (Energy Systems Integration Facility) (Brochure)  

SciTech Connect (OSTI)

This report covers research highlights and achievements for the Energy Systems Integration Facility in 2014.

Not Available

2015-01-01T23:59:59.000Z

452

CALIFORNIA ENERGY Integrated Ceiling Research Report  

E-Print Network [OSTI]

are part of the Integrated Design of Commercial Building Ceiling Systems research project. The reports of a larger research effort called Integrated Energy Systems: Productivity and Building Science ProgramCALIFORNIA ENERGY COMMISSION Integrated Ceiling Research Report Integrated Ceiling Research Report

453

IntegrityGuide_2006.qxd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land SurfaceVirus-Infected MacaquesIntegration ofIntegrative

454

TREATMENT SYSTEMS AN INTEGRATED APPROACH  

E-Print Network [OSTI]

ECOLOGICAL TREATMENT SYSTEMS AN INTEGRATED APPROACH TO THE TREATMENT OF WASTE AND WASTE WATER's naturally pure water #12;Wetland Ecology Our treatment systems incorporate a wide variety of wetland plants for on-site management and treatment of effluent and solid waste 3. Provide for surface water attenuation

Heal, Kate

455

The Center for integrative genomics  

E-Print Network [OSTI]

The Center for integrative genomics Report 2005­2006 #12;Presentation Director's message 4 Scientific advisory committee 6 Organigram of the CIG 7 research The structure and function of genomes and their evolution alexandrereymond ­ Genome structure and expression 10 henrikKaessmann ­ Evolutionary genomics 12

Kaessmann, Henrik

456

Integration Multi-Year Program  

E-Print Network [OSTI]

systems CHP combined heat and power DER distributed energy resources DG distributed generation DOE U Energy EMS energy management system ERO electric reliability organizations ESI energy systems integration ESS energy storage system EV electric vehicles EY electrolyzer FC fuel cell FCEV fuel cell electric

457

January 2005 INTEGRATING IT SECURITY  

E-Print Network [OSTI]

January 2005 INTEGRATING IT SECURITY INTO THE CAPITAL PLANNING AND INVESTMENT CONTROL PROCESS technology (IT) security and capital planning and investment control (CPIC) processes have been performed taining appropriate security controls, both at the enterprise-wide and system level, commensurate

458

INTEGRATED GHz VOLTAGE CONTROLLED OSCILLATORS  

E-Print Network [OSTI]

INTEGRATED GHz VOLTAGE CONTROLLED OSCILLATORS Peter Kinget Bell Labs - Lucent Technologies Murray Hill, NJ (USA) Abstract The voltage controlled oscillator (VCO) is a critical sub. We focus on the de- sign of a critical sub-block: the voltage controlled oscillator (VCO). We review

Kinget, Peter

459

IBM and Johnson Controls Integrated  

E-Print Network [OSTI]

IBM and Johnson Controls Integrated Smarter Building Solution IBM and Johnson Controls make it simpler to reduce energy and operational costs while reducing greenhouse emissions. IBM and Johnson and more. IBM and Johnson Controls work with you to identify high-priority energy consumption areas

460

Microfluidic Systems Integrated Microfluidic Systems**  

E-Print Network [OSTI]

Microfluidic Systems Integrated Microfluidic Systems** Rustem F. Ismagilov* Keywords: analytical methods · enzymes · microfluidics · microreactors · protein structures Microfluidic systems use networks of channels thinner than a human hair to manipulate nanoliter volumes of re- agents. The goal of microfluidics

Ismagilov, Rustem F.

Note: This page contains sample records for the topic "integrated algal biorefinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Integrated decontamination process for metals  

DOE Patents [OSTI]

An integrated process for decontamination of metals, particularly metals that are used in the nuclear energy industry contaminated with radioactive material. The process combines the processes of electrorefining and melt refining to purify metals that can be decontaminated using either electrorefining or melt refining processes.

Snyder, Thomas S. (Oakmont, PA); Whitlow, Graham A. (Murrysville, PA)

1991-01-01T23:59:59.000Z

462

Integrating Food Production and Biodiversity  

E-Print Network [OSTI]

Integrating Food Production and Biodiversity Energy and Scale Issues in Implementation Kristina and biodiversity ­ energy and scale issues in implementation Abstract The aim of this thesis was to test the hypotheses that (1) biodiversity at a farm level differs between small and large farms, and (2

463

The Integration of Conservation Science  

E-Print Network [OSTI]

Function and the Law · Conservation Science, Biodiversity, and the 2005 U.S. Forest Service Regulations Tool Kit for Ecologists and Biodiversity Managers Some selected titles of recent papers in ConservationChapter 17 The Integration of Conservation Science and Policy Conservation Biology ­ April 22, 2010

Gottgens, Hans

464

2010INTEGRATED ENERGY POLICY REPORT  

E-Print Network [OSTI]

for California's rural counties; and small businesses who spon- sored the State Energy Efficient Appliance Rebate2010INTEGRATED ENERGY POLICY REPORT UPDATE CALIFORNIA ENERGY COMMISSION EDMUND G. BROWN JR. GOVERNOR CEC ­100 ­2010 ­ 001­ CMF #12;CALIFORNIA ENERGY COMMISSION Karen Douglas Chair James D. Boyd Vice

465

Challenges in Integrating Renewable Technologies  

E-Print Network [OSTI]

-5706 Phone: 480-965-1643 Fax: 480-965-0745 Notice Concerning Copyright Material Permission is given to copy as the source material. This white paper is available for downloading from the PSERC website. 2010 Arizona State University All rights reserved #12;PSERC White Paper 1 Challenges in Integrating Renewable Technologies

466

FUZZY CONTROLLERS: AN INTEGRATED APPROACH  

E-Print Network [OSTI]

1 FUZZY CONTROLLERS: AN INTEGRATED APPROACH BASED ON FUZZY LOGIC, ROUGH SETS, AND EVOLUTIONARY is used to formalized the design of classical fuzzy logic controllers. The design is formu­ lated into the design theory of fuzzy logic control (FLC). One of the important novelties of FLC design

Lin, Tsau Young

467

Designing Integrated Engineering Environments: BlackboardBased Integration of Design and  

E-Print Network [OSTI]

Designing Integrated Engineering Environments: Blackboard­Based Integration of Design and Analysis to building integrated engineering environments based on blackboard tech­ nology as the integrating tools. This article describes: 1) an approach to designing integrated engineering environments based

Corkill, Daniel

468

Improved Algal Harvesting Using Suspended Air Flotation  

E-Print Network [OSTI]

, consisting primarily of Chlorella and Scenedesmus, composed approximately 80% of the solids inventory during. Furthermore, use of SAF to harvest commercially grown Chlorella and Scenedesmus may reduce manufacturing costs). KEYWORDS: Suspended air flotation (SAF), dissolved air flotation (DAF), wastewater, algae, Chlorella

Jacobson, Arne

469

Harmful Algal Blooms & Muck What's the Difference?  

E-Print Network [OSTI]

. Microcystis blooms have been found in western Lake Erie, Saginaw Bay, western Lake Michigan, and inland type. However, both represent significantly different species. Unlike green algae such as Cladophora, blue-green algae is technically not an algae, but is a bacteria known as cyanobacteria

470

Environmental Problems Facing Lake Tahoe Algal Growth  

E-Print Network [OSTI]

fertilizers, which support the growth of free-floating and attached algae. Eutrophication Eutrophication refers to the effects of an overabundance of nutrients. Eutrophication occurs naturally as part. This process normally occurs over millions of years; however, we are seeing the effects of eutrophication

Schladow, S. Geoffrey

471

NREL Algal Biofuels Projects and Partnerships (Brochure)  

SciTech Connect (OSTI)

The highlights presented here should serve as a foundation for the research efforts towards algae as a source of fuels and other chemicals.

Not Available

2013-09-01T23:59:59.000Z

472

Effects of municipal effluent on algal growth  

E-Print Network [OSTI]

a method to re- 13 move phosphorus to O. 01 ppm by using ferric chloride Alum has also been used for phosphate removal in both the secondary and tertiary processes. It has reduced *he phosphorus concentration of the ef'fluent *o O. q- 1. 0 mg...

Sung, Yeh-Min

1975-01-01T23:59:59.000Z

473

Exploiting algal NADPH oxidase for biophotovoltaic energy  

E-Print Network [OSTI]

.A., Davey, M.P., Dennis, J.S., Horst, I., Howe, C.J., Lea-Smith, D. and Smith, A.G. (2010) Biodiesel from algae: challenges and prospects. Curr. Opin. Biotechnol. 21, 277–286. Sutherland, M.W. and Learmonth, B.A. (1997) The tetrazolium dyes MTS and XTT...

Anderson, Alexander; Laohavisit, Anuphon; Blaby, Ian K.; Bombelli, Paolo; Howe, Christopher J.; Merchant, Sabeeha S.; Davies, Julia M.; Smith, Alison G.

2015-01-29T23:59:59.000Z

474

Pathways for Algal Biofuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdf MoreEnergyEnergy Amendment(a) WheneverThis is a

475

Major Nutrient Recycling for Sustained Algal Production  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergy Maine State Historic5The Current National

476

Algal Biofuels Techno-Economic Analysis  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, T X S ummary o

477

Algal Biofuel Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts1-034 Advance|atp3.org 1 John A. McGowen PhD, PMP

478

Algal Biology Program at Los Alamos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTScmi.ameslab.govAbout Core

479

Integrated Building Energy Systems Design Considering Storage Technologies  

E-Print Network [OSTI]

L ABORATORY Integrated Building Energy Systems Design7301 Integrated building energy systems design considering

Stadler, Michael

2009-01-01T23:59:59.000Z

480

FROM TRANSACTIONAL SPATIAL DATABASES INTEGRITY CONSTRAINTS TO SPATIAL DATACUBES INTEGRITY CONSTRAINTS  

E-Print Network [OSTI]

FROM TRANSACTIONAL SPATIAL DATABASES INTEGRITY CONSTRAINTS TO SPATIAL DATACUBES INTEGRITY, Sherbrooke, Canada - brodeur@nrcan.gc.ca KEY WORDS: Integrity Constraint, Spatial Datacube, Spatio technology (SOLAP). They are aimed at supporting Geographic Knowledge Discovery (GKD) as well as certain

Note: This page contains sample records for the topic "integrated algal biorefinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Vertically Integrated Circuits at Fermilab  

SciTech Connect (OSTI)

The exploration of the vertically integrated circuits, also commonly known as 3D-IC technology, for applications in radiation detection started at Fermilab in 2006. This paper examines the opportunities that vertical integration offers by looking at various 3D designs that have been completed by Fermilab. The emphasis is on opportunities that are presented by through silicon vias (TSV), wafer and circuit thinning and finally fusion bonding techniques to replace conventional bump bonding. Early work by Fermilab has led to an international consortium for the development of 3D-IC circuits for High Energy Physics. The consortium has submitted over 25 different designs for the Fermilab organized MPW run organized for the first time.

Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

2009-01-01T23:59:59.000Z

482

Symplectic Integrator Mercury: Bug Report  

E-Print Network [OSTI]

We report on a problem found in MERCURY, a hybrid symplectic integrator used for dynamical problems in Astronomy. The variable that keeps track of bodies' statuses is uninitialised, which can result in bodies disappearing from simulations in a non-physical manner. Some FORTRAN compilers implicitly initialise variables, preventing simulations from having this problem. With other compilers, simulations with a suitably large maximum number of bodies parameter value are also unaffected. Otherwise, the problem manifests at the first event after the integrator is started, whether from scratch or continuing a previously stopped simulation. Although the problem does not manifest in some conditions, explicitly initialising the variable solves the problem in a permanent and unconditional manner.

K. de Souza Torres; D. R. Anderson

2008-08-04T23:59:59.000Z

483

IAdvanced Integrated Hypersonic Entry SystemsAdvanced Integrated Hypersonic Entry Systems 2009 Phase II  

E-Print Network [OSTI]

SBIR SBIR 66 67 IAdvanced Integrated Hypersonic Entry SystemsAdvanced Integrated Hypersonic Entry of materials in providing tailored stiffness and rigidity for hypersonic entry vehicles. The proposed

484

Northwest Habitat Institute Integrated Habitat and Biodiversity Information SystemIntegrated Habitat and Biodiversity Information System  

E-Print Network [OSTI]

Northwest Habitat Institute Integrated Habitat and Biodiversity Information SystemIntegrated Habitat and Biodiversity Information System (IBIS) for the Columbia River Basin(IBIS) for the Columbia

485

Integral-free Wigner functions  

E-Print Network [OSTI]

Wigner phase space quasi-probability distribution function is a Fourier transform related to a given quantum mechanical wave function. It is shown that for the wave functions of type $\\psi (q)=e^{-aq^2}\\phi (q)$, the Wigner function can be defined in terms of differential operators acting on a given function, independently from the integral formula which appears in the standard definition. Gaussian wave packet, harmonic and singular oscillators are given as the examples.

A. Tegmen

2007-02-06T23:59:59.000Z

486

Grid Integration of Robotic Telescopes  

E-Print Network [OSTI]

Robotic telescopes and grid technology have made significant progress in recent years. Both innovations offer important advantages over conventional technologies, particularly in combination with one another. Here, we introduce robotic telescopes used by the Astrophysical Institute Potsdam as ideal instruments for building a robotic telescope network. We also discuss the grid architecture and protocols facilitating the network integration that is being developed by the German AstroGrid-D project. Finally, we present three user interfaces employed for this purpose.

F. Breitling; T. Granzer; H. Enke

2009-03-23T23:59:59.000Z

487

MHD Integrated Topping Cycle Project  

SciTech Connect (OSTI)

The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois {number sign}6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.

Not Available

1992-01-01T23:59:59.000Z

488

Integrated nonthermal treatment system study  

SciTech Connect (OSTI)

This report presents the results of a study of nonthermal treatment technologies. The study consisted of a systematic assessment of five nonthermal treatment alternatives. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The alternatives considered were innovative nonthermal treatments for organic liquids and sludges, process residue, soil and debris. Vacuum desorption or various washing approaches are considered for treatment of soil, residue and debris. Organic destruction methods include mediated electrochemical oxidation, catalytic wet oxidation, and acid digestion. Other methods studied included stabilization technologies and mercury separation of treatment residues. This study is a companion to the integrated thermal treatment study which examined 19 alternatives for thermal treatment of MLLW waste. The quantities and physical and chemical compositions of the input waste are based on the inventory database developed by the US Department of Energy. The Integrated Nonthermal Treatment Systems (INTS) systems were evaluated using the same waste input (2,927 pounds per hour) as the Integrated Thermal Treatment Systems (ITTS). 48 refs., 68 figs., 37 tabs.

Biagi, C.; Bahar, D.; Teheranian, B.; Vetromile, J. [Morrison Knudsen Corp. (United States); Quapp, W.J. [Nuclear Metals (United States); Bechtold, T.; Brown, B.; Schwinkendorf, W. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Swartz, G. [Swartz and Associates (United States)

1997-01-01T23:59:59.000Z

489

2006 INTEGRATED ENERGY POLICY REPORT UPDATE  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION 2006 INTEGRATED ENERGY POLICY REPORT UPDATE INTEGRATED ENERGY POLICY REPORT UPDATE January 3, 2007 Executive Summary Page E-2, first paragraph under conducted two cycles of renewable energy solicitations and negotiated a number of bilateral agreements

490

Education Abroad Curriculum Integration Support Grants  

E-Print Network [OSTI]

Education Abroad Curriculum Integration Support Grants Application of a larger pool of nearly $30,000 for new international education abroad initiatives Criteria 1. Education Abroad Curriculum Integration Support Grants are to be applied

491

Wind Power Integration: Exploring Impacts and Alternatives  

E-Print Network [OSTI]

Wind Power Integration: Exploring Impacts and Alternatives Assist. Prof. C sustainable sources of energy. The idea of harnessing wind energy has been there have been no less than fifteen in-depth wind integration studies

Walter, M.Todd

492

Cost estimation of human systems integration  

E-Print Network [OSTI]

Human Systems Integration (HSI) is the interdisciplinary technical and management processes for integrating human considerations within and across all system elements. The goal of this research is to develop a better ...

Liu, Kevin K. (Kevin Kaitan), 1986-

2010-01-01T23:59:59.000Z

493

Integrated Coal Gasification Power Plant Credit (Kansas)  

Broader source: Energy.gov [DOE]

Integrated Coal Gasification Power Plant Credit states that an income taxpayer that makes a qualified investment in a new integrated coal gasification power plant or in the expansion of an existing...

494

Vertical Integration and Technology: Theory and Evidence  

E-Print Network [OSTI]

We study the determinants of vertical integration. We first derive a number of predictions regarding the relationship between technology intensity and vertical integration from a simple incomplete contracts model. Then, ...

Acemoglu, Daron

495

Articles about Grid Integration and Transmission  

Broader source: Energy.gov [DOE]

Stories about grid integration and transmission featured by the U.S. Department of Energy (DOE) Wind Program.

496

Track 5: Integration of Safety Into Design  

Broader source: Energy.gov [DOE]

ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 5: Integration of Safety Into Design

497

Eastern Renewable Generation Integration Study (Presentation)  

SciTech Connect (OSTI)

This presentation provides a high-level overview of the Eastern Renewable Generation Integration Study process, scenarios, tools, and goals.

Bloom, A.

2014-05-01T23:59:59.000Z

498

Track 6: Integrating Safety Into Security Operations  

Broader source: Energy.gov [DOE]

ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 6: Integrating Safety Into Security Operations

499

Integrating Experimental Design Into Your Program  

Broader source: Energy.gov [DOE]

This presentation, given through the DOE's Technical Assitance Program (TAP), exaplin how you can integrate experimental design into your program.

500

Western Wind and Solar Integration Study  

SciTech Connect (OSTI)

This report provides a full description of the Western Wind and Solar Integration Study (WWSIS) and its findings.

GE Energy

2010-05-01T23:59:59.000Z